WO2015037737A1 - リチウムイオン電池用正極材料 - Google Patents

リチウムイオン電池用正極材料 Download PDF

Info

Publication number
WO2015037737A1
WO2015037737A1 PCT/JP2014/074405 JP2014074405W WO2015037737A1 WO 2015037737 A1 WO2015037737 A1 WO 2015037737A1 JP 2014074405 W JP2014074405 W JP 2014074405W WO 2015037737 A1 WO2015037737 A1 WO 2015037737A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
electrode material
powder
composite oxide
Prior art date
Application number
PCT/JP2014/074405
Other languages
English (en)
French (fr)
Inventor
蔭井 慎也
恭平 山口
祥巳 畑
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2015531375A priority Critical patent/JP5883999B2/ja
Priority to GB1603461.3A priority patent/GB2533720A/en
Priority to KR1020167004820A priority patent/KR102170482B1/ko
Priority to US14/917,283 priority patent/US20160218362A1/en
Publication of WO2015037737A1 publication Critical patent/WO2015037737A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium metal composite oxide having a layer structure, and in particular, a positive electrode material for a lithium ion battery comprising a lithium-rich layered lithium metal composite oxide (also referred to as “lithium-rich layered cathode material”, “OLO” or the like). About.
  • a lithium-rich layered lithium metal composite oxide also referred to as “lithium-rich layered cathode material”, “OLO” or the like.
  • Lithium batteries especially lithium secondary batteries, have features such as high energy density and long life, so they can be used for home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones. Used as a power source. Recently, the lithium secondary battery is also applied to a large battery mounted on an electric vehicle (EV), a hybrid electric vehicle (HEV), or the like.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • a lithium secondary battery is a secondary battery with a structure in which lithium is extracted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and reversely, lithium ions return from the negative electrode to the positive electrode during discharging. It is known to be due to the potential of the material.
  • LiCoO 2 has a layer structure in which a lithium atomic layer and a cobalt atomic layer are alternately stacked via an oxygen atomic layer, has a large charge / discharge capacity, and is excellent in diffusibility of lithium ion storage / desorption.
  • LiCoO 2 has a layer structure in which a lithium atomic layer and a cobalt atomic layer are alternately stacked via an oxygen atomic layer, has a large charge / discharge capacity, and is excellent in diffusibility of lithium ion storage / desorption.
  • most of the commercially available lithium secondary batteries are lithium metal composite oxides having a layer structure such as LiCoO 2 .
  • a lithium metal composite oxide having a layer structure such as LiCoO 2 or LiNiO 2 is represented by a general formula LiMeO 2 (Me: transition metal).
  • the crystal structure of the lithium metal composite oxide having these layer structures belongs to the space group R-3m (“-” is usually attached to the upper part of “3” and indicates a reversal. The same applies hereinafter).
  • Li ions, Me ions, and oxide ions occupy 3a sites, 3b sites, and 6c sites, respectively. It is known that a layer made of Li ions (Li layer) and a layer made of Me ions (Me layer) have a layered structure in which they are alternately stacked via O layers made of oxide ions.
  • LiCoO 2 is the mainstream as a lithium metal composite oxide having such a layer structure, but since Co is expensive, Li has recently been added excessively to reduce the Co content.
  • Lithium-rich layered lithium metal composite oxides also referred to as “lithium-rich layered positive electrode material”, “OLO”, etc. are drawing attention.
  • Li 2 MnO 3 — (1-x) LiMO 2 -based solid solution (M ⁇ Co, Ni, etc.) known as a lithium-excess layered lithium metal composite oxide has a LiMO 2 structure and a Li 2 MnO 3 structure. It is a solid solution. Although Li 2 MnO 3 is a high capacity, while it is electrochemically inactive, LiMO 2 but is electrochemically active, since its theoretical capacity is small, both in solid solution, Li 2 MnO It has been reported that it can be produced with the aim of utilizing the electrochemically high activity of LiMO 2 while extracting the high capacity of 3 , and can actually obtain a high capacity. Specifically, it is known that when the battery is charged at 4.5 V or more, the effective capacity is improved to about 200 to 300 mAh / g with respect to the practical amount of LiCoO 2 of 160 mAh / g.
  • LiM x O 2 lithium metal composite oxide having a layer structure
  • Patent Document 1 an alkaline solution is added to a mixed aqueous solution of manganese and nickel to add manganese and nickel.
  • An active material represented by the formula: LiNi x Mn 1-x O 2 (where 0.7 ⁇ x ⁇ 0.95) obtained by coprecipitation of lithium, adding lithium hydroxide and then firing is disclosed. Has been.
  • Patent Document 2 is composed of oxide crystal particles containing three kinds of transition metals, the crystal structure of the crystal particles is a layered structure, and the arrangement of oxygen atoms constituting the oxide is cubic close-packed packing. , Li [Li x ( AP B Q C R ) 1-x ] O 2 (wherein A, B and C are three different transition metal elements, ⁇ 0.1 ⁇ x ⁇ 0.3, 0 .. 2 ⁇ P ⁇ 0.4, 0.2 ⁇ Q ⁇ 0.4, 0.2 ⁇ R ⁇ 0.4).
  • Patent Document 3 discloses Li z Ni 1-w M w O 2 (where M is at least one metal selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga). Element, and satisfies the following condition: 0 ⁇ w ⁇ 0.25, 1.0 ⁇ z ⁇ 1.1)) Secondary particles formed by aggregating a plurality of the primary particles, the shape of the secondary particles is spherical or elliptical, and 95% or more of the secondary particles have a particle size of 20 ⁇ m or less.
  • the average particle diameter of the secondary particles is 7 to 13 ⁇ m
  • the tap density of the powder is 2.2 g / cm 3 or more
  • pores having an average diameter of 40 nm or less in the pore distribution measurement by the nitrogen adsorption method the average volume is 0.001 ⁇ 0.008cm 3 / g
  • Patent Document 4 laser diffraction scattering type particle size distribution measurement is performed by, for example, pulverizing with a wet pulverizer or the like until D50: becomes 2 ⁇ m or less, granulating and drying using a thermal spray dryer or the like, and firing.
  • a lithium metal composite oxide having a layer structure characterized in that the ratio of the crystallite diameter to the average powder particle diameter (D50) determined by the method is 0.05 to 0.20 has been proposed.
  • Li 1 + x Ni ⁇ Mn ⁇ Co ⁇ O 2 (wherein x is in the range of about 0.05 to about 0.25).
  • is in the range of about 0.1 to about 0.4, ⁇ is in the range of about 0.4 to about 0.65, and ⁇ is in the range of about 0.05 to about 0.3.
  • the present invention relates to a positive electrode material for a lithium ion battery comprising a lithium-excess layered lithium metal composite oxide, and can increase the volume energy density as an electrode and realize a new rate characteristic. It is intended to provide a positive electrode material for a lithium ion battery.
  • a positive electrode material for a lithium ion battery comprising a lithium metal composite oxide having a layer structure, wherein the primary particle average particle diameter is 1.0 ⁇ m or more and the tap density is 1.9 g / cm 3 or more.
  • a positive electrode material for a lithium ion battery is proposed.
  • the positive electrode material for a lithium ion battery proposed by the present invention can effectively increase the volume energy density as an electrode by using it as a positive electrode material for a lithium secondary battery, and also has good rate characteristics, especially during charging. Good rate characteristics (also referred to as “charge rate characteristics”) can also be realized. Therefore, the positive electrode material for a lithium ion battery proposed by the present invention is particularly used as a positive electrode active material for a battery mounted on an in-vehicle battery, particularly a battery mounted on an electric vehicle (EV) or a hybrid electric vehicle (HEV). Especially excellent.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • FIG. 2 is an XRD pattern of a lithium manganese nickel-containing composite oxide powder (sample) obtained in Example 1.
  • FIG. 3 is an XRD pattern of a lithium manganese nickel-containing composite oxide powder (sample) obtained in Comparative Example 1.
  • 4 is an XRD pattern of a lithium manganese nickel-containing composite oxide powder (sample) obtained in Comparative Example 2.
  • 2 is an SEM image of a lithium manganese nickel-containing composite oxide powder (sample) obtained in Comparative Example 1.
  • 2 is an SEM image of a lithium manganese nickel-containing composite oxide powder (sample) obtained in Example 1.
  • FIG. 2 is a graph showing a charge / discharge curve of a battery using the lithium manganese nickel-containing composite oxide powder (sample) obtained in Example 1 and Comparative Example 1.
  • FIG. 3 is a graph showing a charge rate characteristic index of a battery using the lithium manganese nickel-containing composite oxide powder (sample) obtained in Example 1 and Comparative Example 1.
  • the Mn content in Ma is 30 to 80% by mass, and Mb is Al, Mg, Ti, Fe And at least one element selected from the group consisting of Nb) and a lithium metal composite oxide having a layer structure as a main component. That is, it is a powder mainly composed of lithium metal composite oxide particles having a layer structure in which lithium atom layers and transition metal atom layers are alternately stacked via oxygen atom layers.
  • containing as a main component includes the meaning of allowing other components to be included as long as the function of the main component is not hindered unless otherwise specified.
  • the content ratio of the main component includes at least 50% by mass, particularly 70% by mass or more, especially 90% by mass or more, especially 95% by mass (including 100%) of the positive electrode material.
  • This positive electrode material may contain SO 4 as an impurity as long as it is 1.0 wt% or less and other elements are 0.5 wt% or less. This is because an amount of this level is considered to hardly affect the characteristics of the present positive electrode material.
  • X in the above general formula is 0.10 to 0.33, particularly 0.11 or more and 0.32 or less, and more preferably 0.12 or more and 0.31 or less.
  • y is 0 to 0.30, more preferably 0.005 or more and 0.295 or less, and more preferably 0.01 or more and 0.29 or less.
  • Mn in the above general formula always contains Mn, and contains at least one element selected from Ni and Co, and the Mn content in Ma is 30 to 80% by mass, especially 31% by mass or more. Alternatively, it is preferably 79% by mass or less, more preferably 32% by mass or more or 78% by mass or less.
  • Mb may be at least one element selected from the group consisting of Al, Mg, Ti, Fe, and Nb.
  • the atomic ratio of the oxygen amount is described as “2” for convenience, but may have some non-stoichiometry.
  • the average particle size of the primary particles of the positive electrode material is preferably 1.0 ⁇ m or more, more preferably 1.1 ⁇ m or more or 5.0 ⁇ m or less, and particularly preferably 1.2 ⁇ m or more or 4.9 ⁇ m or less.
  • the average particle size of the primary particles is determined by using a scanning electron microscope, selecting a plurality of particles (for example, 10 particles) at random from the obtained micrograph, measuring the short diameter of the primary particles, and reducing the measured length to a reduced scale.
  • the average value can be calculated as the average particle size of primary particles.
  • a lithium metal composite oxide having a layer structure made of, for example, LiMO 2 is generated, and then refired by adding a Li raw material
  • the transition metal composition ratio for example, composition ratio such as Mn: Co: Ni ratio, Li: Mn ratio, etc.
  • the average particle size of the primary particles can be increased by increasing the firing temperature.
  • the tap density (also referred to as “TD”) of the positive electrode material is 1.9 g / cm 3 or more, especially 2.0 g / cm 3 or more, or 4.4 g / cm 3 or less, and particularly 2.1 g / cm. It is preferably 3 or more or 4.3 g / cm 3 or less.
  • the tap density can be obtained, for example, by measuring the powder packing density when a sample is put in a glass graduated cylinder and tapped a predetermined number of times with a predetermined stroke using a shaking specific gravity measuring instrument.
  • a lithium metal composite oxide having a layer structure made of, for example, LiMO 2 is generated, and then Li The raw material may be added and refired. In this way, crystal growth can be promoted, the powder density can be increased, and the tap density can be attributed to the powder characteristics of the lithium metal composite oxide that exhibits the layer structure generated in the first step. Can be increased. However, it is not limited to such a method.
  • the crystallite size of the present positive electrode material is preferably 50 nm or more, particularly 50 nm or more or 300 nm or less. In particular, it is preferably 51 nm or more or 290 nm or less.
  • crystallite means the largest group that can be regarded as a single crystal, and can be obtained by performing XRD measurement and performing Rietveld analysis.
  • the smallest unit particle composed of a plurality of crystallites and surrounded by a grain boundary when observed by SEM (for example, 3000 times) is referred to as “primary particle”.
  • primary particles include single crystals and polycrystals. From this viewpoint, if the crystallite size of the present positive electrode material is 50 nm or more, the primary particles can be made larger, and the volume energy density as an electrode can be further increased.
  • a lithium metal composite oxide having a layer structure composed of, for example, LiMO 2 is generated, and then a Li raw material is added and refired.
  • the crystal growth is promoted, and the transition metal composition ratio (for example, the composition ratio such as Mn: Co: Ni ratio, Li: Mn ratio, etc.), the raw material particle size, firing conditions, and the like may be adjusted.
  • the crystallite size can be increased by increasing the firing temperature.
  • crystallite means the largest group that can be regarded as a single crystal, and can be obtained by performing XRD measurement and performing Rietveld analysis.
  • the smallest unit particle composed of a plurality of crystallites and surrounded by a grain boundary when observed with an SEM (for example, 1000 to 5000 times) is referred to as a “primary particle”. Accordingly, the primary particles include single crystals and polycrystals.
  • the fact that it is less than 4.0% with respect to the intensity of the main peak, that is, the peak due to the layered structure, is presumed to be a single-phase structure having almost no Li 2 MnO 3 structure or a structure close thereto.
  • a lithium metal composite oxide having a layer structure made of, for example, LiMO 2 is generated as an initial step. Then, the method of re-baking by adding Li raw material can be mentioned. However, it is not limited to such a method.
  • the average particle diameter (D50) obtained by the laser diffraction / scattering particle size distribution measurement method of the positive electrode material is preferably 1 ⁇ m to 60 ⁇ m, more preferably 2 ⁇ m or more and 59 ⁇ m or less, and especially 3 ⁇ m or more or 58 ⁇ m or less. Is preferred. If the D50 of this positive electrode material is 1 ⁇ m to 60 ⁇ m, it is convenient from the viewpoint of electrode production.
  • the D50 of the present positive electrode material In order to adjust the D50 of the present positive electrode material within the above range, it is preferable to adjust the D50 of the starting material, adjust the firing temperature or firing time, or adjust D50 by crushing after firing. However, it is not limited to these adjustment methods.
  • the laser diffraction / scattering particle size distribution measurement method is a measurement method in which agglomerated powder particles are regarded as one particle (aggregated particle) to calculate the particle size, and the average particle size (D50) is 50% volume cumulative particle.
  • the diameter that is, the diameter of 50% cumulative from the finer one of the cumulative percentage notation of the measured particle size converted into volume in the chart of the volume standard particle size distribution.
  • the specific surface area of MotoTadashikyoku material (SSA) is preferably from 0.1 ⁇ 3.0m 2 / g, among others 0.2 m 2 / g or more or 2.9 m 2 / g or less, among the 0.3m It is preferable that it is 2 / g or more or 2.8 m 2 / gm or less. If the specific surface area (SSA) of the present positive electrode material is 0.1 to 3.0 m 2 / g, it is preferable from the viewpoint of easy electrode production and good battery characteristics.
  • the firing conditions temperature, time, atmosphere, etc.
  • the crushing strength after firing the crusher rotation speed, etc.
  • this positive electrode material for example, raw materials such as a lithium salt compound, a manganese salt compound, a nickel salt compound and a cobalt salt compound are weighed and mixed, pulverized with a wet pulverizer, etc., granulated, fired, and as necessary. After heat treatment, pulverization under preferable conditions, and classification as necessary, a lithium metal composite oxide having a layer structure composed of LiMO 2 (for example, M is Co, Ni, etc.) is prepared. It can be obtained by adding a lithium salt compound to the metal composite oxide, mixing again as described above, firing, heat-treating as necessary, crushing under preferable conditions, and further classifying as necessary. .
  • LiMO 2 for example, M is Co, Ni, etc.
  • a lithium metal composite oxide having a layer structure made of, for example, LiMO 2 is generated, and in subsequent steps, a Li raw material is added and regenerated.
  • the powder density can be increased due to the powder characteristics of the lithium metal composite oxide that exhibits the layer structure produced in the first step, so the electrode density High positive electrode can be produced.
  • lithium raw material examples include lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), LiOH ⁇ H 2 O, lithium oxide (Li 2 O), other fatty acid lithium and lithium halide. Etc. Of these, lithium hydroxide salts, carbonates and nitrates are preferred.
  • the manganese raw material is not particularly limited. For example, manganese carbonate, manganese nitrate, manganese chloride, manganese dioxide and the like can be used, and among these, manganese carbonate and manganese dioxide are preferable. Among these, electrolytic manganese dioxide obtained by an electrolytic method is particularly preferable.
  • the nickel raw material is not particularly limited.
  • nickel carbonate, nickel nitrate, nickel chloride, nickel oxyhydroxide, nickel hydroxide, nickel oxide, and the like can be used. Among these, nickel carbonate, nickel hydroxide, and nickel oxide are preferable.
  • the cobalt raw material is not particularly limited.
  • basic cobalt carbonate, cobalt nitrate, cobalt chloride, cobalt oxyhydroxide, cobalt hydroxide, cobalt oxide, etc. can be used, among which basic cobalt carbonate, cobalt hydroxide, cobalt oxide, cobalt oxyhydroxide are preferable.
  • the raw material of “Mb” in the above general formula is not particularly limited. For example, oxides, hydroxides, carbonates, etc. of each element (Al, Mg, Ti, Fe, Nb, etc.) are preferable.
  • the granulation method may be wet or dry as long as the various raw materials pulverized in the previous step are dispersed in the granulated particles without being separated, and the extrusion granulation method, rolling granulation method, fluidized granulation method, A mixed granulation method, a spray drying granulation method, a pressure molding granulation method, or a flake granulation method using a roll or the like may be used.
  • a drying method it may be dried by a known drying method such as a spray heat drying method, a hot air drying method, a vacuum drying method, a freeze drying method, etc. Among them, the spray heat drying method is preferable.
  • the spray heat drying method is preferably carried out using a heat spray dryer (spray dryer) (referred to herein as “spray drying method”).
  • a coprecipitated powder to be fired by, for example, a so-called coprecipitation method (referred to herein as “coprecipitation method”).
  • coprecipitation method after the raw material is dissolved in a solution, the coprecipitation powder can be obtained by adjusting the conditions such as pH and causing precipitation.
  • Firing is performed at a temperature higher than 800 ° C. and lower than 1500 ° C. in an air atmosphere, oxygen gas atmosphere, oxygen partial pressure adjusted atmosphere, carbon dioxide gas atmosphere, or other atmosphere in a firing furnace. (It means the temperature when a thermocouple is brought into contact with the fired product in the firing furnace.), Preferably 810 ° C. or higher or 1300 ° C. or lower, more preferably 820 ° C. or higher or 1100 ° C. or lower. Baking is preferably performed so as to hold for 5 to 300 hours. At this time, it is preferable to select firing conditions in which the transition metal is solid-solved at the atomic level and exhibits a single phase.
  • a firing condition in which a transition metal is dissolved at an atomic level and exhibits a single phase there is a method in which a layer structure compound is once produced by firing, and then a Li raw material is added and fired again.
  • the kind of baking furnace is not specifically limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
  • the heat treatment after firing is preferably performed when the crystal structure needs to be adjusted. Even if the heat treatment is performed under the conditions of an oxidizing atmosphere such as an atmosphere, an oxygen gas atmosphere, and an oxygen partial pressure adjusted under the atmosphere. Good.
  • the pulverization after firing or heat treatment may be performed using a high-speed rotary pulverizer as described above, if necessary. If pulverization is performed by a high-speed rotary pulverizer, it is possible to pulverize a portion where the particles are aggregated or weakly sintered, and to suppress distortion of the particles. However, the present invention is not limited to a high-speed rotary pulverizer.
  • An example of a high-speed rotary pulverizer is a pin mill.
  • the pin mill is known as a rotary disk crusher, and is a type of crusher that draws in powder from a raw material supply port by rotating a rotating disk with pins to make the inside negative pressure.
  • the rotational speed of the high-speed rotary pulverizer is preferably 4000 rpm or more, particularly 5000 to 12000 rpm, more preferably 7000 to 10000 rpm.
  • the classification after firing has technical significance of adjusting the particle size distribution of the agglomerated powder and removing foreign substances, and therefore, it is preferable to select and classify a sieve having a preferable size.
  • a lithium salt compound is added to the lithium metal composite oxide having the structure thus obtained, premixed again in the same manner as described above, fired, heat treated as necessary, and crushed under favorable conditions, Furthermore, this positive electrode material can be obtained by classifying as needed. At this time, mixing, firing, heat treatment, crushing, classification, and the like may be performed as described above, but it is not necessary to match the conditions of the LiMO 2 powder.
  • This positive electrode material can be effectively used as a positive electrode active material of a lithium battery after being crushed and classified as necessary and then mixed with other positive electrode materials as necessary.
  • the positive electrode material mixture can be produced by mixing the positive electrode material, a conductive material made of carbon black or the like, and a binder made of Teflon (registered trademark) binder or the like.
  • a positive electrode mixture is used for the positive electrode, for example, a material that can store and desorb lithium such as lithium or carbon is used for the negative electrode, and lithium such as lithium hexafluorophosphate (LiPF 6 ) is used for the non-aqueous electrolyte.
  • a lithium secondary battery can be constituted by using a salt dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate.
  • the present invention is not limited to the battery having such a configuration.
  • a lithium battery including the positive electrode material as a positive electrode active material is a positive electrode active material for a lithium battery used as a power source for driving a motor mounted on an electric vehicle (EV) or a hybrid electric vehicle (HEV). It is particularly excellent for applications.
  • the “hybrid vehicle” is a vehicle that uses two power sources, that is, an electric motor and an internal combustion engine, and includes a plug-in hybrid vehicle.
  • the term “lithium battery” is intended to encompass all batteries containing lithium or lithium ions in the battery, such as lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries, and lithium polymer batteries.
  • SN Dispersant 5468 manufactured by San Nopco Co., Ltd.
  • a pulverized slurry was obtained with an average particle size (D50) of 0.5 ⁇ m or less.
  • the obtained pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, “i-8” manufactured by Okawara Chemical Co., Ltd.).
  • a rotating disk was used for spraying, and granulation drying was performed by adjusting the temperature so that the rotation speed was 24,000 rpm, the slurry supply amount was 12 kg / hr, and the outlet temperature of the drying tower was 100 ° C.
  • the average particle diameter (D50) of the granulated powder was 15 ⁇ m.
  • the obtained granulated powder was heated to 950 ° C. at a temperature rising rate of 1.3 ° C./min using a static electric furnace and maintained at 950 ° C. for 20 hours. Thereafter, the temperature was decreased to 700 ° C. at a temperature decrease rate of 1.3 ° C./min, maintained at 700 ° C. for 10 hours, and then cooled to room temperature at a temperature decrease rate of 1.3 ° C./min. The obtained powder was crushed and again heated to 950 ° C. at a heating rate of 1.3 ° C./min in the atmosphere using a static electric furnace and maintained at 950 ° C. for 20 hours. The temperature was lowered to 700 ° C.
  • lithium manganese nickel-containing composite oxide powder (sample).
  • the obtained lithium manganese nickel-containing composite oxide powder (sample) it was confirmed to be Li 1.17 Ni 0.56 Mn 0.27 O 2 .
  • SN Dispersant 5468 manufactured by San Nopco Co., Ltd.
  • a pulverized slurry was obtained with an average particle size (D50) of 0.5 ⁇ m or less.
  • the obtained pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, “i-8” manufactured by Okawara Chemical Co., Ltd.).
  • a rotating disk was used for spraying, and granulation drying was performed by adjusting the temperature so that the rotation speed was 24,000 rpm, the slurry supply amount was 12 kg / hr, and the outlet temperature of the drying tower was 100 ° C.
  • the average particle diameter (D50) of the granulated powder was 15 ⁇ m.
  • the obtained granulated powder was heated to 950 ° C. at a temperature rising rate of 1.3 ° C./min using a static electric furnace and maintained at 950 ° C. for 20 hours. Thereafter, the temperature was decreased to 700 ° C. at a temperature decrease rate of 1.3 ° C./min, maintained at 700 ° C. for 10 hours, and then cooled to room temperature at a temperature decrease rate of 1.3 ° C./min. Thereafter, the obtained powder was crushed, classified with a sieve having an opening of 53 ⁇ m, and the powder under the sieve was collected to obtain a lithium manganese nickel-containing composite oxide powder (sample). As a result of chemical analysis of the obtained lithium manganese nickel-containing composite oxide powder (sample), it was confirmed to be Li 1.21 Ni 0.40 Mn 0.39 O 2 .
  • Example 1 Lithium carbonate, electrolytic manganese dioxide, and nickel hydroxide were weighed so that the composition would be Li 1.06 Ni 0.47 Mn 0.47 O 2 , water was added, mixed and stirred to prepare a slurry with a solid content concentration of 10 wt%. . To the obtained slurry (500 g of raw material powder), 6 wt% of a polycarboxylic acid ammonium salt (SN Dispersant 5468 manufactured by San Nopco Co., Ltd.) as a dispersant was added, and pulverized for 20 minutes at 1200 rpm with a wet pulverizer.
  • SN Dispersant 5468 manufactured by San Nopco Co., Ltd.
  • a pulverized slurry was obtained with an average particle size (D50) of 0.5 ⁇ m or less.
  • the obtained pulverized slurry was granulated and dried using a thermal spray dryer (spray dryer, “i-8” manufactured by Okawara Chemical Co., Ltd.).
  • a rotating disk was used for spraying, and granulation drying was performed by adjusting the temperature so that the rotation speed was 24,000 rpm, the slurry supply amount was 12 kg / hr, and the outlet temperature of the drying tower was 100 ° C.
  • the average particle diameter (D50) of the granulated powder was 15 ⁇ m.
  • the obtained granulated powder was heated to 700 ° C. at a temperature rising rate of 1.5 ° C./min in the atmosphere using a static electric furnace and maintained at 700 ° C. for 20 hours. Then, it cooled to normal temperature with the temperature fall rate of 1.5 degreeC / min. Next, again using a stationary electric furnace, the temperature was raised to 1000 ° C. in the atmosphere at a temperature rising rate of 1.5 ° C./min, and maintained at 1000 ° C. for 30 hours (this heating maintenance treatment was performed as “main firing 1 Then, it was cooled to room temperature at a temperature lowering rate of 1.5 ° C./min. The fired powder thus obtained was crushed and classified with a sieve having an opening of 53 ⁇ m, and the sieved powder was recovered. As a result of chemical analysis of the collected powder, it was confirmed to be Li 1.06 Ni 0.47 Mn 0.47 O 2 .
  • lithium carbonate was added to the recovered under-sieving powder so that the target composition was Li 1.13 Mn 0.45 Ni 0.42 O 2, and mixing was performed for 1 hour using a ball mill.
  • the obtained mixed powder was heated to 1050 ° C. in the atmosphere at a heating rate of 1.3 ° C./min using a static electric furnace and maintained at 1050 ° C. for 20 hours ( This is referred to as “main firing 2”.)
  • main firing 2 This is referred to as “main firing 2”.
  • the fired powder thus obtained was crushed and classified with a sieve having an opening of 53 ⁇ m, and the sieved powder was recovered to obtain a lithium manganese nickel-containing composite oxide powder (sample).
  • a lithium manganese nickel-containing composite oxide powder As a result of chemical analysis of the obtained lithium manganese nickel-containing composite oxide powder (sample), it was confirmed to be Li 1.13 Ni 0.45 Mn 0.42 O 2 .
  • Example 2 Lithium carbonate, electrolytic manganese dioxide, and nickel hydroxide were weighed and mixed so that the composition was Li 1.06 Mn 0.56 Ni 0.38 O 2, and the heating maintenance temperature of main firing 1 was changed to 800 ° C.
  • sieving powder was collected.
  • the target composition was Li 1.16 Mn 0.50 Ni 0.34 O 2 .
  • the heating maintenance temperature of the main firing 2 was changed to 1000 ° C.
  • lithium manganese nickel-containing composite oxide powder (sample) was obtained.
  • Example 3 Lithium carbonate, electrolytic manganese dioxide, nickel hydroxide, and aluminum hydroxide are weighed and mixed so that the composition is Li 1.06 Mn 0.37 Ni 0.14 Al 0.10 Ni 0.33 O 2, and heating of the main firing 1 is maintained. The temperature was changed to 1000 ° C., and the sieving powder was collected in the same manner as in Example 1. As a result of chemical analysis of the collected powder, it was confirmed that it was Li 1.06 Mn 0.37 Ni 0.14 Al 0.10 Ni 0.33 O 2 . Next, lithium carbonate was added to the recovered undersieving powder so that the target composition was Li 1.14 Mn 0.34 Ni 0.30 Co 0.13 Al 0.09 O 2, and the heating maintenance temperature of the main firing 2 was changed to 1000 ° C.
  • lithium manganese nickel-containing composite oxide powder (sample) was obtained.
  • TD Tap Density
  • the crystal structure is assigned to the trigonal of the space group R3-m, its 3a site is occupied by Li, 3b site by Mn, Co, Ni, and excess Li content x, and the 6c site is O , Oxygen seat occupancy (Occ.) And isotropic temperature factor (Beq.) Are variables, and refined to Rwp ⁇ 5.0 and GOF ⁇ 1.3. Went.
  • Rwp and GOF are values obtained by the following formulas (see: “Practice of powder X-ray analysis”, edited by Japan Analytical Chemistry X-ray Analysis Research Roundtable, published by Asakura Shoten. February 2002) 10 days, Table 6.2 of p107).
  • Rwp [ ⁇ i wi ⁇ yi-fi (x) 2 ⁇ / ⁇ i wiii 2 ] 1/2
  • Re [(NP) / ⁇ i withi 2 ] 1/2
  • GOF Rwp / Re
  • wi is a statistical weight
  • yi an observed intensity
  • fi (x) is a theoretical diffraction intensity
  • N is the number of all data points
  • P is the number of parameters to be refined.
  • the water-soluble solvent used in the measurement was water that passed through a 60 ⁇ m filter, the solvent refractive index was 1.33, the particle permeability was reflected, the measurement range was 0.122 to 704.0 ⁇ m, and the measurement time was The average value measured twice for 30 seconds was used as the measured value.
  • SSA specific surface area
  • BET method The specific surface area (SSA) of the samples (powder) obtained in the examples and comparative examples was measured as follows. First, 0.5 g of a sample (powder) is weighed in a glass cell for a flow method gas adsorption specific surface area measuring device MONOSORB LOOP (“MS-18” manufactured by Yuasa Ionics Co., Ltd.), and the pretreatment device for the MONOSORB LOOP is used. After replacing the inside of the glass cell with nitrogen gas at a gas amount of 30 mL / min for 5 minutes, heat treatment was performed at 250 ° C. for 10 minutes in the nitrogen gas atmosphere. Then, the sample (powder) was measured by the BET single point method using the MONOSORB LOOP. The adsorbed gas at the time of measurement was a mixed gas of 30% nitrogen: 70% helium.
  • NMP N -Methylpyrrolidone
  • the positive electrode sheet volume was determined by multiplying the area of the positive electrode sheet obtained above and the thickness of the positive electrode sheet measured using a micrometer (MITUTOYO MDC-30). Next, the weight of the positive electrode itself was determined by subtracting the weight of the Al foil from the weight of the positive electrode sheet. The electrode density was determined by dividing the weight of the positive electrode itself by the positive electrode sheet volume. Table 2 shows relative values (indexes) when the electrode density of Comparative Example 1 is 100.
  • the positive electrode sheet obtained above was cut into a size of ⁇ 13 mm to form a positive electrode and dried at 200 ° C. for 6 hours.
  • a separator in which lithium metal is cut into a size of ⁇ 15 mm to form a negative electrode and impregnated with an electrolytic solution in which LiPF 6 is dissolved at 1 mol / L in a carbonate-based mixed solution between the positive electrode and the negative electrode A 2032 type coin battery (electrochemical evaluation cell) was prepared by placing a porous polyethylene film).
  • the charge / discharge capacity and charge / discharge efficiency of one cycle were determined by the method described below. That is, from the content of the positive electrode active material in the positive electrode, the charge capacity (mAh / g) of the active material was determined from the capacity when charged to 4.9 V at a current value of 0.2C at 25 ° C. The initial discharge capacity (mAh / g) of the active material was determined from the capacity when the resting time was 10 min and then discharged to 2.0 V at a 0.2 C current value. The ratio of the discharge capacity to the charge capacity was defined as one cycle charge / discharge efficiency (%).
  • Rate characteristic (discharge capacity of 2.0C at the third cycle) / (total discharge capacity at each discharge rate at the third cycle)) ⁇ 100
  • the third embodiment has the general formula Li 1 + x Ma 1-xy Mb y O 2 Oite, but is made of a composition comprising Al only as Mb, in terms of ionic radii and the chemical stability, Since Al and Mg, Ti, Fe, and Nb have common properties, when Mb contains at least one element selected from the group consisting of Al, Mg, Ti, Fe, and Nb, It can be considered that the same effect as the sample obtained in Example 3 can be obtained.
  • the primary particle average particle size is 1.0 ⁇ m or more and the tap density is 1.9 g / cm 3 or more, the volume energy as an electrode Although the density can be increased and the electrode density is improved, the charge acceptability is equal to or higher than that. Therefore, it can be considered that the battery has good rate characteristics, particularly good charge rate characteristics.

Abstract

 リチウム過剰型層状リチウム金属複合酸化物からなるリチウムイオン電池用正極材料に関し、電極としての体積エネルギー密度を上げることが可能であり、且つ、良好なレート特性を発揮することができるものを提供する。 一般式Li1+xMa1-x-yMby2(x=0.1~0.33、y=0~0.3、MaはMnを必ず含み、且つ、Ni及びCoから選ばれる少なくとも1種以上の元素を含み、Ma中のMn含有量が30~80質量%、MbはAl、Mg、Ti、Fe及びNbからなる群から選ばれる少なくとも1種以上の元素)で表わされる、層構造を有するリチウム金属複合酸化物からなるリチウムイオン電池用正極材料において、一次粒子平均粒径1.0μm以上であり、且つ、タップ密度が1.9g/cm以上であることを特徴とするリチウムイオン電池用正極材料を提案する。

Description

リチウムイオン電池用正極材料
 本発明は、層構造を有するリチウム金属複合酸化物、中でもリチウム過剰型層状リチウム金属複合酸化物(“リチウム過剰型層状正極材料”“OLO”などとも称される)からなるリチウムイオン電池用正極材料に関する。
 リチウム電池、中でもリチウム二次電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器などの電源として用いられている。最近では、該リチウム二次電池は、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池にも応用されている。
 リチウム二次電池は、充電時には正極からリチウムがイオンとして抜け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極材料の電位に起因することが知られている。
 リチウム二次電池の正極活物質としては、スピネル構造をもつリチウムマンガン酸化物(LiMn24)のほか、層構造をもつLiCoO2、LiNiO2、LiMnO2などのリチウム金属複合酸化物が知られている。例えばLiCoO2は、リチウム原子層とコバルト原子層が酸素原子層を介して交互に積み重なった層構造を有しており、充放電容量が大きく、リチウムイオン吸蔵脱蔵の拡散性に優れているため、現在、市販されているリチウム二次電池の多くがLiCoO2などの層構造を有するリチウム金属複合酸化物である。
 LiCoO2やLiNiO2など、層構造を有するリチウム金属複合酸化物は、一般式LiMeO2(Me:遷移金属)で示される。これら層構造を有するリチウム金属複合酸化物の結晶構造は、空間群R-3m(「-」は通常「3」の上部に付され、回反を示す。以下、同様。)に帰属し、そのLiイオン、Meイオン及び酸化物イオンは、それぞれ3aサイト、3bサイト及び6cサイトを占有する。そして、Liイオンからなる層(Li層)とMeイオンからなる層(Me層)とが、酸化物イオンからなるO層を介して交互に積み重なった層構造を呈することが知られている。
 このような層構造を有するリチウム金属複合酸化物としては、現在のところLiCoO2が主流であるが、Coが高価であるため、最近、Liを過剰に添加して、Coの含有量を低減したリチウム過剰型層状リチウム金属複合酸化物(“リチウム過剰型層状正極材料”“OLO”などとも称される)が注目されている。
 リチウム過剰型層状リチウム金属複合酸化物として知られている「xLi2MnO3-(1-x)LiMO2系固溶体(M=Co、Niなど)」は、LiMO2構造とLi2MnO3構造との固溶体である。Li2MnO3は高容量であるが、電気化学的に不活性である一方、LiMO2は電気化学的に活性であるが、その理論容量は小さいことから、両者を固溶体化して、Li2MnO3の高容量を引き出しつつ、LiMO2の電気化学的に高活性な性質を利用するというねらいで作製され、実際に高容量を得ることができることが報告されている。具体的には、4.5V以上で充電すると、LiCoO2の実用量160mAh/gに対し、200~300mAh/g程度まで実効容量が向上することが知られている。
 従来開示されている技術を見ると、層構造を有するリチウム金属複合酸化物(LiMx2)に関しては、例えば特許文献1において、マンガンとニッケルの混合水溶液中にアルカリ溶液を加えてマンガンとニッケルを共沈させ、水酸化リチウムを加え、ついで焼成することによって得られる、式:LiNixMn1-x2(式中、0.7≦x≦0.95)で示される活物質が開示されている。
 特許文献2には、3種の遷移金属を含む酸化物の結晶粒子からなり、前記結晶粒子の結晶構造が層構造であり、前記酸化物を構成する酸素原子の配列が立方最密充填である、Li[Lix(APQR1-x]O2(式中、A、BおよびCはそれぞれ異なる3種の遷移金属元素、-0.1≦x≦0.3、0.2≦P≦0.4、0.2≦Q≦0.4、0.2≦R≦0.4)で表される正極活物質が開示されている。
 特許文献3は、LizNi1-ww2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素であり、0<w≦0.25、1.0≦z≦1.1を満たす。)で表されるリチウム金属複合酸化物の粉末に関し、該リチウム金属複合酸化物の粉末の一次粒子と該一次粒子が複数集合して形成された二次粒子とから構成され、該二次粒子の形状が球状または楕円球状であり、該二次粒子の95%以上が20μm以下の粒子径を有し、該二次粒子の平均粒子径が7~13μmであり、該粉末のタップ密度が2.2g/cm3以上であり、窒素吸着法による細孔分布測定において平均40nm以下の径を持つ細孔の平均容積が0.001~0.008cm3/gであり、該二次粒子の平均圧壊強度が15~100MPaであることを特徴とする非水系電解質二次電池用正極活物質を提案している。
 特許文献4においては、例えば湿式粉砕機等でD50:が2μm以下となるまで粉砕した後、熱噴霧乾燥機等を用いて造粒乾燥させ、焼成するようにして、レーザー回折散乱式粒度分布測定法で求められる平均粉体粒子径(D50)に対する結晶子径の比率が0.05~0.20であることを特徴とする層構造を有するリチウム金属複合酸化物が提案されている。
 他方、上述したリチウム過剰型層状リチウム金属複合酸化物に関しては、例えば特許文献5において、式Li1+xNiαMnβCoγ(式中、xは約0.05~約0.25の範囲であり、αは約0.1~約0.4の範囲であり、βは約0.4~約0.65の範囲であり、γは約0.05~約0.3の範囲である)で表されるリチウム金属複合酸化物などが開示されている。
特開平8-171910号公報 特開2003-17052号公報 特開2007-257985号公報 特許第4213768号公報(WO2008/091028) 特表2012-511809号公報
 前述したように、リチウム過剰型層状リチウム金属複合酸化物(OLO)の代表例として知られているxLi2MnO3-(1-x)LiMO2系固溶体(M=Co、Niなど)は、質量当たりの充放電容量を増大させることができる反面、結晶を成長させることが難しいことから、電極としての体積エネルギー密度を高めることができず、電池の正極材料として課題を抱えていた。また、Li2MnO3は電気化学的に不活性であるため、レート特性が極めて悪いという課題も抱えていた。
 そこで本発明は、リチウム過剰型層状リチウム金属複合酸化物からなるリチウムイオン電池用正極材料に関し、電極としての体積エネルギー密度を高めることができ、しかも良好なレート特性を実現することができる、新たなリチウムイオン電池用正極材料を提供せんとするものである。
 本発明は、一般式Li1+xMa1-x-yMby2(x=0.10~0.33、y=0~0.3、MaはMnを必ず含み、且つ、Ni及びCoから選ばれる少なくとも1種以上の元素を含み、Ma中のMn含有量が30~80質量%、MbはAl、Mg、Ti、Fe及びNbからなる群から選ばれる少なくとも1種以上の元素)で表わされる、層構造を有するリチウム金属複合酸化物を含むリチウムイオン電池用正極材料であって、一次粒子平均粒径が1.0μm以上であり、且つ、タップ密度が1.9g/cm以上であることを特徴とするリチウムイオン電池用正極材料を提案する。
 本発明が提案するリチウムイオン電池用正極材料は、リチウム二次電池の正極材料として用いることにより、電極としての体積エネルギー密度を有効に高めることができるばかりか、良好なレート特性、中でも充電時の良好なレート特性(「充電レート特性」とも称する)を実現することもできる。よって、本発明が提案するリチウムイオン電池用正極材料は、特に車載用の電池、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載する電池の正極活物質として特に優れている。
実施例1で得たリチウムマンガンニッケル含有複合酸化物粉末(サンプル)のXRDパターンである。 比較例1で得たリチウムマンガンニッケル含有複合酸化物粉末(サンプル)のXRDパターンである。 比較例2で得たリチウムマンガンニッケル含有複合酸化物粉末(サンプル)のXRDパターンである。 比較例1で得たリチウムマンガンニッケル含有複合酸化物粉末(サンプル)のSEM画像である。 実施例1で得たリチウムマンガンニッケル含有複合酸化物粉末(サンプル)のSEM画像である。 実施例1、比較例1で得たリチウムマンガンニッケル含有複合酸化物粉末(サンプル)を使用した電池の充放電曲線を示したグラフである。 実施例1、比較例1で得たリチウムマンガンニッケル含有複合酸化物粉末(サンプル)を使用した電池の充電レート特性指標を示したグラフである。
 以下、本発明の実施形態について説明する。但し、本発明が下記実施形態に限定されるものではない。
<本正極材料>
 本実施形態のリチウムイオン電池用正極材料(以下「本正極材料」という)は、一般式Li1+xMa1-x-yMby2(x=0.10~0.33、y=0~0.3、MaはMnを必ず含み、且つ、Ni及びCoから選ばれる少なくとも1種以上の元素を含み、Ma中のMn含有量が30~80質量%、MbはAl、Mg、Ti、Fe及びNbからなる群から選ばれる少なくとも1種以上の元素)で表わされる、層構造を有するリチウム金属複合酸化物を主成分として含有する粉体である。すなわち、リチウム原子層と遷移金属原子層とが酸素原子層を介して交互に積み重なった層構造を有するリチウム金属複合酸化物粒子を主成分とする粉体である。
 なお、「主成分として含有する」とは、特に記載しない限り、当該主成分の機能を妨げない限りにおいて他の成分を含有することを許容する意を包含するものである。当該主成分の含有割合は、本正極材料の少なくとも50質量%以上、特に70質量%以上、中でも90質量%以上、中でも95質量%以上(100%含む)を占める場合を包含する。
 本正極材料は、不純物としてSOを1.0重量%以下、その他の元素をそれぞれ0.5重量%以下であれば含んでいてもよい。この程度の量であれば、本正極材料の特性にほとんど影響しないと考えられるからである。
 上記一般式中の「x」は、0.10~0.33、中でも0.11以上或いは0.32以下、その中でも0.12以上0.31以下であるのがさらに好ましい。
 また、上記一般式中の「y」は、0~0.30、中でも0.005以上或いは0.295以下、その中でも0.01以上0.29以下であるのがさらに好ましい。
 上記一般式中の「Ma」は、Mnを必ず含み、且つ、Ni及びCoから選ばれる少なくとも1種以上の元素を含み、Ma中のMn含有量が30~80質量%、中でも31質量%以上或いは79質量%以下、その中でも32質量%以上或いは78質量%以下を占めることが好ましい。
 他方、「Mb」は、Al、Mg、Ti、Fe及びNbからなる群から選ばれる少なくとも1種以上の元素であればよい。
 なお、上記一般式において、酸素量の原子比は、便宜上「2」と記載しているが、多少の不定比性を有してもよい。
<一次粒子の平均粒径>  
 本正極材料の一次粒子の平均粒径は1.0μm以上であるのが好ましく、中でも1.1μm以上或いは5.0μm以下、その中でも1.2μm以上或いは4.9μm以下であるのが特に好ましい
 本正極材料は一次粒子の平均粒径を1.0μm以上にすることにより、レート特性、特に充電レート特性を有効に高めることができる。
 一次粒子の平均粒径は、走査電子顕微鏡を使用し、得られた顕微鏡写真からランダムに粒子を複数個、例えば10個選び、その一次粒子の短径を測定し、その測定した長さを縮尺より換算し、平均値を一次粒子平均粒径として求めることができる。
 一次粒子の平均粒径を上記範囲に調整するには、最初のステップとして、例えばLiMO2などからなる層構造を呈するリチウム金属複合酸化物を生成させ、その後、Li原料を添加して再焼成するようにして、結晶成長を促すと共に、遷移金属の組成比率(例えばMn:Co:Ni比、Li:Mn比等の組成比率)や原料粒度や焼成条件などによって調整するようにすればよい。例えば焼成温度を高めることにより一次粒子の平均粒径を大きくすることができる。
<タップ密度> 
 本正極材料のタップ密度(「T.D.」とも称する)は、1.9g/cm以上、中でも2.0g/cm以上或いは4.4g/cm以下、その中でも2.1g/cm以上或いは4.3g/cm以下であるのが好ましい。タップ密度が1.9g/cm以上であれば、電極としての体積エネルギー密度を有効に高めることができる。
 タップ密度は、例えば、振とう比重測定器を用いて、試料をガラス製メスシリンダーに入れて、所定のストロークで所定回数タップした場合の粉体充填密度を測定して求めることができる。
 このようなタップ密度を得るためには、例えば、固溶体正極を直接生成させるのではなく、最初のステップとして、例えばLiMO2などからなる層構造を呈するリチウム金属複合酸化物を生成させ、その後、Li原料を添加して再焼成するようにすればよい。このようにすれば、結晶成長を促すことができ、粉体密度を高めることができるばかりか、最初のステップで生成した層構造を呈するリチウム金属複合酸化物の粉体特性に起因してタップ密度を高めることができる。ただし、このような方法に限定されるものではない。
<結晶子サイズ> 
 本正極材料の結晶子サイズ、すなわちリートベルト法による測定方法(詳しくは、実施例の欄に記載)により求められる結晶子サイズは、50nm以上であるのが好ましく、中でも50nm以上或いは300nm以下、その中でも51nm以上或いは290nm以下であるのが好ましい。
 ここで、「結晶子」とは、単結晶とみなせる最大の集まりを意味し、XRD測定を行ってリートベルト解析を行うことにより求めることができる。
 複数の結晶子によって構成され、SEM(例えば3000倍)で観察した際、粒界によって囲まれた最も小さな単位の粒子を、本発明では「一次粒子」という。したがって一次粒子には単結晶及び多結晶が含まれる。
 かかる観点から、本正極材料の結晶子サイズは50nm以上であれば、一次粒子をより大きくすることができ、電極としての体積エネルギー密度をより一層高めることができる。
 結晶子サイズを上記範囲に調整するには、最初のステップとして、例えばLiMO2などからなる層構造を呈するリチウム金属複合酸化物を生成させ、その後、Li原料を添加して再焼成するようにして、結晶成長を促すと共に、遷移金属の組成比率(例えばMn:Co:Ni比、Li:Mn比等の組成比率)や原料粒度や焼成条件などによって調整するようにすればよい。例えば焼成温度を高めることにより結晶子サイズを大きくすることができる。 
 なお、本発明において「結晶子」とは、単結晶とみなせる最大の集まりを意味し、XRD測定を行いリートベルト解析を行うことにより求めることができる。
 複数の結晶子によって構成され、SEM(例えば1000~5000倍)で観察した際、粒界によって囲まれた最も小さな単位の粒子を、本発明では「一次粒子」という。したがって、一次粒子には単結晶及び多結晶が含まれる。
<XRD>
 本正極材料は、結晶構造XRD(X線回折)の回折パターンにおいて、2θ=20~22°の範囲におけるメインピークの強度が、2θ=16~20°の範囲におけるメインピークの強度に対して4.0%未満であるのが好ましく、中でも3.3%未満、その中でも3.0%未満、その中でも2.6%未満であるのがさらに好ましい。
 ここで、2θ=20~22°の範囲におけるメインピークとは、2θ=20~22°の範囲に存在するピークのうちの最大強度のピークの意味であり、2θ=16~20°の範囲におけるメインピークとは、2θ=16~20°の範囲に存在するピークのうちの最大強度のピークの意味である。
 本正極材料において、2θ=20~22°の範囲におけるメインピークは、Li2MnO3構造に起因するピークであると推察されるため、かかるピークの強度が、2θ=16~20°の範囲におけるメインピーク、すなわち層状構造に起因するピークの強度に対して4.0%未満であるということは、Li2MnO3構造が殆どない単相構造若しくはそれに近い構造であると推察される。
 このような特徴を有する本正極材料を製造するには、例えば、固溶体正極を直接生成させるのではなく、最初のステップとして、例えばLiMO2などからなる層構造を呈するリチウム金属複合酸化物を生成させ、その後、Li原料を添加して再焼成する方法を挙げることができる。ただし、このような方法に限定されるものではない。
<D50>
 本正極材料のレーザー回折散乱式粒度分布測定法により求められる平均粒径(D50)は、1μm~60μmであるのが好ましく、中でも2μm以上或いは59μm以下、その中でも特に3μm以上或いは58μm以下であるのが好ましい。
 本正極材料はD50が1μm~60μmであれば、電極作製上の観点から好都合である。
 本正極材料のD50を上記範囲に調整するには、出発原料のD50の調整、焼成温度或いは焼成時間の調整、或いは、焼成後の解砕によるD50調整をするのが好ましい。但し、これらの調整方法に限定されるものではない。
 また、複数の一次粒子がそれぞれの外周(粒界)の一部を共有するようにして凝集し、他の粒子と孤立した粒子を、本発明では「二次粒子」又は「凝集粒子」という。
 ちなみに、レーザー回折散乱式粒度分布測定法は、凝集した粉粒を一個の粒子(凝集粒子)として捉えて粒径を算出する測定方法であり、平均粒径(D50)は、50%体積累積粒径、すなわち体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の細かい方から累積50%の径を意味する。
<比表面積(SSA)>
 本正極材料の比表面積(SSA)は、0.1~3.0m/gであるのが好ましく、中でも0.2m/g以上或いは2.9m/g以下、その中でも特に0.3m/g以上或いは2.8m/gm以下であるのが好ましい。
 本正極材料の比表面積(SSA)が0.1~3.0m/gであれば、電極作製のし易さ、並びに、電池特性が良好になる観点から好ましい。
 本正極材料の比表面積(SSA)を上記範囲に調整するには、焼成条件(温度、時間、雰囲気など)や焼成後の解砕強度(解砕機回転数など)を調整すればよい。但し、この方法に限定されるものではない。
<製造方法>
 次に、本正極材料の製造方法について説明する。
 本正極材料は、例えばリチウム塩化合物、マンガン塩化合物、ニッケル塩化合物及びコバルト塩化合物などの原料を秤量して混合し、湿式粉砕機等で粉砕した後、造粒し、焼成し、必要に応じて熱処理し、好ましい条件で解砕し、さらに必要に応じて分級して、LiMO2(例えばMはCo、Niなど)などからなる層構造を呈するリチウム金属複合酸化物を作製した後、このリチウム金属複合酸化物にリチウム塩化合物を加えて、再び前記同様に混合し、焼成し、必要に応じて熱処理し、好ましい条件で解砕し、さらに必要に応じて分級することで、得ることができる。
 このように、固溶体正極を直接生成させるのではなく、最初のステップとして、例えばLiMO2などからなる層構造を呈するリチウム金属複合酸化物を生成させ、その後のステップで、Li原料を添加して再焼成することにより、結晶成長を促すことができるばかりか、最初のステップで生成した層構造を呈するリチウム金属複合酸化物の粉体特性に起因して粉体密度を高めることができるため、電極密度の高い正極を作製することができる。
 リチウム原料としては、例えば水酸化リチウム(LiOH)、炭酸リチウム(LiCO)、硝酸リチウム(LiNO3)、LiOH・H2O、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等を挙げることができる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
 マンガン原料は、特に限定するものではない。例えば炭酸マンガン、硝酸マンガン、塩化マンガン、二酸化マンガンなどを用いることができ、中でも炭酸マンガン、二酸化マンガンが好ましい。その中でも、電解法によって得られる電解二酸化マンガンが特に好ましい。
 ニッケル原料は、特に限定するものではない。例えば炭酸ニッケル、硝酸ニッケル、塩化ニッケル、オキシ水酸化ニッケル、水酸化ニッケル、酸化ニッケルなどを用いることができ、中でも炭酸ニッケル、水酸化ニッケル、酸化ニッケルが好ましい。
 コバルト原料は、特に限定するものではない。例えば塩基性炭酸コバルト、硝酸コバルト、塩化コバルト、オキシ水酸化コバルト、水酸化コバルト、酸化コバルトなどを用いることができ、中でも、塩基性炭酸コバルト、水酸化コバルト、酸化コバルト、オキシ水酸化コバルトが好ましい。
 なお、上記一般式における「Mb」の原料は、特に限定するものではない。例えば各元素(Al、Mg、Ti、Fe及びNbなど)の酸化物、水酸化物、炭酸化物などが好ましい。
 原料の混合は、水や分散剤などの液媒体を加えて湿式混合してスラリー化させるのが好ましい。そして、後述するスプレードライ法を採用する場合には、得られたスラリーを湿式粉砕機で粉砕するのが好ましい。但し、乾式粉砕してもよい。
 造粒方法は、前工程で粉砕された各種原料が分離せずに造粒粒子内で分散していれば湿式でも乾式でもよく、押し出し造粒法、転動造粒法、流動造粒法、混合造粒法、噴霧乾燥造粒法、加圧成型造粒法、或いはロール等を用いたフレーク造粒法でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。乾燥方法としては、噴霧熱乾燥法、熱風乾燥法、真空乾燥法、フリーズドライ法などの公知の乾燥方法によって乾燥させればよく、中でも噴霧熱乾燥法が好ましい。噴霧熱乾燥法は、熱噴霧乾燥機(スプレードライヤー)を用いて行うのが好ましい(本明細書では「スプレードライ法」と称する)。
 ただし、例えば所謂共沈法によって焼成に供する共沈粉を作製することも可能である(本明細書では「共沈法」と称する)。共沈法では、原料を溶液に溶解した後、pHなどの条件を調整して沈殿させることにより、共沈粉を得ることができる。
 焼成は、焼成炉にて、大気雰囲気下、酸素ガス雰囲気下、酸素分圧を調整した雰囲気下、或いは二酸化炭素ガス雰囲気下、或いはその他の雰囲気下において、800℃より高く、1500℃未満の温度(:焼成炉内の焼成物に熱電対を接触させた場合の温度を意味する。)、好ましくは810℃以上或いは1300℃以下、より好ましくは820℃以上或いは1100℃以下の温度を、0.5時間~300時間保持するように焼成するのが好ましい。この際、遷移金属が原子レベルで固溶し単一相を示す焼成条件を選択するのが好ましい。 
 ちなみに、遷移金属が原子レベルで固溶し単一相を示す焼成条件としては、一度、層構造化合物を焼成によって生成させたのち、Li原料を添加して、再び焼成する方法が挙げられる。
 焼成炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
 焼成後の熱処理は、結晶構造の調整が必要な場合に行うのが好ましく、大気雰囲気下、酸素ガス雰囲気下、酸素分圧を調整して雰囲気下などの酸化雰囲気の条件で熱処理を行ってもよい。
 焼成後若しくは熱処理後の解砕は、必要に応じて、前述のように高速回転粉砕機などを用いて解砕してもよい。
 高速回転粉砕機によって解砕すれば、粒子どうしが凝集していたり、焼結が弱かったりする部分を解砕することができ、しかも粒子に歪みが入るのを抑えることができる。但し、高速回転粉砕機に限定する訳ではない。
 高速回転粉砕機の一例としてピンミルを挙げることができる。ピンミルは、円盤回転型粉砕機として知られており、ピンの付いた回転盤が回転することで、内部を負圧にして原料供給口より粉を吸い込む方式の解砕機である。そのため、微細粒子は、重量が軽いため気流に乗りやすく、ピンミル内のクリアランスを通過する一方、粗大粒子は確実に解砕される。そのため、ピンミルによれば、粒子間の凝集や、弱い焼結部分を確実に解すことができると共に、粒子内に歪みが入るのを防止することができる。
 高速回転粉砕機の回転数は4000rpm以上、特に5000~12000rpm、さらに好ましくは7000~10000rpmにするのが好ましい。
 焼成後の分級は、凝集粉の粒度分布調整とともに異物除去という技術的意義があるため、好ましい大きさの目開きの篩を選択して分級するのが好ましい。
 そして、このようにして得られた構造を呈するリチウム金属複合酸化物にリチウム塩化合物を加えて、再び上記同様に前混合し、焼成し、必要に応じて熱処理し、好ましい条件で解砕し、さらに必要に応じて分級することで、本正極材料を得ることができる。
 この際、混合、焼成、熱処理、解砕、分級などは、上述したように実施すればよいが、LiMO2粉体の条件と一致させる必要はない。
<特性・用途>
 本正極材料は、必要に応じて解砕・分級した後、必要に応じて他の正極材料を混合して、リチウム電池の正極活物質として有効に利用することができる。
 例えば、本正極材料と、カーボンブラック等からなる導電材と、テフロン(登録商標)バインダー等からなる結着剤とを混合して正極合剤を製造することができる。そしてそのような正極合剤を正極に用い、例えば負極にはリチウムまたはカーボン等のリチウムを吸蔵・脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF)等のリチウム塩をエチレンカーボネート-ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム2次電池を構成することができる。但し、このような構成の電池に限定する意味ではない。
 本正極材料を正極活物質として備えたリチウム電池は、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載するモータ駆動用電源として用いるリチウム電池の正極活物質の用途に特に優れている。
 なお、「ハイブリッド自動車」とは、電気モータと内燃エンジンという2つの動力源を併用した自動車であり、プラグインハイブリッド自動車も包含する。
 また、「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウム又はリチウムイオンを含有する電池を全て包含する意である。
<語句の説明> 
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 次に、実施例及び比較例に基づいて、本発明について更に説明する。但し、本発明が以下に示す実施例に限定されるものではない。
<比較例1> 
 組成がLi1.15Ni0.575Mn0.2752となる様に、炭酸リチウムと、電解二酸化マンガンと、水酸化ニッケルとを秤量し、水を加えて混合攪拌して固形分濃度10wt%のスラリーを調製した。
 得られたスラリー(原料粉500g)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の6wt%添加し、湿式粉砕機で1200rpm、20分間粉砕して平均粒径(D50)を0.5μm以下として粉砕スラリーを得た。
 得られた粉砕スラリーを、熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製「i-8」)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数24000rpm、スラリー供給量12kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行った。造粒粉の平均粒径(D50)は15μmであった。
 得られた造粒粉を、静置式電気炉を用いて、昇温速度1.3℃/minにて950℃まで昇温し、950℃で20時間維持した。その後、降温速度1.3℃/minにて700℃まで降温し、700℃で10時間維持した後、降温速度1.3℃/minにて常温まで冷却した。得られた粉を解砕し、再度、静置式電気炉を用いて、大気中で昇温速度1.3℃/minにて950℃まで昇温し、950℃で20時間維持した後、降温速度1.3℃/minにて700℃まで降温し、700℃で10時間維持した後、降温速度1.5℃/minにて常温まで冷却した。その後、得られた粉を解砕し、目開き53μmの篩にて分級を行い、篩下粉を回収して、リチウムマンガンニッケル含有複合酸化物粉末(サンプル)を得た。
 得られたリチウムマンガンニッケル含有複合酸化物粉末(サンプル)の化学分析を行った結果、Li1.17Ni0.56Mn0.272であることが確認された。
<比較例2> 
 組成がLi1.2Ni0.4Mn0.42となる様に、炭酸リチウムと、電解二酸化マンガンと、水酸化ニッケルとを秤量し、水を加えて混合攪拌して固形分濃度10wt%のスラリーを調製した。
 得られたスラリー(原料粉500g)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の6wt%添加し、湿式粉砕機で1200rpm、20分間粉砕して平均粒径(D50)を0.5μm以下として粉砕スラリーを得た。
 得られた粉砕スラリーを、熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製「i-8」)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数24000rpm、スラリー供給量12kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行った。造粒粉の平均粒径(D50)は15μmであった。
 得られた造粒粉を、静置式電気炉を用いて、昇温速度1.3℃/minにて950℃まで昇温し、950℃で20時間維持した。その後、降温速度1.3℃/minにて700℃まで降温し、700℃で10時間維持した後、降温速度1.3℃/minにて常温まで冷却した。その後、得られた粉を解砕し、目開き53μmの篩にて分級を行い、篩下粉を回収して、リチウムマンガンニッケル含有複合酸化物粉末(サンプル)を得た。
 得られたリチウムマンガンニッケル含有複合酸化物粉末(サンプル)の化学分析を行った結果、Li1.21Ni0.40Mn0.392であることが確認された。
<実施例1>
 組成がLi1.06Ni0.47Mn0.472となる様に、炭酸リチウムと、電解二酸化マンガンと、水酸化ニッケルとを秤量し、水を加えて混合攪拌して固形分濃度10wt%のスラリーを調製した。
 得られたスラリー(原料粉500g)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の6wt%添加し、湿式粉砕機で1200rpm、20分間粉砕して平均粒径(D50)を0.5μm以下として粉砕スラリーを得た。
 得られた粉砕スラリーを、熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製「i-8」)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数24000rpm、スラリー供給量12kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行った。造粒粉の平均粒径(D50)は15μmであった。
 得られた造粒粉を、静置式電気炉を用いて、大気中で昇温速度1.5℃/minにて700℃まで昇温し、700℃で20時間維持した。その後、降温速度1.5℃/minにて常温まで冷却した。次に、再び静置式電気炉を用いて、大気中で昇温速度1.5℃/minにて1000℃まで昇温し、1000℃で30時間維持した(この加熱維持処理を「本焼成1」と称する。)後、降温速度1.5℃/minにて常温まで冷却した。こうして得られた焼成粉を解砕し、目開き53μmの篩にて分級を行い、篩下粉を回収した。
 回収した粉体の化学分析を行った結果、Li1.06Ni0.47Mn0.472であることが確認された。
 次に、回収した篩下粉に、目的組成Li1.13Mn0.45Ni0.422となるように、炭酸リチウムを添加し、ボールミルを用いて混合を1時間行った。得られた混合粉を、静置式電気炉を用いて、大気中で昇温速度1.3℃/minにて1050℃まで昇温し、1050℃で20時間維持した(この加熱維持処理を「本焼成2」と称する。)後、降温速度1.3℃/minにて常温まで冷却した。こうして得られた焼成粉を解砕し、目開き53μmの篩にて分級を行い、篩下粉を回収してリチウムマンガンニッケル含有複合酸化物粉末(サンプル)を得た。
 得られたリチウムマンガンニッケル含有複合酸化物粉末(サンプル)の化学分析を行った結果、Li1.13Ni0.45Mn0.422であることが確認された。
<実施例2>
 組成がLi1.06Mn0.56Ni0.382となる様に、炭酸リチウムと、電解二酸化マンガンと、水酸化ニッケルとを秤量して混合すると共に、本焼成1の加熱維持温度を800℃に変更して、実施例1同様に、篩下粉を回収した。回収した粉体の化学分析を行った結果、Li1.06Mn0.56Ni0.382であることが確認された。
 次に、回収した篩下粉に、目的組成Li1.16Mn0.50Ni0.342となるように、炭酸リチウムを添加すると共に、本焼成2の加熱維持温度を1000℃に変更した以外、実施例1と同様にリチウムマンガンニッケル含有複合酸化物粉末(サンプル)を得た。
 得られたリチウムマンガンニッケル含有複合酸化物粉末(サンプル)の化学分析を行った結果、Li1.16Mn0.50Ni0.342であることが確認された。
<実施例3>
 組成がLi1.06Mn0.37Ni0.14Al0.10Ni0.332となる様に、炭酸リチウムと、電解二酸化マンガンと、水酸化ニッケルと、水酸化アルミニウムを秤量して混合すると共に、本焼成1の加熱維持温度を1000℃に変更して、実施例1同様に、篩下粉を回収した。回収した粉体の化学分析を行った結果、Li1.06Mn0.37Ni0.14Al0.10Ni0.332であることが確認された。
 次に、回収した篩下粉に、目的組成Li1.14Mn0.34Ni0.30Co0.13Al0.092となるように、炭酸リチウムを添加すると共に、本焼成2の加熱維持温度を1000℃に変更した以外、実施例1と同様にリチウムマンガンニッケル含有複合酸化物粉末(サンプル)を得た。
 得られたリチウムマンガンニッケル含有複合酸化物粉末(サンプル)の化学分析を行った結果、Li1.14Mn0.34Ni0.30Co0.13Al0.092であることが確認された。
<タップ密度(T.D.)の測定>
 実施例及び比較例で得られたサンプル(粉体)50gを150mlのガラス製メスシリンダーに入れ、振とう比重測定器((株)蔵持科学器械製作所製KRS‐409)を用いてストローク60mmで540回タップした時の粉体充填密度(T.D.)を求めた。
<リートベルト法による結晶子サイズの測定>
 Cu‐Kα線を用いたX線回折装置(ブルカー・エイエックスエス(株)製D8ADVANCE)を使用して、実施例及び比較例で得られたサンプル(粉体)の粉末X線回折測定を行った。この際、FundamentalParameterを採用して解析を行った。回折角2θ=15~120°の範囲より得られたX線回折パターンを用いて、解析用ソフトウエアTopas Version3を用いて行った。
 結晶構造は、空間群R3-mの三方晶(Trigonal)に帰属され、その3aサイトは、Li、3bサイトにMn、Co、Ni、及び過剰なLi分xにより占有され、そして6cサイトはOに占有されていると仮定し、酸素の席占有率(Occ.)及び等方性温度因子(Beq.;isotropic temperature factor)を変数とし、Rwp<5.0、GOF<1.3まで精密化を行った。
 なお、上記のRwpおよびGOFは以下の式により求められる値である(参照:「粉末X線解析の実際」(社)日本分析化学X線分析研究懇談会編.朝倉書店発行.2002年2月10日.p107の表6.2)。
 Rwp=[Σwi{yi-fi(x)}/Σwiyi1/2
 Re=[(N-P)/Σwiyi1/2
 GOF=Rwp/Re
 但し、wiは統計的重み、yiは観測強度、fi(x)は理論回折強度、Nは全データ点数、Pは精密化するパラメータの数を示している。
 精密化の手順としては、酸素のz座標および席占有率を変数とした状態で、以下の(1)~(3)の操作を順番に行った。
(1)3bサイトの等方性温度因子のみを変数として精密化。
(2)6cサイトの等方性温度因子のみを変数として精密化。
(3)3aサイトの等方性温度因子のみを変数として精密化。
 上記(1)~(3)の手順は、各変数が変動しなくなるまで繰り返し行った。その後、酸素のz座標および席占有率を固定値に戻し、結晶子サイズ(Gauss)と結晶歪み(Gauss)を変数とした状態で、数値の変動がなくなるまで繰り返し精密化を行い、結晶子サイズ(Gauss)を求めた。
 その他、測定・リートベルト法解析に使用した機器仕様・条件等は以下の通りである。
 Sample disp(mm):Refine
 Detector:PSD
 Detector Type:VANTEC-1
 High Voltage:5616V
 Discr.Lower Level:0.45V
 Discr.Window Width:0.15V
 Grid Lower Level:0.075V
 Grid Window Width:0.524V
 Flood Field Correction:Disabled
 Primary radius:250mm
 Secondary radius:250mm
 Receiving slit width:0.1436626mm
 Divergence angle:0.3°
 Filament Length:12mm
 Sample Length:25mm
 Receiving Slit Length:12mm
 Primary Sollers:2.623°
 Secondary Sollers:2.623°
 Lorentzian,1/Cos:0.01630098Th
 Det.1 voltage:760.00V
 Det.1 gain:80.000000
 Det.1 discr.1 LL:0.690000
 Det.1 discr.1 WW:1.078000
 Scan Mode:Continuous Scan
 Scan Type:Looked Coupled
 Spinner Speed:15rpm
 Divergence Slit:0.300°
 Start:15.000000
 Time per step:1s
 Increment:0.01460
 ♯steps:7152
 Generator voltage:35kV
 Generator current:40mA
<XRD強度比の計算>
 上記のようにして得られたX線回折パターンを用いて、解析用ソフトウエアEVA Version11.0.0.3を用いて、Kα2およびバックグラウンド除去を行った。除去を行ったX線回折パターンを用いて、2θ=20~22°の範囲におけるメインピークのピーク強度と、2θ=16~20°の範囲におけるメインピークのピーク強度を計測し、下記計算式より、表2に示した「XRD強度比」を算出した。
 XRDのピーク強度比={(2θ=20~22°におけるメインピーク強度)/(16~20°の範囲におけるメインピーク強度)}×100
<一次粒子平均粒径の測定>
 一次粒子の平均粒径は、走査電子顕微鏡(HITACHI S‐3500N)を使用し、加速電圧20kV、倍率5000倍にて観察し、印刷した写真からランダムに粒子を10個選び、定規でその一次粒子の短径を測定した。その測定した長さを縮尺より換算し、平均値を一次粒子平均粒径とし、表2には「一次粒子径」として示した。
<50%積算径(D50)の測定>
 実施例及び比較例で得られたサンプル(粉体)の粒度分布を次のようにして測定した。
 レーザー回折粒度分布測定機用試料循環器(日機装株式会社製「Microtorac ASVR」)を用い、サンプル(粉体)を水溶性溶媒に投入し、40mL/secの流速中、40wattsの超音波を360秒間照射した後、日機装株式会社製レーザー回折粒度分布測定機「HRA(X100)」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD50を求めた。
 なお、測定の際の水溶性溶媒には60μmのフィルターを通した水を用い、溶媒屈折率を1.33、粒子透過性条件を反射、測定レンジを0.122~704.0μm、測定時間を30秒とし、2回測定した平均値を測定値として用いた。
<比表面積(SSA)の測定(BET法)>
 実施例及び比較例で得られたサンプル(粉体)の比表面積(SSA)を次のようにして測定した。
 先ず、サンプル(粉体)0.5gを流動方式ガス吸着法比表面積測定装置MONOSORB LOOP(ユアサアイオニクス株式会社製「MS‐18」)用ガラスセルに秤量し、前記MONOSORB LOOP用前処理装置にて、30mL/minのガス量にて5分間窒素ガスでガラスセル内を置換した後、前記窒素ガス雰囲気中で250℃10分間、熱処理を行った。その後、前記MONOSORB LOOPを用い、サンプル(粉体)をBET一点法にて測定した。
 なお、測定時の吸着ガスは、窒素30%:ヘリウム70%の混合ガスを用いた。
<電極の作製方法>
 実施例・比較例で得られたリチウムマンガンニッケル含有複合酸化物粉末(サンプル)89wt%と、導電助材としてのアセチレンブラック5wt%と、結着材としてのPVDF6wt%とを混合し、NMP(N-メチルピロリドン)を加えてペースト状に調整した。このペーストを厚さ15μmのAl箔集電体に塗布し、70℃、120℃で乾燥させた。その後、20MPaの圧力でプレスを3度施して正極シートを作製した。
<電極密度の評価方法>
 上記で得られた正極シートの面積と、マイクロメータ(MITUTOYO MDC-30)を用いて測定した正極シートの厚みをかけて正極シート体積を求めた。次に、正極シートの重量からAl箔の重量を差し引いて正極自体の重量を求めた。正極自体の重量を正極シート体積で除算して電極密度を求めた。
 なお、表2には、比較例1の電極密度を100とした場合の相対値(指標)を示した。
<評価用セルの作製方法>
 上記で得られた正極シートをφ13mmの大きさに切り出して正極とし、200℃、6時間乾燥させた。一方、リチウム金属をφ15mmの大きさに切り出して負極とし、正極と負極の間に、カーボネート系の混合溶液に、LiPFを1mol/Lになるように溶解させた電解液を含浸させたセパレータ(多孔性ポリエチレンフィルム)を置き、2032型コイン電池(電気化学評価用セル)を作製した。
(1サイクルの充放電効率)
 上記のようにして準備した、2032型コイン電池を用いて次に記述する方法で1サイクルの充放電容量と充放電効率を求めた。すなわち、正極中の正極活物質の含有量から、25℃にて0.2C電流値で、4.9Vまで充電したときの容量から活物質の充電容量(mAh/g)を求めた。休止時間を10minとし、次に0.2C電流値で2.0Vまで放電した時の容量から活物質の初期放電容量(mAh/g)を求めた。充電容量に対する放電容量の比率を1サイクルの充放電効率(%)とした。
(1サイクルの充放電容量)
 上記のようにして準備した、2032型コイン電池を用いて次に記述する方法で1サイクルの充放電容量と充放電効率を求めた。すなわち、正極中の正極活物質の含有量から、25℃にて0.2C電流値で、4.9Vまで一定電流値で充電し(CC充電)、4.9Vに達した後、一定電圧値で充電した(CV充電)ときの容量から活物質の総充電容量(mAh/g)を求めた。休止時間を10minとし、次に0.2C電流値で2.0Vまで一定電流値で放電した時の容量から活物質の初期放電容量(mAh/g)を求めた。
(レート特性の評価)
 上記のようにして初期充放電効率を評価した後の2032型コイン電池(電気化学評価用セル)を用いて下記に記述する方法で充放電試験し、レート特性を評価した。
 電池充放電する環境温度を25℃となるようにセットした環境試験機内にセルを入れ、充放電できるように準備し、充放電範囲を2.0V~4.6Vとし、充電は0.2C電流値で充電を行い、次に2C電流値で放電行った。放電後、さらに1.0C、0.5C、0.2C、0.1Cの放電を順に行った。各放電の間には10分間の休止を行った。前記充電と各レートの放電の組み合わせを3サイクル繰り返した。下記式のように、3サイクル目の各レートの放電容量の合計に対する2.0Cの放電容量の比率をレート特性として求め、表2には「2.0C/0.1C容量比」として示した。
 レート特性=(3サイクル目2.0Cの放電容量)/(3サイクル目各放電レートの放電容量の合計))×100
(体積エネルギー密度指標)
 上記のようにして求めた初期放電容量と電極密度とを乗ずることにより、体積エネルギー密度を算出し、表3において、比較例1の体積エネルギー密度を100とした場合の相対値(指標)を示した。体積エネルギー密度は大きい値ほど好ましい。
 (体積エネルギー密度指標)=(初期放電容量)×(電極密度)
(充電レート特性の評価)
 上記のようにして測定された充電容量より、充電レート特性指標、すなわち充電受入性の指標を算出し、表3に示した。このようにして算出された充電レート特性指標が小さければ、充電時のレート特性、すなわち充電受入れ性が良好であると評価することができる。この指標により、正極活物質のレート特性が良好であることが推測される。
 充電レート特性指標=(CV充電時の容量)/(総充電容量)×100
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(考察)
 上記実施例1~3で得られたサンプルは、比較例1,2のサンプルに比べて、電極としての体積エネルギー密度を上げることができ、しかも、電極密度が向上したにもかかわらず、充電の受入れ性は同等以上であるため、良好なレート特性、特に良好な充電レート特性を有することが分かった。
 また、図5に見られるように、上記実施例1~3は、比較例に比べて、CV充電領域の長さの差からも、充電受け入れ性に優れ、レート特性が良好であることが分かった。
 なお、上記実施例3は、一般式Li1+xMa1-x-yMby2おいて、MbとしてAlのみを含む組成からなるものであるが、イオン半径や化学的安定性の点で、Alと、Mg、Ti、Fe及びNbとは共通する性質を有しているから、MbとしてAl、Mg、Ti、Fe及びNbからなる群から選ばれる少なくとも1種以上の元素を含む場合も、上記実施例3で得たサンプルと同様の効果を得ることができるものと考えることができる。
 上記実施例及びこれまで発明者が行ってきた試験結果から、一次粒子平均粒径が1.0μm以上であり、且つ、タップ密度が1.9g/cm以上であれば、電極としての体積エネルギー密度を上げることができ、しかも、電極密度が向上したにもかかわらず、充電の受入れ性は同等以上であるため、良好なレート特性、特に良好な充電レート特性を有するものと考えることができる。

Claims (5)

  1.  一般式Li1+xMa1-x-yMby2(x=0.10~0.33、y=0~0.3、MaはMnを必ず含み、且つ、Ni及びCoから選ばれる少なくとも1種以上の元素を含み、Ma中のMn含有量が30~80質量%、MbはAl、Mg、Ti、Fe及びNbからなる群から選ばれる少なくとも1種以上の元素)で表わされる、層構造を有するリチウム金属複合酸化物を含むリチウムイオン電池用正極材料であって、一次粒子平均粒径が1.0μm以上であり、且つ、タップ密度が1.9g/cm以上であることを特徴とするリチウムイオン電池用正極材料。
  2.  結晶子サイズが50nm以上であることを特徴とする請求項1に記載のリチウムイオン電池用正極材料。
  3.  XRD(X線回折)の回折パターンにおいて、2θ=20~22°の範囲におけるメインピーク強度が、2θ=16~20°の範囲におけるメインピークの強度に対して4.0%未満であることを特徴とする、請求項1又は2に記載のリチウムイオン電池用正極材料。
  4.  請求項1~3の何れかに記載のリチウムイオン電池用正極材料を正極活物質として備えたリチウムイオン電池。
  5.  請求項1~3の何れかに記載のリチウムイオン電池用正極材料を正極活物質として備えたハイブリッド電気自動車用または電気自動車用のリチウムイオン電池。
PCT/JP2014/074405 2013-09-13 2014-09-16 リチウムイオン電池用正極材料 WO2015037737A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015531375A JP5883999B2 (ja) 2013-09-13 2014-09-16 リチウムイオン電池用正極材料
GB1603461.3A GB2533720A (en) 2013-09-13 2014-09-16 Positive electrode material for lithium-ion cell
KR1020167004820A KR102170482B1 (ko) 2013-09-13 2014-09-16 리튬 이온 전지용 양극 재료
US14/917,283 US20160218362A1 (en) 2013-09-13 2014-09-16 Positive Electrode Material for Lithium-Ion Cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-191014 2013-09-13
JP2013191014 2013-09-13

Publications (1)

Publication Number Publication Date
WO2015037737A1 true WO2015037737A1 (ja) 2015-03-19

Family

ID=52665832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074405 WO2015037737A1 (ja) 2013-09-13 2014-09-16 リチウムイオン電池用正極材料

Country Status (5)

Country Link
US (1) US20160218362A1 (ja)
JP (1) JP5883999B2 (ja)
KR (1) KR102170482B1 (ja)
GB (1) GB2533720A (ja)
WO (1) WO2015037737A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013609A1 (ja) * 2022-07-15 2024-01-18 株式会社半導体エネルギー研究所 正極活物質の製造方法、及び正極活物質

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008582A1 (ja) * 2013-07-17 2015-01-22 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、かかる非水系電解質二次電池用正極活物質の製造方法およびかかる非水系電解質二次電池用正極活物質を用いた非水系電解質二次電池
CN107074584B (zh) * 2015-04-30 2019-07-09 三井金属矿业株式会社 5v级尖晶石型含锂锰的复合氧化物
JP7120012B2 (ja) 2016-07-29 2022-08-17 住友金属鉱山株式会社 ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池
CN116514185A (zh) 2016-07-29 2023-08-01 住友金属矿山株式会社 镍锰复合氢氧化物及其制造方法、正极活性物质及其制造方法、以及非水系电解质二次电池
GB2566473B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2566472B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
KR20190059249A (ko) 2017-11-22 2019-05-30 주식회사 엘지화학 리튬 이차전지용 양극활물질 및 그 제조방법
GB2569392B (en) 2017-12-18 2022-01-26 Dyson Technology Ltd Use of aluminium in a cathode material
GB2569388B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Compound
GB2569390A (en) 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
GB2569387B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Electrode
CN110265631B (zh) * 2018-06-27 2021-12-07 宁德时代新能源科技股份有限公司 一种三元正极材料及其制备方法和锂离子电池
KR20240001928A (ko) 2022-06-28 2024-01-04 에스케이온 주식회사 리튬 이차 전지

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069454A1 (ja) * 2011-11-09 2013-05-16 株式会社Gsユアサ 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2013114815A (ja) * 2011-11-25 2013-06-10 Samsung Sdi Co Ltd リチウムイオン二次電池及びリチウムイオン二次電池用正極活物質の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3008793B2 (ja) 1994-12-16 2000-02-14 松下電器産業株式会社 リチウム二次電池用正極活物質の製造法
JP4510331B2 (ja) 2001-06-27 2010-07-21 パナソニック株式会社 非水電解質二次電池
JP4774661B2 (ja) * 2001-09-25 2011-09-14 三菱化学株式会社 リチウム遷移金属複合酸化物、リチウム二次電池用正極材料、リチウム二次電池用正極及びリチウム二次電池、並びにリチウム遷移金属複合酸化物の製造方法
US6892127B2 (en) * 2003-02-28 2005-05-10 General Electric Company Methods and apparatus for assessing gas turbine engine damage
US20060018878A1 (en) * 2003-03-11 2006-01-26 City Of Hope Dual antigen specific T cells with trafficking ability
US20070024888A1 (en) * 2005-07-27 2007-02-01 Bailey Eliot N Protecting valuable media
JP4996117B2 (ja) 2006-03-23 2012-08-08 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質およびその製造方法とそれを用いた非水系電解質二次電池
EP2128096B1 (en) 2007-01-26 2015-04-22 Mitsui Mining & Smelting Co., Ltd Lithium transition metal oxide having layered structure
US8465873B2 (en) 2008-12-11 2013-06-18 Envia Systems, Inc. Positive electrode materials for high discharge capacity lithium ion batteries
JP5675128B2 (ja) * 2009-08-28 2015-02-25 三洋電機株式会社 リチウムイオン二次電池
WO2013161083A1 (ja) * 2012-04-27 2013-10-31 トヨタ自動車株式会社 非水電解質二次電池およびその製造方法
KR102078597B1 (ko) * 2013-06-27 2020-04-08 삼성전자주식회사 반도체 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069454A1 (ja) * 2011-11-09 2013-05-16 株式会社Gsユアサ 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP2013114815A (ja) * 2011-11-25 2013-06-10 Samsung Sdi Co Ltd リチウムイオン二次電池及びリチウムイオン二次電池用正極活物質の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W.C. WEST ET AL.: "Preparation of high quality layered-layered composite Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-ion cathodes by a ball milling-annealing process", JOURNAL OF POWER SOURCES, vol. 204, 15 April 2012 (2012-04-15), pages 200 - 204 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013609A1 (ja) * 2022-07-15 2024-01-18 株式会社半導体エネルギー研究所 正極活物質の製造方法、及び正極活物質

Also Published As

Publication number Publication date
JPWO2015037737A1 (ja) 2017-03-02
KR102170482B1 (ko) 2020-10-28
GB201603461D0 (en) 2016-04-13
JP5883999B2 (ja) 2016-03-15
US20160218362A1 (en) 2016-07-28
KR20160055138A (ko) 2016-05-17
GB2533720A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5809772B2 (ja) リチウム過剰型層状リチウム金属複合酸化物の製造方法
JP5883999B2 (ja) リチウムイオン電池用正極材料
JP5204913B1 (ja) 層構造を有するリチウム金属複合酸化物
JP4213768B2 (ja) 層構造を有するリチウム遷移金属酸化物
US10468677B2 (en) Spinel-type lithium-manganese-containing complex oxide
US9437873B2 (en) Spinel-type lithium manganese-based composite oxide
JP5308600B1 (ja) 層構造を有するリチウム金属複合酸化物
JP5572268B1 (ja) スピネル型リチウムマンガンニッケル含有複合酸化物
JP5523637B2 (ja) マンガン系スピネル型リチウム遷移金属酸化物
JP4939670B2 (ja) スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料
JP5813277B1 (ja) スピネル型リチウムコバルトマンガン含有複合酸化物
US10276867B2 (en) 5V-class spinel-type lithium-manganese-containing composite oxide
JP5951518B2 (ja) 層構造を有するリチウム金属複合酸化物の製造方法
JP6649369B2 (ja) 5v級スピネル型リチウムマンガン含有複合酸化物の製造方法
JP6200932B2 (ja) 層構造を有するリチウム金属複合酸化物の製造方法
JP2013249225A (ja) リチウム・マンガン複合酸化物の製造方法、その製造方法によって得られるリチウム・マンガン複合酸化物、それを含む二次電池用正極活物質、それを含む二次電池用正極、およびそれを正極として用いるリチウムイオン二次電池
WO2015147209A1 (ja) 層状結晶構造を有するリチウム金属複合酸化物の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14844525

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531375

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167004820

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201603461

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140916

WWE Wipo information: entry into national phase

Ref document number: 14917283

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14844525

Country of ref document: EP

Kind code of ref document: A1