WO2012176904A1 - リチウムイオン二次電池用正極活物質の製造方法 - Google Patents

リチウムイオン二次電池用正極活物質の製造方法 Download PDF

Info

Publication number
WO2012176904A1
WO2012176904A1 PCT/JP2012/066063 JP2012066063W WO2012176904A1 WO 2012176904 A1 WO2012176904 A1 WO 2012176904A1 JP 2012066063 W JP2012066063 W JP 2012066063W WO 2012176904 A1 WO2012176904 A1 WO 2012176904A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
composition
positive electrode
composite oxide
active material
Prior art date
Application number
PCT/JP2012/066063
Other languages
English (en)
French (fr)
Inventor
角崎 健太郎
海生 曽
河里 健
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013521646A priority Critical patent/JP6253408B2/ja
Priority to KR1020137034016A priority patent/KR101958038B1/ko
Priority to CN201280030897.1A priority patent/CN103636035B/zh
Publication of WO2012176904A1 publication Critical patent/WO2012176904A1/ja
Priority to US14/139,952 priority patent/US9306213B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery. Moreover, this invention relates to the positive electrode for lithium ion secondary batteries and the lithium ion secondary battery using the positive electrode active material for lithium ion secondary batteries obtained by this manufacturing method.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • the positive electrode active material for a lithium ion secondary battery includes a composite oxide of lithium and a transition metal such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMnO 4 (hereinafter referred to as a lithium-containing composite). Oxide) is also used.
  • discharge capacity the discharge capacity per unit mass or the characteristic that the discharge capacity does not decrease after repeated charge / discharge cycles
  • rate characteristics characteristics in which discharge capacity does not decrease when discharged at a high discharge rate.
  • Patent Document 1 after lithium-containing composite oxide is dispersed in an aluminum nitrate aqueous solution, an ammonium fluoride aqueous solution is added, filtered and washed, and then heated, and aluminum fluoride is formed on the surface of the lithium-containing composite oxide.
  • a method of forming a coating layer is described.
  • this method has a problem in that productivity is inferior because the process is complicated to perform both filtration and washing, and waste liquid treatment is required. Further, when the wet cake obtained after filtration is dried, there is a problem that the positive electrode active material is aggregated to easily form coarse particles.
  • Patent Document 2 an aqueous solution 100ml amorphous AlPO k phase is dispersed in colloidal form, dried at 130 ° C. after dispersing the lithium-containing composite oxide 20g, containing AlPO k compound by further heat treatment A method of forming a surface treatment layer is described.
  • this method has a problem that a large amount of water is required to dry a large amount of water, and the positive electrode active material aggregates and forms coarse particles in the same manner as described above during drying.
  • a method for obtaining the substance is described. However, this method has a problem that it is difficult to coat the lithium-containing composite oxide with a compound other than the oxide.
  • the present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery, which can obtain a positive electrode active material having excellent cycle characteristics and rate characteristics even when charged at a high voltage, and a positive electrode active material for a lithium ion secondary battery.
  • a positive electrode for a lithium ion secondary battery and a lithium ion secondary battery are provided.
  • the present invention relates to the following inventions.
  • the total amount A (ml / 100 g) of the composition (1) and the composition (2) to be contacted per 100 g of the lithium-containing composite oxide is the oil absorption B (ml / 100 g) of the lithium-containing composite oxide. ), A ratio of 0.1 ⁇ A / B ⁇ 5.
  • composition (1) Li, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al,
  • Composition (2) having an anion N having at least one element (n) selected from the group consisting of S, P, F, and B and reacting with the cation M to form a sparingly soluble salt Aqueous solution.
  • anionic N contained in the composition (2) is, SO 4 2-, PO 4 3- , and F - is at least one anion selected from the group consisting of, [1] or [2 ]
  • [4] The method for producing a positive electrode active material for a lithium ion secondary battery according to any one of [1] to [3], wherein the heating is performed at 250 to 700 ° C.
  • the amount (molar ratio) of the metal element (m) contained in the composition (1) is 0.001 to 0.00 with respect to the total amount of transition metal elements contained in the lithium-containing composite oxide.
  • the amount (molar ratio) of anions N contained in the composition (2) is 0.001 to 0.05 with respect to the total amount of transition metal elements contained in the lithium-containing composite oxide.
  • [7] Contacting the lithium-containing composite oxide with the composition (1) or the composition (2), the composition (1) or the composition (2) is added to the lithium-containing composite oxide under stirring.
  • a method for producing a positive electrode active material is produced.
  • Contact between the lithium-containing composite oxide and the composition (1) or the composition (2) is carried out by spraying the composition (1) or the composition (2) with the lithium-containing composite.
  • a positive electrode for a lithium ion secondary battery comprising a positive electrode active material for a lithium ion secondary battery produced by the production method according to any one of the above [1] to [8] and a binder.
  • a lithium ion secondary battery including the positive electrode, the negative electrode, and a nonaqueous electrolyte according to [9].
  • a positive electrode active material for a lithium ion secondary battery excellent in cycle characteristics and rate characteristics can be produced with high productivity even when charged at a high voltage. Further, in the production method of the present invention, filtration and washing are unnecessary, the lithium-containing composite oxide is not agglomerated, and handling such as stirring is easy, and agglomeration hardly occurs during drying. Is significantly improved.
  • the positive electrode for a lithium ion secondary battery using the positive electrode active material of the present invention and the lithium ion secondary battery using this positive electrode have excellent cycle characteristics even when charged at a high voltage. And rate characteristics can be realized.
  • FIG. 1 is a diagram for explaining an example of a method for producing a positive electrode active material for a lithium ion secondary battery according to the present invention.
  • the amount A of the composition 1 and the composition 2 and the oil absorption amount of the lithium-containing composite oxide. 4 is a graph showing a relationship with B.
  • the method for producing a positive electrode active material of the present invention comprises a lithium ion secondary battery in which a lithium-containing composite oxide containing a Li element and a transition metal element is brought into contact with the following composition (1) and composition (2) and heated.
  • a method for producing a positive electrode active material for a battery, wherein the total amount A (ml / 100 g) of the composition (1) and the composition (2) to be contacted per 100 g of the lithium-containing composite oxide is the lithium-containing composite oxide.
  • Composition (1) Li, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, An aqueous solution containing a cation M having at least one metal element (m) selected from the group consisting of In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb.
  • Composition (2) having an anion N having at least one element (n) selected from the group consisting of S, P, F, and B and reacting with the cation M to form a sparingly soluble salt Aqueous solution.
  • the lithium-containing composite oxide in the present invention contains a Li element and a transition metal element.
  • the transition metal element for example, at least one selected from the group consisting of Ni, Co, Mn, Fe, Cr, V, and Cu can be used.
  • the lithium-containing composite oxide include a compound (i) represented by the following formula (1), a substance represented by the following formula (2), or a compound that is an olivine-type metal lithium salt that is a composite thereof. (Ii), or a compound (iii) represented by the following formula (3-1) and a compound (iv) represented by the following formula (4) are preferable. These materials may be used individually by 1 type, and may use 2 or more types together.
  • the compound (iii) is particularly preferable in view of high capacity, and the compound represented by the following formula (3-1) is most preferable.
  • Examples of the olivine-type metal lithium salt (ii) include LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 2 FePO 4 F, Li 2 MnPO 4 F, Examples include Li 2 NiPO 4 F, Li 2 CoPO 4 F, Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 NiSiO 4 , and Li 2 CoSiO 4 .
  • Compound (iii) is a compound represented by the following formula (3-1).
  • the notation of the compound represented by the following formula (3-1) is a composition formula before performing treatment such as charge / discharge and activation.
  • activation means removing lithium oxide (Li 2 O) or lithium and lithium oxide from the lithium-containing composite oxide.
  • electrochemical activation method there is an electrochemical activation method in which charging is performed at a voltage higher than 4.4 V or 4.6 V (a value expressed as a potential difference from the oxidation / reduction potential of Li + / Li). It is done.
  • the chemical activation method using the chemical reaction using acids such as a sulfuric acid, hydrochloric acid, or nitric acid, is mentioned.
  • Me ′ is at least one selected from the group consisting of Co, Ni, Cr, Fe, Al, Ti, Zr, and Mg.
  • 0.09 ⁇ x ⁇ 0.3, y> 0, z> 0, 1.9 ⁇ p ⁇ 2.1, 0 ⁇ q ⁇ 0.1, and 0.4 ⁇ y / (y + z) ⁇ 0.8, x + y + z 1, 1.2 ⁇ (1 + x) / (y + z). That is, in the compound (iii), the proportion of Li exceeds 1.2 times mol with respect to the total of Mn and Me ′.
  • the formula (3-1) is also characterized in that it is a compound containing a specific amount of Mn, and the ratio of Mn to the total amount of Mn and Me ′ is preferably 0.4 to 0.8, preferably 0.55 to 0. .75 is more preferred.
  • Mn is in the above range, the discharge capacity becomes high.
  • q represents the ratio of F, but q is 0 when F does not exist.
  • P is a value determined according to x, y, z, and q, and is 1.9 to 2.1.
  • the composition ratio of Li element to the total molar amount of the transition metal element is 1.25 ⁇ (1 + x) / (y + z) ⁇ 1. 75 is preferable, 1.35 ⁇ (1 + x) / (y + z) ⁇ 1.65 is more preferable, and 1.40 ⁇ (1 + x) / (y + z) ⁇ 1.55 is particularly preferable.
  • the composition ratio is in the above range, a positive electrode material having a high discharge capacity per unit mass can be obtained when a high charging voltage of 4.6 V or higher is applied.
  • a compound represented by the following formula (3-2) is more preferable.
  • 0.09 ⁇ x ⁇ 0.3, 0.36 ⁇ y ⁇ 0.73, 0 ⁇ v ⁇ 0.32, 0 ⁇ w ⁇ 0.32, 1.9 ⁇ p ⁇ 2.1 and x + y + v + w 1.
  • the composition ratio of the Li element to the sum of the Mn, Ni, and Co elements is 1.2 ⁇ (1 + x) / (y + v + w) ⁇ 1.8, and 1.35 ⁇ (1 + x) /(Y+v+w) ⁇ 1.65 is preferable, and 1.45 ⁇ (1 + x) / (y + v + w) ⁇ 1.55 is more preferable.
  • the compound (iii) preferably has a layered rock salt type crystal structure (space group R-3m).
  • the lithium-containing composite oxide is preferably in the form of particles, and the average particle size (D50) is preferably 0.03 to 30 ⁇ m, more preferably 0.04 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the average particle size (D50) is a volume-based cumulative particle size distribution at which the particle size distribution is obtained on a volume basis and the cumulative curve is 50% in a cumulative curve with the total volume being 100%. 50% diameter is meant.
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
  • the particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like, and measuring the particle size distribution (for example, using a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA). Used).
  • the average particle diameter (D50) is preferably 3 to 30 ⁇ m, more preferably 4 to 25 ⁇ m, and more preferably 5 to 20 ⁇ m. Is particularly preferred.
  • the average particle diameter (D50) is preferably 0.03 to 5 ⁇ m, more preferably 0.04 to 1 ⁇ m, and particularly preferably 0.05 to 0.5 ⁇ m. preferable.
  • the specific surface area of the lithium-containing composite oxide is preferably 0.1 ⁇ 30m 2 / g, particularly preferably 0.15 ⁇ 25m 2 / g.
  • the specific surface area is 0.1 to 30 m 2 / g, the capacity is high and a dense positive electrode layer can be formed.
  • the lithium composite oxide is a compound (i) or a compound selected from compound (iv)
  • the specific surface area is preferably 0.1 ⁇ 1m 2 / g, more preferably 0.15 ⁇ 0.6m 2 / g.
  • the specific surface area is preferably 0.3 ⁇ 10m 2 / g, more preferably 0.5 ⁇ 5m 2 / g, 1 ⁇ 4m 2 / g is Particularly preferred.
  • the specific surface area of preferably 1 ⁇ 30m 2 / g, more preferably 10 ⁇ 25m 2 / g.
  • a lithium-containing composite oxide precursor (coprecipitation composition) obtained by a coprecipitation method and a lithium compound are mixed and fired, a hydrothermal synthesis method, a sol-gel method A dry mixing method (solid phase method), an ion exchange method, or a glass crystallization method can be used as appropriate.
  • a hydrothermal synthesis method a sol-gel method
  • a dry mixing method solid phase method
  • an ion exchange method a glass crystallization method
  • the lithium-containing composite oxide precursor obtained by the coprecipitation method and the lithium compound are mixed and fired. It is preferable to use the method to do.
  • composition (1) and Composition (2) The composition (1) in the present invention includes Li, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, At least one metal element (m) selected from the group consisting of Zn, Al, In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb (hereinafter referred to as metal element (m) It is also an aqueous solution containing a cation M having a.
  • the cation M may be an ion of the metal element (m) or a complex ion having the metal element (m).
  • the cation M is preferably an ion of the metal element (m).
  • the metal element (m) As the metal element (m), Al is preferable, and as the cation M, Al 3+ is preferable.
  • the composition (1) preferably contains the metal element (m) and dissolves the water-soluble compound (1) that generates the cation M in an aqueous solution.
  • water-soluble as used herein means that the solubility in distilled water at 25 ° C. (the mass [g] of the solute dissolved in 100 g of the saturated solution) is more than 2. When the solubility is more than 2, the amount of the cation M contained in the composition (1) can be increased, and thus the coating layer (I) described later can be efficiently formed.
  • the solubility of the water-soluble compound (1) is more preferably more than 5, and particularly preferably more than 10.
  • the water-soluble compound (1) include inorganic salts such as nitrates, sulfates and chlorides of metal elements (m), acetates, citrates, maleates, formates, lactates, lactates and oxalates. And organic salts, organic complexes, and ammine complexes.
  • nitrates, organic acid salts, organic complexes, and ammine complexes are particularly preferable because they are easily decomposed by heat and have high solubility in a solvent.
  • aluminum nitrate, aluminum acetate, aluminum oxalate, aluminum citrate, aluminum lactate, basic aluminum lactate and aluminum maleate are preferable.
  • the total amount of the metal element M contained in the composition (1) is added to the lithium-containing composite oxide.
  • the total amount of transition metal elements contained is preferably in the range of 0.001 to 0.05, more preferably 0.003 to 0.04, and particularly preferably 0.005 to 0.03.
  • the composition (2) in the present invention has at least one element (n) selected from the group consisting of S, P, F, and B (hereinafter also referred to as element (n)), and is a cation.
  • element (n) selected from the group consisting of S, P, F, and B
  • the solubility in distilled water at 25 ° C. is more than 2. If the solubility of the water-soluble composition (2) is more than 2, the amount of anions N contained in the composition (2) can be increased, so that the coating layer (I) can be efficiently formed. .
  • the solubility of the water-soluble composition (2) is more preferably more than 5, and particularly preferably more than 10.
  • the anion N include SO 4 2 ⁇ , SO 3 2 ⁇ , S 2 O 3 2 ⁇ , SO 6 2 ⁇ , SO 8 2 ⁇ , PO 4 3 ⁇ , P 2 O 7 4 ⁇ , PO 3 3 ⁇ , PO 2 3 ⁇ , F ⁇ , BO 3 3 ⁇ , BO 2 ⁇ , B 4 O 7 2 ⁇ , B 5 O 8 ⁇ and the like can be mentioned.
  • SO 4 2 ⁇ , PO 4 3 ⁇ , and F ⁇ are particularly preferable from the viewpoint of stability and handleability.
  • the water-soluble compound (2) may be any compound having the element (n) and capable of forming a hardly soluble salt by reacting with the cation M.
  • H 2 SO 4 , H 2 SO 3 , H 2 S 2 O 3 , H 2 SO 6 , H 2 SO 8 , H 3 PO 4 , H 4 P 2 O 7 , H 3 PO 3 , H 3 PO 2 , HF, H 3 BO 3 , HBO 2 examples thereof include acids such as H 2 B 4 O 7 and HB 5 O 8 , or salts thereof such as ammonium salts, amine salts, lithium salts, sodium salts, potassium salts and the like. Among these, it is preferable to use a salt rather than an acid in terms of handleability and safety. An ammonium salt is particularly preferable in that it is decomposed and removed when heated.
  • the quantity (molar ratio) of the anion N contained in the composition (2) is the lithium-containing composite oxide. Is preferably in the range of 0.001 to 0.05, more preferably 0.003 to 0.04, and particularly preferably 0.005 to 0.03.
  • total amount of cation M contained in composition (1) ⁇ average valence of cation M
  • total amount of anion N contained in composition (2) ⁇ average of anion N
  • the valence is preferably 0.1 to 10, more preferably 0.2 to 4, and particularly preferably 0.3 to 2. Within this range, the cycle characteristics and rate characteristics of the lithium ion secondary battery are excellent.
  • total amount of cation M contained in composition (1) ⁇ average valence of cation M) / (total amount of anion N contained in composition (2) ⁇ average valence of anion N) ) Is less than 1, the charge / discharge efficiency is improved. Therefore, it is preferably 0.1 to 0.99, more preferably 0.2 to 0.9, and 0.3 to 0.8. And particularly preferred. Since the negative charge due to the anion N is larger than the positive charge due to the cation M, the excess lithium ions contained in the lithium-containing composite oxide are combined with the anion N, so that it is considered that the charge / discharge efficiency is improved. .
  • water may be used as the solvent for the composition (1) and the composition (2), but to the extent that the solubility of the water-soluble compound (1) and the water-soluble compound (2) is not impaired.
  • a water-soluble alcohol or polyol may be added.
  • the water-soluble alcohol include methanol, ethanol, 1-propanol, and 2-propanol.
  • the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, and glycerin.
  • the total content of the water-soluble alcohol and the polyol contained in the solvent is preferably 0 to 20% by mass, more preferably 0 to 10% by mass with respect to the total amount of the solvent. Since it is excellent in terms of safety, environment, handleability, and cost, it is particularly preferable that the solvent is only water.
  • the composition (1) and the composition (2) may each contain a pH adjusting agent in order to adjust the solubility of the water-soluble compound (1) and the water-soluble compound (2).
  • a pH adjuster those that volatilize or decompose upon heating are preferable. Specifically, organic acids such as acetic acid, citric acid, lactic acid, formic acid, maleic acid, and oxalic acid, and ammonia are preferable. As described above, when a pH adjuster that volatilizes or decomposes is used, it is difficult for impurities to remain, and thus good battery characteristics are easily obtained.
  • the pH of the composition (1) and the composition (2) is preferably 2 to 12, more preferably 3 to 11, and particularly preferably 4 to 10, respectively.
  • a spray coating method is particularly preferable as a method for contacting the lithium-containing composite oxide with the composition (1) and the composition (2).
  • the spray coating method has a simple process and can uniformly coat the surface of the lithium-containing composite oxide with a coating layer (I) described later.
  • the order in which the composition (1) and the composition (2) are brought into contact with the lithium-containing composite oxide is that the composition (1) is brought into contact with the lithium-containing composite oxide and then the composition (2) is brought into contact therewith.
  • the composition (2) may be contacted and then the composition (1) may be contacted, the composition (1) and the composition (2) may be alternately contacted a plurality of times, or The composition (1) and the composition (2) may be contacted simultaneously.
  • the composition (1) is brought into contact with the lithium-containing composite oxide and then the composition (2) is brought into contact with the lithium-containing composite oxide. Is particularly preferred.
  • the concentration of the water-soluble compound (1) contained in the composition (1) is preferably higher because it is necessary to remove the solvent by heating in a later step. Moreover, since viscosity will become high when this density
  • the concentration is preferably 0.5 to 30% by mass, particularly preferably 2 to 20% by mass in terms of metal element (m).
  • the concentration of the water-soluble compound (2) contained in the composition (2) is preferably higher since it is necessary to remove the solvent by heating in the subsequent step. Similarly to the composition (1), if this concentration is too high, the viscosity becomes high and the uniform mixing property between the lithium-containing composite oxide and the composition (2) is lowered.
  • the concentration of the water-soluble compound (2) contained is preferably 0.5 to 30% by mass, particularly preferably 2 to 20% by mass in terms of anion N.
  • the total amount A (ml / 100 g) of the composition (1) and the composition (2) to be contacted per 100 g of the lithium-containing composite oxide is the oil absorption B (ml / 100 g) of the lithium-containing composite oxide.
  • it is set as the range of following Formula ⁇ 0.1 ⁇ A / B ⁇ 5 ⁇ .
  • the oil absorption amount B is obtained according to the method defined in JIS-K-5101-13-1: 2004.
  • the lithium-containing composite oxide is not agglomerated during spray coating and is stirred. It is particularly preferable because it is easy to do.
  • the composition (1) and the composition (2) are mixed with the lithium-containing composite while drying so that the lithium-containing composite oxide does not become agglomerated. It is preferable to contact the oxide. Spray coating and drying may be performed alternately, or heating may be performed while spray coating is performed, and drying may be performed simultaneously.
  • the drying temperature is preferably 40 to 200 ° C, more preferably 60 to 150 ° C.
  • the lithium-containing composite oxide is agglomerated, it is preferably pulverized.
  • the release amount of the composition (1) and the composition (2) in the spray coating method is preferably 0.005 to 0.1 g / min with respect to 1 g of the lithium-containing composite oxide.
  • the ratio of ⁇ amount of composition (1) / amount of composition (2) ⁇ is that the mixing properties of composition (1) and composition (2) with the lithium-containing composite oxide are good.
  • the range of 0.1 to 10 is preferable, and the range of 0.25 to 4 is particularly preferable.
  • the composition (1) or the composition (2) is added to the lithium-containing composite oxide being stirred and mixed with the lithium-containing composite oxide, whereby these compositions are mixed with lithium. It is preferable to contact the containing composite oxide.
  • a stirring device a low shearing stirrer such as a drum mixer or solid air can be used.
  • the coating layer (I) described later was uniformly coated on the surface of the lithium-containing composite oxide. Particles (II) described later can be obtained.
  • the lithium-containing composite oxide is brought into contact with the composition (1) and the composition (2) and heated.
  • a target positive electrode active material can be obtained, and volatile impurities such as water and organic components can be removed.
  • the composition (1) and the composition (2) are brought into contact with the lithium-containing composite oxide, and the entire amount of the composition (1) and the composition (2) is supported and dried without performing filtration or the like. It is preferable to heat.
  • the heating is preferably performed in an oxygen-containing atmosphere.
  • the heating temperature is preferably 250 to 700 ° C, more preferably 350 to 600 ° C. If heating temperature is 250 degreeC or more, it will be easy to form the below-mentioned coating layer (I) containing a metal element (m) and the anion N. FIG. Further, since volatile impurities such as residual moisture are reduced, it is possible to suppress deterioration of cycle characteristics. Moreover, if heating temperature is 700 degrees C or less, a metal element (m) will spread
  • the heating temperature is preferably 250 ° C. to 550 ° C., more preferably 350 to 500 ° C. If heating temperature is 550 degrees C or less, the below-mentioned coating layer (I) will become difficult to crystallize.
  • the heating time is preferably 0.1 to 24 hours, more preferably 0.5 to 18 hours, and particularly preferably 1 to 12 hours. By making heating time into the said range, the below-mentioned coating layer (I) can be efficiently coat
  • the pressure at the time of a heating is not specifically limited, A normal pressure or pressurization is preferable and a normal pressure is especially preferable.
  • the coating layer (I) containing the metal element (m) and the anion N is formed on the surface of the lithium-containing composite oxide containing the Li element and the transition metal element. Particles (II).
  • the coating layer (I) is formed by the composition (1) and the composition (2) used in the production method. That is, the coating layer (I) includes the metal element (m) and the anion N having the element (n).
  • the coating layer (I) is preferably a hardly soluble salt in which a cation M and an anion N having a metal element (m) are ion-bonded.
  • “poorly soluble” means that the solubility in distilled water at 25 ° C. (the mass [g] of the solute dissolved in 100 g of the saturated solution) is 0-2. If the solubility is from 0 to 2, stability is high and it is difficult to absorb moisture, so it is considered that impurities such as moisture do not remain and cycle characteristics are improved. Further, it is more preferable that the solubility of the hardly soluble salt is 0 to 1 from the point that the above-mentioned effect becomes remarkable, and it is particularly preferable that the solubility is 0 to 0.5. Further, as the anion N, the anion N can be used in the same manner, and the preferred embodiment is also the same.
  • AlPO 4 , Nb 3 (PO 4 ) 5 , Zr 3 (PO 4 ) 4 , AlF 3 , ZrF 4 , NbF 3 , or NbF 5 are preferable, and AlPO 4 or AlF 3 is particularly preferable.
  • the coating layer (I) contains an oxide, Al 2 O 3 , ZrO 2 , Nb 2 O 3 and Nb 2 O 5 are preferable, and Al 2 O 3 is particularly preferable.
  • the coating layer (I) contains a hydroxide, Al (OH) 3 , Zr (OH) 4 , Nb (OH) 3 , or Nb (OH) 5 is preferable, and Al (OH) 3 is particularly preferable.
  • the coating layer (I) may contain a lithium salt produced by a reaction between lithium ions and anions N contained in the lithium-containing composite oxide.
  • the lithium salt include LiF, Li 3 PO 4 , Li 2 SO 4 and the like.
  • the positive electrode active material obtained by the production method of the present invention has the coating layer (I), the contact between the lithium-containing composite oxide and the electrolytic solution can be reduced. It is considered that elution of transition metal elements such as Mn into the metal can be suppressed, and cycle characteristics are improved. Moreover, it can suppress that the decomposition product of electrolyte solution adheres to the lithium containing complex oxide surface, and it is thought that a rate characteristic improves.
  • the coating layer (I) may be crystalline or amorphous, and is preferably amorphous.
  • “amorphous” means that a peak attributed to the coating layer (I) is not observed in X-ray diffraction measurement (hereinafter also referred to as XRD).
  • XRD X-ray diffraction measurement
  • the average particle size of the coating layer (I) is preferably 0.1 to 100 nm, more preferably 0.1 to 50 nm, and particularly preferably 0.1 to 30 nm.
  • the shape and average particle diameter of the coating layer (I) can be evaluated by an electron microscope such as SEM (scanning electron microscope) or TEM (transmission electron microscope).
  • the average particle diameter is expressed as an average particle diameter of particles covering the surface of the lithium-containing composite oxide.
  • the particles (II) in the present invention are particles in which the surface of the lithium-containing composite oxide is coated with the coating layer (I).
  • the coating means a state in which the coating layer (I) is chemically adsorbed or physically adsorbed on part or all of the surface of the lithium-containing composite oxide.
  • the shape of the particles (II) may be any of particles, films, fibers, lumps and the like.
  • the average particle size of the particles (II) is preferably 3 to 30 ⁇ m, more preferably 4 to 25 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the coating layer (I) may be at least partially coated on the surface of the lithium-containing composite oxide.
  • the particles (II) are preferably particles in which the amorphous layer of the coating layer (I) covers part or all of the surface of the particles (II).
  • the coating layer (I) is coated on the surface of the lithium-containing composite oxide.
  • the particles (II) are cut and then the cross section is polished, and the X-ray microanalyzer analysis method (EPMA ) For elemental mapping.
  • EPMA X-ray microanalyzer analysis method
  • the coating layer (I) is the center of the lithium-containing composite oxide (here, the center is a portion not in contact with the surface of the lithium-containing composite oxide, and the average distance from the surface is the longest). It can be confirmed that it is present more in the range of 30 nm from the surface.
  • the amount (molar ratio) of the metal element (m) in the coating layer (I) is 0.001 to 0.000 relative to the transition metal element of the lithium-containing composite oxide.
  • 05 is preferable, 0.003 to 0.04 is more preferable, and 0.005 to 0.03 is particularly preferable.
  • a positive electrode active material having a large discharge capacity and excellent rate characteristics and cycle characteristics can be obtained.
  • the amount (molar ratio) of anions N in the coating layer (I) is 0.001 to 0.05 with respect to the transition metal element of the lithium-containing composite oxide.
  • it is 0.003 to 0.04, more preferably 0.005 to 0.03.
  • (amount of metal element (m) in coating layer (I) (mol) ⁇ average valence of metal element (m)) / (amount of anion N in coating layer (I) (mol) ⁇ Average valence of anion N) is preferably 0.1 to 10, more preferably 0.2 to 4, and particularly preferably 0.3 to 2. Within this range, the cycle characteristics and rate characteristics are excellent. Further, (amount (mol) of metal element (m) in coating layer (I) ⁇ average valence of metal element (m)) / (amount (mole) of anion N in coating layer (I) ⁇ anion If the average valence of the ion N is less than 1, the charge / discharge efficiency is improved.
  • the negative charge due to the anion N is larger than the positive charge due to the metal element (m), it is considered that excess lithium contained in the lithium-containing composite oxide is combined with the anion N to improve the charge / discharge efficiency. .
  • the amount (mol) of the metal element (m) present in the coating layer (I) in the particles (II) is measured by dissolving the positive electrode active material in an acid and performing ICP (high frequency inductively coupled plasma) measurement. Can do.
  • the lithium-containing composite oxide and the metal element (m) in the composition (1) May be calculated based on the amount of.
  • the amount (mol) of the anion N present in the coating layer (I) in the particles (II) can be measured by dissolving the positive electrode active material in an acid and performing ion chromatography measurement.
  • the element (n) in the lithium-containing composite oxide and the composition (2) You may calculate based on the quantity of. Since the positive electrode active material of the present invention covers at least a portion of the surface of the lithium-containing composite oxide with the coating layer (I), the discharge capacity is large and the rate characteristics and cycle characteristics are excellent.
  • the positive electrode for a lithium ion secondary battery according to the present invention has a positive electrode active material layer containing the positive electrode active material, a conductive material, and a binder formed on a positive electrode current collector (positive electrode surface).
  • Examples of the method for producing a positive electrode for a lithium ion secondary battery include a method in which the positive electrode active material, the conductive material and the binder in the present invention are supported on the positive electrode current collector plate.
  • the conductive material and the binder are dispersed in a solvent and / or dispersion medium to prepare a slurry, or after preparing a kneaded material kneaded with the solvent and / or dispersion medium, the prepared slurry or It can be produced by carrying the kneaded material on the positive electrode current collector plate by coating or the like.
  • Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black.
  • binders fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyolefins such as polyethylene and polypropylene, polymers having unsaturated bonds such as styrene / butadiene rubber, isoprene rubber and butadiene rubber, and copolymers thereof, Examples thereof include acrylic acid-based polymers such as acrylic acid copolymers and methacrylic acid copolymers, and copolymers thereof.
  • the positive electrode current collector include aluminum or an aluminum alloy.
  • the lithium ion secondary battery in this invention contains the positive electrode for lithium ion secondary batteries of this invention, a negative electrode, and a nonaqueous electrolyte.
  • the negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
  • a slurry can be prepared by kneading a negative electrode active material with an organic solvent, and the prepared slurry can be applied to a negative electrode current collector, dried, and pressed.
  • the negative electrode current collector plate for example, a metal foil such as a nickel foil or a copper foil can be used.
  • the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
  • Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds, and the like can be used.
  • Examples of the carbon material of the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbon, coke such as pitch coke, needle coke, petroleum coke, graphite, glassy carbon, phenol Organic polymer compound fired bodies, carbon fibers, activated carbon, carbon blacks, etc., obtained by firing and carbonizing a resin, furan resin or the like at an appropriate temperature can be used.
  • the metal of the periodic table group 14 is, for example, silicon or tin, and most preferably silicon.
  • Non-silicon materials that can be used as the negative electrode active material include oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide, and nitrides such as Li 2.6 Co 0.4 N. It is done.
  • non-aqueous electrolyte one prepared by appropriately combining an organic solvent and an electrolyte can be used.
  • organic solvent those known as organic solvents for electrolytic solutions can be used.
  • propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Diglyme, triglyme, ⁇ -butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, propionic acid ester and the like can be used.
  • cyclic carbonates such as propylene carbonate and chain carbonates such as dimethyl carbonate and diethyl carbonate.
  • organic solvent may be used independently and may be used in mixture of 2 or more types.
  • nonaqueous electrolyte a solid electrolyte containing an electrolyte salt, a polymer electrolyte, a solid or gel electrolyte in which an electrolyte is mixed or dissolved, and the like can be used.
  • the solid electrolyte may be any material having lithium ion conductivity.
  • any of an inorganic solid electrolyte and a polymer solid electrolyte can be used.
  • lithium nitride lithium iodide, or the like
  • polymer solid electrolyte an electrolyte salt and a polymer compound that dissolves the electrolyte salt can be used.
  • the polymer compound include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene, or derivatives, mixtures, and composites thereof. Can be used.
  • any gel electrolyte may be used as long as it absorbs the non-aqueous electrolyte and gels, and various polymer materials can be used.
  • the polymer material include poly (vinylidene fluoride), fluorine-based polymer materials such as poly (vinylidene fluoride-co-hexafluoropropylene), polyacrylonitrile and a copolymer of polyacrylonitrile, polyethylene oxide and Ether polymer materials such as polyethylene oxide copolymers and cross-linked polymers can be used.
  • the copolymerization monomer include polypropylene oxide, methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
  • the gel electrolyte is particularly preferably a fluorine-based polymer material from the viewpoint of stability against redox reaction.
  • any electrolyte salt can be used as long as it is used for this type of battery.
  • LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, and the like can be used.
  • the shape of the lithium ion secondary battery of the present invention can be appropriately selected from coin shapes, sheet shapes (film shapes), folded shapes, wound bottomed cylindrical shapes, button shapes, and the like depending on the application.
  • a positive electrode active material for a lithium ion secondary battery having excellent cycle characteristics and rate characteristics even when charged at a high voltage Can be manufactured with high productivity. Further, in the production method of the present invention, filtration and washing are unnecessary, the lithium-containing composite oxide is not agglomerated, it is easy to handle such as stirring, and agglomeration is difficult to occur during drying. Is significantly improved. Moreover, even if the positive electrode active material for lithium ion secondary batteries obtained by the production method of the present invention is charged at a high voltage, excellent cycle characteristics and rate characteristics can be obtained. Furthermore, a positive electrode for a lithium ion secondary battery using this positive electrode active material and a lithium ion secondary battery using this positive electrode have excellent cycle characteristics and rate even when charged at a high voltage. Characteristics can be realized.
  • Distilled water (1920.8 g) was added to ammonium sulfate (79.2 g) to give a mother liquor.
  • Distilled water (600 g) was added to sodium hydroxide (400 g) and dissolved uniformly to obtain a pH adjusting solution.
  • the mother liquor was placed in a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and a pH adjusting solution was added so that the pH was 11.0.
  • the raw material solution was added at a rate of 5.0 g / min and the ammonia solution was added at a rate of 1.0 g / min, and a composite hydroxide of nickel, cobalt, and manganese was added. Precipitated.
  • the pH adjusting solution was added so as to keep the pH in the reaction vessel at 11.0.
  • nitrogen gas was flowed at a flow rate of 0.5 L / min in the reaction tank so that the precipitated hydroxide was not oxidized. Further, the liquid was continuously extracted so that the amount of the liquid in the reaction tank did not exceed 2 L.
  • This precursor (20 g) and lithium carbonate (12.6 g) having a lithium content of 26.9 mol / kg were mixed and baked at 900 ° C. for 12 hours in an oxygen-containing atmosphere to obtain the lithium-containing composite oxide of the synthesis example. It was.
  • the composition of the obtained lithium-containing composite oxide of the synthesis example was Li (Li 0.2 Ni 0.137 Co 0.125 Mn 0.538 ) O 2 .
  • the average particle diameter D50 of the lithium-containing composite oxide of the synthesis example was 5.9 ⁇ m, and the specific surface area measured using the BET (Brunauer, Emmett, Teller) method was 2.6 m 2 / g.
  • the amount of oil absorption measured using refined sesame oil according to JIS-K-5101-13-1: 2004 was 44 (g / 100 g).
  • Example 1 Provide Example of Lithium-Containing Composite Oxide Having a Coating Layer in which the Cation M is Al 3+ and the Anion N is PO 4 3- >
  • An aqueous aluminum lactate solution (composition (1)) was prepared by adding 3.0 g of distilled water to 7.0 g of an aluminum lactate aqueous solution (Al content: 4.5 mass%, pH 4.6). Moreover, 7.7 g of distilled water was added to 2.3 g of (NH 4 ) 2 HPO 4 to prepare a phosphate aqueous solution (composition (2)).
  • the positive electrode active material of Example 1 which consists of particle
  • the amount of coated aluminum is ⁇ (coating amount) in molar ratio (coating amount) with respect to the total of nickel, cobalt, and manganese, which are the transition metal elements of the lithium-containing composite oxide of the synthesis example.
  • the obtained positive electrode active material was subjected to XRD measurement using CuK ⁇ rays as an X-ray source.
  • RRD measurement the product name RINT-TTR-III manufactured by Rigaku Corporation was used.
  • Example 2 ⁇ - Preparation of the lithium-containing complex oxide having a a a coating layer cation M is Al 3+, anionic N is F>
  • Compositions (2) to prepare an aqueous ammonium fluoride solution was added 9.57g of distilled water NH 4 F to 0.43 g. The same procedure as in Example 1 was performed except that an ammonium fluoride aqueous solution was used instead of the phosphate aqueous solution, and a coating layer (I) containing a metal element Al and an anion F 2 ⁇ was formed on the surface of the lithium-containing composite oxide.
  • a positive electrode active material of Example 2 consisting of particles (II) to be coated was obtained.
  • the amount of coated aluminum was ⁇ (coated) in a molar ratio (coating amount) with respect to the total of nickel, cobalt, and manganese, which are transition metal elements of the lithium-containing composite oxide of the above synthesis example.
  • the number of moles of Al) / (total number of moles of Ni, Co, and Mn of the lithium-containing composite oxide before addition) ⁇ 0.013.
  • the coating layer (I) is considered to be an inclined film of Al 2 O 3 on the inner side, AlF 3 on the outer side, and AlOF between the outer layers.
  • the positive electrode active material was confirmed to have a layered rock salt type crystal structure (space group R-3m).
  • Example 3 ⁇ cation M is Al 3+, anionic N is F - Preparation of the lithium-containing complex oxide having a a a coating layer>
  • an ammonium fluoride aqueous solution was prepared by adding 8.70 g of distilled water to 1.30 g of NH 4 F. Further, the same procedure as in Example 1 was performed except that an ammonium fluoride aqueous solution was used instead of the phosphate aqueous solution, and the coating layer containing the metal element Al and the anion F 2 ⁇ on the surface of the lithium-containing composite oxide (I The positive electrode active material of Example 3 which consists of particle
  • the amount of coated aluminum was ⁇ (coated) in a molar ratio (coating amount) with respect to the total of nickel, cobalt, and manganese, which are transition metal elements of the lithium-containing composite oxide of the above synthesis example.
  • the number of moles of Al) / (total number of moles of Ni, Co, and Mn of the lithium-containing composite oxide before addition) ⁇ 0.013.
  • ⁇ (number of moles of coated Al 3 + ) / (number of moles of coated F ⁇ ) ⁇ 3, and the coating layer (I) is considered to be AlF 3 .
  • the positive electrode active material was confirmed to have a layered rock salt type crystal structure (space group R-3m).
  • Example 4 ⁇ - Preparation of the lithium-containing complex oxide having a a a coating layer cation M is Al 3+, anionic N is F> (Example 4)
  • composition (2) NH 4 F was added to 2.60 g and 7.40 g of distilled water was added to prepare an aqueous ammonium fluoride solution. Further, the same procedure as in Example 1 was performed except that an ammonium fluoride aqueous solution was used instead of the phosphate aqueous solution, and the coating layer containing the metal element Al and the anion F 2 ⁇ on the surface of the lithium-containing composite oxide (I
  • covers was obtained.
  • the amount of coated aluminum was ⁇ (coated) in a molar ratio (coating amount) with respect to the total of nickel, cobalt, and manganese, which are transition metal elements of the lithium-containing composite oxide of the above synthesis example.
  • the number of moles of Al) / (total number of moles of Ni, Co, and Mn of the lithium-containing composite oxide before addition) ⁇ 0.013.
  • ⁇ (number of moles of coated Al 3 + ) / (number of moles of coated F ⁇ ) ⁇ 6, and the coating amount of F ⁇ is large, so that the coating layer (I) is made of AlF 3 and LiF. it is conceivable that.
  • the positive electrode active material was confirmed to have a layered rock salt type crystal structure (space group R-3m).
  • the amount of coated aluminum was ⁇ (coated) in a molar ratio (coating amount) with respect to the total of nickel, cobalt, and manganese, which are transition metal elements of the lithium-containing composite oxide of the above synthesis example.
  • ⁇ (number of moles of coated Al 3 + ) / (number of moles of coated anion N) ⁇ cannot be calculated, and the coating layer (I) is considered to be Al 2 O 3 .
  • Example of production of positive electrode sheet As the positive electrode active material, polyvinylidene fluoride containing 12.1% by mass of the positive electrode active material of Examples 1 to 4, Comparative Example 1, and Comparative Example 2, acetylene black (conductive material), and polyvinylidene fluoride (binder), respectively.
  • the solution solvent N-methylpyrrolidone
  • the positive electrode active material, acetylene black, and polyvinylidene fluoride were in a mass ratio of 82/10/8.
  • this slurry was applied on one side to a 20 ⁇ m thick aluminum foil (positive electrode current collector) using a doctor blade. And it dried at 120 degreeC and the positive electrode sheet
  • the positive electrode sheets obtained from the positive electrode active materials of Examples 1 to 4 were respectively used as the positive electrode sheets 1 to 4, and the positive electrode sheets obtained from the positive electrode active materials of Comparative Example 1 and Comparative Example 2 were The positive electrode sheet 5 and the positive electrode sheet 6 were used respectively.
  • a stainless steel simple sealed cell type lithium ion secondary battery was assembled in an argon glove box.
  • a metal lithium foil having a thickness of 500 ⁇ m is used for the negative electrode
  • a stainless steel plate having a thickness of 1 mm is used for the negative electrode current collector
  • a porous polypropylene having a thickness of 25 ⁇ m is used for the separator
  • a concentration is used for the electrolyte.
  • Lithium ion secondary batteries using the positive electrode sheets 1 to 6 were designated as lithium batteries 1 to 6, respectively.
  • the rate maintenance rate was obtained by dividing the discharge capacity of the positive electrode active material at 4.6 to 2.5 V by high rate discharge by the initial capacity of 4.6 V.
  • a charge / discharge cycle of charging to 4.6 V at a load current of 200 mA per 1 g of the charge / discharge positive electrode active material and discharging at a high rate to 2.5 V at a load current of 100 mA per 1 g of the positive electrode active material was repeated 100 times.
  • the cycle maintenance ratio a value obtained by dividing the discharge capacity at the 100th 4.6V charge / discharge cycle by the initial capacity of 4.6V was defined as the cycle maintenance ratio.
  • the evaluation results of the 4.6 V initial capacity, rate maintenance rate, and cycle maintenance rate of the lithium batteries 1 to 6 are shown in Table 1 below.
  • the metal salt / anion ratio is (total amount of cation M contained in composition (1) ⁇ average valence of cation M) / (total amount of anion N contained in composition (2)).
  • lithium batteries 1 to 4 using a positive electrode active material composed of particles (II) coated with a coating layer (I) are lithium batteries using the positive electrode active material of Comparative Example 2 that is not coated. It is clear that the battery has a high initial capacity and a high initial discharge efficiency as compared with the battery 6 and exhibits an excellent cycle maintenance ratio.
  • the lithium batteries 1 to 4 using the positive electrode active material composed of the particles (II) coated with the coating layer (I) are compared with the lithium battery 5 using the positive electrode active material of Comparative Example 1 coated only with Al. It is clear that it has a high initial capacity and a high initial discharge efficiency and exhibits an excellent rate maintenance rate.
  • each lithium-containing composite oxide was sprayed with an aqueous aluminum solution and an aqueous phosphate solution (composition (2)) in the same manner as in Example 1. Then, ⁇ (total amount A of composition (1) and composition (2) to be contacted per 100 g of lithium-containing composite oxide) A / (oil absorption amount B of lithium-containing composite oxide) ⁇ is changed to change the lithium-containing composite Particles (II) coated with the coating layer (I) under conditions where the oxide is not agglomerated and the handling such as stirring is good and the lithium-containing composite oxide is agglomerated and difficult to handle such as agitation ) Was obtained.
  • the evaluation results in Example 5 are shown in the graph of FIG.
  • a positive electrode was prepared using a positive electrode active material for a lithium ion secondary battery obtained by the production method of the present invention, and this positive electrode was applied.
  • a lithium ion secondary battery is configured, it has been clarified that the initial capacity is high and excellent cycle maintenance ratio and rate maintenance ratio can be obtained.
  • a positive electrode active material for a lithium ion secondary battery having a high discharge capacity per unit mass and excellent cycle characteristics and rate characteristics can be obtained.
  • the positive electrode active material can be used for electronic devices such as mobile phones and small and lightweight lithium ion secondary batteries for use in vehicles.

Abstract

 初期容量特性、サイクル特性およびレート特性に優れる正極活物質が得られるリチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、を用いたリチウムイオン二次電池用正極およびリチウムイオン二次電池を提供する。 Li元素及び遷移金属元素を含むリチウム含有複合酸化物と、組成物(1){少なくとも一種の金属元素(m)を有する陽イオンMを含む水溶液}および組成物(2){S、P、F、およびBからなる群より選ばれる少なくとも一種の元素(n)を有し、陽イオンMと反応して難溶性の塩を形成する陰イオンNを含む水溶液}とを接触させる製造方法であって、リチウム含有複合酸化物100g当たりに接触させる組成物(1)および組成物(2)の合計量A(ml/100g)が、前記リチウム含有複合酸化物の吸油量B(ml/100g)に対して、0.1<A/B<5の割合とする。

Description

リチウムイオン二次電池用正極活物質の製造方法
 本発明は、リチウムイオン二次電池用正極活物質の製造方法に関する。また本発明は、該製造方法によって得られるリチウムイオン二次電池用正極活物質を用いたリチウムイオン二次電池用正極およびリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、携帯電話やノート型パソコン等の携帯型電子機器に広く用いられている。リチウムイオン二次電池用の正極活物質には、LiCoO、LiNiO、LiNi0.8Co0.2、LiMnO等のリチウムと遷移金属等との複合酸化物(以下、リチウム含有複合酸化物ともいう)が用いられている。
 また、近年、携帯型電子機器や車載用のリチウムイオン二次電池として小型化・軽量化が求められ、単位質量あたりの放電容量、または充放電サイクルを繰り返した後に放電容量が低下しない特性(以下、サイクル特性ともういう)の更なる向上が望まれている。また、特に車載用の用途においては、高い放電レートで放電した際に放電容量が低下しない特性(以下、レート特性ともいう)のさらなる向上が望まれている。このような、サイクル特性およびレート特性を向上させる方法としては、リチウム含有複合酸化物に被覆層を設けることが有効であることが、従来から知られている。
 特許文献1には、リチウム含有複合酸化物を硝酸アルミニウム水溶液中に分散させた後に、フッ化アンモニウム水溶液を添加してろ過と洗浄を行った後に加熱し、リチウム含有複合酸化物表面にフッ化アルミニウムの被覆層を形成する方法が記載されている。しかし、この方法では、ろ過と洗浄の両方を行うためにプロセスが煩雑であるうえに廃液処理が必要となるため、生産性に劣るという問題があった。また、ろ過後に得られるウェットケーキを乾燥させると、正極活物質が凝集して粗大粒子を形成しやすいという問題があった。
 特許文献2には、非晶質AlPO相がコロイド形態で分散した水溶液100mlに、リチウム含有複合酸化物20gを分散させた後に130℃で乾燥させて、さらに熱処理することでAlPO化合物を含む表面処理層を形成する方法が記載されている。しかし、この方法では、多量の水を乾燥させるために大きなエネルギーが必要であり、さらに、乾燥時、上記同様に正極活物質が凝集して粗大粒子を形成しやすいという問題があった。
 特許文献3には、Li元素のモル量が遷移金属元素の総モル量に対して0.9-1.1倍モルである、次式{Li(0.9≦p≦1.1、0.965≦x<1.00、0<y≦0.035、1.9≦z≦2.1、x+y=1、0≦a≦0.02)}で表わされるリチウム含有複合酸化物と、ジルコニウムを含む水溶液とを撹拌、混合し、酸素雰囲気下450℃以上で高温焼成することにより、酸化ジルコニウムがリチウム含有複合酸化物の表面層に被覆された正極活物質を得る方法が記載されている。しかし、この方法では、リチウム含有複合酸化物を酸化物以外の化合物で被覆することが難しいという問題があった。
日本特表2008-536285号公報 日本特許第4582990号公報 国際公開第2007/102407号
 本発明は、高電圧で充電を行った場合でも、サイクル特性およびレート特性に優れる正極活物質が得られるリチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質を用いたリチウムイオン二次電池用正極およびリチウムイオン二次電池を提供する。
 本発明は、以下の発明に関する。
 [1] Li元素及び遷移金属元素を含むリチウム含有複合酸化物と、下記組成物(1)および組成物(2)とを接触させ、加熱するリチウムイオン二次電池用正極活物質の製造方法であって、前記リチウム含有複合酸化物100g当たりに接触させる組成物(1)および組成物(2)の合計量A(ml/100g)が、前記リチウム含有複合酸化物の吸油量B(ml/100g)に対して、0.1<A/B<5の割合であることを特徴とする、リチウムイオン二次電池用正極活物質の製造方法。
 組成物(1):Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(m)を有する陽イオンMを含む水溶液。
 組成物(2):S、P、F、およびBからなる群より選ばれる少なくとも一種の元素(n)を有し、陽イオンMと反応して難溶性の塩を形成する陰イオンNを含む水溶液。
 [2] 前記組成物(1)に含まれる金属元素(m)が、Alである、[1]に記載のリチウムイオン二次電池用正極活物質の製造方法。
 [3] 前記組成物(2)に含まれる陰イオンNが、SO 2-、PO 3-、およびFからなる群より選ばれる少なくとも一種の陰イオンである、[1]または[2]に記載のリチウムイオン二次電池用正極活物質の製造方法。
 [4] 前記加熱を250~700℃で行う、[1]~[3]のいずれかに記載のリチウムイオン二次電池用正極活物質の製造方法。
 [5] 前記組成物(1)に含まれる金属元素(m)の量(モル比)が、前記リチウム含有複合酸化物に含まれる遷移金属元素の合計量に対して、0.001~0.05の範囲である、[1]~[4]のいずれかに記載のリチウムイオン二次電池用正極活物質の製造方法。
 [6] 前記組成物(2)に含まれる陰イオンNの量(モル比)が、前記リチウム含有複合酸化物に含まれる遷移金属元素の合計量に対して、0.001~0.05の範囲である、[1]~[4]のいずれかに記載のリチウムイオン二次電池用正極活物質の製造方法。
 [7] 前記リチウム含有複合酸化物と前記組成物(1)または組成物(2)との接触を、撹拌中の前記リチウム含有複合酸化物に前記組成物(1)または組成物(2)を添加して、前記リチウム含有複合酸化物と前記組成物(1)または組成物(2)とを混合することによって行う、[1]~[6]のいずれかに記載のリチウムイオン二次電池用正極活物質の製造方法。
 [8] 前記リチウム含有複合酸化物と前記組成物(1)または組成物(2)との接触を、スプレーコート法を用いて前記組成物(1)または組成物(2)を前記リチウム含有複合酸化物に噴霧することによって行う、[1]~[7]のいずれかに記載のリチウムイオン二次電池用正極活物質の製造方法。
 [9] 上記[1]~[8]のいずれかに記載の製造方法によって製造されたリチウムイオン二次電池用正極活物質とバインダーとを含むリチウムイオン二次電池用正極。
 [10] 上記[9]に記載の正極と負極と非水電解質とを含むリチウムイオン二次電池。
 本発明の製造方法によれば、高電圧で充電を行った場合であっても、サイクル特性およびレート特性に優れるリチウムイオン二次電池用正極活物質を、生産性よく製造できる。また、本発明の製造方法では、ろ過や洗浄が不要であり、リチウム含有複合酸化物が塊状になることがなく撹拌等の取り扱いが容易であり、且つ、乾燥時に凝集が起きにくいので、生産性が顕著に向上する。
 さらに、本発明の正極活物質を用いたリチウムイオン二次電池用正極、および、この正極を用いたリチウムイオン二次電池は、高電圧で充電を行った場合であっても、優れたサイクル特性およびレート特性が実現できる。
図1は、本発明のリチウムイオン二次電池用正極活物質の製造方法の実施例について説明する図であり、組成物1と組成物2の液量Aと、リチウム含有複合酸化物の吸油量Bとの関係を示すグラフである。
 以下に、本発明を詳細に説明する。
[リチウムイオン二次電池用正極活物質の製造方法]
 本発明の正極活物質の製造方法は、Li元素及び遷移金属元素を含むリチウム含有複合酸化物と、下記組成物(1)および組成物(2)とを接触させ、加熱するリチウムイオン二次電池用正極活物質の製造方法であって、前記リチウム含有複合酸化物100g当たりに接触させる組成物(1)および組成物(2)の合計量A(ml/100g)が、前記リチウム含有複合酸化物の吸油量B(ml/100g)に対して、0.1<A/B<5の割合とする。
 組成物(1):Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(m)を有する陽イオンMを含む水溶液。
 組成物(2):S、P、F、およびBからなる群より選ばれる少なくとも一種の元素(n)を有し、陽イオンMと反応して難溶性の塩を形成する陰イオンNを含む水溶液。
「リチウム含有複合酸化物」
 本発明におけるリチウム含有複合酸化物は、Li元素と遷移金属元素とを含む。
 遷移金属元素としては、たとえば、Ni、Co、Mn、Fe、Cr、V、およびCuからなる群から選ばれる少なくとも1種を用いることができる。
 リチウム含有複合酸化物としては、たとえば、下記式(1)で表される化合物(i)、下記式(2)で示される物質、または、これらの複合体であるオリビン型金属リチウム塩である化合物(ii)、または、下記式(3-1)で表される化合物(iii)、下記式(4)で表わされる化合物(iv)が好ましい。これらの材料は一種を単独で用いてもよく、二種以上を併用してもよい。
 リチウム含有複合酸化物としては、高容量であるという点で化合物(iii)が特に好ましく、下記式(3-1)で表わされる化合物が最も好ましい。
(化合物(i))
 Li(NiMnCo)Me ・・・ (1)
 ただし、式(1)中、0.95≦a≦1.1、0≦x≦1、0≦y≦1、0≦z≦1、0≦b≦0.3、0.90≦x+y+z+b≦1.05、MeはMg、Ca、Sr、Ba、およびAlからなる群から選ばれる少なくとも一種である。
 式(1)で表される化合物(i)の例としては、LiCoO、LiNiO、LiMnO、LiMn0.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi0.85Co0.10Al0.05、LiNi1/3Co1/3Mn1/3が挙げられる。
(化合物(ii))
 Lix’y’z’ ・・・ (2)
 ただし、式(2)中、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0<L≦3、1≦x’≦2、1≦y’≦3、4≦z’≦12、0≦g≦1である。
 オリビン型金属リチウム塩(ii)としては、LiFePO、LiFe(PO、LiFeP、LiMnPO、LiNiPO、LiCoPO、LiFePOF、LiMnPOF、LiNiPOF、LiCoPOF、LiFeSiO、LiMnSiO、LiNiSiO、LiCoSiOが挙げられる。
(化合物(iii))
 化合物(iii)は、下式(3-1)で表される化合物である。下式(3-1)で表される化合物の表記は、充放電や活性化等の処理を行う前の組成式である。ここで、活性化とは、リチウム含有複合酸化物から酸化リチウム(LiO)、または、リチウムおよび酸化リチウムを、取り除くことをいう。通常の活性化方法としては、4.4Vもしくは4.6V(Li/Liの酸化還元電位との電位差として表わされる値である。)より、大きな電圧で充電する電気化学的活性化法が挙げられる。また、硫酸、塩酸もしくは硝酸等の酸を用いた化学反応を用いる化学的活性化方法が挙げられる。
 Li(LiMnMe´)O ・・・ (3-1)
 ただし、式(3-1)において、Me´は、Co、Ni、Cr、Fe、Al、Ti、Zr、Mgからなる群から選ばれる少なくとも一種である。
 また、 式(3-1)において、0.09<x<0.3、y>0、z>0、1.9<p<2.1、0≦q≦0.1であり、かつ、0.4≦y/(y+z)≦0.8、x+y+z=1、1.2<(1+x)/(y+z)である。すなわち、化合物(iii)は、Liの割合が、MnとMe´の合計に対して1.2倍モルを超える。また、式(3-1)はMnを特定量含む化合物である点も特徴であり、MnとMe´の総量に対するMnの割合は、0.4~0.8が好ましく、0.55~0.75がより好ましい。Mnが前記の範囲であれば、放電容量が高容量となる。ここで、qはFの割合を示すが、Fが存在しない場合にはqは0である。また、pは、x、y、zおよびqに応じて決まる値であり、1.9~2.1である。
 リチウム含有複合酸化物が式(3-1)で表される化合物である場合、前記遷移金属元素の総モル量に対するLi元素の組成比は1.25≦(1+x)/(y+z)≦1.75が好ましく、1.35≦(1+x)/(y+z)≦1.65がより好ましく、1.40≦(1+x)/(y+z)≦1.55が特に好ましい。この組成比が前記の範囲であれば、4.6V以上の高い充電電圧を印加した場合に、単位質量あたりの放電容量が高い正極材料が得られる。
 化合物(iii)としては、下式(3-2)で表される化合物がより好ましい。
 Li(LiMnNiCo)O ・・・ (3-2)
 ただし、式(3-2)において、0.09<x<0.3、0.36<y<0.73、0<v<0.32、0<w<0.32、1.9<p<2.1、x+y+v+w=1である。
 式(3-2)において、Mn、Ni、およびCo元素の合計に対するLi元素の組成比は、1.2<(1+x)/(y+v+w)<1.8であり、1.35<(1+x)/(y+v+w)<1.65が好ましく、1.45<(1+x)/(y+v+w)<1.55がより好ましい。
 化合物(iii)としては、Li(Li0.16Ni0.17Co0.08Mn0.59)O、Li(Li0.17Ni0.17Co0.17Mn0.49)O、Li(Li0.17Ni0.21Co0.08Mn0.54)O、Li(Li0.17Ni0.14Co0.14Mn0.55)O、Li(Li0.18Ni0.12Co0.12Mn0.58)O、Li(Li0.18Ni0.16Co0.12Mn0.54)O、Li(Li0.20Ni0.12Co0.08Mn0.60)O、Li(Li0.20Ni0.16Co0.08Mn0.56)O、Li(Li0.20Ni0.13Co0.13Mn0.54)O、が特に好ましい。
 化合物(iii)としては、層状岩塩型結晶構造(空間群R-3m)であることが好ましい。また、化合物(iii)は、遷移金属元素に対するLi元素の比率が高いため、XRD(X線回折:CuKα)測定において、層状LiMnOと同様に2θ=20~25°の範囲にピークが観察される。
(化合物(iv))
 Li(Mn2-xMe´´)O ・・・ (4)
 ただし、式(4)中、0≦x<2、Me´´はCo、Ni、Fe、Ti、Cr,Mg、Ba、Nb、Ag、およびAlからなる群より選ばれる少なくとも一種である。式(iv)で表される化合物(iv)としては、LiMn、LiMn1.5Ni0.5、LiMn1.0Co1.0、LiMn1.85Al0.15、LiMn1.9Mg0.1が挙げられる。
 リチウム含有複合酸化物は、粒子状であることが好ましく、平均粒子径(D50)は0.03~30μmが好ましく、0.04~25μmがより好ましく、0.05~20μmが特に好ましい。本発明において、平均粒子径(D50)とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒子径である、体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理などで充分に分散させて粒度分布を測定する(たとえば、HORIBA社製レーザー回折/散乱式粒子径分布測定装置Partica LA-950VII、などを用いる)ことで行なわれる。
 リチウム複合酸化物が化合物(i)、化合物(iii)、化合物(iv)より選ばれる化合物である場合、平均粒子径(D50)は3~30μmが好ましく、4~25μmがより好ましく、5~20μmが特に好ましい。リチウム複合酸化物が化合物(ii)より選ばれる化合物である場合、平均粒子径(D50)は0.03~5μmが好ましく、0.04~1μmがより好ましく、0.05~0.5μmが特に好ましい。
 リチウム含有複合酸化物の比表面積は、0.1~30m/gが好ましく、0.15~25m/gが特に好ましい。該比表面積が、0.1~30m/gであると容量が高く、緻密な正極電極層が形成できる。
 リチウム複合酸化物が化合物(i)または化合物(iv)より選ばれる化合物である場合、比表面積は0.1~1m/gが好ましく、0.15~0.6m/gがより好ましい。リチウム複合酸化物が化合物(iii)より選ばれる化合物である場合、比表面積は0.3~10m/gが好ましく、0.5~5m/gがより好ましく、1~4m/gが特に好ましい。リチウム複合酸化物が化合物(ii)より選ばれる化合物である場合、比表面積は1~30m/gが好ましく、10~25m/gがより好ましい。
 リチウム含有複合酸化物の製造方法としては、共沈法により得られたリチウム含有複合酸化物の前駆体(共沈組成物)とリチウム化合物を混合して焼成する方法、水熱合成法、ゾルゲル法、乾式混合法(固相法)、イオン交換法、ガラス結晶化法を適宜用いることができる。なお、リチウム含有複合酸化物中に遷移金属元素が均一に含有されると放電容量が向上するため、共沈法により得られたリチウム含有複合酸化物の前駆体とリチウム化合物とを混合して焼成する方法を用いることが好ましい。
「組成物(1)ならびに組成物(2)」
 本発明における組成物(1)は、Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(m)(以下、金属元素(m)ともいう。)を有する陽イオンMを含む水溶液である。陽イオンMは、金属元素(m)のイオンであってもよく、金属元素(m)を有する錯イオンであってもよい。陰イオンNとの反応性の点で、陽イオンMは金属元素(m)のイオンであることが好ましい。
 金属元素(m)としては、Alが好ましく、陽イオンMとしては、Al3+が好ましい。
 組成物(1)は、金属元素(m)を有し、水溶液中で陽イオンMを生じさせる水溶性化合物(1)を溶解させたものであることが好ましい。ここでいう水溶性とは、25℃の蒸留水への溶解度(飽和溶液100gに溶けている溶質の質量[g])が2超であることをいう。溶解度が2超であると、組成物(1)に含まれる陽イオンMの量を高くすることができるため、効率よく後述の被覆層(I)を形成することができる。また、水溶性化合物(1)の溶解度は、5超であることがより好ましく、10超であると特に好ましい。
 水溶性化合物(1)としては、金属元素(m)の硝酸塩、硫酸塩、塩化物等の無機塩、酢酸塩、クエン酸塩、マレイン酸塩、ギ酸塩、乳酸塩、乳酸塩、シュウ酸塩等の有機塩または有機錯体、アンミン錯体等が挙げられる。なかでも、熱により分解しやすく、溶媒への溶解性が高いことから、硝酸塩、有機酸塩、有機錯体、アンミン錯体が特に好ましい。
 水溶性化合物(1)としては、硝酸アルミニウム、酢酸アルミニウム、シュウ酸アルミニウム、クエン酸アルミニウム、乳酸アルミニウム、塩基性乳酸アルミニウム、マレイン酸アルミニウムが好ましい。
 また、本実施形態では、後述の被覆層(I)中の金属元素(m)の量を制御するため、組成物(1)に含まれる金属元素Mの合計量を、リチウム含有複合酸化物に含まれる遷移金属元素の合計量に対して、0.001~0.05の範囲とすることが好ましく、0.003~0.04がより好ましく、0.005~0.03が特に好ましい。
 また、本発明における組成物(2)は、S、P、F、およびBからなる群より選ばれる少なくとも一種の元素(n)(以下、元素(n)ともいう。)を有し、陽イオンMと反応して難溶性の塩を形成する陰イオンNを含む水溶液である。
 組成物(2)としては、元素(n)を有し、水溶液中で解離して陰イオンNを生成させる水溶性化合物(2)を溶解させたものであることが好ましい。
 ここでいう水溶性についても、組成物(1)の場合と同様、25℃の蒸留水への溶解度(飽和溶液100gに溶けている溶質の質量[g])が2超であることをいう。水溶性組成物(2)の溶解度は、2超であると組成物(2)に含まれる陰イオンNの量を高くすることができるため、効率よく被覆層(I)を形成することができる。水溶性組成物(2)の溶解度は、5超であることがより好ましく、10超であることが特に好ましい。
 陰イオンNとしては、具体的には、SO 2-、SO 2-、S 2-、SO 2-、SO 2-、PO 3-、P 4-、PO 3-、PO 3-、F、BO 3-、BO 、B 2-、B 等が挙げられる。なかでも、安定性や取り扱い性の点で、SO 2-、PO 3-、Fが特に好ましい。
 前記水溶性化合物(2)としては、元素(n)を有し、かつ陽イオンMと反応して難溶性の塩を形成できる化合物であればよく、たとえば、HSO、HSO、H、HSO、HSO、HPO、H、HPO、HPO、HF、HBO、HBO、H、HB等の酸、またはこれらのアンモニウム塩、アミン塩、リチウム塩、ナトリウム塩、カリウム塩等の塩が挙げられる。これらのなかでも、取り扱い性や安全性の点で、酸よりも塩を用いることが好ましい。また、加熱する際に分解して除去される点で、アンモニウム塩が特に好ましい。具体的には(NHSO、(NH)HSO、(NHPO、(NHHPO、(NH)HPO、NHF等が好ましい。
 また、本実施形態では、後述の被覆層(I)中の陰イオンNの量を制御するため、組成物(2)に含まれる陰イオンNの量(モル比)は、リチウム含有複合酸化物に含まれる遷移金属元素の合計量に対して、0.001~0.05の範囲とすることが好ましく、0.003~0.04がより好ましく、0.005~0.03が特に好ましい。
 本発明において、(組成物(1)に含まれる陽イオンMの合計量×陽イオンMの平均価数)/(組成物(2)に含まれる陰イオンNの合計量×陰イオンNの平均価数)は0.1~10であることが好ましく、0.2~4であるとより好ましく、0.3~2であると特に好ましい。この範囲であると、リチウムイオン二次電池のサイクル特性およびレート特性に優れる。
 また、(組成物(1)に含まれる陽イオンMの合計量×陽イオンMの平均価数)/(組成物(2)に含まれる陰イオンNの合計量×陰イオンNの平均価数)が1未満であると、充放電効率が向上するため、0.1~0.99であると好ましく、0.2~0.9であるとより好ましく、0.3~0.8であると特に好ましい。陽イオンMによるプラス電荷よりも陰イオンNによるマイナス電荷の方が多くなるため、リチウム含有複合酸化物に含まれる余剰のリチウムイオンが陰イオンNと結合するため、充放電効率が向上すると考えられる。
 本発明において、組成物(1)および組成物(2)の溶媒としては水を用いればよいが、前記水溶性化合物(1)や前記水溶性化合物(2)の溶解性を損なわない程度に、水溶性アルコールやポリオールを添加してもよい。水溶性アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノールが挙げられる。また、ポリオールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリンが挙げられる。また、溶媒中に含まれる水溶性アルコールとポリオールの合計の含有量としては、溶媒全量に対して0~20質量%が好ましく、0~10質量%がより好ましい。安全面、環境面、取扱い性、コストの点で優れているため、溶媒としては、水のみであることが特に好ましい。
 さらに、組成物(1)および組成物(2)には、水溶性化合物(1)および水溶性化合物(2)の溶解度を調整するために、それぞれpH調整剤が含まれていてもよい。pH調整剤としては、加熱時に揮発または分解するものが好ましい。具体的には、酢酸、クエン酸、乳酸、ギ酸、マレイン酸、シュウ酸などの有機酸やアンモニアが好ましい。このように、揮発または分解するpH調整剤を用いると、不純物が残留しにくいため、良好な電池特性が得られやすい。
 組成物(1)および組成物(2)のpHとしては、それぞれ2~12が好ましく、3~11がより好ましく、4~10が特に好ましい。pHが前記の範囲にあれば、リチウム含有複合酸化物と組成物(1)および組成物(2)とを接触させたときに、リチウム含有複合酸化物からのLi元素や遷移金属の溶出が少なく、また、pH調整剤等の不純物が少ないため良好な電池特性が得られやすい。
 本発明における、リチウム含有複合酸化物と組成物(1)および組成物(2)との接触方法としては、スプレーコート法が特に好ましい。スプレーコート法はプロセスが簡便であり、かつ、後述の被覆層(I)をリチウム含有複合酸化物の表面に均一に被覆させることができる。
 組成物(1)および組成物(2)をリチウム含有複合酸化物に接触させる順番としては、リチウム含有複合酸化物に組成物(1)を接触させた後に組成物(2)を接触させてもよく、組成物(2)を接触させた後に組成物(1)を接触させてもよく、また、組成物(1)と組成物(2)を交互に複数回ずつ接触させてもよく、もしくは、組成物(1)および組成物(2)を同時に接触させてもよい。なかでも、陽イオンMと陰イオンNの反応が進みやすいと考えられることから、リチウム含有複合酸化物に組成物(1)を接触させた後に、組成物(2)を接触させる順番とすることが特に好ましい。
 組成物(1)中に含まれる水溶性化合物(1)の濃度は、後の工程で加熱により溶媒を除去する必要がある点から、高濃度の方が好ましい。また、この濃度が高すぎると粘度が高くなり、リチウム含有複合酸化物と組成物(1)との均一混合性が低下するため、組成物(1)中に含まれる水溶性化合物(1)の濃度は、金属元素(m)換算で0.5~30質量%が好ましく、2~20質量%が特に好ましい。
 また、組成物(2)中に含まれる水溶性化合物(2)の濃度も、後の工程で加熱により溶媒を除去する必要がある点から、高濃度の方が好ましい。また、組成物(1)と同様に、この濃度が高すぎると粘度が高くなり、リチウム含有複合酸化物と組成物(2)との均一混合性が低下するため、組成物(2)中に含まれる水溶性化合物(2)の濃度は、陰イオンN換算で0.5~30質量%が好ましく、2~20質量%が特に好ましい。
 本発明において、リチウム含有複合酸化物100g当たりに接触させる組成物(1)と組成物(2)の合計量A(ml/100g)は、リチウム含有複合酸化物の吸油量B(ml/100g)に対して、次式{0.1<A/B<5}の範囲とする。この際、吸油量Bは、JIS-K-5101-13-1:2004で規定される方法に従って求める。前記の比(A/B)が次式{0.1<A/B<5}の範囲であれば、後述の被覆層(I)を均一に形成することができ、ろ過が不要で、さらに加熱時に蒸発させる溶媒が少ないことから生産性が向上する。また、特に、上記比(A/B)が次式{0.1<A/B<0.7}である場合には、スプレーコートする際にリチウム含有複合酸化物が塊状にならず、撹拌しやすいことから特に好ましい。
 なお、前記の比(A/B)が0.7以上である場合は、リチウム含有複合酸化物が塊状にならないように乾燥させながら、組成物(1)および組成物(2)をリチウム含有複合酸化物に接触させることが好ましい。また、スプレーコートと乾燥は交互に行ってもよく、スプレーコートを行いながら加熱をして、同時に乾燥を行ってもよい。乾燥温度は40~200℃が好ましく、60~150℃がより好ましい。
 リチウム含有複合酸化物が塊状となる場合には、粉砕することが好ましい。
 スプレーコート法における組成物(1)および組成物(2)の放出量は、リチウム含有複合酸化物1gに対して、0.005~0.1g/分が好ましい。
 また、{組成物(1)の量/組成物(2)の量}の比は、組成物(1)および組成物(2)とリチウム含有複合酸化物との混合性が良好となることから、0.1~10の範囲であることが好ましく、0.25~4の範囲であることが特に好ましい。
 さらに、本発明の製造方法においては、撹拌中のリチウム含有複合酸化物に組成物(1)または組成物(2)を添加してリチウム含有複合酸化物と混合することにより、これら組成物をリチウム含有複合酸化物に接触させることが好ましい。撹拌装置としては、ドラムミキサーまたはソリッドエアー等の低剪断力の撹拌機を用いることができる。撹拌混合しながら組成物(1)または組成物(2)とリチウム含有複合酸化物とを接触させることで、後述の被覆層(I)がリチウム含有複合酸化物の表面により均一に被覆された、後述の粒子(II)を得ることができる。
 さらに、本発明の正極活物質の製造方法においては、リチウム含有複合酸化物と、組成物(1)および組成物(2)とを接触させ、加熱する。この加熱により、目的とする正極活物質を得るとともに、水や有機成分等の揮発性の不純物が除去できる。リチウム含有複合酸化物に、組成物(1)及び組成物(2)とを接触させて、濾過等を行うことなく、組成物(1)及び組成物(2)の全量を担持させて乾燥し、加熱するのが好ましい。
 前記の加熱は、酸素含有雰囲気下で行うことが好ましい。また、加熱温度は、250~700℃が好ましく、350~600℃がより好ましい。加熱温度が250℃以上であれば、金属元素(m)および陰イオンNを含む後述の被覆層(I)を形成させやすい。さらに、残留水分等の揮発性の不純物が少なくなることからサイクル特性の低下が抑制できる。また、加熱温度が700℃以下であれば、本発明の正極活物質の内部に金属元素(m)が拡散して容量の低下が防止できる。また、リチウム含有複合酸化物の表面に後述の被覆層(I)を非晶質として被覆させる場合、加熱温度は250℃~550℃が好ましく、350~500℃がより好ましい。加熱温度が550℃以下であれば、後述の被覆層(I)が結晶化しにくくなる。
 加熱時間は、0.1~24時間が好ましく、0.5~18時間がより好ましく、1~12時間が特に好ましい。加熱時間を前記の範囲とすることにより、リチウム含有複合酸化物の表面に、後述の被覆層(I)を効率よく被覆できる。
 なお、加熱時の圧力は特に限定されず、常圧または加圧が好ましく、常圧が特に好ましい。
[リチウムイオン二次電池用正極活物質]
 本発明の製造方法によって製造される正極活物質は、Li元素及び遷移金属元素を含むリチウム含有複合酸化物の表面に、金属元素(m)と陰イオンNを含む被覆層(I)が形成されている粒子(II)である。
「被覆層(I)」
 被覆層(I)は、前記製造方法において用いる組成物(1)および組成物(2)によって形成されるものである。すなわち、被覆層(I)は、金属元素(m)と、元素(n)を有する、陰イオンNとを含む。
 被覆層(I)としては、金属元素(m)を有する陽イオンMと陰イオンNがイオン結合した難溶性塩であることが好ましい。
 ここで、難溶性とは、25℃の蒸留水への溶解度(飽和溶液100gに溶けている溶質の質量[g])が0~2であることをいう。溶解度が0~2であると安定性が高く、また、吸湿しにくいため、水分等の不純物が残らず、サイクル特性が向上すると考えられる。また、難溶性塩の溶解度が0~1であると、前記の効果が顕著となる点からより好ましく、0~0.5であると特に好ましい。
 また、陰イオンNとしては、前記陰イオンNを同様に用いることができ、好ましい態様も同様である。
 被覆層(I)としては、具体的には、BaSO、CaSO、PbSO、SrSO、AlPO、LaPO、Ce(PO、Mg(PO、Li(PO、Ba(PO、Zr(PO、Nb(PO、Ca(PO、Ba(PO、CePO、BiPO、LaF、AlF、LiF、SrF、BaF、CeF、InF、MgF、MgF、CaF、ZrF、NbF、NbF等が挙げられるが、特に限定されない。また、これらのなかでも、AlPO、Nb(PO、Zr(PO、AlF、ZrF、NbF、またはNbFが好ましく、AlPO、またはAlFが特に好ましい。
 被覆層(I)が酸化物を含む場合はAl、ZrO、Nb、Nbが好ましく、AlOが特に好ましい。被覆層(I)が水酸化物を含む場合はAl(OH)、Zr(OH)、Nb(OH)、またはNb(OH)、が好ましく、Al(OH)が特に好ましい。
 被覆層(I)としては、前記化合物を一種または二種以上を用いてもよい。
 被覆層(I)には、リチウム含有複合酸化物に含まれるリチウムイオンと陰イオンNが反応して生成したリチウム塩が含まれていてもよい。リチウム塩としてはLiF、LiPO、LiSO等が挙げられる。
 本発明の製造方法によって得られる正極活物質は、前記被覆層(I)を有することでリチウム含有複合酸化物と電解液との接触を減らすことができるため、リチウム含有複合酸化物表面から電解液へのMn等の遷移金属元素の溶出が抑制でき、サイクル特性が向上すると考えられる。また、リチウム含有複合酸化物表面に電解液の分解生成物が付着することを抑制することができ、レート特性が向上すると考えられる。
 被覆層(I)は、結晶性であってもよく、あるいは非晶質であってもよく、非晶質であることが好ましい。ここで、非晶質とは、X線回折測定(以下、XRDともいう。)において被覆層(I)に帰属されるピークが観察されないことをいう。理由は明確ではないが、被覆層(I)が非晶質である場合、被覆層(I)が電解液へ溶出しやすく、被覆層(I)が犠牲層として働いていると考えられる。これによって、リチウム含有複合酸化物表面のMn等の遷移金属元素が電解液へ溶出することを抑制でき、サイクル特性が向上すると考えられる。
 被覆層(I)が粒子状である場合、被覆層(I)の平均粒子径は、0.1~100nmが好ましく、0.1~50nmがより好ましく、0.1~30nmが特に好ましい。また、被覆層(I)の形状および平均粒子径は、SEM(走査型電子顕微鏡)あるいはTEM(透過型電子顕微鏡)等の電子顕微鏡より評価することができる。ここで、平均粒子径は、リチウム含有複合酸化物の表面を被覆している粒子の粒子径の平均として表される。
「粒子(II)」
 本発明における粒子(II)は、リチウム含有複合酸化物の表面を前記被覆層(I)が被覆した粒子である。ここで、被覆とは、被覆層(I)がリチウム含有複合酸化物の表面の一部または全部に化学吸着、または、物理吸着している状態をいう。
 粒子(II)の形状は、粒子状、膜状、繊維状、塊状等のいずれであってもよい。粒子(II)が粒子状である場合、粒子(II)の平均粒子径は3~30μmが好ましく、4~25μmがより好ましく、5~20μmが特に好ましい。
 粒子(II)において、被覆層(I)はリチウム含有複合酸化物の表面に少なくとも一部に被覆していればよい。なかでも、粒子(II)が、被覆層(I)の非晶質層が、粒子(II)表面の一部または全部を被覆した粒子であることが好ましい。
 粒子(II)において、被覆層(I)がリチウム含有複合酸化物の表面に被覆していることは、例えば、粒子(II)を切断した後に断面を研磨し、X線マイクロアナライザー分析法(EPMA)で元素マッピングを行うことによって評価することができる。この評価方法により、被覆層(I)がリチウム含有複合酸化物の中心(ここで、中心とは、リチウム含有複合酸化物の表面に接していない部分をいい、表面からの平均距離が最長である部分であるのが好ましい。)に対して、表面から30nmの範囲により多く存在することが確認できる。
 粒子(II)における被覆層(I)として、被覆層(I)中の金属元素(m)の量(モル比)は、リチウム含有複合酸化物の遷移金属元素に対して0.001~0.05であることが好ましく、0.003~0.04がより好ましく、0.005~0.03が特に好ましい。前記の範囲であれば、放電容量が大きく、レート特性およびサイクル特性に優れた正極活物質が得られる。
 粒子(II)における被覆層(I)として、被覆層(I)中の陰イオンNの量(モル比)は、リチウム含有複合酸化物の遷移金属元素に対して0.001~0.05であることが好ましく、0.003~0.04がより好ましく、0.005~0.03が特に好ましい。
 本発明において、(被覆層(I)中の金属元素(m)の量(モル)×金属元素(m)の平均価数)/(被覆層(I)中の陰イオンNの量(モル)×陰イオンNの平均価数)は、0.1~10であることが好ましく、0.2~4であるとより好ましく、0.3~2であると特に好ましい。該範囲であるとサイクル特性およびレート特性に優れる。
 さらに、(被覆層(I)中の金属元素(m)の量(モル)×金属元素(m)の平均価数)/(被覆層(I)中の陰イオンNの量(モル)×陰イオンNの平均価数)は、1未満であれば充放電効率が向上するため、0.1~0.99であると好ましく、0.2~0.9であるとより好ましく、0.3~0.8であると特に好ましい。金属元素(m)によるプラス電荷よりも陰イオンNによるマイナス電荷の方が多くなるため、リチウム含有複合酸化物に含まれる余剰のリチウムが陰イオンNと結合して充放電効率が向上すると考えられる。
 粒子(II)における被覆層(I)中に存在する金属元素(m)の量(モル)は、正極活物質を酸に溶解してICP(高周波誘導結合プラズマ)測定を行うことによって測定することができる。なお、ICP測定によって被覆層(I)中に存在する金属元素(m)の量(モル)を求めることができない場合には、リチウム含有複合酸化物と組成物(1)中の金属元素(m)の量に基づいて算出してもよい。
 粒子(II)における被覆層(I)中に存在する陰イオンNの量(モル)は、正極活物質を酸に溶解してイオンクロマトグラフィー測定を行うことで測定することができる。なお、イオンクロマトグラフィー測定によって被覆層(I)中に存在する陰イオンNの量(モル)を求めることができない場合には、リチウム含有複合酸化物と組成物(2)中の元素(n)の量に基づいて算出してもよい。
 本発明の正極活物質は、リチウム含有複合酸化物の表面に少なくとも一部に被覆層(I)を被覆するため、放電容量が大きく、レート特性およびサイクル特性に優れる。
<リチウムイオン二次電池用正極>
 本発明におけるリチウムイオン二次電池用正極は、前記の正極活物質、導電材、およびバインダーを含む正極活物質層が、正極集電体上(正極表面)に形成されてなる。リチウムイオン二次電池用正極を製造する方法としては、たとえば、本発明における正極活物質、導電材およびバインダーを正極集電板上に担持させる方法が挙げられる。この際、導電材およびバインダーは、溶媒および/または分散媒中に分散することによってスラリーを調製するか、あるいは、溶媒および/または分散媒と混練した混錬物を調製した後、調製したスラリー又は混錬物を正極集電板に塗布等により担持させることで製造できる。
 導電材としては、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボンブラック等が挙げられる。
 バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。
 また、正極集電体としては、アルミニウムまたはアルミニウム合金が挙げられる。
<リチウムイオン二次電池>
 本発明におけるリチウムイオン二次電池は、本発明のリチウムイオン二次電池用正極と、負極と非水電解質とを含むものである。
 負極は、負極集電体上に、負極活物質を含有する負極活物質層が形成されてなる。たとえば、負極活物質を有機溶媒と混錬することによってスラリーを調製し、調製したスラリーを負極集電体に塗布、乾燥、プレスすることによって製造できる。
 負極集電板としては、たとえばニッケル箔、銅箔等の金属箔を用いることができる。
 負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、たとえば、リチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタンおよび炭化ホウ素化合物等を用いることができる。
 負極活物質の炭素材料としては、たとえば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークス等のコークス類、グラファイト類、ガラス状炭素類、フェノール樹脂やフラン樹脂等を適当な温度で焼成し炭素化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類等を用いることができる。
 周期表14族の金属としては、たとえば、ケイ素またはスズであり、最も好ましくはケイ素である。
 その他に負極活物質として用いることができる材料としては酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物やLi2.6Co0.4N等の窒化物が挙げられる。
 非水電解液としては、有機溶媒と電解質とを適宜組み合わせて調製されたものを用いることができる。有機溶媒としては、電解液用の有機溶媒として公知のものを用いることができ、たとえば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム、トリグライム、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等を用いることができる。特に、電圧安定性の点からは、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類を使用することが好ましい。また、このような有機溶媒は、単独で用いてもよく、2種以上を混合して用いてもよい。
 また、その他、非水電解質として、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物などに電解質を混合または溶解させた固体状もしくはゲル状電解質等を用いることができる。
 固体電解質としては、リチウムイオン伝導性を有する材料であればよく、たとえば、無機固体電解質および高分子固体電解質のいずれをも用いることができる。
 無機固体電解質としては、窒化リチウム、ヨウ化リチウム等を用いることができる。
 高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物を用いることができる。そして、この高分子化合物としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、および、ポリヘキサフルオロプロピレン、もしくは、これらの誘導体、混合物、および複合体を用いることができる。
 ゲル状電解質等としては、前記の非水電解液を吸収してゲル化するものであればよく、種々の高分子材料を用いることができる。高分子材料としては、たとえば、ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)などのフッ素系高分子材料、ポリアクリロニトリルおよびポリアクリロニトリルの共重合体の他、ポリエチレンオキサイドおよびポリエチレンオキサイドの共重合体、同架橋体などのエーテル系高分子材料等を使用できる。共重合モノマーとしては、たとえば、ポリプロピレンオキサイド、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等を挙げることができる。
 また、 ゲル状電解質としては、酸化還元反応に対する安定性の観点から、特にフッ素系高分子材料が好ましい。
 電解質塩は、この種の電池に用いられるものであればいずれも使用可能であり、たとえば、LiClO、LiPF、LiBF、CFSOLi等を用いることができる。
 本発明のリチウムイオン二次電池の形状は、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択できる。
 本発明のリチウムイオン二次電池用正極活物質の製造方法によれば、高電圧で充電を行った場合であっても、サイクル特性およびレート特性に優れるリチウムイオン二次電池用正極活物質を、生産性よく製造できる。また、本発明の製造方法では、ろ過や洗浄が不要であり、リチウム含有複合酸化物が塊になることがなく撹拌等の取り扱いが容易であり、且つ、乾燥時に凝集が起きにくいので、生産性が顕著に向上する。
 また、本発明の製造方法で得られるリチウムイオン二次電池用正極活物質は、高電圧で充電を行った場合であっても、優れたサイクル特性およびレート特性が得られる。さらに、この正極活物質を用いたリチウムイオン二次電池用正極、および、この正極を用いたリチウムイオン二次電池は、高電圧で充電を行った場合であっても、優れたサイクル特性およびレート特性が実現できる。
 以下に、本発明の更に詳しい説明を実施例によって行うが、本発明は、これら実施例にのみ限定されるものではない。
(リチウム含有複合酸化物の合成例)
 硫酸ニッケル(II)六水和物(140.6g)、硫酸コバルト(II)七水和物(131.4g)、および硫酸マンガン(II)五水和物(482.2g)に蒸留水(1245.9g)を加えて原料溶液とした。硫酸アンモニウム(79.2g)に蒸留水(320.8g)を加えてアンモニア溶液とした。硫酸アンモニウム(79.2g)に蒸留水(1920.8g)を加えて母液とした。水酸化ナトリウム(400g)に蒸留水(600g)を加えて均一に溶解させてpH調整液とした。
 2Lのバッフル付きガラス製反応槽に母液を入れてマントルヒーターで50℃に加熱し、pHが11.0となるようにpH調整液を加えた。反応槽内の溶液をアンカー型の撹拌翼で撹拌しながら原料溶液を5.0g/分、アンモニア溶液を1.0g/分の速度で添加し、ニッケル、コバルト、およびマンガンの複合水酸化物を析出させた。原料溶液を添加している間、反応槽内のpHを11.0に保つようにpH調整溶液を添加した。また、析出した水酸化物が酸化しないように反応槽内に窒素ガスを流量0.5L/分で流した。また、反応槽内の液量が2Lを超えないように連続的に液の抜き出しを行った。
 得られたニッケル、コバルト、およびマンガンの複合水酸化物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散を繰返して洗浄した。ろ液の電気伝導度が25μS/cmとなった時点で洗浄を終了し、120℃で15時間乾燥させて前駆体とした。
 ICPで前駆体のニッケル、コバルト、およびマンガンの含有量を測定したところ、それぞれ11.6質量%、10.5質量%、および42.3質量%であった(モル比でニッケル:コバルト:マンガン=0.172:0.156:0.672)。
 この前駆体(20g)とリチウム含有量が26.9mol/kgの炭酸リチウム(12.6g)を混合して酸素含有雰囲気下900℃で12時間焼成し、合成例のリチウム含有複合酸化物を得た。得られた前記合成例のリチウム含有複合酸化物の組成はLi(Li0.2Ni0.137Co0.125Mn0.538)Oであった。前記合成例のリチウム含有複合酸化物の平均粒子径D50は5.9μmであり、BET(Brunauer,Emmett,Teller)法を用いて測定した比表面積は2.6m/gであった。JIS-K-5101-13-1:2004に従って精製あまに油を用いて吸油量を測定したところ44(g/100g)であった。
(実施例1)<陽イオンMがAl3+、陰イオンNがPO 3-である被覆層を有するリチウム含有複合酸化物の製造例>
 乳酸アルミニウム水溶液(Al含量4.5質量%、pH4.6)を7.0gに、蒸留水を3.0g加えてアルミニウム水溶液(組成物(1))を調製した。また、(NHHPOを2.3gに蒸留水を7.7g加えてリン酸塩水溶液(組成物(2))を調製した。
 次に、撹拌下の実施例のリチウム含有複合酸化物10gに対して、調製したアルミニウム水溶液1gを噴霧して添加し、前記合成例のリチウム含有複合酸化物とアルミニウム水溶液とを混合させながら接触させた。次いで、調製したリン酸塩水溶液1gを噴霧して添加し、前記合成例のリチウム含有複合酸化物とリン酸塩水溶液とを混合させながら接触させた。この時、{(リチウム含有複合酸化物100g当たりに接触させる組成物(1)と組成物(2)の合計量A)/(リチウム含有複合酸化物の吸油量B)}=20/44=0.45であった。リチウム含有複合酸化物は塊状にならず、撹拌等の取り扱いが容易であった。
 次に、得られた混合物を90℃で2時間乾燥した後に酸素含有雰囲気下400℃で8時間加熱し、リチウム含有複合酸化物の表面に金属元素Alと陰イオンPO 3-を含む被覆層(I)が被覆する粒子(II)からなる実施例1の正極活物質を得た。
 得られた正極活物質において、被覆したアルミニウムの量は、前記合成例のリチウム含有複合酸化物の遷移金属元素であるニッケル、コバルト、マンガンの合計に対して、モル比(被覆量)で{(被覆したAlのモル数)/(付加する前のリチウム含有複合酸化物のNi、Co、Mnの合計モル数)}=0.013であった。また、{(被覆したAlのモル数)/(被覆したPO 3-のモル数)}=1であり、被覆層(I)を形成している化合物はAlPOであると考えられる。
 次に、得られた正極活物質について、X線源としてCuKα線を用いるXRD測定を行った。XRD測定には、リガク社製の製品名RINT-TTR-IIIを用いた。XRD測定条件は、電圧50kV、管電流300mA、走査軸2θ/θで、測定範囲2θ=10~80°、サンプリング幅0.02°、スキャンスピード1°/分で行った。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認された。また、2θ=20~25°の範囲に層状LiMnOのピークが観察された。一方、XRDスペクトルでは被覆層(I)のピークが観察されないことから、被覆層(I)は非晶質である。
(実施例2)<陽イオンMがAl3+、陰イオンNがFである被覆層を有するリチウム含有複合酸化物の製造例>
 組成物(2)として、NHFを0.43gに蒸留水を9.57g加えてフッ化アンモニウム水溶液を調製した。リン酸塩水溶液の代わりにフッ化アンモニウム水溶液を用いた以外は実施例1と同様の手順を行い、リチウム含有複合酸化物の表面に金属元素Alと陰イオンFを含む被覆層(I)が被覆する粒子(II)からなる実施例2の正極活物質を得た。
 この正極活物質において、被覆したアルミニウムの量は、前記合成例のリチウム含有複合酸化物の遷移金属元素であるニッケル、コバルト、マンガンの合計に対して、モル比(被覆量)で{(被覆したAlのモル数)/(付加する前のリチウム含有複合酸化物のNi、Co、Mnの合計モル数)}=0.013であった。また、{(被覆したAl3+のモル数)/(被覆したFのモル数)}=1であり、リチウム含有複合酸化物に組成物(1)を接触させた後に組成物(2)を接触させていることから、被覆層(I)は、内側がAl、外側がAlF、間がAlOFの傾斜膜となっていると考えられる。
 XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認された。また、2θ=20~25°の範囲に層状LiMnOピークが観察された。XRDスペクトルでは被覆層(I)のピークが観察されないことから、被覆層(I)は非晶質である。
(実施例3)<陽イオンMがAl3+、陰イオンNがFである被覆層を有するリチウム含有複合酸化物の製造例>
 組成物(2)として、NHFを1.30gに蒸留水を8.70g加えてフッ化アンモニウム水溶液を調製した。さらに、リン酸塩水溶液の代わりにフッ化アンモニウム水溶液を用いた以外は実施例1と同様の手順を行い、リチウム含有複合酸化物の表面に金属元素Alと陰イオンFを含む被覆層(I)が被覆する粒子(II)からなる実施例3の正極活物質を得た。
 この正極活物質において、被覆したアルミニウムの量は、前記合成例のリチウム含有複合酸化物の遷移金属元素であるニッケル、コバルト、マンガンの合計に対して、モル比(被覆量)で{(被覆したAlのモル数)/(付加する前のリチウム含有複合酸化物のNi、Co、Mnの合計モル数)}=0.013であった。また、{(被覆したAl3+のモル数)/(被覆したFのモル数)}=3であり、被覆層(I)は、AlFであると考えられる。
 XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認された。また、2θ=20~25°の範囲に層状LiMnOピークが観察された。XRDスペクトルでは被覆層(I)のピークが観察されないことから、被覆層(I)は非晶質である。
(実施例4)<陽イオンMがAl3+、陰イオンNがFである被覆層を有するリチウム含有複合酸化物の製造例>
 組成物(2)として、NHFを2.60gに蒸留水を7.40g加えてフッ化アンモニウム水溶液を調製した。さらに、リン酸塩水溶液の代わりにフッ化アンモニウム水溶液を用いた以外は実施例1と同様の手順を行い、リチウム含有複合酸化物の表面に金属元素Alと陰イオンFを含む被覆層(I)が被覆する粒子(II)からなる実施例4の正極活物質を得た。
 この正極活物質において、被覆したアルミニウムの量は、前記合成例のリチウム含有複合酸化物の遷移金属元素であるニッケル、コバルト、マンガンの合計に対して、モル比(被覆量)で{(被覆したAlのモル数)/(付加する前のリチウム含有複合酸化物のNi、Co、Mnの合計モル数)}=0.013であった。また、{(被覆したAl3+のモル数)/(被覆したFのモル数)}=6であり、Fの被覆量が多いことから被覆層(I)は、AlFとLiFであると考えられる。
 XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認された。また、2θ=20~25°の範囲に層状LiMnOピークが観察された。XRDスペクトルでは被覆層(I)のピークが観察されないことから、被覆層(I)は非晶質である。
(比較例1)<陽イオンMがAl3+で陰イオンNを有しない被覆層を有するリチウム含有複合酸化物の製造例>
 組成物(2)を噴霧しなかった以外は実施例1と同様の手順を行い、リチウム含有複合酸化物の表面に金属元素Alが被覆する粒子(II)からなる比較例1の正極活物質を得た。この時、{(リチウム含有複合酸化物100g当たりに接触させる組成物(1)と組成物(2)の合計量A)/(リチウム含有複合酸化物の吸油量B)}=10/44=0.23であった。リチウム含有複合酸化物は塊状にならず、撹拌等の取り扱いが容易であった。
 この正極活物質において、被覆したアルミニウムの量は、前記合成例のリチウム含有複合酸化物の遷移金属元素であるニッケル、コバルト、マンガンの合計に対して、モル比(被覆量)で{(被覆したAlのモル数)/(付加する前のリチウム含有複合酸化物のNi、Co、Mnの合計モル数)}=0.013である。また、{(被覆したAl3+のモル数)/(被覆した陰イオンNのモル数)}は計算不能であり、被覆層(I)は、Al2であると考えられる。
(比較例2)<被覆なし>
 前記合成例のリチウム含有複合酸化物に対して被覆処理は行わず、そのまま、比較例2の正極活物質とした。
(比較例3)
 実施例1で説明した手順を変更し、アルミニウム水溶液とリン酸塩水溶液を混合したところ、ゲル状の沈殿物が析出したため、リチウム含有複合酸化物に噴霧することができなかった。
<正極体シートの製造例>
 正極活物質として、それぞれ、実施例1~実施例4、比較例1、比較例2の正極活物質とアセチレンブラック(導電材)とポリフッ化ビニリデン(バインダー)を12.1質量%含むポリフッ化ビニリデン溶液(溶媒N-メチルピロリドン)とを混合し、さらに、N-メチルピロリドンを添加してスラリーを作製した。この際、正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンとは、質量比で82/10/8とした。次いで、このスラリーを、厚さ20μmのアルミニウム箔(正極集電体)に、ドクターブレードを用いて片面塗工した。そして、120℃で乾燥し、ロールプレス圧延を2回行うことにより、正極体シートを作製した。ここで、実施例1~実施例4の正極活物質から得た正極体シートを、それぞれ正極体シート1~4とし、比較例1、比較例2の正極活物質から得た正極体シートを、それぞれ正極体シート5、正極体シート6とした。
<電池の製造例>
 前記で製造した正極体シート1~6を正極に用い、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴングローブボックス内で組み立てた。この際、厚さ500μmの金属リチウム箔を負極に用い、負極集電体に厚さ1mmのステンレス板を使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに、電解液には濃度1(mol/dm)のLiPF/EC(エチレンカーボネート)+DEC(ジエチルカーボネート)(1:1)溶液(LiPFを溶質とするECとDECとの体積比(EC:DEC=1:1)の混合溶液を意味する。)を用いた。
 正極体シート1~6を用いたリチウムイオン二次電池を、それぞれ、リチウム電池1~6とした。
(電池特性評価例1~6)<初期容量、レート特性、およびサイクル特性の評価>
 前記で製造したリチウム電池1~6を用いて下記の評価を行った。
 すなわち、正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで放電した。この際、4.6~2.5Vにおける正極活物質の放電容量を4.6V初期容量とした。また、放電容量を充電容量で割った値を初期充放電効率とした。
 次いで、充放電正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき400mAの負荷電流にて2.5Vまで高レート放電した。この際、高レート放電での4.6~2.5Vにおける正極活物質の放電容量を4.6V初期容量で割った値をレート維持率とした。
 次いで、充放電正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで高レート放電する充放電サイクルを100回繰返した。この際、4.6V充放電サイクル100回目の放電容量を4.6V初期容量で割った値をサイクル維持率とした。
 そして、リチウム電池1~6について、4.6V初期容量、レート維持率、サイクル維持率の評価結果を、下記表1に示した。表1において金属塩/陰イオン比は(組成物(1)に含まれる陽イオンMの合計量×陽イオンMの平均価数)/(組成物(2)に含まれる陰イオンNの合計量×陰イオンNの平均価数)である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、被覆層(I)で被覆した粒子(II)からなる正極活物質を用いたリチウム電池1~4は、被覆を行っていない比較例2の正極活物質を用いたリチウム電池6に較べて高い初期容量と高い初期有放電効率を有するとともに、優れたサイクル維持率を発揮することが明らかである。
 また、被覆層(I)で被覆した粒子(II)からなる正極活物質を用いたリチウム電池1~4は、Alのみを被覆した比較例1の正極活物質を用いたリチウム電池5に較べて高い初期容量と高い初期有放電効率を有するとともに、優れたレート維持率を発揮することが明らかである。
(実施例5)
 焼成温度を変更した点以外は、前記のリチウム含有複合酸化物の合成例と同様の手順で、吸油量の異なるリチウム含有複合酸化物を合成した。また、市販のNi:Co:Mn=5:2:3の3元系正極材とコバルト酸リチウムを準備した。また、リチウム含有複合酸化物の吸油量は12~52(g/100g)であった。
 次に、各リチウム含有複合酸化物について、実施例1と同様にアルミニウム水溶液およびリン酸塩水溶液(組成物(2))を噴霧した。そして、{(リチウム含有複合酸化物100g当たりに接触させる組成物(1)と組成物(2)の合計量A)/(リチウム含有複合酸化物の吸油量B)}を変えて、リチウム含有複合酸化物が塊状にならずに撹拌等の取り扱いが良好な条件と、リチウム含有複合酸化物が塊状になって撹拌等の取り扱いが困難となる条件で、被覆層(I)で被覆した粒子(II)からなる正極活物質を得た。
 この実施例5における評価結果を図1のグラフおよび下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図1のグラフ中において、「×」はリチウム含有複合酸化物が塊になる条件、「○」はリチウム含有複合酸化物が塊状にならない条件を示しており、実線はA/B=0.7を示している。表2および図1に示す結果のように、A/B<0.7の条件であると、リチウム含有複合酸化物が塊状にならず、撹拌等の取り扱いが容易に行えることが明らかとなった。
 A/Bが0.7以上の場合には、実施例3のように、リチウム含有複合酸化物が塊状にならないように随時乾燥を行いながら組成物(1)と組成物(2)を添加することで、撹拌等の取り扱いを容易にすることも可能である。
 実施例1~実施例5および比較例1、比較例2の結果より、本発明の製造方法によって得られるリチウムイオン二次電池用正極活物質を用いて正極を作製し、この正極を適用してリチウムイオン二次電池を構成した場合には、初期容量が高く、また、優れたサイクル維持率およびレート維持率が得られることが明らかとなった。
 本発明によれば、単位質量あたりの放電容量が高く、かつ、サイクル特性およびレート特性に優れるリチウムイオン二次電池用の正極活物質を得ることができる。該正極活物質は、携帯電話等の電子機器、車載用の小型・軽量なリチウムイオン二次電池用に利用できる。
 なお、2011年6月24日に出願された日本特許出願2011-140493号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  Li元素及び遷移金属元素を含むリチウム含有複合酸化物と、下記組成物(1)および組成物(2)とを接触させ、加熱するリチウムイオン二次電池用正極活物質の製造方法であって、
     前記リチウム含有複合酸化物100g当たりに接触させる組成物(1)および組成物(2)の合計量A(ml/100g)が、前記リチウム含有複合酸化物の吸油量B(ml/100g)に対して、0.1<A/B<5の割合であることを特徴とする、リチウムイオン二次電池用正極活物質の製造方法。
     組成物(1):Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Zn、Al、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも一種の金属元素(m)を有する陽イオンMを含む水溶液。
     組成物(2):S、P、F、およびBからなる群より選ばれる少なくとも一種の元素(n)を有し、陽イオンMと反応して難溶性の塩を形成する陰イオンNを含む水溶液。
  2.  前記組成物(1)に含まれる金属元素(m)が、Alである、請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。
  3.  前記組成物(2)に含まれる陰イオンNが、SO 2-、PO 3-、およびFからなる群より選ばれる少なくとも一種の陰イオンである、請求項1または2に記載のリチウムイオン二次電池用正極活物質の製造方法。
  4.  前記加熱を250~700℃で行う、請求項1~3のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  5.  前記組成物(1)に含まれる金属元素(m)の量(モル比)が、前記リチウム含有複合酸化物に含まれる遷移金属元素の合計量に対して、0.001~0.05の範囲である、請求項1~4のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  6.  前記組成物(2)に含まれる陰イオンNの量(モル比)が、前記リチウム含有複合酸化物に含まれる遷移金属元素の合計量に対して、0.001~0.05の範囲である、請求項1~4のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  7.  前記リチウム含有複合酸化物と前記組成物(1)または組成物(2)との接触を、撹拌下の前記リチウム含有複合酸化物に前記組成物(1)または組成物(2)を添加して、前記リチウム含有複合酸化物と前記組成物(1)または組成物(2)とを混合することによって行う、請求項1~6のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  8.  前記リチウム含有複合酸化物と前記組成物(1)または組成物(2)との接触を、スプレーコート法を用いて前記組成物(1)または組成物(2)を前記リチウム含有複合酸化物に噴霧することによって行う、請求項1~7のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  9.  請求項1~8のいずれか一項に記載の製造方法によって製造されたリチウムイオン二次電池用正極活物質とバインダーとを含むリチウムイオン二次電池用正極。
  10.  請求項9に記載の正極と負極と非水電解質とを含むリチウムイオン二次電池。
PCT/JP2012/066063 2011-06-24 2012-06-22 リチウムイオン二次電池用正極活物質の製造方法 WO2012176904A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013521646A JP6253408B2 (ja) 2011-06-24 2012-06-22 リチウムイオン二次電池用正極活物質の製造方法
KR1020137034016A KR101958038B1 (ko) 2011-06-24 2012-06-22 리튬 이온 이차 전지용 정극 활물질의 제조 방법
CN201280030897.1A CN103636035B (zh) 2011-06-24 2012-06-22 锂离子二次电池用正极活性物质的制造方法
US14/139,952 US9306213B2 (en) 2011-06-24 2013-12-24 Process for producing cathode active material for lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011140493 2011-06-24
JP2011-140493 2011-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/139,952 Continuation US9306213B2 (en) 2011-06-24 2013-12-24 Process for producing cathode active material for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2012176904A1 true WO2012176904A1 (ja) 2012-12-27

Family

ID=47422731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066063 WO2012176904A1 (ja) 2011-06-24 2012-06-22 リチウムイオン二次電池用正極活物質の製造方法

Country Status (5)

Country Link
US (1) US9306213B2 (ja)
JP (1) JP6253408B2 (ja)
KR (1) KR101958038B1 (ja)
CN (1) CN103636035B (ja)
WO (1) WO2012176904A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103208650A (zh) * 2013-04-12 2013-07-17 北京石磊乾坤含氟新材料研究院有限责任公司 八氟铪酸锂的合成方法及其新用途
JP2013206553A (ja) * 2012-03-27 2013-10-07 Tdk Corp 正極活物質、及びそれを用いたリチウムイオン二次電池
WO2014115604A1 (ja) * 2013-01-25 2014-07-31 トヨタ自動車株式会社 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
WO2015002065A1 (ja) * 2013-07-05 2015-01-08 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP2015015088A (ja) * 2013-07-03 2015-01-22 株式会社豊田自動織機 リチウムイオン二次電池用正極活物質の処理方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
JP2015056275A (ja) * 2013-09-11 2015-03-23 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法およびリチウムイオン二次電池用正極の製造方法
KR20150050153A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 리튬 이차전지용 양극 활물질 조성물 및 그 제조방법
WO2015084026A1 (ko) * 2013-12-02 2015-06-11 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20150109669A (ko) * 2014-03-20 2015-10-02 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP2015213054A (ja) * 2014-04-15 2015-11-26 ワイルドキャット・ディスカバリー・テクノロジーズ・インコーポレイテッドWildcat Discovery Technologies, Inc. 金属抽出によって作製した材料
JP2016126935A (ja) * 2015-01-06 2016-07-11 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
WO2017099201A1 (ja) * 2015-12-11 2017-06-15 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
KR101816945B1 (ko) * 2013-10-29 2018-01-09 주식회사 엘지화학 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
JP2018502421A (ja) * 2014-12-05 2018-01-25 エルジー・ケム・リミテッド 正極活物質、この製造方法、及びこれを含むリチウム二次電池
JP2018137147A (ja) * 2017-02-22 2018-08-30 株式会社Gsユアサ 非水電解質蓄電素子用の正極、非水電解質蓄電素子及び正極合材ペーストの製造方法
WO2020195384A1 (ja) * 2019-03-28 2020-10-01 パナソニック株式会社 固体電解質及びそれを用いたマグネシウム二次電池
WO2020208963A1 (ja) * 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP2021509522A (ja) * 2017-12-29 2021-03-25 セイケム インコーポレイテッド オニウム金属酸化フッ化物前駆体を介した、Liイオンバッテリ用カソードセラミック粒子上のLimMOxFyシェル形成
CN114899352A (zh) * 2015-12-11 2022-08-12 株式会社杰士汤浅国际 非水电解质蓄电元件及其制造方法
WO2022243782A1 (ja) * 2021-05-21 2022-11-24 株式会社半導体エネルギー研究所 正極活物質の作製方法、正極、リチウムイオン二次電池、移動体、蓄電システム、及び電子機器
WO2023013490A1 (ja) * 2021-08-03 2023-02-09 住友化学株式会社 リチウム二次電池用正極活物質の製造方法及びリチウム二次電池用正極の製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6663172B2 (ja) 2014-05-12 2020-03-11 住友化学株式会社 正極活物質、その製造方法、正極およびリチウムイオン二次電池
JP6471025B2 (ja) 2014-06-27 2019-02-13 住友化学株式会社 リチウム含有複合酸化物およびその製造方法
CN104766952B (zh) * 2015-04-21 2017-01-25 武汉凯迪工程技术研究总院有限公司 利用生物质气化炉滤渣制备锂离子电池负极材料的方法
WO2016186479A1 (ko) * 2015-05-21 2016-11-24 주식회사 엘앤에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP6487279B2 (ja) * 2015-06-10 2019-03-20 住友化学株式会社 リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6443416B2 (ja) * 2016-09-13 2018-12-26 トヨタ自動車株式会社 非水電解液二次電池の製造方法、および非水電解液二次電池
CN107959015B (zh) * 2017-11-23 2018-11-16 江苏贝肯盛创新能源科技有限公司 一种改性锂电池正极材料、制备方法及包含其的锂电池
CN109065856B (zh) * 2018-07-16 2021-05-14 合肥国轩高科动力能源有限公司 一种锂离子电池钛酸锂负极材料的改性方法
HUE059721T2 (hu) 2018-09-28 2022-12-28 Lg Chemical Ltd Pozitív elektróda aktív anyag szekunder akkumulátorhoz, elõállítás annak elõállítására és az azt tartalmazó szekunder akkumulátor
CN109192971A (zh) * 2018-10-25 2019-01-11 上海电气国轩新能源科技有限公司 一种正极材料及制备方法、锂离子电池
JP7160930B2 (ja) * 2019-04-11 2022-10-25 Jfeミネラル株式会社 前駆体、前駆体の製造方法、正極材、正極材の製造方法、および、リチウムイオン二次電池
US11804592B2 (en) 2021-02-12 2023-10-31 WATTRII, Inc. High-energy cathodes, batteries, and methods of making the same
US11380893B1 (en) 2021-02-12 2022-07-05 WATTRII, Inc. High energy cathodes, batteries, and methods of making the same
US11374209B1 (en) 2021-02-12 2022-06-28 WATTRII, Inc. High-energy cathodes, batteries, and methods of making the same
CN114927658B (zh) * 2022-05-06 2024-02-27 中国科学院上海硅酸盐研究所 一种基于离子交换膜的正极材料表面改性的装置和正极材料表面改性方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268017A (ja) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd 非水電解液二次電池
JP2006127932A (ja) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
WO2006123572A1 (ja) * 2005-05-17 2006-11-23 Sony Corporation 正極活物質およびその製造方法、並びに電池
JP2008506244A (ja) * 2004-09-02 2008-02-28 エルジー・ケム・リミテッド 多成分系酸化物コート層を有する電極活性物質及びその製造方法
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
WO2009157524A1 (ja) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法
JP2010086922A (ja) * 2008-10-02 2010-04-15 Toda Kogyo Corp リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135251B2 (en) 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
CN101223660A (zh) * 2005-05-17 2008-07-16 索尼株式会社 正极活性物质,正极活性物质的制造方法和电池
KR101278376B1 (ko) 2006-03-02 2013-06-25 에이지씨 세이미 케미칼 가부시키가이샤 비수 전해질 2 차 전지용 양극 활물질 및 그 제조 방법
JP5079291B2 (ja) * 2006-09-21 2012-11-21 パナソニック株式会社 非水電解質二次電池
CN101675547B (zh) * 2007-11-01 2013-05-08 Agc清美化学股份有限公司 锂离子二次电池用正极活性物质的制造方法
CA2770360C (en) * 2009-08-27 2018-03-06 Eveready Battery Company, Inc. Lithium-iron disulfide cathode formulation having high pyrite content and low conductive additives
US20110262811A1 (en) * 2009-09-18 2011-10-27 Masahiro Kinoshita Electrode for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
KR20130139941A (ko) 2010-10-29 2013-12-23 아사히 가라스 가부시키가이샤 리튬 이온 이차 전지용 정극 활물질, 정극, 전지 및 제조 방법
WO2012108513A1 (ja) 2011-02-09 2012-08-16 旭硝子株式会社 リチウムイオン二次電池用の正極活物質の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268017A (ja) * 2004-03-18 2005-09-29 Sanyo Electric Co Ltd 非水電解液二次電池
JP2008506244A (ja) * 2004-09-02 2008-02-28 エルジー・ケム・リミテッド 多成分系酸化物コート層を有する電極活性物質及びその製造方法
JP2006127932A (ja) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
WO2006123572A1 (ja) * 2005-05-17 2006-11-23 Sony Corporation 正極活物質およびその製造方法、並びに電池
WO2009157524A1 (ja) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法
JP2010086922A (ja) * 2008-10-02 2010-04-15 Toda Kogyo Corp リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013206553A (ja) * 2012-03-27 2013-10-07 Tdk Corp 正極活物質、及びそれを用いたリチウムイオン二次電池
CN104937749A (zh) * 2013-01-25 2015-09-23 丰田自动车株式会社 二次电池用正极、二次电池用正极的制造方法以及全固体二次电池
WO2014115604A1 (ja) * 2013-01-25 2014-07-31 トヨタ自動車株式会社 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
JP2014143133A (ja) * 2013-01-25 2014-08-07 Toyota Motor Corp 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
US9601759B2 (en) 2013-01-25 2017-03-21 Toyota Jidosha Kabushiki Kaisha Cathode for secondary batteries, method for producing cathode for secondary batteries, and all-solid-state secondary battery
US20150325844A1 (en) * 2013-01-25 2015-11-12 Toyota Jidosha Kabushiki Kaisha Cathode for secondary batteries, method for producing cathode for secondary batteries, and all-solid-state secondary battery
CN103208650A (zh) * 2013-04-12 2013-07-17 北京石磊乾坤含氟新材料研究院有限责任公司 八氟铪酸锂的合成方法及其新用途
JP2015015088A (ja) * 2013-07-03 2015-01-22 株式会社豊田自動織機 リチウムイオン二次電池用正極活物質の処理方法、リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池
CN105378986B (zh) * 2013-07-05 2018-07-31 住友化学株式会社 锂离子二次电池用正极活性物质的制造方法
US10062905B2 (en) 2013-07-05 2018-08-28 Sumitomo Chemical Co., Ltd. Process for producing cathode active material for lithium ion secondary battery
JP2018166123A (ja) * 2013-07-05 2018-10-25 住友化学株式会社 リチウムイオン二次電池用正極活物質の製造方法
CN105378986A (zh) * 2013-07-05 2016-03-02 旭硝子株式会社 锂离子二次电池用正极活性物质的制造方法
JPWO2015002065A1 (ja) * 2013-07-05 2017-02-23 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法
WO2015002065A1 (ja) * 2013-07-05 2015-01-08 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法
JP2015056275A (ja) * 2013-09-11 2015-03-23 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法およびリチウムイオン二次電池用正極の製造方法
KR101816945B1 (ko) * 2013-10-29 2018-01-09 주식회사 엘지화학 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
KR101954119B1 (ko) * 2013-10-31 2019-03-06 주식회사 엘지화학 리튬 이차전지용 양극 활물질 조성물 및 그 제조방법
KR20150050153A (ko) * 2013-10-31 2015-05-08 주식회사 엘지화학 리튬 이차전지용 양극 활물질 조성물 및 그 제조방법
US10439211B2 (en) 2013-12-02 2019-10-08 L&F Co., Ltd. Cathode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery containing the same
KR101625838B1 (ko) * 2013-12-02 2016-05-31 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015084026A1 (ko) * 2013-12-02 2015-06-11 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102217753B1 (ko) * 2014-03-20 2021-02-22 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20150109669A (ko) * 2014-03-20 2015-10-02 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
JP2015213054A (ja) * 2014-04-15 2015-11-26 ワイルドキャット・ディスカバリー・テクノロジーズ・インコーポレイテッドWildcat Discovery Technologies, Inc. 金属抽出によって作製した材料
JP2018502421A (ja) * 2014-12-05 2018-01-25 エルジー・ケム・リミテッド 正極活物質、この製造方法、及びこれを含むリチウム二次電池
US10340517B2 (en) 2014-12-05 2019-07-02 Lg Chem, Ltd. Positive electrode active material, method for preparing the same and lithium secondary battery including the same
JP2016126935A (ja) * 2015-01-06 2016-07-11 株式会社Gsユアサ リチウム二次電池用正極活物質、リチウム二次電池用電極、及びリチウム二次電池
US11205775B2 (en) 2015-12-11 2021-12-21 Gs Yuasa International Ltd. Nonaqueous electrolyte energy storage device and method for producing the same
WO2017099201A1 (ja) * 2015-12-11 2017-06-15 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
JPWO2017099201A1 (ja) * 2015-12-11 2018-09-27 株式会社Gsユアサ 非水電解質蓄電素子及びその製造方法
CN114899352A (zh) * 2015-12-11 2022-08-12 株式会社杰士汤浅国际 非水电解质蓄电元件及其制造方法
CN114899352B (zh) * 2015-12-11 2023-12-08 株式会社杰士汤浅国际 非水电解质蓄电元件及其制造方法
JP2018137147A (ja) * 2017-02-22 2018-08-30 株式会社Gsユアサ 非水電解質蓄電素子用の正極、非水電解質蓄電素子及び正極合材ペーストの製造方法
JP2021509522A (ja) * 2017-12-29 2021-03-25 セイケム インコーポレイテッド オニウム金属酸化フッ化物前駆体を介した、Liイオンバッテリ用カソードセラミック粒子上のLimMOxFyシェル形成
JP7204757B2 (ja) 2017-12-29 2023-01-16 セイケム インコーポレイテッド オニウム金属酸化フッ化物前駆体を介した、Liイオンバッテリ用カソードセラミック粒子上のLimMOxFyシェル形成
WO2020195384A1 (ja) * 2019-03-28 2020-10-01 パナソニック株式会社 固体電解質及びそれを用いたマグネシウム二次電池
WO2020208963A1 (ja) * 2019-04-12 2020-10-15 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
JP2020172422A (ja) * 2019-04-12 2020-10-22 住友化学株式会社 リチウム金属複合酸化物粉末及びリチウム二次電池用正極活物質
WO2022243782A1 (ja) * 2021-05-21 2022-11-24 株式会社半導体エネルギー研究所 正極活物質の作製方法、正極、リチウムイオン二次電池、移動体、蓄電システム、及び電子機器
WO2023013490A1 (ja) * 2021-08-03 2023-02-09 住友化学株式会社 リチウム二次電池用正極活物質の製造方法及びリチウム二次電池用正極の製造方法

Also Published As

Publication number Publication date
US20140113193A1 (en) 2014-04-24
KR20140039233A (ko) 2014-04-01
CN103636035B (zh) 2016-05-04
US9306213B2 (en) 2016-04-05
JPWO2012176904A1 (ja) 2015-02-23
KR101958038B1 (ko) 2019-03-13
JP6253408B2 (ja) 2017-12-27
CN103636035A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
JP6253408B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
US10910640B2 (en) Cathode active material for lithium ion secondary battery, and process for its production
JP5928445B2 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP6052176B2 (ja) リチウムイオン二次電池用正極活物質
JP6382810B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
WO2012176903A1 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP6070551B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池の製造方法
JP6089701B2 (ja) 正極活物質およびその製造方法
WO2012108513A1 (ja) リチウムイオン二次電池用の正極活物質の製造方法
JP6600136B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2014116162A (ja) 正極活物質
WO2013115336A1 (ja) リチウムイオン二次電池用正極活物質
JP6209435B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2017082313A1 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2014089826A (ja) 正極活物質
JP2015056275A (ja) リチウムイオン二次電池用正極活物質の製造方法およびリチウムイオン二次電池用正極の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280030897.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521646

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034016

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803199

Country of ref document: EP

Kind code of ref document: A1