JP4939670B2 - スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料 - Google Patents

スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料 Download PDF

Info

Publication number
JP4939670B2
JP4939670B2 JP2011551366A JP2011551366A JP4939670B2 JP 4939670 B2 JP4939670 B2 JP 4939670B2 JP 2011551366 A JP2011551366 A JP 2011551366A JP 2011551366 A JP2011551366 A JP 2011551366A JP 4939670 B2 JP4939670 B2 JP 4939670B2
Authority
JP
Japan
Prior art keywords
transition metal
metal oxide
lithium transition
type lithium
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011551366A
Other languages
English (en)
Other versions
JPWO2012008480A1 (ja
Inventor
慎也 蔭井
啓祐 宮之原
祥巳 畑
康弘 越智
徹也 光本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2011551366A priority Critical patent/JP4939670B2/ja
Application granted granted Critical
Publication of JP4939670B2 publication Critical patent/JP4939670B2/ja
Publication of JPWO2012008480A1 publication Critical patent/JPWO2012008480A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0072Mixed oxides or hydroxides containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/54Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]-, e.g. Li(CoxMn2-x)04, Li(MyCoxMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、リチウム電池用正極活物質材料として用いることができるスピネル型リチウム遷移金属酸化物に関する。特に自動車に搭載される電池の材料として好適に用いることができるスピネル型リチウム遷移金属酸化物に関する。
リチウム電池、特にリチウム二次電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しており、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器などの電源として広く用いられている。最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池への応用が期待されている。
リチウム二次電池は、充電時には正極からリチウムがイオンとして抜け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極材料の電位に起因することが知られている。
リチウム二次電池の正極活物質として使用し得るリチウム遷移金属酸化物としては、層構造をもつLiCoO2、LiNiO2、LiMnO2などのリチウム遷移金属酸化物のほか、LiMn24、LiNi0.5Mn1.54などのマンガン系のスピネル構造(Fd−3m)を有するリチウム遷移金属酸化物(本発明では「スピネル型リチウム遷移金属酸化物」或いは「LMO」とも称する)が知られている。
中でも、マンガン系のスピネル型リチウム遷移金属酸化物(LMO)は、原料価格が安く、毒性がなく、また安全性が高いため、電気自動車(EV)やハイブリッド電気自動車(HEV)などの大型電池用の正極活物質として着目されている。また、EVやHEV用電池には優れた出力特性が特に求められるが、この点、層構造をもつLiCoO2などのリチウム遷移金属酸化物に比べ、3次元的にLiイオンの挿入・脱離が可能なスピネル型リチウム遷移金属酸化物(LMO)は出力特性に優れている。
ところが、通常のスピネル型リチウム遷移金属酸化物(LMO)は、高温領域(例えば45〜60℃)でサイクルを重ねると、Mn2+が溶出し易くなり、溶出したMn2+が負極に析出し、これが抵抗となって容量劣化を起こすようになるため、スピネル型リチウム遷移金属酸化物(LMO)を実用する際の課題は高温領域(例えば45〜60℃)でのサイクル寿命特性にあると言われてきた。
そこで従来、高温領域でのサイクル寿命特性を高めるため、酸素欠損を抑制するための方法が種々開示されている。
例えば特許文献1には、高温焼成後に水酸化リチウムを添加して、さらに低い温度で再焼成することによって、酸素欠損を抑制する方法が開示されている。
特許文献2には、出発原料を、酸化雰囲気中、900〜1000℃の範囲の温度で、5〜50時間の範囲の時間をかけて焼成し、次いで、酸化雰囲気中、600〜900℃の範囲の温度で、1〜50時間の範囲の時間をかけて再焼成することによって、酸素欠損を抑制する方法が開示されている。
特許文献3には、原料の混合物を高温焼成して焼成物を作成し、前記焼成物を流動させながら再焼成するリチウム複合酸化物の製造方法が提案されている。
また、高温特性、特に高温保存特性に優れるリチウム二次電池を提供することを目的として、特許文献4には、一般式(I)LiaMn2-xx4-σ(式(I)中、Mは、Mnの一部を置換する置換元素群(Li、Mg、Ca及びTi、又はLi及びAl)、Xは、0<X≦0.5の範囲の置換元素群(M)の置換量、aは、0.1≦a≦1.3の範囲のLi量、σは、0≦σ≦0.05の範囲の酸素欠損量をそれぞれ意味する)で示されるスピネル構造を有するマンガン酸リチウムであり、かつその比表面積が1m2/g以下であるマンガン酸リチウムを正極活物質として備えたリチウム二次電池が開示されている。
特開2001−335323号公報 特開2006−252940号公報 特開2007−149414号公報 特開2006−252940号公報
自動車に搭載される電池、例えば電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される電池への利用を考えると、民生品用の電池とは異なり、出力密度が大きいこと(加速性能に影響)、サイクル寿命が長いこと(ランニングコストに影響)のほか、急速充電できること(利便性や回生性能に影響)などが求められる。中でも、自動車用途においては、減速時において、タイヤの回転によるエンジン回転によって発電させ、この電気をバッテリーに充電する回生が頻繁に行われるため、高いレート(少なくとも1Cを超えるレート)で電気を短時間に充電することができる急速充電性が求められる。
そこで本発明は、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性の全てを両立することができる新たなスピネル型リチウム遷移金属酸化物を提供せんとするものである。
かかる課題を解決するため、本発明は、Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含むスピネル型リチウム遷移金属酸化物であって、結晶子サイズが200nm〜1000nmであり、かつ、歪みが0.0900以下であるスピネル型リチウム遷移金属酸化物(「LMO」とも称する)を提案する。
本発明のLMOは、結晶子サイズが200nm〜1000nmであり、且つ歪みが0.0900以下であるから、従来のLMOに比べ、結晶子サイズが顕著に大きくて、それでいて結晶構造の歪みが顕著に小さくて骨格が強固なLMOである。
また、Li及びMnを含むスピネル型リチウム遷移金属酸化物について数多くの試験を行った結果、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含有させることによって、歪みを顕著に小さくすることができることが判明した。
このような特徴を有する本発明のスピネル型リチウム遷移金属酸化物は、電池の正極活物質として利用すると、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性の全てを両立することができる。
本発明のスピネル型リチウム遷移金属酸化物の好ましい製造方法の一例における第1次酸素放出温度及び第2次酸素放出温度を説明するために、実施例1のスピネル型リチウム遷移金属酸化物のTG曲線を示した図である。 実施例及び比較例で得られたサンプルの電池特性を評価するために作製した電気化学用セルの構成を示した図である。
以下、本発明の実施形態について説明する。但し、本発明の範囲が下記実施形態に限定されるものではない。
<本LMO>
本発明の実施形態に係るスピネル型(Fd−3m)リチウム遷移金属酸化物(以下「本LMO」とも称する)は、結晶子サイズが200nm〜1000nmであり、かつ、歪みが0.0900以下であるという特徴を有する。
(結晶子サイズ)
本LMOは、結晶子サイズが200nm〜1000nm、好ましくは250nm〜900nm、その中でも好ましくは250nm〜600nmである特徴を有する。
本LMOの結晶子サイズが200nm〜1000nmであれば、入力特性および出力特性を高めることができ、同時に高温サイクル寿命特性を改善することができるから、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性を高めることができる。
ここで、「結晶子」とは、単結晶とみなせる最大の集まりを意味し、XRD測定しリートベルト解析を行なうことにより求めることができる。
(歪み)
本LMOは、歪みが0.0900以下、中でも好ましくは0.0800以下、その中でも好ましくは0.0600以下、その中でもさらに好ましくは0.0400以下である特徴を有する。この程度に歪みが少なければ、スピネル型リチウム遷移金属酸化物の骨格が充分に強固であり、リチウム二次電池の正極活物質として使用した場合に、出力特性(レート特性)、高温サイクル寿命特性および急速充電特性を高めることができる。
(組成)
本LMOは、Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含むスピネル型(Fd−3m)リチウム遷移金属酸化物である。中でも、歪みを0.0400以下にする観点からは、Li及びMnのほかに、Mg及びTiからなる群から選ばれる一種又は二種以上の元素を含むスピネル型(Fd−3m)リチウム遷移金属酸化物であるのが好ましい。
Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素の含有量としては、歪み除去の観点から、合計量が0wt%より多く(但し、少なくとも1000ppm以上)、且つ1.8wt%以下であるが好ましく、特に0.2〜1.0wt%、中でも特に0.4〜0.6wt%であるのがより一層好ましい。
なお、1000ppm未満の量であれば、本LMOを電池の正極活物質として用いた場合の性能にほとんど影響しないため、それぞれの含有量が1000ppm未満の不純物を含有することは許容される。不純物としては、例えばCa、Cr、Cuなどが想定される。
(比表面積)
本LMOのBET比表面積(SSA)は0.1〜0.4m2/gであるのが好ましく、特に0.1〜0.3m2/g程度であるのがさらに好ましい。
通常、比表面積が大きければレート特性は高まり、比表面積が小さければレート特性が低下するのが一般的であるが、本LMOは比表面積が小さいにもかかわらず、レート特性に優れているという特徴を有している。これは、結晶子サイズが大きくて、しかも歪みが極めて小さいからであろうと考えることができる。
(結晶子サイズ/BET比表面積)
後述する実施例及びこれまでの各種試験の結果から、本LMOの中でも、特にBET比表面積(SSA)に対する結晶子サイズの割合、すなわち結晶子サイズ/BET比表面積の値が1500nm/(m2/g)〜3000nm/(m2/g)の範囲内にあるもの、中でも1700nm/(m2/g)〜3000nm/(m2/g)の範囲内にあるもの、その中でも特に2400nm/(m2/g)〜3000nm/(m2/g)の範囲内にあるものが、特に高温サイクル寿命特性値(1C)の点で優れているという知見を得ることができた。
<製造方法>
次に、本LMOの製造方法の一例について説明する。
本LMOは、原料を混合した後、常圧、大気雰囲気下にて850℃以上で焼成した後、常圧よりも酸素分圧の高い雰囲気下にて熱処理することにより得ることができる。以下、詳細に説明する。
(原料)
出発原料としては、少なくともリチウム原料、マンガン原料、マグネシウム原料、チタン原料、ニッケル原料、コバルト原料、鉄原料を適宜選択すればよい。
リチウム原料は、特に限定するものではなく、例えば水酸化リチウム(LiOH)、炭酸リチウム(Li2CO3)、硝酸リチウム(LiNO3)、LiOH・H2O、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
マンガン原料としては、二酸化マンガン、四酸化三マンガン、三酸化二マンガン、炭酸マンガン等のいずれか或いはこれらから選択される二種類以上の組合わせからなる混合物を用いることができる。
二酸化マンガンとしては、化学合成二酸化マンガン(CMD)、電解によって得られる電解二酸化マンガン(EMD)、炭酸マンガン或いは天然二酸化マンガンを用いることができる。
マグネシウム、チタン、ニッケル、コバルト、鉄の原料としては、特に限定するものではなく、例えばそれぞれの酸化物、水酸化物、フッ化物、硝酸化物などを用いることができ、中でも酸化物が好ましい。
(原料の混合)
原料の混合は、均一に混合できれば、その方法を特に限定するものではない。例えばミキサー等の公知の混合機を用いて各原料を同時又は適当な順序で加えて湿式又は乾式で攪拌混合すればよい。置換しにくい元素を添加する場合には湿式混合を採用するのが好ましい。
乾式混合としては、例えば高速で混合粉を回転させる精密混合機を使用した混合方法を例示することができる。
他方、湿式混合としては、水や分散剤などの液媒体を加えて湿式混合してスラリー化させ、得られたスラリーを湿式粉砕機で粉砕する混合方法を例示することができる。特にサブミクロンオーダーまで粉砕するのが好ましい。サブミクロンオーダーまで粉砕した後、造粒及び焼成することにより、焼成反応前の各粒子の均一性を高めることができ、反応性を高めることができる。
(造粒)
上記の如く混合した原料は、必要に応じて所定の大きさに造粒した後、焼成してもよい。但し、造粒は必ずしもしなくてもよい。
造粒方法は、前工程で粉砕された各種原料が分離せずに造粒粒子内で分散していれば湿式でも乾式でもよく、押し出し造粒法、転動造粒法、流動造粒法、混合造粒法、噴霧乾燥造粒法、加圧成型造粒法、或いはロール等を用いたフレーク造粒法でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。
乾燥方法としては、噴霧熱乾燥法、熱風乾燥法、真空乾燥法、フリーズドライ法などの公知の乾燥方法によって乾燥させればよく、中でも噴霧熱乾燥法が好ましい。噴霧熱乾燥法は、熱噴霧乾燥機(スプレードライヤー)を用いて行なうのが好ましい。熱噴霧乾燥機(スプレードライヤー)を用いて造粒することにより、粒度分布をよりシャープにすることができるばかりか、丸く凝集してなる凝集粒子(2次粒子)を含むように2次粒子の形態を調製することができる。
(焼成)
焼成は、大気雰囲気下で行えばよい。大気雰囲気下で焼成することにより、結晶成長を促進させることができ、結晶子サイズを大きくすることができる。
焼成温度は、高温焼成することにより、結晶成長を促進して結晶子サイズを大きくすることができるため、850℃以上、特に910〜1,050℃、中でも特に910〜980℃で焼成するのが好ましい。
なお、この焼成温度とは、焼成炉内の焼成物に熱電対を接触させて測定される焼成物の品温を意味する。
焼成時間、すなわち上記焼成温度を保持する時間は、焼成温度にもよるが、0.5時間〜30時間とすればよい。
焼成炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
(熱処理)
次に、少なくとも大気よりも酸素分圧の高い雰囲気下にて、第1次酸素放出温度〜第1次酸素放出温度+50℃の温度範囲で熱処理することが重要である。このようにして熱処理することにより、結晶の歪みを低減することができる。
熱処理の雰囲気は、酸素分圧を0.03MPa以上であって、焼成時より酸素分圧が高いことが好ましく、特に0.05MPa以上、中でも特に0.08MPa以上に制御して行うのが好ましい。酸素分圧の高い雰囲気で熱処理することで、平衡論的に酸素を取り込み易くなり、酸素欠損を抑えて歪みを低減することができる。
また、大気よりも酸素分圧の高い雰囲気に調整する方法として、酸素濃度80%〜100%の酸素ガスを流しながら熱処理するのが好ましい。新鮮な酸素を常に供給しながら熱処理することで、酸素を取り込み易くなり、酸素欠損をより一層抑えることができる。
さらに、熱処理時の雰囲気の圧力は、大気圧よりも大きい圧力、例えば0.102MPa〜1.5MPaに制御するのが好ましい。このように、酸素雰囲気を加圧することで、より一層酸素を取り込み易くなり、酸素欠損をより一層抑えることができる。
かかる観点から、熱処理時の雰囲気の圧力は0.102MPa〜1.5MPaに制御するのが好ましく、特に0.11MPa〜1.3MPa、中でも特に0.11MPa〜1.0MPaに制御するのが好ましい。
熱処理は、第1次酸素放出温度〜第1次酸素放出温度+50℃の温度範囲、特に第1次酸素放出温度〜第1次酸素放出温度+30℃の温度範囲、その中でも特に第1次酸素放出温度〜第1次酸素放出温度+20℃の温度範囲を保持することが好ましい。
この熱処理の温度とは、炉内の処理物に熱電対を接触させて測定される処理物の品温を意味する。
リチウム遷移金属酸化物は、第1次酸素放出温度あたりまで加熱すると、Mn−Oの熱振動が大きくなってMn−Oの結合力と拮抗して不安定になるため、第1次酸素放出温度〜+50℃の温度範囲内で酸素を強制的に供給しながら熱処理することにより、結晶構造中に酸素を取り込んで歪みを効果的に低減することができる。
この際、昇温速度は、0.5℃/min〜4℃/minとするのが好ましく、特に0.5℃/min〜3℃/min、中でも特に0.5℃/min〜2℃/minとするのがさらに好ましい。
なお、第1次酸素放出温度は、焼成後のスピネル型リチウム遷移金属酸化物を加熱し、600℃〜900℃の範囲で重量減少する開始温度として求めることができる(図1参照)。
熱処理において上記温度範囲を保持する時間は、少なくとも1分間以上である必要がある。結晶構造内に酸素を十分に取り込ませるためには、少なくとも1分間は必要であると考えられる。かかる観点から、保持時間は、好ましくは5分以上、特に好ましくは10分以上である。
熱処理後の降温速度は、少なくとも500℃までは10℃/min以下の冷却速度でゆっくり冷却するのが好ましく、特に0.1℃/min〜8℃/min、中でも特に0.5℃/min〜5℃/minに制御するのがさらに好ましい。
第1次酸素放出温度近辺で取り込んだ酸素が安定化すると考えられるため、第1次酸素放出温度近辺を過ぎるまで、すなわち、少なくとも500℃まではゆっくり10℃/min以下の降温速度で冷却するのが好ましいと考えることができる。
<特性・用途>
本LMOは、必要に応じて解砕・分級した後、リチウム電池の正極活物質として有効に利用することができる。
例えば、本LMOと、カーボンブラック等からなる導電材と、テフロン(登録商標)バインダー等からなる結着剤とを混合して正極合剤を製造することができる。そしてそのような正極合剤を正極に用い、例えば負極にはリチウムまたはカーボン等のリチウムを吸蔵・脱蔵できる材料を用い、非水系電2質には六フッ化リン酸リチウム(LiPF6)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム2次電池を構成することができる。但し、このような構成の電池に限定する意味ではない。
本LMOを正極活物質として備えたリチウム電池は、充放電深度の中心領域(例えばSOC50−80%)で充放電を繰り返して使用した場合に優れた寿命特性(サイクル寿命特性)及び出力特性をともに発揮するから、特に電気自動車(EV)やハイブリッド電気自動車(HEV)に搭載するモータ駆動用電源として用いる大型のリチウム電池の正極活物質の用途に特に優れている。
<語句の説明>
本発明において、「HEV」とは、電気モータと内燃エンジンという2つの動力源を併用した自動車の意である。
また、「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウム又はリチウムイオンを含有する電池を全て包含する意である。
本発明において「主材」と表現した場合、当該主材の機能を妨げない範囲で他の成分を含有することを許容する意を包含するものであり、特に当該主材の含有割合を特定するものではないが、主材は全量中の少なくとも50質量%以上、好ましくは70質量%以上、特に好ましくは90質量%以上(100%含む)を占めるものである。
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であるのが好ましい」旨の意図も包含する。
次に、実施例及び比較例に基づいて、本発明について更に説明するが、本発明が以下に示す実施例に限定されるものではない。
<第1次酸素放出温度の測定>
焼成後のスピネル型リチウム遷移金属酸化物を40mg秤量してAl深皿容器に入れ、空気を100ml/minの流量でフローさせた状態(酸素分圧0.021MPa、酸素濃度21%)で、昇温速度を5℃/minとして1100℃まで加熱測定し、得られたTG曲線(図1参照)から、600℃〜900℃の範囲で重量減少した開始温度を「第一次酸素放出温度」として求めた。
熱分析には、株式会社マック・サイエンス製TG−DTA装置(TG−DTA2000S)を用いた。
<XRDの測定>
実施例及び比較例で得られたサンプル(粉体)について、結晶子サイズ及び歪みを、次に説明するファンダメンタル法を用いたリートベルト法により測定した。
ファンダメンタル法を用いたリートベルト法は、粉末X線回折等により得られた回折強度から、結晶の構造パラメータを精密化する方法である。結晶構造モデルを仮定し、その構造から計算により導かれるX線回折パターンと、実測されたX線回折パターンとができるだけ一致するように、その結晶構造の各種パラメータを精密化する手法である。
X線回折パターンの測定には、Cu‐Kα線を用いたX線回折装置(ブルカー・エイエックスエス株式会社製D8 ADVANCE)を使用した。回折角2θ=10〜120°の範囲より得られたX線回折パターンのピークについて解析用ソフトウエア(製品名「Topas Version3」)を用いて解析することにより結晶子サイズ及び歪みを求めた。
なお、結晶構造は、空間群Fd−3m(Origin Choice2)の立方晶に帰属され、その8aサイトにLiが存在し、16dサイトにMn、Mnの置換元素(例えば、Mg、Ti、Ni、Co及びFe)、さらには過剰なLi分xが存在し、32eサイトをOが占有していると仮定し、パラメータBeq.を1と固定し、酸素の分率座標を変数として、表に示す通り観測強度と計算強度の一致の程度を表す指標Rwp<10.0、GOF<2.0を目安に収束するまで繰り返し計算を行った。なお、結晶子サイズ及び歪みはガウス関数を用い、解析を行った。
その他測定・リートベルト法解析に使用した機器仕様・条件等は以下の通りである。
Detector:PSD
Detector Type:VANTEC−1
High Voltage:5585V
Discr. Lower Level:0.35V
Discr. Window Width:0.15V
Grid Lower Level:0.075V
Grid Window Width:0.524V
Flood Field Correction:Disabled
Primary radius:250mm
Secondary radius:250mm
Receiving slit width:0.1436626mm
Divergence angle:0.3°
Filament Length:12mm
Sample Length:25mm
Receiving Slit Length:12mm
Primary Sollers:2.623°
Secondary Sollers:2.623°
Lorentzian,1/Cos:0.004933548Th
<BET比表面積(SSA)>
ユアサアイオニクス(株)製のモノソーブ(商品名)を用いて、JISR1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2流動法の(3.5)一点法」に準拠して、BET比表面積(SSA)の測定を行った。
その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。
<電池評価>
(電池の作製)
Li電池評価は以下の方法で行った。
正極活物質(実施例・比較例で得られたスピネル型リチウム遷移金属酸化物)8.80gとアセチレンブラック(電気化学工業製)0.60g及びNMP(N-メチルピロリドン)中にPVDF(キシダ化学製)12wt%溶解した液5.0gを正確に計り取り、そこにNMPを5ml加え十分に混合し、ペーストを作製した。このペーストを集電体であるアルミ箔上にのせ、250μmのギャップに調整したアプリケーターで塗膜化し、120℃一昼夜真空乾燥した後、φ16mmで打ち抜き、4t/cm2でプレス厚密し、正極とした。電池作製直前に120℃で120min以上真空乾燥し、付着水分を除去し電池に組み込んだ。また、予めφ16mmのアルミ箔の重さの平均値を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求め、また正極活物質とアセチレンブラック、PVDFの混合割合から正極活物質の含有量を求めた。
負極はφ20mm×厚み1.0mmの金属Liとし、これらの材料を使用して図2に示す電気化学評価用セルTOMCEL(登録商標)を作製した。
図2の電気化学用セルは、耐有機電解液性のステンレス鋼製の下ボディ1の内側中央に、前記正極合材からなる正極3を配置した。この正極3の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ4を配置し、テフロン(登録商標)スペーサー5によりセパレータを固定した。更に、セパレータ上面には、下方に金属Liからなる負極6を配置し、負極端子を兼ねたスペーサー7を配置し、その上に上ボディ2を被せて螺子で締め付け、電池を密封した。
電解液は、ECとDMCを3:7体積混合したものを溶媒とし、これに溶質としてLiPF6を1moL/L溶解させたものを用いた。
(高温サイクル寿命特性評価)
上記のようにして準備した電気化学用セルを用いて下記に記述する方法で充放電試験し、高温サイクル寿命特性を求めた。
電池充放電する環境温度を45℃となるようにセットした環境試験機内にセルを入れ、充放電できるように準備し、セル温度が環境温度になるように4時間静置後、充放電範囲を3.0V〜4.3Vとし、0.1Cで2サイクル充放電行った後、SOC50−80%の充放電深度で、1Cにて充放電サイクルを47回行い、50サイクル目は容量確認の為、充放電範囲3.0V〜4.3Vで0.1Cにて充放電を行った。
50サイクル目の放電容量を2サイクル目の放電容量で割り算して求めた数値の百分率(%)を高温サイクル寿命特性値(0.1C)を求めた。また、0.1Cを1.0Cに変更して同様なサイクル条件を行い、高温サイクル寿命特性値(1.0C)を求めた。いずれも、比較例2の値を100とした時の相対値として表2に示した。
(急速充電特性)
上記のようにして準備した電気化学用セルを用いて下記に記述する方法で充放電試験し、急速充電特性を求めた。
先ず、正極中の正極活物質の含有量から、0.1C、3.0Cの充電レートになるように電流値を算出した。その電流値をもとにそれぞれのレートで20℃にて定電流充電した時の充放電範囲3.0V〜4.3Vまでの充電容量(mAh/g)を測定した。そして、3.0Cでの充電容量を0.1Cでの充電容量で割り算して求めた数値の百分率(%)を急速充電特性値とした。いずれも、比較例4の値を100とした時の相対値として表2に示した。
<実施例1-3>
炭酸リチウム1770.9g、電解二酸化マンガン7500g、酸化マグネシウム65.7gを精密混合機(バーチカルグラニュレータ(富士産業株式会社製(FM-VG-25))でブレード回転数400rpmクロススクリュー高速に設定し、5分間混合した。
得られた混合粉を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm2/充填高さcm)が100となるように充填した。そして、静置式電気炉を用いて、表1に示す雰囲気において、常温から焼成設定温度まで昇温速度=150℃/hrで昇温し、表1に示す焼成温度(保持温度)を14時間保持し、その後、保持温度から600℃まで降温速度=20℃/hrで降温させ、その後は常温まで自然冷却させた。なお、保持時間内の温度ばらつきは±5℃の範囲内で制御した。
焼成して得られた焼成粉を乳鉢で解砕し、目開き53μmの篩で分級し、篩下の粉体を回収して解砕サンプルを得た。
次に、得られた解砕サンプルをチューブ炉加熱装置(光洋サーモシステム株式会社)を使用して熱処理した。すなわち、解砕サンプル200gを磁性ボートに充填し、このサンプル充填した焼成ボードをチューブ炉の中心付近に設置した後、酸素ガス(酸素濃度100%)を流量0.5l/minでチューブ炉内に流入させながら、1.7℃/minの昇温速度で、表1に示す設定温度まで加熱し、到達後所定時間保持した。その後、酸素流入を継続しながら、室温まで表1に示す降温速度で冷却してスピネル型リチウム遷移金属酸化物(サンプル)を得た。
なお、酸素濃度は酸素濃度計(XPO−318(新コスモス電機株式会社))を用い測定した(後述する比較例でも同じ)。
上記焼成時及び熱処理時の温度は、炉内の処理物に熱電対を接触させて測定した処理物の品温である(後述する比較例でも同じ)。
<比較例1>
熱処理を行わなかった以外、実施例1と同様の原料を用いて、実施例1と同様に混合、焼成、解砕し及び分級を行い、スピネル型リチウム遷移金属酸化物(サンプル)を得た。
<比較例2>
実施例1と同様の原料を用いて、実施例1と同様に混合、焼成、解砕し及び分級を行って解砕サンプルを得た。
次に、得られた解砕サンプルを、静置式電気炉を用いて熱処理した。すなわち、解砕サンプル200gを磁性ボート内に充填し、大気雰囲気(雰囲気圧力:0.10MPa、酸素分圧:0.021MPa)において、1.7℃/minの昇温速度で、表1に示す設定温度まで加熱し、到達後所定の時間保持した。その後、酸素流入を継続しながら、室温まで表1に示す降温速度で冷却してスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<比較例3>
焼成時の雰囲気を、表1に示すような酸素加圧雰囲気に変更した以外は、比較例1と同様にしてスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<比較例4>
原料の配合組成を、炭酸リチウム1852.3g、電解二酸化マンガン7500g、酸化マグネシウム171.00g、酸化チタン186.36g、酸化カルシウム26.17gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例4−6>
実施例1と同様の原料を用いて、熱処理時の雰囲気及び熱処理時間を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例7>
原料の配合組成を、炭酸リチウム1770.9g、電解二酸化マンガン7500g、酸化マグネシウム32.87g、酸化チタン64.48gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例8>
原料の配合組成を、炭酸リチウム1770.9g、電解二酸化マンガン7500g、水酸化ニッケル146.68gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例9>
原料の配合組成を、炭酸リチウム1770.9g、電解二酸化マンガン7500g、オキシ水酸化コバルト145.48gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例10−28・比較例5−6>
実施例1と同様の原料を用いて、熱処理時の温度及び熱処理時間を表3に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例29>
実施例1と同様の原料を用いて、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例30>
原料の配合組成を、炭酸リチウム1745.2g、ナトリウムで中和してなる電解二酸化マンガン(ナトリウム量2800ppm)7500g、酸化マグネシウム65.7gに変更すると共に、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に原料の混合から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例31>
炭酸リチウムと電解二酸化マンガンと酸化チタンを、モル比でLi:Mn:Ti=1.06:1.903:0.037となるように秤量し、水を上記固形分に対する重量比で9倍量加えて混合攪拌して固形分濃度10wt%のスラリーを調製した。
得られたスラリー(原料粉500g)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の5wt%添加し、湿式粉砕機で3400rpm、40分間粉砕して平均粒径(D50)を1μm未満、すなわちサブミクロンオーダーとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製LBT−8i)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数30000rpm、スラリー供給量3kg/hr、乾燥塔の出口温度120℃となるように温度を調節して造粒乾燥を行なった。
その後、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に焼成から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
<実施例32>
炭酸リチウムと電解二酸化マンガンと水酸化鉄(III)を、モル比でLi:Mn:Fe=1.06:1.903:0.037となるように秤量し、水を上記固形分に対する重量比で9倍量加えて混合攪拌して固形分濃度10wt%のスラリーを調製した。
得られたスラリー(原料粉500g)に、分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製 SNディスパーサント5468)を前記スラリー固形分の5wt%添加し、湿式粉砕機で3400rpm、40分間粉砕して平均粒径(D50)を1μm未満、すなわちサブミクロンオーダーとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製LBT−8i)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数30000rpm、スラリー供給量3kg/hr、乾燥塔の出口温度120℃となるように温度を調節して造粒乾燥を行なった。
その後、焼成時及び熱処理時の条件を表1に示した条件に変更した以外は、実施例1と同様に焼成から熱処理までを行ってスピネル型リチウム遷移金属酸化物(サンプル)を得た。
Figure 0004939670
Figure 0004939670
Figure 0004939670
Figure 0004939670
(考察)
比較例1の場合、熱処理しなかったため、焼成によって酸素が欠損したままであり、そのため、結晶構造の歪みが大きくなり、また、実施例1−3に比べると結晶子サイズも小さくなり、レート特性及び高温サイクル寿命特性のいずれも劣ることになった。
比較例2の場合、常圧・大気雰囲気で熱処理を行っているため、酸素分圧が足りず、酸素の取り込みが不足したため、結晶構造の歪みが大きく、特にレート特性が劣る結果となった。ちなみに、Mn酸化物(例えばMnO2は約560℃でMn23に還元する。)は加熱されると酸素を放出する熱還元特性をもっているため、平衡論的に見て、結晶構造中に十分に酸素を取り込み得る酸素分圧に達していなかったものと推察される。
比較例3のように酸素加圧しながら焼成すると、結晶子サイズが小さくなり、レート特性及び高温サイクル寿命特性のいずれも劣ることになることが分かった。900℃近辺まで加熱する反応は、第1次酸素放出温度及び第2次酸素放出温度等で酸素を放出しながら粒子成長する反応であるため、酸素の分圧が高い状態で焼成すると、第1次酸素放出温度及び第2次酸素放出温度が高温側にシフトすることになる。その結果、結晶成長反応が進まなくなり、結晶子サイズが小さくなるものと考えることができる。
なお、特開2006−252940号には、酸化雰囲気中で900〜1000℃の焼成をした後、酸化雰囲気中で600〜900℃のアニールを行うLMOの製法が記載されているが、このように焼成とアニールを同一雰囲気で行うと比較例2や4のように、実施例のような優れた結果を得ることはできないことが確認された。
このような比較例1〜3に対し、実施例1〜9及び実施例29〜32のように、大気雰囲気下にて850℃以上で焼成した後、大気よりも酸素分圧の高い雰囲気下にて、1次酸素放出温度〜第1次酸素放出温度+50℃の温度範囲で熱処理することにより、結晶子サイズを大きくしつつ、かつ結晶構造の歪みを抑制することができるため、歪が減少して骨格が強固となり、出力特性(レート特性)と高温サイクル寿命特性とを両立できることが分かった。同様の結果が、実施例10−28でも得られることが確認されている。
実施例1〜32で得られたLMOのBET比表面積(SSA)は0.1〜0.4m2/gであった。
より具体的に言えば、実施例1−32で得られたLMOのように、結晶子サイズが200nm〜1000nmであり、かつ、歪みが0.0900以下であるLMOであれば、出力特性(レート特性)と高温サイクル寿命特性とを両立できることができ、さらには急速充電特性にも優れることが分かった。
なお、1Cレートでの高温サイクル寿命特性の結果は出力特性を示す指標でもある。すなわち、0.1Cに比べて10倍の電流である1Cにて評価することで、材料自体の出力特性が優れているかどうかを示す指標ともなるからである。
かかる観点から、本LMOの結晶子サイズは、200nm〜1000nmであるのが好ましく、特に250nm以上或いは900nm以下、その中でも特に600nm以下であるのが好ましいと考えることができる。
本LMOの歪みは、0.0900以下であるのが好ましく、特に0.0800以下、中でも特に0.0600以下、その中でも特に0.0400以下であるのが好ましいと考えることができる。
このような効果は、本実施例において、Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる元素を含むスピネル型リチウム遷移金属酸化物において確かめられている。そして、Li及びMnのほかに、MgとTiを含むスピネル型リチウム遷移金属酸化物においても、上記のような効果が確認されている点からすると、Mg、Ti、Ni、Co及びFeからなる群から選ばれる元素を二種類以上含有するスピネル型リチウム遷移金属酸化物についても、上記のような効果が得られるものと考えることができる。
これに対し、例えば比較例4のように、Li及びMnのほかに、Mg、Ti及びCaを含むスピネル型リチウム遷移金属酸化物では、結晶子サイズが200nm〜1000nmであり、かつ、歪みが0.0900以下であるスピネル型リチウム遷移金属酸化物が得られず、Caを含む場合には、実施利例ほどの出力特性(レート特性)と高温サイクル寿命特性は得られないことが分かった。
また、表2の結果とこれまでの各種試験の結果から、結晶子サイズ/BET比表面積の値が1500nm/(m2/g)〜3000nm/(m2/g)の範囲内にあるもの、中でも1700nm/(m2/g)〜3000nm/(m2/g)の範囲内にあるもの、その中でも特に2400nm/(m2/g)〜3000nm/(m2/g)の範囲内にあるものは、本LMOの中でも特に高温サイクル寿命特性値(1C)の点で優れていることが分かった。

Claims (8)

  1. Li及びMnのほかに、Mg、Ti、Ni、Co及びFeからなる群から選ばれる一種又は二種以上の元素を含むスピネル型リチウム遷移金属酸化物であって、下記測定方法で測定される結晶子サイズが200nm〜1000nmであり、かつ、下記測定方法で測定される歪みが0.0900以下であるスピネル型リチウム遷移金属酸化物。
    (結晶子サイズ及び歪みの測定方法)
    サンプル(粉体)について、結晶子サイズ及び歪みを、ファンダメンタル法を用いたリートベルト法により測定する。
    X線回折パターンの測定には、Cu‐Kα線を用いたX線回折装置を使用する。回折角2θ=10〜120°の範囲より得られたX線回折パターンのピークについて解析用ソフトウエアを用いて解析することにより結晶子サイズ及び歪みを求める。
    この際、結晶構造は、空間群Fd−3m(Origin Choice2)の立方晶に帰属され、その8aサイトにLiが存在し、16dサイトにMn、Mnの置換元素、さらには過剰なLi分xが存在し、32eサイトをOが占有していると仮定し、パラメータBeq.を1と固定し、酸素の分率座標を変数として、観測強度と計算強度の一致の程度を表す指標Rwp<10.0、GOF<2.0を目安に収束するまで繰り返し計算を行い、結晶子サイズ及び歪みはガウス関数を用い、解析を行う。
    その他測定・リートベルト法解析に使用する機器仕様・条件等は以下の通りである。
    Detector:PSD
    Detector Type:VANTEC−1
    High Voltage:5585V
    Discr. Lower Level:0.35V
    Discr. Window Width:0.15V
    Grid Lower Level:0.075V
    Grid Window Width:0.524V
    Flood Field Correction:Disabled
    Primary radius:250mm
    Secondary radius:250mm
    Receiving slit width:0.1436626mm
    Divergence angle:0.3°
    Filament Length:12mm
    Sample Length:25mm
    Receiving Slit Length:12mm
    Primary Sollers:2.623°
    Secondary Sollers:2.623°
    Lorentzian,1/Cos:0.004933548Th
  2. 歪みが0.0800以下であることを特徴とする請求項1記載のスピネル型リチウム遷移金属酸化物。
  3. 歪みが0.0600以下であることを特徴とする請求項1又は2記載のスピネル型リチウム遷移金属酸化物。
  4. 歪みが0.0400以下であることを特徴とする請求項1〜3の何れかに記載のスピネル型リチウム遷移金属酸化物。
  5. BET比表面積(SSA)が0.1〜0.4m2/gであることを特徴とする請求項1〜4の何れかに記載のスピネル型リチウム遷移金属酸化物。
  6. 結晶子サイズ/BET比表面積の値が1500nm/(m2/g)〜3000nm/(m/g)であることを特徴とする請求項1〜5の何れかに記載のスピネル型リチウム遷移金属酸化物。
  7. 請求項1〜6の何れかに記載のスピネル型リチウム遷移金属酸化物を含有するリチウム電池用正極活物質。
  8. 請求項7に記載のリチウム電池用正極活物質を備えた電気自動車用又はハイブリッド電気自動車用のリチウム電池。
JP2011551366A 2010-07-16 2011-07-13 スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料 Active JP4939670B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011551366A JP4939670B2 (ja) 2010-07-16 2011-07-13 スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010162273 2010-07-16
JP2010162273 2010-07-16
JP2010292552 2010-12-28
JP2010292552 2010-12-28
JP2011551366A JP4939670B2 (ja) 2010-07-16 2011-07-13 スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料
PCT/JP2011/065945 WO2012008480A1 (ja) 2010-07-16 2011-07-13 スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料

Publications (2)

Publication Number Publication Date
JP4939670B2 true JP4939670B2 (ja) 2012-05-30
JPWO2012008480A1 JPWO2012008480A1 (ja) 2013-09-09

Family

ID=45469477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011551366A Active JP4939670B2 (ja) 2010-07-16 2011-07-13 スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料

Country Status (4)

Country Link
US (1) US8734998B2 (ja)
EP (1) EP2594529B1 (ja)
JP (1) JP4939670B2 (ja)
WO (1) WO2012008480A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5811269B2 (ja) * 2012-03-09 2015-11-11 トヨタ自動車株式会社 非水電解液二次電池
WO2014010854A1 (ko) * 2012-07-09 2014-01-16 주식회사 엘지화학 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN104704659B (zh) 2012-10-17 2017-11-14 户田工业株式会社 Li‑Ni复合氧化物颗粒粉末及其制造方法、以及非水电解质二次电池
KR102168979B1 (ko) * 2012-10-17 2020-10-22 도다 고교 가부시끼가이샤 Li-Ni 복합 산화물 입자 분말 및 비수전해질 이차 전지
JP5728520B2 (ja) * 2013-04-12 2015-06-03 プライムアースEvエナジー株式会社 電池の容量回復方法、組電池の容量回復方法、電池の容量回復装置、及び、組電池の容量回復装置
KR101613861B1 (ko) 2013-12-04 2016-04-20 미쓰이금속광업주식회사 스피넬형 리튬코발트망간 함유 복합 산화물
CN104201375B (zh) * 2014-09-15 2017-01-18 无锡晶石新型能源有限公司 镍钴锰酸锂材料的生产方法
JP6999598B2 (ja) * 2019-03-28 2022-01-18 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池
CN111477865B (zh) * 2020-04-02 2023-03-31 广西锰华新能源科技发展有限公司 一种内氧式生产锰酸锂的方法
CN112811537B (zh) * 2021-02-07 2022-02-01 河海大学 一种铁-氮掺杂碳纳米管电极的制备方法及应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1167204A (ja) * 1997-08-08 1999-03-09 Fine Ceramics Gijutsu Kenkyu Kumiai 非水電解液二次電池の正極活物質の製造方法
JPH11214003A (ja) * 1998-01-29 1999-08-06 Mitsubishi Chemical Corp リチウム二次電池
JP2000500280A (ja) * 1997-02-28 2000-01-11 エフエムシー・コーポレイション リチウム二次電池及びリチウムイオン二次電池用の複数の金属イオンでドープされた酸化物のカソード材料
JP2000154021A (ja) * 1998-11-18 2000-06-06 Tosoh Corp 新規リチウムマンガン酸化物及びその製造方法並びにその用途
JP2000228195A (ja) * 1999-02-05 2000-08-15 Ngk Insulators Ltd リチウム二次電池
JP2000340231A (ja) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質、その製造方法、それを用いたリチウム二次電池およびその二次電池のエージング処理方法
JP2005522001A (ja) * 2002-03-28 2005-07-21 コリア・マテリアル・カンパニー・リミテッド リチウムイオン二次電池用のカソード素材およびその製造方法
JP2006252940A (ja) * 2005-03-10 2006-09-21 Ngk Insulators Ltd リチウム二次電池及びマンガン酸リチウムの製造方法
JP4673451B2 (ja) * 2009-07-03 2011-04-20 三井金属鉱業株式会社 リチウム遷移金属酸化物の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6040089A (en) 1997-02-28 2000-03-21 Fmc Corporation Multiple-doped oxide cathode material for secondary lithium and lithium-ion batteries
JP2001335323A (ja) 2000-05-25 2001-12-04 Masayuki Yoshio リチウム二次電池用スピネル系マンガン酸化物
JP5076307B2 (ja) 2005-11-25 2012-11-21 パナソニック株式会社 リチウムイオン二次電池およびそのリチウム複合酸化物の製造方法
KR101012323B1 (ko) * 2007-10-23 2011-02-08 미쓰이 긴조꾸 고교 가부시키가이샤 스피넬형 리튬 전이 금속 산화물

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000500280A (ja) * 1997-02-28 2000-01-11 エフエムシー・コーポレイション リチウム二次電池及びリチウムイオン二次電池用の複数の金属イオンでドープされた酸化物のカソード材料
JPH1167204A (ja) * 1997-08-08 1999-03-09 Fine Ceramics Gijutsu Kenkyu Kumiai 非水電解液二次電池の正極活物質の製造方法
JPH11214003A (ja) * 1998-01-29 1999-08-06 Mitsubishi Chemical Corp リチウム二次電池
JP2000340231A (ja) * 1998-10-22 2000-12-08 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極活物質、その製造方法、それを用いたリチウム二次電池およびその二次電池のエージング処理方法
JP2000154021A (ja) * 1998-11-18 2000-06-06 Tosoh Corp 新規リチウムマンガン酸化物及びその製造方法並びにその用途
JP2000228195A (ja) * 1999-02-05 2000-08-15 Ngk Insulators Ltd リチウム二次電池
JP2005522001A (ja) * 2002-03-28 2005-07-21 コリア・マテリアル・カンパニー・リミテッド リチウムイオン二次電池用のカソード素材およびその製造方法
JP2006252940A (ja) * 2005-03-10 2006-09-21 Ngk Insulators Ltd リチウム二次電池及びマンガン酸リチウムの製造方法
JP4673451B2 (ja) * 2009-07-03 2011-04-20 三井金属鉱業株式会社 リチウム遷移金属酸化物の製造方法

Also Published As

Publication number Publication date
JPWO2012008480A1 (ja) 2013-09-09
US8734998B2 (en) 2014-05-27
WO2012008480A1 (ja) 2012-01-19
EP2594529B1 (en) 2016-08-31
EP2594529A4 (en) 2014-01-08
US20130122372A1 (en) 2013-05-16
EP2594529A1 (en) 2013-05-22

Similar Documents

Publication Publication Date Title
JP4939670B2 (ja) スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料
KR101613862B1 (ko) 리튬 과잉형 층상 리튬 금속 복합 산화물의 제조 방법
JP4987063B2 (ja) スピネル型リチウム遷移金属酸化物
KR102170482B1 (ko) 리튬 이온 전지용 양극 재료
JP6091461B2 (ja) スピネル型リチウムマンガン遷移金属酸化物
JP5308581B2 (ja) スピネル型リチウムマンガン系複合酸化物
JP5756625B2 (ja) リチウム電池用正極活物質材料の製造方法
JP5523637B2 (ja) マンガン系スピネル型リチウム遷移金属酸化物
WO2015076376A1 (ja) スピネル型リチウム金属複合酸化物
WO2012090749A1 (ja) リチウム二次電池用正極活物質の製造方法
JP6020204B2 (ja) 非水電解質二次電池
JP5813277B1 (ja) スピネル型リチウムコバルトマンガン含有複合酸化物
JP4673451B2 (ja) リチウム遷移金属酸化物の製造方法
JP6120493B2 (ja) リチウム・マンガン複合酸化物の製造方法、その製造方法によって得られるリチウム・マンガン複合酸化物を含む二次電池用正極の製造方法、およびそれを正極として用いるリチウムイオン二次電池の製造方法
JP6546582B2 (ja) 層状結晶構造を有するリチウム金属複合酸化物の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250