JP5951518B2 - 層構造を有するリチウム金属複合酸化物の製造方法 - Google Patents

層構造を有するリチウム金属複合酸化物の製造方法 Download PDF

Info

Publication number
JP5951518B2
JP5951518B2 JP2013026267A JP2013026267A JP5951518B2 JP 5951518 B2 JP5951518 B2 JP 5951518B2 JP 2013026267 A JP2013026267 A JP 2013026267A JP 2013026267 A JP2013026267 A JP 2013026267A JP 5951518 B2 JP5951518 B2 JP 5951518B2
Authority
JP
Japan
Prior art keywords
metal composite
lithium
composite oxide
area
lithium metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013026267A
Other languages
English (en)
Other versions
JP2013232400A (ja
Inventor
徹也 光本
徹也 光本
仁彦 井手
仁彦 井手
蔭井 慎也
慎也 蔭井
祥巳 畑
祥巳 畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2013026267A priority Critical patent/JP5951518B2/ja
Publication of JP2013232400A publication Critical patent/JP2013232400A/ja
Application granted granted Critical
Publication of JP5951518B2 publication Critical patent/JP5951518B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウム電池の正極活物質として用いることができ、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載する電池の正極活物質として優れた性能を発揮し得る、層構造を有するリチウム金属複合酸化物の製造方法に関する。
リチウム電池、中でもリチウム二次電池は、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器などの電源として用いられている。最近では、該リチウム二次電池は、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池にも応用されている。
リチウム二次電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、その高いエネルギー密度は正極材料の電位に起因することが知られている。
リチウム二次電池の正極活物質としては、スピネル構造をもつリチウムマンガン酸化物(LiMn24)のほか、層構造をもつLiCoO2、LiNiO2、LiMnO2などのリチウム金属複合酸化物が知られている。例えばLiCoO2は、リチウム原子層とコバルト原子層が酸素原子層を介して交互に積み重なった層構造を有しており、充放電容量が大きく、リチウムイオン吸蔵脱蔵の拡散性に優れているため、現在、市販されているリチウム二次電池の多くがLiCoO2などの層構造を有するリチウム金属複合酸化物である。
LiCoO2やLiNiO2など、層構造を有するリチウム金属複合酸化物は、一般式LiMeO2(Me:遷移金属)で示される。これら層構造を有するリチウム金属複合酸化物の結晶構造は、空間群R−3m(「−」は通常「3」の上部に付され、回反を示す。以下、同様。)に帰属し、そのLiイオン、Meイオン及び酸化物イオンは、それぞれ3aサイト、3bサイト及び6cサイトを占有する。そして、Liイオンからなる層(Li層)とMeイオンからなる層(Me層)とが、酸化物イオンからなるO層を介して交互に積み重なった層構造を呈することが知られている。
従来、層構造を有するリチウム金属複合酸化物(LiMx2)に関しては、例えば特許文献1において、マンガンとニッケルの混合水溶液中にアルカリ溶液を加えてマンガンとニッケルを共沈させ、水酸化リチウムを加え、ついで焼成することによって得られる、式:LiNixMn1-x2(式中、0.7≦x≦0.95)で示される活物質が開示されている。
特許文献2には、3種の遷移金属を含む酸化物の結晶粒子からなり、前記結晶粒子の結晶構造が層構造であり、前記酸化物を構成する酸素原子の配列が立方最密充填である、Li[Lix(APQR1-x]O2(式中、A、BおよびCはそれぞれ異なる3種の遷移金属元素、−0.1≦x≦0.3、0.2≦P≦0.4、0.2≦Q≦0.4、0.2≦R≦0.4)で表される正極活物質が開示されている。
特許文献3には、高嵩密度を有する層状リチウムニッケルマンガン複合酸化物粉体を提供するべく、粉砕及び混合された少なくともリチウム源化合物とニッケル源化合物とマンガン源化合物とを、ニッケル原子〔Ni〕とマンガン原子〔Mn〕とのモル比〔Ni/Mn〕として0.7〜9.0の範囲で含有するスラリーを、噴霧乾燥により乾燥させ、焼成することにより層状リチウムニッケルマンガン複合酸化物粉体となした後、該複合酸化物粉体を粉砕する層状リチウムニッケルマンガン複合酸化物粉体の製造方法が開示されている。
特許文献4には、バナジウム(V)及び/又はボロン(B)を混合することにより、結晶子径を大きくしてなるリチウム遷移金属複合酸化物、すなわち、一般式LiZ−δ(式中、Mは遷移金属元素であるCo又はNiを示し、(X/Y)=0.98〜1.02、(δ/Z)≦0.03の関係を満たす)で表されるリチウム遷移金属複合酸化物を含むとともに、リチウム遷移金属複合酸化物を構成する遷移金属元素(M)に対して、((V+B)/M)=0.001〜0.05(モル比)のバナジウム(V)及び/又はボロン(B)を含有し、その一次粒子径が1μm以上、結晶子径が450Å以上、かつ格子歪が0.05%以下である物質が開示されている。
特許文献5においては、高い嵩密度や電池特性を維持し、割れが起きる心配のない一次粒子からなる非水系二次電池用正極活物質を提供することを目的として、Co、Ni、Mnの群から選ばれる1種の元素とリチウムとを主成分とする単分散の一次粒子の粉体状のリチウム複合酸化物であって、D50:が3〜12μm、比表面積が0.2〜1.0m/g、嵩密度が2.1g/cm以上であり、かつ、クーパープロット法による体積減少率の変曲点が3ton/cmまで現れないことを特徴とする非水系二次電池用正極活物質が提案されている。
特許文献6は、LizNi1-ww2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素であり、0<w≦0.25、1.0≦z≦1.1を満たす。)で表されるリチウム金属複合酸化物の粉末に関し、該リチウム金属複合酸化物の粉末の一次粒子と該一次粒子が複数集合して形成された二次粒子とから構成され、該二次粒子の形状が球状または楕円球状であり、該二次粒子の95%以上が20μm以下の粒子径を有し、該二次粒子の平均粒子径が7〜13μmであり、該粉末のタップ密度が2.2g/cm3以上であり、窒素吸着法による細孔分布測定において平均40nm以下の径を持つ細孔の平均容積が0.001〜0.008cm3/gであり、該二次粒子の平均圧壊強度が15〜100MPaであることを特徴とする非水系電解質二次電池用正極活物質を提案している。
特許文献7においては、例えば湿式粉砕機等でD50:が2μm以下となるまで粉砕した後、熱噴霧乾燥機等を用いて造粒乾燥させ、焼成するようにして、レーザー回折散乱式粒度分布測定法で求められる平均粉体粒子径(D50)に対する結晶子径の比率が0.05〜0.20であることを特徴とする層構造を有するリチウム金属複合酸化物が提案されている。
特開平8−171910号公報 特開2003−17052号公報 特開2003−34536号公報 特開2004−253169号公報 特開2004−355824号公報 特開2007−257985号公報 特許第4213768号公報(WO2008/091028)
層構造を有するリチウム金属複合酸化物の製法として、前述の特許文献1や特許文献6のように、原料を混合して水に溶解した混合水溶液中にアルカリ溶液を加えて共沈させた後、水酸化リチウムなどを加えて焼成する製法(「共沈法」と称する)と、前述の特許文献3や特許文献7のように、原料を混合して水を加えてスラリーとし、熱噴霧乾燥機等を用いて造粒乾燥させた後、焼成する製法(「スプレードライ法」と称する)とが、主な製法として知られている。
共沈法で作製したリチウム金属複合酸化物粉末をリチウム二次電池の正極活物質として使用すると、寿命特性には優れた特性を発揮するものの、初回充放電効率に劣る傾向があることが分かってきた。他方、スプレードライ法で作製したリチウム金属複合酸化物粉末をリチウム二次電池の正極活物質として使用すると、初回充放電効率の点では優れた特性を発揮するものの、寿命特性が劣る傾向があることが分かってきた。このように、寿命特性と初回充放電効率のいずれも優れた特性を発揮するリチウム金属複合酸化物粉末を開発することは困難であった。
本発明は、層構造を有するリチウム金属複合酸化物を電池の正極に用いた場合に、寿命特性、初回充放電効率のいずれの点でも優れた特性を発揮する新たなリチウム金属複合酸化物粉末を製造することができる製造方法を提案せんとするものである。
本発明は、リチウム塩化合物、マンガン塩化合物、ニッケル塩化合物及びコバルト塩化合物を含む原料を混合し、粉砕した後、焼成して解砕することによって、層構造を有するリチウム金属複合酸化物を製造する方法において、上記焼成後に、回転数4000rpm以上の高速回転粉砕機で解砕することを特徴とする、層構造を有するリチウム金属複合酸化物の製造方法を提案する。
本発明が提案する製造方法によれば、例えば、一般式Li1+x1-x2(M:Mn、Co、Ni、及び、周期律表の第3族元素から第11族元素の間に存在する遷移元素および周期律表の第3周期までの典型元素のうちの何れか1種以上)で表わされる、層構造を有するリチウム金属複合酸化物において、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50(「D50」と称する)が4μmより大きくて20μmより小さく、且つ、前記D50に相当する大きさの二次粒子から下記測定方法によって求められる二次粒子面積に対する、下記測定方法によって求められる一次粒子面積の比率(「一次粒子面積/二次粒子面積」と称する)が0.004〜0.035であり、且つ、微小圧縮試験機を用いて粉体を圧壊することで求められる粉体圧壊強度の最小値が70MPaより大きいことを特徴とする、層構造を有するリチウム金属複合酸化物を製造することができる。
(二次粒子面積の測定方法)
リチウム金属複合酸化物(粉体)を電子顕微鏡で観察し、D50に相当する大きさの二次粒子をランダムに5個選択し、該二次粒子が球状の場合はその粒子の長さを直径(μm)として面積を計算し、該二次粒子が不定形の場合には球形に近似をして面積を計算し、該5個の面積の平均値を二次粒子面積(μm)として求める。
(一次粒子面積の測定方法)
リチウム金属複合酸化物(粉体)を電子顕微鏡で観察し、1視野あたり5個の二次粒子をランダムに選択し、選ばれた二次粒子5個から一次粒子をそれぞれ10個ランダムに選択し、該一次粒子が棒状の場合はその粒界間隔の最も長い部分を長径(μm)、粒界間隔の短径(μm)として面積を計算し、該一次粒子が球状の場合はその粒界間隔の長さを直径(μm)として面積を計算し、該50個の面積の平均値を一次粒子面積(μm)として求める。
本発明が提案する製造方法により得られるリチウム金属複合酸化物を、リチウム二次電池の正極材料として用いれば、寿命特性、初回充放電効率、さらにはスラリー特性の3つの特性のいずれの点でも優れた特性を発揮することができる。よって、本発明が提案する製造方法によれば、特に車載用の電池、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載する電池の正極活物質として特に優れているリチウム金属複合酸化物を提供することができる。
実施例の電池特性評価で作製した電気化学評価用セルの構成を説明するための図である。 実施例及び比較例の結果として、最小粉体強度(MPa)と容量維持率(%)との関係を示したグラフである。 実施例及び比較例の結果として、D50(μm)とスラリー粘度(相対指数)との関係を示したグラフである。
以下、本発明の実施形態について説明するが、本発明が下記実施形態に限定されるものではない。
<本リチウム金属複合酸化物>
本実施形態のリチウム金属複合酸化物(以下「本リチウム金属複合酸化物」という)は、一般式(1):Li1+x1-x2で表わされる層構造を有するリチウム金属複合酸化物粒子を、主成分とする粉体である。すなわち、リチウム原子層と遷移金属原子層とが酸素原子層を介して交互に積み重なった層構造を有するリチウム金属複合酸化物粒子を、主成分とする粉体である。
なお、「主成分とする」とは、特に記載しない限り、当該主成分の機能を妨げない限りにおいて他の成分を含有することを許容する意を包含するものである。当該主成分の含有割合は、本リチウム金属複合酸化物の少なくとも50質量%以上、特に70質量%以上、中でも90質量%以上、中でも95質量%以上(100%含む)を占める場合を包含する。
本リチウム金属複合酸化物は、不純物としてSOを1.0重量%以下、その他の元素をそれぞれ0.5重量%以下であれば含んでいてもよい。この程度の量であれば、本リチウム金属複合酸化物の特性にほとんど影響しないと考えられるからである。
上記式(1)中の「1+x」は、1.00〜1.07、中でも1.01以上或いは1.07以下、その中でも1.02以上1.06以下であるのがさらに好ましい。
上記式(1)中の「M」は、Mn、Co、Ni、及び、周期律表の第3族元素から第11族元素の間に存在する遷移元素および周期律表の第3周期までの典型元素の何れか1種以上であればよい。
ここで、周期律表の第3族元素から第11族元素の間に存在する遷移元素および周期律表の第3周期までの典型元素としては、例えばAl、V、Fe、Ti、Mg,Cr、Ga、In、Cu、Zn、Nb、Zr、Mo、W、Ta、Reなどを挙げることができる。
「M」は、例えばMn、Co、Ni、Al、V、Fe、Ti、Mg,Cr、Ga、In、Cu、Zn、Nb、Zr、Mo、W、Ta及びReのうちの何れか1種以上であればよく、Mn、Co及びNiの3元素のみから構成されていてもよいし、当該3元素に前記その他の元素の一種以上を含んでいてもよいし、その他の構成でもよい。
上記式(1)中の「M」が、Mn、Co及びNiの3元素を含有する場合、Mn、Co及びNiの含有モル比率は、Mn:Co:Ni=0.10〜0.45:0.05〜0.40:0.30〜0.75であるのが好ましく、中でもMn:Co:Ni=0.10〜0.40:0.05〜0.40:0.30〜0.75であるのがさらに好ましい。
例えば一般式(2):Li1+x(MnαCoβNiγ1-xで表される場合、次の比率であるのが好ましい。
式(2)において、αの値は0.10〜0.45、中でも0.15以上或いは0.40以下、その中でも0.20以上或いは0.35以下であるのが好ましい。
βの値は0.05〜0.40、中でも0.05以上或いは0.30以下、その中でも0.05以上或いは0.25以下であるのがさらに好ましい。
γの値は0.30〜0.75、中でも0.40以上或いは0.65以下、その中でも0.45以上或いは0.55であるのが好ましい。
なお、上記一般式(1)(2)において、酸素量の原子比は、便宜上「2」と記載しているが、多少の不定比性を有してもよい。
(D50)
本リチウム金属複合酸化物においては、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50が4μmより大きくて20μmより小さいことが好ましい。
本リチウム金属複合酸化物のD50が4μmより大きければ、粒子が凝集してスラリー粘度が上昇するのを防ぐことができ、20μmより小さければ、スラリー保存時に粒子が沈降して不均一になることを防ぐことができる。よって、本リチウム金属複合酸化物のD50が4μmより大きく且つ20μmより小さければ、スラリーの塗工性を高めることができる。
かかる観点から、本リチウム金属複合酸化物のD50は、中でも6μm以上或いは16μm以下、その中でも13μm以下、その中でもさらに10μm以下であるのがより一層好ましい。
本リチウム金属複合酸化物のD50を上記範囲に調整するには、出発原料のD50の調整、焼成温度或いは焼成時間の調整、或いは、焼成後の解砕によるD50調整をするのが好ましい。但し、これらの調整方法に限定されるものではない。
(一次粒子面積/二次粒子面積)
本リチウム金属複合酸化物においては、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50に相当する大きさの二次粒子から下記測定方法によって求められる二次粒子面積に対する、下記測定方法によって求められる一次粒子面積の比率(「一次粒子面積/二次粒子面積」と称する)が0.004〜0.035であるのが好ましい。
一次粒子面積/二次粒子面積が0.035以下であれば、電解液と接触する二次粒子表面の面積が大きく、リチウムイオンの出し入れを円滑に行うことができ、1サイクル目の充放電効率を高くすることができる。その一方、一次粒子面積/二次粒子面積が0.004以上であれば、二次粒子内の一次粒子同士の界面を少なくすることができ、その結果、二次粒子内部の抵抗を低くすることができ、1サイクル目の充放電効率を高くすることができる。よって、かかる範囲であれば、初期充放電効率を向上させることができる。但し、D50が4μm以下の場合には、このような傾向が異なることが確認されている。
このような観点から、一次粒子面積/二次粒子面積は、前記範囲の中でも0.004以上或いは0.026以下、その中でも0.006以上或いは0.017以下であるのがより一層好ましい。
本リチウム金属複合酸化物の一次粒子面積/二次粒子面積を上記範囲に調整するには、例えば後述するスプレードライ法による製法では、従来技術に比べて、焼成或いは熱処理後の解砕における粉砕強度を高くすることにより、D50を小さくして「一次粒子面積/二次粒子面積」を大きくすることで、調整することができる。
他方、後述する共沈法による製法では、従来技術に比べて、例えば焼成温度を下げたり、共沈粉の一次粒子サイズを小さくしたり、或いは、二酸化炭素雰囲気で焼成するなど、一次粒子の平均粒径を小さくして「一次粒子面積/二次粒子面積」を小さくすることで、調整することができる。
但し、これらの調整方法に限定されるものではない。
なお、本発明において「一次粒子」とは、複数の結晶子によって構成され、SEM(走査電子顕微鏡、例えば1000〜5000倍)で観察した際、粒界によって囲まれた最も小さな単位の粒子を意味する。よって、一次粒子には単結晶及び多結晶が含まれる。その際、「結晶子」とは、単結晶とみなせる最大の集まりを意味し、XRD測定を行い、リートベルト解析により求めることができる。
「一次粒子面積」とは、電子顕微鏡写真上での一次粒子の表面の面積を意味するものである。リチウム金属複合酸化物粉体を、電子顕微鏡を用いて観察し(例えば1000倍)、1視野あたり5個のD50に相当する大きさの二次粒子をランダムに選択し、必要に応じて倍率を5000倍に変更し、選ばれた二次粒子5個から一次粒子をそれぞれ10個ランダムに選択し、該一次粒子が棒状の場合はその粒界間隔の最も長い部分を長径(μm)、粒界間隔の短径(μm)として面積を計算し、該一次粒子が球状の場合はその粒界間隔の長さを直径(μm)として面積を計算し、該50個の面積の平均値を一次粒子面積(μm)として求めることができる。
この際、電子顕微鏡写真の一次粒子像を画像解析ソフトを用いて一次粒子の面積を算出することもできる。
他方、本発明において「二次粒子」又は「凝集粒子」とは、数の一次粒子がそれぞれの外周(粒界)の一部を共有するようにして凝集し、他の粒子と孤立した粒子を意味するものである。
「二次粒子面積」とは、電子顕微鏡写真上での平面上の二次粒子の面積の意味する。例えばリチウム金属複合酸化物粉体を、電子顕微鏡を用いて観察し(例えば1000倍)、D50に相当する大きさの二次粒子をランダムに5個選択し、該二次粒子が球状の場合はその粒界間隔の長さを直径(μm)として面積を計算し、該二次粒子が不定形の場合には球形に近似をして面積を計算し、該5個の面積の平均値を二次粒子面積(μm)として求めることができる。
なお、レーザー回折散乱式粒度分布測定法は、凝集した粉粒を一個の粒子(凝集粒子)として捉えて粒径を算出する測定方法である。その測定方法により測定して得られる体積基準粒度分布によるD50とは、50%体積累積粒径、すなわち体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の細かい方から累積50%の径を意味する。
(一次粒子面積)
本リチウム金属複合酸化物粉体の一次粒子面積は、一次粒子面積/二次粒子面積が上記範囲であれば特に限定するものではない。本リチウム金属複合酸化物粉体の一次粒子面積の目安としては、0.002μm〜13.0μmであるのが好ましく、中でも0.007μm以上或いは13.0μm以下、その中でも特に0.2μm〜4.0μmであるのがより一層好ましい。
本リチウム金属複合酸化物粉体の一次粒子面積は、原料結晶状態からの選択、焼成条件などによって調整可能である。但し、このような調整方法に限定されるものではない。
(粉体圧壊強度)
本リチウム金属複合酸化物粉体は、微小圧縮試験機を用いて粉体を圧壊することで求められる粉体圧壊強度の最小値が70MPaより大きいことが好ましい。
本リチウム金属複合酸化物粉体の粉体圧壊強度の最小値が70MPaより大きければ、リチウム二次電池の正極材料として使用した際、リチウム二次電池を充放電させた時に正極活物質の膨張・収縮が起こっても、粒子の崩壊を抑えることができる。この結果、特に高温サイクル時の容量維持率を高めることができる。
かかる観点から、本リチウム金属複合酸化物粉体の粉体圧壊強度の最小値は70MPaより大きいことが好ましく、中でも75MPa以上であることがより一層好ましい。
本リチウム金属複合酸化物粉体の粉体圧壊強度の最小値を上記範囲に調整するには、例えば後述するスプレードライ法による製法では、従来技術に比べて、焼成或いは熱処理後の解砕を強化して、D50を小さくすることにより「一次粒子面積/二次粒子面積」を大きくすることで、粉体圧壊強度の最小値を70MPaより大きくすることができる。
他方、後述する共沈法による製法では、従来技術に比べて、例えば焼成温度を下げたり、共沈粉の一次粒子の平均粒径を小さくしたり、二酸化炭素雰囲気で焼成するなど、一次粒子の平均粒径を小さくすることにより「一次粒子面積/二次粒子面積」を小さくすることで、粉体圧壊強度の最小値を70MPaより大きくすることができる。
但し、これらの調整方法に限定されるものではない。
(製造方法)
次に、本リチウム金属複合酸化物粉体の製造方法について説明する。
本リチウム金属複合酸化物粉体は、例えばリチウム塩化合物、マンガン塩化合物、ニッケル塩化合物及びコバルト塩化合物などの原料を秤量して混合し、湿式粉砕機等で粉砕した後、造粒し、焼成し、必要に応じて熱処理し、好ましい条件で解砕し、さらに必要に応じて分級して得ることができる。
原料であるリチウム塩化合物としては、例えば水酸化リチウム(LiOH)、炭酸リチウム(LiCO)、硝酸リチウム(LiNO3)、LiOH・H2O、酸化リチウム(Li2O)、その他脂肪酸リチウムやリチウムハロゲン化物等が挙げられる。中でもリチウムの水酸化物塩、炭酸塩、硝酸塩が好ましい。
マンガン塩化合物の種類は、特に限定するものではない。例えば炭酸マンガン、硝酸マンガン、塩化マンガン、二酸化マンガンなどを用いることができ、中でも炭酸マンガン、二酸化マンガンが好ましい。その中でも、電解法によって得られる電解二酸化マンガンが特に好ましい。
ニッケル塩化合物の種類も特に制限はなく、例えば炭酸ニッケル、硝酸ニッケル、塩化ニッケル、オキシ水酸化ニッケル、水酸化ニッケル、酸化ニッケルなどを用いることができ、中でも炭酸ニッケル、水酸化ニッケル、酸化ニッケルが好ましい。
コバルト塩化合物の種類も特に制限はなく、例えば塩基性炭酸コバルト、硝酸コバルト、塩化コバルト、オキシ水酸化コバルト、水酸化コバルト、酸化コバルトなどを用いることができ、中でも、塩基性炭酸コバルト、水酸化コバルト、酸化コバルト、オキシ水酸化コバルトが好ましい。
原料の混合は、水や分散剤などの液媒体を加えて湿式混合してスラリー化させるのが好ましい。そして、後述するスプレードライ法を採用する場合には、得られたスラリーを湿式粉砕機で粉砕するのが好ましい。但し、乾式粉砕してもよい。
造粒方法は、前工程で粉砕された各種原料が分離せずに造粒粒子内で分散していれば湿式でも乾式でもよく、押し出し造粒法、転動造粒法、流動造粒法、混合造粒法、噴霧乾燥造粒法、加圧成型造粒法、或いはロール等を用いたフレーク造粒法でもよい。但し、湿式造粒した場合には、焼成前に充分に乾燥させることが必要である。乾燥方法としては、噴霧熱乾燥法、熱風乾燥法、真空乾燥法、フリーズドライ法などの公知の乾燥方法によって乾燥させればよく、中でも噴霧熱乾燥法が好ましい。噴霧熱乾燥法は、熱噴霧乾燥機(スプレードライヤー)を用いて行なうのが好ましい(本明細書では「スプレードライ法」と称する)。
ただし、例えば所謂共沈法によって焼成に供する共沈粉を作製することも可能である(本明細書では「共沈法」と称する)。共沈法では、原料を溶液に溶解した後、pHなどの条件を調整して沈殿させることにより、共沈粉を得ることができる。
なお、スプレードライ法では、粉体強度が相対的に低く、粒子間に空隙(ボイド)が生じる傾向がある。そこで、スプレードライ法を採用する場合には、従来の粉砕方法、例えば回転数1000rpm程度の粗粉砕機による解砕方法に比べて解砕強度を高める。例えば高速回転粉砕機などによる解砕によって解砕強度を高めることにより、従来の一般的なスプレードライ法により得られるリチウム金属複合酸化物粉体に比べて、本リチウム金属複合酸化物粉体の一次粒子面積/二次粒子面積を高めて、本発明が規定する範囲に調整するのが好ましい。
他方、共沈法においては、一次粒子が大きくなって、一次粒子面積/二次粒子面積が高くなる傾向がある。そこで、共沈法を採用する場合には、従来の一般的な共沈法の場合に比べて、焼成温度を下げたり、焼成時間を短くしたり、共沈粉の一次粒子サイズを小さくしたり、或いは、二酸化炭素雰囲気で焼成したりして、一次粒子の平均粒径を小さくして一次粒子面積/二次粒子面積を低下させて、本発明が規定する範囲に調整するのが好ましい。
焼成は、焼成炉にて、大気雰囲気下、酸素ガス雰囲気下、酸素分圧を調整した雰囲気下、或いは二酸化炭素ガス雰囲気下、或いはその他の雰囲気下において、800℃より高く、1000℃未満の温度(:焼成炉内の焼成物に熱電対を接触させた場合の温度を意味する。)、好ましくは810〜1000℃、より好ましくは810〜950℃で0.5時間〜30時間保持するように焼成するのが好ましい。この際、遷移金属が原子レベルで固溶し単一相を示す焼成条件を選択するのが好ましい。
焼成炉の種類は特に限定するものではない。例えばロータリーキルン、静置炉、その他の焼成炉を用いて焼成することができる。
焼成後の熱処理は、結晶構造の調整が必要な場合に行うのが好ましく、大気雰囲気下、酸素ガス雰囲気下、酸素分圧を調整して雰囲気下などの酸化雰囲気の条件で熱処理を行ってもよい。
焼成後若しくは熱処理後の解砕は、上述のように高速回転粉砕機などを用いて解砕するのが好ましい。高速回転粉砕機によって解砕すれば、粒子どうしが凝集していたり、焼結が弱かったりする部分を解砕することができ、しかも粒子に歪みが入るのを抑えることができる。但し、高速回転粉砕機に限定する訳ではない。
高速回転粉砕機の一例としてピンミルを挙げることができる。ピンミルは、円盤回転型粉砕機として知られており、ピンの付いた回転盤が回転することで、内部を負圧にして原料供給口より粉を吸い込む方式の解砕機である。そのため、微細粒子は、重量が軽いため気流に乗りやすく、ピンミル内のクリアランスを通過する一方、粗大粒子は確実に解砕される。そのため、ピンミルによれば、粒子間の凝集や、弱い焼結部分を確実に解すことができると共に、粒子内に歪みが入るのを防止することができる。
高速回転粉砕機の回転数は4000rpm以上、特に5000〜12000rpm、さらに好ましくは7000〜10000rpmにするのが好ましい。
焼成後の分級は、凝集粉の粒度分布調整とともに異物除去という技術的意義があるため、好ましい大きさの目開きの篩を選択して分級するのが好ましい。
(特性・用途)
本リチウム金属複合酸化物粉体は、必要に応じて解砕・分級した後、リチウム電池の正極活物質として有効に利用することができる。
例えば、本リチウム金属複合酸化物粉体と、カーボンブラック等からなる導電材と、テフロン(テフロンは、米国DUPONT社の登録商標です。)バインダー等からなる結着剤と、を混合して正極合剤を製造することができる。そしてそのような正極合剤を正極に用い、例えば負極にはリチウムまたはカーボン等のリチウムを吸蔵・脱蔵できる材料を用い、非水系電解質には六フッ化リン酸リチウム(LiPF)等のリチウム塩をエチレンカーボネート−ジメチルカーボネート等の混合溶媒に溶解したものを用いてリチウム2次電池を構成することができる。但し、このような構成の電池に限定する意味ではない。
本リチウム金属複合酸化物粉体を正極活物質として備えたリチウム電池は、充放電を繰り返して使用した場合に優れた寿命特性(サイクル特性)を発揮することから、特に電気自動車(EV:Electric Vehicle)やハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)に搭載するモータ駆動用電源として用いるリチウム電池の正極活物質の用途に特に優れている。
なお、「ハイブリッド自動車」とは、電気モータと内燃エンジンという2つの動力源を併用した自動車である。
また、「リチウム電池」とは、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、リチウムポリマー電池など、電池内にリチウム又はリチウムイオンを含有する電池を全て包含する意である。
<語句の説明>
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
次に、実施例及び比較例に基づいて、本発明について更に説明するが、本発明が以下に示す実施例に限定されるものではない。
<実施例1>
先ず、硫酸ニッケルと硫酸コバルトと硫酸マンガンを溶解した水溶液に、水酸化ナトリウムとアンモニアを供給し、共沈法により、ニッケルとコバルトとマンガンのモル比が0.54:0.19:0.27である金属複合水酸化物を作製した。
このようにして作製した金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子からなり、得られた金属複合水酸化物のD50は15μm、タップ密度は2.2g/cm3であった。
次に、炭酸リチウムと金属複合水酸化物を、Liのモル数とLi以外の金属(Ni、Co、Mn)の合計モル数の比が1.04:0.96となるように秤量した後、ボールミルを用いて十分混合し、得られた混合粉を、静置式電気炉を用いて910℃で20時間焼成した。
焼成して得られた焼成塊を乳鉢に入れて乳棒で解砕し、篩目開き5mmで篩分けした篩下品を高速回転粉砕機(ピンミル、槙野産業(株)製)で解砕(解砕条件:回転数10000rpm)した後、目開き53μmの篩で分級し、篩下のリチウム遷移金属酸化物粉体(サンプル)を回収した。
回収したリチウム遷移金属酸化物粉体(サンプル)の化学分析を行った結果、Li1.04Ni0.52Co0.19Mn0.25であった。
<実施例2>
イオン交換水へ分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製SNディスパーサント5468)をスラリー中固形分の6wt%となるように添加し、イオン交換水中へ十分に溶解混合させた。
D50:7μmの炭酸リチウムと、D50:23μmで比表面積が40m2/gの電解二酸化マンガンと、D50:14μmのオキシ水酸化コバルトと、D50:22μmの水酸化ニッケルとを、モル比でLi:Mn:Ni:Co=1.04:0.26:0.51:0.19となるように秤量し、予め分散剤を溶解させた前述のイオン交換水中へ、上記順番通りに混合攪拌して固形分濃度50wt%のスラリーを調製した。湿式粉砕機で1300rpm、40分間粉砕してD50:を0.5μmとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製i-8)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数24000rpm、スラリー供給量3kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行なった。
得られた造粒粉を、静置式電気炉を用いて、大気中450℃で仮焼を行った。続いて、仮焼粉を、静置式電気炉を用いて、910℃で20時間焼成した。
焼成して得られた焼成塊を乳鉢に入れて乳棒で解砕し、篩目開き5mmで篩分けした篩下品を高速回転粉砕機(ピンミル、槙野産業(株)製)で解砕した後(解砕条件:回転数10000rpm)、目開き53μmの篩で分級し、篩下のリチウム遷移金属酸化物粉体(サンプル)を回収した。
回収したリチウム遷移金属酸化物粉体(サンプル)の化学分析を行った結果、Li1.04Ni0.52Co0.19Mn0.25であった。
<比較例1>
イオン交換水へ分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製SNディスパーサント5468)をスラリー中固形分の6wt%となるように添加し、イオン交換水中へ十分に溶解混合させた。
D50:7μmの炭酸リチウムと、D50:23μmで比表面積が40m2/gの電解二酸化マンガンと、D50:14μmのオキシ水酸化コバルトと、D50:22μmの水酸化ニッケルとを、モル比でLi:Mn:Ni:Co=1.04:0.26:0.51:0.19となるように秤量し、あらかじめ分散剤を溶解させたイオン交換水中へ上記順番通りに混合攪拌して固形分濃度50wt%のスラリーを調製した。湿式粉砕機で1300rpm、40分間粉砕してD50:を0.5μmとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製i-8)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数24000rpm、スラリー供給量3kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行なった。
得られた造粒粉を、静置式電気炉を用いて、大気中450℃で仮焼を行った。続いて、仮焼粉を、静置式電気炉を用いて、910℃で20時間焼成した。
焼成して得られた焼成塊を乳鉢に入れて乳棒で解砕し、目開き53μmの篩で分級し、篩下の複合酸化物粉末(サンプル)を回収した。
回収したサンプルを、分級機構付衝突式粉砕機(ホソカワミクロン製カウンタージェットミル「100AFG/50ATP」)を用いて、分級ローター回転数:14900rpm、粉砕空気圧力:0.6MPa、粉砕ノズルφ:2.5×3本使用、粉体供給量:4.5kg/hの条件で粉砕を行い、リチウム遷移金属酸化物粉体(サンプル)を得た。
得られたリチウム遷移金属酸化物粉体(サンプル)の化学分析を行った結果、Li1.04Ni0.52Co0.19Mn0.25であった。
<比較例2>
イオン交換水へ分散剤としてポリカルボン酸アンモニウム塩(サンノプコ(株)製SNディスパーサント5468)をスラリー中固形分の6wt%となるように添加し、イオン交換水中へ十分に溶解混合させた。
D50:8μmの炭酸リチウムと、D50:23μmで比表面積が40m2/gの電解二酸化マンガンと、D50:14μmのオキシ水酸化コバルトと、D50:22μmの水酸化ニッケルとを、モル比でLi:Mn:Ni:Co=1.04:0.26:0.51:0.19となるように秤量し、あらかじめ分散剤を溶解させたイオン交換水中へ上記順番通りに混合攪拌して固形分濃度50wt%のスラリーを調製した。湿式粉砕機で1300rpm、40分間粉砕してD50:を0.5μmとした。
得られた粉砕スラリーを熱噴霧乾燥機(スプレードライヤー、大川原化工機(株)製i-8)を用いて造粒乾燥させた。この際、噴霧には回転ディスクを用い、回転数24000rpm、スラリー供給量3kg/hr、乾燥塔の出口温度100℃となるように温度を調節して造粒乾燥を行なった。
得られた造粒粉を、静置式電気炉を用いて、大気中450℃で仮焼を行った。続いて、仮焼粉を、静置式電気炉を用いて、910℃で20時間焼成した。
焼成して得られた焼成塊を乳鉢に入れて乳棒で解砕し、目開き53μmの篩で分級し、篩下のリチウム遷移金属酸化物粉体(サンプル)を回収した。
回収したリチウム遷移金属酸化物粉体(サンプル)の化学分析を行った結果、Li1.04Ni0.52Co0.19Mn0.25であった。
<比較例3>
先ず硫酸ニッケルと硫酸コバルトと硫酸マンガンを溶解した水溶液に水酸化ナトリウムとアンモニアを供給し、共沈法により、ニッケルとコバルトとマンガンのモル比が0.54:0.19:0.27で固溶してなる金属複合水酸化物を作製した。該金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子からなり、得られた金属複合水酸化物のD50は15μm、タップ密度は、2.2g/cm3であった。
Liのモル数とLi以外の金属(Ni、Co、Mn)の合計モル数との比が1.07:0.93となるように、炭酸リチウムと金属複合水酸化物を秤量した後、これらをボールミルを用いて十分混合し、得られた混合粉を、静置式電気炉を用いて、エアーを流しながら960℃で20時間焼成した。
焼成して得られた焼成粉は、乳鉢に入れた焼成塊を乳棒で解砕し、目開き53μmの篩で分級し、篩下のリチウム遷移金属酸化物粉体(サンプル)を回収した。
回収したリチウム遷移金属酸化物粉体(サンプル)の化学分析を行った結果、Li1.07Ni0.51Co0.18Mn0.24であった。
<一次粒子面積の測定>
実施例及び比較例で得られたリチウム遷移金属酸化物粉体(サンプル)の一次粒子面積を次のようにして測定した。SEM(走査電子顕微鏡)を用いて、サンプル(粉体)を1000倍で観察し、1視野あたり5個のD50に相当する大きさの二次粒子をランダムに選択し、倍率を5000倍に変更し、選ばれた二次粒子5個から一次粒子をそれぞれ10個ランダムに選択し、該一次粒子が棒状の場合はその粒界間隔の最も長い部分を長径(μm)、粒界間隔の短径(μm)として面積を計算し、該一次粒子が球状の場合はその粒界間隔の長さを直径(μm)として面積を計算し、該50個の面積の平均値を一次粒子面積(μm)として求めた。
なお、このようして求めた一次粒子面積を、表及びグラフでは「一次粒子面積」と示した。
<D50の測定>
実施例及び比較例で得られたリチウム遷移金属酸化物粉体(サンプル)について、レーザー回折粒子径分布測定装置用自動試料供給機(日機装株式会社製「Microtorac SDC」)を用い、サンプル(粉体)を水溶性溶媒に投入し、40%の流速中、40Wの超音波を360秒間照射した後、日機装株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD50を求めた。
なお、測定の際の水溶性溶媒は60μmのフィルターを通し、溶媒屈折率を1.33、粒子透過性条件を透過、粒子屈折率2.46、形状を非球形とし、測定レンジを0.133〜704.0μm、測定時間を30秒とし、2回測定した平均値をD50とした。
<二次粒子面積の測定>
SEM(走査電子顕微鏡)を用いて、サンプル(粉体)を1000倍で観察し、上記の如く測定して得られたD50に相当する大きさの二次粒子をランダムに5個選択し、該二次粒子が球状の場合はその粒界間隔の長さを直径(μm)として面積を計算し、該二次粒子が不定形の場合には球形に近似をして面積を計算し、該5個の面積の平均値を二次粒子面積(μm)として求めた。
<粉体圧壊強度の測定>
実施例及び比較例で得られたリチウム遷移金属酸化物粉体(サンプル)を、微小圧縮試験機(島津製作所製)を用いて、体積基準粒度分布によるD50±2μmの二次粒子1つ1つの圧壊強度(MPa)を10個測定し、測定値10個中の最小値を粒子圧壊強度の最小値(MPa)とした。
<シェアストレス及びスラリー粘度の評価方法>
実施例及び比較例で得たリチウム遷移金属酸化物粉体(サンプル)8.0gと、アセチレンブラック(電気化学工業製)0.6gと、NMP (N-メチルピロリドン)中にPVDF(キシダ化学製)12wt%溶解した液5gとを正確に計り取り、そこにNMPを6ml加え十分に混合し、スラリーを作製した。
上記のようにして作製したスラリーを、スラリー評価装置RheoStress600(Thermo HAAKE社製)を用いて評価した。すなわち、上下2枚のプレート間にスラリーを挟み、上部を回転させ、回転数を連続的に上げていき、せん断速度が1000[1/s]になったときのシェアストレス[Pa]とスラリー粘度[Pas]を各サンプル毎測定した。
そして、表1には、各実施例及び比較例のシェアストレス及びスラリー粘度を、それぞれ比較例2の数値を100とした場合の相対値として示した。
<電池特性評価>
実施例及び比較例で得たリチウム遷移金属酸化物粉体(サンプル)8.0gと、アセチレンブラック(電気化学工業製)1.0gと、NMP(N-メチルピロリドン)中にPVDF(キシダ化学製)12wt%溶解した液8.3gとを正確に計り取り、そこにNMPを5ml加え十分に混合し、ペーストを作製した。このペーストを集電体であるアルミ箔上にのせ、100μm〜280μmのギャップに調整したアプリケーターで塗膜化し、140℃一昼夜真空乾燥した後、φ16mmで打ち抜き、4t/cmでプレス厚密し、正極とした。
電池作製直前に120℃で120min以上真空乾燥し、付着水分を除去し電池に組み込んだ。また、予めφ16mmのアルミ箔の重さの平均値を求めておき、正極の重さからアルミ箔の重さを差し引き正極合材の重さを求めた。また、リチウム遷移金属酸化物粉体(正極活物質)とアセチレンブラック、PVDFの混合割合から正極活物質の含有量を求めた。
負極はφ19mm×厚み0.5mmの金属Liとし、電解液は、ECとDMCを3:7体積混合したものを溶媒とし、これに溶質としてLiPF6を1mol/L溶解させたものを用い、図1に示す電気化学評価用セルTOMCEL(登録商標)を作製した。
(1サイクルの充放電効率)
上記のようにして準備した電気化学用セルを用いて次に記述する方法で1サイクルの充放電効率を求めた。すなわち、正極中の正極活物質の含有量から、25℃にて0.1Cで15時間、4.3Vまで定電流定電位充電したときの容量を充電容量(mAh/g)とし、0.1Cで3.0Vまで定電流放電した時の容量を放電容量(mAh/g)とした。充電容量に対する放電容量の比率を1サイクルの充放電効率(%)とした。
(高温サイクル寿命評価:60℃高温サイクル特性)
上記のようにして初期充放電効率を評価した後の電気化学用セルを用いて下記に記述する方法で充放電試験し、高温サイクル寿命特性を評価した。
電池充放電する環境温度を60℃となるようにセットした環境試験機内にセルを入れ、充放電できるように準備し、セル温度が環境温度になるように4時間静置後、充放電範囲を3.0V〜4.3Vとし、充電は0.1C定電流定電位、放電は0.1C定電流で1サイクル充放電行った後、1Cにて充放電サイクルを30回行った。
31サイクル目の放電容量を2サイクル目の放電容量で割り算して求めた数値の百分率(%)を高温サイクル寿命特性値として求めた。
表1には、各実施例及び比較例の高温サイクル寿命特性値を、比較例1の高温サイクル寿命特性値を100とした場合の相対値として示した。
Figure 0005951518
(考察)
表1や図3の結果などから、本リチウム金属複合酸化物においては、D50が4μmより大きければ、粒子が凝集してスラリー粘度が上昇するのを効果的に防ぐことができることができ、中でも6μm以上であればさらに効果的であるのが分かった。
他方、D50が10μm以上になると、スラリー粘度の点では同様となる一方、大きくなり過ぎると、スラリー保存時に粒子が沈降して不均一になるため、D50は20μmより小さいことが好ましいことも分かった。
また、表1の結果などから、本リチウム金属複合酸化物においては、一次粒子面積/二次粒子面積が0.035以下であれば、1サイクル目の充放電効率を高くすることができることが分かった。これは、一次粒子面積/二次粒子面積が0.035以下であると、電解液と接触する二次粒子表面の面積が大きくなるため、リチウムイオンの出し入れを円滑に行うことができるようになり、1サイクル目の充放電効率を高くすることができるためであると考えることができる。その一方、一次粒子面積/二次粒子面積が0.004以上であれば、1サイクル目の充放電効率を高くすることができることが分かった。これは、一次粒子面積/二次粒子面積が0.004以上であれば、二次粒子内の一次粒子同士の界面が少なくなるため、その結果として二次粒子内部の抵抗を低くすることができ、1サイクル目の充放電効率を高くすることができるものと考えることができる。
さらにまた、表1や図2の結果などから、本リチウム金属複合酸化物においては、粉体圧壊強度の最小値が70MPaより大きければ、中でも75MPa以上であれば、高温サイクル時の容量維持率を効果的に高めることができることが分かった。これは、粉体圧壊強度の最小値が70MPaより大きいと、リチウム二次電池の正極材料として使用した際、リチウム二次電池を充放電させた時に正極活物質の膨張・収縮が起こっても、粒子の崩壊を抑えることができるためであると考えることができる。但し、粉体圧壊強度の最小値が94MPa以上になっても容量維持率は変わらないため、30サイクル後の容量維持率の点では、粉体圧壊強度の最小値が100MPa以上であれば充分よいことも分かった。
なお、上記の実施例は、一般式Li1+x1-x2(M:Mn、Co及びNiを含有する)で示すことができるリチウム金属複合酸化物に関するものであるが、本発明の効果は粉体物性が大きな影響を与えることから、層構造を有するリチウム金属複合酸化物であれば、一般式Li1+x1-x2(M:Mn、Co、Ni、Al、V、Fe、Ti、Mg,Cr、Ga、In、Cu、Zn、Nb、Zr、Mo、W、Ta、Reの何れか1種以上)で表わされるリチウム金属複合酸化物についても同様であると考えることができる。

Claims (2)

  1. リチウム塩化合物、マンガン塩化合物、ニッケル塩化合物及びコバルト塩化合物を含む原料を混合し、水中で混合攪拌してスラリーを調製し、このスラリーを粉砕し、得られた粉砕スラリーを乾燥させ、焼成して解砕することによって、層構造を有するリチウム金属複合酸化物を製造する方法において、
    上記焼成後に、高速回転粉砕機としてピンミルを用いて、回転数7000rpm〜12000rpmで解砕することを特徴とする、層構造を有するリチウム金属複合酸化物の製造方法。
  2. 前記焼成後に、回転数7000rpm〜12000rpmの高速回転粉砕機で解砕することによって、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布によるD50(「D50」と称する)を4μmより大きくて20μmより小さくし、且つ、前記D50に相当する大きさの二次粒子から下記測定方法によって求められる二次粒子面積に対する、下記測定方法によって求められる一次粒子面積の比率(「一次粒子面積/二次粒子面積」と称する)を0.004〜0.035とすることを特徴とする、請求項1に記載の層構造を有するリチウム金属複合酸化物の製造方法。
    (二次粒子面積の測定方法)
    リチウム金属複合酸化物を電子顕微鏡で観察し、D50に相当する大きさの二次粒子をランダムに5個選択し、該二次粒子が球状の場合はその粒子の長さを直径(μm)として面積を計算し、該二次粒子が不定形の場合には球形に近似をして面積を計算し、該5個の面積の平均値を二次粒子面積(μm)として求める。
    (一次粒子面積の測定方法)
    リチウム金属複合酸化物を電子顕微鏡で観察し、1視野あたり5個の二次粒子をランダムに選択し、選ばれた二次粒子5個から一次粒子をそれぞれ10個ランダムに選択し、該一次粒子が棒状の場合はその粒界間隔の最も長い部分を長径(μm)、粒界間隔の短径(μm)として面積を計算し、該一次粒子が球状の場合はその粒界間隔の長さを直径(μm)として面積を計算し、該50個の面積の平均値を一次粒子面積(μm)として求める。
JP2013026267A 2013-02-14 2013-02-14 層構造を有するリチウム金属複合酸化物の製造方法 Active JP5951518B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026267A JP5951518B2 (ja) 2013-02-14 2013-02-14 層構造を有するリチウム金属複合酸化物の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026267A JP5951518B2 (ja) 2013-02-14 2013-02-14 層構造を有するリチウム金属複合酸化物の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012103383A Division JP5204913B1 (ja) 2012-04-27 2012-04-27 層構造を有するリチウム金属複合酸化物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015218208A Division JP6200932B2 (ja) 2015-11-06 2015-11-06 層構造を有するリチウム金属複合酸化物の製造方法

Publications (2)

Publication Number Publication Date
JP2013232400A JP2013232400A (ja) 2013-11-14
JP5951518B2 true JP5951518B2 (ja) 2016-07-13

Family

ID=49678650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026267A Active JP5951518B2 (ja) 2013-02-14 2013-02-14 層構造を有するリチウム金属複合酸化物の製造方法

Country Status (1)

Country Link
JP (1) JP5951518B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848204B (zh) * 2015-12-05 2019-10-18 中山天贸电池有限公司 一种锂离子电池负极石墨材料的混料方法
WO2018101048A1 (ja) * 2016-11-29 2018-06-07 三洋電機株式会社 非水電解質二次電池
JP6669920B1 (ja) * 2018-09-21 2020-03-18 株式会社田中化学研究所 二次電池用正極活物質及びその製造方法
CN115036501B (zh) * 2022-06-30 2024-08-13 金川集团镍钴有限公司 一种高镍单晶镍钴锰酸锂正极材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797332B2 (ja) * 2004-03-24 2011-10-19 三菱化学株式会社 リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体、リチウム二次電池正極及びリチウム二次電池
JP2005332713A (ja) * 2004-05-20 2005-12-02 Toyota Motor Corp リチウム二次電池及び該二次電池用正極活物質
JP2009215124A (ja) * 2008-03-12 2009-09-24 Mitsubishi Chemicals Corp 遷移金属系化合物の製造方法
KR101105879B1 (ko) * 2009-08-28 2012-01-16 주식회사 코캄 리튬 이차전지용 양극 활물질 및 그 제조방법과 이를 포함하는 리튬 이차전지
JP2012190648A (ja) * 2011-03-10 2012-10-04 Mitsubishi Chemicals Corp リチウム遷移金属系化合物の製造方法

Also Published As

Publication number Publication date
JP2013232400A (ja) 2013-11-14

Similar Documents

Publication Publication Date Title
JP5204913B1 (ja) 層構造を有するリチウム金属複合酸化物
JP5847352B2 (ja) リチウム金属複合酸化物粉体
JP5809772B2 (ja) リチウム過剰型層状リチウム金属複合酸化物の製造方法
JP4213768B2 (ja) 層構造を有するリチウム遷移金属酸化物
JP5883999B2 (ja) リチウムイオン電池用正極材料
JP5606654B2 (ja) リチウム金属複合酸化物
JP2018045998A (ja) 球形又は類球形リチウムイオン電池の正極材料、製造方法及び応用
WO2016035852A1 (ja) リチウム金属複合酸化物粉体
JP5308600B1 (ja) 層構造を有するリチウム金属複合酸化物
JP4316656B1 (ja) 層構造を有するリチウム遷移金属酸化物
JP6251843B2 (ja) 層構造を有するリチウム金属複合酸化物の製造方法
JP6586220B2 (ja) 層構造を有するリチウム金属複合酸化物
JP5951518B2 (ja) 層構造を有するリチウム金属複合酸化物の製造方法
JP6200932B2 (ja) 層構造を有するリチウム金属複合酸化物の製造方法
JP5554479B2 (ja) リチウム遷移金属酸化物粉体
JP6546582B2 (ja) 層状結晶構造を有するリチウム金属複合酸化物の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160608

R150 Certificate of patent or registration of utility model

Ref document number: 5951518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250