WO2015053446A1 - 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2015053446A1
WO2015053446A1 PCT/KR2014/002351 KR2014002351W WO2015053446A1 WO 2015053446 A1 WO2015053446 A1 WO 2015053446A1 KR 2014002351 W KR2014002351 W KR 2014002351W WO 2015053446 A1 WO2015053446 A1 WO 2015053446A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
secondary battery
positive electrode
formula
Prior art date
Application number
PCT/KR2014/002351
Other languages
English (en)
French (fr)
Inventor
최수안
이승원
정호준
양지운
신준호
정진성
전재우
정봉준
Original Assignee
주식회사 엘앤에프신소재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘앤에프신소재 filed Critical 주식회사 엘앤에프신소재
Publication of WO2015053446A1 publication Critical patent/WO2015053446A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a cathode active material for a lithium secondary battery, a method of manufacturing the same, and a lithium secondary battery including the same.
  • a cell generates power by using a material capable of reacting electrochemically to a cathode and an anode.
  • Representative examples of the battery include a lithium secondary battery that generates electrical energy by a change in chemical potential when lithium silver is intercalated and deintercalated in a positive electrode and a negative electrode.
  • the lithium secondary battery is prepared by using a material capable of reversible intercalation and deintercalation of lithium ions as a positive electrode and a negative electrode active material, and filling an organic electrolyte or a polymer electrolyte between the positive electrode and the negative electrode.
  • a lithium composite metal compound is used as a cathode active material of a lithium secondary battery, and composite metal oxides such as LiCo0 2 , LiMn 2 O 4) LiNi0 2 , and LiMn0 2 have been studied.
  • Mn-based cathode active materials such as LiMn 2 O 4 and LiMn0 2 , are easy to synthesize and relatively inexpensive, and have excellent thermal stability and over-charging due to low environmental pollution. , Has a disadvantage of low capacity.
  • LiCo0 2 has a good electrical conductivity and a high battery voltage of about 3.7V, and also has excellent cycle life characteristics, stability, and discharge capacity. Thus, LiCo0 2 is a representative cathode active material commercially available and commercially available. However, since LiCo0 2 is expensive, it takes up more than 30% of the battery price, which leads to a problem of low price competitiveness.
  • UNi0 2 exhibits the battery characteristics with the highest discharge capacity among the cathode active materials mentioned above, but has a disadvantage in that it is difficult to synthesize.
  • the high oxidation state of nickel causes a decrease in battery and electrode life, and severe self discharge and reversibility There is a problem falling.
  • it is difficult to commercialize the stability is not perfect.
  • the present invention provides a cathode active material for a lithium secondary battery having excellent high capacity characteristics and high rate characteristics at a high voltage, and a method of manufacturing the same, and provides a lithium secondary battery including the cathode active material.
  • a core comprising a compound capable of reversible intercalation and deintercalation of lithium; And a coating layer disposed on at least a part of the surface of the core and comprising a compound represented by the following Chemical Formula 1;
  • Formula 1 (hereinafter referred to as LZPS), 1.5 ⁇ x ⁇ 3.3, 0 ⁇ y ⁇ 2, 0.1 ⁇ z ⁇ 2.0, 0 ⁇ k ⁇ 2, and y + k ⁇ 2.
  • M may be selected from the group consisting of Ge, Ti, Hf, Sc, Al, Mg, and combinations thereof.
  • the coating layer may be in the form of island (island).
  • the average particle diameter of the compound represented by Formula 1 may be from 4 / m.
  • the content of the coating layer may be 0.3 to 3.0% by weight based on the total amount of the positive electrode active material.
  • the compound capable of reversible intercalation and deintercalation of lithium may be a complex oxide of lithium with one or more metals selected from cobalt, manganese, or nickel.
  • the amount of lithium remaining in the cathode active material may be reduced by 50 to 50 by weight compared to the amount of lithium remaining in the compound capable of reversible intercalation and deintercalation of the lithium that does not include the coating layer.
  • Another embodiment of the present invention comprises the steps of mixing a Li supply material, ⁇ supply material, Si supply material, and P supply material; Preparing a compound represented by the following Chemical Formula 1 by heating the mixture of the above steps; Mixing the compound represented by Chemical Formula 1 and a compound capable of reversible intercalation and deintercalation of lithium; And it provides a method for producing a cathode active material for a lithium secondary battery comprising the step of heat-treating a mixture of the compound represented by the formula (1) and the compound capable of reversible intercalation and deintercalation of the lithium.
  • M may be selected from the group consisting of Ge, Ti, Hf, Sc, Al, Mg, and combinations thereof.
  • An average particle diameter of the compound represented by Chemical Formula 1 may be 0.1 // ⁇ to 4.
  • the compound capable of reversible intercalation and deintercalation of lithium may be a complex oxide of lithium with one or more metals selected from cobalt, manganese, or nickel.
  • Mixing the compound represented by Formula 1 and a compound capable of reversible intercalation and deintercalation of lithium may be performed by a dry mixing method. Can be.
  • the content of the compound represented by Formula 1 may be 0.3 to 3.0 wt% based on the total amount of the compound represented by Formula 1 and the compound capable of reversible intercalation and deintercalation of lithium.
  • the heat treatment of the mixture of the compound represented by the formula (1) and the compound capable of reversible intercalation and deintercalation of the lithium is 6 ( xrc to
  • the compound represented by Formula 1 may be coated in an island form on a core surface including the same.
  • Another embodiment of the present invention provides a lithium secondary battery including a cathode, an anode, and an electrolyte including the cathode active material.
  • Another embodiment of the present invention provides a lithium secondary battery including a cathode, an anode, and an electrolyte including a cathode active material prepared according to the above method. Effects of the Invention The present invention provides a cathode active material having battery characteristics excellent in high capacity and high rate characteristics at high voltage, a method of manufacturing the same, and a lithium secondary battery including the same.
  • FIG. 1 is an exploded perspective view of a rechargeable lithium battery according to one embodiment.
  • a core comprising a compound capable of reversible intercalation and deintercalation of lithium; It provides a cathode active material for a lithium secondary battery comprising a; and a coating filler located on at least a portion of the surface of the core comprising a compound represented by the following formula (1).
  • M may be selected from the group consisting of Ge, Ti, Hf, Sc, Al, Mg, and combinations thereof.
  • the positive electrode active material may easily move lithium ions, and may improve battery characteristics of a lithium secondary battery. For example, high capacity characteristics and efficiency characteristics of the battery may be improved at high voltage characteristics.
  • the LZPS is a material excellent in ion conductivity
  • the cathode active material may have a coating layer including the LZPS, thereby improving conductivity of lithium, and reducing lithium content remaining in the cathode active material, thereby improving battery characteristics. can do.
  • X is a molar ratio of Li and satisfies 1.5 ⁇ x ⁇ 3.3.
  • the coating layer may perform a buffer effect of residual lithium present on the surface of the core, and thus the lithium content remaining in the cathode active material may be reduced.
  • the LZPS is for example L.5Zn.6Sio.5P2.5OK), Li . 2Zn.6Sio.5P2.5O10, or Li 3Zn.sSio.5P2.5O10, but is not limited thereto.
  • the coating layer may be in the form of an island.
  • the island form means that the LZPS is unevenly or discontinuously coated on the surface of the core.
  • the average particle diameter of the LZPS may be 0.1 to. Specifically 0.5 to 4 ⁇ m, 1 to 4, 0.1 to 3 can be.
  • the compound represented by Chemical Formula 1 may be stably coated on the malleable core.
  • the content of the coating layer may be 0.3 to 3.0% by weight based on the total amount of the positive electrode active material. Specifically, the content may be 0.3 to 2.5 wt% and 0.3 to 2 wt%. In this case, the positive electrode active material may be said to be suitable for stably implementing the characteristics of a battery.
  • Compounds capable of reversible intercalation and deintercalation of lithium include conventional positive electrode active material compounds that can be used for positive electrodes of conventional electrochemical devices, and specifically, at least one selected from cobalt, manganese, or nickel. It may be a complex oxide of metal and lithium.
  • the compound capable of reversible intercalation and deintercalation of lithium may be a compound represented by one of the following formulas.
  • Li a CoGb3 ⁇ 4 (wherein 0.90 ⁇ a ⁇ 1.8 and 0.001 ⁇ b ⁇ 0.1); Li a MnGb0 2 (wherein 0.90 ⁇ a ⁇ 1.8 and 0.001 b ⁇ 0.1); Li a Mn 2 G b 0 4 (wherein 0.90 ⁇ a ⁇ 1.8 and 0,001 ⁇ b ⁇ 0.1); Q0 2 ; QS 2 ; LiQS 2 ; V 2 0 5 ; LiV 2 0 5 ; LiT0 2 ; LiNiVO 4 ; Li (3 — n J 2 (P0 4 ) 3 (0 ⁇ f ⁇ 2); Li (3- f) Fe 2 (ro 4 ) 3 (0 ⁇ f ⁇ 2); and LiFeP0 4 .
  • A is Ni, Co, Mn or a combination thereof;
  • R is A1, Ni, Co, Mn, Cr, Fe, Mg, Sr, V, rare earth elements or combinations thereof;
  • D is 0, F, S, P or a combination thereof;
  • E is Co, Mn or a combination thereof;
  • Z is F, S, P or a combination thereof;
  • G is Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V or a combination thereof;
  • Q is Ti, Mo, Mn or a combination thereof;
  • T is Cr, V, Fe, Sc, Y or a combination thereof;
  • J is V, Cr, Mn, Co, Ni, Cu or a combination thereof.
  • the amount of lithium remaining in the cathode active material may be reduced by 50 to 70% compared to the amount of lithium remaining in the compound capable of reversible intercalation and deintercalation of the lithium that does not include the coating layer.
  • Lithium is a water-soluble residual lithium (Li 2 CO 3 and / or LiOH), the amount of the residual lithium is reduced by 50% to 70% of the amount of residual lithium of the positive electrode active material does not include a coating layer at a value of 30 to 50 Can have
  • the cathode active material according to the exemplary embodiment may reduce the amount of lithium remaining, thereby inhibiting side reactions with the electrolyte and improving battery characteristics.
  • Another embodiment of the present invention comprises the steps of mixing a Li feed material, Zr feed material, Si feed material, and P feed material; Preparing a compound represented by the following Chemical Formula 1 by heating the mixture of the above steps; Mixing a compound represented by Chemical Formula 1 and a compound capable of reversible intercalation and deintercalation of lithium; And heat treating a mixture of the compound represented by Chemical Formula 1 and the compound capable of reversible intercalation and deintercalation of the lithium.
  • a method of manufacturing a cathode active material for a secondary battery is provided.
  • a cathode active material having a structure coated with the LZPS on a core including a compound capable of reversible intercalation and deintercalation of lithium.
  • the Li supply material may be lithium carbonate, lithium nitrate, lithium sulfate, lithium acetate, lithium phosphate, lithium chloride, lithium hydroxide, lithium oxide, or a combination thereof.
  • the ⁇ ⁇ feed material may be an oxide of Zr, an alkoxide, hydroxide, or the like.
  • the Si feed material may be an oxide, alkoxide, hydroxide or the like of Si.
  • the P feed material may be (NH 4 ) 2 HP0 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HP0 4 , Li 3 P0 4, or a combination thereof, but is not limited thereto.
  • LZPS LZPS
  • a description thereof are as described above.
  • the description of the compound capable of reversible intercalation and deintercalation of lithium is as described above.
  • Mixing the compound capable of reversible intercalation and deintercalation of the LZPS and lithium may be performed by a dry mixing method.
  • the content of the LZPS may be 0.3 to 3.0% by weight relative to the total amount of the compound capable of reversible intercalation and deintercalation of the LZPS and the lithium. Specifically, the amount may be 0.3 to 2.5 wt% and 0.3 to 2.0 wt%.
  • the LZPS may be stably attached to a core including a compound capable of reversible intercalation and deintercalation of the lithium.
  • the heat treatment of the mixture of the compound capable of reversible intercalation and deintercalation of the LZPS and the lithium may be performed at 60 ° C. to locxrc. Specifically, it may be carried out at a temperature of more than 600 ° C. or less than 100 CTC, more specifically at a temperature of 700 to 1000 ° C, 600 to 900 ° C.
  • LZPS includes a compound capable of reversible intercalation and deintercalation of the lithium. Can be securely attached to the core.
  • the LZPS may be coated in an island form on a core surface including a compound capable of reversible intercalation and deintercalation of lithium.
  • Another embodiment provides a lithium secondary battery including a cathode, an anode, and an electrolyte including the cathode active material described above.
  • the lithium secondary battery 100 is cylindrical and has a negative electrode 112, a positive electrode 114, and a separator 113 disposed between the negative electrode 112 and the positive electrode 114 and the negative electrode 112. ),
  • the electrolyte (not shown) impregnated in the positive electrode 114 and the separator 113, the battery container 120, and the sealing member 140 which encloses the said battery container 120 are comprised as a main part.
  • the lithium secondary battery 100 is configured by stacking the negative electrode 112, the positive electrode 114, and the separator 113 in order, and then storing the lithium secondary battery 100 in the battery container 12.0 in a state of being wound in a spiral phase.
  • the positive electrode 114 includes a current collector and a positive electrode active material layer formed on the current collector, and the positive electrode active material layer includes a positive electrode active material.
  • the cathode active material is as described above.
  • the positive electrode active material layer may further include a binder.
  • the binder adheres the positive electrode active material particles to each other well, and also serves to adhere the positive electrode active material to the current collector well.
  • binder examples include polymers including polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, polyvinyl chloride, carboxylated polyvinyl chloride, polyvinyl fluoride, and ethylene oxide. , Polyvinylpyridone, polyurethane, polytetrapolouroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon, It is not limited to this.
  • the positive electrode active material layer may further include a conductive material. The conductive material is used to impart conductivity to an electrode.
  • any material may be used as long as it is an electronic conductive material without causing chemical change.
  • natural smoke, artificial smoke, carbon black, acetylene black, ketjen black, carbon fiber, metal powder such as copper, nickel, aluminum, silver, metal fiber, etc. can be used.
  • One or more kinds of materials may be used in combination.
  • the negative electrode 112 includes a current collector and a negative electrode active material layer formed on the current collector, and the negative electrode active material layer includes a negative electrode active material.
  • the anode active material includes a material capable of reversibly intercalating / deintercalating lithium ions, a lithium metal, an alloy of lithium metal, a material capable of doping and undoping lithium, or a transition metal oxide.
  • any carbon-based negative electrode active material generally used in a lithium secondary battery may be used, and representative examples thereof include crystalline carbon, Amorphous carbon or a combination thereof can be used.
  • the crystalline carbons include amorphous, plate-like, ake, spherical or fibrous natural graphites or lumps such as artificial alums.
  • the amorphous carbons include soft carbon (low temperature calcined carbon). Small) or hard carbon, mesophase pitch carbide, calcined coke and the like.
  • alloy of the lithium metal lithium and Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr,
  • Alloys with metals of Si, Sb, Pb, In, Zn, Ba, a, Ge, Al or Sn can be used.
  • Examples of the material capable of doping and undoping lithium include Si, SiO x (0 ⁇ x ⁇ 2), Si-C composites, Si-Q alloys (wherein Q is an alkali metal, an alkaline earth metal, and a group 13 to 16 element).
  • Sn, Sn0 2 , Sn-C composite, Sn-R (wherein R is an alkali metal, an alkaline earth metal, a group 13 to 16 element, a transition metal, Rare earth Or a combination thereof, and not Sn).
  • transition metal oxides examples include vanadium oxide and lithium vanadium oxide.
  • the negative electrode active material layer also includes a binder, and may optionally further include a conductive material.
  • the binder adheres well to the negative electrode active material particles, and also adheres the negative electrode active material to the current collector.
  • examples thereof include polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose, and polyvinyl chloride. , Carboxylated polyvinylchloride, polyvinylfluoride, polymers containing ethylene oxide, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, styrene- Butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like can be used, but is not limited thereto.
  • the conductive material is used to impart conductivity to the electrode, and may be used as long as it is an electronic conductive material without causing chemical change in the battery to be constructed. Examples thereof include natural graphite, artificial alum, carbon black, acetylene black, and ketjen black. Carbon-based materials such as carbon fibers; Metal materials such as metal powder or metal fibers such as copper, nickel, aluminum and silver; Conductive polymers such as polyphenylene derivatives; Or an electroconductive material containing these mixture can be used.
  • the current collector may be a copper foil, nickel foil, stainless steel foil, titanium foil, nickel foam, copper foam, a polymer substrate coated with a conductive metal, or a combination thereof. Can be used.
  • the electrolyte solution contains a non-aqueous organic solvent and a lithium salt.
  • the non-aqueous organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the non-aqueous organic solvent may be a carbonate, ester, ether, ketone, alcohol or aprotic solvent.
  • the carbonate solvent include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC), ethyl propyl carbonate (EPC), methyl ethyl carbonate (MEC), and ethylene carbonate.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • DPC dipropyl carbonate
  • MEC methyl propyl carbonate
  • EPC ethyl propyl carbonate
  • MEC methyl ethyl carbonate
  • ethylene carbonate ethylene carbonate
  • EC propylene carbonate
  • PC butylene carbonate
  • BC butylene carbonate
  • the ester solvent may be methyl acetate, ethyl acetate, n-propyl acetate, 1,1-dimethyleth
  • Cypionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone, mevalonolactone, caprolactone and the like can be used.
  • ether solvent dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2 ⁇ methyltetra hydrofuran, tetrahydrofuran, etc.
  • ketone solvent cyclonuxanone may be used. Can be.
  • the alcohol-based solvent may be used, such as ethyl alcohol, isopropyl alcohol, etc.
  • the aprotic solvent is R-CN (R is a C2 to C20 linear, branched or cyclic hydrocarbon group, double Amides such as nitriles, dimethylformamide, and dioxolanes such as 1,3-dioxolane and sulfolanes such as 1,3-dioxolane.
  • the non-aqueous organic solvent may be used alone or in combination of one or more, and the mixing ratio in the case of using one or more in combination can be appropriately adjusted according to the desired battery performance, which is widely used by those skilled in the art. Can be understood.
  • the carbonate solvent a cyclic carbonate and a chain It is recommended to use a mixture of (chain) carbonates.
  • the cyclic carbonate and the chain carbonate may be mixed and used in a volume ratio of about 1: 1 to about 1: 9, so that the performance of the electrolyte may be excellent.
  • the non-aqueous organic solvent may further include the aromatic hydrocarbon organic solvent in the carbonate solvent.
  • the carbonate-based solvent and the aromatic hydrocarbon-based organic solvent may be mixed in a volume ratio of about 1: 1 to about 30: 1.
  • the non-aqueous electrolyte may further include a vinylene carbonate or ethylene carbonate compound to improve battery life.
  • ethylene carbonate-based compound examples include difluoro ethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, bromoethylene carbonate, dibromoethylene carbonate, nitroethylene carbonate, cyanoethylene carbonate, fluoroethylene carbonate And vinylene ethylene carbonate.
  • the vinylene carbonate or the ethylene carbonate-based compound is further used, the amount thereof may be appropriately adjusted to improve life.
  • the lithium salt is dissolved in the non-aqueous organic solvent, acts as a source of lithium ions in the battery to enable the operation of the basic lithium secondary battery, and serves to promote the movement of lithium ions between the positive electrode and the negative electrode It is a substance.
  • Representative examples of the lithium salt are LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiC 4 F 9 S0 3 , LiC10 4 , LiA10 2 , LiAlCU, (Where x and y are natural numbers), LiCl, Li I, LiB (C 2 0 4 ) 2 (lithium bis (oxalato) borate (Li BOB) or a combination thereof, These are included as supporting electrolytic salts, and the lithium salt concentration is preferably used within the range of 0.1 to 2.0 M. When the lithium salt concentration is included in the above range, the electrolyte has an appropriate conductivity and viscosity, thereby providing excellent electrolyte performance. It can be shown, and lithium ions can
  • the separator separates the cathode and the anode and provides a passage for the movement of lithium ions.
  • it can be used. That is, a low resistance to the ion migration of the electrolyte, and excellent in the electrolyte solution moistening ability can be used.
  • it is selected from glass fiber, polyester, teflon, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), or a combination thereof, and may be in the form of a nonwoven fabric or a woven fabric.
  • polyolefin-based polymer separators such as polyethylene and polypropylene are mainly used in lithium ion batteries, and coated separators containing ceramic components or polymer materials may be used to secure heat resistance or mechanical strength. It can be used in a single layer or multilayer structure.
  • Li2Zn.6Si.5P2.5O10 was prepared by the following procedure. 1. To synthesize 10g of LZPS, 1.89g of LiOH and 6.81g of NH 4 H 2 P0 4 were dispersed in distilled water, Zr (C 3 H 7 0) 4 16.88g, C 8 H 20 0 4 Si 1.91g was mixed with isopropyl alcohol in a solution dispersed in the distilled water, the mixture was stirred for at least 1 hour, and then dried at 100 ° C. To prepare a dry product. The dried product was heat-treated at 700 ° C for 2 hours to synthesize LZPS.
  • Preparation Example 4 Preparation of LZPS Manufactured in the same manner as in Preparation Example 1, by adding Ti0 2 , the composition of LZPS was Li3Z .2Ti o . 4Sio.5P2.5Ou).
  • the prepared Li uAlo Ti L ⁇ P ⁇ in ethanol and then LiCo0 2 was added to ball milling using a zirconia ball and heat-treated at 800 ° C. for 6 hours to prepare a cathode active material.
  • Comparative Example 5 100 g of LiCo3 ⁇ 4 of Example 1 was heat-treated at 950 ° C. for 8 hours without coating to prepare a cathode active material.
  • LiCo0 2 was used as the positive electrode active material.
  • a positive electrode slurry was prepared by adding to 5.0 wt%.
  • the positive electrode slurry was applied to a thin film of aluminum (A1), which is a positive electrode current collector having a thickness of 20 to 40, and vacuum dried, followed by roll press to prepare a positive electrode.
  • Li-metal was used as the negative electrode.
  • a coin cell type half cell was manufactured by using a cathode and a U-metal prepared as a counter electrode and using 1.15 M LiPFg, ethylene carbonate (EC): dimethyl carbonate (DMC), and lvol% as an electrolyte.
  • the lithium secondary battery (half cell) manufactured using the positive electrode active materials of Examples 1 to 5 and Comparative Examples 1 to 6 was evaluated by evaluating the initial layer discharge capacity of 4.5V and the discharge capacity and rate characteristics of 0.2C and 1.0C. The results are shown in Table 1 below.
  • Examples 1 to 5 exhibit excellent efficiency characteristics. Compared with Comparative Examples 1 to 3 outside the composition range of the LZSP, a characteristic difference in terms of discharge capacity and efficiency is confirmed. Compared with Examples 1 to 5 and coated with a different type of ion conductor, the efficiency is better in terms of efficiency level and capacity in comparison with Comparative Example 4, while Examples 1 to 3 deviate from the lithium composition of Examples. It can be seen that the contrast battery characteristics are inferior.
  • Comparative Examples 1 to 3 out of the composition range of the embodiment out of the synthesis range to the ion conductor is confirmed that the implementation of the characteristics of the battery characteristics and the residual lithium reduction.
  • Example 6 and Comparative Example 7 having different compositions is identically implemented in the characteristic differences of the Examples and Comparative Examples.

Abstract

리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어; 및 상기 코어 표면의 적어도 일부에 위치하고 하기 화학식 1로 표시되는 화합물을 포함하는 코팅층을 포함하는 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 이를 포함하는 리튬 이차 전지에 관한 것이다. [화학식 1] LixZry MkSizP3-zO12-4z 상기 화학식 1에서, 1.5 ≤ x ≤3.3, 0<y<2, 0.1≤ z ≤2.0, 0≤k<2, 및 y+k<2 이고, M은 Ge, Ti, Hf, Sc, Al, Mg 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.

Description

【명세서】
【발명의 명칭】
리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
【기술분야】
리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
【배경기술】
최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다. 전지는 양극과 음극에 전기 화학 반웅이 가능한 물질을 사용하여 전력을 발생시키는 것이다. 전지의 대표적인 예로는 양극 및 음극에서 리튬 이은이 인터칼레이션 및 디인터칼레이션될 때의 화학전위 (chemical potent ial )의 변화에 의하여 전기 에너지를 생성하는 리튬 이차 전지를 들 수 있다.
상기 리튬 이차 전지는 리튬 이온의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 물질을 양극과 음극 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.
리튬 이차 전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 LiCo02 , LiMn204 ) LiNi02 , LiMn02 등의 복합금속 산화물들이 연구되고 있다. 상기 양극 활물질 중 LiMn204, LiMn02 등의 Mn 계 양극 활물질은 합성하기도 쉽고 값이 비교적 싸며, 과충전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점을 가지고 있다.
LiCo02는 양호한 전기 전도도와 약 3.7V 정도의 높은 전지 전압을 가지며, 사이클 수명 특성, 안정성 또한 방전 용량 역시 우수하므로, 현재 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나 LiCo02는 가격이 비싸기 때문에 전지 가격의 30% 이상을 차지하므로 가격 경쟁력이 떨어지는 문제점이 있다.
또한 UNi02는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이 있다. 또한 니켈의 높은 산화상태는 전지 및 전극 수명 저하의 원인이 되며 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아울러, 안정성 확보가 완전하지 않아서 상용화에 어려움을 겪고 있다.
최근에는 종전의 기술에서 전지 특성을 향상 시키기 위하여 다양한 이온 전도성 화합물이 코팅된 리튬 이차 전지용 양극 활물질에 대해 활발한 연구가 진행되고 있다.
【발명의 내용】
【해결하려는 과제】
고전압에서 고용량 특성 및 고율 특성이 우수한 리튬 이차 전지용 양극 활물질과 이의 제조 방법을 제공하며, 상기 양극 활물질을 포함하는 리튬 이차 전지를 제공한다.
【과제의 해결 수단】
본 발명의 일 구현예에서는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어; 및 상기 코어 표면의 적어도 일부에 위치하고 하기 화학식 1로 표시되는 화합물을 포함하는 코팅층;을 포함하는 리튬 이차 전지용 양극 활물질을 제공한다.
[화학식 1]
LixZryMkSizP3-z0i2-4z
상기 화학식 1(이하 LZPS)에서, 1.5<x<3.3, 0<y<2, 0.1<z<2.0, 0<k<2, 및 y+k<2 이다.
상기 화학식 1에서 M은 Ge, Ti, Hf, Sc, Al, Mg 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다.
상기 코팅층은 아일랜드 (island) 형태일 수 있다.
상기 화학식 1로 표시되는 화합물의 평균 입경은 내지 4/m일 수 있다. 상기 코팅층의 함량은 상기 양극 활물질 총량에 대하여 0.3 내지 3.0 중량 %일 수 있다. 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 코발트, 망간, 또는 니켈에서 선택되는 1종 이상의 금속과 리튬의 복합 산화물일 수 있다.
상기 양극 활물질에 잔류하는 리튬의 양은, 상기 코팅층을 포함하지 않는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 잔류하는 리튬의 양에 비하여 중량 기준으로 50 내지 감소할 수 있다.
본 발명의 다른 일 구현예에서는 Li 공급 물질, Λ 공급 물질, Si 공급 물질, 및 P 공급 물질을 흔합하는 단계; 상기 단계의 흔합물을 가열하여 하기 화학식 1로 표시되는 화합물을 제조하는 단계; 상기 화학식 1로 표시되는 화합물 및 리륨의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 흔합하는 단계; 및 상기 화학식 1로 표시되는 화합물 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 흔합물을 열처리하는 단계를 포함하는 리튬 이차 전지용 양극활물질의 제조 방법을 제공한다.
[화학식 1]
Figure imgf000005_0001
상기 화학식 1에서, 1.5≤x≤3.3 , 0<y<2 , 0. 1 < z < 2.0 , 0 <k<2 , 및 y+k<2 이다.
상기 화학식 1에서 M은 Ge , Ti , Hf , Sc , Al, Mg 및 이들의 조합으로 이루어진 군에서 선택되는 것 일수 있다.
상기 화학식 1로 표시되는 화합물의 평균 입경은 0. 1//ΙΠ 내지 4 일 수 있다. 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 코발트, 망간, 또는 니켈에서 선택되는 1종 이상의 금속과 리튬의 복합 산화물일 수 있다.
상기 화학식 1로 표시되는 화합물 및 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 흔합하는 단계는 건식 흔합 방법에 의해 수행될 수 있다.
상기 화학식 1로 표시되는 화합물의 함량은 상기 화학식 1로 표시되는 화합물 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 총량에 대하여 0.3 내지 3.0 중량 %일 수 있다.
상기 화학식 1로 표시되는 화합물 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 흔합물을 열처리하는 단계는 6(xrc 내지
1000°C에서 수행될 수 있다.
상기 화학식 1로 표시되는 화합물 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 흔합물을 열처리하는 단계에 의하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어 표면에 상기 화학식 1로 표시되는 화합물이 아일랜드 형태로 코팅되는 것일 수 있다.
본 발명의 또 다른 일 구현예에서는 상기 양극 활물질을 포함하는 양극, 음극, 및 전해질을 포함하는 리튬 이차 전지를 제공한다.
본 발명의 또 다른 일 구현예에서는 상기 방법에 따라 제조된 양극 활물질을 포함하는 양극, 음극, 및 전해질을 포함하는 리튬 이차 전지를 제공한다. 【발명의 효과】 고전압에서 고용량 및 고율 특성이 우수한 전지 특성을 갖는 양극 활물질과 이의 제조 방법 및 이를 포함하는 리튬 이차 전지를 제공한다.
【도면의 간단한 설명】
도 1은 일 구현예에 따른 리튬 이차 전지의 분해 사시도이다.
【발명을 실시하기 위한 구체적인 내용】
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 발명의 일 구현예에서는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션아 가능한 화합물을 포함하는 코어; 및 상기 코어 표면의 적어도 일부에 위치하고 하기 화학식 1로 표시되는 화합물을 포함하는 코팅충;을 포함하는 리튬 이차 전지용 양극 활물질을 제공한다.
LixZry MkSizP3-z0i2-4z
상기 화학식 1에서, 1.5≤x≤3.3 , 0<y<2 , 0.1 < z <2.0 , 0 <k<2 , 및 y+k<2 이다.
상기 화학식 1에서 M은 Ge , Ti , Hf , Sc , Al , Mg 및 이들의 조합으로 이루어진 군에서 선택되는 것 일수 있다.
. 상기 양극 활물질은 리튬 이온의 이동이 용이하고, 리튬 이차 전지의 전지적 특성을 향상시킬 수 있다. 예를 들어 고전압 특성에서 전지의 고용량 특성 및 효율 특성을 개선할 수 있다.
상기 LZPS는 이온 전도성아우수한 물질로, 상기 양극 활물질은 상기 LZPS를 포함하는 코팅층을 가짐으로써 리튬 이은 전도성을 향상시킬 수 있고 양극 활물질에 잔류하는 리튬 함량을 저감시킬 수 있으며, 이에 따라 전지 특성을 개선할 수 있다.
상기 화학식 1에서 X는 Li의 몰비율로, 1.5≤x≤3.3을 만족한다. 이 경우 상기 코팅층은 상기 코어의 표면에.존재하는 잔류 리튬의 버퍼 효과를 수행할 수 있고, 이에 따라 상기 양극 활물질에 잔류하는 리튬 함량이 저감될 수 있다.
상기 LZPS는 예를 들어 L .5Zn.6Sio.5P2.5OK), Li.2Zn.6Sio.5P2.5O10 , 또는 Li 3Zn.sSio.5P2.5O10일 수 있으나 이에 제한 되는 것은 아니다.
상기 코팅층은 아일랜드 ( i sland) 형태일 수 있다. 상기 아일랜드 형태란 상기 LZPS가 코어의 표면에 불균일 또는 불연속하게 코팅되어 있는 것을 의미한다. 상기 LZPS의 평균 입경은 0.1 내지 일 수 있다. 구체적으로 0.5 내지 4 ^m, 1 내지 4 , 0.1 내지 3 일 수 있다. 이 경우 상기 화학식 1로 표시되는 화합물은 상가코어에 안정적으로 코팅될 수 있다.
상기 코팅층의 함량은 상기 양극 활물질 총량에 대하여 0.3 내지 3.0 중량 %일 수 있다. 구체적으로 0.3 내지 2.5 중량 % , 0.3 내지 2 중량 %일 수 있다. 이 경우 상기 양극 활물질은 전지의 특성을 안정적으로 구현하는데 적합하다고 할 수 있다.
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에는 종래 전기 화학 소자의 양극에 사용될 수 있는 통상적인 양극 활물질 화합물이 있으며, 구체적으로는 코발트 , 망간, 또는 니켈에서 선택되는 1종 이상의 금속과 리튬의 복합 산화물일 수 있다.
구체적으로, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 하기 화학식 중 어느 하나로 표현되는 화합물일 수 있다.
LiaAwRbD 상기 식에서, 0.90 < a < 1.8 및 0 < b < 0.5이다); LiaE!-bRb02- CDC (상기 식에서, 0.90 < a < 1.8, 0 < b < 0.5, 및 0 ≤ c ≤ 0.05이다) ; LiE2- bRb04-cDc (상기 식에서, 0 < b < 0.5, 0 < c < 0.05이다) ; (상기 식에서, 0.90 < a < 1.8, 0 < b < 0.5, 0 < c 0.05 및 0 < α < 2이다) ; LiaNi i- b-cCobRc02aZa(상기 식에서, 0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05 및 0 < α
< 2이다) ; LiaN -b— cCobRc02-aZ2(상기 식에서, 0.90 < a < 1.8, 0 < b < 0.5, 0 < c
< 0.05 및 0 < α < 2이다) ; LiaNii-bcMnbRcDQ (상기 식에서, 0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05 및 0 < α 2이다) ; LiaN — b cMnbRc02-aZa(상기 식에서, 0.90
< a < 1.8, 0 < b < 0.5, 0 < c < 0.05 및 0 < a < 2이다) ; LiaNi i-b-cMnbRc02- αΖ2(상기 식에서, 0.90 < a < 1.8, 0 < b < 0.5, 0 < c < 0.05 및 0 < α < 2이다) ; LiaNibEcGd02(상기 식에서, 0.90 < a 1.8, 0 < b < 0.9, 0 < c < 0.5 및 αθθΐ < d < ΐ이다 J ; LiaNibCocMndGe02(상기 식에서, 0.90 < a 1.8, 0 < b < 0.9, 0 < c < 0.5, 0 < d <0.5 및 0.001 < e < 0.1이다. ); LiaNiGb02(상기 식에서, 0.90 ≤ a < 1.8 및 0.001 < b < 0.1이다. ); LiaCoGb¾(상기 식에서, 0.90 < a < 1.8 및 0.001 < b < 0.1이다. ); LiaMnGb02(상기 식에서 , 0.90 < a < 1.8 및 0.001 b < 0.1이다.); LiaMn2Gb04(상기 식에서, 0.90 < a < 1.8 및 0,001 < b < 0.1이다. ); Q02; QS2; LiQS2; V205; LiV205; LiT02; LiNiV04; Li(3nJ2(P04)3(0 < f < 2); Li(3-f)Fe2(ro4)3(0 < f < 2); 및 LiFeP04.
상기 화학식에서, A는 Ni, Co, Mn 또는 이들의 조합이고; R은 A1, Ni , Co, Mn, Cr, Fe, Mg, Sr, V, 희토류 원소 또는 이들의 조합이고; D는 0, F, S, P 또는 이들의 조합이고; E는 Co, Mn 또는 이들의 조합이고; Z는 F, S, P 또는 이들의 조합이고; G는 Al, Cr, Mn, Fe, Mg, La, Ce, Sr, V 또는 이들의 조합이고; Q는 Ti , Mo, Mn 또는 이들의 조합이고;. T는 Cr, V, Fe, Sc, Y 또는 이들의 조합이고; J는 V, Cr, Mn, Co, Ni, Cu 또는 이들의 조합이다.
상기 양극 활물질에 잔류하는 리튬의 양은, 상기 코팅층을 포함하지 않는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 잔류하는 리튬의 양에 비하여 50 내지 70% 감소할 수 있다.
상기 잔류. 리튬은 수용성 잔류 리튬 (Li2C03 및 /또는 LiOH)으로, 상기 잔류 리튬의 양은 코팅층을 포함하지 않는 양극 활물질의 잔류 리튬양을 100으로 보았을 때 50% 내지 70% 감소하여 30 내지 50의 값을 가질 수 있다.
이와 같이 일 구현예에 따른 양극 활물질은 잔류하는 리튬의 양이 감소되어 전해액과의 부반응이 억제되고 전지의 특성 등이 향상될 수 있다.
본 발명의 다른 일 구현예에서는 Li 공급 물질, Zr 공급 물질, Si 공급 물질, 및 P 공급 물질을 흔합하는 단계; 상기 단계의 흔합물을 가열하여 하기 화학식 1로 표시되는 화합물을 제조하는 단계; 상기 화학식 1로 표시되는 화합물 및 리튬의 가역적인 인터칼레이션 및 디인터칼꿰이션이 가능한 화합물을 흔합하는 단계; 및 상기 화학식 1로 표시되는 화합물 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 흔합물을 열처리하는 단계를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법을 제공한다.
상기 제조 방법에 따라, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어에 상기 LZPS가 코팅된 구조의 양극 활물질을 제조할 수 있다.
상기 Li 공급 물질은 탄산 리튬, 질산 리튬, 황산 리튬, 아세트산 리튬, 인산 리튬, 염화 리튬, 수산화 리튬, 산화 리튬, 또는 이들의 조합일 수 있다.
상기 Ζιᅳ 공급 물질은 Zr의 산화물, 알콕시드, 수산화물 등일 수 있다.
상기 Si 공급 물질은 Si의 산화물, 알콕시드, 수산화물 등일 수 있다.
상기 P 공급 물질은 (NH4)2HP04 , NH4H2PO4 , (NH4)2HP04 , Li3P04 또는 이들의 조합일 수 있으며, 이에 제한되지 않는다.
상기 LZPS의 정의 및 이에 대한 설명은 전술한 바와 같다. 또한 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 대한 설명은 전술한 바와 같다.
상기 LZPS 및 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 흔합하는 단계는 건식 흔합 방법에 의해 수행될 수 있다.
상기 LZPS의 함량은 상기 LZPS 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 총량에 대하여 0.3 내지 3.0 중량 %일 수 있다. 구체적으로 0.3 내지 2.5 중량 %, 0.3 내지 2.0 중량%일 수 있다. 이 경우 상기 LZPS는 상기 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어에 안정적으로 부착될 수 있다.
상기 LZPS 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 흔합물을 열처리하는 단계는 60o°c 내지 locxrc에서 수행될 수 있다. 구체적으로 600 °C 초과 100CTC 이하의 온도에서, 더 구체적으로 700 내지 1000 °C , 600 내지 900 °C의 온도에서 수행될 수 있다. 이 경우 LZPS는 상기 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어에 안정적으로 부착될 수 있다 . 상기 열처리 단계에 의하여, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어 표면에 상기 LZPS가 아일랜드 형태로 코팅되는 것일 수 있다.
또 다른 일 구현예에서는 전술한 양극 활물질을 포함하는 양극, 음극, 및 전해질을 포함하는 리튬 이차 전지를 제공한다.
도 1을 참조하면 , 상기 리튬 이차 전지 ( 100)는 원통형으로, 음극 ( 112), 양극 (114) 및 상기 음극 ( 112)과 양극 (114) 사이에 배치된 세퍼레이터 (113), 상기 음극 (112) , 양극 (114) 및 세퍼레이터 (113)에 함침된 전해질 (미도시), 전지 용기 ( 120), 그리고 상기 전지 용기 ( 120)를 봉입하는 봉입 부재 ( 140)를 주된 부분으로 하여 구성되어 있다. 이러한 리튬 이차 전지 (100)는, 음극 (112), 양극 (114) 및 세퍼레이터 (113)를 차례로 적층한 다음 스피럴 상으로 권취된 상태로 전지 용기 ( 12.0)에 수납하여 구성된다.
상기 양극 (114)은 전류 집전체 및 이 전류 집전체에 형성되는 양극 활물질 층을 포함하고, 상기 양극 활물질층은 양극 활물질을 포함한다.
상기 양극 활물질은 전술한 바와 같다.
상기 전류 집전체로는 A1을 사용할 수 있으나 이에 한정되는 것은 아니다. 상기 양극 활물질 층은 바인더를 더 포함할 수 있다. 상기 바인더는 양극 활물질 입자들을 서로 잘 부착시키고, 또한 양극 활물질을 전류 집전체에 잘 부착 시키는 역할을 한다.
상기 바인더의 예로는 폴리비닐알콜, 카르복시메틸셀를로즈, 히드록시프로필 셀를로즈, 디아세틸셀를로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이 드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라폴루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭 시 수지, 나일론 등이 있으나, 이에 한정되는 것은 아니다. 상기 양극 활물질 층은 도전재를 더 포함할 수 있다ᅳ 상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용가능하며, 그 예로 천연 혹 연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루 미늄, 은 등의 금속 분말, 금속 섬유 등을 사용할 수 있고, 또한 폴리페닐렌 유도 체 등의 도전성 재료를 1종 또는 1종 이상을 흔합하여 사용할 수 있다.
상기 음극 (112)은 집전체 및 상기 집전체 위에 형성된 음극 활물질층을 포함 하며, 상기 음극 활물질층은 음극 활물질을 포함한다.
상기 음극 활물질로는 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션 할 수 있는 물질, 리튬 금속, 리튬 금속의 합금, 리튬을 도프 및 탈도프할 수 있는 물질, 또는 전이 금속 산화물을 포함한다.
상기 리튬 이온을 가역적으로 인터칼레이션 /디인터칼레이션할 수 있는 물질 로는 탄소 물질로서, 리튬 이은 이차 전지에서 일반적으로 사용되는 탄소계 음극 활물질은 어떠한 것도 사용할 수 있으며, 그 대표적인 예로는 결정질 탄소, 비정질 탄소 또는 이들의 조합을 사용할 수 있다. 상기 결정질 탄소의 예로는 무정형, 판 상, 린편상 ( ake), 구형 또는 섬유형의 천연 흑연 또는 인조 혹연과 같은 혹연을 들 수 있고, 상기 비정질 탄소의 예로는 소프트 카본 (soft carbon: 저온 소성 탄 소) 또는 하드 카본 (hard carbon) , 메조페이스 피치 탄화물, 소성된 코크스 등을 들 수 있다.
상기 리튬 금속의 합금으로는 리튬과 Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr,
Si, Sb, Pb, In, Zn, Ba, a, Ge, Al 또는 Sn의 금속과의 합금이 사용될 수 있다. 상기 리튬을 도프 및 탈도프할 수 있는 물질로는 Si, SiOx(0 < x < 2), Si-C 복합체, Si-Q 합금 (상기 Q는 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토류 원소 또는 아들의 조합이며, Si은 아님), Sn, Sn02, Sn-C 복합체, Sn-R (상기 R은 알칼리 금속, 알칼리 토금속, 13족 내지 16족 원소, 전이금속, 희토 류 원소 또는 이들의 조합이며, Sn은 아님) 등을 들 수 있다. 상기 Q 및 R의 구체 적인 원소로는, Mg, Ca, Sr, Ba, Ra, Sc, Y, Ti, Zr, Hf , Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Ir , Pd, Pt , Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, Ti, Ge, P, As, Sb, Bi , S, Se, Te, Po 또는 이들의 조합을 들 수 있다.
상기 전이 금속 산화물로는 바나듐 산화물, 리튬 바나듐 산화물 등을 들 수 있다.
상기 음극 활물질 층은 또한 바인더를 포함하며, 선택적으로 도전재를 더 포 함할 수도 있다.
상기 바인더는 음극 활물질 입자들을 서로 잘 부착시키고, 또한 음극 활물질 을 전류 집전체에 잘 부착시키는 역할을 하며, 그 대표적인 예로 폴리비닐알콜, 카 르복시메틸셀를로즈, 히드록시프로필셀롤로즈, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드를 포함하는 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라 이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌- 부타디엔 러버, 에폭시 수지, 나일론 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서 화학변화를 야기하지 않고 전자 전도성 재료이면 어떠한 것도 사용 가능하며, 그 예로 천연 흑연, 인조 혹연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등의 금속계 물질; 폴리페닐렌 유도체 등의 도전성 폴리머; 또는 이들의 흔합 물을 포함하는 도전성 재료를 사용할 수 있다.
상기 집전체로는 구리 박, 니켈 박, 스테인레스강 박, 티타늄 박, 니켈 발포 체 (foam), 구리 발포체, 전도성 금속이 코팅된 폴리머 기재, 또는 이들의 조합을 사용할 수 있다.
상기 전해액은 비수성 유기 용매와 리튬염을 포함한다.
상기 비수성 유기 용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동 할 수 있는 매질 역할을 한다.
상기 비수성 유기용매로는 카보네이트계, 에스테르계, 에테르계, 케톤계, 알 코올계 또는 비양성자성 용매를 사용할 수 있다. 상기 카보네이트계 용매로는 디 메틸 카보네이트 (DMC), 디에틸 카보네이트 (DEC), 디프로필 카보네이트 (DPC), 메틸 프로필 카보네이트 (MPC), 에틸프로필 카보네이트 (EPC), 메틸에틸 카보네이트 (MEC), 에틸렌 카보네이트 (EC), 프로필렌 카보네이트 (PC), 부틸렌 카보네이트 (BC) 등이 사 용될 수 있으며, 상기 에스테르계 용매로는 메틸 아세테이트, 에틸 아세테이트, n- 프로필 아세테이트, 1,1-디메틸에틸 아세테이트, 메틸프로피오네이트, 에틸프로피 오네이트, γ-부티로락톤, 데카놀라이드 (decanolide), 발레로락톤, 메발로노락톤 (mevalono lac tone), 카프로락톤 (caprolactone) 등이 사용될 수 다. 상기 에테르 계 용매로는 디부틸 에테르, 테트라글라임, 디글라임, 디메톡시에탄, 2ᅳ메틸테트라 히드로퓨란, 테트라히드로퓨란 등이 사용될 수 있으며, 상기 케톤계 용매로는 시클 로핵사논 등이 사용될 수 있다. 또한 상기 알코을계 용메로는 에틸알코올, 이소프 로필 알코을 등이 사용될 수 있으며, 상기 비양성자성 용매로는 R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에 테르 결합을 포함할 수 있다) 등의 니트릴류 디메틸포름아미드 등의 아미드류, 1,3-디옥솔란 등의 디옥솔란류 설포란 (sulfolane)류 등이 사용될 수 있다.
상기 비수성 유기 용매는 단독으로 또는 하나 이상 흔합하여 사용할 수 있으 며, 하나 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있고, 이는 당해 분야에 종사하는 사람들에게는 널리 이해될 수 있다.
또한, 상기 카보네이트계 용매의 경우 환형 (cyclic) 카보네이트와 사슬형 (chain) 카보네이트를 흔합하여 사용하는 것이 좋다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 흔합하여 사용하는 것이 전해 액의 성능이 우수하게 나타날 수 있다.
상기 비수성 유기용매는 상기 카보네이트계 용매에 상기 방향족 탄화수소계 유기용매를 더 포함할 수도 있다. 이때 상기 카보네이트계 용매와 상기 방향족 탄 화수소계 유기용매는 약 1:1 내지 약 30:1의 부피비로 흔합될 수 있다.
상기 비수성 전해질은 전지 수명을 향상시키기 위하여 비닐렌 카보네이트 또 는 에틸렌 카보네이트계 화합물을 더욱 포함할 수도 있다.
상기 에틸렌 카보네이트계 화합물의 대표적인 예로는 디폴루오로 에틸렌카보 네이트, 클로로에틸렌 카보네이트, 디클로로에틸렌 카보네이트, 브로모에틸렌 카보 네이트, 디브로모에틸렌 카보네이트, 니트로에틸렌 카보네이트, 시아노에틸렌 카보 네이트, 플루오로에틸렌 카보네이트, 비닐렌 에틸렌 카보네이트 등을 들 수 있다. 상기 비닐렌 카보네이트 또는 상기 에틸렌 카보네이트계 화합물을 더욱 사용하는 경우 그 사용량을 적절하게 조절하여 수명을 향상시킬 수 있다.
상기 리튬염은 상기 비수성 유기 용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음 극 사이의 리튬 이온의 이동을 촉진하는 역할을 하는 물질이다. 상기 리튬염의 대 표적인 예로는 LiPF6, LiBF4, LiSbF6, LiAsF6, LiC4F9S03, LiC104, LiA102, LiAlCU,
Figure imgf000015_0001
(여기서, x 및 y는 자연수임), LiCl, Li I, LiB(C204)2(리튬 비스옥살레이토 보레이트 (lithium bis(oxalato) borate; Li BOB) 또는 이들의 조합 을 들 수 있으며, 이들을 지지 (supporting) 전해염으로 포함한다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범 위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 세퍼레이터는 음극과 양극을 분리하고 리륨 이온의 이동 통로를 제공하 는 것으로 리튬 전지에서 통상적으로 사용되는 것이라면 모두 사용 가능하다 . 즉 , 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 사용 될 수 있다. 예를 들어, 유리 섬유, 폴리에스테르, 테프론, 폴리에틸렌, 폴리프로 필렌, 폴리테트라플루오로에틸렌 (PTFE) 또는 이들의 조합물 중에서 선택된 것으로 서, 부직포 또는 직포 형태이어도 무방하다. 예를 들어, 리튬이온전지에는 폴리에 틸렌, 폴리프로필렌 등과 같은 폴리을레핀계 고분자 세퍼레이터가 주로 사용되고, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코 팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
이하 본 발명의 실시예 및 비교예를 기재한다. 그러한 하기한 실시예는 본 발명의 일 실시예일뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.
제조예 1 : LZPS의 제조
하기 과정을 통하여 Li2Zn.6Si o.5P2.5O10 (LZPS)를 제조하였다ᅳ 10g의 LZPS를 합성하기 위해 증류수에 LiOH 1.89g , NH4H2P04 6.81g을 각각 분산 시킨 용액, Zr (C3H70)4 16.88g, C8H2004Si 1.91g을 이소프로필 알코을에 함께 분산시킨 용액에 상 기 증류수에 분산 시킨 용액을 흔합하여 1시간 이상 교반한 후, 100°C 에서 건조하 여 건조품을 제조한다. 상기 제조 된 건조품을 700°C에서 2시간 열처리하여 LZPS 를 합성하였다.
제조예 2: LZPS의 제조
제조예 1과 동일한 방법으로 제조하되 LZPS의 조성이 Li
Figure imgf000016_0001
되도록 제조하였다.
제조예 3: LZPS의 제조
제조예 1과 동일한 방법으로 제조하되 LZPS의 조성이 υ3Ζ .60.5Ρ2.5010 가 되도록 제조하였 .
제조예 4: LZPS의 제조 제조예 1과 동일한 방법으로 제조하되 Ti02를 추가하여 LZPS의 조성이 Li3Z .2Ti o.4Sio.5P2.5Ou)가 되도록 제조하였다.
제조예 5: LZPS의 제조
제조예 1과 동일한 방법으로 제조하되 AK0H)3 추가하여 LZPS의 조성이 Li3Zn.2Al o.4Si o.5P2.5O10 Λ 되도특 제조하였다.
실시예 1
믹서에 LiCo02 100g과 상기 제조예 1에서 제조된 Li^n.sSio.sPs. cri" 건식 흔합하여 상기 분말이 LiCo02 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
실시예 2
믹서에 LiCo02 100g과 상기 제조예 2에서 제조된 Li LsZ .eSio.sf o를 건식 흔합하여 상기 분말이 LiCo02 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
실시예 3
믹서에 LiCo02 100g과 상기 제조예 3에서 제조된 Li3Z .sSio.5P2.5OK)를 건식 흔합하여 상기 분말이 LiCo¾ 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
실시예 4
믹서에 LiCo02 100g과 상기 제조예 4에서 제조된 Li 3Zn.2Tio.4Sio.5P2.5O10 를 건식 흔합하여 상기 분말이 LiCo02 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
실시예 5
믹서에 LiCo02 100g과 상기 제조예 5에서 제조된 Li3Z .2Alo.4Sio.5P2.5On) 를 건식 흔합하여 상기 분말이 LiCo02 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다. 실시예 6
믹서에 LiNi0.60Co0.20Mn0.2002 100g과 상기 제조예 1에서 제조된 1^2Ζ .6^0.5Ρ2.501(^ 건식 흔합하여 상기 분말이 LiNi0.60Co0.20Mn0.2002 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 850 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
비교예 1
믹서에 LiCo¾ 100g과 1^4Ζη.60.7Ρ2.309.2의 조성이 되도특 제조한 LZPS을 건식 흔합하여 상기 분말이 LiCo02 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
비교예 2
믹서에 LiCo02 100g과 Lio.5Zn.6Sio.6P2.4O9.6의 조성이 되도록 제조한 LZPS을 건식 흔합하여 상기 분말이 LiCo¾ 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
비교예 3
믹서에 LiCo02 100g과 Li uZ .sSio.^. o^의 조성이 되도록 제조한 LZPS을 건식 흔합하여 상기 분말이 LiCo02 본체의 표면에 부착된 흔합물을 제조 한 후 상기 흔합물을 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
비교예 4
Li2C03 1.25g , Ti02 3.54g , A1203 0.399g 및 (NH4)2HP04 10.33g을 지르코니아 볼에 의해 볼밀링 하여 흔합하여, 920 °C로 8시간 열처리하여 Li uAlo.sTi L^Pa s를 제조하였다.
상기 제조 된 Li uAlo Ti L^P ^를 에탄올에 침전 시킨 후 LiCo02를 첨가하여 지르코니아 볼을 이용하여 볼밀링 한 후 800 °C에서 6시간 열처리하여 양극 활물질을 제조하였다.
비교예 5 상기 실시예 1의 LiCo¾ 100g을, 코팅 처리 없이 950 °C로 8시간 열처리하여 양극 활물질을 제조하였다.
비교예 6
LiCo02을 양극 활물질로 이용하였다.
비교예 7
LiNi0.6oCoo.2oMno.2o02-i: 양극 활물질로 이용하였다. 코인셀의 제조
상기 실시예 및 비교예에서 제조된 양극 활물질 95 중량 %, 도전제로 카본 블랙 (carbon black) 2.5 중량 %, 결합제로 PVDF 2.5증량% 를 용제 (솔벤트)인 N- 메틸ᅳ 2 피를리돈 (NMP) 5.0 중량 %에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께 20 내지 40 의 양극 집전체인 알루미늄 (A1 ) 박막에 도포 및 진공 건조하고 를 프레스 (rol l press)를 실시하여 양극을 제조하였다.
음극으로는 Li-금속을 이용하였다.
이와 같이 제조된 양극과 U-금속을 대극으로, 전해액으로는 1. 15M LiPFg, 에틸렌카보네이트 (EC) :디메틸카보네이트 (DMC) l : lvol%을 사용하여 코인 셀 타입의 반쪽 전지를 제조하였다.
아래 전지 특성 평가에서 충방전은 4.5 - 3.0V 범위에서 실시하였으며 수명 특성의 경우 1.0C 율로 실시하였다.
실험예 1: 전지 특성 평가
실시예 1 내지 5 및 비교예 1 내지 6의 양극 활물질을 이용하여 제조된 리튬 이차 전지 (반쪽 전지 )에 대하여 4.5V 초기 층방전용량과 0.2C, 1.0C의 방전 용량 및 율특성을 평가하여 그 결과를 하기 표 1에 나타내었다.
실험예 2: 수용성 잔류리튬의 분석
실시예 1 내지 5와 비교예 1 내지 6의 수용성 잔류 리튬은 적정법 (t itrat ion)을 사용하여 분석하였다. 그 결과는 아래 표 1에 나타내었다. [표 1]
Figure imgf000020_0001
상기 표 1에서 실시예 1 내지 5는 뛰어난 효율 특성을 나타냄이 확인된다. 상기 LZSP의 조성 범위를 벗어나는 비교예 1 내지 3에 비교하여 방전용량 및 효율 측면에서 특성 차이가 확인된다. 실시예 1 내지 5와 다른 종류의 이온전도체를 코팅한 비교예 4와 비교시 효율 측면에서는 .동등수준이나 용량측면에서는 더 뛰어난 결과를 나타내며, 한편 실시예의 리튬 조성을 벗어나는 비교예 1 내지 3에서 실시예 대비 전지 특성이 떨어짐을 볼 수 있다.
또한 상기 표 1에서 나타낸 잔류 리튬 값을 비교해 볼 때 실시예 1 내지 5는 코팅 처리를 하지 않은 비교예 6에 비하여 잔류 리튬이 감소되는 것을 확인할 수 있다.
상기 잔류 리튬 저감 효과는 양극 활물질을 다시 한번 열처리 하여 잔류 리튬을 감소시킨 경우와는 다른 형태임이 비교예 5에서 확인된다.
또한 다른 조성의 이은 전도체인 비교예 4와 비교시 LZSP 조성의 이온 전도체를 코팅 처리한 실시예 1 내지 5의 잔류 리튬 저감이 더 큼이 확인 된다. 이는 LZSP의 조성에서 Li의 범위가 비교예 4보다 넓어 Li을 흡수 할 수 있는 여유도가 더 커 잔류 리튬 저감에 더 뛰어남이 확인된다.
또한 상기 실시예의 조성 범위를 벗어나 이온전도체로의 합성범위를 벗어나는 비교예 1 내지 3은 전지 특성 및 잔류리튬 저감의 특성 구현이 떨어짐이 확인 된다.
또한 조성이 다른 실시예 6과 비교예 7에서도 상기의 실시예 및 비교예의 특성 차이가 동일하게 구현됨이 확인 된다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims

【특허청구범위】 【청구항 1】 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어 ; 및 상기 코어 표면의 적어도 일부에 위치하고 하기 화학식 1로 표시되는 화합물을 포함하는 코팅층; 을 포함하는 리튬 이차 전지용 양극 활물질:
[화학식 1]
LixZry MkSizP3-z0i2-4z
상기 화학식 1에서, 1.5≤x≤3.3, 0<y<2, 0.1<z<2.0, 0<k<2, 및 y+k<2 이고, M은 Ge, Ti, Hf , Sc, Al, Mg 및 이들의 조합으로 이루어진.군에서 선택되는 것이다.
【청구항 2】
제 1항에서,
상기 코팅층은 아일랜드 (island) 형태인 리튬 이차 전지용 양극 활물질.
【청구항 3】
제 1항에서,
상기 화학식 1로 표시되는 화합물의 평균 입경은 0.1//m 내지 ½m인 리튬 이차 전지용 양극 활물질. ''
【청구항 4】
제 1항에서,
상기 코팅층의 함량은 상기 양극 활물질 총량에 대하여 0.3 내지 3.0 중량 %인 리튬 이차 전지용 양극 활물질.
【청구항 5】
게 1항에서, 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 코발트, 망간, 또는 니켈에서 선택되는 1종 이상의 금속과 리튬의 복합 산화물인 리튬 이차 전지용 양극 활물질.
【청구항 6】
제 1항에서,
상기 양극 활물질에 잔류하는 리튬의 양은
상기 코팅층을 포함하지 않는 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물에 잔류하는 리틈의 양에 비하여 중량 기준으로 50 내지 70% 감소하는 것인 리튬 이차 전지용 양극 활물질.
【청구항 7】
Li 공급 물질, Zr 공급 물질, Si 공급 물질, 및 P 공급 물질을 흔합하는 단계;
상기 단계의 흔합물을 열처리하여 하기 화학식 1로 표시되는 화합물을 제조하는 단계 ;
상기 화학식 1로 표시되는 화합물 및 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 흔합하는 단계; 및
상기 화학식 1로 표시되는 화합물 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 흔합물을 열처리하는 단계를 포함하는 리튬 이차 전지용 양극 활물질의 제조 방법:
[화학식 1]
LixZry MkSizP3-z0i2-4z
상기 화학식 1에서, 1.5≤x≤3.3 , 0<y<2 , 0. 1 < z≤2.0 , 0 <k<2 , 및 y+k<2 이고, M은 Ge , Ti , Hf , Sc , Al , Mg 및 이들의 조합으로 이루어진 군에서 선택되는 것이다.
【청구항 8】 제 7항에서,
상기 화학식 1로 표시되는 화합물의 평균 입경은 0. 1//m 내지 4 인 리튬 이차 전지용 양극 활물질의 제조 방법.
【청구항 9】
게 7항에서,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물은 코발트, 망간, 또는 니켈에서 선택되는 1종 이상의 금속과 리튬의 복합 산화물인 리튬 이차 전지용 양극 활물질의 제조 방법.
【청구항 10】
게 7항에서,
상기 화학식 1로 표시되는 화합물 및 리튬의 가역적인 인터칼레이션 및 디인터칼레.이션이 가능한 화합물을 흔합하는 단계는 건식 흔합 방법에 의해 수행되는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
【청구항 11】
제 7항에서,
상기 화학식 1로 표시되는 화합물의 함량은
상기 화학식 1로 표시되는 화합물 및 상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 총량에 대하여 0.3 내지 3.0 중량 %인 리튬 이차 전지용 양극 활물질의 제조 방법.
【청구항 12】
제 7항에서,
상기 화학식 1로 표시되는 화합물 및 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 흔합물을 열처리하는 단계는
600 °c 내지 locxrc에서 수행되는 리튬 이차 전지용 양극 활물질의 제조 방법.
【청구항 13】 제 7항에서,
상기 화학식 1로 표시되는 화합물 및 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물의 흔합물을 열처리하는 단계를 통하여,
상기 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 포함하는 코어 표면에 상기 화학식 1로 표시되는 화합물이 아일랜드 형태로 코팅되는 것인 리튬 이차 전지용 양극 활물질의 제조 방법.
【청구항 14】
제 1항 내지 제 6항 중 어느 한 항에 따른 양극 활물질을 포함하는 양극, 으그 mj
口 , ;ᄌ;
전해질을 포함하는 리튬 이차 전지 .
【청구항 15】
제 7항 내지 제 13항 중 어느 한 항에 따라 제조된 양극 활물질을 포함하는 양극,
으그 ᄆ J
" 1 , ;
전해질을 포함하는 리튬 이차 전지.
PCT/KR2014/002351 2013-10-11 2014-03-20 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지 WO2015053446A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0121480 2013-10-11
KR20130121480 2013-10-11

Publications (1)

Publication Number Publication Date
WO2015053446A1 true WO2015053446A1 (ko) 2015-04-16

Family

ID=52813251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002351 WO2015053446A1 (ko) 2013-10-11 2014-03-20 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Country Status (2)

Country Link
KR (1) KR101646703B1 (ko)
WO (1) WO2015053446A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102474479B1 (ko) * 2019-07-15 2022-12-07 주식회사 엘지화학 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080099132A (ko) * 2007-05-07 2008-11-12 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질의 제조방법, 이 방법으로제조된 리튬 이차 전지용 양극 활물질 및 이를 포함하는리튬 이차 전지
US20090123851A1 (en) * 2007-11-14 2009-05-14 Sony Corporation Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
KR20100060363A (ko) * 2008-11-27 2010-06-07 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질의 제조방법, 이로써 제조된 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20110063335A (ko) * 2009-12-03 2011-06-10 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20120103263A (ko) * 2011-03-10 2012-09-19 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 이차전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508941B1 (ko) * 2003-11-29 2005-08-17 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법 및 그방법으로 제조된 리튬 이차 전지용 양극 활물질
KR100797099B1 (ko) * 2006-06-09 2008-01-22 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를포함하는 리튬 이차 전지
KR101135490B1 (ko) * 2008-11-05 2012-04-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 조성물, 이를 사용하여 제조된 양극 및 이를 포함하는 리튬 이차 전지
KR20120117234A (ko) * 2011-04-14 2012-10-24 주식회사 동진쎄미켐 양극활물질, 그 제조방법 및 이를 채용한 양극 및 리튬전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080099132A (ko) * 2007-05-07 2008-11-12 한양대학교 산학협력단 리튬 이차 전지용 양극 활물질의 제조방법, 이 방법으로제조된 리튬 이차 전지용 양극 활물질 및 이를 포함하는리튬 이차 전지
US20090123851A1 (en) * 2007-11-14 2009-05-14 Sony Corporation Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
KR20100060363A (ko) * 2008-11-27 2010-06-07 주식회사 에너세라믹 리튬 이차 전지용 양극 활물질의 제조방법, 이로써 제조된 양극 활물질 및 이를 포함하는 리튬 이차 전지
KR20110063335A (ko) * 2009-12-03 2011-06-10 주식회사 엘앤에프신소재 리튬 이차 전지용 양극 활물질 및 이를 이용한 리튬 이차 전지
KR20120103263A (ko) * 2011-03-10 2012-09-19 삼성에스디아이 주식회사 리튬 이차전지용 양극 활물질, 이의 제조방법 및 이를 이용한 리튬 이차전지

Also Published As

Publication number Publication date
KR101646703B1 (ko) 2016-08-08
KR20150042731A (ko) 2015-04-21

Similar Documents

Publication Publication Date Title
JP6462250B2 (ja) リチウム二次電池用正極活物質、その製造方法、そしてこれを含むリチウム二次電池用正極およびリチウム二次電池
US10177377B2 (en) Positive active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery including same
WO2015083901A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
EP2879209B1 (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including the same
WO2015083900A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015053586A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101309149B1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이를 이용한 리튬 이차전지
WO2015084026A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
EP2985823B1 (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2016032290A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2017150915A1 (ko) 리듐 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR102114229B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101904773B1 (ko) 리튬 이차 전지용 양극 활물질
WO2016186479A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20110136001A (ko) 리튬 이차전지용 양극 활물질의 제조 방법 및 이를 이용한 리튬 이차전지
KR102085247B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101673178B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2016122278A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR101646702B1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20170106810A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
WO2015141949A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
KR20140086905A (ko) 리튬 이차 전지용 양극 활물질의 제조 방법 및 리튬 이차전지용 양극 활물질
KR20130105495A (ko) 리튬 이차 전지용 양극 활물질의 제조 방법, 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
EP2985817B1 (en) Positive active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery including same
WO2015053446A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14851866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14851866

Country of ref document: EP

Kind code of ref document: A1