WO2015002065A1 - リチウムイオン二次電池用正極活物質の製造方法 - Google Patents

リチウムイオン二次電池用正極活物質の製造方法 Download PDF

Info

Publication number
WO2015002065A1
WO2015002065A1 PCT/JP2014/067020 JP2014067020W WO2015002065A1 WO 2015002065 A1 WO2015002065 A1 WO 2015002065A1 JP 2014067020 W JP2014067020 W JP 2014067020W WO 2015002065 A1 WO2015002065 A1 WO 2015002065A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
composition
composite oxide
ion secondary
Prior art date
Application number
PCT/JP2014/067020
Other languages
English (en)
French (fr)
Inventor
健太郎 角▲崎▼
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015525176A priority Critical patent/JP6382810B2/ja
Priority to CN201480038363.2A priority patent/CN105378986B/zh
Publication of WO2015002065A1 publication Critical patent/WO2015002065A1/ja
Priority to US14/971,083 priority patent/US10062905B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery, a method for producing a positive electrode for a lithium ion secondary battery using the same, and a method for producing a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • a positive electrode active material for a lithium ion secondary battery includes a composite oxide of lithium and a transition metal or the like such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 (hereinafter referred to as lithium Containing complex oxide).
  • LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 hereinafter referred to as lithium Containing complex oxide.
  • miniaturization and weight reduction have been demanded as portable electronic devices and in-vehicle lithium ion secondary batteries, and further improvement in charge and discharge efficiency is desired.
  • Patent Document 1 discloses an aqueous solution containing a specific cation M, an aqueous solution containing an anion N that reacts with the cation M to form a hardly soluble salt, and a lithium-containing composite containing an Li element and a transition metal element.
  • a method for improving the retention rate (cycle retention rate) of the discharge capacity after repeating the discharge cycle is described by heating after contacting the oxide and providing a coating layer on the lithium-containing composite oxide. Yes.
  • Patent Document 2 discloses that when a lithium-containing composite oxide powder containing a Li element and a transition metal element is treated with nitric acid, treated with ammonia gas, and then heat-treated, the initial charge / discharge efficiency (initial efficiency) is improved. It is described.
  • the charge / discharge efficiency in the lithium ion secondary battery is not necessarily sufficient, and improvement is desired.
  • a lithium ion secondary battery with high initial efficiency and a high cycle maintenance rate is desirable.
  • the present invention has been made in view of the above circumstances, and a method for producing a positive electrode active material for a lithium ion secondary battery capable of simultaneously improving the initial efficiency and the cycle maintenance ratio in the lithium ion secondary battery, and the use thereof. It is an object of the present invention to provide a method for producing a positive electrode for a lithium ion secondary battery and a method for producing a lithium ion secondary battery.
  • the gist of the present invention is the following [1] to [15].
  • [1] A method for producing a positive electrode active material for a lithium ion secondary battery having the following steps (I), (II) and (III) in this order.
  • Step (I) A step of bringing a lithium-containing composite oxide (I) containing a Li element and a transition metal element into contact with a cleaning liquid, and separating the cleaning liquid after the contact to obtain a lithium-containing composite oxide (II).
  • Step (II) A step of obtaining lithium-containing composite oxide (III) by bringing lithium-containing composite oxide (II) into contact with the following composition (1) and composition (2).
  • Step (III) A step of heating the lithium-containing composite oxide (III).
  • Composition (1) An aqueous solution containing a monoatomic or polyatomic anion (A) containing at least one element (a) selected from the group consisting of S, P, F, and B.
  • Composition (2) Li, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Cation of a single atom or a complex of at least one metal element (m) selected from the group consisting of Ga, In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb ( An aqueous solution containing M).
  • step (II) The anion contained in the composition (1) (A) it is, F - a is, [1] to manufacture a cathode active material for a lithium ion secondary battery according to any one of [3] Method.
  • step (II) the molar ratio of each anion (A) contained in the composition (1) to the total amount of transition metal elements contained in the lithium-containing composite oxide (I) Lithium according to any one of [1] to [4], which is contacted so that a sum of values obtained by multiplying absolute values of valences of ions (A) is within a range of 0.001 to 0.15.
  • the lithium-containing composite oxide (I) contains Li element and at least one transition metal element selected from the group consisting of Ni, Co, and Mn, and the molar amount of Li element is the transition metal element
  • Me is at least one element selected from the group consisting of Co and Ni
  • Me ′ is at least one element selected from the group consisting of Al, Cr, Mg, Mo, Ru, Ti, Zr, and Fe.
  • 0.1 ⁇ x 1 ⁇ 0.25, 0.5 ⁇ y 1 / (y 1 + z 1 ) ⁇ 0.8, 0 ⁇ ⁇ ⁇ 0.1, x 1 + y 1 + z 1 1, 1 .9 ⁇ p ⁇ 2.1, 0 ⁇ q ⁇ 0.1.
  • the lithium-containing composite oxide (II) is brought into contact with the composition (1) and the composition (2) to the lithium-containing composite oxide (II) under stirring.
  • the composition (2) the method for producing a positive electrode active material for a lithium ion secondary battery according to [12].
  • a lithium ion secondary battery is produced using the process for producing a positive electrode for a lithium ion secondary battery by the production method according to [14], and the positive electrode for a lithium ion secondary battery, a negative electrode, a nonaqueous electrolyte, and a separator.
  • the manufacturing method of a lithium ion secondary battery which has the process to comprise.
  • the positive electrode active material for lithium ion secondary batteries which can improve the initial stage efficiency and cycle maintenance factor in a lithium ion secondary battery simultaneously, and the positive electrode for lithium ion secondary batteries are obtained.
  • a lithium ion secondary battery excellent in initial efficiency and cycle maintenance rate can be obtained.
  • an element symbol indicates an element, and does not indicate a single substance (for example, metal) of the element unless otherwise specified.
  • ⁇ Method for producing positive electrode active material for lithium ion secondary battery> In the method for producing a positive electrode active material for a lithium ion secondary battery of the present invention (hereinafter referred to as this production method), the following steps (I), (II) and (III) are carried out in this order. Thereby, compared with the case where only each process is performed, the synergistic effect by this combination is acquired, and an initial stage efficiency and a cycle maintenance factor can be improved more.
  • This manufacturing method may include other steps between the respective steps as long as the following steps are performed in this order. From the viewpoint of production efficiency, it is more preferable to perform the following steps continuously.
  • composition (1) and the composition (2) are the following aqueous solutions, respectively.
  • a coating solution An aqueous solution containing a monoatomic or polyatomic anion (A) containing at least one element (a) selected from the group consisting of S, P, F, and B.
  • Composition (2) Li, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, Zn, Al, Cation of a single atom or a complex of at least one metal element (m) selected from the group consisting of Ga, In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb ( An aqueous solution containing M).
  • the lithium-containing composite oxide (I) used in this production method contains Li and a transition metal element.
  • the lithium-containing composite oxide before being brought into contact with the cleaning liquid is referred to as lithium-containing composite oxide (I).
  • the transition metal element includes at least one selected from the group consisting of Ni, Co, Mn, Fe, Cr, V, and Cu.
  • a known lithium-containing composite oxide can be used as an active material for a lithium ion secondary battery.
  • a lithium containing complex oxide may be used individually by 1 type, and may use 2 or more types together.
  • the lithium-containing composite oxide (I) for example, the following compound (i), (ii), (iii), or (iv) is preferable.
  • Compound (i) Li and at least one transition metal element selected from the group consisting of Ni, Co, and Mn, and the molar amount of Li is 1.2 with respect to the total molar amount of the transition metal element. A compound that is more than doubled.
  • Compound (i) is preferably a compound represented by the following formula (1).
  • Compound (ii) Compound represented by the following formula (2).
  • Compound (iv) A compound represented by the following formula (4).
  • the compound (i) is more preferable in that a high capacity in a lithium ion secondary battery can be obtained.
  • Me is at least one element selected from the group consisting of Co and Ni
  • Me ′ is selected from the group consisting of Al, Cr, Mg, Mo, Ru, Ti, Zr, and Fe. At least one kind.
  • 0.1 ⁇ x 1 ⁇ 0.25, 0.5 ⁇ y 1 / (y 1 + z 1 ) ⁇ 0.8, 0 ⁇ ⁇ ⁇ 0.1, x 1 + y 1 + z 1 1, 1.9 ⁇ p ⁇ 2.1 and 0 ⁇ q ⁇ 0.1.
  • Examples of the compound (ii) represented by the formula (2) include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 0.5 Ni 0.5 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O. 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
  • the olivine-type metal lithium salt (compound (iii)) is a compound represented by the following formula (3) or a complex thereof.
  • X represents Fe (II), Co (II), Mn (II), Ni (II), V (II), or Cu (II)
  • Y represents P or Si, 0 ⁇ L ⁇ 3, 1 ⁇ x 3 ⁇ 2, 1 ⁇ y 3 ⁇ 3, 4 ⁇ z 3 ⁇ 12, 0 ⁇ g ⁇ 1.
  • LiFePO 4 Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 2 FePO 4 F, Li 2 MnPO 4 F, Li 2 NiPO 4 F, Li 2 CoPO 4 F, Li 2 FeSiO 4, Li 2 MnSiO 4, Li 2 NiSiO 4, Li 2 CoSiO 4 can be cited.
  • LiMn 2 O 4 LiMn 1.5 Ni 0.5 O 4 , LiMn 1.0 Co 1.0 O 4 , LiMn 1.85 Al 0.15 O 4 , LiMn 1.9 Mg 0.1 O 4 may be mentioned.
  • the lithium-containing composite oxide (I) is preferably particulate.
  • the average particle diameter (D50) is preferably 0.03 to 30 ⁇ m.
  • D50 is preferably 3 to 30 ⁇ m, more preferably 4 to 25 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • D50 is preferably 0.03 to 5 ⁇ m, more preferably 0.04 to 1 ⁇ m, and particularly preferably 0.05 to 0.5 ⁇ m.
  • D50 is a volume-based cumulative 50% diameter which is a particle diameter at a point where the cumulative curve is 50% in a cumulative curve where the particle size distribution is obtained on a volume basis and the total volume is 100%.
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
  • the particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA, etc.). Used).
  • the lithium-containing composite oxide (I) can be produced by mixing a coprecipitate containing a transition metal obtained by a coprecipitation method with a lithium compound and baking, hydrothermal synthesis method, sol-gel method, dry mixing A method (solid phase method), an ion exchange method, or a glass crystallization method can be appropriately used. In particular, a method of mixing and baking the coprecipitate and a lithium compound is preferable because a high discharge capacity is easily obtained.
  • the coprecipitation method an alkali coprecipitation method and a carbonate coprecipitation method are preferable.
  • the lithium composite oxide (I) is a compound selected from the compound (i)
  • the carbonate coprecipitation method is preferable from the viewpoint that a high discharge capacity is easily obtained.
  • Each of these production methods can be performed using a known method.
  • the alkali coprecipitation method is a method in which an aqueous solution of a metal salt containing a transition metal element and a pH adjusting solution containing a strong alkali are continuously mixed to maintain a constant pH in the reaction solution. This is a method of depositing a hydroxide containing a metal element.
  • a positive electrode active material having a high powder density of the obtained coprecipitate and excellent filling properties in the positive electrode active material layer can be obtained.
  • metal salts containing transition metal elements include nitrates, acetates, chloride salts, and sulfates of transition metal elements. Since the material cost is relatively low and excellent battery characteristics are obtained, a transition metal element sulfate is preferable, and a sulfate composed of Ni sulfate, Co sulfate and Mn sulfate is more preferable.
  • Examples of the sulfate of Ni include nickel (II) sulfate hexahydrate, nickel (II) sulfate heptahydrate, nickel sulfate (II) ammonium hexahydrate, and the like.
  • Examples of Co sulfate include cobalt (II) sulfate heptahydrate and cobalt (II) ammonium sulfate hexahydrate.
  • Examples of the sulfate of Mn include manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate, and the like.
  • the pH of the solution during the reaction in the alkali coprecipitation method is preferably 10-12.
  • An aqueous solution containing at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, and lithium hydroxide is preferable as the pH adjusting solution containing a strong alkali to be added. Among these, an aqueous sodium hydroxide solution is more preferable.
  • an aqueous ammonia solution or an aqueous ammonium sulfate solution may be added to the reaction solution in the alkali coprecipitation method.
  • the carbonate coprecipitation method is a method in which a metal salt aqueous solution containing a transition metal element and an alkali metal carbonate aqueous solution are continuously mixed to precipitate a carbonate containing a transition metal element in a reaction solution. .
  • a positive electrode active material is obtained in which the obtained coprecipitate is porous, has a high specific surface area, and exhibits a high discharge capacity.
  • the metal salt containing a transition metal element used in the carbonate coprecipitation method include the same transition metal salts as those exemplified in the alkali coprecipitation method.
  • the pH of the solution during the reaction in the carbonate coprecipitation method is preferably 7-9.
  • the alkali metal carbonate aqueous solution is preferably an aqueous solution containing at least one selected from the group consisting of sodium carbonate, sodium hydrogen carbonate, potassium carbonate, and potassium hydrogen carbonate.
  • An aqueous ammonia solution or an aqueous ammonium sulfate solution may be added to the reaction solution in the carbonate coprecipitation method for the same reason as in the alkali coprecipitation method.
  • a step of removing the aqueous solution by filtration, sedimentation separation, or centrifugation.
  • a pressure filter, a vacuum filter, a centrifugal classifier, a filter press, a screw press, a rotary dehydrator, or the like can be used.
  • washing step it is preferable to carry out a washing step to remove impurity ions such as sodium from the obtained coprecipitate.
  • the method for washing the coprecipitate include a method of repeating filtration and dispersion in ion-exchanged water.
  • a lithium-containing composite oxide is obtained by mixing and calcining a coprecipitate obtained by the coprecipitation method and a lithium compound.
  • the lithium compound for example, lithium carbonate, lithium hydroxide, or lithium nitrate is preferable, and lithium carbonate is more preferable because it is inexpensive.
  • the firing temperature is preferably 500 to 1000 ° C. When the firing temperature is within the above range, a lithium-containing composite oxide having high crystallinity is easily obtained.
  • the firing temperature is more preferably 600 to 1000 ° C., and particularly preferably 800 to 950 ° C.
  • the firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours. Firing is preferably performed in an oxygen-containing atmosphere, for example, while supplying air. By firing in an oxygen-containing atmosphere, the transition metal element in the coprecipitate is sufficiently oxidized, and the crystallinity tends to be high.
  • the lithium-containing composite oxide (I) is brought into contact with the cleaning liquid, and separated from the cleaning liquid after the contact to obtain the lithium-containing composite oxide (II).
  • the lithium-containing composite oxide (I) includes Li that does not form the crystal structure of the lithium-containing composite oxide as an impurity.
  • alkaline components such as Li, Na, K, etc. which originate in the manufacturing raw material (a coprecipitate, a lithium compound, others) of lithium containing complex oxide (I) may be contained.
  • These alkali components are hereinafter referred to as free alkalis. It is considered that the free alkali is attached to the surface of the lithium-containing composite oxide in the form of hydroxide or carbonate. The free alkali can be removed from the lithium-containing composite oxide by the washing treatment. As a result, the battery characteristics of the lithium ion secondary battery using the washed lithium-containing composite oxide as the positive electrode active material can be improved.
  • the cleaning liquid is not particularly limited as long as it can dissolve free alkali, and water or an acidic aqueous solution is preferable.
  • a pH adjuster or the like may be included in the cleaning liquid in order to control the solubility of free alkali and improve handling.
  • the cleaning solution is preferably an acidic aqueous solution in that free alkali is easily dissolved and high charge / discharge efficiency and high discharge capacity can be obtained.
  • an acidic aqueous solution having a pH of 0 to 6 at 25 ° C. is preferable.
  • the pH of the cleaning liquid is more preferably from 0.5 to 5, and further preferably from 1 to 4.
  • the acid component contained in the cleaning liquid is preferably an acid component that does not contain F in order to facilitate separation of the cleaning liquid and the lithium-containing composite oxide (II).
  • Suitable acid components contained in the cleaning liquid include lactic acid, sulfuric acid, carbonic acid, citric acid, glycolic acid, malic acid, tartaric acid, gluconic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid, fumaric acid. Examples include acid, phthalic acid, formic acid, acetic acid, propionic acid, ascorbic acid, nitric acid, hydrochloric acid, boric acid, phosphoric acid, and perchloric acid. Lactic acid, sulfuric acid, acetic acid, or glycolic acid is more preferable in terms of handling and improving charge / discharge efficiency.
  • An acid component may be used individually by 1 type, and may use 2 or more types together.
  • a method for bringing the lithium-containing composite oxide (I) into contact with the cleaning liquid for example, a method in which the lithium-containing composite oxide (I) is added to the cleaning liquid and stirred and mixed can be used.
  • the contact with the cleaning liquid may be performed a plurality of times.
  • the temperature of the cleaning liquid brought into contact with the lithium-containing composite oxide (I) is preferably 10 to 90 ° C., more preferably 20 to 60 ° C., from the viewpoint of improving workability and charge / discharge efficiency.
  • the pH of the cleaning solution is higher than 4
  • the temperature is preferably 40 ° C. or higher in order to increase the solubility of lithium.
  • the time for which the lithium-containing composite oxide (I) is brought into contact with the cleaning liquid is not particularly limited, but 0.5 hours or more is preferable and 1 hour or more is preferable in terms of obtaining high charge / discharge efficiency and high discharge capacity.
  • the upper limit of the contact time is preferably 48 hours or less, more preferably 24 hours or less from the viewpoint of productivity.
  • the relative amount (X1) of the acid component obtained by the following formula (X1) is preferably 0.005 to 0.20, and preferably 0.02 to 0.15. More preferred.
  • Relative amount of acid component (X1) ⁇ Amount of acid component contained in cleaning solution (mole) / Total amount of transition metal element contained in lithium-containing composite oxide (I) (mole) ⁇ ⁇ ⁇ valence of acid component Absolute value ⁇ (X1)
  • the relative amount (X1) of the acid component is a molar ratio of the amount of the acid component (unit: mol) contained in the cleaning liquid to the total amount (unit: mol) of the transition metal element contained in the lithium-containing composite oxide (I).
  • the value obtained by multiplying the absolute value of the valence of the acid component is not less than the lower limit of the above range, high charge / discharge efficiency and high discharge capacity are obtained, and when it is not more than the upper limit, elution of the transition metal component is small and the yield is increased.
  • the cleaning liquid from which the lithium-containing composite oxide (II) is removed after washing (hereinafter referred to as waste liquid), at least lithium is dissolved, and further, the transition metal contained in the lithium-containing composite oxide (I) is dissolved. Also good.
  • the waste liquid is also referred to as a filtrate.
  • the lithium elution rate determined by the following formula (X2) (hereinafter sometimes referred to as “lithium elution rate (X2)”) is preferably 0.2 to 10%, more preferably 1 to 6%. preferable. When the lithium elution rate (X2) is within the above range, high charge / discharge efficiency and high discharge capacity can be obtained.
  • Lithium elution rate (X2) ⁇ Amount of Li contained in waste liquid (mol) / Amount of Li contained in lithium-containing composite oxide (I) ⁇ ⁇ 100 (X2)
  • the lithium elution rate (X2) is the ratio of the amount of Li dissolved in the cleaning liquid to the total Li contained in the lithium-containing composite oxide (I).
  • the amount of Li contained in the waste liquid and the lithium-containing composite oxide (I) is calculated by measurement by inductively coupled plasma (ICP) emission spectroscopy.
  • ICP inductively coupled plasma
  • transition metal elution rate (X3)) obtained by the following formula (X3) is preferably 0 to 2%, and preferably 0 to 1.5%. Is more preferable. If the transition metal elution rate (X3) is within the above range, the transition metal component is less eluted and the yield is increased.
  • Transition metal elution rate (X3) ⁇ total amount of transition metal element contained in waste liquid (mol) / total amount of transition metal element contained in lithium-containing composite oxide (I) ⁇ ⁇ 100 (X3)
  • the transition metal elution rate (X3) is a ratio of the total amount of transition metal elements dissolved in the cleaning liquid to the total amount of transition metal elements contained in the lithium-containing composite oxide (I).
  • the content of the transition metal element contained in the waste liquid and the lithium-containing composite oxide (I) is calculated by measurement by inductively coupled plasma (ICP) emission spectroscopy.
  • the pH of the waste liquid at 25 ° C. is preferably 4.5 to 12.5, more preferably 5.5 to 10.
  • the pH of the waste liquid at 25 ° C. is preferably 7 or more.
  • the lithium-containing composite oxide (II) is obtained by separating from the cleaning liquid.
  • a separation method general solid-liquid separation can be used, and examples thereof include filtration, sedimentation separation, and centrifugation.
  • an acidic aqueous solution is used as the cleaning liquid, it is preferable to wash the surface of the lithium-containing composite oxide (II) with water or the like when separating from the cleaning liquid.
  • the lithium-containing composite oxide (II) is preferably separated from the cleaning liquid and then heat-dried to remove excess moisture, adsorbate and the like. Thereby, it becomes easy to handle lithium containing complex oxide (II), and the process after process (II) can be performed efficiently.
  • the heating temperature is preferably 40 to 300 ° C, more preferably 60 to 200 ° C.
  • the heating time is not particularly limited, and is preferably 0.5 to 30 hours, for example, and more preferably 1 to 20 hours. When the heating temperature is within the above range, it can be efficiently dried.
  • step (II) of this production method the lithium-containing composite oxide obtained in step (I) is brought into contact with the composition (1) and the composition (2) to contact the lithium-containing composite oxide. (III) is obtained. If the positive electrode active material obtained through this step is used, the charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be improved.
  • the anion (A) contained in the composition (1) extracts Li from the lithium-containing composite oxide (II) and improves the charge / discharge efficiency of the lithium ion secondary battery. If the metal element (m) contained in the composition (2) is present on the surface, elution of the transition metal from the lithium-containing composite oxide can be suppressed, and the cycle characteristics of the lithium ion secondary battery are improved.
  • the anion (A) contained in the composition (1) reacts with the free alkali to extract the Li from the anion (A). It is possible to prevent the effect from being reduced.
  • the order of contact is not limited.
  • composition examples include an embodiment in which one composition is brought into contact with the other composition and the other composition is alternately brought into contact with each other a plurality of times.
  • the composition (1) and the composition (2) are simultaneously contacted.
  • the composition (1) and the composition (2) are mixed in advance and then contacted with the lithium-containing composite oxide (II). And the like.
  • the composition (1) is brought into contact with the lithium-containing composite oxide (II) after contacting the composition (2). It is particularly preferable to set the order of contact.
  • the step (II) as a method of bringing the lithium-containing composite oxide (II) into contact with the composition (1) and the composition (2), an immersion method, a spray method (spray method), a coating method, or the like can be used.
  • the spray coating method is preferred.
  • the spray coating method is a method in which the composition (1) and the composition (2) are sprayed onto the lithium-containing composite oxide (II).
  • the process is simple and the coating layer is uniformly formed on the surface of the lithium-containing composite oxide. It is preferable because it can be formed.
  • the composition (1) and the composition (2) are sprayed and mixed with the lithium-containing composite oxide (II) while stirring the particles of the lithium-containing composite oxide (II). It is preferable.
  • the amount of the composition (1) and the composition (2) used for contact with the lithium-containing composite oxide (II) is an amount that can be absorbed and adhered by the lithium-containing composite oxide (II). Is preferred. If the lithium-containing composite oxide (II) can be absorbed and adhered, the composition (1) and the composition (2) remaining after contacting the composition (1) and the composition (2) are eliminated. This is preferable because it eliminates the process to process the process.
  • the contact temperature between the lithium-containing composite oxide (II), the composition (1) and the composition (2) is preferably 10 to 100 ° C. The contact time is preferably 5 minutes to 10 hours.
  • composition (1) An aqueous solution containing a monoatomic or polyatomic anion (A) containing at least one element (a) selected from the group consisting of S, P, F, and B.
  • the anion (A) include SO 4 2 ⁇ , SO 3 2 ⁇ , S 2 O 3 2 ⁇ , SO 6 2 ⁇ , SO 8 2 ⁇ , PO 4 3 ⁇ , P 2 O 7 4 ⁇ , PO 3 3. — , PO 2 3 ⁇ , F ⁇ , BO 3 3 ⁇ , BO 2 ⁇ , B 4 O 7 2 ⁇ , B 5 O 8 ⁇ are preferable.
  • SO 4 2 ⁇ , PO 4 3 ⁇ , or F ⁇ is more preferable from the viewpoint of stability and handleability.
  • the anion (A) is more preferably F 2 -in that a high discharge capacity can be obtained.
  • the composition (1) preferably contains the element (a) and is dissolved in water as a solvent, which is a water-soluble compound (1) that is dissociated in an aqueous solution to generate an anion (A).
  • a water-soluble compound (1) that is dissociated in an aqueous solution to generate an anion (A).
  • the solubility in distilled water at 25 ° C. (the mass [g] of the solute dissolved in 100 g of the saturated solution) is referred to as water solubility, and the solubility is 0 to 2. Slightly soluble.
  • Preferable examples of the water-soluble compound (1) having a solubility exceeding 2 include H 2 SO 4 , H 2 SO 3 , H 2 S 2 O 3 , H 2 SO 6 , H 2 SO 8 , and H 3 PO 4.
  • a salt rather than an acid in terms of handleability and safety.
  • An ammonium salt is particularly preferable in that it is decomposed and removed when heated.
  • (NH 4 ) 2 SO 4 , (NH 4 ) HSO 4 , (NH 4 ) 3 PO 4 , (NH 4 ) 2 HPO 4 , (NH 4 ) H 2 PO 4 , NH 4 F and the like are preferable. .
  • the solvent of the composition (1) may contain one or both of a water-soluble alcohol and a polyol as long as the solubility of the water-soluble compound (1) is not impaired.
  • a water-soluble alcohol include methanol, ethanol, 1-propanol, and 2-propanol.
  • the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, and glycerin.
  • the total content of the water-soluble alcohol and the polyol contained in the solvent is preferably 0 to 20%, more preferably 0 to 10% with respect to the total mass of the solvent.
  • the solvent is particularly preferably water only.
  • the composition (1) may contain a pH adjuster in order to adjust the solubility of the water-soluble compound (1).
  • a pH adjuster those that volatilize or decompose when heated in a later step are preferable.
  • an organic acid such as acetic acid, citric acid, lactic acid, formic acid, maleic acid, oxalic acid, or ammonia is preferable.
  • the content of the water-soluble compound (1) is preferably 0.5 to 30%, particularly preferably 2 to 20% in terms of anion (A), based on the total mass of (1) in the composition. If the water-soluble compound (1) is 0.5% or more, it is preferable because the solvent is easily removed by heating in the subsequent step. Moreover, if it is 30% or less, the viscosity of a composition (1) will become an appropriate range, and it is preferable at the point which is easy to make lithium containing complex oxide (II) and a composition (1) contact uniformly.
  • the amount of the composition (1) brought into contact with the lithium-containing composite oxide (II) is such that the relative amount (Xa) of the anion (A) determined by the following formula (Xa) is within the range of 0.001 to 0.15. It is preferable that The relative amount (Xa) of the anion (A) is the amount of each anion (A) contained in the composition (1) with respect to the total amount (unit: mole) of the transition metal element contained in the lithium-containing composite oxide (I). ) Is multiplied by the absolute value of the valence of each anion (A).
  • the relative amount (Xa) of the anion (A) is 0.001 or more, the charge / discharge efficiency is easily improved, and when it is 0.15 or less, capacity reduction due to impurity generation hardly occurs.
  • the value of the relative amount (Xa) of the anion (A) is more preferably within the range of 0.003 to 0.12, and particularly preferably within the range of 0.005 to 0.09.
  • Relative amount of anion (A) (Xa) ⁇ amount (mole) of anion (A) contained in composition (1) / total amount of transition metal element contained in lithium-containing composite oxide (I) (mole) ) ⁇ ⁇ ⁇ the absolute value of the valence of the anion (A) ⁇ (Xa)
  • the relative amount (Xa) of the anions (A) is included in the composition (1). The sum of all anions. That is, for each anion, the “relative amount of anion (A1)”, “relative amount of anion (A2)”, and the like are obtained by the above formula (Xa), and the total of these is preferably in the above-described range.
  • composition (2) in the present invention includes Li, Mg, Ca, Sr, Ba, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Fe, Co, Ni, Cu, A single atom or complex of at least one metal element (m) selected from the group consisting of Zn, Al, Ga, In, Sn, Sb, Bi, La, Ce, Pr, Nd, Gd, Dy, Er, and Yb An aqueous solution containing the cation (M).
  • the cation (M) is preferably a monoatomic ion of the metal element (m).
  • the metal element (m) Al, Nb, or Zr is preferable.
  • the cation (M) Al 3+ , Nb 5+ , Nb 3+ , or Zr 4+ is preferable.
  • the metal element (m) is preferably Al, and the cation (M) is more preferably Al 3+ .
  • the composition (2) preferably has a metal element (m) and a water-soluble compound (2) that generates a cation (M) in an aqueous solution dissolved in water as a solvent.
  • the water-soluble compounds (2) include inorganic salts such as nitrates, sulfates and chlorides of metal elements (m), acetates, citrates, maleates, formates, lactates, lactates, sulphate
  • organic salts such as acid salts, organic complexes, and ammine complexes.
  • nitrates, organic acid salts, organic complexes, or ammine complexes are particularly preferable because they are easily decomposed by heat and have high solubility in a solvent.
  • Preferred examples of the water-soluble compound (2) include ammonium zirconium carbonate, ammonium zirconium halide, zirconium acetate, zirconium nitrate, aluminum nitrate, aluminum acetate, aluminum oxalate, aluminum citrate, aluminum lactate, basic aluminum lactate, malein Examples thereof include aluminum oxide, niobium nitrate, niobium acetate, niobium citrate, niobium maleate, niobium formate, niobium lactate, niobium oxalate, and ammonium niobium oxalate.
  • the solvent of the composition (2) one or both of a water-soluble alcohol and a polyol similar to those of the composition (1) may be added as long as the solubility of the water-soluble compound (2) is not impaired. Moreover, the content is the same as that of the composition (1). Furthermore, in order to adjust the solubility of the water-soluble compound (2), the composition (2) may contain the same pH adjuster as that of the composition (1).
  • the content of the aqueous solution compound (2) is preferably from 0.5 to 30%, particularly preferably from 2 to 20%, in terms of metal element (m), based on the total mass of (2) in the composition. If the water-soluble compound (2) is 0.5% or more, it is preferable because the solvent can be easily removed by heating in a later step. Moreover, if it is 30% or less, the viscosity of a composition (2) will become an appropriate range, and it is preferable at the point which is easy to make lithium containing complex oxide (II) and a composition (2) contact uniformly.
  • the amount of the composition (2) brought into contact with the lithium-containing composite oxide (II) is such that the relative amount (Xm) of the metal element (m) determined by the following formula (Xm) is within the range of 0.001 to 0.15. It is preferable that The relative amount (Xm) of the metal element (m) is the amount of each cation (M) contained in the composition (2) with respect to the total amount (unit: mol) of the transition metal element contained in the lithium-containing composite oxide (I). ) Is a value obtained by multiplying the molar ratio of the quantity (unit: mole) by the absolute value of the valence of the cation (M).
  • the value of the relative amount (Xm) of the metal element (m) is 0.001 or more, the effect of improving the cycle characteristics is increased, and when the value is 0.15 or less, capacity reduction due to impurity generation hardly occurs.
  • the value of the relative amount (Xm) of the metal element (m) is more preferably within the range of 0.003 to 0.12, and particularly preferably within the range of 0.005 to 0.09.
  • Relative amount (Xm) of metal element (m) ⁇ amount (mol) of each cation (M) contained in composition (2) / total amount of transition metal element contained in lithium-containing composite oxide (I) ( Mol) ⁇ ⁇ ⁇ the absolute value of the valence of each cation (M) ⁇ (Xm)
  • the relative amount (Xm) of the metal element (m) It is the total value of metal elements. That is, for each of the cation (M1) containing the metal element (m1), the cation (M2) ...
  • the amount of the composition (1) and the amount of the composition (2) that are brought into contact with the lithium-containing composite oxide (II) are the relative amount of the metal element (m) (Xm) / the relative amount of the anion (A).
  • the ratio (Xm / Xa) of both represented by (Xa) is preferably 0.1 to 10.
  • the ratio (Xm / Xa) of the two is more preferably 0.2 to 5, and further preferably 0.3 to 3. When the ratio (Xm / Xa) of the two is within the above range, a positive electrode active material having a high discharge capacity and high cycle characteristics is easily obtained.
  • step (III) of this production method the lithium-containing composite oxide (III) obtained in step (II) is heated. By this heating, volatile impurities such as water and organic components contained in the lithium-containing composite oxide (III), the composition (1), and the composition (2) are removed, and a coating layer is formed on a part of the surface. The lithium-containing composite oxide is obtained. In step (III), it is preferable to remove most of the water in advance by drying the lithium-containing composite oxide (III) at 40 to 200 ° C. for 0.5 to 8 hours before heating.
  • the heating in step (III) is preferably performed in an oxygen-containing atmosphere.
  • the heating temperature is preferably 250 to 700 ° C, more preferably 350 to 600 ° C.
  • a coating layer can be favorably formed as heating temperature is 250 degreeC or more. Further, since volatile impurities such as residual moisture are reduced, a decrease in cycle maintenance rate can be suppressed.
  • the heating temperature is 700 ° C. or lower, the metal element (m) is difficult to diffuse inside the positive electrode active material, and the battery capacity can be prevented from decreasing due to the diffusion of the metal element (m).
  • the heating temperature is preferably 250 ° C. to 550 ° C., more preferably 350 to 500 ° C.
  • the heating temperature is 550 ° C. or lower, the coating layer is difficult to crystallize.
  • the heating time is preferably 0.1 to 24 hours, more preferably 0.5 to 18 hours, and particularly preferably 1 to 12 hours. When the heating time is in the above range, the coating layer is easily formed satisfactorily.
  • the pressure at the time of heating is not specifically limited, Normal pressure or pressurization is preferable, and normal pressure is particularly preferable.
  • the coating layer is made of a compound containing the element (a), a compound containing the metal element (m), a compound containing the element (a) and the metal element (m), or a mixture thereof.
  • the coating layer preferably contains at least a hardly soluble compound containing the element (a) and the metal element (m).
  • the compound containing the element (a) include a salt composed of the element (a) and an alkali metal.
  • the salt include LiF, Li 3 PO 4 , Li 2 SO 4 , NaF, and KF.
  • the compound containing the metal element (m) include an oxide or hydroxide of the metal element (m). Examples of the oxide include Al 2 O 3 and ZrO 2 .
  • hydroxide examples include Al (OH) 3 and Zr (OH) 4 .
  • specific examples of the compound containing the element (a) and the metal element (m) include BaSO 4 , CaSO 4 , SrSO 4 , Al 2 (SO 4 ) 3 , Zr (SO 4 ) 2 , CePO 4 , and BiPO 4.
  • Al 2 (SO 4 ) 3 , AlPO 4 , AlF 3 , Zr (SO 4 ) 2 , or ZrF 4 is preferable, Al 2 (SO 4 ) 3 or AlF 3 is more preferable, and AlF 3 Is particularly preferred.
  • the method for producing a positive electrode for a lithium ion secondary battery according to the present invention includes a step of producing the positive electrode active material for a lithium ion secondary battery, and a positive electrode active material layer including the obtained positive electrode active material, a binder, and a conductive material. Forming on the positive electrode current collector.
  • the step of forming the positive electrode active material layer can be performed using a known method.
  • a positive electrode active material, a conductive material, and a binder are dissolved or dispersed in a medium to obtain a slurry, or a positive electrode active material, a conductive material, and a binder are kneaded with a medium to obtain a kneaded product.
  • the positive electrode active material layer can be formed by coating the obtained slurry or kneaded material on the positive electrode current collector (positive electrode surface).
  • Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black. One type of conductive material may be used, or two or more types may be used.
  • Examples of the binder include fluororesins, polyolefins, polymers having an unsaturated bond and copolymers thereof, acrylic acid polymers such as acrylic acid copolymers and methacrylic acid copolymers, and copolymers thereof.
  • Examples of the fluororesin include polyvinylidene fluoride and polytetrafluoroethylene.
  • Examples of the polyolefin include polyethylene and polypropylene.
  • a polymer having an unsaturated bond and a copolymer thereof a polymer having an unsaturated bond such as styrene-butadiene rubber, isoprene rubber, butadiene rubber, and the copolymer thereof, and as a positive electrode current collector, an aluminum foil or An aluminum alloy foil is mentioned.
  • the method for producing a lithium ion secondary battery according to the present invention includes a step of producing the above-described positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery using the obtained positive electrode for a lithium ion secondary battery, a negative electrode, a nonaqueous electrolyte, and a separator.
  • the process which comprises a lithium ion secondary battery can be performed using a well-known method.
  • the negative electrode is obtained by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
  • the slurry can be prepared by kneading a negative electrode active material with an organic solvent, and applying the prepared slurry to a negative electrode current collector, drying, and pressing.
  • the negative electrode current collector for example, nickel foil, copper foil or the like can be used.
  • the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
  • a lithium metal for example, a lithium metal, a lithium alloy, a carbon material, an oxide mainly composed of a metal of periodic table 14 or 15, Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds, and the like can be used.
  • Carbon materials used for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes, graphites, glassy carbons, organic polymer compound fired bodies, carbon fibers, activated carbon And carbon blacks.
  • Examples of the cokes include pitch coke, needle coke, and petroleum coke.
  • Examples of the fired organic polymer compound include those obtained by firing and carbonizing a phenol resin, a furan resin, or the like at an appropriate temperature.
  • Examples of the metal of Group 14 of the periodic table include Si and Sn. Among these, Si is preferable as the metal of Group 14 of the periodic table.
  • nonaqueous electrolyte examples include a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in an organic solvent, an inorganic solid electrolyte, and a solid or gel polymer electrolyte in which an electrolyte salt is mixed or dissolved.
  • organic solvent known organic solvents for non-aqueous electrolytes can be employed.
  • the organic solvent is preferably a cyclic carbonate such as propylene carbonate, or a chain carbonate such as dimethyl carbonate or diethyl carbonate.
  • One organic solvent may be used, or two or more organic solvents may be used.
  • Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.
  • Examples of the polymer compound used in the solid polymer electrolyte in which the electrolyte salt is mixed or dissolved include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, And their derivatives, mixtures, and complexes.
  • Examples of the polymer compound used in the gel polymer electrolyte in which the electrolyte salt is mixed or dissolved include a fluorine polymer compound, polyacrylonitrile, a copolymer of polyacrylonitrile, polyethylene oxide, a copolymer of polyethylene oxide, and the like. Can be mentioned.
  • Examples of the fluorine-based polymer compound include poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene).
  • the matrix of the gel electrolyte is preferably a fluorine-based polymer compound from the viewpoint of stability against redox reaction.
  • the electrolyte salt known ones used in lithium ion secondary batteries can be used, and examples thereof include LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, and the like.
  • the separator include a microporous polyolefin film typified by polyethylene and polypropylene, a film made of a copolymer of polyvinylidene fluoride and hexafluoropropylene, inorganic particles on the surface of the microporous polyolefin film, an aramid resin, a fluororesin, etc. The composite film which apply
  • the shape of the lithium ion secondary battery is not particularly limited, and shapes such as a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, a button shape, and the like can be appropriately selected depending on the application.
  • a raw material solution consisting of an aqueous salt solution was prepared.
  • 401 g of distilled water was added to 99 g of ammonium sulfate and dissolved uniformly to obtain an aqueous ammonium sulfate solution.
  • 1900 g of distilled water was added to 1 g of sodium carbonate and dissolved uniformly to obtain a mother liquor.
  • an aqueous carbonate solution was added so as to keep the pH in the reaction vessel at 8.0. Further, nitrogen gas was flowed into the reaction vessel at a flow rate of 0.5 L / min so that the deposited transition metal carbonate was not oxidized.
  • the obtained coprecipitate was repeatedly washed with pressure filtration and dispersed in distilled water to remove impurity ions. When the electrical conductivity of the filtrate became less than 100 ⁇ S / cm, the washing was finished and dried at 120 ° C. for 15 hours. When the total content of transition metals contained in the coprecipitate after washing and drying was determined by back titration with a ZINCON indicator, EDTA and an aqueous zinc chloride solution, it was 8.36 mol / kg.
  • Li-containing composite oxide (I ) 300 g of the coprecipitate and 139.5 g of lithium carbonate having a lithium content of 26.96 mol / kg are mixed and fired at 880 ° C. for 16 hours in an oxygen-containing atmosphere to obtain a lithium-containing composite oxide (I ) Was obtained.
  • the amounts of Li, Ni, Co and Mn contained in the lithium-containing composite oxide (I) were measured by ICP.
  • the molar ratio of Li: Ni: Co: Mn was 1.5: 0.16: 0.17: 0.67.
  • the composition of the lithium-containing composite oxide (I) can be expressed as Li (Li 0.20 Ni 0.128 Co 0.136 Mn 0.536 ) O 2 .
  • the average particle diameter D50 of this lithium-containing composite oxide (I) was 10.8 ⁇ m.
  • Example 1 [Step (I)] In a 1000 mL plastic container, 20 g of lactic acid (purity 90%) and 800 g of distilled water were added and mixed to obtain a cleaning solution. The pH of the cleaning solution was 2.3. Furthermore, 200 g of lithium-containing composite oxide (I) was added to the cleaning solution, and the mixture was stirred for 3 minutes using a stirring blade. Next, the stirring blade was taken out, the plastic container was covered, and the mixture was mixed for 24 hours at a rotation speed of 20 rpm using a roller mixer. Mixing was performed at room temperature (25 ° C.). The relative amount (X1) of the acid component calculated by the formula (X1) was 0.11.
  • the pH of the filtrate was 6.3.
  • the lithium elution rate (X2) calculated by the formula (X2) was 3.7%
  • the transition metal elution rate (X3) calculated by the formula (X3) was 0.7%.
  • composition (2) An aluminum lactate aqueous solution (composition (2)) was prepared by adding 5.8 g of distilled water to 4.2 g of a basic aluminum lactate aqueous solution having an Al content with respect to the mass of the aqueous solution of 8.8% in terms of Al 2 O 3. ) was prepared.
  • the metal element (m) content (Al equivalent concentration) relative to the mass of the aluminum lactate aqueous solution (composition (2)) was 3.7%.
  • 8.38 g of distilled water was added to 1.62 g of ammonium fluoride (NH 4 F) and mixed to prepare an aqueous ammonium fluoride solution (composition (1)).
  • Aqueous ammonium fluoride solution (composition (1)) anions (A) in terms of the concentration to the mass of (F - in terms of concentration) was 8.3%. While stirring 8 g of the lithium-containing composite oxide (II) obtained in the step (I), 0.64 g of the aqueous aluminum lactate solution (composition (2)) was sprayed by a spray coating method to obtain a lithium-containing composite oxide. (II) and the aqueous aluminum lactate solution were brought into contact with mixing.
  • composition (1) an ammonium fluoride aqueous solution
  • composition (2) an ammonium fluoride aqueous solution
  • the lithium-containing composite oxide (II), the aluminum lactate aqueous solution, and the ammonium fluoride aqueous solution are mixed and brought into contact with each other.
  • Containing complex oxide (III) was obtained.
  • the amount of the composition (1) brought into contact with the lithium-containing composite oxide (II) is such that the relative amount (Xa) of the anion (A) obtained by the formula (Xa) is 0.038. Amount.
  • the amount of the composition (2) brought into contact with the lithium-containing composite oxide (II) is such that the relative amount (Xm) of the metal element (m) obtained by the formula (Xm) is 0.019. .
  • the valence of the metal element Al used in this example is +3.
  • Step (III) The obtained lithium-containing composite oxide (III) is dried at 80 ° C. for 4 hours and then heated at 450 ° C. for 5 hours in an oxygen-containing atmosphere, and Al and F are partially contained on the surface of the lithium-containing composite oxide particles.
  • a positive electrode active material composed of particles having a coating layer was obtained.
  • Example 2 In Example 1, the spray amount of the aqueous ammonium fluoride solution was changed to 0.32 g, and the relative amount (Xa) of the anion (A) was set to 0.019. Others were carried out similarly to Example 1, and obtained the positive electrode active material which consists of a particle
  • Example 4 Step (I) was carried out in the same manner as in Example 1. Distilled water (3.26 g) was added to and mixed with 1.75 g of an aqueous zirconium carbonate solution having a Zr content of 20.7% in terms of ZrO 2 with respect to the mass of the aqueous solution to prepare an ammonium zirconium carbonate (composition (2)).
  • the content (Zr equivalent concentration) of the metal element (m) with respect to the mass of the ammonium zirconium carbonate aqueous solution (composition (2)) was 7.2%.
  • composition (2) aqueous ammonium zirconium carbonate solution
  • composition (1) an aqueous ammonium fluoride solution
  • the lithium-containing composite oxide (II), zirconium ammonium carbonate, and an aqueous ammonium fluoride solution are mixed and brought into contact with each other. Containing complex oxide (III) was obtained.
  • Step (III) was carried out in the same manner as in Example 1 to obtain a positive electrode active material comprising particles having a coating layer containing Zr and F on a part of the surface of the lithium-containing composite oxide particles.
  • Example 5 Lithium-containing composite oxide (II) washed in the same manner as in step (I) of Example 1 was used as the positive electrode active material. Steps (II) and (III) were not performed.
  • step (II) of Example 1 spray coating of an aqueous ammonium fluoride solution (composition (1)) was not performed. Otherwise, in the same manner as in Example 1, a positive electrode active material composed of particles having a coating layer containing Al on a part of the surface of the lithium-containing composite oxide particles was obtained.
  • Example 7 In Example 1, the spray amount of the aluminum lactate aqueous solution was changed to 1.28 g, and the relative amount (Xm) of the metal element (m) was set to 0.038.
  • step (II) the aqueous ammonium fluoride solution (composition (1)) was not spray-coated. Otherwise, in the same manner as in Example 1, a positive electrode active material composed of particles having a coating layer containing Al on a part of the surface of the lithium-containing composite oxide particles was obtained.
  • Example 8 In Example 1, the step (I) was not performed, and the lithium-containing composite oxide (I) was used in the step (II). Otherwise, in the same manner as in Example 1, a positive electrode active material comprising particles having a coating layer containing Al and F on a part of the surface of the lithium-containing composite oxide particles was obtained. (Example 9) In Example 6, the step (I) was not performed, and the lithium-containing composite oxide (I) was used in the step (II). Otherwise, in the same manner as in Example 6, a positive electrode active material composed of particles having a coating layer containing Al on a part of the surface of the lithium-containing composite oxide particles was obtained.
  • step (II) of Example 1 spray coating of the aqueous aluminum lactate solution (composition (2)) was not performed. Otherwise, in the same manner as in Example 1, a positive electrode active material composed of particles having a coating layer containing F on a part of the surface of the lithium-containing composite oxide particles was obtained.
  • Example 11 In the step (II) of Example 3, the aluminum lactate aqueous solution (composition (2)) was not spray-coated. Otherwise, in the same manner as in Example 3, a positive electrode active material composed of particles having a coating layer containing F on a part of the surface of the lithium-containing composite oxide particles was obtained.
  • step (I) was not performed. Otherwise, in the same manner as in Example 4, a positive electrode active material composed of particles having a coating layer containing Zr and F on the surface of the lithium-containing composite oxide particles was obtained.
  • Step (I) of Example 1 0.5 g of lactic acid (purity 90%) and 40 g of distilled water were added to a 50 mL screw tube bottle and mixed to obtain a washing solution. The pH of the cleaning solution was 2.4. Furthermore, 10 g of lithium-containing composite oxide (A) was added and stirred for 3 minutes using a stirrer. Next, the stirrer chip was taken out, the plastic container was covered, and mixed for 24 hours at a rotation speed of 20 rpm using a roller mixer. Mixing was performed at room temperature (25 ° C.). The relative amount (X1) of the acid component calculated by the formula (X1) was 0.05.
  • Steps (II) and (III) were carried out in the same manner as in Example 1 to obtain a positive electrode active material comprising particles having a coating layer containing Al and F on a part of the surface of the lithium-containing composite oxide particles.
  • Example 13 the cleaning liquid in step (I) was changed as shown in Table 2. Except this, Step (II) and Step (III) were carried out in the same manner as in Example 1 to obtain a positive electrode active material comprising particles having a coating layer containing Al and F on a part of the surface of the lithium-containing composite oxide particles.
  • a cleaning liquid was prepared by mixing 1.5 g of lactic acid (purity 90%) and 40 g of distilled water.
  • a cleaning liquid was prepared by mixing 0.3 g of sulfuric acid (purity 95%) and 40 g of distilled water.
  • Example 16 a mixture of 0.6 g of sulfuric acid (purity 95%) and 40 g of distilled water was used as the cleaning liquid.
  • Example 17 a mixture of 0.6 g of acetic acid and 40 g of distilled water was used as the cleaning liquid.
  • Example 18 a mixture of 0.9 g of acetic acid and 40 g of distilled water was used as the cleaning liquid.
  • Example 19 In the step (I) of Example 1, 1 g of lactic acid (purity 90%) and 35 g of distilled water were mixed in a 50 mL screw tube bottle to prepare a washing solution. The pH of the cleaning solution was 2.3. Furthermore, 20 g of lithium-containing composite oxide (I) was added and stirred for 3 minutes using a stirrer. Next, the stirrer chip was taken out, the plastic container was covered, and mixed for 24 hours at a rotation speed of 20 rpm using a roller mixer. Mixing was performed at room temperature (25 ° C.). The relative amount (X1) of the acid component calculated by the formula (X1) was 0.05.
  • Steps (II) and (III) were carried out in the same manner as in Example 1 to obtain a positive electrode active material comprising particles having a coating layer containing Al and F on a part of the surface of the lithium-containing composite oxide particles.
  • Step (I) of Example 1 40 g of distilled water was used as a cleaning liquid.
  • the pH of the cleaning solution was 6.7.
  • This washing liquid was set to 80 ° C., 10 g of lithium-containing composite oxide (A) was added, and the mixture was allowed to stand for 15 hours while maintaining the liquid temperature at 80 ° C.
  • filtration was performed, and the lithium-containing composite oxide (II) was obtained by drying at 80 ° C. for 15 hours.
  • the pH of the filtrate was 12.3.
  • the contents of lithium and transition metals (total of Ni, Co, and Mn) contained in the filtrate were measured by ICP.
  • the lithium elution rate (X2) determined by the formula (X2) was 0.2.
  • Steps (II) and (III) were carried out in the same manner as in Example 1 to obtain a positive electrode active material comprising particles having a coating layer containing Al and F on a part of the surface of the lithium-containing composite oxide particles.
  • Examples 1 to 12 are shown in Table 1, and the conditions of Examples 1 to 7 and 13 to 20 are shown in Table 2.
  • this slurry was applied on one side to a 20 ⁇ m thick aluminum foil (positive electrode current collector) using a doctor blade. And after drying at 120 degreeC, roll press rolling was performed twice and the positive electrode body sheet
  • a lithium-containing composite oxide (I) was used as a positive electrode active material, and a positive electrode sheet was produced in the same manner as described above.
  • Example 1 contact with the cleaning liquid (step (I)) and coating (steps (II) and (III)) were performed, and the composition (1) and the composition (2) were used as the coating liquid.
  • Examples 1 to 4 and Examples 13 to 20 are excellent in initial efficiency and cycle maintenance ratio as compared to Reference Example 1 in which neither contact with the cleaning liquid nor coating was performed.
  • the effect obtained by the present invention is a synergistic effect that is superior to the effect of only the contact with the cleaning liquid and the effect of only the coating, and is an unpredictable effect. That is, in Example 5 in which only contact with the cleaning liquid was performed, the initial efficiency was improved as compared with Reference Example 1, but the cycle maintenance ratio was the same.
  • Example 1 in which contact with the cleaning liquid and coating were performed, not only the initial efficiency but also the cycle maintenance ratio were improved as compared with Example 8 in which only coating was performed.
  • Example 9 coated with only the composition (2) without contact with the cleaning liquid improved the cycle retention rate as compared with Reference Example 1, but had the same initial efficiency. From this result, it is predicted that when the coating step using only the composition (2) is added, the cycle retention rate is improved while maintaining the initial efficiency. However, Example 6 in which a coating step using only the composition (2) was added after contact with the cleaning liquid improved the cycle retention rate as compared with Example 5, but decreased the initial efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 リチウムイオン二次電池における、初期の充放電効率(初期効率)およびサイクル維持率を向上させるリチウムイオン二次電池用正極活物質の製造方法を提供する。 Li元素及び遷移金属元素を含むリチウム含有複合酸化物(I)を洗浄液と接触させ、接触後に洗浄液と分離してリチウム含有複合酸化物(II)を得る工程(I)、好ましくはFを含む陰イオン(A)を含む水溶液からなる組成物(1)、および好ましくはAlまたはZrを含む陽イオン(M)を含む水溶液からなる組成物(2)とリチウム含有複合酸化物(II)とを接触させる工程(II)、および工程(II)の後にリチウム含有複合酸化物(II)を加熱する工程(III)をこの順で有するリチウムイオン二次電池用正極活物質の製造方法。

Description

リチウムイオン二次電池用正極活物質の製造方法
 本発明はリチウムイオン二次電池用正極活物質の製造方法、およびこれを用いたリチウムイオン二次電池用正極の製造方法、ならびにリチウムイオン二次電池の製造方法に関する。
 リチウムイオン二次電池は、携帯電話やノート型パソコン等の携帯型電子機器に広く用いられている。リチウムイオン二次電池用の正極活物質には、LiCoO、LiNiO、LiNi0.8Co0.2、LiMn等のリチウムと遷移金属等との複合酸化物(以下、リチウム含有複合酸化物ともいう)が用いられている。
 また、近年、携帯型電子機器や車載用のリチウムイオン二次電池として小型化・軽量化が求められ、充放電効率のさらなる向上が望まれている。
 特許文献1には、特定の陽イオンMを含む水溶液、および該陽イオンMと反応して難溶性の塩を形成する陰イオンNを含む水溶液と、Li元素及び遷移金属元素を含むリチウム含有複合酸化物とを接触させた後に加熱して、リチウム含有複合酸化物に被覆層を設けることによって、放電サイクルを繰り返した後の放電容量の維持率(サイクル維持率)を向上させる方法が記載されている。
 また特許文献2には、Li元素及び遷移金属元素を含むリチウム含有複合酸化物の粉末を、硝酸で処理し、アンモニアガスで処理した後に加熱処理すると、初期の充放電効率(初期効率)が向上したことが記載されている。
国際公開第2012/176904号 米国特許第7,314,682号明細書
 しかしながら従来の技術では、リチウムイオン二次電池における充放電効率が必ずしも十分とはいえず、改善が望まれる。
 具体的には、初期効率が高く、かつサイクル維持率が高いリチウムイオン二次電池が望ましい。
 本発明は前記事情に鑑みてなされたもので、リチウムイオン二次電池における、初期効率およびサイクル維持率を同時に向上させることができるリチウムイオン二次電池用正極活物質の製造方法、ならびにこれを用いたリチウムイオン二次電池用正極の製造方法、およびリチウムイオン二次電池の製造方法を提供することを目的とする。
 本発明は下記[1]~[15]を要旨とするものである。
[1] 下記工程(I)、(II)および(III)をこの順で有するリチウムイオン二次電池用正極活物質の製造方法。
 工程(I):Li元素及び遷移金属元素を含むリチウム含有複合酸化物(I)を洗浄液と接触させ、接触後に洗浄液と分離してリチウム含有複合酸化物(II)を得る工程。
 工程(II):リチウム含有複合酸化物(II)と、下記組成物(1)および組成物(2)とを接触させてリチウム含有複合酸化物(III)を得る工程。
 工程(III):リチウム含有複合酸化物(III)を加熱する工程。
 組成物(1):S、P、F、およびBからなる群より選ばれる少なくとも1種の元素(a)を含む単原子または多原子の陰イオン(A)を含む水溶液。
 組成物(2):Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも1種の金属元素(m)の単原子または錯体の陽イオン(M)を含む水溶液。
[2] 前記組成物(2)に含まれる金属元素(m)がAlである、[1]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[3] 工程(II)において、リチウム含有複合酸化物(I)に含まれる遷移金属元素の合計量に対する、前記組成物(2)に含まれる各陽イオン(M)のモル比に、それぞれの陽イオン(M)の価数の絶対値を乗じた値の合計が0.001~0.15の範囲内になるように接触させる、[1]または[2]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[4] 前記組成物(1)に含まれる陰イオン(A)が、Fである、[1]~[3]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[5] 工程(II)において、リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量に対する、前記組成物(1)に含まれる各陰イオン(A)のモル比に、それぞれの陰イオン(A)の価数の絶対値を乗じた値の合計が0.001~0.15の範囲内になるように接触させる、[1]~[4]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[6] 工程(I)において、洗浄液が、25℃におけるpHが0~6の酸性水溶液である、[1]~[5]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[7] リチウム含有複合酸化物(I)に含まれる全リチウム元素に対する、前記洗浄液中に溶解したリチウム元素の量の割合で表されるリチウム溶出率が0.2~10%である、[1]~[6]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[8] リチウム含有複合酸化物(I)が、Li元素と、Ni、Co、およびMnからなる群から選ばれる少なくとも1種の遷移金属元素とを含み、Li元素のモル量が前記遷移金属元素の総モル量に対して1.2倍超である、[1]~[7]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[9] リチウム含有複合酸化物(I)が、下式(1)で表される化合物である、[8]に記載のリチウムイオン二次電池用正極活物質の製造方法。
 Li(Lix1Mny1Mez1)Me’α  (1)
 ただし、Meは、CoおよびNiからなる群から選ばれる少なくとも1種の元素であり、Me’はAl、Cr、Mg、Mo、Ru、Ti、Zr、およびFeからなる群から選ばれる少なくとも1種であり、0.1<x<0.25、0.5≦y/(y+z)≦0.8、0≦α≦0.1、x+y+z=1、1.9<p<2.1、0≦q≦0.1である。
[10] 工程(III)における加熱を250~700℃で行う、[1]~[9]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[11] 工程(II)における組成物(1)および組成物(2)の溶媒が、水のみである、[1]~[10]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[12] 工程(II)において、リチウム含有複合酸化物(II)と組成物(1)および組成物(2)との接触を、スプレーコート法を用いて前記前記組成物(1)および組成物(2)を前記リチウム含有複合酸化物に噴霧することによって行う、[1]~[11]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法。
[13] 工程(II)において、リチウム含有複合酸化物(II)と組成物(1)および組成物(2)との接触を、撹拌中のリチウム含有複合酸化物(II)に組成物(1)および組成物(2)を噴霧することによって行う、[12]に記載のリチウムイオン二次電池用正極活物質の製造方法。
[14] [1]~[13]のいずれか一項に記載の製造方法により、リチウムイオン二次電池用正極活物質を製造する工程と、該リチウムイオン二次電池用正極活物質、バインダーおよび導電材を含む正極活物質層を正極集電体上に形成する工程を有する、リチウムイオン二次電池用正極の製造方法。
[15] [14]に記載の製造方法によりリチウムイオン二次電池用正極を製造する工程と、前記リチウムイオン二次電池用正極、負極、非水電解質およびセパレータを用いてリチウムイオン二次電池を構成する工程を有する、リチウムイオン二次電池の製造方法。
 本発明によれば、リチウムイオン二次電池における、初期効率およびサイクル維持率を同時に向上させることができるリチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池用正極が得られる。
 本発明によれば、初期効率およびサイクル維持率に優れたリチウムイオン二次電池が得られる。
 以下、本発明の実施の形態について説明する。本明細書において、元素記号(例えば、「Li」)は元素を示し、特に言及の無い限り、その元素の単体の物質(例えば、金属)を示すものではない。
<リチウムイオン二次電池用正極活物質の製造方法>
 本発明のリチウムイオン二次電池用正極活物質の製造方法(以下、本製造方法という。)は、下記工程(I)、(II)および(III)をこの順で行う。これにより、各々の工程のみを行った場合に比べて、該組み合わせによる相乗効果が得られ、初期効率およびサイクル維持率をより向上させることができる。本製造方法は、下記工程をこの順で行えば、各工程の間に他の工程を含んでいてもよい。製造効率の観点からは下記工程を連続して行うことがより好ましい。
 工程(I):Li元素及び遷移金属元素を含むリチウム含有複合酸化物(I)を洗浄液と接触させ、接触後に洗浄液と分離してリチウム含有複合酸化物(II)を得る工程。
 工程(II):リチウム含有複合酸化物(II)と組成物(1)および組成物(2)とを接触させてリチウム含有複合酸化物(III)を得る工程。
 工程(III):リチウム含有複合酸化物(III)を加熱する工程。
 組成物(1)および組成物(2)は、それぞれ下記の水溶液である。以下、本明細書では組成物(1)と組成物(2)の両方を合わせてコーティング液ともいう。
 組成物(1):S、P、F、およびBからなる群より選ばれる少なくとも1種の元素(a)を含む単原子または多原子の陰イオン(A)を含む水溶液。
 組成物(2):Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも1種の金属元素(m)の単原子または錯体の陽イオン(M)を含む水溶液。
[リチウム含有複合酸化物]
 本製造方法に使用するリチウム含有複合酸化物(I)は、Liと遷移金属元素とを含む。本製造方法の工程(I)において、洗浄液と接触させる前のリチウム含有複合酸化物をリチウム含有複合酸化物(I)という。
 遷移金属元素として、Ni、Co、Mn、Fe、Cr、V、およびCuからなる群から選ばれる少なくとも1種を含む。
 リチウム含有複合酸化物としては、リチウムイオン二次電池用活物質として公知のリチウム含有複合酸化物を用いることができる。リチウム含有複合酸化物は1種を単独で用いてもよく、2種以上を併用してもよい。
 リチウム含有複合酸化物(I)として、例えば、下記化合物(i)、(ii)、(iii)、または(iv)が好ましい。
 化合物(i):Liと、Ni、Co、およびMnからなる群より選ばれる少なくとも1種の遷移金属元素とを含み、Liのモル量が前記遷移金属元素の総モル量に対して1.2倍超である化合物。化合物(i)は、下式(1)で表される化合物が好ましい。
 化合物(ii):下式(2)で表される化合物。
 化合物(iii):下式(3)で表される化合物、またはこれらの複合体である、オリビン型金属リチウム塩である化合物。
 化合物(iv):下記式(4)で表わされる化合物。
 これらのうち、リチウムイオン二次電池における高容量が得られるという点で化合物(i)がより好ましい。
[化合物(i)]
 Li(Lix1Mny1Mez1)Me’α・・・ (1)
 式(1)中、Meは、CoおよびNiからなる群より選ばれる少なくとも1種の元素であり、Me’はAl、Cr、Mg、Mo、Ru、Ti、Zr、およびFeからなる群より選ばれる少なくとも1種である。0.1<x<0.25、0.5≦y/(y+z)≦0.8、0≦α≦0.1、x+y+z=1、1.9<p<2.1、0≦q≦0.1である。
 化合物(i)としては、Li(Li0.16Ni0.17Co0.08Mn0.59)O、Li(Li0.17Ni0.17Co0.17Mn0.49)O、Li(Li0.17Ni0.21Co0.08Mn0.54)O、Li(Li0.17Ni0.14Co0.14Mn0.55)O、Li(Li0.18Ni0.12Co0.12Mn0.58)O、Li(Li0.18Ni0.16Co0.12Mn0.54)O、Li(Li0.20Ni0.12Co0.08Mn0.60)O、Li(Li0.20Ni0.16Co0.08Mn0.56)O、またはLi(Li0.20Ni0.13Co0.13Mn0.54)Oが特に好ましい。
 上式(1)で表わされる化合物は、層状岩塩型結晶構造(空間群R-3m)であることが好ましい。また、遷移金属元素に対するLi元素の比率が高いため、XRD(X線源:CuKα)測定では、層状LiMnOと同様に2θ=20~25°の範囲にピークが観察される。
[化合物(ii)]
 Li(Nix2Mny2Coz2)Me’’ ・・・ (2)
 式(2)中、0.95≦a≦1.1、0≦x≦1、0≦y≦1、0≦z≦1、0≦b≦0.3、0.90≦x+y+z+b≦1.05、Me’’はMg、Ca、Sr、Ba、Al、Ti、Zr、Fe、Sn、およびCrからなる群より選ばれる少なくとも1種である。
 式(2)で表される化合物(ii)の例としては、LiCoO、LiNiO、LiMnO、LiMn0.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi0.85Co0.10Al0.05、LiNi1/3Co1/3Mn1/3が挙げられる。
[化合物(iii)]
 オリビン型金属リチウム塩(化合物(iii))は、下式(3)で表される化合物、またはこれらの複合体である。
 Lix3y3z3・・・ (3)
 式(3)中、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0<L≦3、1≦x≦2、1≦y≦3、4≦z≦12、0≦g≦1である。
 化合物(iii)としては、LiFePO、LiFe(PO、LiFeP、LiMnPO、LiNiPO、LiCoPO、LiFePOF、LiMnPOF、LiNiPOF、LiCoPOF、LiFeSiO、LiMnSiO、LiNiSiO、LiCoSiOが挙げられる。
[化合物(iv)]
Li(Mn2-x4-y4Me’’’ x4Liy4)O4-h・・・ (4)
 ただし、式(4)中、0≦x<2、0≦y≦0.33,0≦h≦0.1であり、Me’’’はCo、Ni、Fe、Ti、Cr,Mg、Ba、Nb、Ag、Cu、Sn、Zn、Ga、およびAlからなる群より選ばれる少なくとも1種である。
 式(4)で表される化合物(iv)としては、LiMn、LiMn1.5Ni0.5、LiMn1.0Co1.0、LiMn1.85Al0.15、LiMn1.9Mg0.1が挙げられる。
 リチウム含有複合酸化物(I)は、粒子状であることが好ましい。また、平均粒子径(D50)は0.03~30μmが好ましい。リチウム含有複合酸化物(I)が化合物(i)、化合物(ii)または化合物(iv)である場合、D50は3~30μmが好ましく、4~25μmがより好ましく、5~20μmが特に好ましい。リチウム複合酸化物(I)が化合物(iii)である場合、D50は0.03~5μmが好ましく、0.04~1μmがより好ましく、0.05~0.5μmが特に好ましい。
 本明細書において、D50とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒子径である、体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理などで充分に分散させて粒度分布を測定する(たとえば、HORIBA社製レーザー回折/散乱式粒子径分布測定装置Partica LA-950VII、などを用いる)ことで行なわれる。
[リチウム含有複合酸化物の製造方法]
 リチウム含有複合酸化物(I)を製造する方法としては、共沈法により得られる遷移金属を含有する共沈物とリチウム化合物を混合して焼成する方法、水熱合成法、ゾルゲル法、乾式混合法(固相法)、イオン交換法、ガラス結晶化法を適宜用いることができる。
 特に、高い放電容量が得られやすい点から、前記共沈物と、リチウム化合物とを混合して焼成する方法が好ましい。共沈法としては、アルカリ共沈法と炭酸塩共沈法が好ましい。
 リチウム複合酸化物(I)が化合物(i)より選ばれる化合物である場合、高い放電容量が得られやすい点からは炭酸塩共沈法が好ましい。
 これらの製造方法はそれぞれ公知の手法を用いて行うことができる。
[アルカリ共沈法]
 アルカリ共沈法とは、遷移金属元素を含む金属塩水溶液と、強アルカリを含有するpH調整液とを連続的に混合し、反応溶液中のpHを一定に保ちながら、反応溶液中で、遷移金属元素を含む水酸化物を析出させる方法である。アルカリ共沈法では、得られる共沈物の粉体密度が高く、正極活物質層における充填性に優れた正極活物質が得られる。
 遷移金属元素を含む金属塩としては、遷移金属元素の硝酸塩、酢酸塩、塩化物塩、硫酸塩が挙げられる。材料コストが比較的安価で優れた電池特性が得られることから、遷移金属元素の硫酸塩が好ましく、Niの硫酸塩、Coの硫酸塩およびMnの硫酸塩からなる硫酸塩がより好ましい。
 Niの硫酸塩としては、例えば、硫酸ニッケル(II)・六水和物、硫酸ニッケル(II)・七水和物、硫酸ニッケル(II)アンモニウム・六水和物などが挙げられる。
 Coの硫酸塩としては、例えば、硫酸コバルト(II)・七水和物、硫酸コバルト(II)アンモニウム・六水和物などが挙げられる。
 Mnの硫酸塩としては、例えば、硫酸マンガン(II)・五水和物、硫酸マンガン(II)アンモニウム・六水和物などが挙げられる。
 アルカリ共沈法における反応中の溶液のpHは、10~12が好ましい。
 添加する強アルカリを含有するpH調整液としては、水酸化ナトリウム、水酸化カリウム、および水酸化リチウムからなる群より選ばれる少なくとも1種を含む水溶液が好ましい。中でも、水酸化ナトリウム水溶液がより好ましい。
 アルカリ共沈法における反応溶液には、遷移金属元素の溶解度を調整するために、アンモニア水溶液または硫酸アンモニウム水溶液を加えてもよい。
[炭酸塩共沈法]
 炭酸塩共沈法とは、遷移金属元素を含む金属塩水溶液と、アルカリ金属の炭酸塩水溶液とを連続的に混合し、反応溶液中で、遷移金属元素を含む炭酸塩を析出させる方法である。炭酸塩共沈法では、得られる共沈物が多孔質で比表面積が高く、高い放電容量を示す正極活物質が得られる。
 炭酸塩共沈法に用いる遷移金属元素を含む金属塩としては、アルカリ共沈法で挙げたものと同じ遷移金属塩が挙げられる。
 炭酸塩共沈法における反応中の溶液のpHは、7~9が好ましい。
 アルカリ金属の炭酸塩水溶液としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、および炭酸水素カリウムからなる群より選ばれる少なくとも一種を含む水溶液が好ましい。
 炭酸塩共沈法における反応溶液には、アルカリ共沈法と同様の理由により、アンモニア水溶液または硫酸アンモニウム水溶液を加えてもよい。
 アルカリ共沈法または炭酸塩共沈法により析出させた共沈物を含む反応溶液に対しては、ろ過、沈降分離、または遠心分離によって水溶液を取り除く工程を実施することが好ましい。ろ過または遠心分離には、加圧ろ過機、減圧ろ過機、遠心分級機、フィルタープレス、スクリュープレス、回転型脱水機などが使用できる。
 得られた共沈物に対して、さらにナトリウムなどの不純物イオンを取り除くために、洗浄する工程を実施することが好ましい。共沈物の洗浄方法としては、例えば、ろ過とイオン交換水への分散を繰り返す方法などが挙げられる。
 共沈法により得られた共沈物と、リチウム化合物とを混合して焼成することによりリチウム含有複合酸化物が得られる。該リチウム化合物としては、例えば炭酸リチウム、水酸化リチウムまたは硝酸リチウムが好ましく、安価であることから炭酸リチウムがより好ましい。
 焼成温度は、500~1000℃が好ましい。焼成温度が、前記範囲内であれば、結晶性の高いリチウム含有複合酸化物が得られやすい。焼成温度は、600~1000℃がより好ましく、800~950℃が特に好ましい。
 焼成時間は、4~40時間が好ましく、4~20時間がより好ましい。
 焼成は酸素含有雰囲気下で行うことが好ましく、例えば空気を供給しながら行うことが好ましい。
 酸素含有雰囲気下で焼成することで、共沈物中の遷移金属元素が充分に酸化され、結晶性が高くなりやすい。
[工程(I)]
 本製造方法では、まずリチウム含有複合酸化物(I)を洗浄液と接触させ、接触後に洗浄液と分離をして、リチウム含有複合酸化物(II)を得る。
 リチウム含有複合酸化物(I)には、不純物としてリチウム含有複合酸化物の結晶構造を形成しないLiが含まれる。また、リチウム含有複合酸化物(I)の製造原料(共沈物、リチウム化合物、その他)に由来するLi、NaやK等のアルカリ成分が含まれる場合もある。これらのアルカリ成分を以下、遊離アルカリと言う。遊離アルカリは、リチウム含有複合酸化物の表面に水酸化物や炭酸塩の形で付着していると考えられる。
 洗浄処理により、リチウム含有複合酸化物から遊離アルカリを除去できる。その結果、洗浄処理されたリチウム含有複合酸化物を正極活物質として使用したリチウムイオン二次電池の電池特性を向上できる。
 洗浄液は遊離アルカリを溶解できるものであればよく、水または酸性水溶液が好ましい。水を使用する場合、遊離アルカリの溶解性制御や取り扱い性向上のために、洗浄液にpH調整剤等が含まれていても良い。
 洗浄液は、遊離アルカリが溶解しやすく、高い充放電効率と高い放電容量が得られる点で酸性水溶液が好ましい。特に25℃におけるpHが0~6である酸性水溶液が好ましい。洗浄液の該pHは0.5~5がより好ましく、1~4がさらに好ましい。
 洗浄液が酸性水溶液である場合、該洗浄液に含まれる酸成分としては、洗浄液とリチウム含有複合酸化物(II)とを分離しやすくするため、Fを含有しない酸成分が好ましい。洗浄液に含まれる好適な酸成分としては、乳酸、硫酸、炭酸、クエン酸、グリコール酸、リンゴ酸、酒石酸、グルコン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、マレイン酸、フマル酸、フタル酸、ギ酸、酢酸、プロピオン酸、アスコルビン酸、硝酸、塩酸、ホウ酸、リン酸、過塩素酸が挙げられる。取り扱い性および充放電効率向上の点で乳酸、硫酸、酢酸、またはグリコール酸がより好ましい。酸成分は1種を単独で用いてもよく、2種以上を併用してもよい。
 リチウム含有複合酸化物(I)と洗浄液とを接触させる方法は、例えば、洗浄液にリチウム含有複合酸化物(I)を加えて撹拌、混合する方法を用いることができる。洗浄液との接触は複数回行ってもよい。
 リチウム含有複合酸化物(I)と接触させる洗浄液の温度は、作業性および充放電効率向上の点で10~90℃が好ましく、20~60℃がより好ましい。特に洗浄液のpHを4より高くする場合はリチウムの溶解性を上げるために温度を40℃以上にするのが好ましい。
 リチウム含有複合酸化物(I)と洗浄液とを接触させる時間は特に限定されないが、高い充放電効率と高い放電容量が得られる点では0.5時間以上が好ましく、1時間以上が好ましい。該接触時間の上限は生産性の点から48時間以下が好ましく、24時間以下がより好ましい。
 洗浄液として酸性水溶液を用いる場合、下式(X1)で求められる酸成分の相対量(X1)は、0.005~0.20であることが好ましく、0.02~0.15であることがより好ましい。
 酸成分の相対量(X1)={洗浄液に含まれる酸成分の量(モル)/リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量(モル)}×{酸成分の価数の絶対値}…(X1)
 酸成分の相対量(X1)は、リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量(単位:モル)に対する、洗浄液に含まれる酸成分の量(単位:モル)のモル比に、該酸成分の価数の絶対値を乗じた値である。酸成分の相対量(X1)が上記範囲の下限値以上であると高い充放電効率と高い放電容量が得られ、上限定以下であると遷移金属成分の溶出が少なく収率が高くなる。
 洗浄後にリチウム含有複合酸化物(II)を取り除いた洗浄液(以下、廃液という)には、少なくともリチウムが溶解しており、さらにリチウム含有複合酸化物(I)に含まれる遷移金属が溶解していてもよい。リチウム含有複合酸化物(II)を取り除く方法がろ過である場合、廃液をろ液ともいう。
 下式(X2)で求められるリチウム溶出率(以下「リチウム溶出率(X2)」ということもある。)は、0.2~10%であることが好ましく、1~6%であることがより好ましい。リチウム溶出率(X2)が上記範囲内であると高い充放電効率と高い放電容量が得られる。
 リチウム溶出率(X2)={廃液に含まれるLiの量(モル)/リチウム含有複合酸化物(I)に含まれるLiの量(モル)}×100…(X2)
 リチウム溶出率(X2)は、リチウム含有複合酸化物(I)に含まれる全Liに対する、洗浄液中に溶解したLiの量の割合である。
 該廃液およびリチウム含有複合酸化物(I)に含まれるLiの量は、誘導結合プラズマ(ICP)発光分光分析法により測定して算出される。
 下式(X3)で求められる遷移金属溶出率(以下「遷移金属溶出率(X3)」ということもある。)は、0~2%であることが好ましく、0~1.5%であることがより好ましい。遷移金属溶出率(X3)が上記範囲内であると遷移金属成分の溶出が少なく収率が高くなる。
 遷移金属溶出率(X3)={廃液に含まれる遷移金属元素の総量(モル)/リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量(モル)}×100…(X3)
 遷移金属溶出率(X3)は、リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量に対する、洗浄液中に溶解した遷移金属元素の総量の割合である。
 該廃液およびリチウム含有複合酸化物(I)に含まれる遷移金属元素の含有量は、誘導結合プラズマ(ICP)発光分光分析法により測定して算出される。
 廃液の25℃におけるpHは4.5~12.5が好ましく、5.5~10がより好ましい。特に遷移金属の溶出量を減らしたい場合は廃液の25℃におけるpHを7以上とすることが好ましい。
 リチウム含有複合酸化物と洗浄液とを接触させた後、洗浄液と分離して、リチウム含有複合酸化物(II)を得る。分離方法としては、一般的な固液分離を使用でき、ろ過、沈降分離、または遠心分離等が挙げられる。洗浄液として酸性水溶液を使用する場合には、洗浄液と分離する際に、水などで、リチウム含有複合酸化物(II)の表面を洗うことが好ましい。
 リチウム含有複合酸化物(II)は、洗浄液と分離された後、加熱乾燥し、余分な水分や吸着物等を除去することが好ましい。これにより、リチウム含有複合酸化物(II)を取り扱いやすくなり、工程(II)以降の処理を効率よく行える。加熱温度は40~300℃が好ましく、60~200℃がより好ましい。加熱時間は特に限定されず、例えば0.5~30時間が好ましく、1~20時間がより好ましい。
 加熱温度が上記範囲内であると効率よく乾燥させることができる。
[工程(II)]
 本製造方法の工程(II)では、工程(I)で得られた、リチウム含有複合酸化物(II)と、組成物(1)および組成物(2)とを接触させてリチウム含有複合酸化物(III)を得る。
 この工程を経て得られる正極活物質を使用すれば、リチウムイオン二次電池の充放電効率とサイクル特性を向上できる。組成物(1)に含まれる陰イオン(A)は、リチウム含有複合酸化物(II)からLiを引き抜き、リチウムイオン二次電池の充放電効率を向上させる。組成物(2)に含まれる金属元素(m)が表面に存在すれば、リチウム含有複合酸化物からの遷移金属の溶出を抑制でき、リチウムイオン二次電池のサイクル特性を向上させる。
 特に工程(II)に先立って工程(I)を行うと、組成物(1)に含まれる陰イオン(A)が前記遊離アルカリと反応することによって、該陰イオン(A)による前記Liを引き抜く効果が低減するのを防止することができる。
 工程(II)において、リチウム含有複合酸化物(II)と、組成物(1)および組成物(2)とを同時にまたは連続して接触させれば、接触させる順番は限定されない。連続して接触する態様としては、リチウム含有複合酸化物(II)に組成物(1)を接触させた後に組成物(2)を接触させる、組成物(2)を接触させた後に組成物(1)を接触させる、一方の組成物と他方の組成物を交互に複数回ずつ接触させる態様等が挙げられる。同時に接触させる態様としては、組成物(1)および組成物(2)を同時に接触させる、組成物(1)および組成物(2)を予め混合した後、リチウム含有複合酸化物(II)に接触させる態様等が挙げられる。
 特に、陽イオン(M)と陰イオン(A)との反応が進みやすいと考えられることから、リチウム含有複合酸化物(II)に組成物(2)を接触させた後に、組成物(1)を接触させる順番とすることが特に好ましい。
 工程(II)において、リチウム含有複合酸化物(II)と、組成物(1)および組成物(2)を接触させる方法は、浸漬法、噴霧法(スプレー法)、塗布法などが使用できるが、スプレーコート法が好ましい。スプレーコート法は、組成物(1)および組成物(2)を、リチウム含有複合酸化物(II)に噴霧する方法であり、プロセスの簡便性とリチウム含有複合酸化物の表面に被覆層を均一に形成できるため好ましい。
 スプレーコート法は、具体的には、リチウム含有複合酸化物(II)の粒子を撹拌しながら組成物(1)および組成物(2)を噴霧してリチウム含有複合酸化物(II)と混合することが好ましい。撹拌装置としては、ドラムミキサーまたはソリッドエアー等の低剪断力の撹拌機を用いることができる。
 工程(II)において、リチウム含有複合酸化物(II)との接触に用いる組成物(1)および組成物(2)の量は、リチウム含有複合酸化物(II)が吸収、付着できる量であるのが好ましい。リチウム含有複合酸化物(II)が吸収、付着できる量であれば、組成物(1)および組成物(2)を接触させた後に残る組成物(1)および組成物(2)がなくなり、それを処理するための工程が省けるのでこのましい。
 工程(II)において、リチウム含有複合酸化物(II)と、組成物(1)および組成物(2)との接触温度は、10~100℃であるのが好ましい。接触時間は、5分~10時間であるのが好ましい。
[組成物(1)]
 組成物(1):S、P、F、およびBからなる群より選ばれる少なくとも1種の元素(a)を含む単原子または多原子の陰イオン(A)を含む水溶液。
 陰イオン(A)としては、SO 2-、SO 2-、S 2-、SO 2-、SO 2-、PO 3-、P 4-、PO 3-、PO 3-、F、BO 3-、BO 、B 2-、B が好ましい。なかでも、安定性や取り扱い性の点で、SO 2-、PO 3-、またはFがより好ましい。特に高い放電容量が得られる点で陰イオン(A)はFであることがより好ましい。
 組成物(1)は、元素(a)を含み、水溶液中で解離して陰イオン(A)を生成させる水溶性化合物(1)を溶媒である水に溶解させたものであることが好ましい。本明細書において、25℃の蒸留水への溶解度(飽和溶液100gに溶けている溶質の質量[g])が2超であることを水溶性といい、前記溶解度が0~2であることを難溶性という。
 前記溶解度が2超である水溶性化合物(1)の好ましい例としては、HSO、HSO、H、HSO、HSO、HPO、H、HPO、HPO、HF、HBO、HBO、H、HB、またはこれらのアンモニウム塩、アミン塩、リチウム塩、ナトリウム塩、カリウム塩等が挙げられる。これらのなかでも、取り扱い性や安全性の点で、酸よりも塩を用いることが好ましい。また、加熱する際に分解して除去される点で、アンモニウム塩が特に好ましい。具体的には(NHSO、(NH)HSO、(NHPO、(NHHPO、(NH)HPO、NHF等が好ましい。
 組成物(1)の溶媒には、前記水溶性化合物(1)の溶解性を損なわない範囲で、水溶性アルコールおよびポリオールの一方または両方を含有してもよい。
 水溶性アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノールが挙げられる。ポリオールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリンが挙げられる。
 組成物(1)において、溶媒中に含まれる水溶性アルコールとポリオールの合計の含有量は、溶媒の全質量に対して0~20%が好ましく、0~10%がより好ましい。安全面、環境面、取扱い性、コストの点で、溶媒が水のみであることが特に好ましい。
 組成物(1)には、水溶性化合物(1)の溶解度を調整するために、pH調整剤を含有させてもよい。pH調整剤としては、後の工程で加熱された時に揮発または分解するものが好ましい。例えば、酢酸、クエン酸、乳酸、ギ酸、マレイン酸、シュウ酸などの有機酸、またはアンモニアが好ましい。このように、揮発または分解するpH調整剤を用いると、不純物が残留しにくいため、良好な電池特性が得られやすい。
 水溶性化合物(1)の含有量は、組成物の(1)の全質量に対して、陰イオン(A)換算で0.5~30%が好ましく、2~20%が特に好ましい。
 水溶性化合物(1)が0.5%以上であれば、後の工程で加熱により溶媒を除去しやすいため、好ましい。また、30%以下であれば、組成物(1)の粘度が適切な範囲になり、リチウム含有複合酸化物(II)と組成物(1)とを均一に接触させやすい点で好ましい。
 リチウム含有複合酸化物(II)に接触させる組成物(1)の量は、下式(Xa)で求められる陰イオン(A)の相対量(Xa)が0.001~0.15の範囲内であることが好ましい。該陰イオン(A)の相対量(Xa)は、リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量(単位:モル)に対する、組成物(1)に含まれる各陰イオン(A)の量(単位:モル)のモル比に、それぞれの陰イオン(A)の価数の絶対値を乗じた値である。
 該陰イオン(A)の相対量(Xa)が、0.001以上であると充放電効率が向上しやすく、0.15以下であると不純物生成による容量低下が起きにくい。該陰イオン(A)の相対量(Xa)の値は、0.003~0.12の範囲内がより好ましく、0.005~0.09の範囲内が特に好ましい。
 陰イオン(A)の相対量(Xa)={組成物(1)に含まれる陰イオン(A)の量(モル)/リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量(モル)}×{陰イオン(A)の価数の絶対値}…(Xa)
 なお、組成物(1)に2種以上の陰イオン(A1)、(A2)…が含まれる場合には、陰イオン(A)の相対量(Xa)は、組成物(1)に含まれるすべての陰イオンの合計値である。すなわち、各陰イオンについて上式(Xa)により「陰イオン(A1)の相対量」、「陰イオン(A2)の相対量」…を求め、これらの合計が上記した範囲にあることが好ましい。
[組成物(2)]
 本発明における組成物(2)は、Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも1種の金属元素(m)の単原子または錯体の陽イオン(M)を含む水溶液である。
 組成物(1)の陰イオン(A)との反応性の点で、陽イオン(M)は金属元素(m)の単原子のイオンであることが好ましい。
 金属元素(m)としては、Al、Nb、またはZrが好ましい。陽イオン(M)としては、Al3+、Nb5+、Nb3+、またはZr4+が好ましい。
 特にサイクル特性向上の点で、金属元素(m)はAlが好ましく、陽イオン(M)がAl3+であることがより好ましい。
 組成物(2)は、金属元素(m)を有し、水溶液中で陽イオン(M)を生じさせる水溶性化合物(2)を溶媒である水に溶解させたものであることが好ましい。
 水溶性化合物(2)の例としては、金属元素(m)の硝酸塩、硫酸塩、塩化物等の無機塩、酢酸塩、クエン酸塩、マレイン酸塩、ギ酸塩、乳酸塩、乳酸塩、シュウ酸塩等の有機塩または有機錯体、アンミン錯体等が挙げられる。なかでも、熱により分解しやすく、溶媒への溶解性が高いことから、硝酸塩、有機酸塩、有機錯体、またはアンミン錯体が特に好ましい。
 水溶性化合物(2)の好ましい例としては、炭酸ジルコニウムアンモニウム、ハロゲン化ジルコニウムアンモニウム、酢酸ジルコニウム、硝酸ジルコニウム、硝酸アルミニウム、酢酸アルミニウム、シュウ酸アルミニウム、クエン酸アルミニウム、乳酸アルミニウム、塩基性乳酸アルミニウム、マレイン酸アルミニウム、硝酸ニオブ、酢酸ニオブ、クエン酸ニオブ、マレイン酸ニオブ、ギ酸ニオブ、乳酸ニオブ、シュウ酸ニオブ、シュウ酸ニオブアンモニウムが挙げられる。
 組成物(2)の溶媒は、水溶性化合物(2)の溶解性を損なわない範囲で、前記組成物(1)と同様の、水溶性アルコールおよびポリオールの一方または両方を添加してもよい。また、その含有量も組成物(1)の場合と同様である。さらに、組成物(2)には、水溶性化合物(2)の溶解度を調整するために、前記組成物(1)と同様のpH調整剤を含有させてもよい。
 水溶液化合物(2)の含有量は、組成物の(2)の全質量に対して、金属元素(m)換算で0.5~30%が好ましく、2~20%が特に好ましい。
 水溶性化合物(2)が0.5%以上であれば、後の工程で加熱により溶媒を除去しやすいため、好ましい。また、30%以下であれば、組成物(2)の粘度が適切な範囲になり、リチウム含有複合酸化物(II)と組成物(2)とを均一に接触させやすい点で好ましい。
 リチウム含有複合酸化物(II)に接触させる組成物(2)の量は、下式(Xm)で求められる金属元素(m)の相対量(Xm)が0.001~0.15の範囲内であることが好ましい。該金属元素(m)の相対量(Xm)は、リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量(単位:モル)に対する、組成物(2)に含まれる各陽イオン(M)の量(単位:モル)のモル比に、それぞれ陽イオン(M)の価数の絶対値を乗じた値である。
 該金属元素(m)の相対量(Xm)の値が、0.001以上であるとサイクル特性向上の効果が大きくなり、0.15以下であると不純物生成による容量低下が起きにくい。該金属元素(m)の相対量(Xm)の値は、0.003~0.12の範囲内がより好ましく、0.005~0.09の範囲内が特に好ましい。
 金属元素(m)の相対量(Xm)={組成物(2)に含まれる各陽イオン(M)の量(モル)/リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量(モル)}×{それぞれの陽イオン(M)の価数の絶対値}…(Xm)
 組成物(2)に2種以上の金属元素(m1)、(m2)…が含まれる場合には、金属元素(m)の相対量(Xm)は、組成物(2)に含まれる全ての金属元素の合計値である。すなわち、金属元素(m1)を含む陽イオン(M1)、金属元素(m2)を含む陽イオン(M2)…のそれぞれについて、上式(Xm)により、「金属元素(m1)の相対量」、「金属元素(m2)の相対量」…を求め、これらの合計が上記した範囲にあることが好ましい。
 さらに、リチウム含有複合酸化物(II)に接触させる組成物(1)の量および組成物(2)の量は、金属元素(m)の相対量(Xm)/陰イオン(A)の相対量(Xa)で表される両者の比(Xm/Xa)が0.1~10であることが好ましい。該両者の比(Xm/Xa)は0.2~5がより好ましく、0.3~3がさらに好ましい。該両者の比(Xm/Xa)が上記範囲内であると放電容量が高く、サイクル特性が高い正極活物質が得られやすい。
[工程(III)]
 本製造方法の工程(III)では、工程(II)で得られたリチウム含有複合酸化物(III)を加熱する。この加熱により、リチウム含有複合酸化物(III)、組成物(1)、および組成物(2)に含まれる水および有機成分等の揮発性の不純物が除去され、表面の一部に被覆層を有するリチウム含有複合酸化物が得られる。
 工程(III)において、加熱の前に、リチウム含有複合酸化物(III)を40~200℃で、0.5~8時間乾燥して予め水分を大部分除去するのが好ましい。
 工程(III)における加熱は、酸素含有雰囲気下で行うことが好ましい。加熱温度は、250~700℃が好ましく、350~600℃がより好ましい。加熱温度が250℃以上であると、被覆層を良好に形成できる。また残留水分等の揮発性の不純物が少なくなることからサイクル維持率の低下が抑制できる。
 一方、加熱温度が700℃以下であると、正極活物質の内部に金属元素(m)が拡散しにくく、該金属元素(m)の拡散に起因する電池の容量低下を防止できる。
 また、被覆層を非晶質とする場合、加熱温度は250℃~550℃が好ましく、350~500℃がより好ましい。加熱温度が550℃以下であると、被覆層が結晶化しにくくなる。
 加熱時間は、0.1~24時間が好ましく、0.5~18時間がより好ましく、1~12時間が特に好ましい。加熱時間が上記範囲であると、被覆層が良好に形成されやすい。
 加熱時の圧力は特に限定されず、常圧または加圧が好ましく、常圧が特に好ましい。
 前記被覆層は、元素(a)を含む化合物、金属元素(m)を含む化合物、もしくは元素(a)と金属元素(m)を含む化合物またはこれらの混合物からなる。前記被覆層は、すくなくとも、元素(a)と金属元素(m)を含む難溶性の化合物を含むことが好ましい。
 元素(a)を含む化合物としては、元素(a)とアルカリ金属からなる塩が挙げられる。前記塩としては、LiF、LiPO、LiSO、NaF、KF等が挙げられる。
 金属元素(m)を含む化合物としては、金属元素(m)の酸化物または水酸化物等が挙げられる。酸化物としては、Al、ZrO等が挙げられる。水酸化物としてはAl(OH)、Zr(OH)等が挙げられる。
 元素(a)と金属元素(m)を含む化合物としては、具体的には、BaSO、CaSO、SrSO、Al(SO、Zr(SO、CePO、BiPO、AlPO、LaPO、Ce(PO、Mg(PO、Ba(PO、Ca(PO、Zr(PO、LiPO、Nb(PO、LiF、SrF、BaF、CaF、MgF、LaF、AlF、CeF、InF、ZrF、NbF等が挙げられる。また、これらのなかでも、Al(SO、AlPO、AlF、Zr(SO、またはZrFが好ましく、Al(SOまたはAlFがより好ましく、AlFが特に好ましい。
<リチウムイオン二次電池用正極の製造方法>
 本発明におけるリチウムイオン二次電池用正極の製造方法は、前記したリチウムイオン二次電池用正極活物質を製造する工程と、得られた正極活物質、バインダーおよび導電材を含む正極活物質層を正極集電体上に形成する工程を有する。
 正極活物質層を形成する工程は公知の手法を用いて行うことができる。例えば、まず正極活物質、導電材およびバインダーを、媒体に溶解もしくは分散させてスラリーを得る、または正極活物質、導電材およびバインダーを、媒体と混練して混練物を得る。次いで、得られたスラリーまたは混練物を正極集電体上(正極表面)に塗工することによって正極活物質層を形成できる。
 導電材としては、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボンブラック等が挙げられる。導電材は、1種でもよく2種以上を使用してもよい。
 バインダーとしては、フッ素系樹脂、ポリオレフィン、不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。フッ素系樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等が挙げられる。ポリオレフィンとしては、ポリエチレン、ポリプロピレン等が挙げられる。不飽和結合を有する重合体およびその共重合体としては、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、正極集電体としては、アルミニウム箔またはアルミニウム合金箔が挙げられる。
<リチウムイオン二次電池の製造方法>
 本発明におけるリチウムイオン二次電池の製造方法は、前記したリチウムイオン二次電池用正極を製造する工程と、得られたリチウムイオン二次電池用正極、負極、非水電解質およびセパレータを用いてリチウムイオン二次電池を構成する工程を有する。
 リチウムイオン二次電池を構成する工程は公知の手法を用いて行うことができる。
[負極]
 負極は、負極集電体上に、負極活物質を含有する負極活物質層を形成して得られる。例えば、負極活物質を有機溶媒と混錬することによってスラリーを調製し、調製したスラリーを負極集電体に塗布、乾燥、プレスすることによって製造できる。
 負極集電体としては、例えばニッケル箔、銅箔等を使用できる。
 負極活物質は、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、例えば、リチウム金属、リチウム合金、炭素材料、周期表14または15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等を用いることができる。
 負極活物質に使用する炭素材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類などが挙げられる。前記コークス類としては、ピッチコークス、ニードルコークス、石油コークスなどが挙げられる。有機高分子化合物焼成体としては、フェノール樹脂、フラン樹脂などを適当な温度で焼成し炭素化したものが挙げられる。
 周期表14族の金属としては、例えば、Si、Sn等が挙げられる。なかでも、周期表14族の金属としては、Siが好ましい。
 非水電解質としては、例えば、有機溶媒に電解質塩を溶解させた非水電解液、無機固体電解質、電解質塩を混合または溶解させた固体状もしくはゲル状の高分子電解質等が挙げられる。
 有機溶媒としては、非水電解液用の有機溶媒として公知のものを採用できる。例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等が挙げられる。なかでも、電圧安定性の点からは、有機溶媒としては、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類が好ましい。有機溶媒は、1種でもよく、2種以上で使用してもよい。
 無機固体電解質としては、窒化リチウム、ヨウ化リチウムなどが挙げられる。
 電解質塩を混合又は溶解させた固体状の高分子電解質に用いられる高分子化合物としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、およびこれらの誘導体、混合物、並びに複合体等が挙げられる。
 電解質塩を混合又は溶解させたゲル状の高分子電解質に用いられる高分子化合物としては、フッ素系高分子化合物、ポリアクリロニトリル、ポリアクリロニトリルの共重合体、ポリエチレンオキサイド、ポリエチレンオキサイドの共重合体などが挙げられる。フッ素系高分子化合物としては、ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)などが挙げられる。
 ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の観点から、フッ素系高分子化合物が好ましい。
 電解質塩は、リチウムイオン二次電池に使用されている公知のものが使用でき、例えば、LiClO、LiPF、LiBF、CFSOLi等が挙げられる。
 セパレータとしては、例えば、ポリエチレンとポリプロピレンを代表とする微多孔性ポリオレフィンフイルム、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体からなるフィルム、微多孔性ポリオレフィンフイルム表面に無機粒子、アラミド樹脂、フッ素樹脂等を塗布した複合フィルムが挙げられる。
 リチウムイオン二次電池の形状は、特に限定されず、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択できる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明は実施例に限定されない。例1~4と例13~20が本発明の実施例、例5~12が比較例である。
(リチウム含有複合酸化物の合成)
 本例では炭酸塩共沈法によりリチウム含有複合酸化物を製造した。
 硫酸ニッケル(II)六水和物122g、硫酸コバルト(II)七水和物130g、および硫酸マンガン(II)五水和物446gの混合物に蒸留水1152gを加え、前記化合物が均一に溶解した金属塩水溶液からなる原料溶液を調製した。また、硫酸アンモニウム99gに蒸留水401gを加えて均一に溶解させ、硫酸アンモニウム水溶液を得た。炭酸ナトリウム1gに蒸留水1900gを加えて均一に溶解させ、母液とした。さらに、炭酸ナトリウム350gに蒸留水1850gを加えて均一に溶解させ炭酸塩水溶液を得た。
 次いで、2Lのバッフル付きガラス製反応槽に前記母液を入れてマントルヒーターで50℃に加熱し、反応槽内の溶液を2段傾斜パドル型の撹拌翼で撹拌しながら、原料溶液を5.0g/分の速度で、硫酸アンモニウム溶液を0.5g/分の速度で6時間かけて添加し、Ni、Co、およびMnを含有する共沈物を得た。
 なお、原料溶液の添加中は、反応槽内のpHを8.0に保つように炭酸塩水溶液を添加した。また、析出した遷移金属炭酸塩が酸化しないように、反応槽内に窒素ガスを流量0.5L/分で流した。
 得られた共沈物を加圧ろ過と蒸留水への分散を繰り返しで洗浄し、不純物イオンを取り除いた。ろ液の電気伝導度が100μS/cm未満となった時点で洗浄を終了し、120℃で15時間乾燥させた。
 洗浄および乾燥後の共沈物に含まれる遷移金属の合計の含有量をZINCON指示薬とEDTAと塩化亜鉛水溶液による逆滴定で求めたところ、8.36mol/kgであった。
 次に、この共沈物300gと、リチウム含有量が26.96mol/kgの炭酸リチウム139.5gとを混合し、酸素含有雰囲気下880℃で16時間焼成して、リチウム含有複合酸化物(I)の粉末を得た。
 リチウム含有複合酸化物(I)に含まれるLi、Ni、CoおよびMnの量をICPにより測定した。Li:Ni:Co:Mnのモル比は、1.5:0.16:0.17:0.67であった。リチウム含有複合酸化物(I)の組成は、Li(Li0.20Ni0.128Co0.136Mn0.536)Oと表記できる。また、このリチウム含有複合酸化物(I)の平均粒子径D50は10.8μmであった。
 リチウム含有複合酸化物(I)についてX線源としてCuKα線を用いるXRD測定を行った。XRD測定から、リチウム含有複合酸化物(A)は、層状岩塩型結晶構造(空間群R-3m)であることが確認され、2θ=20~25°の範囲に層状LiMnOのピークが観察された。
 XRD測定には、リガク社製の製品名RINT-TTR-IIIを使用した。測定条件は、電圧50kV、管電流300mA、走査軸2θ/θで測定範囲θ=10~90°、サンプリング幅0.04°、スキャンスピード1°/分とした。
(例1)
[工程(I)]
 1000mLのポリ容器に乳酸(純度90%)20gと蒸留水800gを入れて混合し、洗浄液とした。洗浄液のpHは2.3であった。さらに、洗浄液にリチウム含有複合酸化物(I)を200g加えて撹拌翼を用いて3分間撹拌した。次に撹拌翼を取り出してポリ容器に蓋をして、ローラー式ミキサーを用いて20rpmの回転数で24時間混合した。混合は室温(25℃)で行った。
 前記式(X1)で算出される酸成分の相対量(X1)は0.11であった。
 次にろ過を行い、80℃で15時間乾燥して洗浄処理されたリチウム含有複合酸化物(II)を得た。ろ液のpHは6.3であった。ろ液に含まれているリチウムおよび遷移金属(Ni、Co、およびMnの合計)の含有量をICPにより測定した。
 前記式(X2)で算出されるリチウム溶出率(X2)は3.7%、前記式(X3)で求められる遷移金属溶出率(X3)は0.7%であった。
[工程(II)]
 水溶液の質量に対するAl含有量が、Al換算で8.8%の塩基性乳酸アルミニウム水溶液4.2gに、蒸留水5.8gを加えて混合し、乳酸アルミニウム水溶液(組成物(2))を調製した。乳酸アルミニウム水溶液(組成物(2))の質量に対する金属元素(m)含有量(Al換算濃度)は、3.7%であった。
 フッ化アンモニウム(NHF)1.62gに蒸留水8.38gを加えて混合し、フッ化アンモニウム水溶液(組成物(1))を調製した。フッ化アンモニウム水溶液(組成物(1))の質量に対する陰イオン(A)換算濃度(F換算濃度)は、8.3%であった。
 工程(I)で得られた、リチウム含有複合酸化物(II)8gを撹拌しながら、前記乳酸アルミニウム水溶液(組成物(2))0.64gをスプレーコート法により噴霧し、リチウム含有複合酸化物(II)と該乳酸アルミニウム水溶液とを混合しながら接触させた。次に、フッ化アンモニウム水溶液(組成物(1))0.64gをスプレーコート法により噴霧し、リチウム含有複合酸化物(II)と乳酸アルミニウム水溶液とフッ化アンモニウム水溶液とを混合しながら接触させリチウム含有複合酸化物(III)を得た。これらの接触は25℃で行った。これらの接触により、組成物(1)および組成物(2)は、それらの全量がリチウム含有複合酸化物(II)に付着、吸収された。
 本工程において、リチウム含有複合酸化物(II)に接触させた組成物(1)の量は、前記式(Xa)で求められる陰イオン(A)の相対量(Xa)が0.038となる量である。
 またリチウム含有複合酸化物(II)に接触させた組成物(2)の量は、前記式(Xm)で求められる金属元素(m)の相対量(Xm)が0.019となる量である。本例で用いた金属元素Alの価数は+3である。
[工程(III)]
 得られたリチウム含有複合酸化物(III)を、80℃で4時間乾燥した後に酸素含有雰囲気下450℃で5時間加熱し、リチウム含有複合酸化物粒子の表面の一部にAlとFを含む被覆層を有する粒子からなる正極活物質を得た。
(例2)
 例1において、フッ化アンモニウム水溶液の噴霧量を0.32gに変更して、陰イオン(A)の相対量(Xa)を0.019とした。その他は実施例1と同様にして、リチウム含有複合酸化物粒子の表面の一部にAlとFを含む被覆層を有する粒子からなる正極活物質を得た。
(例3)
 例1において、フッ化アンモニウム水溶液の噴霧量を1.28gに変更して、陰イオン(A)の相対量(Xa)を0.057とした。その他は実施例1と同様にして、リチウム含有複合酸化物粒子の表面の一部にAlとFを含む被覆層を有する粒子からなる正極活物質を得た。
(例4)
 例1と同様にして工程(I)を行った。
 水溶液の質量に対するZr含量がZrO換算で20.7%の炭酸ジルコニウムアンモニウム水溶液1.75gに、蒸留水3.26gを加えて混合し、炭酸ジルコニウムアンモニウム(組成物(2))を調製した。炭酸ジルコニウムアンモニウム水溶液(組成物(2))の質量に対する金属元素(m)の含有量(Zr換算濃度)は、7.2%であった。
 工程(I)で得られた、リチウム含有複合酸化物(II)8gを撹拌しながら、前記炭酸ジルコニウムアンモニウム水溶液(組成物(2))0.64gをスプレーコート法により噴霧し、リチウム含有複合酸化物(II)と炭酸ジルコニウムアンモニウム水溶液とを混合しながら接触させた。次に、フッ化アンモニウム水溶液(組成物(1))0.64gをスプレーコート法により噴霧し、リチウム含有複合酸化物(II)と炭酸ジルコニウムアンモニウムとフッ化アンモニウム水溶液とを混合しながら接触させリチウム含有複合酸化物(III)を得た。これらの接触は25℃で行った。これらの接触により、組成物(1)および組成物(2)は、それらの全量がリチウム含有複合酸化物(II)に付着、吸収された。
 本工程において、リチウム含有複合酸化物(II)に接触させた組成物(1)の量は、前記式(Xa)で求められる陰イオン(A)の相対量(Xa)が0.038となる量である。
 またリチウム含有複合酸化物(II)に接触させた組成物(2)の量は、前記式(Xm)で求められる金属元素(m)の相対量(Xm)が0.025となる量である。本例で用いた金属元素Zrの価数は+4である。
 例1と同様にして工程(III)を行い、リチウム含有複合酸化物粒子の表面の一部にZrおよびFを含む被覆層を有する粒子からなる正極活物質を得た。
(例5)
 例1の工程(I)と同様にして洗浄処理したリチウム含有複合酸化物(II)を正極活物質とした。
 工程(II)および(III)は行わなかった。
(例6)
 例1の工程(II)において、フッ化アンモニウム水溶液(組成物(1))のスプレーコートを行わなかった。その他は例1と同様にして、リチウム含有複合酸化物粒子の表面の一部にAlを含む被覆層を有する粒子からなる正極活物質を得た。
(例7)
 例1において、乳酸アルミニウム水溶液の噴霧量を1.28gに変更して、金属元素(m)の相対量(Xm)を0.038とした。また工程(II)において、フッ化アンモニウム水溶液(組成物(1))のスプレーコートを行わなかった。その他は例1と同様にして、リチウム含有複合酸化物粒子の表面の一部にAlを含む被覆層を有する粒子からなる正極活物質を得た。
(例8)
 例1において、工程(I)を行わず、工程(II)ではリチウム含有複合酸化物(I)を用いた。その他は例1と同様にして、リチウム含有複合酸化物粒子の表面の一部にAlおよびFを含む被覆層を有する粒子からなる正極活物質を得た。
(例9)
 例6において、工程(I)を行わず、工程(II)ではリチウム含有複合酸化物(I)を用いた。その他は例6と同様にして、リチウム含有複合酸化物粒子の表面の一部にAlを含む被覆層を有する粒子からなる正極活物質を得た。
(例10)
 例1の工程(II)において、乳酸アルミニウム水溶液(組成物(2))のスプレーコートを行わなかった。その他は例1と同様にして、リチウム含有複合酸化物粒子の表面の一部にFを含む被覆層を有する粒子からなる正極活物質を得た。
(例11)
 例3の工程(II)において、乳酸アルミニウム水溶液(組成物(2))のスプレーコートを行わなかった。その他は例3と同様にして、リチウム含有複合酸化物粒子の表面の一部にFを含む被覆層を有する粒子からなる正極活物質を得た。
(例12)
 例4において、工程(I)を行わなかった。その他は例4と同様にして、リチウム含有複合酸化物粒子の表面にZrおよびFを含む被覆層を有する粒子からなる正極活物質を得た。
(例13)
 例1の工程(I)において、50mLのスクリュー管瓶に乳酸(純度90%)0.5gと蒸留水40gを入れて混合し、洗浄液とした。洗浄液のpHは2.4であった。さらにリチウム含有複合酸化物(A)を10g加えてスターラーを用いて3分間撹拌した。次にスターラーチップを取り出してポリ容器に蓋をして、ローラー式ミキサーを用いて20rpmの回転数で24時間混合した。混合は室温(25℃)で行った。
 前記式(X1)で算出される酸成分の相対量(X1)は0.05であった。
 次にろ過を行い、80℃で15時間乾燥して、リチウム含有複合酸化物(II)を得た。ろ液のpHは7.3であった。ろ液に含まれているリチウムおよび遷移金属(Ni、Co、Mnの合計)の含有量をICPにより測定した。
 前記式(X2)で求められるリチウム溶出率(X2)は2.0%、前記式(X3)で求められる遷移金属溶出率(X3)は0.1%であった。
 例1と同様にして工程(II)および(III)を行って、リチウム含有複合酸化物粒子の表面の一部にAlとFを含む被覆層を有する粒子からなる正極活物質を得た。
(例14~18)
 例13において、工程(I)における洗浄液を表2に示す通りに変更した。これ以外は工程(II)および工程(III)を例1と同様にしてリチウム含有複合酸化物粒子の表面の一部にAlとFを含む被覆層を有する粒子からなる正極活物質を得た。
 なお、例14では、乳酸(純度90%)1.5gと蒸留水40gを混合したものを洗浄液とした。例15では、硫酸(純度95%)0.3gと蒸留水40gを混合したものを洗浄液とした。例16では、硫酸(純度95%)0.6gと蒸留水40gを混合したものを洗浄液とした。例17では、酢酸0.6gと蒸留水40gを混合したものを洗浄液とした。例18では、酢酸0.9gと蒸留水40gを混合したものを洗浄液とした。
(例19)
 例1の工程(I)において、50mLのスクリュー管瓶に乳酸(純度90%)1gと蒸留水35gを入れて混合し、洗浄液とした。洗浄液のpHは2.3であった。さらにリチウム含有複合酸化物(I)を20g加えてスターラーを用いて3分間撹拌した。次にスターラーチップを取り出してポリ容器に蓋をして、ローラー式ミキサーを用いて20rpmの回転数で24時間混合した。混合は室温(25℃)で行った。
 前記式(X1)で算出される酸成分の相対量(X1)は0.05であった。
 次にろ過を行い、80℃で15時間乾燥してリチウム含有複合酸化物(II)を得た。ろ液のpHは7.4であった。ろ液に含まれているリチウムおよび遷移金属(Ni、Co、Mnの合計)の含有量をICPにより測定した。
 前記式(X2)で求められるリチウム溶出率(X2)は1.9、前記式(X3)で求められる遷移金属溶出率(X3)は0.1であった。
 例1と同様にして工程(II)および(III)を行って、リチウム含有複合酸化物粒子の表面の一部にAlとFを含む被覆層を有する粒子からなる正極活物質を得た。
(例20)
 例1の工程(I)において、洗浄液として蒸留水40gを用いた。洗浄液のpHは6.7であった。この洗浄液を80℃とし、リチウム含有複合酸化物(A)を10g加え、液温を80℃に保ちながら15時間静置した。
 次にろ過を行い、80℃で15時間乾燥してリチウム含有複合酸化物(II)を得た。ろ液のpHは12.3であった。ろ液に含まれているリチウムおよび遷移金属(Ni、Co、Mnの合計)の含有量をICPにより測定した。
 前記式(X2)で求められるリチウム溶出率(X2)は0.2であった。遷移金属の含有量は0.05未満であったため、小数点以下第2位を四捨五入して0.0とした。
 例1と同様にして工程(II)および(III)を行って、リチウム含有複合酸化物粒子の表面の一部にAlとFを含む被覆層を有する粒子からなる正極活物質を得た。
 上記例1~12の条件を表1に、例1~7、13~20の条件を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[正極体シートの製造]
 例1~20で得られた正極活物質と、導電材であるアセチレンブラック、およびポリフッ化ビニリデン(バインダー)を12.0質量%含む溶液(溶媒N-メチルピロリドン)とを混合し、さらに、N-メチルピロリドンを添加してスラリーを調製した。このとき、正極活物質とアセチレンブラックとポリフッ化ビニリデンとは、80:10:10の質量比とした。
 次いで、このスラリーを、厚さ20μmのアルミニウム箔(正極集電体)に、ドクターブレードを用いて片面塗工した。そして、120℃で乾燥した後、ロールプレス圧延を2回行い、正極体シートを作製した。
 参考例1として、リチウム含有複合酸化物(I)を正極活物質として用い、上記と同様にして正極体シートを製造した。
[リチウムイオン二次電池の製造]
 前記で得られた正極体シートを正極に用い、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴングローブボックス内で組み立てた。
 なお、負極には、厚さ500μmの金属リチウム箔を用い、負極集電体には厚さ1mmのステンレス板を使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用いた。さらに、電解液には、濃度1mol/dmのLiPF溶液を用いた。電解液の溶媒には、EC(エチレンカーボネート)とDEC(ジエチルカーボネート)を体積比で1:1の混合溶液を用いた。
[リチウムイオン二次電池の評価]
 前記で製造されたリチウムイオン二次電池について、下記の評価を行った。評価結果を表3に示す。
(初期効率)
 正極活物質1gにつき20mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき20mAの負荷電流で2.0Vまで放電した。この時の充電容量、放電容量および充放電効率をそれぞれ初期充電容量、初期放電容量および初期効率とした。
(サイクル特性)
 次いで正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき200mAの負荷電流で2.0Vまで高レート放電する充放電サイクルを50回繰り返した。このとき、2サイクル目の放電容量サイクル初期容量とし、50サイクル目の放電容量をサイクル初期容量で割った値を算出し、この値をサイクル維持率とした。
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、洗浄液との接触(工程(I))、およびコーティング(工程(II)、(III))を行い、コーティング液として、組成物(1)および組成物(2)を用いた例1~4、例13~20は、洗浄液との接触、およびコーティングのいずれも行わなかった参考例1に比べて、初期効率およびサイクル維持率に優れる。
 本発明により得られる効果は、以下に説明するように、洗浄液との接触だけによる効果と、コーティングだけによる効果を足し合わせた効果よりも優れた相乗効果であり、予測できない効果である。
 すなわち、洗浄液との接触のみを行った例5は、参考例1に比べて初期効率は向上したが、サイクル維持率は同等であった。この結果から、洗浄液と接触させる工程を加えると初期効率のみが向上すると予測される。
 しかしながら、洗浄液との接触およびコーティングを行った例1は、コーティングのみを行った例8に比べて、初期効率だけでなく、サイクル維持率も向上した。
 一方、洗浄液との接触を行わず、組成物(2)のみを用いてコーティングした例9は、参考例1に比べてサイクル維持率は向上したが、初期効率は同等であった。この結果から、組成物(2)のみを用いてコーティングする工程を加えると、初期効率を維持したまま、サイクル維持率が向上すると予測される。
 しかしながら、洗浄液と接触させた後に、組成物(2)のみを用いてコーティングする工程を加えた例6は、例5に比べてサイクル維持率は向上したが、初期効率が低下した。
 そのほか、表3の結果より以下のことがわかる。
 コーティング液として組成物(1)および(2)を用いた例1、3と、コーティング液として組成物(1)のみを用いた例10、11とをそれぞれ比べると、例1、3の方がサイクル維持率が大幅に向上している。
 コーティング液として組成物(1)および(2)を用いた例1、4を比べると、組成物(2)に含まれる金属元素(m)がAlである例1の方が、該金属元素(m)がZrである例4に比べてサイクル維持率が高い。
 洗浄液の条件を変えた例1、13~20を比べると、洗浄液のpHが5以下である例1、13~19は、例20に比べてリチウム溶出率が高く、初期効率が優れている。一方、ろ液のpHが7以上である例13、15、19、20は、例1、14、16、17、18に比べて遷移金属溶出率が低い。
 本発明は、初期効率およびサイクル維持率を同時に向上させることができるリチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極、及びリチウムイオン二次電池の製造に好適に用いることができる。
  なお、2013年7月5日に出願された日本特許出願2013-142029号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (15)

  1.  下記工程(I)、(II)および(III)をこの順で有するリチウムイオン二次電池用正極活物質の製造方法。
     工程(I):Li元素及び遷移金属元素を含むリチウム含有複合酸化物(I)を洗浄液と接触させ、接触後に洗浄液と分離してリチウム含有複合酸化物(II)を得る工程。
     工程(II):リチウム含有複合酸化物(II)と、下記組成物(1)および組成物(2)とを接触させてリチウム含有複合酸化物(III)を得る工程。
     工程(III):リチウム含有複合酸化物(III)を加熱する工程。
     組成物(1):S、P、F、およびBからなる群より選ばれる少なくとも1種の元素(a)を含む単原子または多原子の陰イオン(A)を含む水溶液。
     組成物(2):Li、Mg、Ca、Sr、Ba、Y、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、W、Mn、Fe、Co、Ni、Cu、Zn、Al、Ga、In、Sn、Sb、Bi、La、Ce、Pr、Nd、Gd、Dy、Er、およびYbからなる群より選ばれる少なくとも1種の金属元素(m)の単原子または錯体の陽イオン(M)を含む水溶液。
  2.  前記組成物(2)に含まれる金属元素(m)がAlである、請求項1に記載のリチウムイオン二次電池用正極活物質の製造方法。
  3.  工程(II)において、リチウム含有複合酸化物(I)に含まれる遷移金属元素の合計量に対する、前記組成物(2)に含まれる各陽イオン(M)のモル比にそれぞれの陽イオン(M)の価数の絶対値を乗じた値の合計が、0.001~0.15の範囲内になるように接触させる、請求項1または2に記載のリチウムイオン二次電池用正極活物質の製造方法。
  4.  前記組成物(1)に含まれる陰イオン(A)が、Fである、請求項1~3のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  5.  工程(II)において、リチウム含有複合酸化物(I)に含まれる遷移金属元素の総量に対する、前記組成物(1)に含まれる各陰イオン(A)のモル比にそれぞれの陰イオン(A)の価数の絶対値を乗じた値の合計が、0.001~0.15の範囲内になるように接触させる、請求項1~4のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  6.  工程(I)において、洗浄液が、25℃におけるpHが0~6の酸性水溶液である、請求項1~5のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  7.  リチウム含有複合酸化物(I)に含まれる全リチウム元素に対する、前記洗浄液中に溶解したリチウム元素の量の割合で表されるリチウム溶出率が、0.2~10%である、請求項1~6のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  8.  リチウム含有複合酸化物(I)が、Li元素と、Ni、Co、およびMnからなる群より選ばれる少なくとも1種の遷移金属元素とを含み、Li元素のモル量が前記遷移金属元素の総モル量に対して1.2倍超である、請求項1~7のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  9.  リチウム含有複合酸化物(I)が、下式(1)で表される化合物である、請求項8に記載のリチウムイオン二次電池用正極活物質の製造方法。
     Li(Lix1Mny1Mez1)Me’α  (1)
     ただし、Meは、CoおよびNiからなる群より選ばれる少なくとも1種の元素であり、Me’はAl、Cr、Mg、Mo、Ru、Ti、Zr、およびFeからなる群より選ばれる少なくとも1種であり、0.1<x<0.25、0.5≦y/(y+z)≦0.8、0≦α≦0.1、x+y+z=1、1.9<p<2.1、0≦q≦0.1である。
  10.  工程(III)における加熱を、250~700℃で行う、請求項1~9のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  11.  工程(II)における組成物(1)および組成物(2)の溶媒が、水のみである、請求項1~10のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  12.  工程(II)において、リチウム含有複合酸化物(II)と、組成物(1)および組成物(2)との接触を、スプレーコート法を用いて組成物(1)および組成物(2)を前記リチウム含有複合酸化物(II)に噴霧することによって行う、請求項1~11のいずれか1項に記載のリチウムイオン二次電池用正極活物質の製造方法。
  13.  工程(II)において、リチウム含有複合酸化物(II)と、組成物(1)および組成物(2)との接触を、撹拌中のリチウム含有複合酸化物(II)に組成物(1)および組成物(2)を噴霧することによって行う、請求項12に記載のリチウムイオン二次電池用正極活物質の製造方法。
  14.  請求項1~13のいずれか1項に記載の製造方法により、リチウムイオン二次電池用正極活物質を製造する工程と、
     該リチウムイオン二次電池用正極活物質、バインダーおよび導電材を含む正極活物質層を正極集電体上に形成する工程を有する、リチウムイオン二次電池用正極の製造方法。
  15.  請求項14に記載の製造方法によりリチウムイオン二次電池用正極を製造する工程と、
     前記リチウムイオン二次電池用正極、負極、非水電解質およびセパレータを用いてリチウムイオン二次電池を構成する工程を有する、リチウムイオン二次電池の製造方法。
PCT/JP2014/067020 2013-07-05 2014-06-26 リチウムイオン二次電池用正極活物質の製造方法 WO2015002065A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015525176A JP6382810B2 (ja) 2013-07-05 2014-06-26 リチウムイオン二次電池用正極活物質の製造方法
CN201480038363.2A CN105378986B (zh) 2013-07-05 2014-06-26 锂离子二次电池用正极活性物质的制造方法
US14/971,083 US10062905B2 (en) 2013-07-05 2015-12-16 Process for producing cathode active material for lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-142029 2013-07-05
JP2013142029 2013-07-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/971,083 Continuation US10062905B2 (en) 2013-07-05 2015-12-16 Process for producing cathode active material for lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2015002065A1 true WO2015002065A1 (ja) 2015-01-08

Family

ID=52143643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067020 WO2015002065A1 (ja) 2013-07-05 2014-06-26 リチウムイオン二次電池用正極活物質の製造方法

Country Status (4)

Country Link
US (1) US10062905B2 (ja)
JP (2) JP6382810B2 (ja)
CN (1) CN105378986B (ja)
WO (1) WO2015002065A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016035852A1 (ja) * 2014-09-03 2017-06-15 三井金属鉱業株式会社 リチウム金属複合酸化物粉体
WO2020188863A1 (ja) 2019-03-15 2020-09-24 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
JP2021018914A (ja) * 2019-07-19 2021-02-15 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質の製造方法
WO2022243782A1 (ja) * 2021-05-21 2022-11-24 株式会社半導体エネルギー研究所 正極活物質の作製方法、正極、リチウムイオン二次電池、移動体、蓄電システム、及び電子機器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690563B2 (ja) * 2017-01-25 2020-04-28 トヨタ自動車株式会社 正極の製造方法、及び、酸化物固体電池の製造方法
JP6812941B2 (ja) 2017-09-29 2021-01-13 トヨタ自動車株式会社 正極活物質、正極合剤、正極活物質の製造方法、正極の製造方法、及び、酸化物固体電池の製造方法
JP7143855B2 (ja) * 2017-10-30 2022-09-29 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法、リチウム金属複合酸化物粉末の評価方法
KR101973483B1 (ko) * 2017-11-14 2019-04-29 강원대학교산학협력단 폐리튬이차전지를 이용한 고순도 탄산리튬 및 황산바륨의 제조방법
CN112673494B (zh) 2018-09-28 2024-10-08 株式会社Lg化学 二次电池用正极活性材料、其制备方法以及包含其的锂二次电池
CN109192971A (zh) * 2018-10-25 2019-01-11 上海电气国轩新能源科技有限公司 一种正极材料及制备方法、锂离子电池
CN111129481B (zh) * 2018-11-01 2021-10-29 天津国安盟固利新材料科技股份有限公司 锂离子电池用正极活性物质的制备方法
WO2021172442A1 (ja) * 2020-02-27 2021-09-02 パナソニックIpマネジメント株式会社 非水電解質二次電池用正極活物質、及び非水電解質二次電池

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955203A (ja) * 1995-08-15 1997-02-25 Fuji Photo Film Co Ltd 非水電池
JPH09231963A (ja) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd 非水二次電池
JPH1040900A (ja) * 1996-07-25 1998-02-13 Toyota Motor Corp リチウムイオン二次電池用正極
JP2000040505A (ja) * 1998-07-24 2000-02-08 Mitsubishi Cable Ind Ltd リチウム二次電池用の正極体
JP2003123755A (ja) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質およびその製造方法
JP2004164988A (ja) * 2002-11-13 2004-06-10 Shin Kobe Electric Mach Co Ltd リチウム含有金属酸化物の製造方法及び該リチウム含有金属酸化物を用いたリチウム二次電池
JP2005135849A (ja) * 2003-10-31 2005-05-26 Mitsui Mining & Smelting Co Ltd リチウム電池用正極活物質
JP2008184346A (ja) * 2007-01-29 2008-08-14 Kyushu Univ オリビン型化合物超微粒子およびその製造方法
JP2009004285A (ja) * 2007-06-25 2009-01-08 Sanyo Electric Co Ltd 正極活物質、正極活物質の製造方法および非水電解質二次電池
JP2009200013A (ja) * 2008-02-25 2009-09-03 Furukawa Battery Co Ltd:The リチウム二次電池,その正極活物質およびその製造方法
JP2010126422A (ja) * 2008-11-28 2010-06-10 Panasonic Corp リチウム含有複合酸化物の製造方法および非水系二次電池
WO2012176904A1 (ja) * 2011-06-24 2012-12-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100437339B1 (ko) * 2002-05-13 2004-06-25 삼성에스디아이 주식회사 전지용 활물질의 제조방법 및 그로부터 제조되는 전지용활물질
US7314682B2 (en) 2003-04-24 2008-01-01 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium batteries
JP4925690B2 (ja) * 2006-02-28 2012-05-09 三洋電機株式会社 非水電解質二次電池
CN100557861C (zh) * 2006-03-28 2009-11-04 比亚迪股份有限公司 锂离子电池正极浆料及正极的制备方法
US8568611B2 (en) * 2007-01-25 2013-10-29 Massachusetts Institute Of Technology Oxide coatings on lithium oxide particles
CA2777619A1 (en) * 2009-11-05 2011-05-12 Umicore Core-shell lithium transition metal oxides.
JP2011187370A (ja) * 2010-03-10 2011-09-22 Toyota Motor Corp 全固体電池
US8741484B2 (en) * 2010-04-02 2014-06-03 Envia Systems, Inc. Doped positive electrode active materials and lithium ion secondary battery constructed therefrom
WO2012057289A1 (ja) * 2010-10-29 2012-05-03 旭硝子株式会社 リチウムイオン二次電池用正極活物質、正極、電池、及び製造方法
US10020495B2 (en) * 2011-04-06 2018-07-10 Umicore Glass-coated cathode powders for rechargeable batteries
CN102208607A (zh) * 2011-04-29 2011-10-05 广州市香港科大霍英东研究院 一种锂过量层状氧化物正极材料的合成及其表面改性方法
WO2013084352A1 (ja) * 2011-12-09 2013-06-13 トヨタ自動車株式会社 正極活物質材料、正極活物質層、全固体電池および正極活物質材料の製造方法
JP5665828B2 (ja) * 2012-10-18 2015-02-04 株式会社東芝 電池用活物質、非水電解質電池および電池パック

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955203A (ja) * 1995-08-15 1997-02-25 Fuji Photo Film Co Ltd 非水電池
JPH09231963A (ja) * 1996-02-20 1997-09-05 Fuji Photo Film Co Ltd 非水二次電池
JPH1040900A (ja) * 1996-07-25 1998-02-13 Toyota Motor Corp リチウムイオン二次電池用正極
JP2000040505A (ja) * 1998-07-24 2000-02-08 Mitsubishi Cable Ind Ltd リチウム二次電池用の正極体
JP2003123755A (ja) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池用正極活物質およびその製造方法
JP2004164988A (ja) * 2002-11-13 2004-06-10 Shin Kobe Electric Mach Co Ltd リチウム含有金属酸化物の製造方法及び該リチウム含有金属酸化物を用いたリチウム二次電池
JP2005135849A (ja) * 2003-10-31 2005-05-26 Mitsui Mining & Smelting Co Ltd リチウム電池用正極活物質
JP2008184346A (ja) * 2007-01-29 2008-08-14 Kyushu Univ オリビン型化合物超微粒子およびその製造方法
JP2009004285A (ja) * 2007-06-25 2009-01-08 Sanyo Electric Co Ltd 正極活物質、正極活物質の製造方法および非水電解質二次電池
JP2009200013A (ja) * 2008-02-25 2009-09-03 Furukawa Battery Co Ltd:The リチウム二次電池,その正極活物質およびその製造方法
JP2010126422A (ja) * 2008-11-28 2010-06-10 Panasonic Corp リチウム含有複合酸化物の製造方法および非水系二次電池
WO2012176904A1 (ja) * 2011-06-24 2012-12-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016035852A1 (ja) * 2014-09-03 2017-06-15 三井金属鉱業株式会社 リチウム金属複合酸化物粉体
WO2020188863A1 (ja) 2019-03-15 2020-09-24 Basf戸田バッテリーマテリアルズ合同会社 非水電解質二次電池用正極活物質、非水電解質二次電池用正極、及び非水電解質二次電池
KR20210107850A (ko) 2019-03-15 2021-09-01 가부시키가이샤 지에스 유아사 비수전해질 이차전지용 양극 활물질, 비수전해질 이차전지용 양극, 및 비수전해질 이차전지
JP2021018914A (ja) * 2019-07-19 2021-02-15 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質の製造方法
JP7172896B2 (ja) 2019-07-19 2022-11-16 株式会社豊田自動織機 層状岩塩構造を示し、リチウム、ニッケル、コバルト、タングステン、アルミニウム及び酸素を含有する正極活物質の製造方法
WO2022243782A1 (ja) * 2021-05-21 2022-11-24 株式会社半導体エネルギー研究所 正極活物質の作製方法、正極、リチウムイオン二次電池、移動体、蓄電システム、及び電子機器

Also Published As

Publication number Publication date
JPWO2015002065A1 (ja) 2017-02-23
CN105378986B (zh) 2018-07-31
JP2018166123A (ja) 2018-10-25
US10062905B2 (en) 2018-08-28
CN105378986A (zh) 2016-03-02
JP6382810B2 (ja) 2018-08-29
US20160104886A1 (en) 2016-04-14

Similar Documents

Publication Publication Date Title
JP6382810B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP6253408B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP5928445B2 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP6070551B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池の製造方法
JP5742720B2 (ja) リチウムイオン二次電池用正極材料の製造方法
WO2012176903A1 (ja) リチウムイオン二次電池用正極活物質の製造方法
WO2013047877A1 (ja) リチウムイオン二次電池用正極活物質、およびその製造方法
JP6374226B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極、およびリチウムイオン二次電池
JP6089701B2 (ja) 正極活物質およびその製造方法
CN108432001B (zh) 正极活性物质的制造方法、正极活性物质、正极和锂离子二次电池
JP2014116162A (ja) 正極活物質
JP6612611B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2013115336A1 (ja) リチウムイオン二次電池用正極活物質
JP6209435B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2015056275A (ja) リチウムイオン二次電池用正極活物質の製造方法およびリチウムイオン二次電池用正極の製造方法
JP2014089826A (ja) 正極活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14819305

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015525176

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14819305

Country of ref document: EP

Kind code of ref document: A1