JP6853950B2 - リチウムイオン二次電池 - Google Patents
リチウムイオン二次電池 Download PDFInfo
- Publication number
- JP6853950B2 JP6853950B2 JP2016244685A JP2016244685A JP6853950B2 JP 6853950 B2 JP6853950 B2 JP 6853950B2 JP 2016244685 A JP2016244685 A JP 2016244685A JP 2016244685 A JP2016244685 A JP 2016244685A JP 6853950 B2 JP6853950 B2 JP 6853950B2
- Authority
- JP
- Japan
- Prior art keywords
- active material
- positive electrode
- material layer
- particle size
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
0.6≦[P2/P1] 関係式(1)
0.1≦[P3/P2]≦0.7 関係式(2)
4.5≦[D3/D2]≦10.5 関係式(3)
斯かる構成により、高レートと低レートとでの放電電気量の差が大きくなることが抑制された蓄電素子を提供できる。
[P2/P1]≦2.0 関係式(4)
0.6≦[P2/P1] 関係式(1)
0.1≦[P3/P2]≦0.7 関係式(2)
4.5≦[D3/D2]≦10.5 関係式(3)
[P2/P1]≦2.0 関係式(4)。
0.6≦[P2/P1] 関係式(1)
0.1≦[P3/P2]≦0.7 関係式(2)
4.5≦[D3/D2]≦10.5 関係式(3)
0.1≦[P3/P2]≦0.7の関係式(2)、及び、4.5≦[D3/D2]≦10.5の関係式(3)が満たされることから、粒子径が最も大きいピークと次に大きいピークとの粒子の大きさ、及び、量が適度な範囲内となる。これにより、大粒子径側の粒子の間に小粒子径の粒子が入り込んで、粒子間の空隙が適度に確保されると考えられる。従って、活物質層における電解液の保持量が適度に確保され、充放電反応が効率良く進み、レートが高くても低くても出力性能が向上されると考えられる。なお、0.6≦[P2/P1]の関係式(1)が満たされるような、最も粒子径が小さいピークの粒子が比較的少ない条件下にて、上記の作用効果が発揮されると考えられる。
斯かる構成により、高レートと低レートとでの放電電気量の差が大きくなることが抑制された蓄電素子を提供できる。
[P2/P1]≦2.0 関係式(4)
斯かる構成により、繰り返し充放電後の出力性能が低下することを抑制できる。
(1)正極の作製
溶剤としてN−メチル−2−ピロリドン(NMP)と、導電助剤(アセチレンブラック)と、バインダ(PVdF)と、活物質(LiNi1/3Co1/3Mn1/3O2)の粒子とを、混合し、混練することで、正極用の合剤を調製した。導電助剤、バインダ、活物質の配合量は、それぞれ4.5質量%、4.5質量%、91質量%とした。調製した正極用の合剤を、アルミニウム箔(厚さ15μm)の両面に、乾燥後の塗布量(目付量)が8.61mg/cm2となるようにそれぞれ塗布した。乾燥後、ロールプレスを行った。その後、真空乾燥して、水分等を除去した。プレス後の活物質層(1層分)の厚さは、32μmであった。活物質層の密度は、2.71g/cm3であった。使用した活物質の比表面積は、1.5m2/gであった。また、活物質の粒子として、中空部を2〜10有するものを使用した。
活物質としては、粒子状の非晶質炭素(難黒鉛化炭素)を用いた。また、バインダとしては、PVdFを用いた。負極用の合剤は、溶剤としてNMPと、バインダと、活物質とを混合、混練することで調製した。バインダは、固形分中で7質量%となるように配合し、活物質は、93質量%となるように配合した。調製した負極用の合剤を、乾燥後の塗布量(目付量)が4.0mg/cm2となるように、銅箔(厚さ8μm)の両面にそれぞれ塗布した。乾燥後、ロールプレスを行い、真空乾燥して、水分等を除去した。活物質層(1層分)の厚さは、35μmであった。活物質層の密度は、1.13g/cm3であった。
セパレータ基材の面上に無機多孔層を形成したものを作製した。セパレータ基材は、厚さが15μmのポリエチレン製微多孔膜である。無機多孔層は、厚さが6μmであり、95質量%のアルミナ粒子と5質量%のポリフッ化ビニリデンとを含む。セパレータ及び無機多孔層の積層物の透気抵抗度は、100秒/100ccであった。
電解液としては、以下の方法で調製したものを用いた。非水溶媒として、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートを、いずれも1容量部ずつ混合した溶媒を用い、この非水溶媒に、塩濃度が1mol/LとなるようにLiPF6を溶解させ、電解液を調製した。
上記の正極、上記の負極、上記の電解液、セパレータ、及びケースを用いて、一般的な方法によって電池を製造した。
まず、セパレータが上記の正極および負極の間に配されて積層されてなるシート状物を巻回した。無機多孔層は、セパレータ基材と正極との間に配置した。次に、巻回されてなる電極体を、ケースとしてのアルミニウム製の角形電槽缶のケース本体内に配置した。続いて、正極及び負極を2つの外部端子それぞれに電気的に接続させた。さらに、ケース本体に蓋板を取り付けた。上記の電解液を、ケースの蓋板に形成された注液口からケース内に注入した。最後に、ケースの注液口を封止することにより、ケースを密閉した。
1.0Cレートで4.2Vに達するまで電池を充電した後、さらに4.2Vの定電圧で電池を3時間放電し、その後、1.0Cレートで2.0Vまで定電流放電した。続いて、2.0Vで5時間の定電圧放電を行った。そして、電池を乾燥雰囲気下で解体した。解体した電池から正極の一部(1cm×1cm)を切り出し、切り出した正極を50倍以上の質量のNMPに浸漬し、15分間の超音波分散によって前処理を施すことで正極活物質層と金属箔とを分離し、金属箔を取り除いた。超音波処理を施した正極活物質層を用いて、測定試料(活物質及び導電助剤)を含む分散液を調製した。測定試料の粒径頻度分布の測定では、測定装置としてレーザー回折式粒度分布測定装置(マイクロトラック・ベル社製「MT3000」)、測定制御ソフトとして付属のアプリケーションソフトフェアを用いた。具体的な測定手法としては、散乱式の測定モードを採用し、上記分散液が循環する湿式セルを、2分間超音波環境下に置いた後に、レーザー光を照射し、測定試料から散乱光分布を得た。そして、散乱光分布を対数正規分布により近似して測定を行った。
粒子径が0.5μm以上2.0μm未満の第1範囲、粒子径が2.0μm以上10μm未満の第2範囲、及び、粒子径が10μm以上の第3範囲の各ピークの頻度(%)を、それぞれ、P1、P2、P3とした。
第2範囲のピークの粒子の粒子径をD2とし、第3範囲のピークの粒子の粒子径をD3とした。各粒子径を上記の付属アプリケーションソフトフェアによって算出した。
電池を5Aの電流で2.0Vまで放電した後、5時間2.0Vで保持した。保持後、5時間休止させ、ドライルームまたはアルゴン雰囲気化のグローブボックス内でケース内部から電極体を取り出した。純度99.9%以上、水分量20ppm以下のDMCで、電極体から取り出した正極及び負極をそれぞれ3回以上洗浄した。その後、DMCを真空乾燥によって除去した。そして、設定した面積S(cm2)、例えば、4cm2(2cm×2cm)の大きさの試験片を切り出し、厚みT1(cm)及び重量W1(g)を測定した。純水に浸漬すること等によって、活物質層と金属箔とを分離させた。分離後に金属箔の厚みT2(cm)及び重量W2(g)を測定した。活物質層の密度を、{(W1−W2)/(T1−T2)}/Sによって算出した。
電池の構成を表1に示す構成に変更した点以外は、実施例1と同様にしてリチウムイオン二次電池を製造した。
4.2Vまで充電した電池を40Aの放電電流で2.4Vまで放電することで、40A放電時の放電電気量C1を測定した。
上記の測定を行った電池を4.2Vまで充電し、200Aの放電電流で2.4Vまで放電することで、200A放電時の放電電気量C2を測定した。
そして、[C2/C1]×100の計算式によって算出された値を放電レート特性とした。
・放電容量の確認
各電池について、25℃の恒温槽中で5Aの充電電流、4.2Vの定電流定電圧充電を3時間行い、10分の休止後、5Aの放電電流にて2.4Vまで定電流放電を行うことで、電池の放電容量を測定した。
・初期の出力確認試験
放電容量を測定した電池を、25℃の恒温槽中でSOC(充電状態、State Of Charge)50%に調整し、60Aの電流値で10秒間放電した。60秒間の休止後、2.5Aの電流値で2.4Vまで定電流放電し、その後、2.5Aの電流値で斯かる放電による電気量と同じ電気量を充電した。300秒間の休止後、放電電流値を90A、120A、150A、200Aと変化させた点以外、同じ条件で各電流値での放電を実施した。その後、各放電電流値を横軸に、各電流値の1秒目の電圧を縦軸に、それぞれプロットし、最小二乗法により、直線線形による近似直線を作成した。その直線の傾きを電池の抵抗Rとした。算出したRに基づいて、電池の出力Pを以下の式により算出した。
P[W]=
2.5V × (50%SOCの開回路電圧(3.65V)−2.4V)/R
・充放電サイクル試験
SOC50%に調整した電池を55℃にて4時間保持し、SOC80%になるまで40Aの定電流充電を行い、その後、SOC80%からSOC20%まで40Aの定電流放電を行うことで、SOC80%の充電電圧V80とSOC20%の放電電圧V20を決定した。
充電時のカットオフ電圧をV80とし、放電時のカットオフ電圧をV20として、55℃、40Aの定電流条件の下、休止時間を設定せずに連続してサイクル試験を行った。サイクル時間は合計3000時間とした。3000時間のサイクル試験終了後、25℃で4時間保持し、前述の出力確認試験を行った。出力低下率は、サイクル試験前の出力(初期出力)をP1、サイクル試験後の出力(劣化後出力)をP2としたとき、出力低下率=100−P2/P1×100の式から算出した。
また、表1から把握されるように、上記の関係式(1)〜(4)の全てが満たされる実施例の電池では、繰り返し充放電後の出力性能の低下が抑制された。
2:電極体、
26:非被覆積層部、
3:ケース、 31:ケース本体、 32:蓋板、
4:セパレータ、
5:集電体、 50:クリップ部材、
6:絶縁カバー、
7:外部端子、 71:面、
8:無機多孔層、
11:正極、
111:正極の金属箔(集電箔)、 112:正極活物質層、
12:負極、
121:負極の金属箔(集電箔)、 122:負極活物質層、
91:バスバ部材、
100:蓄電装置。
Claims (2)
- 正極活物質層を有する正極を備え、
前記正極活物質層は、粒子状の活物質と、粒子状の導電助剤としての炭素質材料と、を含み、
前記活物質は、Li p Ni q Mn r Co s O t の化学組成で表されるリチウム金属複合酸化物(ただし、0<p≦1.3であり、q+r+s=1であり、0≦q≦1であり、0≦r≦1であり、0≦s≦1であり、1.7≦t≦2.3である)であり、
前記正極活物質層に含まれる粒子の体積基準による粒径頻度分布は、粒子径が0.5μm以上2.0μm未満の第1範囲、粒子径が2.0μm以上10μm未満の第2範囲、及び、粒子径が10μm以上の第3範囲、にそれぞれピークを有し、
前記第1範囲、前記第2範囲、及び前記第3範囲のピークの頻度(%)をそれぞれ、P1、P2、P3とし、前記第2範囲のピークの前記粒子の粒子径をD2とし、前記第3範囲のピークの前記粒子の粒子径をD3としたときに、下記関係式(1)〜(3)を全て満たす、リチウムイオン二次電池。
0.6≦[P2/P1] 関係式( 1 )
0.1≦[P3/P2]≦0.7 関係式( 2 )
4.5≦[D3/D2]≦10.5 関係式( 3 ) - 前記関係式(1)は、下記関係式(4)をさらに満たす、請求項1に記載のリチウムイオン二次電池。
[P2/P1]≦2.0 関係式(4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016244685A JP6853950B2 (ja) | 2016-12-16 | 2016-12-16 | リチウムイオン二次電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016244685A JP6853950B2 (ja) | 2016-12-16 | 2016-12-16 | リチウムイオン二次電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018098138A JP2018098138A (ja) | 2018-06-21 |
JP6853950B2 true JP6853950B2 (ja) | 2021-04-07 |
Family
ID=62633138
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016244685A Active JP6853950B2 (ja) | 2016-12-16 | 2016-12-16 | リチウムイオン二次電池 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6853950B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7234450B1 (ja) * | 2022-08-30 | 2023-03-07 | 積水化学工業株式会社 | 非水電解質二次電池用正極及びその製造方法、並びにこれを用いた非水電解質二次電池、電池モジュール、及び電池システム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006318926A (ja) * | 1998-07-02 | 2006-11-24 | Nippon Chem Ind Co Ltd | 正極活物質及び非水電解質二次電池 |
JP5861992B2 (ja) * | 2011-11-09 | 2016-02-16 | 株式会社Gsユアサ | 非水電解質二次電池用活物質、その活物質の製造方法、非水電解質二次電池用電極及び非水電解質二次電池 |
JP5734813B2 (ja) * | 2011-11-16 | 2015-06-17 | 株式会社東芝 | 電池用電極、非水電解質電池及び電池パック |
JP5813736B2 (ja) * | 2013-12-03 | 2015-11-17 | 株式会社東芝 | 非水電解質電池 |
-
2016
- 2016-12-16 JP JP2016244685A patent/JP6853950B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018098138A (ja) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7085156B2 (ja) | 蓄電素子 | |
EP2950369A2 (en) | Energy storage device | |
WO2018043375A1 (ja) | 蓄電素子およびその製造方法 | |
WO2017188235A1 (ja) | 蓄電素子及びその製造方法 | |
JP6770713B2 (ja) | 蓄電素子 | |
JP6850425B2 (ja) | 蓄電素子 | |
JP6947182B2 (ja) | 蓄電素子及び蓄電素子の製造方法 | |
JP6853950B2 (ja) | リチウムイオン二次電池 | |
JP6886636B2 (ja) | 蓄電素子 | |
JP2016186886A (ja) | 蓄電素子 | |
JP6880488B2 (ja) | リチウムイオン二次電池 | |
JP7054479B2 (ja) | 蓄電素子 | |
JP2017195158A (ja) | 蓄電素子 | |
JP6667142B2 (ja) | 蓄電素子 | |
JP6950532B2 (ja) | 蓄電素子 | |
JP6895118B2 (ja) | 蓄電素子 | |
JP6880496B2 (ja) | 蓄電素子 | |
JP6770716B2 (ja) | リチウムイオン二次電池 | |
JP6726405B2 (ja) | 蓄電素子 | |
JP7008275B2 (ja) | 蓄電素子 | |
JP6853944B2 (ja) | 蓄電素子 | |
JP2017201588A (ja) | 蓄電素子 | |
JPWO2019103019A1 (ja) | 蓄電素子及び蓄電装置 | |
JP2017174738A (ja) | 蓄電素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190327 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191211 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191213 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200821 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6853950 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |