WO2015084026A1 - 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2015084026A1
WO2015084026A1 PCT/KR2014/011709 KR2014011709W WO2015084026A1 WO 2015084026 A1 WO2015084026 A1 WO 2015084026A1 KR 2014011709 W KR2014011709 W KR 2014011709W WO 2015084026 A1 WO2015084026 A1 WO 2015084026A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
source
active material
secondary battery
metal
Prior art date
Application number
PCT/KR2014/011709
Other languages
English (en)
French (fr)
Inventor
최수안
이승원
정호준
양지운
신준호
정진성
전재우
정봉준
Original Assignee
주식회사 엘앤에프신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘앤에프신소재 filed Critical 주식회사 엘앤에프신소재
Publication of WO2015084026A1 publication Critical patent/WO2015084026A1/ko
Priority to US15/171,212 priority Critical patent/US10439211B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a battery generates power by using a material capable of electrochemical reactions at a positive electrode and a negative electrode.
  • a typical example of such a battery is a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium ions are intercalated / deintercalated at a positive electrode and a negative electrode.
  • the lithium secondary battery is prepared by using a material capable of reversible intercalation / deintercalation of lithium ions as a positive electrode and a negative electrode active material, and layering an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo02, LiMn 2 O 4) LiNi0 2 , and LiMn0 2 have been studied.
  • Mn-based cathode active materials such as LiMn 2 O 4 and LiMn0 2 are easy to synthesize, are relatively inexpensive, have the best thermal stability compared to other active materials during overheating, and have low environmental pollution and are attractive materials. Although it has a disadvantage, the capacity is small.
  • LiCo0 2 has a good electrical conductivity and a high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability, and discharge capacity. Thus, LiCo0 2 is a representative cathode active material commercially available and commercially available. However, since LiCo0 2 is expensive, it takes up more than 30% of the battery price, which makes the price competitive. have.
  • LiNi3 ⁇ 4 has the highest discharge capacity of the above-mentioned positive electrode active material, but it is difficult to synthesize. have.
  • the high oxidation state of nickel causes a decrease in battery and electrode life, and there is a problem of severe self discharge and inferior reversibility.
  • it is difficult to commercialize the stability is not perfect.
  • a method of providing a cathode active material for a lithium secondary battery coated with Li 3 P0 4 is disclosed, but the structural improvement on the surface of the cathode active material and chemicals with Li remaining in a manner of physically applying Li 3 P0 4 as a coating material. No reaction takes place
  • KR2009-0077163 discloses a positive electrode active material having improved high rate characteristics and cycle characteristics by providing a positive electrode active material including an oxide coating layer formed on a positive electrode active material core, but in the method of pre-manufacturing metal phosphate and coating the active material, Due to the high binding power of metal phosphate, the reaction with cathode material is not sufficiently performed during coating, which limits the surface structure and describes only the single metal phosphate coating effect.
  • JP2011-233246 discloses a technique for reducing interfacial resistance with a transition metal reducing layer that is self-formed by reaction of a transition metal and a polyanion structure-containing compound on the surface of the positive electrode active material in contact with the reaction suppressing portion.
  • the above technique is a technique applied to an all-solid-state battery, and there is no mention of the effect in the case of an organic solvent electrolyte system other than the all-solid-state battery, and also does not show the effect at high voltage due to the recent high voltage.
  • It provides a cathode active material for a lithium secondary battery excellent in high capacity, high efficiency and rate characteristics, and provides a lithium secondary battery comprising a positive electrode comprising the positive electrode active material To provide.
  • a compound capable of reversible intercalation and deintercalation of lithium comprising Li 3 P0 4 , wherein the coating layer is a composite coating layer further comprising lithium metal oxide, metal oxide, and / or combinations thereof.
  • the lithium metal oxide or the metal oxide provides a cathode active material for a lithium secondary battery that comprises Zr.
  • metal M is Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe, and Zr It may be at least one element selected from the group consisting of.
  • the metal M may be Mg, Ca, or Ti.
  • the compound capable of reversible intercalation and deintercalation of lithium may have a molar ratio of lithium to a metal element excluding lithium in the compound. More specifically, the compound capable of reversible intercalation and deintercalation of lithium may be Li-rich (Li / M rat io> 1.0) composition.
  • Li 3 PO 4 , and / or lithium of lithium metal oxide contained in the sum coating layer is derived from a compound contained in the compound capable of reversible intercalation and deintercalation of the lithium, or a separate Li supply Can be derived from the material.
  • the metal in the lithium metal oxide, and / or metal oxide contained in the composite coating layer is Na, K, Mg, Ca, Sr, Ni, Co, Ti, Al ⁇ Si, Sn, Mn, Cr, Fe, V, Zr, Or combinations thereof.
  • the lithium metal oxide contained in the composite coating layer may be Li 2 Zr0 3 , Li 2 Si0 3 , Li 4 Si0 4, or a combination thereof.
  • the metal oxide included in the composite coating layer may be Zr0 2 , Si0 2 , or a combination thereof.
  • the composite coating layer may further include an A1 compound.
  • the A1 compound may be an A1 oxide.
  • the A1 raw material to the coating raw material In addition, the A1 compound may be included in the composite coating layer.
  • the positive electrode active material a compound capable of reversible intercalation and deintercalation of the lithium does not include the composite coating layer. Compared with the positive electrode active material used, the amount of residual lithium may be reduced by 10 to 40% by weight.
  • Li a Ai- b X b D 2 (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5); Li a Ai- b X b 0 2 - c T c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiEi- b X b 0 2 -cD c (0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 2 -bXb0 4 -cTc (0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05) Li a Ni — b - c Co b X c D a (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05, 0 ⁇ a ⁇ 2); LiaNi — c Co b X c 0 2 — a T a (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5,
  • Li a NiGb0 2 -cT c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); Li a CoGb0 2- cT c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); Li a MnG 0 2 - c T c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); Li a Mn 2 G b 0 2- c T c (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); Li a MnG P0 4 ( 0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); LiNiV0 4 ( 0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1); LiNiV0 4 ( 0.90 ⁇ a ⁇
  • A is selected from the group consisting of Ni, Co, Mn, and combinations thereof;
  • X is selected from the group consisting of Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements and combinations thereof;
  • D is selected from the group consisting of 0, F, S, P, and combinations thereof;
  • E is selected from the group consisting of Co, Mn, and combinations thereof;
  • T is selected from the group consisting of F, S, P, and combinations thereof;
  • G is selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof;
  • Q is selected from the group consisting of Ti, Mo, Mn, and combinations thereof;
  • Z is Cr, V, Fe, Sc, Y, and combinations thereof;
  • J is selected from the group consisting of V, Cr, Mn, Co, Ni, Cu, and combinations thereof.
  • the content of the composite coating layer based on the total weight of the cathode active material may be 0.2 to 2.0 wt%.
  • Zr / P weight ratio in the composite coating layer may be 0.2 to 1.2.
  • the content of Zr and P in the composite coating layer may be Zr 500ppm to 3000ppm, and P 500 to 5000ppm.
  • Comprising a composite coating layer further comprises a step of obtaining a compound capable of reversible intercalation and deintercalation of lithium formed on the surface; including, the lithium source; Phosphorus source; And preparing a metal source; the metal source includes a Zr source, and the lithium metal oxide or the metal oxide includes Zr.
  • the heat treatment temperature may be 650 to 950 ° C.
  • the lithium source Phosphorus source; And preparing a metal source; wherein the lithium source is lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, phosphoric acid Lithium, lithium chloride, lithium hydroxide, lithium oxide, or a combination thereof.
  • cathode active material having excellent battery characteristics and a lithium secondary battery including the same.
  • FIG. 1 is a schematic view of a lithium secondary battery.
  • FIG. 2 shows the results of the hot storage swelling-test of the pouch cell.
  • FIG. 3 shows the results of electrochemical impedance spectroscopy (EIS).
  • a compound capable of reversible intercalation and deintercalation of lithium comprising Li 3 P0 4 ,
  • the coating layer is a composite coating layer further comprising a lithium metal oxide, a metal oxide, and / or a combination thereof, the lithium metal oxide or the metal oxide It provides a positive electrode active material for a lithium secondary battery containing silver Zr.
  • the compound capable of reversible intercalation and deintercalation of lithium is doped with metal M, and the metal M is Mg, Ca, Ni, Ti, Al, Si, Sn, Mn, Cr, Fe and Zr It may be at least one element selected from the group consisting of.
  • the compound of the coating layer may be a compound generated by the heat treatment reaction.
  • Li 3 PO 4 , and / or lithium of lithium metal oxide contained in the composite coating layer is derived from Li contained in the compound capable of reversible intercalation and deintercalation of the lithium. It may be from the Li feed material.
  • the positive electrode active material including the composite layer including Li 3 PO 4 and further including a lithium metal oxide, a metal oxide, and / or a combination thereof may improve battery characteristics of a lithium secondary battery. More specifically, it is possible to provide a cathode active material having a higher initial capacity, improved efficiency characteristics and excellent rate characteristics than conventional cathode active materials.
  • the metal compound including Li of the composite coating layer may serve to increase the diffusion degree of Li ions in the cathode active material to facilitate the movement of Li ions, thereby contributing to improvement of battery characteristics.
  • the composite coating layer is synergistic in surface modification through the complex bonding between each other on the surface of the positive electrode active material.
  • the positive electrode active material according to the embodiment of the present invention may improve battery characteristics of a lithium secondary battery.
  • improved battery characteristics include initial capacity of batteries, improved efficiency characteristics, and excellent rate characteristics at high voltage characteristics. More specifically, the battery characteristics may be improved at a rate of 2C-rate or more.
  • metal M may be Mg, Ca, or Ti have.
  • the compound capable of reversible intercalation and deintercalation of lithium may have a molar ratio of lithium to a metal element excluding lithium in the compound. More specifically, the compound capable of reversible intercalation and deintercalation of lithium may be Li rich (Li / M rat io> 1.0) composition.
  • the compound capable of reversible intercalation and deintercalation of lithium may be doped with a specific doping element such as metal M, and when the coating layer is placed on the compound, the above characteristics may be realized. It may be more desirable to.
  • rocksal t structures may be formed on the surface of the anode material under conventional manufacturing conditions.
  • a surface rearrangement reaction occurs in a chemical reaction process in which Li 3 PO 4 is formed, thereby controlling structural defects and impurities formed on the surface.
  • LiM0 2 is Ni, Co, or Mn
  • the lack of Li may occur in the process of forming Li 3 P0 4 , which may result in partial deterioration of battery characteristics.
  • Li 3 P0 4 coating is performed on a metal M-doped composition, structural defects may occur due to a reduction reaction occurring between P and the surface of the cathode material.
  • Li ri ch (Li / M rat io> 1.0) composition when doped with metal M suppresses the surface defects caused by Li deficiency and reduction reaction during the formation of Li 3 P0 4 to reduce the effect of the coating layer Can be maximized.
  • the metal is doped with M, improved battery characteristics can be realized at high voltage through structure stabilization.
  • the surface modification by the P treatment may cause excessive reduction reaction depending on the production conditions, which may result in structural defects due to the lack of Li and oxygen on the surface of the cathode material.
  • the Li rich (Li / M rat io> 1.0) composition the surface due to Li deficiency and reduction reaction occurring in the process of forming Li 3 P0 4 through metal M doping The defect can be suppressed effectively. From this, the swelling phenomenon can be controlled to significantly improve battery stability.
  • the lithium metal oxide contained in the composite coating layer may be Li 2 Zr0 3 , Li 2 Si0 3 , Li 4 Si0 4, or a combination thereof.
  • the metal oxide included in the composite coating layer may be Zr3 ⁇ 4, Si0 2 , or a combination thereof.
  • lithium of Li 3 PO 4 , and / or lithium metal oxide contained in the composite coating layer may be derived from Li contained in a compound capable of reversible intercalation and deintercalation of the lithium. Therefore, the effect of reducing residual lithium on the surface can be obtained.
  • the positive electrode active material may have a residual lithium amount of 10 to 40% less than the positive electrode active material using a compound capable of reversible intercalation and deintercalation of the lithium that does not include the composite coating layer. Can be.
  • the residual lithium is water-soluble residual lithium (Li 2 CO 3 + LiOH) when the amount of residual lithium of the positive electrode active material that does not include the composite coating layer is 100 to 10 to 40% reduced by 100 based on 100 to 60 to It can have a value of 90%.
  • the content of the composite coating layer relative to the total weight of the cathode active material is 0.2 to
  • the increase ratio is less than 0.2, the role of the coating layer may be reduced, and if it is more than 2.0, the initial capacity may decrease and the charge / discharge efficiency may decrease. However, it is not limited thereto.
  • the composite coating layer may include P. Also, more specifically, the Zr / P weight ratio in the composite coating layer may be 0.2 to 1.2. However, it is not limited thereto.
  • Content of Zr and P the composite coating layer may Zr days 500ppm to 3000ppm, and P 500 to 5000pp m.
  • the compound capable of reversible intercalation and deintercalation of lithium is LAX b D ⁇ O ⁇ O ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5); Li a Ai- b X b 0 2 - c T c (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiEi-bX b 0 2- cD c (0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.05); LiE 2 - b X b 0 4 - c T c (0 ⁇ b ⁇ 0.5, 0 ⁇ c
  • Li a Ni b Co c Mn d G e 0 2 -fTf (0.90 ⁇ a ⁇ 1.8, 0 ⁇ b ⁇ 0.9, 0 ⁇ c ⁇ 0.5, 0 ⁇ d ⁇ 0.5, 0.001 ⁇ e ⁇ 0.1, .0 ⁇ e ⁇ 0.05); Li a NiG b 0 2 — C T C (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); Li a CoG b 0 2 -cTc (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); Li a Mn 2 G b 0 2 — C T C (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1, 0 ⁇ c ⁇ 0.05); Li a Mn 2 G b
  • Li a MnGVO 4 (0.90 ⁇ a ⁇ 1.8, 0.001 ⁇ b ⁇ 0.1); LiNiV0 4 ; And it may be at least one selected from the group consisting of Li (3 - f) J 2 (P0 4 ) 3 (0 ⁇ f ⁇ 2).
  • A is selected from the group consisting of Ni, Co, Mn, and combinations thereof;
  • X is selected from the group consisting of Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements and combinations thereof;
  • D is selected from the group consisting of 0, F, S, P, and combinations thereof;
  • E is selected from Co, Mn, and combinations thereof;
  • T is selected from the group consisting of F, S, P, and combinations thereof;
  • G is selected from the group consisting of Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, and combinations thereof;
  • Q is selected from the group consisting of Ti, Mo, Mn, and combinations thereof;
  • Z is selected from the group consisting of Cr, V, Fe, Sc, Y, and combinations thereof;
  • J is selected from the group consisting of V, Cr, Mn, Co, Ni, Cu, and combinations thereof.
  • the lithium source may be a deintercalation compound; Phosphorus source; And / or a lithium source on a surface of a compound capable of mixing a metal source to enable reversible intercalation and deintercalation of the lithium; Phosphorus source; And / or attaching the metal source uniformly; And the lithium source; Phosphorus source; And / or heat treating a compound capable of reversible intercalation and deintercalation of lithium with a metal source, including Li 3 P0 4 , further adding lithium metal oxides, metal oxides, and / or combinations thereof.
  • Obtaining a compound capable of reversible intercalation and de-intercalation of lithium formed on the surface of the composite coating layer comprising; including; the lithium source; Phosphorus source; And the metal source; preparing a; in, the metal source is provided i a method of manufacturing a cathode active material for a lithium secondary battery comprises Zr is included the Zr source, and the lithium metal oxide or the metal oxide.
  • the heat treatment temperature may be 650 to 95CTC. In the temperature range, the coating layer formed on the surface of the cathode active material may play a stable role.
  • the lithium source; Phosphorus source; And preparing a metal source; the lithium source may be lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium phosphate, lithium chloride, lithium hydroxide, lithium oxide, or a combination thereof, but is not limited thereto. It is not.
  • the lithium source; And preparing a metal source; the phosphorus source may be (NH 4 ) 2 HP0 4 , NH 4 H 2 PO 4 , Li 3 P0 4 , P 2 O 5, or a combination thereof, but is not limited thereto.
  • a lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte
  • the positive electrode includes a current collector and a positive electrode active material layer formed on the current collector, the positive electrode active material layer, It provides a lithium secondary battery comprising the positive electrode active material described above.
  • the description related to the cathode active material is omitted because it is the same as the embodiment of the present invention described above.
  • the positive electrode active material layer may include a binder and a conductive material.
  • the binder adheres positively to the positive electrode active material particles, and also serves to adhere the positive electrode active material to the current collector well, and representative examples thereof include polyvinyl alcohol, carboxymethyl cell rose, hydroxypropyl cell rose, and diacetyl cell rose.
  • Polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, polymer containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene polypropylene, Styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
  • any battery can be used as long as it is an electronic conductive material without causing chemical change in the battery.
  • Carbon-based materials such as black and carbon fiber;
  • Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the negative electrode includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
  • the anode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, or a transition metal oxide. .
  • any carbon-based negative electrode active material generally used in a lithium ion secondary battery may be used.
  • amorphous carbon or these may be used together.
  • the crystalline carbon may include graphite such as amorphous, plate, flake, spherical or fibrous natural or artificial alum, and examples of the amorphous carbon include soft carbon (soft carbon) Or hard carbon, mesophase pitch carbide, calcined coke, or the like.
  • alloy of the lithium metal examples include lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al, and Sn. Alloys of the metals selected may be used.
  • Examples of a material capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2),
  • Si-Y alloy (Y is an element selected from the group consisting of alkali metal, alkaline earth metal, group 13 element, group 14 element, transition metal, rare earth element and combinations thereof, not Si), Sn, Sn0 2 , Sn-Y (Y is an element selected from the group consisting of alkali metals, alkaline earth metals, group 13 elements, group 14 elements, transition metals, rare earth elements, and combinations thereof, and not Sn). At least one of these and Si0 2 may be mixed and used.
  • the element Y may include Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, and combinations thereof.
  • the transition metal oxides include vanadium oxide and lithium vanadium oxide.
  • the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder adheres the anode active material particles to each other well, and also serves to adhere the anode active material to the current collector well.
  • Polyvinyl alcohol Carboxymethylcellulose, hydroxypropylcelose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, .
  • Polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like may be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • any battery can be used as long as it is an electron conductive material without causing chemical change in the battery.
  • natural alum, artificial alum, carbon black, acetylene black, ketjen Carbon-based materials such as black and carbon fiber;
  • Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the current collector may be selected from the group consisting of copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, and combinations thereof.
  • A1 may be used as the current collector, but is not limited thereto.
  • the negative electrode and the positive electrode are mixed with an active material, a conductive material and a binder in a solvent to prepare an active material composition, and the composition to the current collector.
  • an active material composition By application. Since such an electrode manufacturing method is well known in the art, detailed description thereof will be omitted.
  • N-methylpyridone may be used as the solvent, but is not limited thereto.
  • the electrolyte contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the cell can move.
  • a carbonate-based, ester-based, ether-based, ketone-based, alcohol-based, or aprotic solvent may be used.
  • the carbonate solvents include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC), Ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC) and the like can be used
  • the ester solvent is methyl Acetate, ethyl acetate, n-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, butyrolactone, decanol ide, valerolactone, mevalonolactone, caprol Lactone (caprol actone), and the like can be used.
  • ether solvent dibutyl ether, tetraglyme, diglyme, dimetheustane, 2-methyltetrahydrofuran, tetrahydrofuran, etc.
  • ketone solvent cyclonucleanone may be used. Can be.
  • alcohol-based solvent examples include ethyl alcohol, isopropyl and the like can be used alkoeul
  • the aprotic solvent is R-CN (R is i-minute linear C2 to C20 ground, or cyclic structure hydrocarbon group of Amides such as nitriles, dimethylformamide, and dioxolanes such as 1,3-dioxolane, and sulfolane such as 1,3-dioxolane. .
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely understood by those skilled in the art. Can be.
  • the carbonate-based solvent it is preferable to use a combination of a cyclic carbonate and a chain carbonate.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of 1: 1 to 1: 9, so that the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent according to the embodiment of the present invention may further include an aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of 1: 1 to 30: 1.
  • an aromatic hydrocarbon compound of Formula 1 may be used as the aromatic hydrocarbon-based organic solvent.
  • R 6 are each independently hydrogen, halogen, C1 to C10 alkyl group, haloalkyl group or a combination thereof.
  • the aromatic hydrocarbon organic solvent is benzene, fluorobenzene 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, chlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene, 1,2,4 -Trichlorobenzene, iodobenzene, 1,2-diiodobenzene, 1,3-diiodobenzene, 1,4-diiodobenzene, 1,2,3-triiodobenzene, 1,2,4- Triiodobenzene, toluene, fluoroluene, 1,2-difluorotoluene, 1, 3-difluoroluene, 1,4-d
  • the non-aqueous electrolyte may further include vinylene carbonate or an ethylene carbonate compound represented by the following Chemical Formula 2 to improve battery life.
  • R 7 and R 8 are each independently a number, a halogen group, a cyano group (CN), a nitro group (N0 2 ) or a C1 to C5 fluoroalkyl group, at least one of R 7 and 3 ⁇ 4 Halogen group, cyano group (CN), nitro group (N0 2 ) or C1 to C5 Fluoroalkyl group.
  • ethylene carbonate-based compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate or fluoroethylene carbonate. Can be. In the case of further using such life improving additives, the amount thereof can be properly adjusted.
  • the lithium salt is a substance that dissolves in an organic solvent, acts as a source of lithium ions in the battery, thereby enabling the operation of a basic lithium secondary battery, and promoting the movement of lithium ions between the positive electrode and the negative electrode.
  • Representative examples of such lithium salts are LiPF 6 , LiBF 4 , LiSbFg, LiAsF 6 , LiC 4 F 9 S0 3 , LiC10 4 , UA102, LiAlCl 4 , LiN (C x F 2x + 1 S0 2 ) (CyF 2y + 1 S0 2) ) (Where x and y are natural numbers), LiCl, Li l and LiB (C 2 0 4 ) 2 (li thium bis (oxal ato) borate; LiBOB) Including one or more of the supporting salts, the concentration of the lithium salt is preferably used in the range of 0.1 to 2.0 M. If the concentration of the lithium salt is in the above range, the electrolyte is suitable conductivity
  • a separator may exist between the positive electrode and the negative electrode.
  • the separator polyethylene, polypropylene, polyvinylidene fluoride or two or more multilayer films thereof may be used, polyethylene / polypropylene two-layer separator, polyethylene / polypropylene / polyethylene three-layer separator, polypropylene / polyethylene / poly It goes without saying that a mixed multilayer film such as a propylene triplet separator can be used.
  • Lithium secondary batteries may be classified into lithium ion batteries, lithium ion polymer batteries, and lithium polymer batteries according to the type of separator and electrolyte used, and may be classified into cylindrical, square, coin, and pouch types according to their shape. Depending on the size, it can be divided into bulk type and thin film type. Since the structure and manufacturing method of these batteries are well known in the art, detailed description thereof will be omitted.
  • the lithium secondary battery 1 schematically illustrates a representative structure of a lithium secondary battery of the present invention.
  • the lithium secondary battery 1 includes a positive electrode 3, a negative electrode 2, and an electrolyte solution impregnated in a separator 4 existing between the positive electrode 3 and the negative electrode 2.
  • the container 5 and the sealing member 6 which encloses the said battery container 5 are included.
  • Example 3 a P source was further added to 100 ppm to prepare a cathode active material.
  • Example 1 a P source was further added to 3000 ppm to prepare a cathode active material.
  • Example 4 A mixer LiNi 0 .6oCoo.2oMiio. 2o0 2 lOOg and 0.054g LiOH powder and Zr (0H) 4 powder and the Si0 2 powder 0.172g 0.054g and (NH 4) 2 HP0 4 powder 0.387g, dry the combined common shake the powder attached to the surface of the active material body compound After the preparation, the mixture was heat-treated at 650 ° C. for 6 hours to prepare a cathode active material.
  • the content of the coating element is Zr 100 ppm, Si 250 ppm, and P 900 ppm.
  • the LiCo0 2 was mixed with the prepared coating solution, the coating solution was coated on the cathode active material, and then dried to prepare a mixture. Then, the mixture was heat-treated at 650 ° C. for 6 hours to prepare a cathode active material.
  • the content of the coating element is Zr 100 ppm, Si 250 ppm, and P 900 ppm. Comparative Example 1
  • a positive electrode active material was prepared in the same manner as in Example 1, except that 100 g of LiCo3 ⁇ 4, 0.054 g of LiOH powder, and 0.172 g of Zr (0H) 4 powder were mixed in a mixer to prepare a mixture. Comparative Example 2
  • Comparative Example 1 a positive electrode active material was prepared in the same manner except that 100 g of LiCoOg, 0.054 g of Li OH powder, and 0.387 g of (NH 4 ) 2 HP0 4 powder were mixed in a mixer to prepare a mixture. Comparative Example 4
  • Example 1 a P active source was added to 5000 ppm to prepare a cathode active material. Comparative Example 5
  • the cathode active material was prepared in the LiNi 0 .6oCoo.2oMno.2o0 2 100g, to 6 hours heat treatment at 600 ° C without the coating treatment. Production of coin cell
  • a positive electrode slurry was prepared by adding to 5.0 wt%.
  • the positive electrode slurry was applied to a thin film of aluminum (A1) which is a positive electrode current collector having a thickness of 20 to 40 zm, vacuum dried, and roll was pressed to prepare a positive electrode.
  • Li-metal was used as the negative electrode.
  • a half cell of coin cell type was prepared using LiPF6EC: DMC (l: lvol%).
  • a positive electrode was manufactured in the same manner as in manufacturing the coan cell, and as the negative electrode, Graphite was used as the active material.
  • a pouch battery having a size of 34 x 50 mm was prepared using 1.15 M LiPF 6 EC: DMC (1: 1 vol%).
  • Tables 1 and 2 below are 4.5V initial Formation, rate characteristics, lcyle, 20cycle, 30cycle capacity and life characteristic data of the above Examples and Comparative Examples.
  • Examples 1 to 3 including the composite coating layer in Table 1 is confirmed battery characteristics superior to Comparative Examples 1 to 5.
  • the positive electrode active material including the composite coating layer has excellent characteristics in efficiency and initial capacity than the positive electrode active material including the coating layers of Comparative Examples 1 to 15 is confirmed.
  • the P source is further added to the composite coating layer in the above table, an improvement in battery characteristics is confirmed.
  • Examples 2 to 3 and Comparative Example 4 it is confirmed that the battery characteristics are lower than those of Examples 2 to 3 in Comparative Example 4 in which an excess P source is added.
  • Example 1 having a composite coating layer has a lower residual lithium value than Comparative Examples 1 to 3 having a single coating layer, and has a lower residual lithium value when compared to Comparative Example 5 in which only recalcination was performed without coating treatment. It can be seen that the residual lithium is reduced by the composite coating layer, not the residual lithium is reduced by refiring.
  • Example 4 In Example 4 and Comparative Example 6, the above characteristic difference is also confirmed.
  • Example 5 further comprising an A1 coating layer.
  • Example 1 including the composite coating layer in Table 2 is confirmed to be excellent in the rate characteristics compared to Comparative Examples 1 to 4 not including the composite coating layer. In particular, it is confirmed that the characteristic is more pronounced at high rate.
  • Experimental Example 2 Analysis of Water-Soluble Residual Lithium The water-soluble residual lithium of the examples and the comparative examples was analyzed using a titrat ion. The results are shown in Table 1 above. In one embodiment of the present invention, it can be seen that the residual lithium is greatly reduced.
  • Experimental Example 3 safety evaluation -swel ling test
  • Example 6 Electrochemical Impedance Spectroscopy (EIS) Analysis
  • Example 3 is an electrochemical impedance spectroscopy (EIS) analysis results of Examples 1 and 5 and Comparative Example 5 described above. As the cycle progresses, the example including the composite coating layer has a lower resistance value than the comparative example without the coating layer. In addition, it is confirmed that Example 5 further including the A1 coating layer has a lower resistance value than Example 1.
  • EIS electrochemical impedance spectroscopy

Abstract

리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 및 상기 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고, 상기 코팅층은 Li3P04를 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 및/또는 이들의 조합을 더 포함하는 복합 코팅층이고, 상기 리튬 금속 산화물 또는 상기 금속 산화물은 Zr을 포함하는 것인 리튬 이차 전지용 양극 활물질을 제공한다.

Description

[명세서]
【발명의 명칭】
리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
【기술분야】
리튬 이차 전지용 양극 활물질의 제조 방법 및 리튬 이차전지용 양극 활물질에 관한 것이다. 【배경기술】
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다. 전지는 양극과 음극에 전기 화학 반응이 가능한 물질을 사용함으로써 전력을 발생시키는 것이다. 이러한 전지 중 대표적인 예로는 양극 및 음극에서 리튬 이온이 인터칼레이션 /디인터칼레이션될 때의 화학전위 (chemical potent ial )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지가 있다. 상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션 /디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 층전시켜 제조한다. 리튬 이차 전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 LiCo02 , LiMn204 ) LiNi02 , LiMn02 등의 복합금속 산화물들이 연구되고 있다.
상기 양극 활물질 중 LiMn204 , LiMn02 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과층전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점을 가지고 있다.
LiCo02는 양호한 전기 전도도와 약 3.7V 정도의 높은 전지 전압을 가지며, 사이클 수명 특성, 안정성 또한 방전 용량 역시 우수하므로, 현재 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나 LiCo02는 가격이 비싸기 때문에 전지 가격의 30% 이상을 차지하므로 가격 경쟁력이 떨어지는 문제점이 있다.
또한 LiNi¾는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이. 있다. 또한 니켈의 높은 산화상태는 전지 및 전극 수명 저하의 원인이 되며, 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아울러, 안정성 확보가 완전하지 않아서 상용화에 어려움을 겪고 있다.
양극활물질의 성능 개선을 위해 인화합물을 코팅하여 이온전도성 또는 금속용출 및 부반응에 대한 보호층 (protect ive layer ) 역할을 부여한 종래기술이 아래와 같이 개시되어 있다
전지의 안전성 및 고용량을 위해 KR1169947에 따르면 양극 활물질 표면에
Li3P04를 도포한 리튬 이차 전지용 양극 활물질을 제공하는 것이 개시되어 있으나 코팅재인 Li3P04를 물리적으로 건식 도포하는 방식으로 양극활물질 극표면에서의 구조개선이나 잔류하고 있는 Li과의 화학적인 반응은 일어나지 않는다
또한 KR2009-0077163 에서는 양극 활물질 코어 상에 형성된 산화물 코팅층을 포함하는 양극 활물질을 제공하여 고율특성 및 사이클 특성이 향상된 양극 활물질을 개시하고 있으나 금속인산화물을 선제조하여 활물질에 코팅하는 방식 에서는 선제조된 금속인산화물의 결합력이 높아 코팅시 양극재와의 반응이 충분히 이루어 지지 않아 표면 구조 개선에는 한계가 있으며 단일 금속인산화물 코팅효과만을 기술하고 있다.
또한 JP2011-233246 에서는 반웅 억제부와 접촉하는 그 양극 활물질의 표면에 전이 금속과 폴리아니온 구조 함유 화합물의 반웅에 의하여 자기 형성되는 전이 금속 환원층으로 계면 저항을 감소시키는 기술이 개시되어 있다. 그러나 상기 기술은 전고체 전지에 적용되는 기술이며, 전고체 전지가 아닌 유기용매 전해질 시스템의 경우에는 그 효과에 대한 언급이 없으며, 최근의 고전압화에 따른 고전압에서의 효과 또한 나타내고 있지 않다.
【발명의 내용】
[해결하려는 과제]
고용량, 고효율 및 율특성이 우수한 리튬 이차 전지용 양극 활물질을 제공하며, 상기 양극 활물질을 포함하는 양극을 포함하는 리튬 이차 전지를 제공하는 것이다.
【과제의 해결 수단】
본 발명의 일 구현예에서는, 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 및 상기 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고, 상기 코팅층은 Li3P04를 포함하며 , 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층이고, 상기 리튬 금속 산화물 또는 상기 금속 산화물은 Zr을 포함하는 것인 리튬 이차 전지용 양극 활물질을 제공한다.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 금속 M으로 도핑되어 있고, 상기 금속 M은 Mg, Ca , Ni , Ti , Al, Si , Sn, Mn, Cr , Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소일 수 있다.
상기 금속 M으로 도핑 된 화합물에서 금속 M은 Mg, Ca, 또는 Ti 일 수 있다.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은, 화합물 내 리튬을 제외한 금속 원소에 대한 리튬의 몰비가 1 초과일 수 있다. 보다 구체적으로, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 Li 리치 (Li/M rat io >1.0) 조성일 수 있다.
상기 합 코팅층 내 포함된 Li3P04 , 및 /또는 리튬 금속 산화물의 리튬은, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는!^으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인될 수 있다. 상기 복합 코팅층 내 포함된 리튬 금속 산화물, 및 /또는 금속 산화물에서 금속은 Na, K, Mg, Ca, Sr , Ni, Co , Ti, Alᅳ Si , Sn, Mn, Cr , Fe , V, Zr , 또는 이들의 조합일 수 있다.
상기 복합 코팅층 내 포함된 리튬 금속 산화물은 Li2Zr03 , Li2Si03 , Li4Si04 또는 이들의 조합일 수 있다.
상기 복합 코팅층 내 포함된 금속 산화물은 Zr02 , Si02 , 또는 이들의 조합일 수 있다.
상기 복합 코팅층은 A1 화합물을 더 포함할 수 있다. 상기 A1 화합물은 A1 산화물일 수 있다. 후술할 제조 방법에서, 코팅 원료 물질에 A1 원료 물질을 추가적으로 포함하여 상기 A1 화합물을 상기 복합 코팅층에 포함시킬 수 있다. 상기 양극 활물질은, 상기 복합 코팅층을 포함하지 않는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을. 이용한 양극 활물질보다, 잔류 리륨량이 중량 기준으로 10 내지 40% 감소할 수 있다.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은,
LiaAi-bXbD2(0.90 < a < 1.8, 0 < b < 0.5); LiaAi-bXb02-cTc(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05); LiEi-bXb02-cDc(0 < b < 0.5, 0 < c < 0.05); LiE2-bXb04-cTc(0 < b < 0.5, 0 < c < 0.05); LiaNi — b-cCobXcDa (0.90 < a <1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNi — cCobXc02aTa (0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaN — b-cCobXc02aT2(0.90
< a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b- cMnbXcDQ(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b-cMnbXc02-a a(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a
< 2); LiaNii-b-cMnbXc02-a 2( 0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNibEcGd02-eTe(0.90 < a < 1.8, 0 < b < 0.9, 0 < c < 0.5,
0.001 < d < 0.1, 0 < e < 0.05); UaNibCocMndGe02fTf (0.90 < a < 1.8, 0
< b < 0.9, 0 < c < 0.5, 0 < d <0.5, 0.001 < e < 0.1, 0 < e < 0.05); LiaNiGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaCoGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMnG 02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMn2Gb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMnG P04(0.90 < a < 1.8, 0.001 < b < 0.1); LiNiV04; 및 Li(3— nJ^PO s O ≤ f ≤ 2) 로 이루어진 군에서 선택된 적어도 하나일 수 있다.
상기 화학식에 있어서, A는 Ni , Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al , Ni , Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 0, F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고.; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti , Mo, Mn,및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr , V, Fe , Sc , Y , 및 이들의 조합으로 이루어진 군에서 선택되며; J는 V, Cr , Mn , Co , Ni , Cu , 및 이들의 조합으로 이루어진 군에서 선택된다.
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅층의 함량은 0.2 내지 2.0 중량 %일 수 있다.
상기 복합 코팅층 내 Zr/P 중량비는 0 .2 내지 1.2 일 수 있다.
상기 복합 코팅층을 내 Zr과 P의 함량은 Zr 500ppm 내지 3000ppm , 및 P 500 내지 5000ppm 일수 있다 .
본 발명의 다른 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계; 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계; 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 리튬 공급원;, 인 공급원; 및 /또는 금속 공급원을 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 리튬 공급원;, 인 공급원; 및 /또는 금속 공급원을 균일하게 부착시키는 단계; 및 상기 리튬 공급원; 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, L i3P04를 포함하고, 리튬 금속 산화물, 금속 산화물 및 /또는 이들의 조합을. 더 포함하는 복합 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;를 포함하되 , 상기 리튬 공급원 ; 인 공급원 ; 및 금속 공급원;을 준비하는 단계 ;에서, 상기 금속 공급원은 Zr 공급원을 포함하고, 상기 리튬 금속 산화물 또는 상기 금속 산화물은 Zr을 포함하는 것인 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다.
상기 리튬 공급원; 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li 3P04를 포함하고, 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;에서, 열처리 온도는, 650 내지 950 °C일 수 있다.
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 리튬 공급원은 탄산 리튬, 질산 리튬, 황산 리튬, 아세트산 리튬, 인산 리튬, 염화 리튬, 수산화 리튬, 산화 리튬, 또는 이들의 조합일 수 있다.
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 금속 공급원은 Zr 공급원을 포함하고, 상기 Zr 공급원은 Zr 산화물, Zr 알콕시드, Zr 수산화물, 또는 이들의 조합일 수 있다.
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 금속 공급원은 Si 공급원을 포함하고, 상기 Si 공급원은 Si 산화물, Si 알콕시드 Si 수산화물, 또는 이들의 조합일 수 있다.
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 인 공급원은 (NH4)2HP04 , NH4H2PO4 , Li3P04 , P2O5 또는 이들의 조합일 수 있다. 본 발명의 또 다른 일 구현예에서는, 전술한 본 발명의 일 구현예에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 및 전해질;을 포함하는 리튬 이차 전지를 제공한다.
【발명의 효과】
우수한 전지 특성을 갖는 양극 활물질 및 이를 포함하는 리튬 이차 전지를 제공할 수 있다.
【도면의 간단한 설명】
도 1은 리튬 이차 전지의 개략도이다.
도 2는 파우치셀의 고온 저장 스웰링-테스크 (swel l ing-test ) 결과이다. 도 3은 전기화학적 임피던스 스펙트로스코피 (Electrochemi cal Impedance Spectroscopy, EIS) 결과이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다. 본 발명의 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 및 상기 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고, 상기 코팅층은 Li 3P04를 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층이고, 상기 리튬 금속 산화물 또는 상기 금속 산화물은 Zr을 포함하는 것인 리튬 이차 전지용 양극 활물질을 제공한다.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 금속 M으로 도핑되어 있고, 상기 금속 M은 Mg , Ca , Ni , Ti, Al , Si , Sn , Mn , Cr , Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소일 수 있다 다.
상기 코팅층의 화합물은 열처리 반응으로 인하여 발생한 화합물일 수 있다. 또한, 상기 복합 코팅층 내 포함된 Li3P04 , 및 /또는 리튬 금속 산화물의 리튬은, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나., 별도의 Li 공급 물질로부터 기인된 것일 수 있다.
상기 Li 3P04를 포함하고, 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층을 포함하는 양극 활물질은 리튬 이차 전지의 전지적 특성을 향상시킬 수 있다. 보다 구체적으로, 기존의 양극 활물질 보다 높은 초기 용량, 향상된 효율 특성 및 뛰어난 율특성을 가지는 양극 활물질을 제공할 수 있다.
상기 복합 코팅층의 Li를 포함하는 금속화합물은 양극 활물질 내의 Li이온의 확산도를 높이는 역할 (Dr iving Force)을 수행하여 Li 이온의 이동을 용이하게 하여 전지 특성 향상에 기여할 수 있다.
보다 구체적으로, 상기 복합 코팅층은 양극 활물질 표면에서 서로 간의 복잡한 결합을 통하여 표면 개질에 있어서 상승 작용을 일으킨다.
또한, 상기 본 발명의 일 구현예에 따른 양극 활물질은 리튬 이차 전지의 전지적 특성을 향상시킬 수 있다. 향상된 전지적 특성의 예로, 고전압 특성에서 전지의 초기 용량, 향상된 효율 특성, 뛰어난 율특성 등이 있다. 보다 구체적으로, 2C-rate 이상의 율속에서 전지 특성의 개선을 보일 수 있다.
상기 복합 코팅층 내 A1 화합물을 더 포함할 수 있다.
상기 A1 화합물을 더 포함하는 경우, 저항이 감소 됨에 따라 스웰링 ( swel l ing) 현상을 더 억제할 수 있다. 이로부터 전지 안정성이 개선될 수 있다. 상기 금속 M으로 도핑 된 화합물에서 금속 M은 Mg , Ca , 또는 Ti 일 수 있다.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은, 화합물 내 리튬을 제외한 금속 원소에 대한 리튬의 몰비가 1 초과일 수 있다. 보다 구체적으로, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 Li rich(Li /M rat io >1.0) 조성일 수 있다.
전지 특성을 향상시키기 위해, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 금속 M과 같이 특정 도핑원소로 도핑될 수 있으며, 이러한 화합물에 상기 코팅층이 위치하면, 상기의 특성 구현에 더 바람직할 수 있다.
LiM02(M은 Ni , Co , 또는 Mn) 조성계에서는 통상적인 제조 조건 하에서 암염 (rocksal t ) 구조가 양극 소재 표면에 형성 될 수 있다.
본 발명의 일 구현예와 같이 Li3P04가 형성되는 화학적 반응 과정에서 표면 재배열 반웅이 (Rocksal t 一> layered)이 일어나 표면에 형성된 구조 결함 및 불순물이 제어될 수 있다.
- 이때 일반적인 LiM02(M은 Ni , Co , 또는 Mn) 조성을 적용할 경우 Li3P04가 형성되는 과정에서 Li 부족 현상이 발생되어 전지특성이 일부 열화 될 수 있다. 또한 금속 M 도핑이 되지 않은 조성에 Li3P04 코팅을 진행할 경우 P와 양극재 표면간에 발생하는 환원반응에 의해 구조결함이 발생 할 수도 있다.
결론적으로 Li ri ch(Li/M rat io >1.0) 조성을 가지면서, 금속 M 으로 도핑될 경우 Li3P04가 형성되는 과정에서 일어나는 Li 부족 및 환원반응에 의한 표면 결함을 억제하여 코팅층의 효과를 극대화 할 수 있다.
또한 금속으로 M으로 도핑 됨에 따라 구조 안정화를 통하여 고전압에서 개선된 전지 특성을 구현할 수 있다.
전술한 바와 같이 상기의 P처리에 의한 표면 개질은 제조 조건에 따라 환원반웅이 과하게 일어나는 경우가 있어 양극재 표면의 Li 및 산소 결핍에 따른 구조결함이 발생할 가능성이 있다.
이러한 결함이 존재할 경우 특히 고전압에서 셀이 부푸는 스웰링 (swel l ing) 현상이 발생하여 안정성 문제가 발생 할 수 있다.
따라서 상기의 Li rich(Li /M rat io >1.0) 조성을 가지면서, 금속 M 도큉을 통하여, Li3P04가 형성되는 과정에서 일어나는 Li 부족 및 환원반응에 의한 표면 결함을 효과적으로 억제할 수 있다. 이로부터 스웰링 (swel l ing) 현상을 제어하여 전지 안정성을 크게 향상시킬 수 있다.
상기 복합 코팅층 내 포함된 리튬 금속 산화물은 Li2Zr03 , Li2Si03 , Li4Si04 또는 이들의 조합일 수 있다.
상기 복합 코팅층 내 포함된 금속 산화물은 Zr¾ , Si02 , 또는 이들의 조합일 수 있다.
상기의 리튬 금속 화합물과 금속 산화물을 포함함에 따라 이온전도도 향상 표면 구조 안정화 및 전해액과의 부반응을 억제할 수 있다.
전술한 바와 같이, 상기 복합 코팅층 내 포함된 Li3P04 , 및 /또는 리튬 금속 산화물의 리튬은, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인할 수 있어, 표면에서의 잔류 리튬 저감의 효과를 얻을 수 있다.
보다 구체적으로, 상기 양극 활물질은, 상기 복합 코팅층을 포함하지 않는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 이용한 양극 활물질보다, 잔류 리튬량이 중량 기준으로 10 내지 40% 감소할 수 있다.
구체적인 예를 들어, 상기 잔류 리튬은 수용성 잔류 리튬 (Li2C03+LiOH)으로 복합 코팅층을 포함하지 않는 양극 활물질의 잔류 리튬양을 100으로 보았을 때 100을 기준으로 10 내지 40% 감소하여 60 내지 90%의 값을 가질 수 있다.
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅층의 함량은 0.2 내지
2.0 중량 %일 수 있다. 상기 증량비가 0.2 미만의 경우 코팅층의 역할이 감소할 수 있으며, 2.0 초과이면 초기용량 감소 및 충방전 효율의 감소가 나타날 수 있다. 다만, 이에 제한되는 것은 아니다.
상기 복합 코팅층은 P를 포함할 수 있다. 또한 보다 구체적으로, 상기 복합 코팅층 내 Zr/P 중량비는 0.2 내지 1.2일 수 있다. 다만, 이에 제한되는 것은 아니다ᅳ
상기 복합 코팅층 내 Zr과 P의 함량은 Zr 500ppm 내지 3000ppm, 및 P 500 내지 5000ppm 일수 있다.
구체적인 예를 들어, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은, L A XbD^O ^O < a < 1.8 , 0 < b < 0.5); LiaAi-bXb02-cTc(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05); LiEi- bXb02-cDc(0 < b < 0.5, 0 < c < 0.05); LiE2-bXb04-cTc(0 < b < 0.5, 0 < c
< 0.05); LiaNii-b-cCobXcDa(0.90 < a <1.8, 0 < b < 0.5, 0 < c < 0.05, 0
< a < 2); LiaNii-b-cCobXc02-aTQ(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b-cCobXc02-aT2(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b-cMnbXcDa(0.90 < a < 1.8, 0 < b < 0.5, 0
< c < 0.05, 0 < a < 2); LiaNin3-cMnbXc02-QTa(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNh— b cMnbXc02_aT2( 0.90 < a < 1.8, 0
< b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNibEcGd02-eTe(0.90 < a < 1.8, 0 < b < 0.9, 0 < c < 0.5, 0.001 < d < 0.1, 0 < e < 0.05);
LiaNibCocMndGe02-fTf (0.90 < a < 1.8, 0 < b < 0.9, 0 < c < 0.5, 0 < d <0.5, 0.001 < e < 0.1, .0 < e < 0.05); LiaNiGb02CTC (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaCoGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05);
Figure imgf000012_0001
(0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMn2Gb02CTC (0.90 < a < 1.8, 0.001 < b < 0.1, 0
< c < 0.05); LiaMnGVO4(0.90 < a < 1.8, 0.001 < b < 0.1); LiNiV04; 및 Li(3-f)J2(P04)3(0 < f < 2) 로 이루어진 군에서 선택된 적어도 하나일 수 있다. 상기 화학식에 있어서, A는 Ni, Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 0, F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti, Mo, Mn,및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr, V, Fe, Sc, Y, 및 이들의 조합으로 이루어진 군에서 선택되며; J는 V, Cr, Mn, Co, Ni, Cu, 및 이들의 조합으로 이루어진 군에서 선택된다. 본 발명의 다른 일 구현예에서는, 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계; 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계 ; 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 리튬 공급원;, 인 공급원; 및 /또는 금속 공급원을 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 리튬 공급원; 인 공급원; 및 /또는 금속 공급원을 균일하게 부착시키는 단계; 및 상기 리튬 공급원;, 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하고, 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;를 포함하되, 상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 금속 공급원은 Zr 공급원을 포함하고, 상기 리튬 금속 산화물 또는 상기 금속 산화물은 Zr을 포함하는 것인 리튬 이차전지용 양극 활물질의 제조 방법을 제공한다.
상기 리튬 공급원; 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하고, 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;에서, 열처리 온도는, 650 내지 95CTC일 수 있다. 상기 온도 범위인 경우 양극 활물질 표면에 형성된 코팅층이 안정적인 역할을 수행 할 수 있다.
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 리튬 공급원은 탄산 리튬, 질산 리튬, 황산 리튬, 아세트산 리튬, 인산 리튬, 염화 리튬, 수산화 리튬, 산화 리튬, 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
상기 리튬 공급원 ; 인 공급원 ; 및 금속 공급원;을 준비하는 단계 ;에서, 상기 금속 공급원은 Zr 공급원을 포함하고, 상기 Zr 공급원은 Zr 산화물, Zr 알콕시드, Zr 수산화물, 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 금속 공급원은 Si 공급원을 포함하고, 상기 Si 공급원은 Si 산화물, Si 알콕시드, Si 수산화물, 또는 이들의 조합일 수 았으나, 이에 제한되는 것은 아니다.
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 인 공급원은 (NH4)2HP04 , NH4H2PO4 , Li3P04, P2O5 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
나머지 구성에 대한 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 그 설명을 생략하도록 한다. 본 발명의 또 다른 일 구현예에서는, 양극, 음극 및 전해질을 포함하는 리튬 이차 전지며, 상기 양극은 전류 집전체 및 상기 전류 집전체 상에 형성된 양극 활물질층을 포함하며, 상기 양극 활물질층은, 전술한 양극 활물질을 포함하는 것인 리튬 이차 전지를 제공한다. · - 상기 양극 활물질과 관련된 설명은 전술한 본 발명의 일 구현예와 동일하기 때문에 생략하도록 한다.
상기 양극 활물질층은 바인더 및 도전재를 포함할 수 있다.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로는 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필셀를로즈, 디아세틸셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질 ; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 음극은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함하며, 상기 음극 활물질층은 음극 활물질을 포함한다. 상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질, 리튬.금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질로는 탄소 물질로서, 리튬 이온 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들을 함께 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판상, 린편상 (flake), 구형 또는 섬유형의 천연 혹연 또는 인조 혹연과 같은 흑연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 (soft carbon: 저온 소성 탄소) 또는 하드 카본 (hard carbon), 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Si, Sb, Pb, In, Zn, Ba, Ra, Ge, Al 및 Sn으로 이루어진 군에서 선택되는 금속의 합금이 사용될 수 있다.
상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2),
Si-Y 합금 (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Si은 아님), Sn, Sn02, Sn-Y (상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소이며, Sn은 아님) 등을 들 수 있고, 또한 이들 중 적어도 하나와 Si02를 흔합하여 사용할 수도.있다. 상기 원소 Y로는 Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf , Rf , V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, 0s, Hs, Rh, Ir, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al , Ga, Sn, In, Ti, Ge, P, As, Sb, Bi, S, Se, Te, Po, 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더욱 포함할 수도 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜,. 카르복시메틸셀롤로즈 , 히드록시프로필셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌,. 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 혹연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질 ; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합물을 포함하는 도전성 재료를 사용할 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포체 ( foam) , 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 및 이들의 조합으로 이루어진 군에서 선택되는 것을 사용할 수 있다.
상기 전류 집전체로는 A1을 사용할 수 있으나 이에 한정되는 것은 아니다. 상기 음극과 양극은 활물질, 도전재 및 결착제를 용매 중에서 흔합하여 활물질 조성물을 제조하고, 이 조성물을 전류 집전체에. 도포하여 제조한다. 이와 같은 전극 제조 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. 상기 용매로는 N-메틸피를리돈 등을 사용할 수 있으나 이에 한정되는 것은 아니다.
상기 전해질은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알코올계, 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디메틸 카보네이트 (DMC) , 디에틸 카보네이트 (DEC) , 디프로필 카보네이、트 (DPC) , 메틸프로필 카보네이트 (MPC) , 에틸프로필 카보네이트 (EPC) , 메틸에틸 카보네이트 (MEC) , 에틸렌 카보네이트 (EC) , 프로필렌 카보네이트 (PC) , 부틸렌 카보네이트 (BC) 등이 사용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n-프로필 아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트, 부티로락톤, 데카놀라이드 (decanol ide) , 발레로락톤, 메발로노락톤 (mevalono l actone ), 카프로락톤 (caprol actone) , 등이 사용될 수 있다. 상기 에테르계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메특시에탄, 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클로핵사논 등이 사용될 수 있다. 또한 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코을 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 탄소수 2 내지 20의 직쇄상 분지상, 또는 환 구조의 탄화수소기이며, 이증결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1 , 3-디옥솔란 등의 디옥솔란류 설포란 (sul fol ane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으며, 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형 (cycl i c) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 1 : 1 내지 1 : 9의 부피비로 흔합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
본 발명의 일 구현예에 따른 비수성 유기용매는 상기 카보네이트계 용매에 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 방향족 탄화수소계 유기용매는 1 : 1 내지 30 : 1의 부피비로 흔합될 수 있다.
상기 방향족 탄화수소계 유기용매로는 하기 화학식 1의 방향족 탄화수소계 화합물이 사용될 수 있다.
[화학식 1]
Figure imgf000018_0001
(상기 화학식 1에서, 내지 R6는 각각 독립적으로 수소, 할로겐, C1 내지 C10 알킬기, 할로알킬기 또는 이들의 조합이다.)
상기 방향족 탄화수소계 유기용매는 벤젠, 플루오로벤젠 1,2- 디플루오로벤젠, 1,3-디플루오로벤젠, 1,4-디플루오로벤젠, 1,2,3- 트리플루오로벤젠, 1,2,4-트리플루오로벤젠, 클로로벤젠, 1,2-디클로로벤젠, 1,3-디클로로벤젠, 1,4-디클로로벤젠, 1,2, 3-트리클로로벤젠, 1,2,4- 트리클로로벤젠, 아이오도벤젠, 1,2-디아이오도벤젠, 1,3-디아이오도벤젠, 1,4- 디아이오도벤젠, 1,2,3-트리아이오도벤젠, 1,2,4-트리아이오도벤젠, 틀루엔, 플루오로를루엔, 1,2-디플루오로틀루엔, 1, 3-디플루오로를루엔, 1,4- 디플루오로를루엔, 1,2,3-트리플루오로를루엔, 1,2,4-트리플루오로를루엔, 클로로를루엔, 1,2-디클로로를루엔, 1,3-디클로로를루엔, 1,4-디클로로를루엔, 1,2,3-트리클로로를루엔, 1,2,4-트리클로로를루엔, 아이오도를루엔, 1,2- 디아이오도를루엔, 1,3-디아이오도를루엔, 1,4-디아이오도를루엔, 1,2,3- 트리아이오도를루엔, 1,2,4-트리아이오도를루엔, 자일렌, 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또는 하기 화학식 2의 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.
[
Figure imgf000018_0002
(상기 화학식 2에서, R7 및 R8는 각각 독립적으로 수 , 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5 플루오로알킬기이고, 상기 R7과 ¾중 적어도 하나는 할로겐기, 시아노기 (CN), 니트로기 (N02) 또는 C1 내지 C5의 플루오로알킬기이다. )
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디플루오로 에틸렌카보네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보네이트 또는 플루오로에틸렌 카보네이트 등을 들 수 있다. 이러한 수명 향상 첨가제를 더욱 사용하는 경우 그 사용량은 적절하게 조절할 수 있다.
상기 리튬염은 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 이러한 리튬염의 대표적인 예로는 LiPF6 , LiBF4, LiSbFg , LiAsF6 , LiC4F9S03 , LiC104 , UA102 , LiAlCl4 , LiN(CxF2x+1S02) (CyF2y+1S02) (여기서, x 및 y는 자연수임), LiCl , Li l 및 LiB(C204)2(리튬 비스옥살레이토 보레이트 ( l i thium bi s(oxal ato) borate ; LiBOB)로 이루어진 군에서 선택되는 하나 또는 둘 이상을 지지 (support ing) 전해염으로 포함한다. 리튬염의 농도는 0. 1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
리튬 이차 전지의 종류에 따라 양극과 음극 사이에 세퍼레이터가 존재할 수 도 있다. 이러한 세퍼레이터로는 폴리에틸렌, 폴리프로필렌, 폴리비닐리덴 플루오라이드 또는 이들의 2층 이상의 다층막이 사용될 수 있으며, 폴리에틸렌 /폴리프로필렌 2층 세퍼레이터, 폴리에틸렌 /폴리프로필렌 /폴리에틸렌 3층 세퍼레이터, 폴리프로필렌 /폴리에틸렌 /폴리프로필렌 3충 세퍼레이터 등과 같은 흔합 다층막이 사용될 수 있음은 물론이다.
리튬 이차 전지는 사용하는 세퍼레이터와 전해질의 종류에 따라 리튬 이온 전지, 리튬 이온 폴리머 전지 및 리튬 폴리머 전지로 분류될 수 있고, 형태에 따라 원통형, 각형, 코인형, 파우치형 등으로 분류될 수 있으며, 사이즈에 따라 벌크 타입과 박막 타입으로 나눌 수 있다. 이들 전지의 구조와 제조방법은 이 분야에 널리 알려져 있으므로 상세한 설명은 생략한다.
도 1에 본 발명의 리튬 이차 전지의 대표적인 구조를 개략적으로 나타내었다. 도 1에 나타낸 것과 같이 상기 리튬 이차 전지 ( 1)는 양극 (3), 음극 (2) 및 상기 양극 (3)과 음극 (2) 사이에 존재하는 세퍼레이터 (4)에 함침된 전해액을 포함하는 전지 용기 (5)와, 상기 전지 용기 (5)를 봉입하는 봉입 부재 (6)를 포함한다. 이하 본 발명의 실시예 및 비교예를 기재한다. 그러나 하기의 실시예는 본 발명의 일 실시예 일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다. 실시예
제조예 1
Co304와 Li2C03의 화학양론적 비율의 흔합물에 활물질 기준으로 MgC03 (0.01%) , CaOH2( 0.005%) , 및, Ti02(0.005%)가 되게 흔합물과 건식 흔합한 후, 이를 Kxxrc로 10 시간 동안 열처리하여 양극 활물질을 제조하였다. 실시예 1
믹서에 LiCo02 100g과 LiOH 분말 0.054g과 Zr(0H)4 분말 0. 172g과 Si02 분말 0.054g과 (NH4)2HP04 분말 0.387g을 건식 흔합하여 상기 분말이 활물질 본체의 표면에 부착된 혼합물을 제조 한 후 상기 흔합물을 800 °C로 6시간 열처리하여 양극 활물질을 제조하였다. 상기 코팅원소의 함량은 Zr lOOOppm , Si 250ppm, P 900ppm 이다. 실시예 2
상기 실시예 1에서 P공급원을 lOOOppm 더 추가하여 양극 활물질을 제조하였다. 실시예 3
상기 실시예 1에서 P공급원을 3000ppm 더 추가하여 양극 활물질을 제조하였다. 실시예 4 믹서에 LiNi0.6oCoo.2oMiio.2o02 lOOg과 LiOH 분말 0.054g과 Zr(0H)4 분말 0.172g과 Si02 분말 0.054g과 (NH4)2HP04 분말 0.387g을 건식 흔합하여 상기 분말이 활물질 본체의 표면에 부착된 흔합물을 제조 한 후, 상기 흔합물을 650 °C로 6시간 열처리하여 양극 활물질을 제조하였다.
상기 코팅원소의 함량은 Zr lOOOppm, Si 250ppm, 및 P 900ppm 이다. 실시예 5
믹서에 LiOH 분말 0.054g과 Zr(0H)4 분말 0.172g과 Si02 분말 0.054g과 (NH4)2HP04 분말 0.387g, A1-이소프로폭사이드 0.4635g을 에탄올 용매에 습식 흔합하여 코팅액을 제조하였다.
상기 제조 된 코팅액에 상기 LiCo02을 흔합하여 상기 양극 활물질에 상기 코팅액을 코팅 후 건조하여 흔합물을 제조 한 후 상기 흔합물을 650 °C로 6시간 열처리하여 양극 활물질을 제조하였다. 실시예 6
믹서에 상기 제조예 1의 양극 활물질 100g과 LiOH 분말 0.05^과 Zr(0H^ 분말 0.17 과 Si( 분말 0.054g과 (NH4)2HP(½ 분말 0.387g을 건식 흔합하여 상기 분말이 활물질 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 800 °C로 6시간 열처리하여 양극 활물질을 제조하였다.
상기 코팅원소의 함량은 Zr lOOOppm, Si 250ppm, 및 P 900ppm 이다. 비교예 1
상기 실시예 1에서 믹서에 LiCo¾ 100g과 LiOH 분말 0.054g과 Zr(0H)4 분말 0.172g을 건식 흔합하여 흔합물을 제조 한 것을 제외하고, 동일한 방법으로 양극 활물질을 제조하였다. 비교예 2
상기 비교예 1에서 믹서에 LiCoOg 100g과 LiOH 분말 0.054g과 Si02 분말
0.054g을 건식 흔합하여 흔합물을 제조 한 것을 제외하고, 동일한 방밥으로 양극 활물질을 제조하였다. 비교예 3
상기 비교예 1에서 믹서에 LiCoOg 100g과 Li OH 분말 0.054g과 (NH4)2HP04 분말 0.387g을 건식 흔합하여 흔합물을 제조 한 것을 제외하고, 동일한 방법으로 양극 활물질을 제조하였다. 비교예 4
상기 실시예 1에서 P공급원을 5000ppm 추가하여 양극 활물질을 제조하였다. 비교예 5
LiCo02 100g을, 코팅 처리 없이 800 °C로 6시간 열처리하여 양극 활물질을 제조하였다. 비교예 6
LiNi0.6oCoo.2oMno.2o02 100g을, 코팅 처리 없이 600 °C로 6시간 열처리하여 양극 활물질을 제조하였다. 코인셀의 제조
상기 실시예 및 비교예에서 제조된 양극 활물질 95 중량 %, 도전제로 카본 블랙 (carbon black) 2.5 중량 %, 결합제로 PVDF 2.5중량% 를 용제 (솔벤트)인 N一 메틸 -2 피를리돈 (NMP) 5.0 중량 %에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20 내지 40 zm의 양극 집전체인 알루미늄 (A1 ) 박막에 도포 맟 진공 건조하고 를 프레스 (rol l press)를 실시하여 양극을 제조하였다.
음극으로는 Li -금속을 이용하였다.
이와 같이 제조된 양극과 Li-금속을 대극으로, 전해액으로는 1. 15M
LiPF6EC :DMC( l : lvol%)을 사용하여 코인 셀 타입의 반쪽 전지를 제조하였다.
층방전은 4.5— 3.0V 범위에서 실시하였다. 파우치 셀의 제조
상기 코안셀 제작시와 같은 방법으로 양극을 제조하였으며 음극으로는 흑연을 활물질로 이용하였다.
전해액으로는 1.15M LiPF6 EC:DMC(1: lvol%)을 사용하여 34匪 x50隨 전 사이즈의 파우치 전지를 제조하였다.
Swelling 평가는 4.5V까지 충전 실시한 후 고온 저장기간에 따른 두께 변화를 측정하였다 실험예 1: 전지 특성 평가
하기 표 1 및 2는 상기의 실시예 및 비교예의 4.5V 초기 Formation, 율특성 , lcyle, 20cycle, 30cycle 용량 및 수명특성 데이터이다.
[표 1]
상기 표 1에서 복합 코팅층을 포함하는 실시예 1 내지 3은 비교예 1 내지 5 보다 뛰어난 전지 특성이 확인된다.
보다 구체적으로, 상기 복합 코팅층을 포함하는 양극 활물질은 비교예 1 15 내지 3의 코팅층을 포함하는 양극 활물질 보다 효율 및 초기 용량 부분에서 뛰어난 특성이 확인된다. 또한 상기 표에서 복합 코팅층에 P 공급원을 더 추가한 경우 전지 특성의 향상이 확인된다. 하지만 실시예 2 내지 3 및 비교예 4를 비교시 과량의 P 공급원이 투입 된 비교예 4에서 실시예 2 내지 3보다 전지특성이 떨어짐이 확인된다.
또한 실시예 1 내지 3에서 나타나는 수용성 잔류 리튬 값은 비교예 1, 2,
3, 5의 수용성 잔류 리튬 값과 비교시 보다 낮은 잔류 리튬 값이 확인된다. 비교예 5는 잔류 리튬 감소량이 크나 전지특성에서 상기 실시예에 비해 전지 특성 떨어지는 것이 확인된다.
복합 코팅층을 가지는 실시예 1은 단독 코팅층을 가지는 비교예 1 내지 3보다 낮은 잔류 리튬을 값을 가지며, 코팅 처리를 하지 않고 재소성만을 실시한 비교예 5와 비교시에는 보다 더 낮은 잔류 리튬을 값이 확인되어, 재소성에 의한 잔류 리튬 감소가 아닌 복합 코팅층에 의한 잔류 리튬 감소임을 알 수 있다.
실시예 4와 비교예 6에서도 상기의 특성 차이가 확인 된다.
또한 A1 코팅층을 더 포함하는 실시예 5에서도 우수한 전지 특성이 확인 된다.
[표 2]
Figure imgf000024_0001
상기 표 2에서 복합 코팅층을 포함하는 실시예 1은 복합 코팅층을 포함하지 않는 비교예 1 내지 4에 비하여 율특성에서 뛰어난 것이 확인된다. 특히 고율속에서 더욱 특성이 뚜렷하게 나타남이 확인된다. 실험예 2: 수용성 잔류리튬의 분석 상기 실시예와 비교예의 수용성 잔류 리튬은 적정법 (t i trat ion)을 사용하여 분석하였다. 그 결과는 상기 표 1과 같다. 본 발명의 일 실시예의 경우, 잔류 리튬이 크게 감소하는 것을 알 수 있다. 실험예 3: 안전성 평가 -swel ling test
하기 도 2는 상기의 실시예 1 및 6과 비교예 5의 양극재로부터 파우치 셀을 제조하여 60 °C 고온 저장 7일차와 14일차의 두께 변화를 측정한 결과이다.
하기의 도 2에서 확인 할 수 있듯이 복합 코팅충을 포함하는 실시예는 코팅층을 포함하지 않은 비교예와 비교하여 두께 변화가 적은 것이 확인 된다. 또한 금속 M으로 도핑 되지 않은 실시예 1 보다 금속 M으로 도핑 된 실시예 6 에서는 코팅 처리 과정에서 발생할 수 있는 과도한 환원반응이 일부 억제되어 고온 저장 효과가 더 개선 된 것으로 보인다. 실험예 4: 전기화학적 임피던스 스펙트로스코피 (EIS) 분석
하기 도 3은 상기의 실시예 1 및 5와 비교예 5의 전기화학적 임피던스 스펙트로스코피 (EIS) 분석 결과이다. 사이클이 진행 될수록 복합코팅층을 포함하는 실시예는 코팅층을 포함하지 않는 비교예 보다 낮은 저항값이 확인된다. 또한 A1 코팅층을 더 포함하는 실시예 5는 실시예 1보다 저항값이 더 낮아 짐이 확인 된다.
'
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【특허청구범위】
【청구항 1】
리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물; 및 상기 화합물의 표면의 적어도 일부에 위치하는 코팅층을 포함하고, 상기 코팅층은 Li3P04를 포함하며, 상기 코팅층은 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합코팅층이고,
상기 리튬 금속 산화물 또는 상기 금속 산화물은 Zr을 포함하는 것인 리튬 이차 전지용 양극 활물질 .
【청구항 2】
게 1항에 있어서,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 금속 M으로 도핑되어 있고, 상기 금속 M은 Mg , Ca , Ni , Ti, A1, Si , Sn , Mn , Cr , Fe 및 Zr로 이루어진 군에서 선택되는 적어도 하나의 원소인 것인 리튬 이차 전지용 양극 활물질.
【청구항 3]
거 12항에 있어서,
상기 금속 M은 Mg, Ca , 또는 Ti 인 것인 리튬 이차 전지용 양극 활물질.
【청구항 4】
제 1항에 있어서,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은, 화합물 내 리튬을 제외한 금속 원소에 대한 리튬의 몰비가 1 초과인 것인 리튬 이차 전지용 양극 활물질.
【청구항 5]
제 1항에 있어서,
상기 복합 코팅층 내 포함된 Li3P04 , 및 /또는 리튬 금속 산화물의 리튬은, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물 내에 포함되는 Li으로부터 기인되거나, 별도의 Li 공급 물질로부터 기인된 것인 리튬 이차 전지용 양극 활물질 .
【청구항 6]
제 1항에 있어서,
상기 복합 코팅층 내 포함된 리튬 금속 산화물, 및 /또는 금속 산화물에서 금속은 Na, K, Mg, Ca, Sr, Ni , Co, Ti , Al , Si, Sn, Mn, Cr, Fe, V, Zr, 또는 이들의 조합인 것인 리튬 이차 전지용 양극 활물질.
【청구항 7】
게 1항에 있어서ᅳ
. 상기 복합 코팅층 내 포함된 리튬 금속산화물은 Li2Zr03, Li2Si03, Li4Si04 또는 이들의 조합인 것인 리튬 이차 전지용 양극 활물질 .
【청구항 8】 - 제 1항에 있어서,
- 상기 복합 코팅층 내 포함된 금속 산화물은 Zr02, Si02, 또는 이들의 조합인 것인 리튬 이차 전지용 양극 활물질.
【청구항 9】
제 1항에 있어서,
상기 복합 코팅층 내 A1 화합물을 더 포함하는 것인 리튬 이차 전지용 양극 활물질.
【청구항 10】
게 1항에 있어서,
상기 양극 활물질은,
상기 복합 코팅층을 포함하지 않는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 이용한 양극 활물질보다,
잔류 리튬량이 중량 기준으로 10 내지 40% 감소하는 것인 리튬 이차 전지용 양극 활물질.
【청구항 11】
제 1항에 있어서,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은,
LiaAi_bXbD2(0.90 < a < 1.8, 0 < b < 0.5); LiaAi-bXb02-cTc(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05); LiEi-bXb02-cDc(0 < b < 0.5, 0 < c < 0.05); LiE2-bXbO4-cTc(0 < b < 0.5, 0 < c < 0.05); LiaNii-b-cCobXcDa (0.90 < a <1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b-cCobXc02-aTa (0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < α < 2); LiaN — b-cCobXc02-aT2(0.90
< a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNii-b- cMnbXcDa(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaN^— b cMnbXc02-aTa(0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a
< .2); LiaN — b-cMnbXc02-aT2( 0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05, 0 < a < 2); LiaNibEcGd02-eTe(0.90 < a < 1.8, 0 < b < 0.9, 0 < c < 0.5,
0.001 < d < 0.1, 0 < e < 0.05); LiaNibCocMndGe02fTf (0.90 < a < 1.8, 0
< b < 0.9, 0 < c < 0.5, 0 < d <0.5, 0.001 < e < 0.1, 0 < e < 0.05); LiaNiGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaCoGb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMnG 02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMn2Gb02-cTc (0.90 < a < 1.8, 0.001 < b < 0.1, 0 < c < 0.05); LiaMnG^ bP04(0.90 < a < 1.8, 0.001 < b < 0.1); LiNiV04; 및 Li(3-f)J2(P04)3(0 ≤ f ≤ 2) 로 이루어진 군에서 선택된 적어도 하나인 것인 리튬 이차 전지용 양극 활물질:
상기 화학식에 있어서, A는 Ni, Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; X는 Al, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되고; D는 .0, F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; E는 Co, Mn, 및 이들의 조합으로 이루어진 군에서 선택되고; T는 F, S, P, 및 이들의 조합으로 이루어진 군에서 선택되고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V, 및 이들의 조합으로 이루어진 군에서 선택되고; Q는 Ti , Mo , Mn,및 이들의 조합으로 이루어진 군에서 선택되고; Z는 Cr , V, Fe , Sc , Y , 및 이들의 조합으로 이루어진 군에서 선택되며; J는 V , Cr , Mn , Co , Ni , Cu , 및 이들의 조합으로 이루어진 군에서 선택된다.
【청구항 12】
거 U항에 있어서,
상기 양극 활물질의 총 중량에 대한 상기 복합 코팅층의 함량은 0.2 내지 2.0 중량 % 인 것인 리튬 이차 전지용 양극 활물질.
【청구항 13】
제 1항에 있어서,
상기 양극 활물질의 코팅층 내 Zr과 P의 함량은 Zr 500ppm 내지 3000ρριτι , 및 Ρ 500 내지 5000ppm 인 것인 리튬 이차 전지용 양극 활물질. '
【청구항 14】
제 10항에 있어서,
상기 복합 코팅층 내 Zr/P 중량비는 0.2 내지 1 .2 인 것인 리튬 이차 전지용 양극 활물질.
【청구항 15】
리튬의 가역적인 인터칼쩨이션 및 디인터칼레이션이 가능한 화합물;을 준비하는 단계 ;
리튬 공급원 ; 인 공급원 ; 및 금속 공급원;을 준비하는 단계 ;
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 상기 리튬 공급원;, 인 공급원; 및 /또는 금속 공급원을 흔합하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 표면에 리튬 공급원;, 인 공급원; 및 /또는 금속 공급원을 균일하게 부착시키는 단계; 및
상기 리튬 공급원; 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li 3P04를 포함하고, 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;
를 포함하되 ,
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 금속 공급원은 Zr 공급원을 포함하고,
상기 리튬 금속 산화물 또는 상기 금속 산화물은 Zr을 포함하는 것인 리튬 이차전지용 양극 활물질의 제조 방법 .
【청구항 16】
제 15항에 있어서,
상기 리튬 공급원; 인 공급원; 및 /또는 금속 공급원이 부착된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 열처리하여, Li3P04를 포함하고, 리튬 금속 산화물, 금속 산화물, 및 /또는 이들의 조합을 더 포함하는 복합 코팅층이 표면에 형성된 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물;을 수득하는 단계;에서 ,
열처리 온도는, 650 내지 950 °C인 것인 리튬 이차전지용 양극 활물질의 제조 방법 . .
【청구항 17】
제 15항에 있어서,
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 리튬 공급원은 탄산 리튬, 질산 리튬, 황산 리튬, 아세트산 리튬, 인산 리튬, 염화 리튬, 수산화 리튬, 산화 리튬, 또는 이들의 조합인 것인 리튬 이차 전지용 양극 활물질의 제조 방법 .
【청구항 18】
제 15항에 있어서,
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 금속 공급원은 Zr 공급원을 포함하고,
상기 Zr 공급원은 Zr 산화물, Zr 알콕시드, Zr 수산화물, 또는 이들의 조합인 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
【청구항 19】
제 15항에 있어서,
상기 리튬 공급원 ; 인 공급원 ; 및 금속 공급원;을 준비하는 단계 ;에서, 상기 금속 공급원은 Si 공급원을 포함하고,
상기 Si 공급원은 Si 산화물, Si 알콕시드, Si 수산화물, 또는 이들의 조합인 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
[청구항 20】
제 15항에 있어서,
상기 리튬 공급원; 인 공급원; 및 금속 공급원;을 준비하는 단계;에서, 상기 인 공급원은 (NH4)2HP04 , NH4H2P04 > Li 3P04. P205 또는 이들의 조합인 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
'
【청구항 21]
저 U항 내지 제 14항 중 어느 한 항에 따른 리튬 이차 전지용 양극 활물질을 포함하는 양극;
음극 활물질을 포함하는 음극; 및
전해질;
을 포함하는 리튬 이차 전지 .
PCT/KR2014/011709 2013-12-02 2014-12-02 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 WO2015084026A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/171,212 US10439211B2 (en) 2013-12-02 2016-06-02 Cathode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130148772 2013-12-02
KR10-2013-0148772 2013-12-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/171,212 Continuation US10439211B2 (en) 2013-12-02 2016-06-02 Cathode active material for lithium secondary battery, method of preparing the same, and lithium secondary battery containing the same

Publications (1)

Publication Number Publication Date
WO2015084026A1 true WO2015084026A1 (ko) 2015-06-11

Family

ID=53273717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011709 WO2015084026A1 (ko) 2013-12-02 2014-12-02 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Country Status (3)

Country Link
US (1) US10439211B2 (ko)
KR (1) KR101625838B1 (ko)
WO (1) WO2015084026A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041733A (ko) * 2017-10-13 2019-04-23 현대자동차주식회사 전고체 전지용 전극의 제조 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102519442B1 (ko) 2015-12-16 2023-04-11 삼성전자주식회사 양극 활물질, 이를 포함하는 양극 및 리튬 전지, 상기 양극 활물질의 제조방법
KR20170103505A (ko) * 2016-03-04 2017-09-13 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102572648B1 (ko) 2016-06-17 2023-08-31 삼성전자주식회사 리튬전지용 복합양극활물질, 이를 포함하는 리튬전지용 양극 및 리튬전지
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR101953837B1 (ko) * 2016-12-09 2019-03-05 주식회사 엘 앤 에프 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20190055700A (ko) * 2017-11-15 2019-05-23 주식회사 에코프로비엠 리튬이차전지용 양극 활물질 조성물 및 이를 포함하는 리튬 이차전지
CN109643791B (zh) * 2017-11-29 2020-08-07 厦门厦钨新能源材料股份有限公司 锂离子电池正极材料、其制备方法及锂离子电池
JP6608013B1 (ja) 2018-08-01 2019-11-20 住友化学株式会社 リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池
KR102301642B1 (ko) * 2019-08-22 2021-09-10 주식회사 포스코 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
CN112271279B (zh) * 2020-10-22 2023-07-14 欣旺达电动汽车电池有限公司 复合正极材料及其制备方法、应用和锂离子电池
WO2023003722A1 (en) * 2021-07-20 2023-01-26 The Regents Of The University Of California Reconfigurable soft lithium-ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060021252A (ko) * 2004-09-02 2006-03-07 주식회사 디지털텍 지르코니아로 코팅된 이차 전지용 양극활물질 및 그제조방법, 그리고 이를 사용한 이차전지
JP2008071569A (ja) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd 非水電解質二次電池用正極材料及び非水電解質二次電池
JP2008226463A (ja) * 2007-03-08 2008-09-25 Toyota Motor Corp リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法
WO2012176904A1 (ja) * 2011-06-24 2012-12-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法
KR20130022018A (ko) * 2011-08-24 2013-03-06 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101169947B1 (ko) 2009-01-06 2012-08-06 주식회사 엘지화학 리튬 이차전지용 양극 활물질
US8458322B2 (en) * 2009-07-24 2013-06-04 Cisco Technology, Inc. Dynamic management of maintenance association membership in a computer network
KR20110019574A (ko) 2009-08-20 2011-02-28 삼성에스디아이 주식회사 양극활물질, 이를 채용한 양극과 리튬 전지 및 이의 제조방법
KR101705250B1 (ko) * 2010-03-19 2017-02-09 삼성전자주식회사 양극활물질, 및 이를 채용한 양극과 리튬전지
JP5455766B2 (ja) 2010-04-23 2014-03-26 トヨタ自動車株式会社 複合正極活物質、全固体電池、および、それらの製造方法
WO2011145634A1 (en) * 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014128903A1 (ja) * 2013-02-22 2014-08-28 株式会社 日立製作所 リチウムイオン二次電池
WO2015083900A1 (ko) * 2013-12-02 2015-06-11 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060021252A (ko) * 2004-09-02 2006-03-07 주식회사 디지털텍 지르코니아로 코팅된 이차 전지용 양극활물질 및 그제조방법, 그리고 이를 사용한 이차전지
JP2008071569A (ja) * 2006-09-13 2008-03-27 Sanyo Electric Co Ltd 非水電解質二次電池用正極材料及び非水電解質二次電池
JP2008226463A (ja) * 2007-03-08 2008-09-25 Toyota Motor Corp リチウム二次電池、正極活物質被覆用粒子の製造方法およびリチウム二次電池の製造方法
WO2012176904A1 (ja) * 2011-06-24 2012-12-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法
KR20130022018A (ko) * 2011-08-24 2013-03-06 국립대학법인 울산과학기술대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190041733A (ko) * 2017-10-13 2019-04-23 현대자동차주식회사 전고체 전지용 전극의 제조 방법
KR102552140B1 (ko) 2017-10-13 2023-07-05 현대자동차주식회사 전고체 전지용 전극의 제조 방법

Also Published As

Publication number Publication date
US20160276660A1 (en) 2016-09-22
KR20150063954A (ko) 2015-06-10
US10439211B2 (en) 2019-10-08
KR101625838B1 (ko) 2016-05-31

Similar Documents

Publication Publication Date Title
KR101757628B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101682502B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101625838B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015083901A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101609544B1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
WO2015083900A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101788561B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2017150915A1 (ko) 리듐 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101878920B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR102114229B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101904773B1 (ko) 리튬 이차 전지용 양극 활물질
KR20160093854A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101673178B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101668799B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101646702B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20170106810A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20160083818A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016122278A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101493747B1 (ko) 리튬 이차 전지용 양극 활물질의 제조 방법, 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
KR20140086905A (ko) 리튬 이차 전지용 양극 활물질의 제조 방법 및 리튬 이차전지용 양극 활물질
KR102372645B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016122277A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101673177B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101849759B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015053446A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14868217

Country of ref document: EP

Kind code of ref document: A1