WO2012176903A1 - リチウムイオン二次電池用正極活物質の製造方法 - Google Patents

リチウムイオン二次電池用正極活物質の製造方法 Download PDF

Info

Publication number
WO2012176903A1
WO2012176903A1 PCT/JP2012/066061 JP2012066061W WO2012176903A1 WO 2012176903 A1 WO2012176903 A1 WO 2012176903A1 JP 2012066061 W JP2012066061 W JP 2012066061W WO 2012176903 A1 WO2012176903 A1 WO 2012176903A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
active material
electrode active
composite oxide
Prior art date
Application number
PCT/JP2012/066061
Other languages
English (en)
French (fr)
Inventor
河里 健
角崎 健太郎
海生 曽
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2012176903A1 publication Critical patent/WO2012176903A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a positive electrode active material for a lithium ion secondary battery, a positive electrode including a positive electrode active material produced using the production method, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • miniaturization and weight reduction of portable electronic devices and in-vehicle lithium ion secondary batteries have been demanded, and the discharge capacity per unit mass and the characteristics that the discharge capacity does not decrease after repeated charge / discharge cycles (hereinafter referred to as cycle) Further improvement is also desired.
  • cycle characteristics characteristics in which the discharge capacity does not decrease when discharged at a high discharge rate
  • a composite oxide containing a Li element such as LiCoO 2 , LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 2 O 4 and a transition metal is used. It is used.
  • a lithium-containing composite oxide used as a positive electrode active material it has been studied to coat a lithium-containing composite oxide used as a positive electrode active material with various compounds.
  • a cathode active material composition including a conductive agent, a binder, and a cathode active material is formed on one surface of a current collector, and the cathode active material has a general formula: xLi 2 MO 3- (1- x) LiMeO 2 , where 0 ⁇ x ⁇ 1, and M and Me are each independently Mn, Ti, Zr, V, Cr, Mn, Fe, Co, Ni, Cu, Al, Mg, B And at least one metal selected from the group consisting of Mo) and an electrochemically inactive substance such as AlF 3 or AlPO 4 whose surface is coated with carbon.
  • the cathode is shown.
  • a fluorine-containing compound is mixed with an element precursor in an aqueous solution to form a highly dispersed fluorine compound powder, and a solution of a positive electrode active material for a lithium secondary battery is added to the aqueous solution.
  • a method for producing a positive electrode active material for a lithium secondary battery coated with a fluorine compound comprising the step of reacting the mixed solution at 50 to 100 ° C. for 3 to 48 hours to coat the positive electrode active material with the fluorine compound. Has been.
  • Patent Document 3 includes a general formula: Li p Q q N x M y O z Fa (where Q is any one element selected from the group consisting of titanium, zirconium, niobium and tantalum, and N is Co, Mn And at least one element selected from the group consisting of Ni, and M is at least one element selected from the group consisting of transition metal elements other than Q and N, Al and alkaline earth metal elements.
  • Patent Document 3 discloses a production method in which lithium composite oxide powder and an aqueous Q element compound solution are mixed, the aqueous medium is removed from the resulting mixture, and then fired at 300 to 1080 ° C. in an oxygen-containing atmosphere. ing.
  • the cathode active material described in Patent Document 1 is obtained by mixing a solid solution oxide with an electrochemically inactive material whose surface is coated with carbon.
  • the electrochemically inactive material was not uniformly coated on the surface of the solid solution oxide. For this reason, in the technique of Patent Document 1, a cathode active material having expected characteristics may not be obtained.
  • the fluorine compound in the step of reacting the mixed solution to coat the positive electrode active material with the fluorine compound, the fluorine compound does not react as prepared, and the composition of the fluorine compound of the coated positive electrode active material In addition, there is a problem that the content is hardly as prepared. Furthermore, in the technique described in Patent Document 2, in order to increase the binding force of the fluorine compound powder, the coated positive electrode active material is dried at 110 ° C. for 6 to 24 hours, and then at 150 ° C. to 900 ° C. for 1 to In some cases, it was necessary to perform a heat treatment step for 20 hours. When such a heat treatment is performed, the fluorine compound is decomposed by the heat treatment, so that the composition of the fluorine compound of the coated positive electrode active material is not as expected.
  • the present invention provides a positive electrode active material for a lithium ion secondary battery having excellent cycle characteristics and rate characteristics, in which a lithium-containing composite oxide is uniformly coated with a predetermined content of compound without generating impurities due to side reactions. It is an object of the present invention to provide a method for producing a substance, a positive electrode including a positive electrode active material produced using the production method, and a lithium ion secondary battery.
  • the present invention is as follows. [1] The surface of the lithium-containing composite oxide powder containing Li element and transition metal element is coated with X element-containing compound containing X element (where X element is transition metal, alkali metal, alkaline earth metal) , At least one element selected from the group consisting of rare earths, halogens, and Al.) And a method for producing a positive electrode active material for a lithium ion secondary battery.
  • the content of the X element-containing compound with respect to the lithium-containing composite oxide by performing a coating step of drying while spraying an X element-containing solution containing 001 to 0.05 mol / L onto the lithium-containing composite oxide powder. Forming a positive electrode active material having a molar ratio of 0.005 to 0.05 moles.
  • a method for producing a positive electrode active material for a lithium ion secondary battery is as follows. [1] The surface of the lithium-containing composite oxide powder containing Li element and transition metal element is coated with X element-containing compound containing X
  • the amount of the X element-containing solution sprayed on the lithium-containing composite oxide powder is set such that the mass ratio of the X element-containing solution to the lithium-containing composite oxide powder is in the range of 1 to 95. 1].
  • the lithium-containing composite oxide powder is stirred together with a horizontal axis type stirring means for stirring together with the X element-containing solution, and a spray-type liquid injection means for spraying the X element-containing solution.
  • a stirring and heating device having a heating means for heating the lithium-containing composite oxide powder and the X element-containing solution is used.
  • a positive electrode comprising a positive electrode active material produced using the method for producing a positive electrode active material for a lithium ion secondary battery according to any one of [1] to [9], a conductive material, and a binder.
  • a lithium ion secondary battery comprising the positive electrode, the negative electrode, and a nonaqueous electrolyte according to [10].
  • a lithium-containing composite oxide is uniformly coated with a compound having a predetermined content without generating impurities due to side reactions, and lithium ion secondary compounds having excellent cycle characteristics and rate characteristics are obtained.
  • a positive electrode active material for a secondary battery can be produced.
  • the positive electrode and lithium ion secondary battery excellent in cycling characteristics and rate characteristics can be provided using the positive electrode active material manufactured using the manufacturing method of the present invention.
  • FIG. 1 is a schematic cross-sectional view for explaining a Ladige mixer that is an example of a stirring and heating device used in the method for producing a positive electrode active material for a lithium ion secondary battery of the present invention.
  • ⁇ Method for producing positive electrode active material> the surface of a lithium-containing composite oxide powder containing a Li element and a transition metal element is coated with an X element-containing compound containing an X element (however, X element is composed of at least one element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, rare earths, halogens, and Al.) It is a manufacturing method.
  • the lithium-containing composite oxide in the present invention contains a Li element and a transition metal element.
  • the lithium-containing composite oxide for example, the following compounds (i) to (iv) are preferable. These compounds may be used individually by 1 type, and may use 2 or more types together.
  • the compound (iii) is particularly preferable in terms of high capacity, and the compound represented by the following formula (iii-1) is most preferable.
  • Compound (i) is a compound represented by the following formula (i). Li a (Ni x Mn y Co z) M b O 2 ⁇ (i) However, 0.95 ⁇ a ⁇ 1.1, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1, 0 ⁇ b ⁇ 0.3, 0.90 ⁇ x + y + z + b ⁇ 1.05, M is It is at least one selected from the group consisting of Mg, Ca, Sr, Ba, and Al.
  • Examples of the compound (i) represented by the formula (i) include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 0.5 Ni 0.5 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O. 2 , LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 .
  • Compound (ii) is an olivine type metal lithium salt which is a compound represented by the following formula (ii) or a complex thereof.
  • X represents Fe (II), Co (II), Mn (II), Ni (II), V (II), or Cu (II)
  • Y represents P or Si, and 0 ⁇ L ⁇ 3 1 ⁇ x ′ ⁇ 2, 1 ⁇ y ′ ⁇ 3, 4 ⁇ z ′ ⁇ 12, and 0 ⁇ g ⁇ 1.
  • Examples of the olivine type metal lithium salt (ii) include LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 2 FePO 4 F, and Li 2 MnPO 4.
  • F, Li 2 NiPO 4 F, Li 2 CoPO 4 F, Li 2 FeSiO 4, Li 2 MnSiO 4, Li 2 NiSiO 4, Li 2 CoSiO 4 can be cited.
  • Compound (iii) is a compound represented by the following formula (iii-1).
  • the compound represented by the formula (iii-1) has a composition before undergoing charge / discharge and activation processes.
  • activation means removing lithium oxide (Li 2 O) or lithium and lithium oxide from the lithium-containing composite oxide.
  • an electrochemical activation method in which a voltage higher than 4.4 V or 4.6 V (expressed as a potential difference from the oxidation-reduction potential of Li + / Li), sulfuric acid, hydrochloric acid, or nitric acid is applied.
  • a chemical activation method by performing a chemical reaction using an acid such as
  • Me is at least one element selected from the group consisting of transition metals other than Mn, alkaline earth metals, rare earths, and Al.
  • Me in formula (iii-1) is preferably at least one selected from the group consisting of Co, Ni, Cr, Fe, Al, Ti, Zr, Mo, Nb, V, and Mg, and particularly preferably Co and Ni. .
  • the composition ratio of the Li element with respect to the sum of Mn and Me is 1.2 ⁇ (1 + x) / (y + z) ⁇ 1.8, and 1.35 ⁇ (1 + x) /(Y+z) ⁇ 1.65 is preferable, and 1.45 ⁇ (1 + x) / (y + z) ⁇ 1.55 is more preferable.
  • the composition ratio is in the above range, a positive electrode material having a high discharge capacity per unit mass can be obtained when a high charging voltage of 4.6 V or higher is applied.
  • the ratio of Mn to the total amount of Mn and Me is preferably 0.4 to 0.8, and preferably 0.55 to 0.75. More preferred.
  • the proportion of Mn is in the above range, the discharge capacity becomes high.
  • q represents the proportion of F, but q is 0 when F is not present.
  • p is a value determined according to x, y, z, and q, and is 1.9 to 2.1.
  • the compound (iii) is more preferably a compound represented by the following formula (iii-2).
  • the composition ratio of the Li element with respect to the total of Mn, Ni, and Co elements is 1.2 ⁇ (1 + x) / (y + v + w) ⁇ 1.8, and 1.35 ⁇ (1 + x) /(Y+v+w) ⁇ 1.65 is preferable, and 1.45 ⁇ (1 + x) / (y + v + w) ⁇ 1.55 is more preferable.
  • Compound (iii) preferably has a layered rock salt type crystal structure (space group R-3m).
  • Compound (iv) is a compound represented by the following formula (iv). Li (Mn 2 ⁇ x Me ′ x ) O 4 (iv) However, 0 ⁇ x ⁇ 2, Me ′ is Co, Ni, Fe, Ti, Cr, Mg, Ba, Nb, Ag, or Al.
  • Examples of the compound (iv) represented by the formula (iv) include LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiMn 1.0 Co 1.0 O 4 , LiMn 1.85 Al 0. .15 O 4 , LiMn 1.9 Mg 0.1 O 4 .
  • the average particle size (D 50 ) of the lithium-containing composite oxide is preferably 0.03 to 30 ⁇ m, more preferably 0.04 to 20 ⁇ m, and particularly preferably 0.05 to 15 ⁇ m.
  • the average particle diameter (D 50 ) is a particle diameter at a point where the cumulative curve is 50% in a cumulative curve obtained by obtaining a particle size distribution on a volume basis and setting the total volume to 100%. Means.
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
  • the particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA, etc.). Used).
  • the average particle size (D50) is preferably 3 to 30 ⁇ m, more preferably 4 to 25 ⁇ m. Particularly preferred is ⁇ 20 ⁇ m.
  • the average particle diameter (D50) is preferably 0.03 to 5 ⁇ m, more preferably 0.04 to 1 ⁇ m, and particularly preferably 0.05 to 0.5 ⁇ m. preferable.
  • the specific surface area of the lithium-containing composite oxide is preferably 0.1 ⁇ 30m 2 / g, particularly preferably 0.15 ⁇ 25m 2 / g.
  • the specific surface area is 0.1 to 30 m 2 / g, the capacity is high and a dense positive electrode layer can be formed.
  • the lithium-containing composite oxide is a compound (i) or a compound selected from compound (iv)
  • the specific surface area is preferably 0.1 ⁇ 1m 2 / g, more preferably 0.15 ⁇ 0.6m 2 / g .
  • the specific surface area is preferably 0.3 ⁇ 10m 2 / g, more preferably 0.5 ⁇ 5m 2 / g, 1 ⁇ 4m 2 / g Is particularly preferred. If the lithium-containing composite oxide is a compound selected from the compounds (ii), the specific surface area of preferably 1 ⁇ 30m 2 / g, more preferably 10 ⁇ 25m 2 / g.
  • a lithium-containing composite oxide precursor obtained by a coprecipitation method and a lithium compound are mixed and fired, a hydrothermal synthesis method, a sol-gel method, a dry mixing method (solid mixing method) Phase method), ion exchange method, glass crystallization method and the like.
  • a hydrothermal synthesis method a sol-gel method, a dry mixing method (solid mixing method) Phase method), ion exchange method, glass crystallization method and the like.
  • the X element-containing solution contains an X element compound, and the X element compound is dissolved in a solvent.
  • the X element contained in the X element compound is composed of at least one element selected from the group consisting of transition metals, alkali metals, alkaline earth metals, rare earths, halogens, and Al.
  • the X element Li, Al, Zr, Nb, or La is preferable because it forms a stable compound with an element that has a stable valence and hardly changes in valence.
  • the X element compound containing X element include metal oxides, metal fluorides, metal phosphates, metal sulfates, and metal chlorides. From the viewpoint of solubility and stability of the compounds, metal fluorides, Alternatively, it is preferable to use a metal phosphate.
  • the X element compound examples include LiF, Li 3 PO 4 , NaF, Na 3 PO 4 , MgF, CaF 2 , BaF 2 , SrF 2 , AlF 3 , AlPO 4 , ZrF 4 , Zr 3 (PO 4 ) 4 etc.
  • the X element compound is at least one selected from the group consisting of LiF, Li 3 PO 4 , AlF 3 , AlPO 4 , ZrF 4 , and Zr 3 (PO 4 ) 4
  • the reactivity with the electrolytic solution and the solvent is Low, preferably because an electrochemically stable coating can be formed on the surface of the lithium-containing composite oxide powder, and in particular, the group consisting of LiF, Li 3 PO 4 , Li 2 SO 4 , NaF, AlF 3 , and ZrF 4 It is preferably at least one selected from
  • the X element compound dissolved in the solvent that becomes the X element-containing solution does not generate the X element compound by chemical reaction or thermal decomposition in the solvent, but is preferably the X element compound itself dissolved in the solvent. .
  • the X element compound is the X element compound itself, a process such as a heat treatment for generating the X element compound from the X element compound is not necessary, and a by-product resulting from performing the process for generating the X element compound. There is no inconvenience caused by things.
  • the X element compound is an element such as Ni, Co, and Mn, which are transition metal elements in the positive electrode active material, eluting into the electrolyte solution.
  • the solubility in the electrolytic solution is small, the reactivity with the electrolytic solution is low, and the electrochemical stability is preferable.
  • the X element compound has low solubility in the solvent of the X element-containing solution.
  • the solubility of the X element compound in the solvent is low, the X element coated on the surface of the lithium-containing composite oxide powder is dried while spraying the X element-containing solution onto the lithium-containing composite oxide powder. Since the compound is difficult to dissolve in the solvent of the X element-containing solution supplied to the lithium-containing composite oxide later, the coating of the lithium-containing composite oxide with the X element compound can be made more uniform.
  • the solubility of the X element-containing compound in water at 20 ° C. is 0.1 to 100 g / L in order to uniformly and efficiently coat the lithium-containing composite oxide.
  • it is 0.1 to 50 g / L, more preferably 0.3 to 20 g / L.
  • the solvent used in the X element-containing solution is preferably a solvent containing water in terms of stability and reactivity of the X element compound, more preferably a mixed solvent of water and a water-soluble alcohol and / or polyol, and only water. Particularly preferred. When the solvent is only water, it is excellent in terms of safety, environment, handleability, and cost.
  • the water-soluble alcohol used for the solvent include methanol, ethanol, 1-propanol, and 2-propanol.
  • the polyol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, and glycerin.
  • the total content of the water-soluble alcohol and polyol contained in the solvent is preferably 0 to 20% by mass and more preferably 0 to 10% by mass with respect to the total amount of solvent (total amount of solvent).
  • the X element-containing solution may contain a pH adjuster in order to adjust the solubility of the X element compound.
  • the pH adjuster include organic acids such as acetic acid, citric acid, lactic acid, formic acid, maleic acid, and oxalic acid, and ammonia. Among them, acetic acid or ammonia is particularly apt to volatilize at low temperatures. preferable.
  • a pH adjuster that easily volatilizes and / or decomposes is used as the pH adjuster, impurities are less likely to remain in the lithium ion secondary battery manufactured using the positive electrode active material obtained by the manufacturing method of the present invention. It is easy to obtain a lithium ion secondary battery having good battery characteristics.
  • the pH of the X element-containing solution is preferably 2 to 12, more preferably 3 to 11, and particularly preferably 4 to 10. If the pH is in the above range, there is little elution of Li element and transition metal from the lithium-containing composite oxide when the lithium-containing composite oxide is brought into contact with the X element-containing solution. Since there are few impurities, it is easy to obtain favorable battery characteristics.
  • the content of the X element-containing compound contained in the X element-containing solution is not more than the solubility of the X element-containing compound in the solvent, and in order to uniformly coat the X element-containing compound on the surface of the lithium-containing composite oxide powder, Less is preferred. Therefore, the content of the X element-containing compound contained in the X element-containing solution is 0.05 mol / L or less, preferably 0.04 mol / L or less, preferably 0.03 mol / L or less in terms of the compound. It is particularly preferred.
  • the content of the X element-containing compound contained in the X element-containing solution is 0.001 mol / L or more, preferably 0.005 mol / L or more, preferably 0.01 mol / L or more in terms of the compound. It is particularly preferred.
  • the method of drying while spraying the X element-containing solution onto the powder of the lithium-containing composite oxide is not particularly limited, but the lithium-containing composite oxide is uniformly and efficiently coated with the X element-containing compound. Therefore, it is preferable to heat the lithium-containing composite oxide powder with stirring with the X element-containing solution.
  • the horizontal axis type stirring means for stirring the lithium-containing composite oxide powder together with the X element-containing solution, the spray-type liquid injection means for spraying the X element-containing solution, and the lithium containing being stirred It is preferable to use a stirring and heating device having a heating means for heating the composite oxide powder and the X element-containing solution.
  • FIG. 1 is a schematic cross-sectional view for explaining a Ladige mixer that is an example of a stirring and heating device used in the method for producing a positive electrode active material for a lithium ion secondary battery of the present invention.
  • a Ladige mixer 10 shown in FIG. 1 includes a drum 1, a stirring means 2, and a spray-type liquid injection means 3.
  • a drum 1 shown in FIG. 1 accommodates a lithium-containing composite oxide powder 5.
  • the drum 1 has a substantially cylindrical shape, and is arranged so that the central axis direction of the cylindrical shape is a substantially horizontal direction.
  • the drum 1 is provided with a supply port (not shown) for supplying the lithium-containing composite oxide powder 5 to the drum 1, and a positive electrode active material that is a lithium-containing composite oxide coated with an X element-containing compound from the drum 1.
  • a discharge port (not shown) for discharging, and an exhaust cylinder 14 for discharging the steam in the drum 1 are provided.
  • the stirring means 2 stirs the lithium-containing composite oxide powder 5 together with the X element-containing solution 6.
  • the stirring means 2 shown in FIG. 1 has a horizontal shaft having a rotating shaft 21 disposed along the cylindrical central axis direction of the drum 1 and a shovel 22 attached to the rotating shaft 21 and rotating around the rotating shaft 21. It is a shaft type. Further, a chopper 23 having chopper blades is provided on the side surface of the drum 1 shown in FIG. 1. By rotating the chopper 23, the lithium-containing composite oxide powder 5 and the X element-containing solution 6 are mixed. , And can be stirred more uniformly.
  • the spray-type liquid injection means 3 is arranged at the upper part of the central portion in the longitudinal direction of the drum 1, and a predetermined amount of X element-containing solution 6 at a predetermined temperature, particle size and flow rate is mixed with a lithium-containing composite oxide powder 5 It has a spray nozzle which sprays on.
  • the spray type injection means 3 shown in FIG. 1 has been described by taking an example having a spray nozzle, the stirring and heating apparatus used in the present invention may have a non-spray type injection means. .
  • the spray-type liquid injection means 3 having a spray nozzle is preferable because the X element-containing solution 6 can be easily and uniformly sprayed onto the lithium-containing composite oxide powder 5.
  • the release rate of the X element-containing solution 6 is preferably 0.005 to 0.1 g / min with respect to 1 g of the lithium-containing composite oxide.
  • the heating means is not particularly limited as long as the powder 5 of the lithium-containing composite oxide in the drum 1 can be set within a predetermined temperature range.
  • a heating means that heats with steam from the outside of the drum 1 is used. it can.
  • a lithium-containing composite oxide powder 5 is supplied to the drum 1.
  • the shovel 22 and the chopper 23 of the stirring means 2 are rotated, and stirring of the lithium-containing composite oxide powder 5 is started.
  • the X element-containing solution 6 is sprayed at a predetermined temperature, particle size and flow rate using the spray-type liquid injection means 3, and the lithium-containing composite oxide powder 5 is heated by the heating means.
  • the sprayed lithium-containing composite oxide powder 5 is dried.
  • the sprayed lithium-containing composite oxide powder 5 is dried while the X element-containing solution 6 is sprayed onto the lithium-containing composite oxide powder 5.
  • the temperature of the lithium-containing composite oxide powder 5 when the X element-containing solution 6 is sprayed is preferably 80 to 140 ° C., more preferably 90 to 120 ° C.
  • the temperature of the X element-containing solution 6 to be sprayed is preferably 10 to 60 ° C., more preferably 20 to 40 ° C.
  • the temperature of the X element-containing solution 6 to be sprayed is preferably 10 to 60 ° C., more preferably 20 to 40 ° C.
  • the concentration of the X element compound contained in the X element-containing solution 6 becomes too high by heating the X element-containing solution 6, It is possible to prevent the composition of the X element compound contained in the element-containing solution 6 from changing.
  • the X element-containing compound does not react with the lithium-containing composite oxide powder 5 by heating the lithium-containing composite oxide powder and the X element-containing solution in the coating step. Note that, by heating the lithium-containing composite oxide powder and the X element-containing solution in the coating step, a part of the X element-containing compound covering the lithium-containing composite oxide powder 5 is oxidized, or the lithium-containing composite oxide It may be diffused into the oxide powder 5.
  • the particle size of the X element-containing solution 6 sprayed by the spray-type liquid injection means 3 is preferably 0.1 to 250 ⁇ m, and more preferably 1 to 150 ⁇ m.
  • the particle size of the X element-containing solution 6 is 250 ⁇ m or less, the X element-containing solution 6 can be more uniformly sprayed onto the lithium-containing composite oxide powder 5.
  • the particle size of the X element-containing solution 6 to be sprayed is 0.1 ⁇ m or more, the particle size after spraying can be easily controlled.
  • the total amount of the X element-containing solution sprayed onto the lithium-containing composite oxide powder is such that the mass ratio of the X element-containing solution 6 to the lithium-containing composite oxide powder 5 is 1 to 95. Is preferable, and a range of 5 to 40 is more preferable.
  • the spray amount of the X element-containing solution 6 can be sufficiently increased, so that the lithium-containing composite oxide powder 5 Can be coated more uniformly with the X element-containing compound.
  • the mass ratio of the X element-containing solution 6 to the powder of the lithium-containing composite oxide 5 is 95 or less, the spray amount of the X element-containing solution 6 is not excessively increased, and the lithium-containing composite oxide is efficiently produced.
  • the powder 5 can be coated with the X element-containing solution 6.
  • spraying of the X element-containing solution 6 in the coating step of the present invention may be performed intermittently or continuously.
  • a positive electrode active material in which the content of the X element-containing compound with respect to the lithium-containing composite oxide is 0.005 to 0.05 times mol is formed.
  • the content of the X element-containing compound with respect to the lithium-containing composite oxide of the positive electrode active material is preferably 0.01 to 0.03 times mol, particularly preferably 0.015 to 0.025 times mol.
  • the content of the X element-containing compound with respect to the lithium-containing composite oxide of the positive electrode active material is the content of the X element-containing compound contained in the X element-containing solution 6 and the X element sprayed on the lithium-containing composite oxide powder 5. It can control by the usage-amount of the containing solution 6.
  • the content of the X element-containing compound with respect to the lithium-containing composite oxide of the positive electrode active material is 0.005 mol or more, the effect of covering the lithium-containing composite oxide powder 5 with the X element-containing compound is sufficient. can get. Further, when the content of the X element-containing compound is 0.05 times or less, the powder 5 of the lithium-containing composite oxide is sufficiently uniformly coated with the X element-containing compound.
  • the positive electrode active material is obtained through the above steps.
  • the lithium-containing composite oxide can be uniformly and easily coated with the X element-containing compound.
  • this invention is not limited to the manufacturing method using the Ladige mixer 10 shown in FIG. 1, For example, you may use solid air.
  • the coating step it is preferable to perform a drying step of drying the lithium-containing composite oxide powder 5 (positive electrode active material) coated with the X element-containing compound.
  • the drying temperature in the drying step is preferably 100 to 300 ° C., and the drying time is preferably 2 to 10 hours.
  • the surface of the lithium-containing composite oxide can be coated with the X-element-containing compound without reacting the lithium-containing composite oxide with the X-element-containing compound. That is, in the positive electrode active material obtained by the manufacturing method of the present embodiment, the X element-containing compound and the lithium-containing composite oxide powder 5 are mainly converted into the lithium-containing composite oxide powder 5. They are physically attached (adsorbed) and bonded. Therefore, it is not necessary to perform heat treatment for reacting the lithium-containing composite oxide with the X element-containing compound, and no impurities are generated due to side reactions accompanying the reaction between the lithium-containing composite oxide and the X element-containing compound. There is no need to perform cleaning in order to remove impurities.
  • the X element-containing solution having a sufficiently thin concentration below the solubility of the X element compound in the solvent is dried while sprayed onto the lithium-containing composite oxide powder, it is not necessary to perform filtration after coating, and the productivity is excellent. Variations in the coating amount due to filtration can be suppressed.
  • a positive electrode active material in which a lithium-containing composite oxide is uniformly coated with a compound having a predetermined content can be manufactured, cycle characteristics are obtained using the obtained positive electrode active material.
  • a lithium ion secondary battery having excellent rate characteristics can be provided.
  • the positive electrode for a lithium ion secondary battery of the present invention is a positive electrode active material comprising a positive electrode active material manufactured using the method for manufacturing a positive electrode active material for a lithium ion secondary battery of the present invention, a conductive material, and a binder.
  • the layer is formed on the positive electrode current collector.
  • the positive electrode is, for example, a slurry or a positive electrode active material, a conductive material, and a binder produced by using the production method of the present invention, dissolved in a solvent, dispersed in a dispersion medium, or kneaded with a solvent. It can be produced by preparing a kneaded material and supporting the prepared slurry or kneaded material on the positive electrode current collector plate by coating or the like.
  • Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black.
  • binders fluorine-containing resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyolefins such as polyethylene and polypropylene, polymers having unsaturated bonds such as styrene / butadiene rubber, isoprene rubber and butadiene rubber, and copolymers thereof, Examples thereof include acrylic acid-based polymers such as acrylic acid copolymers and methacrylic acid copolymers, and copolymers thereof.
  • the positive electrode current collector include aluminum or an aluminum alloy.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte, and the positive electrode before activation is the positive electrode for the above lithium ion secondary battery.
  • the negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
  • a slurry can be prepared by kneading a negative electrode active material with an organic solvent, and the prepared slurry can be applied to a negative electrode current collector, dried, and pressed.
  • the negative electrode current collector plate for example, a metal foil such as a nickel foil or a copper foil can be used.
  • the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
  • Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds, and the like can be used.
  • Examples of the carbon material for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbon, coke such as pitch coke, needle coke, petroleum coke, graphite, glassy carbon, phenol Organic polymer compound fired bodies, carbon fibers, activated carbon, carbon blacks, etc., obtained by firing and carbonizing a resin, furan resin or the like at an appropriate temperature can be used.
  • the group 14 metal of the periodic table is silicon or tin, with silicon being preferred.
  • Other materials that can be used as the negative electrode active material include oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide, and nitrides such as Li 2.6 Co 0.4 N. It is done.
  • non-aqueous electrolyte one prepared by appropriately combining an organic solvent and an electrolyte can be used.
  • organic solvent known organic solvents for electrolyte solutions can be used, such as propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, diglyme, triglyme, ⁇ -Butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetate ester, butyrate ester, propionate ester, and the like can be used.
  • cyclic carbonates such as propylene carbonate and chain carbonates such as dimethyl carbonate and diethyl carbonate.
  • An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.
  • a solid electrolyte containing an electrolyte salt, a polymer electrolyte, a solid electrolyte obtained by mixing or dissolving an electrolyte in a polymer compound, or the like can be used.
  • the solid electrolyte may be any material having lithium ion conductivity, and an inorganic solid electrolyte and a polymer solid electrolyte can be used.
  • lithium nitride lithium iodide, or the like
  • polymer solid electrolyte an electrolyte salt and a polymer compound that dissolves the electrolyte salt can be used.
  • the electrolyte salt and the polymer compound that dissolves the electrolyte salt include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene, or derivatives, mixtures thereof, And composites can be used.
  • the gel electrolyte various polymer compounds that absorb the non-aqueous electrolyte and gelate can be used.
  • the polymer compound used for the gel electrolyte fluorine-based polymer compounds such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene) can be used.
  • an ether polymer such as polyacrylonitrile, a polyacrylonitrile copolymer, polyethylene oxide, a polyethylene oxide copolymer, and a crosslinked product thereof can be used.
  • the monomer used in the copolymer include polypropylene oxide, methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
  • a fluorine-based polymer is particularly preferable from the viewpoint of stability against redox reaction.
  • the electrolyte salt used in the electrolyte LiClO 4 , LiPF 6 , LiBF 4 , CF 3 SO 3 Li, LiCl, LiBr, or the like can be used.
  • the shape of the lithium ion secondary battery of the present invention can be appropriately selected from coin shapes, sheet shapes (film shapes), folded shapes, wound bottomed cylindrical shapes, button shapes, and the like according to applications. .
  • Distilled water (1920.8 g) was added to ammonium sulfate (79.2 g) and dissolved uniformly to obtain a mother liquor.
  • Distilled water (600 g) is added to sodium hydroxide (400 g) and uniformly dissolved to obtain a pH adjusting solution.
  • the mother liquor was placed in a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and a pH adjusting solution was added so that the pH was 11.0.
  • a pH adjusting solution was added so that the pH was 11.0.
  • the raw material solution was added at a rate of 5.0 g / min
  • the ammonia source solution was added at a rate of 1.0 g / min
  • the combined water of nickel, cobalt, and manganese Oxide was precipitated.
  • the pH adjusting solution was added so as to keep the pH in the reaction vessel at 11.0.
  • nitrogen gas was flowed at a flow rate of 0.5 L / min in the reaction tank so that the precipitated hydroxide was not oxidized. Further, the liquid was continuously extracted so that the amount of the liquid in the reaction tank did not exceed 2 L.
  • the precursor (20 g) and lithium carbonate (12.7 g) having a lithium content of 26.9 mol / kg are mixed and calcined at 900 ° C. for 12 hours in an oxygen-containing atmosphere to obtain the lithium-containing composite oxide of the synthesis example. It was.
  • the composition of the lithium-containing composite oxide of the obtained synthesis example was Li (Li 0.2 Ni 0.135 Co 0.130 Mn 0.535 ) O 2 .
  • the average particle diameter D 50 of the lithium-containing composite oxide of Synthesis Example is 6.3 ⁇ m, BET (Brunauer, Emmett, Teller) method specific surface area was measured using a was 2.3 m 2 / g.
  • Example 1 Production Example ZrF 4 aqueous ZrF lithium-containing composite oxide coated with 4, X element-containing compounds ZrF 4 powder 0.58 g ZrF 4 concentration by adding distilled water 299.42g (X-elemental A ZrF 4 aqueous solution having an X element-containing compound concentration of the containing solution of 0.012 mol / L is prepared.
  • a horizontal axis type stirring means for stirring the lithium-containing composite oxide powder together with the X element-containing solution, a spray-type liquid injection means for spraying the X element-containing solution, and the lithium-containing composite oxide being stirred A positive electrode active material is manufactured using the stirring heating apparatus which has a heating means to heat a powder and X element containing solution.
  • ZrF 4 content of the X element-containing compound in the positive electrode active material coated with an aqueous ZrF 4 solution is ⁇ (number of moles of ZrF 4) in a molar ratio with respect to the lithium-containing composite oxide of the synthesis example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.02. Further, the solubility 20 ° C. water ZrF 4, a 13.2g / L (0.079mol / L) , the mass ratio of ZrF 4 aqueous solution for a lithium-containing composite oxide is 20.0.
  • the particle cross section of the positive electrode active material was Zr-mapped with EPMA (X-ray microanalyzer). Zr can be detected uniformly.
  • the obtained positive electrode active material is subjected to XRD measurement using CuK ⁇ rays as an X-ray source.
  • XRD measurement the product name RINT-TTR-III manufactured by Rigaku Corporation is used.
  • a positive electrode sheet (positive electrode) was formed by the method described in the following (Production Example of Positive Electrode), and lithium ion was formed by the method described in the following (Production Example of Battery).
  • a secondary battery is produced and evaluated by the method described in (Battery characteristic evaluation example) shown below. The results are shown in Table 1. As shown in Table 1, it can be seen that the lithium ion secondary battery of Example 1 has an excellent cycle retention rate and rate retention rate.
  • a positive electrode active material, acetylene black (conductive material) and a polyvinylidene fluoride solution (solvent N-methylpyrrolidone) containing 12.1% by mass of polyvinylidene fluoride (binder) are mixed, and N-methylpyrrolidone is further added to form a slurry. Make it.
  • the positive electrode active material, acetylene black, and polyvinylidene fluoride are in a mass ratio of 82/10/8.
  • One side of the slurry is applied to a 20 ⁇ m thick aluminum foil (positive electrode current collector) using a doctor blade.
  • a positive electrode sheet is produced by drying at 120 ° C. and performing roll press rolling twice.
  • Example of battery production Using the positive electrode sheet produced above as a positive electrode, a stainless steel simple sealed cell type lithium ion secondary battery is assembled in an argon glove box. A metal lithium foil having a thickness of 500 ⁇ m is used for the negative electrode, a stainless steel plate having a thickness of 1 mm is used for the negative electrode current collector, porous polypropylene having a thickness of 25 ⁇ m is used for the separator, and a concentration of 1 (mol) is used for the electrolyte.
  • LiPF 6 / EC ethylene carbonate
  • DEC diethyl carbonate
  • Example of evaluation of initial capacity, rate characteristic, and cycle characteristic The following evaluation is performed using the lithium ion secondary battery manufactured above. That is, it charges to 4.7V at a load current of 200 mA per 1 g of the positive electrode active material, and discharges to 2.5 V at a load current of 50 mA per 1 g of the positive electrode active material. Subsequently, the battery is charged to 4.3 V with a load current of 200 mA per 1 g of the positive electrode active material, and discharged to 2.5 V with a load current of 100 mA per 1 g of the positive electrode active material.
  • the discharge capacity of the positive electrode active material at 4.6 to 2.5 V is set to 4.6 V initial capacity. When the initial capacity is 220 mAh / g or more, “ ⁇ ” is evaluated, and when it is less than 220 mAh / g, “ ⁇ ” is evaluated.
  • the battery is charged to 4.6 V with a load current of 200 mA per 1 g of the charge / discharge positive electrode active material, and discharged at a high rate to 2.5 V with a load current of 2000 mA per 1 g of the positive electrode active material.
  • a value obtained by dividing the discharge capacity of the positive electrode active material at 4.6 to 2.5 V in the high rate discharge by the initial capacity of 4.6 V is defined as a rate maintenance rate. Then, it is evaluated as “ ⁇ ” when the rate maintenance rate is over 60%, “ ⁇ ” when it is over 60% and 60% or less, and “X” when it is 50% or less.
  • a charge / discharge cycle of charging to 4.6 V with a load current of 200 mA per 1 g of the charge / discharge positive electrode active material and discharging at a high rate to 2.5 V with a load current of 100 mA per 1 g of the positive electrode active material is repeated 100 times.
  • the value obtained by dividing the discharge capacity at the 100th time of the 4.6V charge / discharge cycle by the initial capacity of 4.6V is defined as the cycle maintenance ratio. And when the cycle maintenance ratio is over 90%, “ ⁇ ”, when it is over 80% and 90% or less, “ ⁇ ”, when it is over 70% and 80% or less, “ ⁇ ”, and when it is 70% or less, “ ⁇ ” ".
  • Example 2 Production Example of Lithium-Containing Composite Oxide Coated with LiF
  • a LiF aqueous solution 399.91 g of distilled water was added to 0.09 g of LiF powder as an X element-containing compound, and the LiF concentration (X of the X element-containing solution X
  • An LiF aqueous solution having an element-containing compound concentration of 0.009 mol / L is prepared.
  • the positive electrode active material of Example 2 in which the surface of the lithium-containing composite oxide in the synthesis example is coated with LiF is obtained.
  • LiF content of the X element-containing compound in the positive electrode active material coated with the LiF aqueous solution is ⁇ (number of moles of LiF) / ( Number of moles of lithium-containing composite oxide before addition) ⁇ 0.02.
  • the solubility of LiF in water at 20 ° C. is 2.7 g / L (0.104 mol / L), and the mass ratio of the LiF aqueous solution to the lithium-containing composite oxide is 26.7.
  • Example 2 Using the obtained positive electrode active material, a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, and a lithium ion secondary battery was prepared in the same manner as in Example 1. And evaluate. As a result, as shown in Table 1, it can be seen that the lithium ion secondary battery of Example 2 has an excellent cycle maintenance rate and rate maintenance rate.
  • Example 3 Production Example AlF 3 solution of lithium-containing composite oxide coated with AlF 3, distilled water was added to 299.70g to AlF 3 powder 0.30g a X element-containing compound AlF 3 concentration (X element An AlF 3 aqueous solution having an X element-containing compound concentration of the containing solution of 0.012 mol / L is prepared. Next, a positive electrode active material of Example 3 in which AlF 4 is coated on the surface of the lithium-containing composite oxide of the synthesis example is obtained in the same manner as in Example 1 using 300 g of an AlF 3 aqueous solution.
  • AlF 3 (content of the X element-containing compound in the positive electrode active material) coated with an AlF 3 aqueous solution is ⁇ (number of moles of AlF 3) in a molar ratio with respect to the lithium-containing composite oxide of the synthesis example ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.02.
  • solubility of AlF 3 in water at 20 ° C. is 5.6 g / L (0.067 mol / L), and the mass ratio of the AlF 3 aqueous solution to the lithium-containing composite oxide is 20.0.
  • Example 1 As a result of Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer), Al can be detected uniformly on the outer surface of the particle.
  • Example 3 Using the obtained positive electrode active material, a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, and a lithium ion secondary battery was prepared in the same manner as in Example 1. And evaluate. As a result, as shown in Table 1, it can be seen that the lithium ion secondary battery of Example 3 has an excellent cycle maintenance rate and rate maintenance rate.
  • Example 4 Production Example Li 3 PO 4 aqueous Li 3 lithium-containing composite oxide coated with PO 4, distilled water was added to 599.80g in a X element-containing compound Li 3 PO 4 powder 0.20g Li 3 PO 4 concentration (X-element-containing compound concentration of X element-containing solution) to prepare a Li 3 PO 4 aqueous solution 0.003 mol / L.
  • the positive electrode active material of Example 4 in which Li 3 PO 4 is coated on the surface of the lithium-containing composite oxide of the synthesis example is obtained in the same manner as in Example 1 by using 600 g of an Li 3 PO 4 aqueous solution.
  • Li 3 PO 4 content of the X element-containing compound in the positive electrode active material coated with the Li 3 PO 4 aqueous solution is ⁇ (Li 3 PO 4 mol) / (mol of lithium-containing composite oxide before addition) ⁇ 0.01 times.
  • the solubility of Li 3 PO 4 in water at 20 ° C. is 0.39 g / L (0.003 mol / L), and the mass ratio of the Li 3 PO 4 aqueous solution to the lithium-containing composite oxide is 40.0. is there.
  • Example 2 As a result of Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer), P can be detected uniformly on the outer surface of the particle.
  • Example 4 Using the obtained positive electrode active material, a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, and a lithium ion secondary battery was prepared in the same manner as in Example 1. And evaluate. As a result, as shown in Table 1, it can be seen that the lithium ion secondary battery of Example 4 has an excellent cycle maintenance rate and rate maintenance rate.
  • Example 5 Production Example ZrF 4 aqueous ZrF lithium-containing composite oxide coated with 4, X element-containing compounds ZrF 4 powder 0.58 g ZrF 4 concentration by adding distilled water 599.42g (X-elemental A ZrF 4 aqueous solution having an X element-containing compound concentration of the containing solution of 0.006 mol / L is prepared.
  • the positive electrode active material of Example 5 in which ZrF 4 is coated on the surface of the lithium-containing composite oxide of the synthesis example is obtained in the same manner as in Example 1 using 600 g of the ZrF 4 aqueous solution.
  • ZrF 4 content of the X element-containing compound in the positive electrode active material coated with the ZrF 4 aqueous solution is ⁇ (number of moles of ZrF 4) in molar ratio with respect to the lithium-containing composite oxide of the example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.02.
  • the mass ratio of the ZrF 4 aqueous solution to the lithium-containing composite oxide is 40.0.
  • Example 2 Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer) results in uniform detection of Zr on the outer surface of the particles.
  • Example 5 Using the obtained positive electrode active material, a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, and a lithium ion secondary battery was prepared in the same manner as in Example 1. And evaluate. As a result, as shown in Table 1, it can be seen that the lithium battery of Example 5 exhibits excellent cycle maintenance rate and rate maintenance rate. In addition, compared with Example 1 in which the content of the X element-containing compound in the positive electrode active material is the same, Example 5 in which the concentration of the ZrF 4 aqueous solution was lowered has a higher rate retention rate.
  • Example 6 Production Example ZrF 4 solution of lithium-containing composite oxide coated with ZrF 4, similar ZrF 4 concentration as in Example 1 to prepare a ZrF 4 aqueous solution 0.012 mol / L.
  • the positive electrode active material of Example 6 in which ZrF 4 is coated on the surface of the lithium-containing composite oxide of the synthesis example is obtained in the same manner as in Example 1 using 75 g of the ZrF 4 aqueous solution.
  • ZrF 4 content of the X element-containing compound in the positive electrode active material coated with the ZrF 4 aqueous solution is ⁇ (number of moles of ZrF 4) in molar ratio with respect to the lithium-containing composite oxide of the example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.005 times.
  • the mass ratio of the ZrF 4 aqueous solution to the lithium-containing composite oxide is 5.0.
  • Example 2 Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer) results in uniform detection of Zr on the outer surface of the particles.
  • Example 6 Using the obtained positive electrode active material, a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, a lithium battery was produced in the same manner as in Example 1, and the same as in Example 1, evaluate. As a result, as shown in Table 1, it can be seen that the lithium battery of Example 6 exhibits excellent cycle maintenance rate and rate maintenance rate. Further, compared with Example 1 in which the concentration of the ZrF 4 aqueous solution is the same, in Example 6 in which the content of the X element-containing compound in the positive electrode active material was lowered, the 4.6 V initial capacity and the rate maintenance ratio were increased. ing.
  • Example 7 Production Example ZrF 4 aqueous ZrF lithium-containing composite oxide coated with 4, X element-containing compounds ZrF 4 powder 0.58 g ZrF 4 concentration by adding distilled water 79.42g (X-elemental A ZrF 4 aqueous solution having an X element-containing compound concentration of the containing solution of 0.043 mol / L is prepared.
  • the positive electrode active material of Example 7 in which ZrF 4 is coated on the surface of the lithium-containing composite oxide of the synthesis example is obtained in the same manner as in Example 1 using 80 g of the ZrF 4 aqueous solution.
  • ZrF 4 content of the X element-containing compound in the positive electrode active material coated with the ZrF 4 aqueous solution is ⁇ (number of moles of ZrF 4) in molar ratio with respect to the lithium-containing composite oxide of the example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.02.
  • the mass ratio of the aqueous ZrF 4 solution to the lithium-containing composite oxide is 5.3.
  • Example 2 Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer) results in uniform detection of Zr on the outer surface of the particles.
  • a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, a lithium battery was produced in the same manner as in Example 1, and the same as in Example 1, evaluate.
  • Table 1 As a result, as shown in Table 1, it can be seen that the lithium battery of Example 7 exhibits excellent cycle maintenance rate and rate maintenance rate.
  • Example 8 Production Example ZrF 4 solution of lithium-containing composite oxide coated with ZrF 4, similar ZrF 4 concentration as in Example 1 to prepare a ZrF 4 aqueous solution 0.012 mol / L.
  • the positive electrode active material of Example 8 in which ZrF 4 is coated on the surface of the lithium-containing composite oxide of the synthesis example is obtained in the same manner as in Example 1 using 600 g of the ZrF 4 aqueous solution.
  • ZrF 4 content of the X element-containing compound in the positive electrode active material coated with the ZrF 4 aqueous solution is ⁇ (number of moles of ZrF 4) in molar ratio with respect to the lithium-containing composite oxide of the example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.04 times.
  • the mass ratio of the ZrF 4 aqueous solution to the lithium-containing composite oxide is 40.0.
  • Example 2 Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer) results in uniform detection of Zr on the outer surface of the particles.
  • a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, a lithium battery was produced in the same manner as in Example 1, and the same as in Example 1, evaluate.
  • Table 1 As a result, as shown in Table 1, it can be seen that the lithium battery of Example 8 exhibits an excellent cycle maintenance rate and rate maintenance rate.
  • Comparative Example 1 The lithium-containing composite oxide of Synthesis Example is used as the positive electrode active material of Comparative Example 1.
  • a positive electrode sheet positive electrode
  • a lithium battery was produced in the same manner as in Example 1, and the same as in Example 1. ,evaluate.
  • the rate retention rate and cycle retention rate of the lithium battery of Comparative Example 1 are lower than those of Examples 1-8. This is presumably because in Comparative Example 1, the lithium-containing composite oxide was not coated with the X element-containing compound.
  • Comparative Example 2 A lithium-containing composite oxide 15g of preparation example of the synthesis of the lithium-containing composite oxide coated with ZrF 4 and a ZrF 4 powder 0.58g were mixed by using a ball made of ZrO 2 having a diameter of 10mm A dry ball mill treatment is performed for 12 hours to obtain the positive electrode active material of Comparative Example 2.
  • ZrF 4 (content of the X element-containing compound in the positive electrode active material) coated with the ZrF 4 powder is ⁇ (number of moles of ZrF 4) in molar ratio with respect to the lithium-containing composite oxide of the example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.02.
  • Example 2 Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer) results in uniform detection of Zr on the outer surface of the particles.
  • a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, a lithium battery was produced in the same manner as in Example 1, and the same as in Example 1, evaluate.
  • the 4.6 V initial capacity, the rate maintenance ratio, and the cycle maintenance ratio of the lithium battery of Comparative Example 2 are all lower than those of Examples 1-8.
  • the content of the X element-containing compound of the positive electrode active material is the same as that in Example 1, but is manufactured by a method of mixing the lithium-containing composite oxide and ZrF 4 powder. This is presumably because the lithium-containing composite oxide was not uniformly coated with ZrF 4 .
  • ZrF 4 content of the X element-containing compound in the positive electrode active material coated with the ZrF 4 aqueous solution is ⁇ (number of moles of ZrF 4) in molar ratio with respect to the lithium-containing composite oxide of the example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.02.
  • the mass ratio of the ZrF 4 aqueous solution to the lithium-containing composite oxide is 3.3.
  • Example 2 Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer) results in uniform detection of Zr on the outer surface of the particles.
  • a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, a lithium battery was produced in the same manner as in Example 1, and the same as in Example 1, evaluate.
  • the rate maintenance rate and cycle maintenance rate of the lithium battery of Comparative Example 3 are both lower than those of Examples 1-8. This is presumably because, in Comparative Example 3, the concentration of the aqueous ZrF 4 solution was high, so that the lithium-containing composite oxide was not uniformly coated with ZrF 4 .
  • Comparative Example 5 Production Example ZrF 4 solution of lithium-containing composite oxide coated with ZrF 4, similar ZrF 4 concentration as in Example 1 to prepare a ZrF 4 aqueous solution 0.012 mol / L. Next, in the same manner as in Example 1 using 45 g of the ZrF 4 aqueous solution, the positive electrode active material of Comparative Example 5 in which the surface of the lithium-containing composite oxide of the synthesis example is coated with ZrF 4 is obtained.
  • ZrF 4 content of the X element-containing compound in the positive electrode active material coated with the ZrF 4 aqueous solution is ⁇ (number of moles of ZrF 4) in molar ratio with respect to the lithium-containing composite oxide of the example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.003 times.
  • the mass ratio of the aqueous ZrF 4 solution to the lithium-containing composite oxide is 3.0.
  • Example 1 Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer) results in that Zr cannot be detected uniformly on the outer surface of the particles.
  • a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, a lithium battery was produced in the same manner as in Example 1, and the same as in Example 1, evaluate.
  • the lithium battery of Comparative Example 5 has a lower cycle retention rate than Examples 1-8. This is presumably because in Comparative Example 5, since the content of the X element-containing compound in the positive electrode active material was low, the effect of covering the lithium-containing composite oxide with ZrF 4 could not be obtained.
  • ZrF 4 content of the X element-containing compound in the positive electrode active material coated with the ZrF 4 aqueous solution is ⁇ (number of moles of ZrF 4) in molar ratio with respect to the lithium-containing composite oxide of the example. ) / (Number of moles of lithium-containing composite oxide before addition) ⁇ 0.06 times.
  • the mass ratio of the ZrF 4 aqueous solution to the lithium-containing composite oxide is 60.0.
  • Example 2 Zr mapping of the particle cross section of the positive electrode active material with EPMA (X-ray microanalyzer) results in uniform detection of Zr on the outer surface of the particles.
  • a positive electrode sheet (positive electrode) was formed in the same manner as in Example 1, a lithium battery was produced in the same manner as in Example 1, and the same as in Example 1, evaluate.
  • Table 1 the 4.6 V initial capacity and the rate maintenance rate of the lithium battery of Comparative Example 6 are lower than those of Examples 1-8. This is presumably because, in Comparative Example 6, since the content of the X element-containing compound in the positive electrode active material was high, the lithium-containing composite oxide was not uniformly coated with ZrF 4 .
  • the positive electrode active material which is a material of the positive electrode with which the discharge capacity per unit mass is high and the lithium ion secondary battery which is excellent in a rate characteristic and cycling characteristics can be provided.
  • the positive electrode active material can be used for a lithium-ion secondary battery used for electronic devices such as small and light mobile phones, in-vehicle batteries, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 副反応による不純物を生成することなく、リチウム含有複合酸化物を所定の含有量の化合物で均一に被覆してなるサイクル特性およびレート特性に優れたリチウムイオン二次電池を提供できる正極活物質の製造方法を提供する。 リチウム含有複合酸化物の粉末の表面をX元素を含有するX元素含有化合物(X元素は、遷移金属、アルカリ金属、アルカリ土類金属、希土類、ハロゲン、およびAlからなる群から選ばれる少なくとも一種の元素からなる。)で被覆してなる正極活物質製造方法であって、X元素含有化合物を0.001~0.05mol/L含むX元素含有溶液をリチウム含有複合酸化物の粉末に噴霧しながら乾燥する被覆工程を行うことにより、リチウム含有複合酸化物に対するX元素含有化合物の含有量が0.005~0.05倍モルである正極活物質を形成するリチウムイオン二次電池用正極活物質の製造方法とする。

Description

リチウムイオン二次電池用正極活物質の製造方法
 本発明は、リチウムイオン二次電池用正極活物質の製造方法およびその製造方法を用いて製造された正極活物質を含む正極、リチウムイオン二次電池に関する。
 リチウムイオン二次電池は、携帯電話やノート型パソコン等の携帯型電子機器に広く用いられている。近年、携帯型電子機器や車載用のリチウムイオン二次電池の小型化・軽量化が求められ、単位質量あたりの放電容量と、充放電サイクルを繰り返した後に放電容量が低下しない特性(以下、サイクル特性ともいう。)の更なる向上が望まれている。また、車載用のリチウムイオン二次電池においては、高い放電レートで放電した際に放電容量が低下しない特性(以下、レート特性ともいう。)のさらなる向上も望まれている。
 従来からリチウムイオン二次電池の正極活物質には、LiCoO、LiNiO、LiNi0.8Co0.2、LiMn等のLi元素と遷移金属等とを含む複合酸化物が用いられている。近年、正極の特性を向上させるために、正極活物質として用いるリチウム含有複合酸化物を種々の化合物で被覆することが検討されている。
 たとえば、特許文献1には、導電剤、バインダおよびカソード活物質を含むカソード活物質組成物が集電体の一面上に形成され、前記カソード活物質が一般式:xLiMO-(1-x)LiMeO、(式中0<x<1であり、MおよびMeはそれぞれ独立的に、Mn、Ti、Zr、V、Cr、Mn、Fe、Co、Ni、Cu、Al、Mg、B、およびMoからなる群から選択された少なくとも一種の金属)で表される固溶系酸化物と、炭素が表面コーティングされたAlF,AlPO等の電気化学的に不活性である物質とを含むカソードが示されている。
 特許文献2には、フッ素含有化合物を水溶液中で元素前駆体と混合して、高分散度のフッ素化合物粉末を形成し、前記水溶液に、リチウム二次電池用正極活物質の溶液を添加し、その混合溶液を50~100℃で3~48時間反応させて該正極活物質を該フッ素化合物でコーティングする工程を含む、フッ素化合物でコーティングされたリチウム二次電池用正極活物質の製造方法が示されている。
 特許文献3には、一般式:Li(ただし、Qはチタン、ジルコニウム、ニオブおよびタンタルからなる群から選ばれるいずれか一種の元素、NはCo、MnおよびNiからなる群から選ばれる少なくとも一種の元素であり、MはQおよびN以外の遷移金属元素、Alおよびアルカリ土類金属元素からなる群から選ばれる少なくとも一種の元素である。0.9≦p≦1.1、0<q≦0.03、0.97≦x<1.00、0≦y<0.03、1.9≦z≦2.1、q+x+y=1、0≦a≦0.02)で表わされるリチウム含有複合酸化物の製法であって、上記Q元素として、Q元素を含むpH0.5~11の水溶液を使用するリチウム二次電池正極用リチウム含有複合酸化物の製造方法が開示されている。また、特許文献3には、リチウム複合酸化物粉末とQ元素化合物水溶液とを混合し、得られる混合物から水媒体を除去した後、酸素含有雰囲気において300~1080℃で焼成する製造方法が示されている。
 しかし、特許文献1に記載のカソード活物質は、固溶系酸化物に、炭素が表面コーティングされた電気化学的に不活性である物質を混合することにより得られるものであるため、炭素が表面コーティングされた電気化学的に不活性である物質が、固溶系酸化物の表面に均一に被覆されていなかった。このため、特許文献1の技術では、期待通りの特性を有するカソード活物質が得られない場合があった。
 また、特許文献2に記載の技術では、混合溶液を反応させて正極活物質をフッ素化合物でコーティングする工程において、仕込み通りにフッ素化合物が反応せず、コーティングされた正極活物質のフッ素化合物の組成および含有量が仕込み通りになりにくいという問題があった。さらに、特許文献2に記載の技術では、フッ素化合物粉末の結合力を増加させるために、コーティングされた正極活物質を110℃で6~24時間乾燥させた後、150℃~900℃で1~20時間熱処理する工程を行うことが必要である場合があった。このような熱処理を行った場合、熱処理によってフッ素化合物が分解するため、コーティングされた正極活物質のフッ素化合物の組成が期待通りにならないという問題があった。
 また、特許文献3に記載の技術においては、リチウム複合酸化物粉末とQ元素化合物水溶液とを混合して焼成するので、焼成時の熱に起因する副反応によって、リチウム複合酸化物の正極としての特性を低下させる不純物が生成する問題があった。
 また、溶液中で、リチウム含有複合酸化物に化合物を被覆する湿式方法を行う場合には、被覆後に、溶液中の化合物で被覆されたリチウム含有複合酸化物と溶媒とを分離するための濾過を行う必要がある。しかし、濾過を行う場合、リチウム含有複合酸化物を被覆していた化合物が、濾過によって濾液とともに流出する。このため、被覆後のリチウム含有複合酸化物に含まれる化合物の含有量が、所定の含有量になりにくいという問題があった。また、濾過を行う場合、濾過後に濾液を処理する必要であり、製造工程が煩雑になるという問題があった。
日本特開2009-152197号公報 日本特表2008-536285号公報 WO2005/106993号公報
 本発明は、副反応による不純物を生成することなく、リチウム含有複合酸化物が所定の含有量の化合物で均一に被覆されてなり、サイクル特性およびレート特性に優れたリチウムイオン二次電池用正極活物質の製造方法およびその製造方法を用いて製造された正極活物質を含む正極、リチウムイオン二次電池を提供することを目的とする。
 本発明は以下に示す発明である。
[1]Li元素と、遷移金属元素とを含むリチウム含有複合酸化物の粉末の表面を、X元素を含有するX元素含有化合物(ただし、X元素は、遷移金属、アルカリ金属、アルカリ土類金属、希土類、ハロゲン、およびAlからなる群から選ばれる少なくとも一種の元素からなる。)で被覆してなるリチウムイオン二次電池用正極活物質の製造方法であって、前記X元素含有化合物を0.001~0.05mol/L含むX元素含有溶液を、前記リチウム含有複合酸化物の粉末に噴霧しながら乾燥する被覆工程を行うことにより、前記リチウム含有複合酸化物に対する前記X元素含有化合物の含有量が0.005~0.05倍モルである前記正極活物質を形成することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
[2]前記リチウム含有複合酸化物の粉末に噴霧する前記X元素含有溶液の量を、前記リチウム含有複合酸化物の粉末に対する前記X元素含有溶液の質量比が1~95になる範囲とする[1]に記載の製造方法。
[3]前記X元素含有溶液が水溶液であり、20℃の水に対する前記X元素含有化合物の溶解度が、0.1~100g/Lである[1]または[2]に記載の製造方法。
[4]前記X元素含有化合物が、LiF、LiPO、LiSO、NaF、AlF、およびZrFからなる群から選ばれる少なくとも1つである[1]~[3]のいずれか一項に記載の製造方法。
[5]前記X元素含有溶液が噴霧される際の前記リチウム含有複合酸化物の粉末の温度が80~140℃である[1]~[4]のいずれか一項に記載の製造方法。
[6]前記噴霧されるX元素含有溶液の温度が10~60℃である[1]~[5]のいずれか一項に記載の製造方法。
[7]前記被覆工程の後に、乾燥温度が100~300℃である乾燥工程をさらに有する[1]~[6]のいずれか一項に記載の製造方法。
[8]前記被覆工程において、前記リチウム含有複合酸化物の粉末を前記X元素含有溶液とともに撹拌しながら加熱する[1]~[7]のいずれか一項に記載の製造方法。
[9]前記被覆工程において、前記リチウム含有複合酸化物の粉末を前記X元素含有溶液とともに撹拌する水平軸型の撹拌手段と、前記X元素含有溶液を噴霧するスプレー式注液手段と、撹拌されている前記リチウム含有複合酸化物の粉末と前記X元素含有溶液とを加熱する加熱手段とを有する撹拌加熱装置を用いる[8]に記載の製造方法。
[10][1]~[9]のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法を用いて製造された正極活物質と、導電材と、バインダーとを含む正極活物質層が、正極集電体上に形成されていることを特徴とするリチウムイオン二次電池用の正極。
[11][10]に記載の正極と負極と非水電解質とを含むことを特徴とするリチウムイオン二次電池。
 本発明の製造方法によれば、副反応による不純物を生成することなく、リチウム含有複合酸化物が所定の含有量の化合物で均一に被覆されてなり、サイクル特性およびレート特性に優れたリチウムイオン二次電池用正極活物質を製造できる。
 また、本発明の製造方法を用いて製造された正極活物質を用いて、サイクル特性およびレート特性に優れた正極、リチウムイオン二次電池を提供できる。
図1は、本発明のリチウムイオン二次電池用正極活物質の製造方法において用いられる撹拌加熱装置の一例であるレーディゲミキサーを説明するための概略断面図である。
 <正極活物質の製造方法>
 本発明のリチウムイオン二次電池用正極活物質の製造方法は、Li元素と、遷移金属元素とを含むリチウム含有複合酸化物の粉末の表面を、X元素を含有するX元素含有化合物(ただし、X元素は、遷移金属、アルカリ金属、アルカリ土類金属、希土類、ハロゲン、およびAlからなる群から選ばれる少なくとも一種の元素からなる。)で被覆してなるリチウムイオン二次電池用正極活物質の製造方法である。
 本発明の製造方法においては、X元素含有化合物を0.001~0.05mol/L含むX元素含有溶液を、リチウム含有複合酸化物の粉末に噴霧しながら乾燥する被覆工程を行うことにより、リチウム含有複合酸化物に対するX元素含有化合物の含有量が0.005~0.05倍モルである正極活物質を形成する。
(リチウム含有複合酸化物)
 本発明におけるリチウム含有複合酸化物は、Li元素と遷移金属元素とを含む。リチウム含有複合酸化物としては、例えば、下記の化合物(i)~化合物(iv)が好ましい。これらの化合物は一種を単独で用いてもよく、二種以上を併用してもよい。
 リチウム含有複合酸化物としては、高容量であるという点で化合物(iii)が特に好ましく、下記式(iii-1)で表わされる化合物が最も好ましい。
(化合物(i))
 化合物(i)は、下記式(i)で表される化合物である。
 Li(NiMnCo)M ・・・ (i)
 ただし、0.95≦a≦1.1、0≦x≦1、0≦y≦1、0≦z≦1、0≦b≦0.3、0.90≦x+y+z+b≦1.05、MはMg、Ca、Sr、Ba、およびAlからなる群から選ばれる少なくとも一種である。式(i)で表される化合物(i)の例としては、LiCoO、LiNiO、LiMnO、LiMn0.5Ni0.5、LiNi0.5Co0.2Mn0.3、LiNi0.85Co0.10Al0.05、LiNi1/3Co1/3Mn1/3が挙げられる。
(化合物(ii))
 化合物(ii)は、下記式(ii)で示される化合物またはこれらの複合体であるオリビン型金属リチウム塩である。
 Lix’y’z’ ・・・ (ii)
 ただし、XはFe(II)、Co(II)、Mn(II)、Ni(II)、V(II)、またはCu(II)を示し、YはPまたはSiを示し、0<L≦3、1≦x’≦2、1≦y’≦3、4≦z’≦12、0≦g≦1である。
 オリビン型金属リチウム塩(ii)の例としては、LiFePO、LiFe(PO、LiFeP、LiMnPO、LiNiPO、LiCoPO、LiFePOF、LiMnPOF、LiNiPOF、LiCoPOF、LiFeSiO、LiMnSiO、LiNiSiO、LiCoSiOが挙げられる。
(化合物(iii))
 化合物(iii)は、下式(iii-1)で表される化合物である。式(iii-1)で表される化合物は、充放電や活性化の工程を経る前の組成である。ここで、活性化とは、酸化リチウム(LiO)、または、リチウムおよび酸化リチウムを、リチウム含有複合酸化物から取り除くことをいう。活性化方法としては、4.4Vもしくは4.6V(Li/Liの酸化還元電位との電位差として表される。)より大きな電圧を加える電気化学的な活性化方法や、硫酸、塩酸もしくは硝酸等の酸を用いた化学反応を行うことによる、化学的な活性化方法が挙げられる。
 Li(LiMnMe)O ・・・ (iii-1)
 式(iii-1)において、Meは、Mn以外の遷移金属、アルカリ土類金属、希土類、およびAlからなる群から選ばれる少なくとも一種の元素である。式(iii-1)におけるMeとしては、Co、Ni、Cr、Fe、Al、Ti、Zr、Mo、Nb、V、およびMgからなる群から選ばれる少なくとも一種が好ましく、CoおよびNiが特に好ましい。
 式(iii-1)において、0.09<x<0.3、y>0、z>0、1.9<p<2.1、0≦q≦0.1であり、かつ、0.4≦y/(y+z)≦0.8、x+y+z=1、1.2<(1+x)/(y+z)である。式(iii-1)においては、0.1<x<0.25が好ましく、0.11<x<0.22がより好ましく、0.5≦y/(y+z)≦0.8が好ましく、0.55≦y/(y+z)≦0.75がより好ましい。
 式(iii-1)で表わされる化合物において、MnとMeの合計に対するLi元素の組成比は、1.2<(1+x)/(y+z)<1.8であり、1.35≦(1+x)/(y+z)≦1.65が好ましく、1.45≦(1+x)/(y+z)≦1.55がより好ましい。該組成比が前記の範囲であれば、4.6V以上の高い充電電圧を印加した場合に、単位質量あたりの放電容量が高い正極材料が得られる。
 また、式(iii-1)において、MnとMeの総量に対するMnの割合((y)/(y+z)モル比)は、0.4~0.8が好ましく、0.55~0.75がより好ましい。Mnの割合が前記の範囲であると、放電容量が高容量となる。qはFの割合を示すが、Fが存在しない場合、qは0である。pは、x、y、zおよびqに応じて決まる値であり、1.9~2.1である。
 化合物(iii)としては、下式(iii-2)で表される化合物であることがより好ましい。
 Li(LiMnNiCo)O ・・・ (iii-2)
 式(iii-2)において、0.09<x<0.3、0.36<y<0.73、0<v<0.32、0<w<0.32、1.9<p<2.1、x+y+v+w=1である。
 式(iii-2)において、Mn、Ni、およびCo元素の合計に対するLi元素の組成比は、1.2<(1+x)/(y+v+w)<1.8であり、1.35<(1+x)/(y+v+w)<1.65が好ましく、1.45<(1+x)/(y+v+w)<1.55がより好ましい。
 化合物(iii)としては、Li(Li0.16Ni0.17Co0.08Mn0.59)O、Li(Li0.17Ni0.17Co0.17Mn0.49)O、Li(Li0.17Ni0.21Co0.08Mn0.54)O、Li(Li0.17Ni0.14Co0.14Mn0.55)O、Li(Li0.18Ni0.12Co0.12Mn0.58)O、Li(Li0.18Ni0.16Co0.12Mn0.54)O、Li(Li0.20Ni0.12Co0.08Mn0.60)O、Li(Li0.20Ni0.16Co0.08Mn0.56)O、またはLi(Li0.20Ni0.13Co0.13Mn0.54)O、が特に好ましい。
 化合物(iii)は、層状岩塩型結晶構造(空間群R-3m)であることが好ましい。また、化合物(iii)は、遷移金属元素に対するLi元素の比率が高いため、XRD(X線回折)測定では層状LiMnOと同様に2θ=20~25°の範囲にピークが観察される。
(化合物(iv))
 化合物(iv)は、下記式(iv)で表わされる化合物である。
 Li(Mn2-xMe´)O ・・・ (iv)
 ただし、0≦x<2、Me´はCo、Ni、Fe、Ti、Cr,Mg、Ba、Nb、Ag、またはAlである。
 式(iv)で表される化合物(iv)の例としては、LiMn、LiMn1.5Ni0.5、LiMn1.0Co1.0、LiMn1.85Al0.15、LiMn1.9Mg0.1が挙げられる。
 リチウム含有複合酸化物の平均粒子径(D50)は、0.03~30μmが好ましく、0.04~20μmがより好ましく、0.05~15μmが特に好ましい。平均粒子径(D50)とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒子径である、体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理などで充分に分散させて粒度分布を測定する(たとえば、HORIBA社製レーザー回折/散乱式粒子径分布測定装置Partica LA-950VII、などを用いる。)ことで行なわれる。
 リチウム含有複合酸化物が化合物(i)、化合物(iii)、および化合物(iv)より選ばれる化合物である場合、平均粒子径(D50)は3~30μmが好ましく、4~25μmがより好ましく、5~20μmが特に好ましい。リチウム複合酸化物が化合物(ii)より選ばれる化合物である場合、平均粒子径(D50)は0.03~5μmが好ましく、0.04~1μmがより好ましく、0.05~0.5μmが特に好ましい。
 リチウム含有複合酸化物の比表面積は、0.1~30m/gであることが好ましく、0.15~25m/gが特に好ましい。該比表面積が、0.1~30m/gであると容量が高く、緻密な正極電極層が形成できる。
 リチウム含有複合酸化物が化合物(i)または化合物(iv)より選ばれる化合物である場合、比表面積は0.1~1m/gが好ましく、0.15~0.6m/gがより好ましい。リチウム含有複合酸化物が化合物(iii)より選ばれる化合物である場合、比表面積は0.3~10m/gが好ましく、0.5~5m/gがより好ましく、1~4m/gが特に好ましい。リチウム含有複合酸化物が化合物(ii)より選ばれる化合物である場合、比表面積は1~30m/gが好ましく、10~25m/gがより好ましい。
 リチウム含有複合酸化物の製造方法としては、共沈法により得られたリチウム含有複合酸化物の前駆体とリチウム化合物を混合して焼成する方法、水熱合成法、ゾルゲル法、乾式混合法(固相法)、イオン交換法、ガラス結晶化法などが挙げられる。なお、リチウム含有複合酸化物中に遷移金属元素が均一に含有されると放電容量が向上する。このため、リチウム含有複合酸化物の製造方法として、共沈法により得られたリチウム含有複合酸化物の前駆体(共沈組成物)とリチウム化合物とを混合して焼成する方法を用いることが好ましい。
(X元素含有溶液)
 X元素含有溶液は、X元素化合物を含むものであり、溶媒にX元素化合物が溶解されたものである。X元素化合物に含まれるX元素は、遷移金属、アルカリ金属、アルカリ土類金属、希土類、ハロゲン、およびAlからなる群から選ばれる少なくとも一種の元素からなる。X元素としては、安定な価数で存在し、価数変化し難い元素で安定な化合物を形成することからLi、Al、Zr、Nb、またはLaが好ましい。X元素を含むX元素化合物としては、金属酸化物、金属フッ化物、金属リン酸塩、金属硫酸塩、および金属塩化物などが挙げられ、溶解度と化合物の安定性の点から、金属フッ化物、または金属リン酸塩を用いることが好ましい。
 X元素化合物としては、具体的には、LiF、LiPO、NaF、NaPO、MgF、CaF、BaF、SrF、AlF、AlPO、ZrF、Zr(PO)などが挙げられる。X元素化合物が、LiF、LiPO、AlF、AlPO、ZrF、およびZr(PO)からなる群から選ばれる少なくとも一種である場合、電解液および溶媒との反応性が低く、リチウム含有複合酸化物の粉末の表面に電気化学的に安定な被膜を形成できるので好ましく、特に、LiF、LiPO、LiSO、NaF、AlF、およびZrFからなる群から選ばれる少なくとも一種であることが好ましい。
 X元素含有溶液となる溶媒に溶解されるX元素化合物は、溶媒中での化学反応や熱分解によってX元素化合物を生成するものではなく、溶媒に溶解されるX元素化合物そのものであることが好ましい。X元素化合物がX元素化合物そのものである場合、X元素化合物からX元素化合物を生成するための熱処理などの工程が不要であり、X元素化合物を生成するための工程を行うことに起因する副生成物による不都合が生じない。
 また、X元素化合物は、正極活物質を用いた正極を備えるリチウムイオン二次電池において、正極活物質中の遷移金属元素であるNi、Co、Mnなどの元素が電解液中に溶出することを抑制するために、電解液に対する溶解度が小さいほど好ましく、電解液との反応性が低く、電気化学的に安定であることが好ましい。
 また、X元素化合物は、X元素含有溶液の溶媒に対する溶解度が低いことが好ましい。X元素化合物の溶媒への溶解度が低いと、X元素含有溶液をリチウム含有複合酸化物の粉末に噴霧しながら乾燥している際に、リチウム含有複合酸化物の粉末の表面に被覆されたX元素化合物が、後からリチウム含有複合酸化物に供給されたX元素含有溶液の溶媒に溶解しにくいため、X元素化合物によるリチウム含有複合酸化物の被覆をより均一にできる。
 たとえば、X元素含有溶液が水溶液である場合、均一に効率よくリチウム含有複合酸化物を被覆するために、20℃の水に対するX元素含有化合物の溶解度は0.1~100g/Lであることが好ましく、0.1~50g/Lであることがより好ましく、0.3~20g/Lであることが特に好ましい。
 X元素含有溶液に用いられる溶媒としては、X元素化合物の安定性や反応性の点で水を含む溶媒が好ましく、水と水溶性アルコールおよび/またはポリオールとの混合溶媒がより好ましく、水のみが特に好ましい。溶媒が水のみである場合、安全面、環境面、取扱い性、コストの点で優れている。
 溶媒に用いられる水溶性アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノールが挙げられる。ポリオールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリンが挙げられる。溶媒中に含まれる水溶性アルコールとポリオールの合計の含有量としては、溶媒の合計量(溶媒全量)に対して0~20質量%が好ましく、0~10質量%がより好ましい。
 さらに、X元素含有溶液には、X元素化合物の溶解度を調整するために、pH調整剤が含まれていても良い。具体的には、pH調整剤として、酢酸、クエン酸、乳酸、ギ酸、マレイン酸、シュウ酸などの有機酸やアンモニアなどが挙げられ、中でも、酢酸、またはアンモニアは、低温で揮発し易いため特に好ましい。
 pH調整剤として、揮発および/または分解しやすいpH調整剤を用いた場合、本発明の製造方法により得られた正極活物質を用いて製造したリチウムイオン二次電池に、不純物が残留しにくくなり、良好な電池特性を有するリチウムイオン二次電池が得られやすい。
 X元素含有溶液のpHとしては、2~12が好ましく、3~11がより好ましく、4~10が特に好ましい。pHが上記の範囲にあれば、リチウム含有複合酸化物とX元素含有溶液とを接触させたときにリチウム含有複合酸化物からのLi元素や遷移金属の溶出が少なく、また、pH調整剤等の不純物が少ないため良好な電池特性が得られやすい。
 X元素含有溶液に含まれるX元素含有化合物の含有量は、X元素含有化合物の溶媒に対する溶解度以下であり、リチウム含有複合酸化物の粉末の表面にX元素含有化合物を均一に被覆するために、少ないことが好ましい。したがって、X元素含有溶液に含まれるX元素含有化合物の含有量は、化合物換算で0.05mol/L以下であり、0.04mol/L以下とすることが好ましく、0.03mol/L以下とすることが特に好ましい。
 また、X元素含有溶液に含まれるX元素含有化合物の含有量を多くすると、X元素含有化合物の含有量が少ない場合と比較して、リチウム含有複合酸化物の粉末を所定の被覆量で被覆するために噴霧するX元素含有溶液の量を少なくすることができる。このため、生産性が良好になるとともに、リチウム含有複合酸化物の粉末に噴霧したX元素含有溶液を乾燥するために必要な熱量を少なくできるので、環境負荷を低減できる。したがって、X元素含有溶液に含まれるX元素含有化合物の含有量は、化合物換算で0.001mol/L以上であり、0.005mol/L以上とすることが好ましく、0.01mol/L以上とすることが特に好ましい。
(被覆工程)
 X元素含有溶液を、リチウム含有複合酸化物の粉末に噴霧しながら乾燥する(被覆工程)方法としては、特に限定されないが、リチウム含有複合酸化物をX元素含有化合物で均一にかつ効率よく被覆するために、リチウム含有複合酸化物の粉末をX元素含有溶液とともに撹拌しながら加熱することが好ましい。この場合、被覆工程において、リチウム含有複合酸化物の粉末をX元素含有溶液とともに撹拌する水平軸型の撹拌手段と、X元素含有溶液を噴霧するスプレー式注液手段と、撹拌されているリチウム含有複合酸化物の粉末とX元素含有溶液とを加熱する加熱手段とを有する撹拌加熱装置を用いることが好ましい。
 以下に、本発明の製造方法の一例として、図1に示す撹拌加熱装置を用いて被覆工程を行う場合について説明する。図1は、本発明のリチウムイオン二次電池用正極活物質の製造方法において用いられる撹拌加熱装置の一例であるレーディゲミキサーを説明するための概略断面図である。
 図1に示すレーディゲミキサー10は、ドラム1と、撹拌手段2と、スプレー式注液手段3とを有している。
 図1に示すドラム1は、リチウム含有複合酸化物の粉末5の収容されるものである。ドラム1は、略円筒形状を有しており、円筒形の中心軸方向が略水平方向となるように配置されている。ドラム1には、リチウム含有複合酸化物の粉末5をドラム1に供給する供給口(図示略)と、ドラム1内からX元素含有化合物で被覆されたリチウム含有複合酸化物である正極活物質を排出する排出口(図示略)と、ドラム1内の蒸気を排出する排気筒14とが設けられている。
 撹拌手段2は、リチウム含有複合酸化物の粉末5をX元素含有溶液6とともに撹拌するものである。図1に示す撹拌手段2は、ドラム1の円筒形の中心軸方向に沿って配置された回転軸21と、回転軸21に取り付けられ、回転軸21を中心として回転するシャベル22とを有する水平軸型のものである。さらに、図1に示すドラム1の側面には、チョッパー羽根を備えたチョッパー23が設けられており、チョッパー23を回転させることにより、リチウム含有複合酸化物の粉末5とX元素含有溶液6とを、より一層均一に撹拌できるようになっている。
 スプレー式注液手段3は、ドラム1の長さ方向中心部の上部に配置されており、所定の温度、粒径および流量で所定量のX元素含有溶液6をリチウム含有複合酸化物の粉末5に噴霧するスプレーノズルを有するものである。なお、図1に示すスプレー式注液手段3では、スプレーノズルを有するものを例に挙げて説明したが、本発明において用いる撹拌加熱装置はスプレー式でない注液手段を有するものであってもよい。なお、スプレーノズルを有するスプレー式注液手段3は、リチウム含有複合酸化物の粉末5にX元素含有溶液6を容易に均一に噴霧できるため好ましい。スプレーノズルを用いるスプレー式注入手段3において、X元素含有溶液6の放出速度は、リチウム含有複合酸化物1gに対して、0.005~0.1g/分が好ましい。
 さらに、図1に示すレーディゲミキサー10は、撹拌されているリチウム含有複合酸化物の粉末5とX元素含有溶液6とを加熱する加熱手段(図示略)を有している。加熱手段は、ドラム1内のリチウム含有複合酸化物の粉末5を所定の温度範囲にできるものであればよく、特に限定されないが、たとえば、ドラム1の外側から蒸気によって加熱するものを用いることができる。
 図1に示すレーディゲミキサー10を用いて被覆工程を行うには、まず、ドラム1にリチウム含有複合酸化物の粉末5を供給する。次いで、撹拌手段2のシャベル22およびチョッパー23を回転させてリチウム含有複合酸化物の粉末5の撹拌を開始する。その後、スプレー式注液手段3を用いて所定の温度、粒径および流量でX元素含有溶液6を噴霧するとともに、加熱手段によるリチウム含有複合酸化物の粉末5の加熱により、X元素含有溶液6の噴霧されたリチウム含有複合酸化物の粉末5を乾燥する。
 本発明では、図1に例示するように、X元素含有溶液6をリチウム含有複合酸化物の粉末5に噴霧しながら、噴霧されたリチウム含有複合酸化物の粉末5を乾燥する。本発明では、X元素含有溶液6が噴霧される際のリチウム含有複合酸化物の粉末5の温度を、80~140℃とすることが好ましく、90~120℃とすることがより好ましい。リチウム含有複合酸化物の粉末5の温度を80℃以上とすることで、リチウム含有複合酸化物の粉末5の乾燥を促進することができる。また、リチウム含有複合酸化物の粉末5の温度を140℃以下とすることで、リチウム含有複合酸化物の粉末5の乾燥を促進することに伴う副反応によって不純物が発生することを防止できる。
 また、本発明では、噴霧するX元素含有溶液6の温度を、10~60℃とすることが好ましく、20~40℃とすることがより好ましい。噴霧するX元素含有溶液6の温度を10℃以上とすることで、リチウム含有複合酸化物の粉末5の乾燥を促進できる。また、噴霧するX元素含有溶液6の温度を60℃以下とすることで、X元素含有溶液6を加熱することによってX元素含有溶液6に含まれるX元素化合物の濃度が高くなりすぎたり、X元素含有溶液6に含まれるX元素化合物の組成が変化したりすることを防止できる。
 本発明においては、被覆工程におけるリチウム含有複合酸化物の粉末およびX元素含有溶液の加熱によって、X元素含有化合物がリチウム含有複合酸化物の粉末5と反応しないことが好ましい。なお、被覆工程におけるリチウム含有複合酸化物の粉末およびX元素含有溶液の加熱によって、リチウム含有複合酸化物の粉末5を被覆しているX元素含有化合物の一部が、酸化されたり、リチウム含有複合酸化物の粉末5に拡散されたりしてもよい。
 スプレー式注液手段3によって噴霧されるX元素含有溶液6の粒径は、0.1~250μmであることが好ましく、1~150μmであることがより好ましい。X元素含有溶液6の粒径が250μm以下である場合、リチウム含有複合酸化物の粉末5にX元素含有溶液6をより一層均一に噴霧できる。また、噴霧されるX元素含有溶液6の粒径が0.1μm以上である場合、噴霧後の粒径を容易に制御できる。
 また、本発明の被覆工程においては、リチウム含有複合酸化物の粉末に噴霧するX元素含有溶液の合計量を、リチウム含有複合酸化物の粉末5に対するX元素含有溶液6の質量比が1~95になる範囲とすることが好ましく、5~40になる範囲とすることがより好ましい。リチウム含有複合酸化物5の粉末に対するX元素含有溶液6の質量比が1以上である場合、X元素含有溶液6の噴霧量を充分に多くすることができるので、リチウム含有複合酸化物の粉末5をX元素含有化合物でより一層均一に被覆できる。また、リチウム含有複合酸化物5の粉末に対するX元素含有溶液6の質量比が95以下である場合、X元素含有溶液6の噴霧量が多くなりすぎることがなく、効率よくリチウム含有複合酸化物の粉末5にX元素含有溶液6を被覆できる。
 なお、本発明の被覆工程におけるX元素含有溶液6の噴霧は、間欠的に行ってもよいし、連続的に行ってもよい。
 本発明の被覆工程においては、リチウム含有複合酸化物に対するX元素含有化合物の含有量が0.005~0.05倍モルである正極活物質を形成する。正極活物質のリチウム含有複合酸化物に対するX元素含有化合物の含有量は、0.01~0.03倍モルが好ましく、0.015~0.025倍モルが特に好ましい。
 正極活物質のリチウム含有複合酸化物に対するX元素含有化合物の含有量は、X元素含有溶液6に含まれるX元素含有化合物の含有量と、リチウム含有複合酸化物の粉末5に噴霧されるX元素含有溶液6の使用量とによって制御できる。
 正極活物質のリチウム含有複合酸化物に対するX元素含有化合物の含有量が0.005倍モル以上である場合、リチウム含有複合酸化物の粉末5をX元素含有化合物で被覆したことによる効果が充分に得られる。また、X元素含有化合物の含有量が0.05倍モル以下である場合、リチウム含有複合酸化物の粉末5にX元素含有化合物が充分に均一に被覆されたものとなる。
 以上の工程により、正極活物質が得られる。
 本実施形態の被覆工程においては、図1に示すレーディゲミキサー10を用いているので、リチウム含有複合酸化物をX元素含有化合物で均一に容易にかつ効率よく被覆できる。なお、本発明は、図1に示すレーディゲミキサー10を用いる製造方法に限定されるものではなく、たとえば、ソリッドエアーを用いてもよい。
 なお、本発明においては、被覆工程の後に、X元素含有化合物の被覆されたリチウム含有複合酸化物の粉末5(正極活物質)を乾燥する乾燥工程を行うのが好ましい。乾燥工程における乾燥温度は、100~300℃が好ましく、乾燥時間は、2~10時間が好ましい。乾燥工程を行うことにより、正極活物質のX元素含有化合物とリチウム含有複合酸化物の粉末5との結合力を増加させることができる。
 本発明の製造方法によれば、リチウム含有複合酸化物とX元素含有化合物とを反応させずに、リチウム含有複合酸化物の表面をX元素含有化合物で被覆できる。すなわち、本実施形態の製造方法によって得られた正極活物質では、X元素含有化合物とリチウム含有複合酸化物の粉末5とが、主に、X元素含有化合物がリチウム含有複合酸化物の粉末5に物理的に付着(吸着)して結合している。よって、リチウム含有複合酸化物とX元素含有化合物とを反応させるための熱処理を行う必要はないし、リチウム含有複合酸化物とX元素含有化合物との反応に伴う副反応によって不純物が発生することもなく、不純物を除去するために洗浄を行う必要もない。
 さらに、X元素化合物の溶媒に対する溶解度以下の充分に薄い濃度のX元素含有溶液をリチウム含有複合酸化物の粉末に噴霧しながら乾燥させるので、被覆後に濾過を行う必要はなく、生産性に優れ、濾過による被覆量のばらつきを抑制することができる。また、本実施形態の製造方法によれば、リチウム含有複合酸化物が所定の含有量の化合物で均一に被覆されてなる正極活物質を製造できるので、得られた正極活物質を用いてサイクル特性およびレート特性に優れたリチウムイオン二次電池を提供できる。
 <正極>
 本発明のリチウムイオン二次電池用の正極は、本発明のリチウムイオン二次電池用正極活物質の製造方法を用いて製造された正極活物質と、導電材と、バインダーとを含む正極活物質層が、正極集電体上に形成されているものである。
 正極は、たとえば、本発明の製造方法を用いて製造された正極活物質と導電材とバインダーとを、溶媒に溶解させるか、分散媒に分散させるか、又は溶媒と混練することによって、スラリー又は混錬物を調製し、調製したスラリー又は混錬物を正極集電板に塗布等により担持させることによって、製造できる。
 導電材としては、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボンブラック等が挙げられる。
 バインダーとしては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等の不飽和結合を有する重合体およびその共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル酸系重合体およびその共重合体等が挙げられる。
 正極集電体としては、アルミニウムまたはアルミニウム合金が挙げられる。
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、正極と負極と非水電解質とを含み、活性化前の正極が、上記のリチウムイオン二次電池用の正極であるものである。
 負極は、負極集電体上に、負極活物質を含有する負極活物質層が形成されてなる。たとえば、負極活物質を有機溶媒と混錬することによってスラリーを調製し、調製したスラリーを負極集電体に塗布、乾燥、プレスすることによって、製造することができる。
 負極集電板としては、たとえばニッケル箔、銅箔等の金属箔を用いることができる。
 負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、たとえば、リチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタンおよび炭化ホウ素化合物等を用いることができる。 
 負極活物質の炭素材料としては、たとえば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークス等のコークス類、グラファイト類、ガラス状炭素類、フェノール樹脂やフラン樹脂等を適当な温度で焼成し炭素化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類等を用いることができる。
 周期表14族の金属としては、ケイ素あるいはスズであり、ケイ素が好ましい。
 その他に負極活物質として用いることができる材料としては酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物やLi2.6Co0.4N等の窒化物が挙げられる。
 非水電解液としては、有機溶媒と電解質とを適宜組み合わせて調製されたものを用いることができる。有機溶媒としては、電解液用の有機溶媒として公知のものが使用でき、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム、トリグライム、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等を用いることができる。特に、電圧安定性の点からは、プロピレンカーボネート等の環状カーボネート類、ジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類を使用することが好ましい。有機溶媒は、一種を単独で用いてもよく、二種以上を混合して用いてもよい。
 電解質としては、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物などに電解質を混合または溶解させた固体状もしくはゲル状電解質等を用いることができる。
 固体電解質としては、リチウムイオン伝導性を有する材料であればよく、無機固体電解質および高分子固体電解質を用いることができる。
 無機固体電解質としては、窒化リチウム、ヨウ化リチウム等を用いることができる。
 高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物等を用いることができる。電解質塩と該電解質塩を溶解する高分子化合物としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、およびポリヘキサフルオロプロピレン、もしくはこれらの誘導体、混合物、および複合体を用いることができる。
 ゲル状電解質としては、前記の非水電解液を吸収してゲル化する種々の高分子化合物を用いることができる。ゲル状電解質に用いられる高分子化合物としては、ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)などのフッ素系高分子化合物等を用いることができる。また、ゲル状電解質に用いられる高分子化合物としては、ポリアクリロニトリル、ポリアクリロニトリルの共重合体、ポリエチレンオキサイド、ポリエチレンオキサイドの共重合体、同架橋体などのエーテル系高分子を用いることができる。前記共重合体に用いるモノマーとしては、ポリプロピレンオキサイド、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等を挙げることができる。
 ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の観点から、特にフッ素系高分子が好ましい。
 前記の電解質中で用いられる電解質塩としては、LiClO、LiPF、LiBF、CFSOLi、LiCl、LiBr等を用いることができる。
 本発明のリチウムイオン二次電池の形状は、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択することができる。
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
(リチウム含有複合酸化物の合成例)
 硫酸ニッケル(II)六水和物(140.6g)、硫酸コバルト(II)七水和物(131.4g)、および硫酸マンガン(II)五水和物(482.2g)に蒸留水(1245.9g)を加えて均一に溶解させて原料溶液とした。硫酸アンモニウム(79.2g)に蒸留水(320.8g)を加えて均一に溶解させてアンモニア源溶液とした。硫酸アンモニウム(79.2g)に蒸留水(1920.8g)を加えて均一に溶解させて母液とした。水酸化ナトリウム(400g)に蒸留水(600g)を加えて均一に溶解させてpH調整液とする。
 2Lのバッフル付きガラス製反応槽に母液を入れてマントルヒーターで50℃に加熱し、pHが11.0となるようにpH調整液を加えた。反応槽内の溶液をアンカー型の攪撹拌翼で撹拌しながら、原料溶液を5.0g/分、アンモニア源溶液を1.0g/分の速度で添加し、ニッケル、コバルト、およびマンガンの複合水酸化物を析出させた。原料溶液を添加している間、反応槽内のpHを11.0に保つようにpH調整溶液を添加した。また、析出した水酸化物が酸化しないように、反応槽内に窒素ガスを流量0.5L/分で流した。また、反応槽内の液量が2Lを超えないように連続的に液の抜き出しを行った。
 得られたニッケル、コバルト、マンガンの複合水酸化物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散を繰返して洗浄した。ろ液の電気伝導度が25μS/cmとなった時点で洗浄を終了し、120℃で15時間乾燥させて前駆体とした。
 ICPで前駆体のニッケル、コバルト、およびマンガンの含有量を測定したところ、それぞれ10.8質量%、10.3質量%、および42.7質量%であった(モル比でニッケル:コバルト:マンガン=0.169:0.162:0.669)。
 前駆体(20g)とリチウム含有量が26.9mol/kgの炭酸リチウム(12.7g)を混合して、酸素含有雰囲気下900℃で12時間焼成し、合成例のリチウム含有複合酸化物を得た。得られた合成例のリチウム含有複合酸化物の組成はLi(Li0.2Ni0.135Co0.130Mn0.535)Oであった。合成例のリチウム含有複合酸化物の平均粒子径D50は6.3μmであり、BET(Brunauer,Emmett,Teller)法を用いて測定した比表面積は2.3m/gであった。
(実施例1)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、X元素含有化合物であるZrF粉末0.58gに蒸留水299.42gを加えてZrF濃度(X元素含有溶液のX元素含有化合物濃度)が0.012mol/LのZrF水溶液を調製する。
 次に、リチウム含有複合酸化物の粉末をX元素含有溶液とともに撹拌する水平軸型の撹拌手段と、X元素含有溶液を噴霧するスプレー式注液手段と、撹拌されているリチウム含有複合酸化物の粉末とX元素含有溶液とを加熱する加熱手段とを有する撹拌加熱装置を用いて、正極活物質を製造する。
 まず、実施例(合成例)のリチウム含有複合酸化物15gを撹拌しながら90℃に加熱し、ZrF水溶液300gを間欠的に噴霧しながら乾燥し、合成例のリチウム含有複合酸化物とZrF水溶液とを混合する(被覆工程)。
 次いで、得られた混合物を120℃で2時間、乾燥して、リチウム含有複合酸化物の表面にZrFが被覆された実施例1の正極活物質を得る(乾燥工程)。
 正極活物質において、ZrF水溶液によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、合成例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.02倍である。また、ZrFの20℃の水に対する溶解度は、13.2g/L(0.079mol/L)であり、リチウム含有複合酸化物に対するZrF水溶液の質量比は、20.0である。
 そして、得られた正極活物質の粉末の断面を樹脂で包埋し、酸化セリウム微粒子で研磨した後、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できる。
 次に、得られた正極活物質について、X線源としてCuKα線を用いるXRD測定を行う。XRD測定には、リガク社製の製品名RINT-TTR-IIIを用いる。XRD測定は、電圧50kV、管電流300mA、走査軸2θ/θで、測定範囲2θ=10~80°、サンプリング幅0.02°、スキャンスピード1°/分で行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=24~26°の範囲にZrFのメインピークが確認できる。
 得られた正極活物質を用いて、以下に示す(正極の製造例)に記載の方法により正極体シート(正極)を形成し、以下に示す(電池の製造例)に記載の方法によりリチウムイオン二次電池を作製し、以下に示す(電池特性評価例)に記載の方法により評価する。その結果を表1に示す。表1に示すように、実施例1のリチウムイオン二次電池は、優れたサイクル維持率とレート維持率とが得られることが分かる。
Figure JPOXMLDOC01-appb-T000001
(正極の製造例)
 正極活物質とアセチレンブラック(導電材)とポリフッ化ビニリデン(バインダー)を12.1質量%含むポリフッ化ビニリデン溶液(溶媒N-メチルピロリドン)を混合し、さらにN-メチルピロリドンを添加してスラリーを作製する。正極活物質と、アセチレンブラックと、ポリフッ化ビニリデンは、質量比で82/10/8とする。スラリーを厚さ20μmのアルミニウム箔(正極集電体)にドクターブレードを用いて片面塗工する。120℃で乾燥し、ロールプレス圧延を2回行うことにより正極体シートを作製する。
(電池の製造例)
 前記で製造した正極体シートを正極に用い、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴングローブボックス内で組み立てる。厚さ500μmの金属リチウム箔を負極に用い、負極集電体に厚さ1mmのステンレス板を使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに電解液には、濃度1(mol/dm)のLiPF/EC(エチレンカーボネート)+DEC(ジエチルカーボネート)(1:1)溶液(LiPFを溶質とするECとDECとの体積比(EC:DEC=1:1)の混合溶液を意味する。)を用いる。
(電池特性評価例)
 初期容量、レート特性、およびサイクル特性の評価例
 前記で製造したリチウムイオン二次電池を用いて下記評価を行う。すなわち、正極活物質1gにつき200mAの負荷電流で4.7Vまで充電し、正極活物質1gにつき50mAの負荷電流にて2.5Vまで放電する。続いて正極活物質1gにつき200mAの負荷電流で4.3Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで放電する。
 このような充放電を行ったリチウムイオン二次電池について、引き続き充放電正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで放電する。4.6~2.5Vにおける正極活物質の放電容量を4.6V初期容量とする。そして、初期容量が220mAh/g以上である場合「○」、220mAh/g未満である場合「△」と評価する。
 次いで充放電正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき2000mAの負荷電流にて2.5Vまで高レート放電する。高レート放電での4.6~2.5Vにおける正極活物質の放電容量を4.6V初期容量で割った値をレート維持率とする。そして、レート維持率が60%超である場合「○」、50%超60%以下である場合「△」、50%以下である場合「×」と評価する。
 次いで充放電正極活物質1gにつき200mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき100mAの負荷電流にて2.5Vまで高レート放電する充放電サイクルを100回繰返する。4.6V充放電サイクル100回目の放電容量を4.6V初期容量で割った値をサイクル維持率とする。そして、サイクル維持率が90%超である場合「◎」、80%超90%以下である場合「○」、70%超80%以下である場合「△」、70%以下である場合「×」と評価する。
(実施例2)LiFで被覆したリチウム含有複合酸化物の製造例
 LiF水溶液として、X元素含有化合物であるLiF粉末0.09gに蒸留水399.91gを加えてLiF濃度(X元素含有溶液のX元素含有化合物濃度)が0.009mol/LのLiF水溶液を調製する。
 次に、LiF水溶液400gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にLiFが被覆された実施例2の正極活物質を得る。
 正極活物質において、LiF水溶液によって被覆したLiF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(LiFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.02倍である。また、LiFの20℃の水に対する溶解度は、2.7g/L(0.104mol/L)であり、リチウム含有複合酸化物に対するLiF水溶液の質量比は、26.7である。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=44~46°の範囲にLiFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウムイオン二次電池を作製し、実施例1と同様にして、評価する。その結果、表1に示すように、実施例2のリチウムイオン二次電池は、優れたサイクル維持率とレート維持率とが得られることが分かる。
(実施例3)AlFで被覆したリチウム含有複合酸化物の製造例
 AlF水溶液として、X元素含有化合物であるAlF粉末0.30gに蒸留水299.70gを加えてAlF濃度(X元素含有溶液のX元素含有化合物濃度)が0.012mol/LのAlF水溶液を調製する。
 次に、AlF水溶液300gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にAlFが被覆された実施例3の正極活物質を得る。
 正極活物質において、AlF水溶液によって被覆したAlF(正極活物質のX元素含有化合物の含有量)は、合成例のリチウム含有複合酸化物に対して、モル比で{(AlFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.02倍である。また、AlFの20℃の水に対する溶解度は、5.6g/L(0.067mol/L)であり、リチウム含有複合酸化物に対するAlF水溶液の質量比は、20.0である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にAlが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=14~15°の範囲にAlFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウムイオン二次電池を作製し、実施例1と同様にして、評価する。その結果、表1に示すように、実施例3のリチウムイオン二次電池は、優れたサイクル維持率とレート維持率とが得られることが分かる。
(実施例4)LiPOで被覆したリチウム含有複合酸化物の製造例
 LiPO水溶液として、X元素含有化合物であるLiPO粉末0.20gに蒸留水599.80gを加えてLiPO濃度(X元素含有溶液のX元素含有化合物濃度)が0.003mol/LのLiPO水溶液を調製する。
 次に、LiPO水溶液600gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にLiPOが被覆された実施例4の正極活物質を得る。
 正極活物質において、LiPO水溶液によって被覆したLiPO(正極活物質のX元素含有化合物の含有量)は、合成例のリチウム含有複合酸化物に対して、モル比で{(LiPOのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.01倍である。また、LiPOの20℃の水に対する溶解度は、0.39g/L(0.003mol/L)であり、リチウム含有複合酸化物に対するLiPO水溶液の質量比は、40.0である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にPが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=22~24°の範囲にLiPOのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウムイオン二次電池を作製し、実施例1と同様にして、評価する。その結果、表1に示すように、実施例4のリチウムイオン二次電池は、優れたサイクル維持率とレート維持率とが得られることが分かる。
(実施例5)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、X元素含有化合物であるZrF粉末0.58gに蒸留水599.42gを加えてZrF濃度(X元素含有溶液のX元素含有化合物濃度)が0.006mol/LのZrF水溶液を調製する。
 次に、ZrF水溶液600gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にZrFが被覆された実施例5の正極活物質を得る。
 正極活物質において、ZrF水溶液によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.02倍である。また、リチウム含有複合酸化物に対するZrF水溶液の質量比は、40.0である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=24~26°の範囲にZrFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウムイオン二次電池を作製し、実施例1と同様にして、評価する。
 その結果、表1に示すように、実施例5のリチウム電池は、優れたサイクル維持率とレート維持率を発揮することが分かる。また、正極活物質のX元素含有化合物の含有量が同じである実施例1と比較して、ZrF水溶液の濃度を低くした実施例5では、レート維持率が高くなっている。
(実施例6)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、実施例1と同様のZrF濃度が0.012mol/LのZrF水溶液を調製する。
 次に、ZrF水溶液75gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にZrFが被覆された実施例6の正極活物質を得る。
 正極活物質において、ZrF水溶液によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.005倍である。また、リチウム含有複合酸化物に対するZrF水溶液の質量比は、5.0である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=24~26°の範囲にZrFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウム電池を作製し、実施例1と同様にして、評価する。
 その結果、表1に示すように、実施例6のリチウム電池は、優れたサイクル維持率とレート維持率とを発揮することが分かる。また、ZrF水溶液の濃度が同じである実施例1と比較して、正極活物質のX元素含有化合物の含有量を低くした実施例6では、4.6V初期容量およびレート維持率が高くなっている。
(実施例7)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、X元素含有化合物であるZrF粉末0.58gに蒸留水79.42gを加えてZrF濃度(X元素含有溶液のX元素含有化合物濃度)が0.043mol/LのZrF水溶液を調製する。
 次に、ZrF水溶液80gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にZrFが被覆された実施例7の正極活物質を得る。
 正極活物質において、ZrF水溶液によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.02倍である。また、リチウム含有複合酸化物に対するZrF水溶液の質量比は、5.3である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=24~26°の範囲にZrFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウム電池を作製し、実施例1と同様にして、評価する。
 その結果、表1に示すように、実施例7のリチウム電池は、優れたサイクル維持率とレート維持率を発揮することが分かる。
(実施例8)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、実施例1と同様のZrF濃度が0.012mol/LのZrF水溶液を調製する。
 次に、ZrF水溶液600gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にZrFが被覆された実施例8の正極活物質を得る。
 正極活物質において、ZrF水溶液によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.04倍である。また、リチウム含有複合酸化物に対するZrF水溶液の質量比は、40.0である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=24~26°の範囲にZrFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウム電池を作製し、実施例1と同様にして、評価する。
 その結果、表1に示すように、実施例8のリチウム電池は、優れたサイクル維持率とレート維持率とを発揮することが分かる。
(比較例1)
 合成例のリチウム含有複合酸化物を比較例1の正極活物質とする。
 比較例1の正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウム電池を作製し、実施例1と同様にして、評価する。
 その結果、表1に示すように、比較例1のリチウム電池のレート維持率およびサイクル維持率は、実施例1~8と比較して、低くなっている。これは、比較例1では、リチウム含有複合酸化物をX元素含有化合物で被覆していないためと推定される。
(比較例2)ZrFで被覆したリチウム含有複合酸化物の製造例
 合成例のリチウム含有複合酸化物15gとZrF粉末0.58gとを混合し、直径10mmのZrO2からなるボールを用いて乾式ボールミル処理を12時間実施し、比較例2の正極活物質を得る。
 正極活物質において、ZrF粉末によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.02倍である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=24~26°の範囲にZrFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウム電池を作製し、実施例1と同様にして、評価する。
 その結果、表1に示すように、比較例2のリチウム電池の4.6V初期容量、レート維持率、サイクル維持率は、いずれも実施例1~8と比較して、低くなっている。これは、比較例2では、正極活物質のX元素含有化合物の含有量が実施例1と同じであるが、リチウム含有複合酸化物とZrF粉末とを混合する方法により製造しているため、リチウム含有複合酸化物がZrFで均一に被覆されなかったことによるものと推定される。
(比較例3)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、X元素含有化合物であるZrF粉末0.58gに蒸留水49.42gを加えてZrF濃度(X元素含有溶液のX元素含有化合物濃度)が0.069mol/LのZrF水溶液を調製する。
 次に、ZrF水溶液50gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にZrFが被覆された比較例3の正極活物質を得る。
 正極活物質において、ZrF水溶液によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.02倍である。また、リチウム含有複合酸化物に対するZrF水溶液の質量比は、3.3である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=24~26°の範囲にZrFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウム電池を作製し、実施例1と同様にして、評価する。
 その結果、表1に示すように、比較例3のリチウム電池のレート維持率およびサイクル維持率は、いずれも実施例1~8と比較して、低くなっている。これは、比較例3では、ZrF水溶液の濃度が高いため、リチウム含有複合酸化物がZrFで均一に被覆されなかったためと推定される。
(比較例4)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、X元素含有化合物であるZrF粉末0.58gに蒸留水29.42gを加えてZrF濃度(X元素含有溶液のX元素含有化合物濃度)が0.116mol/LのZrF水溶液を調製しようとしたが、ZrF粉末が全量溶解せず、目的とするZrF水溶液が得られず、ZrFで被覆したリチウム含有複合酸化物を製造できなかった。なお、ZrFの20℃の水に対する溶解度は、13.2g/L(0.079mol/L)である。
(比較例5)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、実施例1と同様のZrF濃度が0.012mol/LのZrF水溶液を調製する。
 次に、ZrF水溶液45gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にZrFが被覆された比較例5の正極活物質を得る。
 正極活物質において、ZrF水溶液によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.003倍である。また、リチウム含有複合酸化物に対するZrF水溶液の質量比は、3.0である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できない。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルではZrFのメインピークが確認できない。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウム電池を作製し、実施例1と同様にして、評価する。その結果、表1に示すように、比較例5のリチウム電池は、実施例1~8と比較して、サイクル維持率が低くなっている。これは、比較例5では、正極活物質のX元素含有化合物の含有量が低いため、リチウム含有複合酸化物をZrFで被覆することによる効果が得られなかったためと推定される。
(比較例6)ZrFで被覆したリチウム含有複合酸化物の製造例
 ZrF水溶液として、実施例1と同様のZrF濃度が0.012mol/LのZrF水溶液を調製する。
 次に、ZrF水溶液900gを用いて実施例1と同様にして、合成例のリチウム含有複合酸化物の表面にZrFが被覆された比較例6の正極活物質を得る。
 正極活物質において、ZrF水溶液によって被覆したZrF(正極活物質のX元素含有化合物の含有量)は、実施例のリチウム含有複合酸化物に対して、モル比で{(ZrFのモル数)/(付加する前のリチウム含有複合酸化物のモル数)}0.06倍である。また、リチウム含有複合酸化物に対するZrF水溶液の質量比は、60.0である。
 実施例1と同様にして、正極活物質の粒子断面をEPMA(X線マイクロアナライザ)でZrマッピングした結果、粒子外表面に均一にZrが検出できる。
 次に、得られた正極活物質について、実施例1と同様にして、XRD測定を行う。XRDスペクトルから、正極活物質は層状岩塩型結晶構造(空間群R-3m)であることが確認される。また、2θ=20~25°の範囲に層状LiMnOピークが観察される。XRDスペクトルでは2θ=24~26°の範囲にZrFのメインピークが確認できる。
 得られた正極活物質を用いて、実施例1と同様にして、正極体シート(正極)を形成し、実施例1と同様にして、リチウム電池を作製し、実施例1と同様にして、評価する。その結果、表1に示すように、比較例6のリチウム電池の4.6V初期容量およびレート維持率は、実施例1~8と比較して、低くなっている。これは、比較例6では、正極活物質のX元素含有化合物の含有量が高いため、リチウム含有複合酸化物がZrFで均一に被覆されなかったためと推定される。
 本発明によれば、単位質量あたりの放電容量が高く、かつレート特性とサイクル特性に優れるリチウムイオン二次電池の得られる正極の材料である正極活物質を提供できる。また、該正極活物質は、小型・軽量な携帯電話等の電子機器や、車載用のバッテリー等に用いられるリチウムイオン二次電池に利用できる。

 なお、2011年6月24日に出願された日本特許出願2011-140495号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1…ドラム、2…撹拌手段、3…スプレー式注液手段、10…レーディゲミキサー、5…リチウム含有複合酸化物の粉末、6…X元素含有溶液、14…排気筒、21…回転軸、22…シャベル、23…チョッパー羽根を備えたチョッパー。

Claims (11)

  1.  Li元素と、遷移金属元素とを含むリチウム含有複合酸化物の粉末の表面を、X元素を含有するX元素含有化合物(ただし、X元素は、遷移金属、アルカリ金属、アルカリ土類金属、希土類、ハロゲン、およびAlからなる群から選ばれる少なくとも一種の元素からなる。)で被覆してなるリチウムイオン二次電池用正極活物質の製造方法であって、
     前記X元素含有化合物を0.001~0.05mol/L含むX元素含有溶液を、前記リチウム含有複合酸化物の粉末に噴霧しながら乾燥する被覆工程を行うことにより、前記リチウム含有複合酸化物に対する前記X元素含有化合物の含有量が0.005~0.05倍モルである前記正極活物質を形成することを特徴とするリチウムイオン二次電池用正極活物質の製造方法。
  2.  前記リチウム含有複合酸化物の粉末に噴霧する前記X元素含有溶液の量を、前記リチウム含有複合酸化物の粉末に対する前記X元素含有溶液の質量比が1~95になる範囲とする請求項1に記載の製造方法。
  3.  前記X元素含有溶液が水溶液であり、20℃の水に対する前記X元素含有化合物の溶解度が、0.1~100g/Lである請求項1または2に記載の製造方法。
  4.  前記X元素含有化合物が、LiF、LiPO、LiSO、NaF、AlF、およびZrFからなる群から選ばれる少なくとも1つである請求項1~3のいずれか一項に記載の製造方法。
  5.  前記X元素含有溶液が噴霧される際のリチウム含有複合酸化物の粉末の温度が80~140℃である請求項1~4のいずれか一項に記載の製造方法。
  6.  前記噴霧されるX元素含有溶液の温度が10~60℃である請求項1~5のいずれか一項に記載の製造方法。
  7.  前記被覆工程の後に、乾燥温度が100~300℃である乾燥工程をさらに有する請求項1~6のいずれか一項に記載の製造方法。
  8.  前記被覆工程において、前記リチウム含有複合酸化物の粉末を前記X元素含有溶液とともに撹拌しながら加熱する請求項1~7のいずれか一項に記載の製造方法。
  9.  前記被覆工程において、前記リチウム含有複合酸化物の粉末を前記X元素含有溶液とともに撹拌する水平軸型の撹拌手段と、前記X元素含有溶液を噴霧するスプレー式注液手段と、撹拌されている前記リチウム含有複合酸化物の粉末と前記X元素含有溶液とを加熱する加熱手段とを有する撹拌加熱装置を用いる請求項8に記載の製造方法。
  10.  請求項1~9のいずれか一項に記載のリチウムイオン二次電池用正極活物質の製造方法を用いて製造された正極活物質と、導電材と、バインダーとを含む正極活物質層が、正極集電体上に形成されていることを特徴とするリチウムイオン二次電池用の正極。
  11.  請求項10に記載の正極と負極と非水電解質とを含むことを特徴とするリチウムイオン二次電池。
PCT/JP2012/066061 2011-06-24 2012-06-22 リチウムイオン二次電池用正極活物質の製造方法 WO2012176903A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011140495 2011-06-24
JP2011-140495 2011-06-24

Publications (1)

Publication Number Publication Date
WO2012176903A1 true WO2012176903A1 (ja) 2012-12-27

Family

ID=47422730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066061 WO2012176903A1 (ja) 2011-06-24 2012-06-22 リチウムイオン二次電池用正極活物質の製造方法

Country Status (2)

Country Link
JP (1) JPWO2012176903A1 (ja)
WO (1) WO2012176903A1 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014104234A1 (ja) * 2012-12-28 2014-07-03 Agcセイミケミカル株式会社 表面修飾リチウム含有複合酸化物粒子、該粒子を用いた正極及び非水電解質二次電池
WO2014132550A1 (ja) * 2013-02-28 2014-09-04 三洋電機株式会社 非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池
JP2015118762A (ja) * 2013-12-17 2015-06-25 旭硝子株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2015136892A1 (ja) * 2014-03-11 2015-09-17 三洋電機株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極
JP2015165463A (ja) * 2014-03-03 2015-09-17 トヨタ自動車株式会社 リチウムイオン二次電池の正極、及びリチウムイオン二次電池の製造方法
JP2015533257A (ja) * 2013-06-18 2015-11-19 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びその製造方法
JP2016507878A (ja) * 2013-02-01 2016-03-10 トロノックス エルエルシー 改善されたリチウムマンガン酸化物組成物
JP2016046240A (ja) * 2014-08-21 2016-04-04 ポスコ リチウム二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池
JP2016066462A (ja) * 2014-09-24 2016-04-28 ソニー株式会社 リチウムイオン二次電池
JP2016524301A (ja) * 2013-07-08 2016-08-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウムイオン電池用の電極材料
JP2017131836A (ja) * 2016-01-27 2017-08-03 住友金属鉱山株式会社 被覆処理装置及び被覆処理方法
JPWO2016147856A1 (ja) * 2015-03-13 2017-12-07 ヤマハ発動機株式会社 非水電解液二次電池用正極活物質およびその製造方法、前記正極活物質を含む電池、ならびに電池の充放電方法
JP2018049848A (ja) * 2017-12-19 2018-03-29 トロノックス エルエルシー 改善されたリチウムマンガン酸化物組成物
JP2018529199A (ja) * 2015-09-16 2018-10-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh バッテリーセルの正極用の活物質、正極、およびバッテリーセル
JPWO2018105481A1 (ja) * 2016-12-07 2019-10-24 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
CN111213269A (zh) * 2017-11-27 2020-05-29 株式会社Lg化学 正极添加剂、其制备方法和包含其的正极及锂二次电池
JP2020205274A (ja) * 2017-06-26 2020-12-24 株式会社半導体エネルギー研究所 リチウムイオン二次電池
CN114026045A (zh) * 2019-06-25 2022-02-08 住友金属矿山株式会社 锂离子二次电池用正极活性物质及其制造方法以及锂离子二次电池
EP4239267A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device
EP4239265A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276454A (ja) * 2004-03-23 2005-10-06 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JP2006155979A (ja) * 2004-11-26 2006-06-15 Central Res Inst Of Electric Power Ind 全固体型電池
JP2006156032A (ja) * 2004-11-26 2006-06-15 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2007005267A (ja) * 2005-06-27 2007-01-11 Central Res Inst Of Electric Power Ind 常温溶融塩を用いたリチウムイオン二次電池およびその製造方法
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
WO2009157524A1 (ja) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276454A (ja) * 2004-03-23 2005-10-06 Sumitomo Metal Mining Co Ltd リチウムイオン二次電池用正極活物質及びその製造方法
JP2006155979A (ja) * 2004-11-26 2006-06-15 Central Res Inst Of Electric Power Ind 全固体型電池
JP2006156032A (ja) * 2004-11-26 2006-06-15 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質およびその製造方法
JP2008536285A (ja) * 2005-04-15 2008-09-04 エナーセラミック インコーポレイテッド フッ素化合物でコーティングされたリチウム二次電池用正極活物質及びその製造方法
JP2007005267A (ja) * 2005-06-27 2007-01-11 Central Res Inst Of Electric Power Ind 常温溶融塩を用いたリチウムイオン二次電池およびその製造方法
WO2009157524A1 (ja) * 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074851B2 (en) 2012-12-28 2018-09-11 Sumitomo Chemical Co., Ltd. Surface modified lithium-containing composite oxide particles, positive electrode using the particles, and non-aqueous electrolyte secondary battery
WO2014104234A1 (ja) * 2012-12-28 2014-07-03 Agcセイミケミカル株式会社 表面修飾リチウム含有複合酸化物粒子、該粒子を用いた正極及び非水電解質二次電池
EP2951129A4 (en) * 2013-02-01 2016-09-21 Tronox Llc IMPROVED LITHIUM MANGANOID COMPOSITIONS
US10522822B2 (en) 2013-02-01 2019-12-31 Emd Acquisition Llc Lithium manganese oxide compositions
JP2016507878A (ja) * 2013-02-01 2016-03-10 トロノックス エルエルシー 改善されたリチウムマンガン酸化物組成物
WO2014132550A1 (ja) * 2013-02-28 2014-09-04 三洋電機株式会社 非水電解質二次電池用正極、及びその正極を用いた非水電解質二次電池
US10128495B2 (en) 2013-02-28 2018-11-13 Sanyo Electric Co., Ltd. Positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery that uses the positive electrode
JP2015533257A (ja) * 2013-06-18 2015-11-19 エルジー・ケム・リミテッド リチウム二次電池用正極活物質及びその製造方法
JP2016524301A (ja) * 2013-07-08 2016-08-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se リチウムイオン電池用の電極材料
JP2015118762A (ja) * 2013-12-17 2015-06-25 旭硝子株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
KR101871400B1 (ko) * 2014-03-03 2018-06-26 도요타 지도샤(주) 리튬 이온 이차 전지의 양극, 및 리튬 이온 이차 전지의 제조 방법
US9941513B2 (en) 2014-03-03 2018-04-10 Toyota Jidosha Kabushiki Kaisha Positive electrode of lithium ion secondary battery, and method of manufacturing lithium ion secondary battery
CN106068573A (zh) * 2014-03-03 2016-11-02 丰田自动车株式会社 锂离子二次电池的正极和制造锂离子二次电池的方法
KR20160117580A (ko) * 2014-03-03 2016-10-10 도요타 지도샤(주) 리튬 이온 이차 전지의 양극, 및 리튬 이온 이차 전지의 제조 방법
JP2015165463A (ja) * 2014-03-03 2015-09-17 トヨタ自動車株式会社 リチウムイオン二次電池の正極、及びリチウムイオン二次電池の製造方法
WO2015136892A1 (ja) * 2014-03-11 2015-09-17 三洋電機株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極
JPWO2015136892A1 (ja) * 2014-03-11 2017-04-06 三洋電機株式会社 非水電解質二次電池用正極活物質及び非水電解質二次電池用正極
JP2016046240A (ja) * 2014-08-21 2016-04-04 ポスコ リチウム二次電池用正極活物質、その製造方法、及びそれを含むリチウム二次電池
JP2016066462A (ja) * 2014-09-24 2016-04-28 ソニー株式会社 リチウムイオン二次電池
JPWO2016147856A1 (ja) * 2015-03-13 2017-12-07 ヤマハ発動機株式会社 非水電解液二次電池用正極活物質およびその製造方法、前記正極活物質を含む電池、ならびに電池の充放電方法
JP2018529199A (ja) * 2015-09-16 2018-10-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh バッテリーセルの正極用の活物質、正極、およびバッテリーセル
US10833319B2 (en) 2015-09-16 2020-11-10 Robert Bosch Gmbh Active material for a positive electrode of a battery cell, positive electrode, and battery cell
JP2017131836A (ja) * 2016-01-27 2017-08-03 住友金属鉱山株式会社 被覆処理装置及び被覆処理方法
JPWO2018105481A1 (ja) * 2016-12-07 2019-10-24 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP7002469B2 (ja) 2016-12-07 2022-01-20 住友化学株式会社 リチウム二次電池用正極活物質の製造方法
JP2020205274A (ja) * 2017-06-26 2020-12-24 株式会社半導体エネルギー研究所 リチウムイオン二次電池
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery
JP7213853B2 (ja) 2017-06-26 2023-01-27 株式会社半導体エネルギー研究所 リチウムイオン二次電池
CN111213269B (zh) * 2017-11-27 2023-02-24 株式会社Lg新能源 正极添加剂、其制备方法和包含其的正极及锂二次电池
CN111213269A (zh) * 2017-11-27 2020-05-29 株式会社Lg化学 正极添加剂、其制备方法和包含其的正极及锂二次电池
JP2020522851A (ja) * 2017-11-27 2020-07-30 エルジー・ケム・リミテッド 正極添加剤、その製造方法、これを含む正極およびリチウム二次電池
JP7150380B2 (ja) 2017-11-27 2022-10-11 エルジー エナジー ソリューション リミテッド 正極添加剤、その製造方法、これを含む正極およびリチウム二次電池
US11545670B2 (en) 2017-11-27 2023-01-03 Lg Energy Solution, Ltd. Cathode additive, preparation method thereof, and cathode and lithium secondary battery comprising the same
JP2018049848A (ja) * 2017-12-19 2018-03-29 トロノックス エルエルシー 改善されたリチウムマンガン酸化物組成物
CN114026045A (zh) * 2019-06-25 2022-02-08 住友金属矿山株式会社 锂离子二次电池用正极活性物质及其制造方法以及锂离子二次电池
CN114026045B (zh) * 2019-06-25 2024-01-16 住友金属矿山株式会社 锂离子二次电池用正极活性物质及其制造方法以及锂离子二次电池
EP4239267A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device
EP4239265A1 (en) * 2022-03-04 2023-09-06 Dae Sung Machinery Co., Ltd. Cathode material integrated processing device

Also Published As

Publication number Publication date
JPWO2012176903A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
WO2012176903A1 (ja) リチウムイオン二次電池用正極活物質の製造方法
JP6253408B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
US10910640B2 (en) Cathode active material for lithium ion secondary battery, and process for its production
JP5928445B2 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP6070551B2 (ja) リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池の製造方法
JP6382810B2 (ja) リチウムイオン二次電池用正極活物質の製造方法
WO2012108513A1 (ja) リチウムイオン二次電池用の正極活物質の製造方法
JP2012169217A (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP2012138197A (ja) リチウムイオン二次電池用の正極活物質、正極、リチウムイオン二次電池、および、リチウムイオン二次電池用正極活物質の製造方法
WO2012057289A1 (ja) リチウムイオン二次電池用正極活物質、正極、電池、及び製造方法
WO2012102354A1 (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
JP2014116162A (ja) 正極活物質
WO2013154142A1 (ja) リチウムイオン二次電池用正極活物質
WO2013115336A1 (ja) リチウムイオン二次電池用正極活物質
WO2014069466A1 (ja) 正極活物質およびその製造方法
JP2015056275A (ja) リチウムイオン二次電池用正極活物質の製造方法およびリチウムイオン二次電池用正極の製造方法
JP2014089826A (ja) 正極活物質

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013521645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802081

Country of ref document: EP

Kind code of ref document: A1