JP6853950B2 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
JP6853950B2
JP6853950B2 JP2016244685A JP2016244685A JP6853950B2 JP 6853950 B2 JP6853950 B2 JP 6853950B2 JP 2016244685 A JP2016244685 A JP 2016244685A JP 2016244685 A JP2016244685 A JP 2016244685A JP 6853950 B2 JP6853950 B2 JP 6853950B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
material layer
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016244685A
Other languages
English (en)
Other versions
JP2018098138A (ja
Inventor
智典 加古
智典 加古
和輝 川口
和輝 川口
純 大山
純 大山
亮介 下川
亮介 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2016244685A priority Critical patent/JP6853950B2/ja
Publication of JP2018098138A publication Critical patent/JP2018098138A/ja
Application granted granted Critical
Publication of JP6853950B2 publication Critical patent/JP6853950B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池などの蓄電素子に関する。
従来、集電体と、活物質の粒子を含む活物質層と、を有する電極を備えたリチウムイオン二次電池が知られている(例えば、特許文献1)。
特許文献1に記載の電池では、活物質層は、単斜晶系β型チタン複合酸化物の粒子と、スピネル構造のチタン酸リチウムの粒子と、を含む。特許文献1に記載の電池では、活物質層に含まれる粒子の粒径の頻度分布をレーザー回折散乱方式により測定したとき、0.3μm以上3μm以下の範囲に第1のピークP1が表れ、5μm以上20μm以下の範囲に第2のピークP2が表れ、第1のピークP1の頻度FP1の第2のピークP2の頻度FP2に対する比FP1/FP2は、0.4以上2.3以下である。
特許文献1に記載の電池では、高レートと低レートとでの放電電気量の差が大きくなる場合があり、高レートと低レートとでの放電電気量の差が大きくなることが抑制された蓄電素子が要望されている。
特開2013−105703号公報
本実施形態は、高レートと低レートとでの放電電気量の差が大きくなることが抑制された蓄電素子を提供することを課題とする。
本実施形態の蓄電素子は、活物質層を有する電極を備え、活物質層に含まれる粒子の体積基準による粒径頻度分布は、粒子径が0.5μm以上2.0μm未満の第1範囲、粒子径が2.0μm以上10μm未満の第2範囲、及び、粒子径が10μm以上の第3範囲、にそれぞれピークを有し、第1範囲、第2範囲、及び第3範囲のピークの頻度(%)をそれぞれ、P1、P2、P3とし、第2範囲のピークの粒子の粒子径をD2とし、第3範囲のピークの粒子の粒子径をD3としたときに、下記関係式(1)〜(3)を全て満たす。
0.6≦[P2/P1] 関係式(1)
0.1≦[P3/P2]≦0.7 関係式(2)
4.5≦[D3/D2]≦10.5 関係式(3)
斯かる構成により、高レートと低レートとでの放電電気量の差が大きくなることが抑制された蓄電素子を提供できる。
上記の蓄電素子では、関係式(1)は、下記関係式(4)をさらに満たしてもよい。斯かる構成により、繰り返し充放電後の出力性能が低下することを抑制できる。
[P2/P1]≦2.0 関係式(4)
本実施形態によれば、高レートと低レートとでの放電電気量の差が大きくなることが抑制された蓄電素子を提供できる。
図1は、本実施形態に係る蓄電素子の斜視図である。 図2は、図1のII−II線位置の断面図である。 図3は、図1のIII−III線位置の断面図である。 図4は、同実施形態に係る蓄電素子の電極体の構成を説明するための図である。 図5は、重ね合わされた正極、負極、及びセパレータの断面図(図4のV−V断面)である。 図6は、同実施形態に係る蓄電素子を含む蓄電装置の斜視図である。 図7は、活物質層に含まれる粒子の体積基準による粒径頻度分布図の一例である。
以下、本発明に係る蓄電素子の一実施形態について、図1〜図5を参照しつつ説明する。蓄電素子には、一次電池、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。
本実施形態の蓄電素子1は、非水電解質二次電池である。より詳しくは、蓄電素子1は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子1は、電気エネルギーを供給する。蓄電素子1は、単一又は複数で使用される。具体的に、蓄電素子1は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子1は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子1と組み合わされて蓄電装置100に用いられる。前記蓄電装置100では、該蓄電装置100に用いられる蓄電素子1が電気エネルギーを供給する。
蓄電素子1は、図1〜図5に示すように、正極11と負極12とを含む電極体2と、電極体2を収容するケース3と、ケース3の外側に配置される外部端子7であって電極体2と導通する外部端子7と、を備える。また、蓄電素子1は、電極体2、ケース3、及び外部端子7の他に、電極体2と外部端子7とを導通させる集電体5等を有する。
電極体2は、正極11と負極12とがセパレータ4によって互いに絶縁された状態で積層された積層体22が巻回されることによって形成される。
正極11は、金属箔111(集電箔)と、金属箔111の表面に重ねられ且つ活物質を含む活物質層112と、を有する。本実施形態では、活物質層112は、金属箔111の両面にそれぞれ重なる。なお、正極11の厚さは、通常、40μm以上150μm以下である。
金属箔111は帯状である。本実施形態の正極11の金属箔111は、例えば、アルミニウム箔である。正極11は、帯形状の短手方向である幅方向の一方の端縁部に、正極活物質層112の非被覆部(正極活物質層が形成されていない部位)115を有する。
正極活物質層112は、粒子状の活物質(活物質粒子)と、粒子状の導電助剤と、バインダとを含む。正極活物質層112(1層分)の厚さは、通常、12μm以上70μm以下である。正極活物質層112(1層分)の目付量は、通常、6mg/cm 以上17mg/cm 以下である。正極活物質層112の密度は、2.00g/cm以上3.00g/cm 以下であってもよく、2.32g/cm 以上2.83g/cm 以下であってもよい。目付量及び密度は、金属箔111の一方の面を覆うように配置された1層分におけるものである。
正極活物質層112に含まれる粒子の体積基準による粒径頻度分布は、粒子径が0.5μm以上2.0μm未満の第1範囲、粒子径が2.0μm以上10μm未満の第2範囲、及び、粒子径が10μm以上100μm以下の第3範囲、にそれぞれピークを有する。第1範囲、第2範囲、及び第3範囲のピークの頻度(%)をそれぞれ、P1、P2、P3とし、第2範囲のピークの粒子径(μm)をD2とし、第3範囲のピークの粒子径(μm)をD3としたときに、下記関係式(1)〜(3)が全て満たされる。関係式(1)は、下記関係式(4)をさらに満たしてもよい。
0.6≦[P2/P1] 関係式(1)
0.1≦[P3/P2]≦0.7 関係式(2)
4.5≦[D3/D2]≦10.5 関係式(3)
[P2/P1]≦2.0 関係式(4)。
上記の各範囲にピークがあることは、下記の方法によって確認する。粒径頻度分布の曲線を1回微分処理した曲線のグラフにおいて、粒子径が小さい方から大きい方へ曲線をたどったときに、斯かる曲線の縦軸の数値が正から負へ変わる箇所(0になる箇所)がある場合に、ピークが存在すると判断する。この正から負へ変わる箇所に相当する粒子径が、粒径頻度分布曲線におけるピークの頂点の粒子径となる。なお、各範囲に複数のピークがある場合、各範囲の最も大きいピークを採用する。
正極活物質層112は、活物質の一次粒子と、複数の一次粒子が凝集した二次粒子とを活物質粒子として含む。詳しくは、正極活物質層112は、互いに独立して単独で存在する一次粒子と、複数の一次粒子同士が凝結した二次粒子とを含む。正極活物質層112に存在する一次粒子は、単独で存在するか、又は、凝集して二次粒子を構成している。二次粒子は、平均一次粒子径よりも大きな孔径を有する中空部を2以上有する二次粒子を少なくとも含む。
上記の各範囲にピークがある正極活物質層112は、例えば、平均一次粒子径が特定の大きさの活物質粒子であって平均粒径D50が特定の大きさの活物質粒子を採用することにより、得られる。例えば、上記の各範囲にピークがある正極活物質層112は、平均一次粒子径が0.5μm以上2.0μm未満であり且つ平均粒径D50が2.0μm以上10μm未満であり且つ平均粒径D90が10μm以上の活物質粒子を採用することにより、得られる。また、上記の各範囲にピークがある正極活物質層112は、例えば、平均粒子径の異なる活物質粒子の粉体を適当な混合比で混合して正極活物質層112を作製することにより、調製できる。例えば、上記の各範囲にピークがある正極活物質層112は、平均粒径D50が2.0μm以上10μm未満の活物質粒子の粉体と、平均粒径D50が10μm以上の活物質粒子の粉体とを混合することにより、得られる。また、上記の各関係式の値は、例えば、正極活物質の比表面積又は正極11を作製するときのプレス圧を変えることにより、調整できる。プレス圧を高めることにより、粒子径が0.5μm以上2.0μm未満の第1範囲のピークの頻度を高めることができる。上記の各関係式の値は、例えば、平均粒子径の異なる活物質粒子の粉体の混合比を変更することにより、調整できる。
活物質の比表面積は、0.3m/g以上3.0m/g以下であるとよく、1.0m/g以上2.0m/g以下であるとよい。活物質の比表面積は、ユアサアイオニクス社製比表面積測定装置(商品名:MONOSORB)を用いて、一点法により求められた測定試料に対する窒素吸着量[m]から算出する。具体的には、測定試料の投入量を0.5g±0.01gとし、予備加熱を120℃、15分とする。また、液体窒素を用いて冷却を行い、冷却過程の窒素ガス吸着量を測定する。測定された吸着量(m)を活物質質量(g)で除することにより、比表面積を算出する。
粒径頻度分布では、活物質及び導電助剤の粒径に対する頻度が表される。一方、バインダは、粒径頻度分布の結果に与える影響が小さい。粒径頻度分布は、レーザ回折・散乱式の粒度分布測定装置を用いた測定によって求められる。粒径頻度分布は、粒子の体積基準によって求められる。測定条件は、実施例において詳しく説明されている。
なお、正極活物質層112から導電助剤を取り除く処理をしたあとの粒子(活物質粒子)で求めた粒径頻度分布において、上記の関係式(1)〜(4)が満たされてもよい。
正極活物質層112における活物質粒子の平均一次粒子径は、通常、0.1μm以上2.0μm以下である。平均一次粒子径は、正極活物質層112の厚さ方向断面の走査型電子顕微鏡観察像において、少なくとも100個の一次粒子径の直径を測定し、測定値を平均することによって求められる。一次粒子が真球状でない場合、最も長い径を直径として測定する。
第1範囲のピークの頻度P1は、1%以上4%以下であってもよい。第2範囲のピークの頻度P2は、1%以上5%以下であってもよい。第3範囲のピークの頻度P3は、0.1%以上4.0%以下であってもよい。これに伴い、[P2/P1]は、0.71以上1.65以下であってもよい。また、[P3/P2]は、0.11以上0.67以下であってもよい。
第1範囲のピークの粒子径(μm)(以下、D1とする)は、0.7μm以上1.5μm以下であってもよい。第2範囲のピークの粒子径D2は、2μm以上5μm以下であってもよい。第3範囲のピークの粒子径D3は、10μm以上30μm以下であってもよい。これに伴い、[D2/D1]は、2以上7以下であってもよい。上記の[D3/D2]は、5以上10以下であってもよい。
正極11の活物質は、リチウムイオンを吸蔵放出可能な化合物である。正極11の活物質は、例えば、リチウム金属酸化物である。具体的に、正極の活物質は、例えば、LiMeO(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LiCo、LiNi、LiMn、LiNiCoMn等)、又は、LiMe(XO(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物(LiFePO、LiMnPO、LiMnSiO、LiCoPOF等)である。
本実施形態では、正極11の活物質は、LiNiMnCoの化学組成で表されるリチウム金属複合酸化物(ただし、0<p≦1.3であり、q+r+s=1であり、0≦q≦1であり、0≦r≦1であり、0≦s≦1であり、1.7≦t≦2.3である)である。なお、0<q<1であり、0<r<1であり、0<s<1であってもよい。
上記のごときLiNiMnCoの化学組成で表されるリチウム金属複合酸化物は、例えば、LiNi1/3Co1/3Mn1/3、LiNi1/6Co1/6Mn2/3、LiCoOなどである。このとき、リチウム金属複合酸化物に、当該化学組成で示される以外の微量元素が含まれてもよい。
正極活物質層112に用いられるバインダは、例えば、ポリフッ化ビニリデン(PVdF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダは、ポリフッ化ビニリデンである。
正極活物質層112の導電助剤は、炭素を98質量%以上含む炭素質材料である。炭素質材料は、例えば、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等である。本実施形態の正極活物質層112は、導電助剤としてアセチレンブラックを有する。
正極活物質層112は、通常、導電助剤を2質量%以上8質量%以下含み、バインダを1質量%以上6質量%含む。正極活物質層112に含まれる導電助剤とバインダとの割合は、バインダに対して導電助剤が1質量%以上3質量%以下であってもよい。
負極12は、金属箔121(集電箔)と、金属箔121の上に形成された負極活物質層122と、を有する。本実施形態では、負極活物質層122は、金属箔121の両面にそれぞれ重ねられる。金属箔121は帯状である。本実施形態の負極の金属箔121は、例えば、銅箔である。負極12は、帯形状の短手方向である幅方向の一方の端縁部に、負極活物質層122の非被覆部(負極活物質層が形成されていない部位)125を有する。負極12の厚さは、通常、40μm以上150μm以下である。
負極活物質層122は、粒子状の活物質(活物質粒子)と、バインダと、を含む。負極活物質層122は、セパレータ4を介して正極11と向き合うように配置される。負極活物質層122の幅は、正極活物質層112の幅よりも大きい。
負極12の活物質は、負極12において充電反応及び放電反応の電極反応に寄与し得るものである。例えば、負極12の活物質は、グラファイト、非晶質炭素(難黒鉛化炭素、易黒鉛化炭素)などの炭素材料、又は、ケイ素(Si)及び錫(Sn)などリチウムイオンと合金化反応を生じる材料である。本実施形態の負極の活物質は、非晶質炭素である。より具体的には、負極の活物質は、難黒鉛化炭素である。
負極活物質層122(1層分)の厚さは、通常、10μm以上50μm以下である。負極活物質層122の目付量(1層分)は、通常、3mg/cm以上10mg/cm以下である。負極活物質層122の密度(1層分)は、通常、0.50g/cm以上6.00g/cm以下である。
負極活物質層122に用いられるバインダは、正極活物質層112に用いられるバインダと同様のものである。本実施形態のバインダは、スチレンブタジエンゴム(SBR)である。
負極活物質層122では、バインダの割合は、活物質粒子とバインダとの合計質量に対して、1質量%以上10質量%以下であってもよい。
負極活物質層122は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層122は、導電助剤を有していない。
本実施形態の電極体2では、以上のように構成される正極11と負極12とがセパレータ4によって絶縁された状態で巻回される。即ち、本実施形態の電極体2では、正極11、負極12、及びセパレータ4の積層体22が巻回される。セパレータ4は、絶縁性を有する部材である。セパレータ4は、正極11と負極12との間に配置される。これにより、電極体2(詳しくは、積層体22)において、正極11と負極12とが互いに絶縁される。また、セパレータ4は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、リチウムイオンが、セパレータ4を挟んで交互に積層される正極11と負極12との間を移動する。
セパレータ4は、帯状である。セパレータ4は、多孔質なセパレータ基材を有する。セパレータ4は、正極11及び負極12間の短絡を防ぐために正極11及び負極12の間に配置されている。本実施形態のセパレータ4は、セパレータ基材41のみを有する。
セパレータ基材41は、多孔質に構成される。セパレータ基材41は、例えば、織物、不織布、又は多孔膜である。セパレータ基材の材質としては、高分子化合物、ガラス、セラミックなどが挙げられる。高分子化合物としては、例えば、ポリアクリロニトリル(PAN)、ポリアミド(PA)、ポリエチレンテレフタレート(PET)などのポリエステル、ポリプロピレン(PP)、ポリエチレン(PE)などのポリオレフィン(PO)、及び、セルロースからなる群より選択された少なくとも1種が挙げられる。
本実施形態の電極体2は、セパレータ基材41と正極活物質層112との間に配置された無機多孔層8を有する。無機多孔層8は、少なくとも電気絶縁性を有する無機粒子を含み、さらに、バインダを含む。無機多孔層8の電気絶縁性は、正極活物質層112及び負極活物質層122のいずれの電気絶縁性よりも高い。無機多孔層8の電気伝導率は、10−6 S/m未満である。なお、無機多孔層8は、セパレータ基材41と負極活物質層122との間にも配置されてもよい。
無機多孔層8は、Liイオンなどが正極11及び負極12の間で移動できるように、無機粒子間の空隙によって多孔質に形成されている。無機粒子は、電気伝導率が10−6S/m未満の絶縁材料を95質量%以上含むものである。
無機多孔層8は、通常、無機粒子を30質量%以上99質量%以下含有する。無機多孔層8は、通常、バインダを1質量%以上10質量%以下含有する。
無機粒子としては、例えば、酸化物粒子、窒化物粒子、イオン結晶粒子、共有結合性結晶粒子、粘土粒子、鉱物資源由来物質あるいはそれらの人造物質の粒子などが挙げられる。酸化物粒子(金属酸化物粒子)としては、例えば、酸化鉄、SiO、Al、TiO、BaTiO、ZrO、アルミナ−シリカ複合酸化物などの粒子が挙げられる。窒化物粒子としては、例えば、窒化アルミニウム、窒化ケイ素などの粒子が挙げられる。イオン結晶粒子としては、例えば、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの粒子が挙げられる。共有結合性結晶粒子としては、例えば、シリコン、ダイヤモンドなどの粒子が挙げられる。粘土粒子としては、例えば、タルク、モンモリロナイトなどの粒子が挙げられる。鉱物資源由来物質あるいはそれらの人造物質の粒子としては、例えば、ベーマイト(アルミナ水和物)、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、セリサイト、ベントナイト、マイカなどの粒子が挙げられる。なお、水和物を含む天然鉱物(例えば、上記の粘土、鉱物資源由来物質)を焼成した焼成体を採用することもできる。本実施形態では、無機粒子は、Al粒子である。
無機多孔層8のバインダは、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン− ブタジエンゴム、ニトリル− ブタジエンゴム、ポリスチレン、又は、ポリカーボネートなどである。
セパレータ4の幅(帯形状の短手方向の寸法)は、負極活物質層122の幅より僅かに大きい。セパレータ4は、正極活物質層112及び負極活物質層122が重なるように幅方向に位置ずれした状態で重ね合わされた正極11と負極12との間に配置される。このとき、図4に示すように、正極11の非被覆部115と負極12の非被覆部125とは重なっていない。即ち、正極11の非被覆部115が、正極11と負極12との重なる領域から幅方向に突出し、且つ、負極12の非被覆部125が、正極11と負極12との重なる領域から幅方向(正極11の非被覆部115の突出方向と反対の方向)に突出する。積層された状態の正極11、負極12、及びセパレータ4、即ち、積層体22が巻回されることによって、電極体2が形成される。正極11の非被覆部115又は負極12の非被覆部125のみが積層された部位によって、電極体2における非被覆積層部26が構成される。
非被覆積層部26は、電極体2における集電体5と導通される部位である。非被覆積層部26は、巻回された正極11、負極12、及びセパレータ4の巻回中心方向視において、中空部27(図4参照)を挟んで二つの部位(二分された非被覆積層部)261に区分けされる。
以上のように構成される非被覆積層部26は、電極体2の各極に設けられる。即ち、正極11の非被覆部115のみが積層された非被覆積層部26が電極体2における正極11の非被覆積層部を構成し、負極12の非被覆部125のみが積層された非被覆積層部26が電極体2における負極12の非被覆積層部を構成する。
ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。ケース3は、電極体2及び集電体5等と共に、電解液を内部空間に収容する。ケース3は、電解液に耐性を有する金属によって形成される。ケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。ケース3は、ステンレス鋼及びニッケル等の金属材料、又は、アルミニウムにナイロン等の樹脂を接着した複合材料等によって形成されてもよい。
電解液は、非水溶液系電解液である。電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。本実施形態の電解液は、プロピレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを所定の割合で混合した混合溶媒に、0.5〜1.5mol/LのLiPFを溶解させたものである。
ケース3は、ケース本体31の開口周縁部と、長方形状の蓋板32の周縁部とを重ね合わせた状態で接合することによって形成される。また、ケース3は、ケース本体31と蓋板32とによって画定される内部空間を有する。本実施形態では、ケース本体31の開口周縁部と蓋板32の周縁部とは、溶接によって接合される。
以下では、図1に示すように、蓋板32の長辺方向をX軸方向とし、蓋板32の短辺方向をY軸方向とし、蓋板32の法線方向をZ軸方向とする。ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。蓋板32は、ケース本体31の開口を塞ぐ板状の部材である。
蓋板32は、ケース3内のガスを外部に排出可能なガス排出弁321を有する。ガス排出弁321は、ケース3の内部圧力が所定の圧力まで上昇したときに、該ケース3内から外部にガスを排出する。ガス排出弁321は、X軸方向における蓋板32の中央部に設けられる。
ケース3には、電解液を注入するための注液孔が設けられる。注液孔は、ケース3の内部と外部とを連通する。注液孔は、蓋板32に設けられる。注液孔は、注液栓326によって密閉される(塞がれる)。注液栓326は、溶接によってケース3(本実施形態の例では蓋板32)に固定される。
外部端子7は、他の蓄電素子1の外部端子7又は外部機器等と電気的に接続される部位である。外部端子7は、導電性を有する部材によって形成される。例えば、外部端子7は、アルミニウム又はアルミニウム合金等のアルミニウム系金属材料、銅又は銅合金等の銅系金属材料等の溶接性の高い金属材料によって形成される。
外部端子7は、バスバ等が溶接可能な面71を有する。面71は、平面である。外部端子7は、蓋板32に沿って拡がる板状である。詳しくは、外部端子7は、Z軸方向視において矩形状の板状である。
集電体5は、ケース3内に配置され、電極体2と通電可能に直接又は間接に接続される。本実施形態の集電体5は、クリップ部材50を介して電極体2と通電可能に接続される。即ち、蓄電素子1は、電極体2と集電体5とを通電可能に接続するクリップ部材50を備える。
集電体5は、導電性を有する部材によって形成される。図2に示すように、集電体5は、ケース3の内面に沿って配置される。集電体5は、蓄電素子1の正極11と負極12とにそれぞれ配置される。本実施形態の蓄電素子1では、集電体5は、ケース3内において、電極体2の正極11の非被覆積層部26と、負極12の非被覆積層部26とにそれぞれ配置される。
正極11の集電体5と負極12の集電体5とは、異なる材料によって形成される。具体的に、正極11の集電体5は、例えば、アルミニウム又はアルミニウム合金によって形成され、負極12の集電体5は、例えば、銅又は銅合金によって形成される。
本実施形態の蓄電素子1では、電極体2とケース3とを絶縁する袋状の絶縁カバー6に収容された状態の電極体2(詳しくは、電極体2及び集電体5)がケース3内に収容される。
次に、上記実施形態の蓄電素子1の製造方法について説明する。
蓄電素子1の製造方法では、まず、金属箔(集電箔)に活物質を含む合剤を塗布し、活物質層を形成し、電極(正極11及び負極12)を作製する。次に、正極11、セパレータ4、及び負極12を重ね合わせて電極体2を形成する。続いて、電極体2をケース3に入れ、ケース3に電解液を入れることによって蓄電素子1を組み立てる。
電極(正極11)の作製では、金属箔の両面に、活物質とバインダと溶媒とを含む合剤をそれぞれ塗布することによって正極活物質層112を形成する。合剤の塗布量を変化させることによって、正極活物質層112の厚さや目付量を調整することができる。正極活物質層112を形成するための塗布方法としては、一般的な方法が採用される。さらに、正極活物質層112を所定の圧力でロールプレスする。プレス圧を変化させることにより、正極活物質層112の厚さや密度を調整できる。必要に応じて、無機粒子とバインダと溶媒とを含む組成物を正極活物質層112に塗布し、無機多孔層を形成する。なお、無機多孔層を形成せずに、上記と同様にして、負極12を作製する。
電極体2の形成では、正極11と負極12との間にセパレータ4を挟み込んだ積層体22を巻回することにより、電極体2を形成する。詳しくは、正極活物質層112と負極活物質層122とがセパレータ4を介して互いに向き合うように、正極11とセパレータ4と負極12とを重ね合わせ、積層体22を作る。積層体22を巻回して、電極体2を形成する。
蓄電素子1の組み立てでは、ケース3のケース本体31に電極体2を入れ、ケース本体31の開口を蓋板32で塞ぎ、電解液をケース3内に注入する。ケース本体31の開口を蓋板32で塞ぐときには、ケース本体31の内部に電極体2を入れ、正極11と一方の外部端子7とを導通させ、且つ、負極12と他方の外部端子7とを導通させた状態で、ケース本体31の開口を蓋板32で塞ぐ。電解液をケース3内へ注入するときには、ケース3の蓋板32の注入孔から電解液をケース3内に注入する。
上記のように構成された本実施形態の蓄電素子1は、活物質層を有する電極を備え、活物質層に含まれる粒子の体積基準による粒径頻度分布は、粒子径が0.5μm以上2.0μm未満の第1範囲、粒子径が2.0μm以上10μm未満の第2範囲、及び、粒子径が10μm以上の第3範囲、にそれぞれピークを有し、第1範囲、第2範囲、及び第3範囲のピークの頻度(%)をそれぞれ、P1、P2、P3とし、第2範囲のピークの粒子の粒子径をD2とし、第3範囲のピークの粒子の粒子径をD3としたときに、下記関係式(1)〜(3)を全て満たす。
0.6≦[P2/P1] 関係式(1)
0.1≦[P3/P2]≦0.7 関係式(2)
4.5≦[D3/D2]≦10.5 関係式(3)
0.1≦[P3/P2]≦0.7の関係式(2)、及び、4.5≦[D3/D2]≦10.5の関係式(3)が満たされることから、粒子径が最も大きいピークと次に大きいピークとの粒子の大きさ、及び、量が適度な範囲内となる。これにより、大粒子径側の粒子の間に小粒子径の粒子が入り込んで、粒子間の空隙が適度に確保されると考えられる。従って、活物質層における電解液の保持量が適度に確保され、充放電反応が効率良く進み、レートが高くても低くても出力性能が向上されると考えられる。なお、0.6≦[P2/P1]の関係式(1)が満たされるような、最も粒子径が小さいピークの粒子が比較的少ない条件下にて、上記の作用効果が発揮されると考えられる。
斯かる構成により、高レートと低レートとでの放電電気量の差が大きくなることが抑制された蓄電素子を提供できる。
上記の蓄電素子1では、関係式(1)は、下記関係式(4)をさらに満たしてもよい。
[P2/P1]≦2.0 関係式(4)
斯かる構成により、繰り返し充放電後の出力性能が低下することを抑制できる。
尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。
上記の実施形態では、活物質を含む活物質層が金属箔に直接接した正極について詳しく説明したが、本発明では、正極が、バインダと導電助剤とを含む導電層であって活物質層と金属箔との間に配置された導電層を有してもよい。
上記実施形態では、活物質層が各電極の金属箔の両面側にそれぞれ配置された電極について説明したが、本発明の蓄電素子では、正極11又は負極12は、活物質層を金属箔の片面側にのみ備えてもよい。
上記実施形態では、積層体22が巻回されてなる電極体2を備えた蓄電素子1について詳しく説明したが、本発明の蓄電素子は、巻回されない積層体22を備えてもよい。詳しくは、それぞれ矩形状に形成された正極、セパレータ、負極、及びセパレータが、この順序で複数回積み重ねられてなる電極体を蓄電素子が備えてもよい。
上記実施形態では、蓄電素子1が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子1の種類や大きさ(容量)は任意である。また、上記実施形態では、蓄電素子1の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、一次電池や、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。
蓄電素子1(例えば電池)は、図6に示すような蓄電装置100(蓄電素子が電池の場合は電池モジュール)に用いられてもよい。蓄電装置100は、少なくとも二つの蓄電素子1と、二つの(異なる)蓄電素子1同士を電気的に接続するバスバ部材91と、を有する。この場合、本発明の技術が少なくとも一つの蓄電素子に適用されていればよい。
以下に示すようにして、定格容量が5Ahの非水電解質二次電池(リチウムイオン二次電池)を製造した。
(実施例1)
(1)正極の作製
溶剤としてN−メチル−2−ピロリドン(NMP)と、導電助剤(アセチレンブラック)と、バインダ(PVdF)と、活物質(LiNi1/3Co1/3Mn1/3)の粒子とを、混合し、混練することで、正極用の合剤を調製した。導電助剤、バインダ、活物質の配合量は、それぞれ4.5質量%、4.5質量%、91質量%とした。調製した正極用の合剤を、アルミニウム箔(厚さ15μm)の両面に、乾燥後の塗布量(目付量)が8.61mg/cmとなるようにそれぞれ塗布した。乾燥後、ロールプレスを行った。その後、真空乾燥して、水分等を除去した。プレス後の活物質層(1層分)の厚さは、32μmであった。活物質層の密度は、2.71g/cmであった。使用した活物質の比表面積は、1.5m/gであった。また、活物質の粒子として、中空部を2〜10有するものを使用した。
(2)負極の作製
活物質としては、粒子状の非晶質炭素(難黒鉛化炭素)を用いた。また、バインダとしては、PVdFを用いた。負極用の合剤は、溶剤としてNMPと、バインダと、活物質とを混合、混練することで調製した。バインダは、固形分中で7質量%となるように配合し、活物質は、93質量%となるように配合した。調製した負極用の合剤を、乾燥後の塗布量(目付量)が4.0mg/cmとなるように、銅箔(厚さ8μm)の両面にそれぞれ塗布した。乾燥後、ロールプレスを行い、真空乾燥して、水分等を除去した。活物質層(1層分)の厚さは、35μmであった。活物質層の密度は、1.13g/cmであった。
(3)セパレータ(セパレータ基材)及び無機多孔層
セパレータ基材の面上に無機多孔層を形成したものを作製した。セパレータ基材は、厚さが15μmのポリエチレン製微多孔膜である。無機多孔層は、厚さが6μmであり、95質量%のアルミナ粒子と5質量%のポリフッ化ビニリデンとを含む。セパレータ及び無機多孔層の積層物の透気抵抗度は、100秒/100ccであった。
(4)電解液の調製
電解液としては、以下の方法で調製したものを用いた。非水溶媒として、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを、いずれも1容量部ずつ混合した溶媒を用い、この非水溶媒に、塩濃度が1mol/LとなるようにLiPFを溶解させ、電解液を調製した。
(5)ケース内への電極体の配置
上記の正極、上記の負極、上記の電解液、セパレータ、及びケースを用いて、一般的な方法によって電池を製造した。
まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。無機多孔層は、セパレータ基材と正極との間に配置した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子それぞれに電気的に接続させた。さらに、ケース本体に蓋板を取り付けた。上記の電解液を、ケースの蓋板に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
・正極活物質層に含まれる粒子の粒径頻度分布について
1.0Cレートで4.2Vに達するまで電池を充電した後、さらに4.2Vの定電圧で電池を3時間放電し、その後、1.0Cレートで2.0Vまで定電流放電した。続いて、2.0Vで5時間の定電圧放電を行った。そして、電池を乾燥雰囲気下で解体した。解体した電池から正極の一部(1cm×1cm)を切り出し、切り出した正極を50倍以上の質量のNMPに浸漬し、15分間の超音波分散によって前処理を施すことで正極活物質層と金属箔とを分離し、金属箔を取り除いた。超音波処理を施した正極活物質層を用いて、測定試料(活物質及び導電助剤)を含む分散液を調製した。測定試料の粒径頻度分布の測定では、測定装置としてレーザー回折式粒度分布測定装置(マイクロトラック・ベル社製「MT3000」)、測定制御ソフトとして付属のアプリケーションソフトフェアを用いた。具体的な測定手法としては、散乱式の測定モードを採用し、上記分散液が循環する湿式セルを、2分間超音波環境下に置いた後に、レーザー光を照射し、測定試料から散乱光分布を得た。そして、散乱光分布を対数正規分布により近似して測定を行った。
・第1範囲のピーク、第2範囲のピーク、第3範囲のピークの各頻度(%)
粒子径が0.5μm以上2.0μm未満の第1範囲、粒子径が2.0μm以上10μm未満の第2範囲、及び、粒子径が10μm以上の第3範囲の各ピークの頻度(%)を、それぞれ、P1、P2、P3とした。
第2範囲のピークの粒子の粒子径をD2とし、第3範囲のピークの粒子の粒子径をD3とした。各粒子径を上記の付属アプリケーションソフトフェアによって算出した。
・正極活物質層の密度
電池を5Aの電流で2.0Vまで放電した後、5時間2.0Vで保持した。保持後、5時間休止させ、ドライルームまたはアルゴン雰囲気化のグローブボックス内でケース内部から電極体を取り出した。純度99.9%以上、水分量20ppm以下のDMCで、電極体から取り出した正極及び負極をそれぞれ3回以上洗浄した。その後、DMCを真空乾燥によって除去した。そして、設定した面積S(cm)、例えば、4cm(2cm×2cm)の大きさの試験片を切り出し、厚みT1(cm)及び重量W1(g)を測定した。純水に浸漬すること等によって、活物質層と金属箔とを分離させた。分離後に金属箔の厚みT2(cm)及び重量W2(g)を測定した。活物質層の密度を、{(W1−W2)/(T1−T2)}/Sによって算出した。
(実施例2〜16、比較例1〜8)
電池の構成を表1に示す構成に変更した点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
一例として、実施例1の電池について、正極活物質層に含まれる粒子の体積基準による粒径頻度分布を図7に示す。また、製造した各電池の構成、及び、各電池について下記の各評価を行った結果を表1に示す。
Figure 0006853950
<高レートと低レートとでの放電電気量の差(放電レート特性)の評価>
4.2Vまで充電した電池を40Aの放電電流で2.4Vまで放電することで、40A放電時の放電電気量C1を測定した。
上記の測定を行った電池を4.2Vまで充電し、200Aの放電電流で2.4Vまで放電することで、200A放電時の放電電気量C2を測定した。
そして、[C2/C1]×100の計算式によって算出された値を放電レート特性とした。
<繰り返し充放電後の出力性能>
・放電容量の確認
各電池について、25℃の恒温槽中で5Aの充電電流、4.2Vの定電流定電圧充電を3時間行い、10分の休止後、5Aの放電電流にて2.4Vまで定電流放電を行うことで、電池の放電容量を測定した。
・初期の出力確認試験
放電容量を測定した電池を、25℃の恒温槽中でSOC(充電状態、State Of Charge)50%に調整し、60Aの電流値で10秒間放電した。60秒間の休止後、2.5Aの電流値で2.4Vまで定電流放電し、その後、2.5Aの電流値で斯かる放電による電気量と同じ電気量を充電した。300秒間の休止後、放電電流値を90A、120A、150A、200Aと変化させた点以外、同じ条件で各電流値での放電を実施した。その後、各放電電流値を横軸に、各電流値の1秒目の電圧を縦軸に、それぞれプロットし、最小二乗法により、直線線形による近似直線を作成した。その直線の傾きを電池の抵抗Rとした。算出したRに基づいて、電池の出力Pを以下の式により算出した。
P[W]=
2.5V × (50%SOCの開回路電圧(3.65V)−2.4V)/R
・充放電サイクル試験
SOC50%に調整した電池を55℃にて4時間保持し、SOC80%になるまで40Aの定電流充電を行い、その後、SOC80%からSOC20%まで40Aの定電流放電を行うことで、SOC80%の充電電圧V80とSOC20%の放電電圧V20を決定した。
充電時のカットオフ電圧をV80とし、放電時のカットオフ電圧をV20として、55℃、40Aの定電流条件の下、休止時間を設定せずに連続してサイクル試験を行った。サイクル時間は合計3000時間とした。3000時間のサイクル試験終了後、25℃で4時間保持し、前述の出力確認試験を行った。出力低下率は、サイクル試験前の出力(初期出力)をP1、サイクル試験後の出力(劣化後出力)をP2としたとき、出力低下率=100−P2/P1×100の式から算出した。
表1から把握されるように、上記の関係式(1)〜(3)の全てが満たされる実施例の電池では、高レートと低レートとでの放電電気量の差が大きくなることが抑制された。
また、表1から把握されるように、上記の関係式(1)〜(4)の全てが満たされる実施例の電池では、繰り返し充放電後の出力性能の低下が抑制された。
1:蓄電素子(非水電解質二次電池)、
2:電極体、
26:非被覆積層部、
3:ケース、 31:ケース本体、 32:蓋板、
4:セパレータ、
5:集電体、 50:クリップ部材、
6:絶縁カバー、
7:外部端子、 71:面、
8:無機多孔層、
11:正極、
111:正極の金属箔(集電箔)、 112:正極活物質層、
12:負極、
121:負極の金属箔(集電箔)、 122:負極活物質層、
91:バスバ部材、
100:蓄電装置。

Claims (2)

  1. 正極活物質層を有する正極を備え、
    前記正極活物質層は、粒子状の活物質と、粒子状の導電助剤としての炭素質材料と、を含み、
    前記活物質は、Li Ni Mn Co の化学組成で表されるリチウム金属複合酸化物(ただし、0<p≦1.3であり、q+r+s=1であり、0≦q≦1であり、0≦r≦1であり、0≦s≦1であり、1.7≦t≦2.3である)であり、
    前記正極活物質層に含まれる粒子の体積基準による粒径頻度分布は、粒子径が0.5μm以上2.0μm未満の第1範囲、粒子径が2.0μm以上10μm未満の第2範囲、及び、粒子径が10μm以上の第3範囲、にそれぞれピークを有し、
    前記第1範囲、前記第2範囲、及び前記第3範囲のピークの頻度(%)をそれぞれ、P1、P2、P3とし、前記第2範囲のピークの前記粒子の粒子径をD2とし、前記第3範囲のピークの前記粒子の粒子径をD3としたときに、下記関係式(1)〜(3)を全て満たす、リチウムイオン二次電池
    0.6≦[P2/P1] 関係式( 1 )
    0.1≦[P3/P2]≦0.7 関係式( 2 )
    4.5≦[D3/D2]≦10.5 関係式( 3 )
  2. 前記関係式(1)は、下記関係式(4)をさらに満たす、請求項1に記載のリチウムイオン二次電池
    [P2/P1]≦2.0 関係式(4)
JP2016244685A 2016-12-16 2016-12-16 リチウムイオン二次電池 Active JP6853950B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016244685A JP6853950B2 (ja) 2016-12-16 2016-12-16 リチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016244685A JP6853950B2 (ja) 2016-12-16 2016-12-16 リチウムイオン二次電池

Publications (2)

Publication Number Publication Date
JP2018098138A JP2018098138A (ja) 2018-06-21
JP6853950B2 true JP6853950B2 (ja) 2021-04-07

Family

ID=62633138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016244685A Active JP6853950B2 (ja) 2016-12-16 2016-12-16 リチウムイオン二次電池

Country Status (1)

Country Link
JP (1) JP6853950B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7234450B1 (ja) * 2022-08-30 2023-03-07 積水化学工業株式会社 非水電解質二次電池用正極及びその製造方法、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006318926A (ja) * 1998-07-02 2006-11-24 Nippon Chem Ind Co Ltd 正極活物質及び非水電解質二次電池
JP5861992B2 (ja) * 2011-11-09 2016-02-16 株式会社Gsユアサ 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池
JP5734813B2 (ja) * 2011-11-16 2015-06-17 株式会社東芝 電池用電極、非水電解質電池及び電池パック
JP5813736B2 (ja) * 2013-12-03 2015-11-17 株式会社東芝 非水電解質電池

Also Published As

Publication number Publication date
JP2018098138A (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP7085156B2 (ja) 蓄電素子
EP2950369A2 (en) Energy storage device
WO2018043375A1 (ja) 蓄電素子およびその製造方法
WO2017188235A1 (ja) 蓄電素子及びその製造方法
JP6770713B2 (ja) 蓄電素子
JP6850425B2 (ja) 蓄電素子
JP6947182B2 (ja) 蓄電素子及び蓄電素子の製造方法
JP6853950B2 (ja) リチウムイオン二次電池
JP6886636B2 (ja) 蓄電素子
JP2016186886A (ja) 蓄電素子
JP6880488B2 (ja) リチウムイオン二次電池
JP7054479B2 (ja) 蓄電素子
JP2017195158A (ja) 蓄電素子
JP6667142B2 (ja) 蓄電素子
JP6950532B2 (ja) 蓄電素子
JP6895118B2 (ja) 蓄電素子
JP6880496B2 (ja) 蓄電素子
JP6770716B2 (ja) リチウムイオン二次電池
JP6726405B2 (ja) 蓄電素子
JP7008275B2 (ja) 蓄電素子
JP6853944B2 (ja) 蓄電素子
JP2017201588A (ja) 蓄電素子
JPWO2019103019A1 (ja) 蓄電素子及び蓄電装置
JP2017174738A (ja) 蓄電素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191213

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210225

R150 Certificate of patent or registration of utility model

Ref document number: 6853950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150