WO2015076376A1 - スピネル型リチウム金属複合酸化物 - Google Patents

スピネル型リチウム金属複合酸化物 Download PDF

Info

Publication number
WO2015076376A1
WO2015076376A1 PCT/JP2014/080927 JP2014080927W WO2015076376A1 WO 2015076376 A1 WO2015076376 A1 WO 2015076376A1 JP 2014080927 W JP2014080927 W JP 2014080927W WO 2015076376 A1 WO2015076376 A1 WO 2015076376A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal composite
composite oxide
lithium metal
spinel
temperature
Prior art date
Application number
PCT/JP2014/080927
Other languages
English (en)
French (fr)
Inventor
仁彦 井手
大輔 鷲田
裕二 星
祥巳 畑
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to KR1020167008661A priority Critical patent/KR102256317B1/ko
Priority to US15/037,850 priority patent/US9960423B2/en
Priority to CN201480063528.1A priority patent/CN105745174B/zh
Priority to JP2015527386A priority patent/JP6174145B2/ja
Priority to GB1610262.6A priority patent/GB2553263B/en
Publication of WO2015076376A1 publication Critical patent/WO2015076376A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1242Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/54Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [Mn2O4]-, e.g. Li(CoxMn2-x)04, Li(MyCoxMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/54Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [Mn2O4]-, e.g. Li(NixMn2-x)O4, Li(MyNixMn2-x-y)O4
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention can be used as a positive electrode active material for a lithium battery, and particularly suitably used as a positive electrode active material for a battery mounted on an electric vehicle (EV), a hybrid electric vehicle (HEV), or the like.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • the present invention relates to a spinel type lithium metal composite oxide having a spinel structure (Fd-3m).
  • Lithium batteries especially lithium secondary batteries, have features such as high energy density and long life, so home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, power It is widely used as a power source for electric tools such as tools, and has recently been applied to large batteries mounted on electric vehicles (EV) and hybrid electric vehicles (HEV).
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • a lithium secondary battery is a secondary battery that has a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is occluded, and lithium ions return from the negative electrode to the positive electrode during discharge. It is known that the density is caused by the potential of the positive electrode active material.
  • Examples of the positive electrode active material of this type of lithium secondary battery include lithium metal composite oxides such as LiCoO 2 , LiNiO 2 and LiMnO 2 having a layer structure, and manganese such as LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4.
  • a lithium metal composite oxide having a spinel structure (Fd-3m) (also referred to as “LMO” in the present invention) is known.
  • LMO manganese-based spinel-type lithium metal composite oxides
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • spinel type lithium metal composite oxide (LMO) capable of three-dimensional Li ion insertion / extraction is superior in output characteristics to lithium metal composite oxides such as LiCoO 2 having a layer structure. Therefore, it is expected to be used in applications that require excellent output characteristics such as EV batteries and HEV batteries.
  • Li 1 + x A positive electrode active material for a non-aqueous electrolyte secondary battery, which is a lithium manganese oxide having a spinel crystal structure represented by MnMg 1y Al 2z O 4 (x ⁇ 0, y, z> 0) is disclosed.
  • a part of Mn in the spinel structure represented by the composition formula LiMn 2 O 4 is at least one selected from Li, Na, K, Co, Al, Mg, Ti, Cr, Fe, One or more kinds selected from Cu, and a part of O (oxygen) is further substituted with F (fluorine).
  • the non-aqueous electrolyte secondary battery positive electrode material has a lattice constant of a ⁇ 8.
  • a non-aqueous electrolyte secondary battery positive electrode material characterized in that it has a surface area of 22 mm, a specific surface area of 0.8 m 2 / g or less, and an average valence of Mn of 3.7 or less is disclosed.
  • At least some of the cations in the spinel structure represented by the composition formula LiMn 2 O 4 are selected from Na, K, Co, Al, Mg, Ti, Cr, Fe, Cu, and Ni.
  • a positive electrode material for a lithium secondary battery is disclosed in which one or both of the anion seat occupancy (ga) in the unit cell determined from the density is 0.985 or less.
  • Patent Document 4 discloses a general formula Li 1 + x M 2 ⁇ x O 4 (where M is a formula) as a spinel type lithium metal composite oxide (LMO) capable of achieving both output characteristics and high temperature cycle life characteristics. , Mn, Al, and Mg, and x is 0.01 to 0.08).
  • LMO lithium metal composite oxide
  • Patent Document 5 discloses a general formula Li 1 + x M 2 as a positive electrode active material for lithium batteries that can increase the packing density, increase the output characteristics, and reduce the voltage drop during high-temperature charge storage.
  • -x O 4- ⁇ (wherein M is a transition metal containing Mn, Al and Mg, and x is 0.01 to 0.08, 0 ⁇ ⁇ ).
  • a positive electrode active material for a lithium battery having a mass of magnetic deposits measured for a positive electrode active material for a lithium battery of not more than 600 ppb is disclosed.
  • high temperature storage characteristic a characteristic capable of maintaining the capacity
  • the present invention provides a new spinel type lithium having excellent high-temperature storage characteristics that can maintain capacity even when stored at a high temperature when a spinel type lithium metal composite oxide is used as a positive electrode active material of a lithium battery. It is intended to provide a metal composite oxide.
  • the oxygen site occupancy (OCC) obtained by the Rietveld method is 0.965 to 1.000
  • the lattice strain obtained by the Williamson-Hall method is 0.015 to 0.090, and in particular, 0. 020 to 0.090
  • the ratio of the molar amount of Na to the molar amount of Mn (Na / Mn) is 0.00 ⁇ Na / Mn ⁇ 1.00 ⁇ 10 ⁇ 2
  • a spinel type (Fd-3m) lithium metal composite oxide is proposed.
  • a spinel (Fd-3m) lithium metal composite oxide used as a positive electrode active material of a lithium battery a spinel lithium metal composite oxide having a high oxygen site occupancy (OCC) and a small distortion was generally sought after.
  • the spinel type lithium metal composite oxide proposed by the present invention has a high oxygen site occupancy (OCC), a relatively high Na content, and the Na is incorporated into the 16d site of the Fd-3m type crystal structure.
  • the lattice distortion is relatively large. Therefore, the spinel-type lithium metal composite oxide proposed by the present invention has excellent high-temperature storage characteristics when used as a positive electrode active material of a lithium battery, and can maintain capacity even when stored at high temperatures.
  • the spinel-type lithium metal composite oxide proposed by the present invention is a positive electrode active material of a lithium battery, particularly a battery mounted on an electric vehicle (EV) or a hybrid electric vehicle (HEV). It can be suitably used as a positive electrode active material.
  • the spinel type (Fd-3m) lithium metal composite oxide (hereinafter also referred to as “the present LMO”) according to an example of the embodiment of the present invention has an oxygen site occupancy (OCC) obtained by the Rietveld method of 0.965 to 1 And the lattice strain determined by the Williamson-Hall method is 0.015 to 0.090, particularly 0.020 to 0.090, and the ratio of the molar amount of Na to the molar amount of Mn ( Na / Mn) is a spinel type (Fd-3m) lithium metal composite oxide characterized by 0.00 ⁇ Na / Mn ⁇ 1.00 ⁇ 10 ⁇ 2 .
  • OCC oxygen site occupancy
  • OCC oxygen site occupancy
  • the lattice strain determined by the Williamson-Hall method is 0.015 to 0.090.
  • the lattice strain before storage (initial) is appropriately increased, so that changes in lattice strain after storage can be suppressed.
  • the high temperature storage characteristics when the spinel type lithium metal composite oxide is used as a positive electrode active material of a lithium battery can be enhanced.
  • the lattice distortion is too large, the output characteristics (rate characteristics), the high-temperature cycle life characteristics, and the like will be deteriorated.
  • the present LMO has a lattice strain determined by the Williamson-Hall method of 0.015 to 0.090, particularly 0.017 or more or 0.060 or less. It is particularly preferably 020 or more or 0.040 or less.
  • manganese dioxide containing Na is used as a manganese raw material so that Na is easily taken into the 16d site, and firing is performed so that Na is easily taken into the 16d site. What is necessary is just to adjust the kind and quantity of a promoter, baking conditions, annealing conditions, etc.
  • manganese dioxide containing Na it is particularly preferable to use manganese dioxide containing Na, which contains a large amount of bound water. However, it is not limited to such a method.
  • the crystallite diameter of the present LMO is preferably 100 nm to 250 nm, more preferably 150 nm or more and 250 nm or less. More preferably, it is 160 nm or more or 220 nm or less. There is a tendency that the output can be increased by making the crystallite diameter of the present LMO relatively small.
  • the crystallite size of the present LMO can be adjusted by the composition, raw material particle size, firing conditions, and the like.
  • the crystallite diameter can be reduced by lowering the firing temperature.
  • it is not limited to such a method.
  • crystallite means the largest group that can be regarded as a single crystal, and can be obtained by performing XRD measurement and performing Rietveld analysis.
  • the smallest unit particle composed of a plurality of crystallites and surrounded by a grain boundary when observed by SEM (for example, 3000 times) is referred to as “primary particle”.
  • the primary particles include single crystals and polycrystals.
  • secondary particles or “aggregated particles” in the present invention.
  • Na / Mn (Na / Mn) It is important that the present LMO is 0.00 ⁇ Na / Mn ⁇ 1.00 ⁇ 10 ⁇ 2 with respect to the ratio of the Na-containing molar amount to the Mn-containing molar amount (Na / Mn). If Na / Mn of the present LMO is 0.00 ⁇ Na / Mn ⁇ 1.00 ⁇ 10 ⁇ 2 , Na can be easily incorporated into the 16d site, and the strain of the crystal lattice of the present LMO is set to a predetermined value. It can be introduced at a rate.
  • the molar ratio (Na / Mn) of the present LMO is 0.00 ⁇ Na / Mn ⁇ 1.00 ⁇ 10 ⁇ 2 , among which 0.80 ⁇ 10 ⁇ 4 or more or 0 50 ⁇ 10 ⁇ 2 or less, more preferably 0.80 ⁇ 10 ⁇ 4 or more or 0.25 ⁇ 10 ⁇ 2 or less.
  • Na / Mn may be adjusted by using manganese dioxide containing Na as a manganese raw material and adjusting the washing conditions so that Na is easily taken into the 16d site.
  • it is not limited to such a method.
  • composition The composition of the present LMO is not particularly limited as long as it has a spinel (Fd-3m) crystal structure.
  • the general formula (1) ⁇ Li 1 + x M 2 ⁇ x O 4 (where M is Mn, Al , Mg, Ca, Ti, Ba, Cr, Fe, Co, Ni, Cu and a metal element containing one or more elements selected from the group consisting of Zn. It is preferably a metal composite oxide.
  • “x” is preferably 0.01 to 0.09. This is because if it contains a large amount of Li, it is difficult for Li to escape even after washing, and resistance to solvents such as water increases. Therefore, from this point of view, “x” is preferably 0.01 to 0.09, more preferably 0.02 or more or 0.08 or less, especially 0.07 or less, and even more preferably 0.05 or less. Is particularly preferred.
  • the atomic ratio “4” of oxygen in the general formula (1) is allowed to include some non-stoichiometry (for example, 4- ⁇ (0 ⁇ ⁇ )). Yes, a part of oxygen may be substituted with fluorine.
  • the present LMO may contain other components than the above as long as they are about 0.5% by mass or less. This is because this amount is considered to have little effect on the performance of the present LMO.
  • the present LMO uses a predetermined raw material, in particular, a predetermined manganese raw material in which Na is easily incorporated into the 16d site, and a firing accelerator is added to the raw material so that Na is easily incorporated into the 16d site. It can be obtained by firing, annealing, crushing, and washing with water. However, it is not limited to such a manufacturing method. Details will be described below.
  • a lithium material As a starting material, a lithium material, an M element material in the above Li 1 + x M 2 ⁇ x O 4 such as a manganese material and a magnesium material, a boron material, and the like may be appropriately selected.
  • the lithium raw material is not particularly limited, and lithium salt such as lithium hydroxide (LiOH), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiNO 3 ), lithium hydroxide monohydrate (LiOH ⁇ H 2) O), lithium oxide (Li 2 O), fatty acid lithium, lithium halide, and the like.
  • lithium hydroxide salts, carbonates and nitrates are preferred.
  • the ratio (Na / Mn) of the Na-containing molar amount to the Mn-containing molar amount is preferably 0.0001 or more, and particularly preferably 0.0002 or more.
  • the manganese raw material include natural manganese dioxide, chemically synthesized manganese dioxide, electrolytic manganese dioxide, and chemically synthesized trimanganese tetroxide.
  • EMD electrolytic manganese dioxide
  • trimanganese tetroxide it is preferable to use electrolytic manganese dioxide containing Na.
  • manganese dioxide containing Na it is more preferable to use manganese dioxide containing Na and containing a large amount of bound water.
  • the amount of bound water can be measured, for example, by measuring the weight loss from 150 ° C. to 500 ° C. by differential thermal analysis.
  • the magnesium raw material is not particularly limited, and examples thereof include magnesium oxide (MgO), magnesium hydroxide (Mg (OH) 2 ), magnesium fluoride (MgF 2 ), and magnesium nitrate (Mg (NO 3 ) 2 ). Among them, magnesium oxide is preferable.
  • an oxide or hydroxide containing M element can be used as the M element raw material.
  • the M element is aluminum
  • aluminum hydroxide (Al (OH) 3 ), aluminum fluoride (AlF 3 ), or the like can be used as the aluminum raw material, and aluminum hydroxide is particularly preferable.
  • firing accelerator in addition to boron or a boron compound, a substance having a melting point equal to or lower than the firing temperature, such as a vanadium compound (V 2 O 5 ), an antimony compound (Sb 2 O 3 ), a phosphorus compound (P 2 O 5 ), etc. A compound can be mentioned.
  • a firing accelerator and firing sintering of fine particles in which LMO crystal particles are aggregated can be promoted, and dense aggregated fine particles (secondary particles) can be formed. Can be increased.
  • the crystallite size can be increased.
  • the boron or boron compound may be a compound containing boron (B element). It is considered that the form of boron or boron compound added before firing changes with firing, but it is difficult to specify the form accurately. However, since boron (B element) in boron or a boron compound exists in a state of being eluted with water, the B element is not a spinel constituent element but exists outside the spinel as a boron compound in some form. Has been confirmed. Therefore, there is no boron (B element) in the spinel, and there is no clear concentration gradient of boron (B element) on the surface and inside of the crystal particles.
  • the addition amount of the firing accelerator for example, boron or boron compound is preferably set so that the ratio (B / Mn) of the B-containing molar amount to the Mn-containing molar amount is 0.001 ⁇ B / Mn ⁇ 0.1. It is preferable to adjust and add so that 0025 ⁇ B / Mn ⁇ 0.04.
  • the addition amount of the firing accelerator such an amount, an effect effective as a sintering aid can be obtained, and sintering can be promoted even in a low temperature environment. In the region where the firing temperature is high, oxygen atoms in the crystal structure tend to be lost, so that sintering can be performed at a low temperature, so that oxygen vacancies can be reduced.
  • the method of mixing raw materials is not particularly limited as long as it can be uniformly mixed.
  • the respective raw materials may be added simultaneously or in an appropriate order using a known mixer such as a mixer, and mixed by stirring in a wet or dry manner.
  • the dry mixing include a mixing method using a precision mixer that rotates mixed powder at a high speed.
  • examples of the wet mixing include a mixing method in which a liquid medium such as water or a dispersant is added and wet mixed to form a slurry, and the resulting slurry is pulverized with a wet pulverizer. It is particularly preferable to grind to submicron order. After pulverizing to the submicron order, granulation and baking can increase the uniformity of each particle before the baking reaction, and the reactivity can be increased.
  • the raw materials mixed as described above may be granulated to a predetermined size, if necessary, and then fired. However, granulation is not necessarily performed.
  • the granulation method may be wet or dry as long as the various raw materials pulverized in the previous step are dispersed in the granulated particles without being separated, and the extrusion granulation method, rolling granulation method, fluidized granulation method, A mixed granulation method, a spray drying granulation method, a pressure molding granulation method, or a flake granulation method using a roll or the like may be used. However, when wet granulation is performed, it is necessary to sufficiently dry before firing.
  • the drying method at this time may be dried by a known drying method such as a spray heat drying method, a hot air drying method, a vacuum drying method, a freeze drying method, etc., among which the spray heat drying method is preferable.
  • the spray heat drying method is preferably performed using a heat spray dryer (spray dryer).
  • a thermal spray dryer spray dryer
  • the particle size distribution can be made sharper, and the secondary particles can be aggregated (secondary particles) to contain agglomerated particles (secondary particles).
  • Forms can be prepared.
  • Firing is preferably performed under conditions where Na is easily taken into the 16d site.
  • a firing temperature of 500 ° C. or higher, particularly 700 to 1050 ° C., particularly 710 ° C. or higher or 920 ° C. or lower, particularly 720 ° C. or higher or 950 ° C. or lower, particularly 750 ° C. or higher or 940 ° C. or lower is maintained in an air atmosphere. It is preferable to heat it.
  • the firing temperature means the product temperature of the fired product measured by bringing a thermocouple into contact with the fired product in the firing furnace.
  • the time for maintaining the firing temperature depends on the firing temperature, but is preferably 0.5 to 90 hours, more preferably 1 hour or more and 80 hours or less, and particularly preferably 5 hours or more or 30 hours or less.
  • the type of firing furnace is not particularly limited. For example, it can be fired using a rotary kiln, a stationary furnace, or other firing furnace.
  • annealing heat treatment
  • the temperature decreasing rate up to 500 ° C. is 10 ° C./min or less, especially 5 ° C./min or less, especially 3 ° C./min or less, and especially 2 ° C./min or less, depending on the firing temperature. preferable.
  • the temperature at this time means the product temperature of the fired product measured by bringing a thermocouple into contact with the fired product in the firing furnace.
  • annealing may be performed in an oxygen pressurized atmosphere.
  • An oxygen-pressurized atmosphere means an atmosphere having a higher oxygen partial pressure than atmospheric pressure.
  • the present LMO powder obtained as described above is brought into contact with water and filtered to remove impurities contained in the powder, for example, a Na compound generated on the surface of the lithium metal composite oxide. Is preferred.
  • the present LMO powder and water are mixed and stirred to form a slurry, and the resulting slurry is filtered to solid-liquid separation to remove impurities. At this time, solid-liquid separation may be performed in a later step.
  • the slurry means a state in which the present LMO is dispersed in a polar solvent.
  • water is preferably used as a polar solvent used for washing.
  • the water may be city water, but it is preferable to use city water, ion-exchanged water, or pure water that has been passed through a filter or a wet magnetic separator.
  • the pH of water is preferably 5-9.
  • the liquid temperature at the time of washing since it has been confirmed that the battery characteristics are better if the liquid temperature is low, from this viewpoint, it is preferably 5 to 70 ° C, and more preferably 60 ° C or less. It is even more preferable, and among them, the temperature is particularly preferably 45 ° C. or lower. Furthermore, it is even more preferable that the temperature is 30 ° C. or less. If the liquid temperature at the time of washing is low, the battery characteristics become better. If the liquid temperature is too high, a part of lithium in this LMO is ion-exchanged with protons of ion-exchanged water, and lithium is released, resulting in high temperature. This is considered to affect the characteristics.
  • the amount of the polar solvent brought into contact with the present LMO powder is preferably adjusted so that the mass ratio of the present LMO powder to the polar solvent (also referred to as “slurry concentration”) is 10 to 70 wt%. It is even more preferable to adjust it to 60 wt% or less, of which 30 wt% or more or 50 wt% or less. If the amount of the polar solvent is 10 wt% or more, it is easy to elute impurities such as SO 4 , and conversely if it is 60 wt% or less, a cleaning effect corresponding to the amount of the polar solvent can be obtained.
  • the present LMO can be effectively used as a positive electrode active material of a lithium battery after being crushed and classified as necessary.
  • the positive electrode mixture can be manufactured by mixing the present LMO, a conductive material made of carbon black or the like, and a binder made of Teflon (registered trademark) binder or the like.
  • a positive electrode mixture is used for the positive electrode, for example, a material that can store and desorb lithium such as lithium or carbon is used for the negative electrode, and lithium such as lithium hexafluorophosphate (LiPF 6 ) is used for the non-aqueous electrolyte.
  • a lithium secondary battery can be constructed using a salt dissolved in a mixed solvent such as ethylene carbonate-dimethyl carbonate.
  • the present invention is not limited to the battery having such a configuration.
  • a lithium battery equipped with this LMO as a positive electrode active material can maintain its capacity even when stored at a high temperature. Therefore, a power supply for driving a motor especially mounted in an electric vehicle (EV) or a hybrid electric vehicle (HEV). Especially, it is excellent in the use of the positive electrode active material of a large sized lithium battery.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • lithium battery is intended to include all batteries containing lithium or lithium ions in the battery, such as lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries, and lithium polymer batteries.
  • X is preferably greater than X” or “preferably Y”, with the meaning of “X to Y” unless otherwise specified. It also includes the meaning of “smaller”.
  • X or more is an arbitrary number
  • Y or less is an arbitrary number
  • Electrolytic manganese dioxide having an Na amount of 0.2 wt% (molar ratio Na / Mn: 0.8 ⁇ 10 ⁇ 2 ) and a weight loss from 150 ° C. to 500 ° C. of 4.3% obtained by differential thermal analysis is obtained.
  • 5500 g of manganese dioxide, 1366.65 g of lithium carbonate, 9.831 g of magnesium oxide, 200.269 g of aluminum hydroxide, and 48.056 g of boric acid are weighed and mixed with a precision mixer to obtain a raw material mixture composition. It was.
  • the raw material apparent density at this time was 1.1 g / cm 3 .
  • it is baked in an electric furnace at 725 ° C. (product temperature) for 13 hours in an air atmosphere.
  • 725 ° C. (product temperature) for 13 hours in an air atmosphere.
  • Annealing was performed so as to lower the temperature (temperature-decreasing rate: 0.09 ° C./min), followed by natural cooling to room temperature in the same electric furnace.
  • the mixture was crushed with a shearing crusher and classified with a classifier to obtain a spinel type lithium metal composite oxide powder (sample) with a 325 mesh under.
  • the obtained spinel-type lithium metal composite oxide (sample) was measured for oxygen site occupancy (OCC), strain, Na content, Mn content and crystallite size, and shown in Table 1 (Examples described later) ⁇ The same applies to comparative examples).
  • OCC oxygen site occupancy
  • strain strain
  • Na content Mn content
  • crystallite size crystallite size
  • Table 1 Examples described later
  • the ratio (B / Mn) of the B-containing molar amount to the Mn-containing molar amount was 0.013.
  • Example 2-5 A spinel type lithium metal composite oxide (sample) was obtained in the same manner as in Example 1 except that the firing temperature was changed to the temperature shown in Table 1.
  • Example 6 The firing temperature was changed to the temperature shown in Table 1, 5500 g of electrolytic manganese dioxide as a raw material was changed to 4733 g of chemically synthesized trimanganese tetroxide (molar ratio Na / Mn: 2.0 ⁇ 10 ⁇ 4 ), and boric acid A spinel type lithium metal composite oxide (sample) was obtained in the same manner as in Example 1 except that the amount of was changed to 31.950 g.
  • Example 7 A spinel type lithium metal composite oxide (sample) was obtained in the same manner as in Example 1 except that the firing temperature was changed to the temperature shown in Table 1 and the annealing conditions were changed. Annealing is performed by heating to 730 ° C. (product temperature) at a heating rate of 1.3 ° C./min in an oxygen pressurizing atmosphere (oxygen partial pressure 0.19 MPa) in the same electric furnace following firing. Thereafter, the temperature was maintained for 15 hours, and then cooled to room temperature at a temperature decrease rate of 1.3 ° C./min in the same electric furnace.
  • Example 8> The spinel-type lithium metal composite oxide (all in the same manner as in Example 1 except that the firing temperature was changed to the temperature shown in Table 1 and that 9.831 g of magnesium oxide as a raw material was changed to 22.000 g of cobalt oxyhydroxide. Sample).
  • Example 9 The spinel-type lithium metal composite oxide (all in the same manner as in Example 1 except that the firing temperature was changed to the temperature shown in Table 1 and 200.269 g of aluminum hydroxide as a raw material was changed to 243.9 g of nickel hydroxide. Sample).
  • Example 10 The spinel-type lithium metal composite oxide was the same as in Example 1 except that the firing temperature was changed to the temperature shown in Table 1 and 200.269 g of aluminum hydroxide as a raw material was changed to 251.9 g of cobalt oxyhydroxide. (Sample) was obtained.
  • Example 2 A spinel type lithium metal composite oxide (sample) was obtained in the same manner as in Example 1 except that the boron raw material was changed from boric acid to lithium tetraborate and the firing temperature was changed to 850 ° C.
  • the Rietveld method using the fundamental method is a method for refining the crystal structure parameters from the diffraction intensity obtained by powder X-ray diffraction or the like. This method assumes a crystal structure model, and refines various parameters of the crystal structure so that the X-ray diffraction pattern derived from the structure and the measured X-ray diffraction pattern match as much as possible.
  • X-ray diffraction apparatus D8 ADVANCE manufactured by Bruker AXS Co., Ltd.
  • each atom is thermally oscillating isotropically spherically, and the mean square displacement result of each atom obtained from the experimental results by neutron diffraction (M.Yonemura et al., Journal of Materials Chemistry, 14 1948 (2004)), the isotropic atomic displacement parameters of each element were obtained.
  • the isotropic atomic displacement parameter B of each element is fixed at 1.0638 for Li atoms, 0.8361 for Mn atoms and 1.1122 for O atoms, and represents the degree of agreement between the observed intensity and the calculated intensity with the oxygen fraction coordinates as variables. The calculation was repeated until the index Rwp ⁇ 10.0 and GOF ⁇ 2.0 were converged.
  • the crystallite size and strain were analyzed using a Gaussian function.
  • Detector PSD Detector Type: VANTEC-1 High Voltage: 5585V Discr. Lower Level: 0.25V Discr. Window Width: 0.15V Grid Lower Level: 0.075V Grid Window Width: 0.524V Flood Field Correction: Disabled Primary radius: 250mm Secondary radius: 250mm Receiving slit width: 0.1436626mm Divergence angle: 0.3 ° Filament Length: 12mm Sample Length: 25mm Receiving Slit Length: 12mm Primary Sollers: 2.623 ° Secondary Sollers: 2.623 ° Lorentzian, 1 / Cos: 0.004933548Th
  • represents a lattice distortion (dimensionless number)
  • represents a diffraction line spread (radian) depending on the size of the crystallite
  • represents a wavelength ( ⁇ ) of the measured X-ray
  • represents a Bragg angle (radian) of the diffraction line
  • represents a constant. Note that ⁇ , which is a lattice strain, is a dimensionless number, but means a value expressed by% by multiplying by 100.
  • the lattice distortion was measured with the following method.
  • the diffraction peak of the object was measured by powder method XRD using CuK ⁇ rays as the X-ray source.
  • the lattice distortion was calculated by applying the above-mentioned Williamson-Hall method to the actual measurement value.
  • LaB 6 which is a standard sample for X-ray diffraction was used.
  • Typical diffraction peaks appearing at a diffraction angle of 90 degrees or less include (111) plane, (220) plane, (311) plane, (222) plane, (400) plane, (331) plane, (511 ) Plane, (333) plane, (440) plane, (531) plane, (533) plane, (622) plane, (444) plane, (551) plane, (711) plane and the like.
  • the battery Immediately before producing the battery, it was vacuum-dried at 120 ° C. for 120 minutes or more to remove the adhering moisture and incorporated into the battery.
  • the average value of the weight of ⁇ 16 mm aluminum foil is obtained in advance
  • the weight of the positive electrode mixture is obtained by subtracting the weight of the aluminum foil from the weight of the positive electrode
  • the mixture of the positive electrode active material, acetylene black and PVDF The content of the positive electrode active material was determined from the ratio.
  • the negative electrode was made of metallic lithium with a diameter of 20 mm and a thickness of 1.0 mm. Using these materials, the electrochemical evaluation cell TOMCEL (registered trademark) shown in FIG. 1 was produced.
  • the positive electrode 3 made of the positive electrode mixture is disposed at the inner center of the lower body 1 made of organic electrolyte-resistant stainless steel.
  • a separator 4 made of a microporous polypropylene resin impregnated with an electrolytic solution was disposed, and the separator was fixed with a Teflon (registered trademark) spacer 5.
  • a negative electrode 6 made of metallic lithium was disposed below, a spacer 7 also serving as a negative electrode terminal was disposed, and the upper body 2 was placed thereon and tightened with screws to seal the battery.
  • the electrolytic solution used was a mixture of EC and DMC in a volume of 3: 7 and a solvent in which 1 mol / L of LiPF 6 was dissolved as a solute.
  • the capacity retention rate was measured when the electrochemical cell was stored at 60 ° C. in the following state.
  • the electrochemical cell was subjected to constant current charge / discharge measurement at a current value of 0.2 C in the voltage range of 3 to 4.5 V (Li reference), and it was confirmed that the electrochemical cell had sufficient electrochemical activity.
  • SOC State Of Charge
  • the electrochemical cell after storage was discharged and the capacity remaining in the cell (remaining capacity) was measured.
  • the capacity retention rate was determined by dividing the remaining capacity by the capacity charged before storage, and is shown in Table 2. . Note that the SOC is the state of charge of the electrochemical cell, and the fully charged state is defined as SOC 100%.
  • the change in lattice constant attributed to LMO before and after high temperature storage for 28 days was 0.001% in Example 2 under the SOC 40% condition, 0.002% in Example 5, 0.016% in Comparative Example 1, and Comparative Example 2 was 0.015 mm, and the change in the lattice constant of the example was small. Moreover, when the SOC 100% condition was also carried out, it was 0.002 mm in Example 2, 0.002 mm in Example 5, 0.005 mm in Comparative Example 1, 0.006 mm in Comparative Example 2, and the lattice constant of the same example. Results with small changes were obtained. The results of the above examples are considered to be the results of relaxing the change in the lattice constant before and after high temperature storage by giving an appropriate lattice strain.
  • the oxygen site occupancy (OCC) obtained by the Rietveld method in the spinel type (Fd-3m) lithium metal composite oxide is 0.965 to Controlled to 1.000, and lattice strain determined by the Williamson-Hall method is controlled to 0.015 to 0.090, particularly 0.020 to 0.090, and the molar amount of Na relative to the molar amount of Mn
  • OCC oxygen site occupancy
  • the spinel lithium metal composite oxide is excellent when used as the positive electrode active material of a lithium battery. It was found that high temperature storage characteristics can be exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 リチウム電池の正極活物質として使用した際、優れた高温保存特性を発揮することができるスピネル型リチウム金属複合酸化物を提供する。 Rietveld法により求められる酸素席占有率(OCC)が0.965~1.000であり、且つ、Williamson-Hall法により求められる格子歪みが0.015~0.090であり、且つ、Mn含有モル量に対するNa含有モル量の比率(Na/Mn)が0.00<Na/Mn<1.00×10-2であることを特徴とする、スピネル型(Fd-3m)リチウム金属複合酸化物を提案する。

Description

スピネル型リチウム金属複合酸化物
 本発明は、リチウム電池の正極活物質として用いることができ、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)等に搭載される電池の正極活物質として好適に用いることができるスピネル構造(Fd-3m)を有するスピネル型リチウム金属複合酸化物に関する。
 リチウム電池、特にリチウム二次電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器、パワーツールなどの電動工具などの電源として広く用いられており、最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池へも応用されている。
 リチウム二次電池は、充電時には、正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には、逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極活物質の電位に起因することが知られている。
 この種のリチウム二次電池の正極活物質としては、層構造をもつLiCoO2、LiNiO2、LiMnO2などのリチウム金属複合酸化物のほか、LiMn24、LiNi0.5Mn1.54などのマンガン系のスピネル構造(Fd-3m)を有するリチウム金属複合酸化物(本発明では「LMO」とも称する)が知られている。
 中でも、マンガン系のスピネル型リチウム金属複合酸化物(LMO)は、原料価格が安く、毒性がなく安全であり、しかも過充電に強い性質を有することから、電気自動車(EV)やハイブリッド電気自動車(HEV)などの大型電池用の次世代正極活物質として着目されている。また、3次元的にLiイオンの挿入・脱離が可能なスピネル型リチウム金属複合酸化物(LMO)は、層構造をもつLiCoO2などのリチウム金属複合酸化物に比べて出力特性に優れているため、EV用電池、HEV用電池などのように優れた出力特性が要求される用途に利用が期待されている。
 スピネル型リチウム金属複合酸化物(LMO)に関しては、従来、例えば特許文献1において、非水電解液二次電池において、優れた高温サイクル特性や高温保存特性を有する正極活物質として、Li1+xMnMg1yAl2z4(x≧0、y、z>0)で表されるスピネル状結晶構造を持つリチウムマンガン酸化物である非水電解液二次電池用正極活物質が開示されている。
 特許文献2には、組成式LiMn24で表されるスピネル構造中のMnの一部を、Li,Na,K,Co,Alから選ばれる少なくとも一種以上、Mg,Ti,Cr,Fe,Cuから選ばれる一種以上、更にO(酸素)の一部をF(弗素)で置換してなることを特徴とする非水電解液二次電池正極材料であって、格子定数がa≦8.22Å、比表面積が0.8m2/g以下、Mnの平均価数が3.7以下であることを特徴とする非水電解液二次電池正極材料が開示されている。
 特許文献3には、組成式LiMn24で表されるスピネル構造中の陽イオンの一部を、Na,K,Co,Al,Mg,Ti,Cr,Fe,Cu,Niから選ばれる少なくとも一種以上で置換してなるLi-Mn系のスピネル構造の複合酸化物であって、組成,格子定数,密度から求められる単位格子中の陽イオンの席占有率(gc)、又は組成,格子定数,密度から求められる単位格子中の陰イオンの席占有率(ga)のいずれか一方又は両方が0.985以下であることを特徴とするリチウム二次電池用正極材料が開示されている。
 特許文献4には、出力特性と高温サイクル寿命特性とを両立し得るスピネル型リチウム金属複合酸化物(LMO)として、一般式Li1+x2-x4(但し、式中のMは、Mn、Al及びMgを含む遷移金属であり、xは0.01~0.08である。)で表わされるリチウム金属複合酸化物において、ファンダメンタル法を用いたリートベルト法で測定されるLi-Oの原子間距離を1.971Å~2.006Åに規定してなるスピネル型リチウム金属複合酸化物が開示されている。
 特許文献5には、充填密度を高めることができ、出力特性を高めることができ、さらには高温充電保存時の電圧低下が少ないリチウム電池用正極活物質材料として、一般式Li1+x2-x4-δ(但し、式中のMは、Mn、Al及びMgを含む遷移金属であり、xは0.01~0.08である。0≦δである。)で表わされるスピネル型(Fd-3m)リチウム金属複合酸化物と、ホウ素化合物とを含有するリチウム電池用正極活物質材料であって、スピネル型リチウム金属複合酸化物のLi-Oの原子間距離が1.971Å~2.006Åであり、リチウム電池用正極活物質材料について測定される磁着物量が600ppb以下であるリチウム電池用正極活物質材料が開示されている。
特開2000-306577号公報 特開2000-323140号公報 特開2000-331682号公報 WO2009/054436(再表2009/054436) WO2010/114015(再表2010/114015)
 電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される電池への利用を考えると、スピネル型リチウム金属複合酸化物をリチウム電池の正極活物質として使用した際、高温で保存された状態でも容量を維持することができる特性(「高温保存特性」と称する)が求められる。
 そこで本発明は、スピネル型リチウム金属複合酸化物をリチウム電池の正極活物質として使用した際、高温で保存された際にも容量を維持することができる高温保存特性に優れた新たなスピネル型リチウム金属複合酸化物を提供せんとするものである。
 本発明は、Rietveld法により求められる酸素席占有率(OCC)が0.965~1.000であり、且つ、Williamson-Hall法により求められる格子歪みが0.015~0.090、中でも0.020~0.090であり、且つ、Mn含有モル量に対するNa含有モル量の比率(Na/Mn)が0.00<Na/Mn<1.00×10-2であることを特徴とする、スピネル型(Fd-3m)リチウム金属複合酸化物を提案する。
 従来、リチウム電池の正極活物質として使用するスピネル型(Fd-3m)リチウム金属複合酸化物の製品開発においては、酸素席占有率(OCC)が高く、且つ歪みが小さいスピネル型リチウム金属複合酸化物が一般的に求められていた。
 本発明が提案するスピネル型リチウム金属複合酸化物は、酸素席占有率(OCC)が高く、Na含有量が比較的高く、且つ、該NaがFd-3m型結晶構造の16dサイトに取り込まれて格子歪みが比較的大きいという特徴を有している。そのため、本発明が提案するスピネル型リチウム金属複合酸化物は、リチウム電池の正極活物質として使用した際の高温保存特性に優れ、高温で保存された際にも容量を維持することができる。これは、Naが16dサイトに取り込まれることで、結晶構造の格子歪みが適度に大きくなる結果、充放電時のリチウムイオンの挿入脱離に起因する結晶格子の膨張収縮に伴う歪みの変化(ストレスの変化)が緩和されると共に、充放電途中で高温保存される際のように、リチウムが不足している状態での結晶構造の不安定さが緩和されるため、高温保存特性が高まるものと推察することができる。
 よって、本発明が提案するスピネル型リチウム金属複合酸化物は、リチウム電池の正極活物質、中でも電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)等に搭載される電池の正極活物質として好適に用いることができる。
実施例の電池特性評価で使用した電気化学評価用セルの構造を説明した図である。
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。
<本LMO>
 本発明の実施形態の一例に係るスピネル型(Fd-3m)リチウム金属複合酸化物(以下「本LMO」とも称する)は、Rietveld法により求められる酸素席占有率(OCC)が0.965~1.000であり、且つ、Williamson-Hall法により求められる格子歪みが0.015~0.090、中でも0.020~0.090であり、且つ、Mn含有モル量に対するNa含有モル量の比率(Na/Mn)が0.00<Na/Mn<1.00×10-2であることを特徴とする、スピネル型(Fd-3m)リチウム金属複合酸化物である。
(酸素席占有率) 
 Rietveld法により求められる本LMOの酸素席占有率(OCC)は、0.965~1.000であることが重要である。
 酸素席占有率を0.965~1.000に制御することで、電子密度に与える影響を好ましい範囲に調整することができる。これによって、結晶構造をより一層安定させることができるものと考えられる。
 かかる観点から、本LMOの酸素席占有率は0.965~1.000であることが重要であり、中でも0.965以上或いは0.995以下、その中でも0.965以上或いは0.990以下であることがさらに好ましい。
 なお、本LMOの酸素席占有率を制御するには、焼成促進剤の種類及び添加量、焼成条件(温度や雰囲気)、アニール条件(温度や雰囲気、時間、降温条件)を調整することにより、制御することができる。例えば酸素濃度の低い雰囲気下で焼成すれば、酸素雰囲気(酸素約100%)下で焼成した場合に比べて、酸素欠損が生じ易くなる。但し、これらの方法に限定されるものではない。
(格子歪み)
 本LMOは、Williamson-Hall法により求められる格子歪みが0.015~0.090であることが重要である。
 Naを16dサイトに挿入して格子歪みを比較的大きくすることにより、保存前(初期)の格子歪みを適度に高くすることで、保存後の格子歪みの変化を抑えることができる。その結果、当該スピネル型リチウム金属複合酸化物をリチウム電池の正極活物質として使用した際の高温保存特性を高めることができる。他方、格子歪みが大き過ぎると、出力特性(レート特性)や高温サイクル寿命特性などが劣るようになってしまう。
 このような観点から、本LMOは、Williamson-Hall法により求められる格子歪みが0.015~0.090であることが重要であり、中でも0.017以上或いは0.060以下、その中でも0.020以上或いは0.040以下であるのが特に好ましい。
 なお、本LMOの格子歪みを調整するには、16dサイトにNaが取り込まれ易いように、Naを含有する二酸化マンガンをマンガン原料として使用すると共に、16dサイトにNaが取り込まれ易いように、焼成促進剤の種類と量、焼成条件及びアニール条件などを調整すればよい。Naを含有する二酸化マンガンに関しては、中でも、結合水を多く含んだ、Naを含有する二酸化マンガンを使用するのが特に好ましい。但し、このような方法に限定されるものではない。
(結晶子径)
 本LMOの結晶子径、すなわちRietveld法による測定方法(詳しくは、実施例の欄に記載)により求められる結晶子径は、100nm~250nmであるのが好ましく、中でも150nm以上或いは250nm以下、その中でも160nm以上或いは220nm以下であることがさらに好ましい。
 本LMOの結晶子径を比較的小さくすることにより、出力を高めることができる傾向がある。
 本LMOの結晶子径を調整するには、組成や原料粒度や焼成条件などによって調整可能である。例えば焼成温度を低下させることにより結晶子径を小さくすることができる。但し、このような方法に限定されるものではない。
 ここで、「結晶子」とは、単結晶とみなせる最大の集まりを意味し、XRD測定を行いリートベルト解析を行うことにより求めることができる。
 複数の結晶子によって構成され、SEM(例えば3000倍)で観察した際、粒界によって囲まれた最も小さな単位の粒子を、本発明では「一次粒子」という。したがって、一次粒子には単結晶及び多結晶が含まれる。
 また、複数の一次粒子がそれぞれの外周(粒界)の一部を共有するようにして凝集し、他の粒子と孤立した粒子を、本発明では「二次粒子」又は「凝集粒子」という。
(Na/Mn)
 本LMOは、Mn含有モル量に対するNa含有モル量の比率(Na/Mn)に関して0.00<Na/Mn<1.00×10-2であることが重要である。
 本LMOのNa/Mnが、0.00<Na/Mn<1.00×10-2であれば、16dサイトにNaが取り込まれ易くすることができ、本LMOの結晶格子に歪みを所定の割合で導入することができる。
 かかる観点から、本LMOのモル比率(Na/Mn)は、0.00<Na/Mn<1.00×10-2であることが重要であり、中でも0.80×10-4以上或いは0.50×10-2以下、その中でも0.80×10-4以上或いは0.25×10-2以下であることがさらに好ましい。
 なお、16dサイトにNaが取り込まれたか否かは、XRD測定を行い、Na分を16dサイトに割り付けたリートベルト解析の結果が妥当であるか否かにより、確認することができる。
 本LMOにおいて、Na/Mnを調整するには、16dサイトにNaが取り込まれ易いように、Naを含有する二酸化マンガンをマンガン原料として使用すると共に、水洗条件などを調整すればよい。但し、このような方法に限定されるものではない。
(組成)
 本LMOは、スピネル型(Fd-3m)の結晶構造を有していれば、特に組成を限定するものではない。
 ただし、リチウム電池の正極活物質として用いた場合の総合的な特性を考慮すると、一般式(1)・・Li1+x2-x4(但し、式中のMは、Mn、Al、Mg、Ca、Ti、Ba、Cr、Fe、Co、Ni、Cu及びZnからなる群から選ばれた一種又は二種以上の元素を含有する金属元素である。)で表されるスピネル型リチウム金属複合酸化物であるのが好ましい。
 一般式(1)において、「x」は0.01~0.09であるのが好ましい。Liを多く含んでいると、洗浄してもLiが抜け難くなり、水などの溶媒に対する耐性が高まるからである。よってかかる観点から、「x」は、0.01~0.09であるのが好ましく、中でも0.02以上或いは0.08以下、中でも0.07以下、さらにその中でも0.05以下であるのが特に好ましい。
 なお、本LMOは酸素欠損を含むため、上記一般式(1)において酸素の原子比「4」は多少の不定比性(例えば4-δ(0≦δ))を含むことを許容する意であり、酸素の一部がフッ素で置換されていてもよい。
(不純物)
 また、本LMOは、上記以外の他の成分をそれぞれ0.5質量%以下程度であれば含んでいてもよい。この程度の量であれば、本LMOの性能にほとんど影響しないと考えられるからである。
<製造方法>
 次に、本LMOの製造方法の一例について説明する。
 本LMOは、所定の原料、中でもNaが16dサイトに取り込まれ易くなる所定のマンガン原料を使用し、且つ、Naが16dサイトに取り込まれ易くなるように、焼成促進剤を原料に加えると共に、所定の条件下で焼成し、アニールし、解砕し、水洗することにより、得ることができる。但し、このような製造方法に限定するものではない。
 以下、詳細に説明する。
(原料)
 出発原料としては、リチウム原料と、マンガン原料及びマグネシウム原料などの上記Li1+x2-x4におけるM元素原料と、ホウ素原料などとを適宜選択すればよい。
 リチウム原料は、特に限定するものではなく、リチウム塩、例えば水酸化リチウム(LiOH)、炭酸リチウム(LiCO)、硝酸リチウム(LiNO3)、水酸化リチウム一水和物(LiOH・H2O)、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
 マンガン原料としては、Mn含有モル量に対するNa含有モル量の比率(Na/Mn)が0.0001以上のものが好ましく、中でも0.0002以上のものが特に好ましい。その中でも0.002<Na/Mn<0.026である二酸化マンガン又は四酸化三マンガンを原料として使用するのが好ましい。
 マンガン原料としては、例えば天然二酸化マンガン、化学合成二酸化マンガン、電解二酸化マンガン、化学合成四酸化三マンガンなどを挙げることができる。中でも、電解二酸化マンガン(「EMD」と称する)又は化学合成四酸化三マンガンを使用するのが好ましく、中でもNaを含有した電解二酸化マンガンを使用するのがさらに好ましい。その中でも、結合水を多く含んだ、Naを含有する二酸化マンガンを使用することがさらに好ましい。結合水量は、例えば示差熱分析で150℃から500℃までの減量を測定することで計測することができる。
 マグネシウム原料としては、特に限定するものではなく、例えば酸化マグネシウム(MgO)、水酸化マグネシウム(Mg(OH)2)、フッ化マグネシウム(MgF2)、硝酸マグネシウム(Mg(NO32)などを用いることができ、中でも酸化マグネシウムが好ましい。
 M元素原料としては、M元素を含有する酸化物や水酸化物などを用いることができる。但し、これらに限定するものではない。例えばM元素がアルミニウムの場合、アルミニウム原料として、例えば水酸化アルミニウム(Al(OH)3)、フッ化アルミニウム(AlF3)などを用いることができ、中でも水酸化アルミニウムが好ましい。
(焼成促進剤)
 焼成促進剤としては、ホウ素或いはホウ素化合物のほか、融点が焼成温度以下の物質、例えばバナジウム化合物(V25)、アンチモン化合物(Sb23)、リン化合物(P25)などの化合物を挙げることができる。
 このような焼成促進剤を添加して焼成することで、LMOの結晶粒子が集合した微粒子の焼結を促進でき、緻密な凝集微粒子(二次粒子)を形成できるため、充填密度(タップ密度)を高めることができる。同時に、LMOの結晶の生成および成長を促進できるため、結晶子サイズを大きくすることができる。
 ホウ素或いはホウ素化合物は、ホウ素(B元素)を含有する化合物であればよい。
 焼成前に添加したホウ素或いはホウ素化合物は、焼成によって形態が変化するものと考えられるが、その形態を正確に特定することは困難である。但し、ホウ素或いはホウ素化合物中のホウ素(B元素)は、水で溶出される状態で存在していることから、当該B元素はスピネル構成元素ではなく、何らかの形態のホウ素化合物としてスピネルの外に存在していることが確認されている。よって、スピネル中にホウ素(B元素)は存在せず、結晶粒子の表面と内部においてホウ素(B元素)の明確な濃度勾配が存在することもない。
 焼成促進剤、例えばホウ素或いはホウ素化合物の添加量は、Mn含有モル量に対するB含有モル量の比率(B/Mn)が0.001<B/Mn<0.1となるように、中でも0.0025≦B/Mn≦0.04となるように調整して添加することが好ましい。
 焼成促進剤の添加量をこのような量とすることで、焼結助剤として有効な効果を得ることができ、低温環境でも焼結を促進させることができる。焼成温度が高い領域では、結晶構造中の酸素原子が失われる傾向があるため、低温で焼結を進めることができることにより、酸素欠損を少なくすることができる。
(混合方法)
 原料の混合は、均一に混合できれば、その方法を特に限定するものではない。例えばミキサー等の公知の混合機を用いて各原料を同時又は適当な順序で加えて湿式又は乾式で攪拌混合すればよい。
 乾式混合としては、例えば高速で混合粉を回転させる精密混合機を使用した混合方法を例示することができる。
 他方、湿式混合としては、水や分散剤などの液媒体を加えて湿式混合してスラリー化させ、得られたスラリーを湿式粉砕機で粉砕する混合方法を例示することができる。特にサブミクロンオーダーまで粉砕するのが好ましい。サブミクロンオーダーまで粉砕した後、造粒及び焼成することにより、焼成反応前の各粒子の均一性を高めることができ、反応性を高めることができる。
(造粒)
 上記の如く混合した原料は、必要に応じて所定の大きさに造粒した後、焼成してもよい。但し、造粒は必ずしもしなくてもよい。
 造粒方法は、前工程で粉砕された各種原料が分離せずに造粒粒子内で分散していれば湿式でも乾式でもよく、押し出し造粒法、転動造粒法、流動造粒法、混合造粒法、噴霧乾燥造粒法、加圧成型造粒法、或いはロール等を用いたフレーク造粒法でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。
 この際の乾燥方法としては、噴霧熱乾燥法、熱風乾燥法、真空乾燥法、フリーズドライ法などの公知の乾燥方法によって乾燥させればよく、中でも噴霧熱乾燥法が好ましい。噴霧熱乾燥法は、熱噴霧乾燥機(スプレードライヤー)を用いて行うのが好ましい。熱噴霧乾燥機(スプレードライヤー)を用いて造粒することにより、粒度分布をよりシャープにすることができるばかりか、丸く凝集してなる凝集粒子(二次粒子)を含むように二次粒子の形態を調製することができる。
(焼成工程)
 焼成は、Naが16dサイトに取り込まれ易い条件で行うのが好ましい。
 例えば大気雰囲気下で、500℃以上、特に700~1050℃、中でも710℃以上或いは920℃以下、その中でも720℃以上或いは950℃以下、その中でも特に750℃以上或いは940℃以下の焼成温度を保持するように加熱するのが好ましい。
 なお、この焼成温度とは、焼成炉内の焼成物に熱電対を接触させて測定される焼成物の品温を意味する。
 上記焼成温度を保持する時間は、焼成温度にもよるが、0.5時間~90時間、中でも1時間以上或いは80時間以下、その中でも5時間以上或いは30時間以下とするのが好ましい。
 焼成炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
(アニール)
 必要に応じて、上記焼成に引き続いて、焼成と同一焼成炉内で、500℃まで降温することによりアニール(熱処理)を行うようにしてもよい。
 この際、500℃までの降温速度は、焼成温度にもよるが、10℃/min以下、中でも5℃/min以下、その中でも3℃/min以下、その中でも2℃/min以下とするのが好ましい。
 なお、この際の温度とは、焼成炉内の焼成物に熱電対を接触させて測定される焼成物の品温を意味する。
 このような条件でアニールすることにより、焼成段階で放出された酸素をLMO構造中に効果的に取り込むことができる。また、上記降温速度の範囲で温度の停滞なく降温することにより、各温度で平衡的に戻り得る酸素原子を十分に構造内に取り込むことができる。
 また、酸素加圧雰囲気下でアニールを行ってもよい。酸素加圧雰囲気とは、大気圧よりも酸素分圧が高い雰囲気を意味する。酸素加圧雰囲気下でアニールを行うことで、焼成段階で放出した酸素原子を結晶構造内にさらに効果的に取り込むことができる。
(解砕若しくは粉砕)
 焼成後は、必要に応じて、得られた本LMOを解砕若しくは粉砕するのが好ましい。
 この際、解砕若しくは粉砕の程度は一次粒子を崩壊させないようにするのが好ましい。
(水洗工程)
 上記のようにして得られた本LMO粉末は、水と接触させて、濾過することにより、当該粉末に含まれる不純物、例えばリチウム金属複合酸化物の表面に生成されたNa化合物などを除去することが好ましい。
 洗浄方法としては、例えば本LMO粉末と水とを混合し攪拌してスラリーとし、得られたスラリーを濾過することによって固液分離して不純物を除去するようにすればよい。この際、固液分離は後工程で行ってもよい。
 なお、スラリーとは、極性溶媒中に本LMOが分散した状態を意味する。
 洗浄に用いる極性溶媒としては、水を用いるのが好ましい。
 水としては、市水でもよいが、フィルターまたは湿式磁選機を通過させた市水やイオン交換水や純水を用いるのが好ましい。
 水のpHは5~9であるのが好ましい。
 洗浄時の液温に関しては、液温が低ければ電池特性がより良好になることが確認されているため、かかる観点から、5~70℃であるのが好ましく、中でも60℃以下であるのがより一層好ましく、その中でも特に45℃以下であるのがより一層好ましい。さらには特に30℃以下であるのがより一層好ましい。
 洗浄時の液温が低ければ、電池特性がより良好になる理由は、液温が高過ぎると、本LMO中のリチウムの一部がイオン交換水のプロトンとイオン交換してリチウムが抜けて高温特性に影響するためであると考えられる。
 本LMO粉末と接触させる極性溶媒の量については、極性溶媒に対する本LMO粉末の質量比(「スラリー濃度」とも称する)が10~70wt%となるように調整するのが好ましく、中でも20wt%以上或いは60wt%以下、その中でも30wt%以上或いは50wt%以下となるように調整するのがより一層好ましい。極性溶媒の量が10wt%以上であれば、SO4などの不純物を溶出させることが容易であり、逆に60wt%以下であれば、極性溶媒の量に見合った洗浄効果を得ることができる。
<特性・用途>
 本LMOは、必要に応じて解砕・分級した後、リチウム電池の正極活物質として有効に利用することができる。
 例えば、本LMOと、カーボンブラック等からなる導電材と、テフロン(登録商標)バインダー等からなる結着剤とを混合して正極合剤を製造することができる。そしてそのような正極合剤を正極に用い、例えば負極にはリチウムまたはカーボン等のリチウムを吸蔵・脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF)等のリチウム塩をエチレンカーボネート-ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム二次電池を構成することができる。但し、このような構成の電池に限定する意味ではない。
 本LMOを正極活物質として備えたリチウム電池は、高温で保存された際にも容量を維持することができるから、特に電気自動車(EV)やハイブリッド電気自動車(HEV)に搭載するモータ駆動用電源として用いる大型のリチウム電池の正極活物質の用途に特に優れている。
<語句の説明>
 「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウム又はリチウムイオンを含有する電池を全て包含する意である。
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 次に、実施例及び比較例に基づいて、本発明について更に説明する。但し、本発明が以下に示す実施例に限定されるものではない。
<実施例1>
 Na量0.2wt%(モル比率Na/Mn:0.8×10-2)で、示差熱分析で150℃から500℃までの減量が4.3%の電解二酸化マンガンを入手し、その電解二酸化マンガン5500gと、炭酸リチウム1366.75gと、酸化マグネシウム9.831gと、水酸化アルミニウム200.269gと、ホウ酸48.056gとを秤量し、精密混合機で混合して原料混合組成物を得た。
 得られた原料混合組成物を、焼成容器(アルミナ製のルツボ大きさ=たて*よこ*たかさ=10*10*5(cm))内に、開放面積と充填高さの比(開放面積cm2/充填高さcm)が100となるように充填した。この際の原料見掛密度は1.1g/cm3であった。そして、電気炉内にて、大気雰囲気下、725℃(品温)で13時間焼成し、続いて同じ電気炉内にて、大気雰囲気下、700℃(品温)まで4.5時間かけて降温するようにしてアニール(降温速度0.09℃/min)し、続いて同じ電気炉内にて常温まで自然冷却させた。
 その後、せん断式破砕機で解砕して分級機によって分級を行い、325メッシュアンダーのスピネル型リチウム金属複合酸化物粉末(サンプル)を得た。
 得られたスピネル型リチウム金属複合酸化物(粉末)7000gとイオン交換水(pH5.8、温度20℃)13.5Lとを混合し、10分間攪拌して水洗を行い、スピネル型リチウム金属複合酸化物のスラリーを得た(スラリー濃度34wt%)。この時の液温は25℃であった。そして、このスラリーを濾別して、得られたスピネル型リチウム金属複合酸化物(粉末)を、大気中で350℃(品温)を5時間維持するように加熱して乾燥させ、次いで、分級機によって分級を行い、325メッシュアンダーの粉末状のスピネル型リチウム金属複合酸化物(サンプル)を得た。
 得られたスピネル型リチウム金属複合酸化物(サンプル)の酸素席占有率(OCC)、歪み、Na含有量、Mn含有量及び結晶子サイズを測定して、表1に示した(後述する実施例・比較例も同様)。この際、Mn含有モル量に対するB含有モル量の比率(B/Mn)は0.013であった。
 また、サンプルが、スピネル型(Fd-3m)リチウム金属複合酸化物であることは、ファンダメンタル法を用いたリートベルト法による測定によって確認した(後述する実施例・比較例も同様)。
<実施例2-5>
 焼成温度を表1に示した温度に変更した以外は、全て実施例1と同様にスピネル型リチウム金属複合酸化物(サンプル)を得た。
<実施例6>
 焼成温度を表1に示した温度に変更し、原料としての電解二酸化マンガン5500gを化学合成四酸化三マンガン(モル比率Na/Mn:2.0×10-4)4733gに変更すると共に、ホウ酸の量を31.950gに変更した以外は、全て実施例1と同様にスピネル型リチウム金属複合酸化物(サンプル)を得た。
<実施例7>
 焼成温度を表1に示した温度に変更し、アニールの条件を変更した以外は全て実施例1と同様にスピネル型リチウム金属複合酸化物(サンプル)を得た。アニールは、焼成に続いて同じ電気炉にて、酸素加圧雰囲気下(酸素分圧0.19MPa)において、1.3℃/minの昇温速度で730℃(品温)まで加熱し、到達後その温度を15時間保持した後、同じ電気炉内にて1.3℃/minの降温速度で室温まで冷却した。
<実施例8>
 焼成温度を表1に示した温度に変更し、原料としての酸化マグネシウム9.831gをオキシ水酸化コバルト22.000gに変更した以外は、全て実施例1と同様にスピネル型リチウム金属複合酸化物(サンプル)を得た。
<実施例9>
 焼成温度を表1に示した温度に変更し、原料としての水酸化アルミニウム200.269gを水酸化ニッケル243.9gに変更した以外は、全て実施例1と同様にスピネル型リチウム金属複合酸化物(サンプル)を得た。
<実施例10>
 焼成温度を表1に示した温度に変更し、原料としての水酸化アルミニウム200.269gをオキシ水酸化コバルト251.9gに変更した以外は、全て実施例1と同様にスピネル型リチウム金属複合酸化物(サンプル)を得た。
<比較例1-2>
 ホウ素原料をホウ酸から四ホウ酸リチウムに変更したことと、焼成温度を850℃に変更した以外は、全て実施例1と同様にスピネル型リチウム金属複合酸化物(サンプル)を得た。
[評価]
 実施例および比較例で得られたスピネル型リチウム金属複合酸化物(粉末)に関して、以下に示す方法で諸特性を評価した。
<化学分析測定>
 実施例・比較例で得たスピネル型リチウム金属複合酸化物(粉末)のNa量(ppm)、Mn量(質量%)を、誘導結合プラズマ(ICP)発光分光分析により測定し、表1に示した。
 また、実施例・比較例で得たスピネル型リチウム金属複合酸化物(粉末、サンプル)の各元素量についても、誘導結合プラズマ(ICP)発光分光分析により測定し、分析値に基づいた組成式を表1に示した。但し、組成式の記載数字は丸めによる誤差が含まれている。
<Rietveld法による結晶子サイズ・酸素席占有率の測定>
 実施例及び比較例で得られたサンプル(粉体)について、結晶子サイズ及び酸素席占有率を、次に説明するファンダメンタル法を用いたリートベルト法により測定した。
 ファンダメンタル法を用いたリートベルト法は、粉末X線回折等により得られた回折強度から、結晶の構造パラメータを精密化する方法である。結晶構造モデルを仮定し、その構造から計算により導かれるX線回折パターンと、実測されたX線回折パターンとができるだけ一致するように、その結晶構造の各種パラメータを精密化する手法である。
 X線回折パターンの測定には、Cu‐Kα線を用いたX線回折装置(ブルカー・エイエックスエス株式会社製D8 ADVANCE)を使用した。回折角2θ=10~120°の範囲より得られたX線回折パターンのピークについて解析用ソフトウエア(製品名「Topas Version3」)を用いて解析することにより結晶子サイズ及び酸素席占有率を求めた。
 なお、結晶構造は、空間群Fd-3m(Origin Choice2)の立方晶に帰属され、その8aサイトにLiが存在すると仮定し、16dサイトにはMnと、Mnの置換元素、すなわち実施例に応じてMg、Al、Co及びNiのうちの適宜元素と、さらには過剰なLi分と、Naとが存在すると仮定し、32eサイトをOが占有していると仮定した。
 また、LMO構造については、先述した原子変位の特異性を考慮すると、各原子の熱振動を考慮する必要がある。各原子が等方的に球対称に熱振動しているものと定義し、中性子回折による実験結果で求められた各原子の平均二乗変位結果(M.Yonemura et al.,Journal of Materials Chemistry,14,1948(2004))を参照し、各元素の等方性原子変位パラメータを求めた。各元素の等方性原子変位パラメータBは、Li原子が1.0638、Mn原子が0.8361、O原子が1.1122と固定し、酸素の分率座標を変数として、観測強度と計算強度の一致の程度を表す指標Rwp<10.0、GOF<2.0を目安に収束するまで繰り返し計算を行った。なお、結晶子サイズ及び歪みはガウス関数を用い、解析を行った。
 その他測定・リートベルト法解析に使用した機器仕様・条件等は以下の通りである。
 Detector:PSD
 Detector Type:VANTEC-1
 High Voltage:5585V
 Discr. Lower Level:0.25V
 Discr. Window Width:0.15V
 Grid Lower Level:0.075V
 Grid Window Width:0.524V
 Flood Field Correction:Disabled
 Primary radius:250mm
 Secondary radius:250mm
 Receiving slit width:0.1436626mm
 Divergence angle:0.3°
 Filament Length:12mm
 Sample Length:25mm
 Receiving Slit Length:12mm
 Primary Sollers:2.623°
 Secondary Sollers:2.623°
 Lorentzian,1/Cos:0.004933548Th
<格子歪みの測定> 
 上述したリートベルト法解析にて得られた歪みとは別に、結晶格子の歪みを求めるために以下の方法で解析を行った。
 スピネル型リチウム金属複合酸化物に対する格子歪みについては、定性的にはXRDの回折ピークの幅で判断できる。定量的に格子歪みを評価するには、X線結晶学分野で知られている以下の式(1)で表されるWilliamson-Hall法を用いることが有利である(Hall,W.II.,J.Inst.Met.,75,1127(1950);idem,Proc.Phys.Soc.,A62,741(1949))。
 βcosθ/λ=2η(sinθ/λ)+(1/ε)・・・・・(1)
 式(1)中、ηは格子歪み(無次元数)を表し、βは結晶子の大きさによる回折線の拡がり(ラジアン)を表し、λは測定X線の波長(Å)を示し、θは回折線のブラッグ角(ラジアン)を表し、εは定数を表す。なお、格子歪みであるηは無次元数であるが、100を乗じて%表示した値を意味する。
 実施例及び比較例で得られたサンプル(粉体)については、格子歪みを以下の方法で測定した。
 X線源として、CuKα線を用いて、粉末法XRDにより、対象物の回折ピークを測定した。そして、回折角2θ=90度以下に現れるすべての回折ピークの積分幅を実測した。この実測値に、上述したWilliamson-Hall法を適用して格子歪みを算出した。積分幅を算出する時の装置関数を見積もるためには、X線回折用標準試料であるLaB6を用いた。
 なお、90度以下の回折角に現れる代表的な回折ピークとしては、(111)面、(220)面、(311)面、(222)面、(400)面、(331)面、(511)面、(333)面、(440)面、(531)面、(533)面、(622)面、(444)面、(551)面、(711)面などが挙げられる。
<電池評価>
(電池の作製)
 スピネル型リチウム金属複合酸化物(粉末)8.80gと、アセチレンブラック(電気化学工業製)0.60g及びNMP(N-メチルピロリドン)中にPVDF(キシダ化学製)12wt%溶解した液5.0gとを正確に計り取り、そこにNMPを5ml加え十分に混合し、ペーストを作製した。このペーストを集電体であるアルミ箔上にのせ、250μmのギャップに調整したアプリケーターで塗膜化し、120℃一昼夜真空乾燥した後、φ16mmで打ち抜き、4t/cm2でプレス厚密し、正極とした。電池作製直前に120℃で120min以上真空乾燥し、付着水分を除去し電池に組み込んだ。また、予めφ16mmのアルミ箔の重さの平均値を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求め、また正極活物質とアセチレンブラック、PVDFの混合割合から正極活物質の含有量を求めた。
 負極はφ20mm×厚み1.0mmの金属リチウムとし、これらの材料を使用して図1に示す電気化学評価用セルTOMCEL(登録商標)を作製した。
 図1の電気化学用セルは、耐有機電解液性のステンレス鋼製の下ボディ1の内側中央に、前記正極合材からなる正極3を配置した。この正極3の上面には、電解液を含浸した微孔性のポリプロピレン樹脂製のセパレータ4を配置し、テフロン(登録商標)スペーサー5によりセパレータを固定した。更に、セパレータ上面には、下方に金属リチウムからなる負極6を配置し、負極端子を兼ねたスペーサー7を配置し、その上に上ボディ2を被せて螺子で締め付け、電池を密封した。
 電解液は、ECとDMCを3:7体積混合したものを溶媒とし、これに溶質としてLiPF6を1mol/L溶解させたものを用いた。
(高温保存特性の評価)
 電気化学用セルを、下記の状態で、60℃で保存した時の容量維持率を測定した。
 電気化学用セルを、3~4.5V(Li基準)の電圧範囲で0.2Cの電流値で定電流充放電測定を行い、十分に電気化学活性があることを確認した。その後、SOC(State Of Charge)40%まで充電し、60℃の恒温槽で5日保存した。
 保存後の電気化学用セルを、放電してセルに残っている容量(残存容量)を測定し、残存容量を保存前に充電した容量で割ることによって容量維持率を求め、表2に示した。
 なお、SOCとは、電気化学セルの充電状態のことであり、満充電状態をSOC100%と規定する。
 また、実施例2及び5、並びに比較例1及び2については、上記高温保存の期間を28日間まで延長し、電池を3Vまで放電させた状態の電池を、アルゴン雰囲気のグローブボックス内で解体して正極を取り出した。得られた正極は、透明ラミネートで密閉したうえで、XRD測定を実施した。そして、導電助剤等に起因する回折ピークを除外しLMO構造に由来する格子定数の変化を確認した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 28日間の高温保存前後でのLMOに帰属される格子定数の変化は、SOC40%条件の実施例2で0.001Å、実施例5で0.002Åとなり、比較例1で0.016Å、比較例2で0.015Åとなり、実施例の格子定数変化が小さい結果となった。
 また、SOC100%条件も実施したところ、実施例2で0.002Å、実施例5で0.002Åとなり、比較例1で0.005Å、比較例2で0.006Åとなり、同じく実施例の格子定数変化が小さい結果が得られた。
 以上のような実施例の結果は、適度な格子歪みを与えることにより、高温保存前後での格子定数の変化を緩和した結果であると考えられる。
 上記実施例の結果と、発明者が行ったこれまでの試験結果から、スピネル型(Fd-3m)リチウム金属複合酸化物において、Rietveld法により求められる酸素席占有率(OCC)を0.965~1.000に制御し、且つ、Williamson-Hall法により求められる格子歪みを0.015~0.090、中でも0.020~0.090に制御し、且つ、Mn含有モル量に対するNa含有モル量の比率(Na/Mn)を0.00<Na/Mn<1.00×10-2に制御することにより、当該スピネル型リチウム金属複合酸化物をリチウム電池の正極活物質として使用した際、優れた高温保存特性を発揮することができることが分かった。
 これは、スピネル型(Fd-3m)結晶構造の16dサイトにNaが取り込まれた結果、歪みが大きくなったことにより、結晶格子の膨張収縮に伴う歪みの変化(ストレスの変化)が緩和されるため、高温保存特性が高まったものと推察することができる。

Claims (5)

  1.  Rietveld法により求められる酸素席占有率(OCC)が0.965~1.000であり、且つ、Williamson-Hall法により求められる格子歪みが0.015~0.090であり、且つ、Mn含有モル量に対するNa含有モル量の比率(Na/Mn)が0.00<Na/Mn<1.00×10-2であることを特徴とする、スピネル型(Fd-3m)リチウム金属複合酸化物。
  2.  Rietveld法により求められる酸素席占有率(OCC)が0.965~1.000であり、且つ、Williamson-Hall法により求められる格子歪みが0.020~0.090であり、且つ、Mn含有モル量に対するNa含有モル量の比率(Na/Mn)が0.00<Na/Mn<1.00×10-2であることを特徴とする、スピネル型(Fd-3m)リチウム金属複合酸化物。
  3.  結晶子サイズが100nm~250nmであることを特徴とする請求項1又は2記載のスピネル型リチウム金属複合酸化物。
  4.  一般式:Li1+x2-x4(但し、式中のMは、Mn、Al、Mg、Ca、Ti、Ba、Cr、Fe、Co、Ni、Cu及びZnからなる群から選ばれた一種又は二種以上の元素を含有する金属元素であり、xは0.01~0.09)で表される請求項1~3の何れかに記載のスピネル型リチウム金属複合酸化物。
  5.  請求項1~4の何れかに記載されたスピネル型リチウム金属複合酸化物を正極活物質として備えたリチウム二次電池。
     
PCT/JP2014/080927 2013-11-22 2014-11-21 スピネル型リチウム金属複合酸化物 WO2015076376A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167008661A KR102256317B1 (ko) 2013-11-22 2014-11-21 스피넬형 리튬 금속 복합 산화물
US15/037,850 US9960423B2 (en) 2013-11-22 2014-11-21 Spinel-type lithium metal composite oxide
CN201480063528.1A CN105745174B (zh) 2013-11-22 2014-11-21 尖晶石型锂金属复合氧化物
JP2015527386A JP6174145B2 (ja) 2013-11-22 2014-11-21 スピネル型リチウム金属複合酸化物
GB1610262.6A GB2553263B (en) 2013-11-22 2014-11-21 Spinel-type lithium metal composite oxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-241586 2013-11-22
JP2013241586 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015076376A1 true WO2015076376A1 (ja) 2015-05-28

Family

ID=53179635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080927 WO2015076376A1 (ja) 2013-11-22 2014-11-21 スピネル型リチウム金属複合酸化物

Country Status (6)

Country Link
US (1) US9960423B2 (ja)
JP (2) JP6174145B2 (ja)
KR (1) KR102256317B1 (ja)
CN (1) CN105745174B (ja)
GB (1) GB2553263B (ja)
WO (1) WO2015076376A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107545A1 (ja) * 2017-11-30 2019-06-06 住友化学株式会社 リチウム含有遷移金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム含有遷移金属複合酸化物の製造方法
US11621415B2 (en) 2019-07-11 2023-04-04 Nichia Corporation Positive electrode active material and method of producing positive electrode active material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR102133916B1 (ko) * 2016-12-28 2020-07-15 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
EP3633773A4 (en) * 2017-05-29 2020-05-27 Panasonic Intellectual Property Management Co., Ltd. ACTIVE POSITIVE ELECTRODE SUBSTANCE AND BATTERY
WO2020195790A1 (ja) * 2019-03-25 2020-10-01 日立金属株式会社 リチウムイオン二次電池用正極活物質、及びその製造方法、並びにリチウムイオン二次電池
JP6999598B2 (ja) * 2019-03-28 2022-01-18 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池
KR102293046B1 (ko) * 2020-08-13 2021-08-24 에스케이이노베이션 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN116093271A (zh) * 2022-11-01 2023-05-09 珠海冠宇电池股份有限公司 一种正极材料及包括该正极材料的正极片和电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228195A (ja) * 1999-02-05 2000-08-15 Ngk Insulators Ltd リチウム二次電池
JP2002308627A (ja) * 2001-04-10 2002-10-23 Mitsui Mining & Smelting Co Ltd スピネル型マンガン酸リチウムの製造方法
JP2002308628A (ja) * 2001-04-10 2002-10-23 Mitsui Mining & Smelting Co Ltd スピネル型マンガン酸リチウム
JP2003217589A (ja) * 2001-11-15 2003-07-31 Ngk Insulators Ltd リチウム二次電池
JP2004087278A (ja) * 2002-08-27 2004-03-18 Ngk Insulators Ltd リチウム二次電池及びそれに用いる正極活物質の製造方法
JP2012188341A (ja) * 2010-10-06 2012-10-04 Tosoh Corp マンガン酸化物及びその製造方法、並びにそれを用いたリチウムマンガン系複合酸化物の製造方法
WO2013161949A1 (ja) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 マンガン系スピネル型リチウム遷移金属酸化物

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4214564B2 (ja) * 1997-06-19 2009-01-28 東ソー株式会社 他種元素を含有するスピネル構造リチウムマンガン系酸化物およびその製造方法並びにその用途
US6190800B1 (en) * 1998-05-11 2001-02-20 The Gillette Company Lithiated manganese dioxide
CA2298095C (en) 1999-02-05 2005-03-01 Ngk Insulators, Ltd. Lithium secondary battery
JP3595734B2 (ja) 1999-02-15 2004-12-02 株式会社デンソー 非水電解液二次電池用正極活物質、その正極活物質の製法、及びその正極活物質を用いた二次電池
JP4536843B2 (ja) 1999-04-13 2010-09-01 レノボ シンガポール プライヴェート リミテッド ポータブルpcと拡張装置とをホット・ドック/アンドックする方法
JP4270645B2 (ja) 1999-05-17 2009-06-03 三井金属鉱業株式会社 非水電解液二次電池正極材料及びそれを用いた非水電解液二次電池
JP2000331682A (ja) 1999-05-21 2000-11-30 Mitsui Mining & Smelting Co Ltd リチウム二次電池用正極材料及びこれを用いた電池
CN1826291A (zh) * 2003-07-18 2006-08-30 东曹株式会社 锂-镍-锰复合氧化物、其制造方法及用途
JP3992007B2 (ja) * 2004-03-29 2007-10-17 株式会社日立製作所 リチウム2次電池
EP2442388B1 (en) 2007-10-23 2013-07-10 Mitsui Mining & Smelting Co., Ltd Spinel type lithium-transition metal oxide
US20090297937A1 (en) * 2008-04-24 2009-12-03 Lampe-Onnerud Christina M Lithium-ion secondary battery
DE102008029804A1 (de) * 2008-06-24 2010-07-08 Süd-Chemie AG Mischoxid enthaltend einen Lithium-Mangan-Spinell und Verfahren zu dessen Herstellung
CN101780983A (zh) * 2009-01-16 2010-07-21 比亚迪股份有限公司 一种尖晶石Li1+xMyMn2-x-yO4及其制备方法和锂离子二次电池
WO2010114015A1 (ja) 2009-03-31 2010-10-07 三井金属鉱業株式会社 リチウム電池用正極活物質材料
CN102054985A (zh) * 2009-10-27 2011-05-11 北京当升材料科技股份有限公司 一种锰酸锂材料及其制备方法
US8557438B2 (en) * 2010-08-25 2013-10-15 Uchicago Argonne, Llc Electrode materials for rechargeable battery
EP2641289B1 (en) * 2010-11-17 2020-03-18 Uchicago Argonne, LLC, Operator Of Argonne National Laboratory Electrode structures and surfaces for li batteries
CN102916175B (zh) * 2012-10-25 2015-04-15 湖南长远锂科有限公司 锂离子电池正极材料尖晶石锰酸锂及其制备方法
CN103456945A (zh) * 2013-09-11 2013-12-18 山东齐星新材料科技有限公司 一种低成本锂离子电池正极材料的制备方法
US9786914B2 (en) * 2013-12-04 2017-10-10 Mitsui Mining & Smelting Co., Ltd. Spinel-type lithium cobalt manganese-containing complex oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228195A (ja) * 1999-02-05 2000-08-15 Ngk Insulators Ltd リチウム二次電池
JP2002308627A (ja) * 2001-04-10 2002-10-23 Mitsui Mining & Smelting Co Ltd スピネル型マンガン酸リチウムの製造方法
JP2002308628A (ja) * 2001-04-10 2002-10-23 Mitsui Mining & Smelting Co Ltd スピネル型マンガン酸リチウム
JP2003217589A (ja) * 2001-11-15 2003-07-31 Ngk Insulators Ltd リチウム二次電池
JP2004087278A (ja) * 2002-08-27 2004-03-18 Ngk Insulators Ltd リチウム二次電池及びそれに用いる正極活物質の製造方法
JP2012188341A (ja) * 2010-10-06 2012-10-04 Tosoh Corp マンガン酸化物及びその製造方法、並びにそれを用いたリチウムマンガン系複合酸化物の製造方法
WO2013161949A1 (ja) * 2012-04-27 2013-10-31 三井金属鉱業株式会社 マンガン系スピネル型リチウム遷移金属酸化物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107545A1 (ja) * 2017-11-30 2019-06-06 住友化学株式会社 リチウム含有遷移金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びリチウム含有遷移金属複合酸化物の製造方法
US11855247B2 (en) 2017-11-30 2023-12-26 Sumitomo Chemical Company, Limited Lithium-containing transition metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, lithium secondary battery, and method for manufacturing lithium-containing transition metal composite oxide
US11621415B2 (en) 2019-07-11 2023-04-04 Nichia Corporation Positive electrode active material and method of producing positive electrode active material
US11942631B2 (en) 2019-07-11 2024-03-26 Nichia Corporation Positive electrode active material and method of producing positive electrode active material

Also Published As

Publication number Publication date
US20160276665A1 (en) 2016-09-22
KR20160088857A (ko) 2016-07-26
KR102256317B1 (ko) 2021-05-27
GB201610262D0 (en) 2016-07-27
JPWO2015076376A1 (ja) 2017-03-16
GB2553263B (en) 2021-06-09
GB2553263A (en) 2018-03-07
CN105745174A (zh) 2016-07-06
CN105745174B (zh) 2018-04-10
JP6174145B2 (ja) 2017-08-02
US9960423B2 (en) 2018-05-01
JP2016188168A (ja) 2016-11-04

Similar Documents

Publication Publication Date Title
JP6174145B2 (ja) スピネル型リチウム金属複合酸化物
JP6391857B2 (ja) スピネル型リチウムマンガン含有複合酸化物
JP4987063B2 (ja) スピネル型リチウム遷移金属酸化物
JP6091461B2 (ja) スピネル型リチウムマンガン遷移金属酸化物
JP5756625B2 (ja) リチウム電池用正極活物質材料の製造方法
JP5308581B2 (ja) スピネル型リチウムマンガン系複合酸化物
KR101487468B1 (ko) 스피넬형 리튬 망간 니켈 함유 복합 산화물
CN111033828A (zh) 全固态型锂二次电池用正极活性物质
JP4939670B2 (ja) スピネル型リチウム遷移金属酸化物及びリチウム電池用正極活物質材料
JP6178037B1 (ja) スピネル型リチウムニッケルマンガン含有複合酸化物
JP6630725B2 (ja) 5v級スピネル型リチウムマンガン含有複合酸化物
JP6516919B2 (ja) リチウム二次電池用正極活物質
JP4673451B2 (ja) リチウム遷移金属酸化物の製造方法
JP6649369B2 (ja) 5v級スピネル型リチウムマンガン含有複合酸化物の製造方法
JP5798702B2 (ja) リチウムマンガン含有複合酸化物の製造方法
JP6546582B2 (ja) 層状結晶構造を有するリチウム金属複合酸化物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015527386

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167008661

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037850

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201610262

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141121

122 Ep: pct application non-entry in european phase

Ref document number: 14864712

Country of ref document: EP

Kind code of ref document: A1