WO2017099201A1 - 非水電解質蓄電素子及びその製造方法 - Google Patents

非水電解質蓄電素子及びその製造方法 Download PDF

Info

Publication number
WO2017099201A1
WO2017099201A1 PCT/JP2016/086648 JP2016086648W WO2017099201A1 WO 2017099201 A1 WO2017099201 A1 WO 2017099201A1 JP 2016086648 W JP2016086648 W JP 2016086648W WO 2017099201 A1 WO2017099201 A1 WO 2017099201A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
storage element
active material
nonaqueous electrolyte
al2p
Prior art date
Application number
PCT/JP2016/086648
Other languages
English (en)
French (fr)
Inventor
彰文 菊池
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to CN201680071907.4A priority Critical patent/CN108475769A/zh
Priority to US16/060,690 priority patent/US11205775B2/en
Priority to CN202210502846.XA priority patent/CN114899352B/zh
Priority to EP16873094.3A priority patent/EP3389119B1/en
Priority to JP2017555148A priority patent/JP6702338B2/ja
Publication of WO2017099201A1 publication Critical patent/WO2017099201A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte storage element and a method for manufacturing the same.
  • Non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are frequently used in electronic devices such as personal computers and communication terminals, automobiles and the like because of their high energy density.
  • the nonaqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator and a nonaqueous electrolyte interposed between the electrodes, and transfers ions between the electrodes. It is comprised so that it may charge / discharge.
  • capacitors such as lithium ion capacitors and electric double layer capacitors are widely used as nonaqueous electrolyte storage elements other than nonaqueous electrolyte secondary batteries.
  • the techniques (1) and (2) above were not sufficient in improving the capacity retention rate after the charge / discharge cycle. Further, the inventors have found that when only phosphonic acid is added to the positive electrode mixture paste containing the solvent-based binder as in the technique of (3) above, the initial discharge capacity of the obtained electricity storage device decreases. I found out.
  • the present invention has been made based on the circumstances as described above, and an object of the present invention is to provide a non-aqueous electrolyte storage element having a large initial discharge capacity and a high capacity retention rate after a charge / discharge cycle, It is providing the manufacturing method of a water electrolyte electrical storage element.
  • One embodiment of the present invention made to solve the above problems includes a positive electrode having a positive electrode mixture containing a positive electrode active material, a phosphorus atom, and an aluminum atom, and in the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy.
  • P2p peak position is 134.7 eV or less
  • the peak height ratio (Al2p / P2p) between Al2p and P2p is 0.1 or more.
  • Another embodiment of the present invention includes a positive electrode including a positive electrode active material, a positive electrode mixture containing a phosphorus atom, and an aluminum atom.
  • a positive electrode including a positive electrode active material, a positive electrode mixture containing a phosphorus atom, and an aluminum atom.
  • the peak position of P2p is 134. It is a nonaqueous electrolyte electrical storage element (B) which is 0.3 eV or more and 134.7 eV or less.
  • the non-aqueous electrolyte storage element (A) includes mixing a positive electrode active material, a phosphorus oxoacid or a fluorinated phosphorus oxoacid salt, and an aluminum coupling agent. ) Or the production method ( ⁇ ) of the nonaqueous electrolyte electricity storage element (B).
  • Another embodiment of the present invention is a nonaqueous electrolyte storage element having a positive electrode active material, lithium difluorophosphate, and a compound represented by the following general formula (1) mixed to produce a positive electrode paste.
  • Manufacturing method ( ⁇ ) (In general formula (1), R 1 to R 3 are each independently a hydrocarbon group having 1 to 9 carbon atoms or a group represented by the following general formula (2).)
  • R 4 and R 5 are each independently an alkyl group having 1 to 18 carbon atoms or an alkoxy group having 1 to 18 carbon atoms.)
  • nonaqueous electrolyte storage element having a large initial discharge capacity and a high capacity retention rate after a charge / discharge cycle, and a method for manufacturing such a nonaqueous electrolyte storage element.
  • FIG. 1 is an external perspective view showing a nonaqueous electrolyte storage element according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a power storage device configured by assembling a plurality of nonaqueous electrolyte power storage elements according to an embodiment of the present invention.
  • a nonaqueous electrolyte storage element includes a positive electrode having a positive electrode mixture containing a positive electrode active material, a phosphorus atom, and an aluminum atom, and in the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy,
  • the nonaqueous electrolyte storage element (A) (hereinafter simply referred to as “storage element (A)” where the peak position of P2p is 134.7 eV or less and the peak height ratio (Al2p / P2p) between Al2p and P2p is 0.1 or more. ) ").
  • the power storage element (A) has a large initial discharge capacity and a high capacity retention rate after the charge / discharge cycle. The reason for this is not clear, but the following reason is presumed.
  • One of the causes of reducing the discharge capacity in the conventional nonaqueous electrolyte storage element is a positive electrode active material such as a nickel-containing compound or a manganese-containing compound from the positive electrode due to a small amount of hydrogen fluoride (HF) present in the nonaqueous electrolyte. It is mentioned that a component elutes. This elution is particularly likely to occur during high voltage operation. The eluted positive electrode active material component is deposited on the negative electrode surface, leading to an increase in the amount of side reaction of the negative electrode.
  • HF hydrogen fluoride
  • the discharge capacity decreases due to an increase in resistance or a shift in capacity balance.
  • a small amount of HF in the nonaqueous electrolyte is generated by decomposition of an electrolyte salt containing a fluorine atom in the vicinity of the positive electrode.
  • the P2p peak appearing in the range of 134.7 eV or less is derived from phosphorus oxoacids such as phosphonic acid or fluorinated phosphorus oxoacid salts. This is the peak of the phosphorus atom.
  • the above peak indicates that phosphorus atoms derived from phosphorus oxoacids or fluorinated phosphorus oxoacid salts are present on the surface of the positive electrode mixture, and these phosphorus atoms are present on the surface of the positive electrode mixture.
  • coating In the electric storage element (A), by such a coating, the decomposition reaction of the electrolyte salt containing fluorine atoms on the surface of the positive electrode mixture is suppressed, and the elution of the positive electrode active material component is suppressed. Can be increased.
  • the peak height ratio (Al2p / P2p) of Al2p and P2p in the said spectrum is 0.1 or more, and this is sufficient aluminum on the surface of a positive electrode compound material. Indicates that an atom is present.
  • the aluminum atoms on the surface of the positive electrode mixture are presumed to form an acid-resistant film, whereby the initial discharge capacity can be increased and the capacity retention rate can be further increased.
  • the phosphorus atom and the aluminum atom on the surface of the positive electrode mixture may be present in a single-layer coating, or form a multilayer structure of a layer containing a phosphorus atom and a layer containing an aluminum atom. May be.
  • a non-aqueous electrolyte electricity storage device includes a positive electrode having a positive electrode mixture containing a positive electrode active material, a phosphorus atom, and an aluminum atom, and in the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy. , P2p peak position is 134.3 eV or more and 134.7 eV or less non-aqueous electrolyte electricity storage element (B) (hereinafter also simply referred to as “electricity storage element (B)”).
  • the initial discharge capacity is large and the capacity retention rate after the charge / discharge cycle is high, and the adhesion of the positive electrode mixture is also high. Although this reason is not certain, the following reason is guessed.
  • the P2p peak appearing in the range of 134.3 eV to 134.7 eV is a positive electrode mixture containing a specific fluorinated phosphorus oxoacid salt and a specific aluminum coupling agent This occurs when a positive electrode mixture is produced using a paste. It is speculated that a positive electrode active material component elution is sufficiently suppressed and an acid-resistant film is formed on the surface of the positive electrode mixture produced using such components regardless of the amount of aluminum atoms present.
  • the subject of providing the nonaqueous electrolyte electrical storage element provided with the positive electrode which has favorable adhesiveness, and having the outstanding cycle performance (energy density maintenance factor) can be solved. .
  • the peak height ratio (Al2p / P2p) between Al2p and P2p is preferably 0.1 or more. In this case, a sufficient amount of aluminum atoms are present on the surface of the positive electrode mixture, and the initial discharge capacity and the like can be further increased.
  • the positive electrode active material contains a metal oxide, and the peak height ratio Al2p / O1s between Al2p and O1s is 0.1 in the spectrum of the positive electrode mixture.
  • the following is preferable.
  • the peak height ratio (Al2p / O1s) is 0.1 or less, a film containing an appropriate amount of aluminum is formed on the surface of the positive electrode active material. For this reason, the reaction between the nonaqueous electrolyte and the positive electrode active material is suppressed, and an increase in the internal resistance of the power storage element is suppressed. Accordingly, the initial discharge capacity and capacity retention rate can be further increased.
  • the peak of O1s refers to a peak having the highest peak intensity among peaks present in the vicinity of 529.6 eV, more specifically in a range of 530.5 to 529.0 eV.
  • a peak is a peak derived from oxygen bonded to a metal, and is a peak derived from oxygen contained in the positive electrode active material and aluminum oxide present in the film on the surface of the positive electrode active material.
  • the positive electrode active material contains a metal oxide, and the peak height ratio (Al2p / O1s) between Al2p and O1s is 0 in the spectrum of the positive electrode mixture. It is preferably 01 or more. That the peak height ratio (Al2p / O1s) is 0.01 or more means that aluminum atoms are sufficiently present in the vicinity of the surface of the positive electrode active material containing the metal oxide to some extent. Therefore, the initial discharge capacity can be further increased.
  • the peak height ratio (Al2p / P2p) between Al2p and P2p is preferably 1.0 or less. Thereby, a sufficient amount of phosphorus atoms can be present on the surface of the positive electrode mixture (positive electrode active material) relative to aluminum, and the capacity retention rate can be further increased.
  • a sample used for measuring the spectrum of the positive electrode mixture by X-ray photoelectron spectroscopy (XPS) is prepared by the following method.
  • the non-aqueous electrolyte electricity storage element is discharged with a current of 0.1 C to a discharge end voltage during normal use to obtain a discharge end state.
  • “during normal use” refers to a case where the storage element is used under the discharge conditions recommended or specified in the storage element.
  • the discharged storage element is disassembled, the positive electrode is taken out, the electrode is sufficiently washed with dimethyl carbonate, and then dried at room temperature under reduced pressure.
  • the positive electrode after drying is cut into a predetermined size (for example, 2 ⁇ 2 cm) and used as a sample in XPS spectrum measurement.
  • the work from disassembly of the battery to the XPS measurement is performed in an argon atmosphere with a dew point of ⁇ 60 ° C. or lower.
  • the use apparatus and measurement conditions in the XPS spectrum of the positive electrode mixture are as follows.
  • the peak position and peak height in the above spectrum are values determined as follows using CasaXPS (manufactured by Casa Software, Inc.). First, the sp2 carbon peak in C1s is set to 284.8 eV, and all obtained spectra are corrected. Next, a leveling process is performed on each spectrum by removing the background using a linear method. In the spectrum after the leveling process, the spectrum of each element is corrected using the relative sensitivity coefficient described above, and the value having the highest peak intensity is defined as the peak height. Further, the binding energy indicating the peak height is defined as a peak position.
  • a method for manufacturing a nonaqueous electrolyte electricity storage device includes mixing a positive electrode active material, an oxo acid of phosphorus or an oxo acid salt of fluorinated phosphorus, and an aluminum coupling agent.
  • the production method ( ⁇ ) it is possible to produce a nonaqueous electrolyte storage element having a large initial discharge capacity and a high capacity retention rate after a charge / discharge cycle.
  • This effect is presumed to be due to a film formed on the surface of the positive electrode mixture by the oxo acid of phosphorus or the oxo acid salt of fluorinated phosphorus and the aluminum coupling agent. That is, as described above, the coating film to be formed becomes a good protective layer by containing aluminum atoms, and the oxo acid of phosphorus suppresses the decomposition reaction of the electrolyte salt containing fluorine atoms on the surface of the positive electrode mixture. Presumed to be.
  • the mixing amount of the aluminum coupling agent with respect to 100 parts by mass of the positive electrode active material is preferably 0.4 parts by mass or more.
  • the amount of aluminum atoms in the coating film to be formed is particularly sufficient, and the initial discharge capacity and capacity retention rate of the obtained power storage element can be further increased.
  • a positive electrode active material, lithium difluorophosphate, and a compound represented by the following general formula (1) are mixed to produce a positive electrode paste.
  • R 1 to R 3 are each independently a hydrocarbon group having 1 to 9 carbon atoms or a group represented by the following general formula (2).
  • R 4 and R 5 are each independently an alkyl group having 1 to 18 carbon atoms or an alkoxy group having 1 to 18 carbon atoms.
  • the compound represented by the general formula (1) comes into contact with the positive electrode active material, it is hydrolyzed by a catalytic action to cover the surface of the positive electrode active material.
  • Lithium difluorophosphate reacts with acid such as hydrofluoric acid (HF) present in a small amount in the non-aqueous electrolyte or adsorbed moisture or surface functional groups on the surface of the active material to form a phosphor oxide film on the surface of the positive electrode active material.
  • acid such as hydrofluoric acid (HF) present in a small amount in the non-aqueous electrolyte or adsorbed moisture or surface functional groups on the surface of the active material to form a phosphor oxide film on the surface of the positive electrode active material.
  • HF hydrofluoric acid
  • aluminum and phosphorous oxide are included by coexisting the compound represented by the above general formula (1) which is an aluminum source and lithium difluorophosphate which is a phosphorus source.
  • a film is suitably formed on the surface of the positive electrode active
  • the said manufacturing method ((beta)) it has the positive electrode which has a positive electrode compound material containing a positive electrode active material, a phosphorus atom, and an aluminum atom,
  • the peak of P2p A nonaqueous electrolyte storage element (B) having a position of 134.3 eV or more and 134.7 eV or less can be effectively obtained. That is, according to the manufacturing method ( ⁇ ), it is possible to obtain a power storage device having a large initial discharge capacity and a high capacity retention rate after the charge / discharge cycle and also a high adhesion of the positive electrode mixture.
  • the mixing amount of the said lithium difluorophosphate is 0.3 mass part or more and 1 mass part or less with respect to 100 mass parts of said positive electrode active materials, It represents with the said General formula (1).
  • the amount of the compound to be mixed is preferably 0.3 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • nonaqueous electrolyte storage element and a method for manufacturing the nonaqueous electrolyte storage element according to an embodiment of the present invention will be described in detail.
  • the electrical storage element (A) which concerns on one Embodiment of this invention has a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • a nonaqueous electrolyte secondary battery will be described as an example of the nonaqueous electrolyte storage element (A).
  • the positive electrode and the negative electrode usually form an electrode body that is alternately superposed by stacking or winding via a separator. This electrode body is housed in a case, and the case is filled with a nonaqueous electrolyte.
  • the non-aqueous electrolyte is interposed between the positive electrode and the negative electrode.
  • the well-known aluminum case, resin case, etc. which are normally used as a case of a nonaqueous electrolyte secondary battery can be used.
  • the positive electrode has a positive electrode base material and a positive electrode mixture layer disposed on the positive electrode base material directly or via an intermediate layer.
  • the positive electrode base material has conductivity.
  • metals such as aluminum, titanium, tantalum, stainless steel, nickel, or alloys thereof are used.
  • baked carbon, a conductive polymer, conductive glass, etc. may be sufficient.
  • a surface of aluminum, copper, or the like treated with carbon, nickel, titanium, silver, or the like can be used.
  • aluminum and aluminum alloys are preferable from the balance of potential resistance, high conductivity and cost.
  • foil, a vapor deposition film, etc. are mentioned as a formation form of a positive electrode base material, and foil is preferable from the surface of cost. That is, an aluminum foil is preferable as the positive electrode base material.
  • aluminum or aluminum alloy include A1085P and A3003P defined in JIS-H-4000 (2014).
  • middle layer is a coating layer of the surface of a positive electrode base material, and reduces the contact resistance of a positive electrode base material and a positive electrode compound material layer by including electroconductive particles, such as a carbon particle.
  • middle layer is not specifically limited, For example, it can form with the composition containing a resin binder and electroconductive particle. “Conductive” means that the volume resistivity measured according to JIS-H-0505 (1975) is 10 7 ⁇ ⁇ cm or less. Means that the volume resistivity is more than 10 7 ⁇ ⁇ cm.
  • the positive electrode mixture layer is a layer formed from a so-called positive electrode mixture containing a positive electrode active material.
  • This positive electrode mixture contains phosphorus atoms and aluminum atoms, and optionally contains optional components such as a conductive agent, a binder (binder), a thickener, and a filler.
  • the phosphorus atom and the aluminum atom are presumed to exist in the film covering the positive electrode active material.
  • a metal oxide is usually used.
  • a specific positive electrode active material for example, a complex oxide represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 , Li having a layered ⁇ -NaFeO 2 type crystal structure) x NiO 2, Li x MnO 3 , Li x Ni ⁇ Co (1- ⁇ ) O 2, Li x Ni ⁇ Mn ⁇ Co (1- ⁇ - ⁇ ) O 2 , etc., Li x Mn 2 having a spinel type crystal structure O 4 , Li x Ni ⁇ Mn (2- ⁇ ) O 4 ), Li w Me x (XO y ) z (Me represents at least one transition metal, and X represents, for example, P, Si, B, V, etc.
  • Polyanion compounds (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.)
  • the elements or polyanions in these compounds may be partially substituted with other elements or anion species.
  • one kind of these compounds may be used alone, or two or more kinds may be mixed and used.
  • the effect of the present invention can be exhibited more effectively.
  • the component of the positive electrode active material is eluted from the positive electrode mixture layer due to a small amount of HF present in the non-aqueous electrolyte, which affects the discharge capacity and the like.
  • this positive electrode active material is a nickel-containing compound or a manganese-containing compound, the elution is likely to occur, and the discharge capacity and the like are easily affected.
  • the elution of the nickel-containing compound or the manganese-containing compound can be effectively suppressed by coating such a positive electrode active material with the specific film containing the phosphorus atom and the aluminum atom.
  • the positive electrode of the present embodiment can increase the substantial discharge capacity when, for example, a high-capacity positive electrode active material using lithium nickelate or a lithium-excess type lithium transition metal composite oxide is used. it can.
  • the peak position of P2p is 134.7 eV or less, preferably 134 eV or less, and more preferably 133.7 eV or less. Further, this peak position is preferably 130 eV or more, more preferably 132 eV or more, further preferably 133 eV or more, and still more preferably 133.4 eV or more. This peak position may be 134 eV or more, or 134.3 eV or more.
  • the P2p peak appearing in the above range is a peak of a phosphorus atom derived from a phosphorus oxoacid or a fluorinated phosphorus oxoacid salt.
  • phosphorus atoms are usually present on the surface of the particulate positive electrode active material.
  • Such phosphorus atoms can suppress the decomposition reaction of the electrolyte salt containing fluorine atoms in the vicinity of the positive electrode and suppress the elution of the positive electrode active material component.
  • This phosphorus atom is present on the surface of the positive electrode active material as a compound containing PO x F y anion in which a part of oxygen atoms of PO 3 anion, PO 4 anion, PO 3 anion or PO 4 anion is substituted with a fluorine atom. It is preferable to do.
  • the peak of the phosphorus atom (P2p) of such a compound appears in the range of 133 eV or more and 134.7 eV or less. In the spectrum, a peak outside the above range may exist.
  • the P2p peak that appears in a range where the binding energy is higher than 134.7 eV is, for example, a peak of a phosphorus atom derived from a fluoride of phosphorus.
  • the lower limit of the peak height ratio (P2p / O1s) between P2p and O1s is, for example, preferably 0.05, and more preferably 0.08.
  • an upper limit of this peak height ratio (P2p / O1s) for example, 1 is preferable, 0.7 is more preferable, and 0.5 is more preferable.
  • the upper limit of the peak height ratio (P2p / O1s) is preferably 0.2, more preferably 0.15, and even more preferably 0.1.
  • the lower limit of the peak height ratio (Al2p / P2p) between Al2p and P2p is 0.1, preferably 0.15.
  • the peak height ratio (Al2p / P2p) By setting the peak height ratio (Al2p / P2p) to the above lower limit or more, a sufficient amount of aluminum atoms can be present on the surface of the positive electrode mixture layer (positive electrode active material), and the initial discharge capacity can be increased. Can do.
  • an upper limit of this peak height ratio (Al2p / P2p) it is 1.0, for example, 0.5 is preferable and 0.3 is more preferable.
  • the lower limit of the peak height ratio (Al2p / O1s) between Al2p and O1s is preferably 0.01, more preferably 0.02.
  • the upper limit of the peak height ratio (Al2p / O1s) is preferably 0.5, more preferably 0.2, and even more preferably 0.1.
  • the conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect the performance of the storage element.
  • a conductive agent include natural or artificial graphite, furnace black, acetylene black, carbon black such as ketjen black, metal, conductive ceramics, and the like, and acetylene black is preferable.
  • the shape of the conductive agent include powder and fiber.
  • the conductive agents artificial graphite, acetylene black, and carbon fiber are preferable, and acetylene black is more preferable.
  • As a minimum of content of a electrically conductive agent 0.1 mass% is preferable with respect to the total mass of a positive mix layer, and 0.5 mass% is more preferable. On the other hand, as this upper limit, 50 mass% is preferable and 30 mass% is more preferable.
  • binder examples include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, and polyimide; ethylene-propylene-diene rubber (EPDM), Examples thereof include elastomers such as sulfonated EPDM, styrene butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
  • fluororesins polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.
  • thermoplastic resins such as polyethylene, polypropylene, and polyimide
  • EPDM ethylene-propylene-diene rubber
  • SBR styrene butadiene rubber
  • fluororubber examples include polysaccharide polymers and the like.
  • the thickener examples include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose.
  • CMC carboxymethylcellulose
  • methylcellulose a functional group that reacts with lithium
  • the filler is not particularly limited as long as it does not adversely affect battery performance.
  • the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, and glass.
  • the negative electrode includes a negative electrode base material and a negative electrode mixture layer disposed on the negative electrode base material directly or via an intermediate layer.
  • the intermediate layer can have the same configuration as the positive electrode intermediate layer.
  • the negative electrode substrate can have the same configuration as the positive electrode substrate, but the material is a metal such as copper, nickel, iron, titanium, aluminum, stainless steel, nickel-plated steel, or an alloy thereof (Al— Cd alloy or the like is used.
  • a material such as copper treated with carbon, nickel, titanium, silver, or the like can be used.
  • copper or a copper alloy is preferable. That is, copper foil is preferable as the negative electrode substrate. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
  • the negative electrode mixture layer is formed of a so-called negative electrode mixture containing a negative electrode active material.
  • the negative electrode composite material which forms a negative electrode composite material layer contains arbitrary components, such as a electrically conductive agent, a binder (binder), a thickener, and a filler as needed.
  • Arbitrary components such as a conductive agent, a binder, a thickener, and a filler can be the same as those for the positive electrode mixture layer.
  • the negative electrode active material a material that can occlude and release lithium ions is usually used.
  • Specific negative electrode active materials include, for example, metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide and Sn oxide; polyphosphate compounds; graphite (graphite) and amorphous Examples thereof include carbon materials such as carbon (easily graphitizable carbon or non-graphitizable carbon).
  • graphite is preferable as a negative electrode active material because it has an operating potential very close to that of metallic lithium and can realize charge and discharge at a high operating voltage.
  • artificial graphite and natural graphite are preferable.
  • graphite in which the surface of the negative electrode active material particles is modified with amorphous carbon or the like is preferable because gas generation during charging is small.
  • These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.
  • a carbonaceous material or a lithium composite oxide is preferably used from the viewpoint of safety.
  • the negative electrode mixture includes typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, and Ge.
  • Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W may be contained.
  • the material of the separator for example, a woven fabric, a nonwoven fabric, a porous resin film, or the like is used. Among these, a porous resin film is preferable from the viewpoint of strength, and a nonwoven fabric is preferable from the viewpoint of liquid retention of the nonaqueous electrolyte.
  • the material constituting the separator include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, and vinylidene fluoride.
  • the main component of the separator is preferably a polyolefin such as polyethylene or polypropylene from the viewpoint of strength, and is preferably polyimide or aramid from the viewpoint of resistance to oxidative degradation
  • the porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. From the viewpoint of charge / discharge performance, the porosity is preferably 20% by volume or more.
  • a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and polyvinylidene fluoride and an electrolyte may be used.
  • a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and polyvinylidene fluoride and an electrolyte
  • an electrolyte for example, a polymer gel composed of a polymer such as acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, vinyl acetate, vinyl pyrrolidone, and polyvinylidene fluoride and an electrolyte may be used.
  • Use of the non-aqueous electrolyte in a gel state is preferable in that it has an effect of preventing leakage.
  • a polymer gel in combination with the porous film, nonwoven fabric, or the like as described above as the separator because the liquid retention of the electrolyte is improved.
  • a polymer gel in combination with the porous film, nonwoven fabric, or the like as described above as the separator because the liquid retention of the electrolyte is improved.
  • a film in which the surface of the polyethylene microporous membrane and the microporous wall are coated with a solvophilic polymer having a thickness of several ⁇ m or less and holding the electrolyte in the micropores of the film, Gels.
  • solvophilic polymer examples include polyvinylidene fluoride, an acrylate monomer having an ethylene oxide group or an ester group, an epoxy monomer, a polymer having a monomer having an isocyanate group, and the like crosslinked. These monomers can be subjected to a crosslinking reaction by electron beam (EB) irradiation or heating or ultraviolet (UV) irradiation by adding a radical initiator.
  • EB electron beam
  • UV ultraviolet
  • An inorganic layer may be disposed between the separator and the electrode (usually the positive electrode).
  • This inorganic layer is a porous layer also called a heat-resistant layer.
  • the separator by which the inorganic layer was formed in one surface of the porous resin film can also be used.
  • the inorganic layer is usually composed of inorganic particles and a binder, and may contain other components.
  • Nonaqueous electrolyte As the non-aqueous electrolyte, a known non-aqueous electrolyte that is usually used in a general non-aqueous electrolyte secondary battery can be used.
  • the non-aqueous electrolyte includes a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • non-aqueous solvent a known non-aqueous solvent that is usually used as a non-aqueous solvent for a general non-aqueous electrolyte for a secondary battery can be used.
  • the non-aqueous solvent include cyclic carbonate, chain carbonate, ester, ether, amide, sulfone, lactone, and nitrile. Among these, it is preferable to use at least cyclic carbonate or chain carbonate, and it is more preferable to use cyclic carbonate and chain carbonate in combination.
  • cyclic carbonate examples include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinylene carbonate (VC), vinyl ethylene carbonate (VEC), chloroethylene carbonate, fluoroethylene carbonate (FEC), and difluoroethylene.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • VEC vinylene carbonate
  • FEC fluoroethylene carbonate
  • difluoroethylene examples include carbonate (DFEC), styrene carbonate, catechol carbonate, 1-phenyl vinylene carbonate, 1,2-diphenyl vinylene carbonate, and among these, EC is preferable.
  • chain carbonate examples include diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diphenyl carbonate, etc. Among them, EMC is preferable.
  • Examples of the electrolyte salt include lithium salt, sodium salt, potassium salt, magnesium salt, onium salt, and the like, but lithium salt is preferable.
  • Examples of the lithium salt include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiPF 2 (C 2 O 4 ) 2 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN ( SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9), LiC (SO 2 CF 3) 3, LiC (SO 2 C 2 F 5 )
  • a lithium salt having a fluorinated hydrocarbon group such as 3 can be mentioned.
  • electrolyte salts when an electrolyte salt containing a fluorine atom is used, the effect of the present invention is further exhibited.
  • HF in the non-aqueous electrolyte causing elution of the positive electrode active material component is generated by decomposition of an electrolyte salt containing a fluorine atom.
  • LiPF 6 , LiPO 2 F 2 , LiBF 4 , LiPF 2 (C 2 O 4 ) 2 and the like are likely to generate HF by decomposition. Therefore, usually, when these electrolyte salts are used, it tends to cause a decrease in discharge capacity due to elution of the positive electrode active material component.
  • generation of HF due to decomposition can be suppressed and a reduction in discharge capacity can be suppressed.
  • the lower limit of the electrolyte salt concentration in the non-aqueous electrolyte is preferably 0.1 mol / L, and more preferably 0.5 mol / L.
  • the upper limit is preferably 5 mol / L, and more preferably 2.5 mol / L.
  • an electrolyte additive generally used for a nonaqueous electrolyte electricity storage element can be used.
  • aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenylether, dibenzofuran; 2-fluorobiphenyl, o-cyclohexylfluorobenzene , Partially fluorinated products of the above aromatic compounds such as p-cyclohexylfluorobenzene; fluorine-containing anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, and 3,5-difluoroanisole Overcharge prevention agents such as vinylene carbonate, methyl vinylene carbonate
  • the content of the additive is not particularly limited, but the lower limit of the total amount of the non-aqueous electrolyte is preferably 0.01% by mass, more preferably 0.1% by mass, and still more preferably 0.2% by mass. On the other hand, as this upper limit, 5 mass% is preferable, 3 mass% is more preferable, 2 mass% is further more preferable, 1 mass% may be sufficient, and 0.1 mass% may be sufficient.
  • non-aqueous electrolyte a room temperature molten salt, an ionic liquid, a polymer solid electrolyte, or the like can be used.
  • the energy storage device (B) has a peak height ratio (Al2p / P2p) between Al2p and P2p in the spectrum of the positive electrode mixture layer (positive electrode mixture) by X-ray photoelectron spectroscopy.
  • the peak position of P2p is not less than 134.3 eV and not more than 134.7 eV.
  • the upper limit of the peak position of P2p is preferably 134.6 eV, and more preferably 134.5 eV.
  • the lower limit of the peak height ratio (Al2p / P2p) between Al2p and P2p is preferably 0.1, and more preferably 0.15.
  • the other peak height ratio, the composition of the positive electrode mixture layer (positive electrode mixture), the preferred form of the structure and the like in the electricity storage element (B) are the same as those of the electricity storage element (A) described above.
  • the description of A) can be referred to.
  • the positive electrode mixture layer (positive electrode mixture) of the electricity storage element (B) may include a film derived from lithium difluorophosphate (LiPO 2 F 2 ) and a compound represented by the following general formula (1). preferable. By providing such a film, the initial discharge capacity, capacity retention rate, adhesion, and the like can be further increased.
  • R 1 to R 3 are each independently a hydrocarbon group having 1 to 9 carbon atoms or a group represented by the following general formula (2).
  • R 4 and R 5 are each independently an alkyl group having 1 to 18 carbon atoms or an alkoxy group having 1 to 18 carbon atoms.
  • the hydrocarbon group having 1 to 9 carbon atoms may be any of an aliphatic hydrocarbon group having 1 to 9 carbon atoms and an aromatic hydrocarbon group having 6 to 9 carbon atoms.
  • Alkyl groups such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl and t-butyl;
  • An alkenyl group such as an ethenyl group or a propenyl group;
  • alkynyl groups such as ethynyl group and propynyl group.
  • Examples of the aromatic hydrocarbon group having 6 to 9 carbon atoms include a phenyl group, a benzyl group, and a tolyl group.
  • alkyl group having 1 to 18 carbon atoms examples include a decyl group and an octadecyl group in addition to the above-described alkyl group.
  • the alkoxy group having 1 to 18 carbon atoms is a group in which an oxygen atom is bonded to the alkyl group having 1 to 18 carbon atoms, and examples thereof include a methoxy group and an ethoxy group.
  • R 1 to R 3 are preferably an alkyl group and a group represented by the general formula (2).
  • R 4 is preferably an alkyl group, more preferably an alkyl group having 1 to 5 carbon atoms, and still more preferably a methyl group and an ethyl group.
  • R 5 is preferably an alkoxy group, more preferably an alkoxy group having 1 to 5 carbon atoms, and more preferably a methoxy group or an ethoxy group. More preferably, two of R 1 to R 3 are alkyl groups, and the remaining one is a group represented by the general formula (2).
  • Examples of the compound represented by the general formula (1) include aluminum alkoxide and aluminum chelate. Specifically, ethyl acetoaceto aluminum diethoxide, ethyl acetoaceto aluminum diisopropoxide, ethyl Acetoacetoaluminum di (tert-butoxide), acetylacetonatoaluminum diisopropoxide, aluminum trisacetylacetonate, aluminum isopropoxide, aluminum bis (ethylacetoacetate) acetylacetonate, aluminum trisethylacetoacetate, etc. Can be mentioned. Among these, ethylacetoacetoaluminum diisopropoxide is preferable because a uniform film can be formed.
  • the said electrical storage element (A) and (B) can be manufactured combining a well-known manufacturing method, it is preferable to manufacture with the following method. That is, the method for manufacturing a non-aqueous electrolyte electricity storage device according to one embodiment of the present invention comprises mixing a positive electrode active material, a phosphorus oxoacid or a fluorinated phosphorus oxoacid salt, and an aluminum coupling agent. It is a manufacturing method ((alpha)) of the said electrical storage element (A) or electrical storage element (B) which has these.
  • a positive electrode mixture paste is obtained by mixing the positive electrode active material, a phosphorus oxo acid or a fluorinated phosphorus oxo acid salt, and an aluminum coupling agent.
  • the positive electrode mixture paste is applied to the surface of the positive electrode base material and dried to obtain a positive electrode.
  • the positive electrode active material is as described above.
  • the positive electrode mixture paste can contain any optional component that may be contained in the above-described positive electrode mixture.
  • the phosphorus oxo acid refers to a compound having a structure in which a hydroxyl group (—OH) and an oxy group ( ⁇ O) are bonded to a phosphorus atom.
  • Examples of the phosphorus oxo acid include phosphoric acid (H 3 PO 4 ), phosphonic acid (H 3 PO 3 ), phosphinic acid (H 3 PO 2 ), pyrophosphoric acid (H 4 P 2 O 7 ), and polyphosphoric acid.
  • the phosphorus oxo acid may be an ester compound in which a hydrogen atom of a hydroxyl group (—OH) bonded to a phosphorus atom is substituted with an organic group.
  • Examples of the organic group include hydrocarbon groups such as a methyl group and an ethyl group. Among these, phosphoric acid and phosphonic acid are preferable, and phosphonic acid is more preferable.
  • fluorinated phosphorus oxoacid salts include lithium salts such as lithium monofluorophosphate and lithium difluorophosphate, with lithium difluorophosphate being preferred.
  • a film containing phosphorus atoms can be formed on the positive electrode mixture (positive electrode active material) by using the oxo acid of phosphorus or the oxo acid salt of fluorinated phosphorus.
  • the peak position of the phosphorus atom (P2p) derived from the phosphorus oxo acid or the like in the above spectrum appears at 134.7 eV or less.
  • the lower limit of the amount of phosphorus oxoacid or fluorinated phosphorus oxoacid salt in the positive electrode mixture paste is preferably 0.1 parts by weight, and 0.2 parts by weight with respect to 100 parts by weight of the positive electrode active material. Part is more preferable, and 0.3 part by mass is more preferable.
  • the upper limit of the mixing amount is preferably 5 parts by mass, more preferably 2 parts by mass, further preferably 1 part by mass, still more preferably 0.7 parts by mass, and particularly preferably 0.4 parts by mass.
  • the above-mentioned aluminum coupling agent refers to a compound containing an aluminum atom and having a structure capable of binding to another compound (positive electrode active material or the like) by a solvolysis reaction or the like. With this aluminum coupling agent, a film containing aluminum atoms can be formed on the positive electrode mixture (positive electrode active material).
  • the compound represented by General formula (1) mentioned above can be mentioned, for example, Ethyl acetoaceto aluminum diisopropoxide is preferable.
  • the lower limit of the mixing amount of the aluminum coupling agent in the positive electrode mixture paste may be, for example, 0.1 parts by mass or 0.3 parts by mass with respect to 100 parts by mass of the positive electrode active material. 0.4 parts by mass is preferable, and 0.5 parts by mass is more preferable. On the other hand, as an upper limit of this mixing amount, 5 mass parts is preferable, 2 mass parts is more preferable, 1 mass part is further more preferable, 0.7 mass part is still more preferable.
  • an organic solvent is usually used as a dispersion medium.
  • the organic solvent include polar solvents such as N-methyl-2-pyrrolidone (NMP), acetone and ethanol, and nonpolar solvents such as xylene, toluene and cyclohexane. Polar solvents are preferred, and NMP is preferred. More preferred.
  • the method for applying the positive electrode mixture paste is not particularly limited, and can be performed by a known method such as roller coating, screen coating, or spin coating.
  • the production method ( ⁇ ) may include the following steps. That is, the manufacturing method ( ⁇ ) includes, for example, a step of preparing a negative electrode, a step of preparing a nonaqueous electrolyte, and an electrode body that is alternately superimposed by stacking or winding a positive electrode and a negative electrode with a separator interposed therebetween.
  • a step of forming, a step of accommodating the positive electrode and the negative electrode (electrode body) in a battery container (case), and a step of injecting the nonaqueous electrolyte into the battery container can be provided.
  • the injection can be performed by a known method.
  • the non-aqueous electrolyte secondary battery non-aqueous electrolyte storage element
  • sealing the injection port can be sealing the injection port.
  • the manufacturing method ( ⁇ ) it is possible to obtain an energy storage device having a high initial discharge capacity and a high capacity retention rate after a charge / discharge cycle, and also a high adhesion of the positive electrode mixture.
  • the mixing amount of the said lithium difluorophosphate is 0.3 mass part or more and 1 mass part or less with respect to 100 mass parts of said positive electrode active materials, It represents with the said General formula (1).
  • the amount of the compound to be mixed is preferably 0.3 parts by mass or more and 1 part by mass or less with respect to 100 parts by mass of the positive electrode active material.
  • the present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode.
  • the intermediate layer may not be provided in the positive electrode or the negative electrode.
  • the positive electrode mixture does not have to form a clear layer.
  • the positive electrode may have a structure in which a positive electrode mixture is supported on a mesh-like positive electrode base material.
  • the non-aqueous electrolyte storage element is mainly described as a non-aqueous electrolyte secondary battery, but other non-aqueous electrolyte storage elements may be used.
  • nonaqueous electrolyte storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
  • FIG. 1 shows a schematic diagram of a rectangular nonaqueous electrolyte storage element 1 (nonaqueous electrolyte secondary battery) which is an embodiment of a nonaqueous electrolyte storage element according to the present invention.
  • a battery container 3 case
  • the electrode body 2 is formed by winding a positive electrode including a positive electrode mixture containing a positive electrode active material and a negative electrode including a negative electrode active material via a separator.
  • the positive electrode is electrically connected to the positive electrode terminal 4 via the positive electrode lead 4 ′, and the negative electrode is electrically connected to the negative electrode terminal 5 via the negative electrode lead 5 ′.
  • the details of the positive electrode mixture are as described above.
  • a non-aqueous electrolyte is injected into the battery container 3.
  • the configuration of the nonaqueous electrolyte storage element according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), a flat battery, and the like.
  • the present invention can also be realized as a power storage device including a plurality of the above nonaqueous electrolyte power storage elements.
  • a power storage device is shown in FIG. In FIG. 2, the power storage device 30 includes a plurality of power storage units 20. Each power storage unit 20 includes a plurality of nonaqueous electrolyte power storage elements 1.
  • the power storage device 30 can be mounted as a power source for vehicles such as an electric vehicle (EV), a hybrid vehicle (HEV), a plug-in hybrid vehicle (PHEV), and the like.
  • Example 1 (Preparation of positive electrode) Using N-methylpyrrolidone (NMP) as a dispersion medium, LiNi 1/3 Co 1/3 Mn 1/3 O 2 as a positive electrode active material, acetylene black (AB) as a conductive agent, and polyvinylidene fluoride as a binder (PVDF) was mixed at a mass ratio of 94: 3: 3 in terms of solid content.
  • NMP N-methylpyrrolidone
  • AB acetylene black
  • PVDF polyvinylidene fluoride as a binder
  • EAP ethyl acetoacetoaluminum diisopropoxide
  • Mass% phosphonic acid (H 3 PO 3 ) was added in this order and further mixed to obtain a positive electrode mixture paste.
  • This positive electrode mixture paste was applied to one side of a 15 ⁇ m-thick aluminum foil serving as a positive electrode substrate, and dried at 100 ° C. to form a positive electrode mixture on the positive electrode substrate.
  • the coating amount of the positive electrode mixture paste was 1.68 g / 100 cm 2 in terms of solid content. In this way, a positive electrode was obtained.
  • a negative electrode mixture paste was prepared using graphite as the negative electrode active material, styrene-butadiene rubber and carboxymethyl cellulose as the binder, and water as the dispersion medium. Note that the mass ratio of the negative electrode active material to the binder was 97: 3. This negative electrode mixture paste was applied to one side of a 10 ⁇ m thick copper foil as a negative electrode substrate, and dried at 100 ° C. The coating amount of the negative electrode mixture was 1.05 g / 100 cm 2 in terms of solid content. In this way, a negative electrode was obtained.
  • a non-aqueous electrolyte was prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1.0 mol / l in a mixed solvent in which EC and EMC were mixed at a volume ratio of 3: 7.
  • LiPF 6 lithium hexafluorophosphate
  • nonaqueous electrolyte storage element A polyolefin microporous membrane was used as the separator.
  • An electrode body was produced by laminating the positive electrode and the negative electrode through this separator.
  • the electrode body was housed in a case made of a metal resin composite film, and the nonaqueous electrolyte was injected into the case and sealed by thermal welding to obtain the nonaqueous electrolyte storage element (secondary battery) of Example 1.
  • Examples 2 to 5, Comparative Examples 1 to 4 Each non-aqueous solution of Examples 2 to 5 and Comparative Examples 1 to 4 was the same as Example 1 except that the types and amounts of additives used in the preparation of the positive electrode mixture paste were as shown in Table 1. An electrolyte storage element was obtained. Note that “-” in the column of the additive in the table indicates that the corresponding additive is not used. “EAP” refers to ethyl acetoacetoaluminum diisopropoxide.
  • XPS measurement was performed on the obtained nonaqueous electrolyte electricity storage devices of Examples 1 to 5 and Comparative Examples 1 to 4 according to the following procedure.
  • Each non-aqueous electrolyte storage element in the final state after the initial capacity confirmation test was disassembled in an argon atmosphere with a dew point of ⁇ 60 ° C. or lower, the positive electrode was taken out, washed with dimethyl carbonate, and then dried at room temperature under reduced pressure.
  • the obtained positive electrode was sealed in a transfer vessel in an argon atmosphere, and the XPS measurement of the positive electrode mixture surface of the positive electrode was performed under the conditions described above.
  • the peak position of P2p and the peak heights of O1s, P2p and Al2p were determined by the method described above. From the obtained peak height, peak height ratios (Al2p / P2p), (Al2p / O1s), and (P2p / O1s) were determined. The obtained P2p peak positions and peak height ratios (Al2p / P2p), (Al2p / O1s), and (P2p / O1s) are shown in Table 1.
  • each of the nonaqueous electrolyte storage elements of Examples 1 to 5 has a large initial capacity and a high capacity retention rate.
  • Comparative Example 1 using no additive the peak position of P2p does not appear below 134.7 eV, and the capacity retention rate is low.
  • Comparative Example 2 in which only the aluminum coupling agent was added and no phosphonic acid was added the peak position of P2p did not appear below 134.7 eV, and the capacity retention rate did not increase so much.
  • Examples 6 to 9 and Comparative Examples were the same as Example 1 except that the types and amounts of additives used in the preparation of the positive electrode mixture paste and the composition of the nonaqueous electrolyte were as shown in Table 2. 5 to 9 nonaqueous electrolyte storage elements were obtained. Note that “-” in the column of the additive in the table indicates that the corresponding additive is not used. In addition, the concentration of LiPO 2 F 2 in the nonaqueous electrolytes of Comparative Examples 8 and 9 was 1% by mass with respect to the mass of the positive electrode active material in the energy storage device.
  • the positive electrode mixture layer contains 0.3 to 1.0% by mass of EAP and 0.3 to 1.0% by mass of LiPO 2 F 2 with respect to the mass of the positive electrode active material.
  • Examples 6 to 9 were excellent in initial discharge capacity and capacity retention.
  • Example 7 containing 0.5% by mass of EAP and 0.5% by mass of LiPO 2 F 2 , the peel strength of the positive electrode mixture layer was high.
  • the peak position of P2p was in the range of 134.3 to 134.7 eV in the XPS spectrum of the positive electrode, and a peak was observed in Al2p of the XPS spectrum.
  • the capacity decrease after the cycle test was large.
  • the peak position of P2p was observed at 134.8 eV.
  • the positive electrode mixture layer of Comparative Example 5 that does not contain EAP and LiPO 2 F 2 in the positive electrode mixture and Comparative Example 7 that contains only LiPO 2 F 2 in the positive electrode mixture had insufficient adhesion.
  • the positive electrode mixture layer of Comparative Example 7 had variations in peel strength depending on the location, and was not in a uniform adhesive state.
  • the peak position of P2p in the XPS spectrum of the positive electrode of Comparative Example 7 was 134.4 eV.
  • the nonaqueous electrolyte electricity storage device of Comparative Example 8 which does not contain EAP in the positive electrode mixture layer and LiPO 2 F 2 in the nonaqueous electrolyte had a large capacity drop after the cycle test.
  • the nonaqueous electrolyte storage elements of Comparative Example 6 and Comparative Example 9 containing only EAP in the positive electrode mixture layer have a good capacity retention rate after the cycle test regardless of whether or not LiPO 2 F 2 is contained in the nonaqueous electrolyte.
  • the peak position of P2p in the XPS spectrum of the positive electrode was 135.0 eV or more.
  • the peak positions of P2p in the XPS spectra of LiPO 2 F 2 , Li 3 PO 4 , and H 3 PO 3 were 135.5, 133.3, and 134.0 eV, respectively. Furthermore, when mixing the Li 3 PO 4 in the positive-electrode mixture layer, the effect of improving the cycle performance was not obtained. From these facts, it is presumed that when Li 3 PO 4 was mixed in the positive electrode mixture layer, a film having a peak position of P2p in the XPS spectrum in the range of 134.3 to 134.7 eV was not formed.
  • the nonaqueous electrolyte storage element including the positive electrode whose P2p peak position in the XPS spectrum near the surface is 134.3 to 134.7 eV is formed on the positive electrode mixture layer with LiPO 2 F 2. Can be obtained.
  • the nonaqueous electrolyte electricity storage devices of Comparative Examples 5, 6, 8, and 9 in which the XPS P2p peak position does not exist in the range of 134.3 to 134.7 eV have a large capacity drop after the cycle test, and the surface of the positive electrode active material Even in the non-aqueous electrolyte electricity storage elements of Comparative Examples 6 and 9 in which Al was contained in the coating, the cycle performance was not sufficient. This is presumably because the decrease in capacity after the cycle test is suppressed by the phosphorus compound in which the peak position of P2p in XPS is in the above range.
  • the present invention can be applied to electronic devices such as personal computers and communication terminals, non-aqueous electrolyte storage elements used as power sources for automobiles, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

初期放電容量が大きく、かつ充放電サイクル後の容量維持率も高い非水電解質蓄電素子、及びこのような非水電解質蓄電素子の製造方法を提供する。本発明の一態様は、正極活物質とリン原子とアルミニウム原子とを含む正極合材を有する正極を備え、X線光電子分光法による上記正極合材のスペクトルにおいて、P2pのピーク位置が134.7eV以下であり、Al2pとP2pとのピーク高さ比(Al2p/P2p)が0.1以上である非水電解質蓄電素子である。

Description

非水電解質蓄電素子及びその製造方法
 本発明は、非水電解質蓄電素子及びその製造方法に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。
 非水電解質蓄電素子の正極に関する技術として、(1)カップリング剤を用い、正極表面をアルミニウム化合物等で被覆する技術(特許文献1参照)、(2)正極にジフルオロリン酸リチウムを含有させる技術(特許文献2参照)、及び(3)溶剤系バインダーを含む正極合材ペーストにホスホン酸(HPO)を添加する技術(特許文献3、4参照)が知られている。
特開平9-199112号公報 特開2008-270199号公報 特開2013-152825号公報 特開2007-335331号公報
 しかし、発明者が検証したところ、上記(1)及び(2)の技術は、充放電サイクル後の容量維持率の改善効果は十分と言えるものではなかった。また、発明者らは、上記(3)の技術のように、溶剤系バインダーを含む正極合材ペーストに単にホスホン酸のみを添加した場合、得られる蓄電素子の初期の放電容量が低下することを知見した。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、初期放電容量が大きく、かつ充放電サイクル後の容量維持率も高い非水電解質蓄電素子、及びこのような非水電解質蓄電素子の製造方法を提供することである。
 上記課題を解決するためになされた本発明の一態様は、正極活物質とリン原子とアルミニウム原子とを含む正極合材を有する正極を備え、X線光電子分光法による上記正極合材のスペクトルにおいて、P2pのピーク位置が134.7eV以下であり、Al2pとP2pとのピーク高さ比(Al2p/P2p)が0.1以上である非水電解質蓄電素子(A)である。
 本発明の他の一態様は、正極活物質とリン原子とアルミニウム原子とを含む正極合材を有する正極を備え、X線光電子分光法による上記正極合材のスペクトルにおいて、P2pのピーク位置が134.3eV以上134.7eV以下である非水電解質蓄電素子(B)である。
 本発明の他の一態様は、正極活物質と、リンのオキソ酸又はフッ素化されたリンのオキソ酸塩と、アルミニウムカップリング剤とを混合することを有する、上記非水電解質蓄電素子(A)又は上記非水電解質蓄電素子(B)の製造方法(α)である。
 本発明の他の一態様は、正極活物質と、ジフルオロリン酸リチウムと、下記一般式(1)で表される化合物とを混合して正極ペーストを作製することを有する非水電解質蓄電素子の製造方法(β)である。
Figure JPOXMLDOC01-appb-C000003
 
(一般式(1)中、R~Rは、それぞれ独立して、炭素数1~9の炭化水素基、又は下記一般式(2)で表される基である。)
Figure JPOXMLDOC01-appb-C000004
(一般式(2)中、R及びRは、それぞれ独立して、炭素数1~18のアルキル基、又は炭素数1~18のアルコキシ基である。)
 本発明によれば、初期放電容量が大きく、かつ充放電サイクル後の容量維持率も高い非水電解質蓄電素子、及びこのような非水電解質蓄電素子の製造方法を提供することができる。
図1は、本発明の一実施形態に係る非水電解質蓄電素子を示す外観斜視図である。 図2は、本発明の一実施形態に係る非水電解質蓄電素子を複数個集合して構成した蓄電装置を示す概略図である。
 本発明の一実施形態に係る非水電解質蓄電素子は、正極活物質とリン原子とアルミニウム原子とを含む正極合材を有する正極を備え、X線光電子分光法による上記正極合材のスペクトルにおいて、P2pのピーク位置が134.7eV以下であり、Al2pとP2pとのピーク高さ比(Al2p/P2p)が0.1以上である非水電解質蓄電素子(A)(以下、単に「蓄電素子(A)」ともいう。)である。
 当該蓄電素子(A)は、初期放電容量が大きく、かつ充放電サイクル後の容量維持率も高い。この理由については定かでは無いが、以下の理由が推測される。従来の非水電解質蓄電素子において放電容量を低下させる原因の一つに、非水電解質中に存在する微量のフッ化水素(HF)により、正極からニッケル含有化合物やマンガン含有化合物などの正極活物質成分が溶出することが挙げられる。なお、この溶出は、高電圧作動時に特に生じやすい。溶出した正極活物質成分は、負極表面に析出し、負極の副反応量の増加に繋がる。これらの結果、抵抗の増加や、容量バランスがずれることによる放電容量の低下が生じると推測される。また、上記非水電解質中の微量のHFは、正極近傍でのフッ素原子を含有する電解質塩の分解などによって生じると推測される。一方、本発明の一実施形態に係る蓄電素子(A)について、134.7eV以下の範囲に現れるP2pのピークは、ホスホン酸等のリンのオキソ酸又はフッ素化されたリンのオキソ酸塩に由来するリン原子のピークである。すなわち、上記ピークは、正極合材表面にリンのオキソ酸又はフッ素化されたリンのオキソ酸塩に由来するリン原子が存在することを示しており、このリン原子は正極合材表面で保護被膜(以下、「被膜」ともいう。)を形成していると推測される。当該蓄電素子(A)においては、このような被膜により、正極合材表面におけるフッ素原子を含有する電解質塩の分解反応を抑制し、正極活物質成分の溶出を抑え、その結果、容量維持率を高めることができる。さらに、当該蓄電素子(A)においては、上記スペクトルにおけるAl2pとP2pとのピーク高さ比(Al2p/P2p)が0.1以上であり、これは、正極合材の表面に十分な量のアルミニウム原子が存在することを示している。この正極合材表面のアルミニウム原子は、耐酸性の被膜を形成していると推測され、これにより初期放電容量を高めることができ、容量維持率をより高めることもできる。なお、この正極合材表面におけるリン原子とアルミニウム原子とは、単層の被膜中に存在していてもよいし、リン原子を含む層とアルミニウム原子を含む層との複層構造を形成していてもよい。
 本発明の他の実施形態に係る非水電解質蓄電素子は、正極活物質とリン原子とアルミニウム原子とを含む正極合材を有する正極を備え、X線光電子分光法による上記正極合材のスペクトルにおいて、P2pのピーク位置が134.3eV以上134.7eV以下である非水電解質蓄電素子(B)(以下、単に「蓄電素子(B)」ともいう。)である。
 当該蓄電素子(B)においては、初期放電容量が大きく、かつ充放電サイクル後の容量維持率が高いことに加え、正極合材の密着性も高い。この理由は定かでは無いが、以下の理由が推測される。当該蓄電素子(B)について、134.3eV以上134.7eV以下の範囲に現れるP2pのピークは、特定のフッ素化されたリンのオキソ酸塩と特定のアルミニウムカップリング剤とを含有する正極合材ペーストを用いて正極合材を作製した場合に生じる。このような成分を用いて作製された正極合材の表面には、アルミニウム原子の存在量によらず正極活物質成分の溶出を十分に抑え、かつ耐酸性を有する被膜が形成されると推測される。従って、当該蓄電素子(B)によれば、この被膜より初期放電容量を大きくし、容量維持率を高めることができる。また、発明者らは、上記特許文献2のように、単に正極にジフルオロリン酸リチウムを含有させた場合、正極合材の密着性が低下するという不都合を知見した。しかし、当該蓄電素子(B)によれば、上述のように特定のフッ素化されたリンのオキソ酸塩と特定のアルミニウムカップリング剤とを用いて正極合材を形成することにより、この密着性も高めることができる。
 また、当該蓄電素子(B)によれば、良好な密着性を有する正極を備え、優れたサイクル性能(エネルギー密度維持率)を有する非水電解質蓄電素子を提供するという課題を解決することができる。
 当該蓄電素子(B)の正極合材のスペクトルにおいて、Al2pとP2pとのピーク高さ比(Al2p/P2p)が0.1以上であることが好ましい。この場合、正極合材の表面に十分な量のアルミニウム原子が存在することとなり、初期放電容量等をより高めることができる。
 当該蓄電素子(A)及び蓄電素子(B)において、上記正極活物質が金属酸化物を含み、上記正極合材のスペクトルにおいて、Al2pとO1sとのピークの高さ比Al2p/O1sが0.1以下であることが好ましい。上記ピーク高さ比(Al2p/O1s)が0.1以下であることにより、正極活物質表面に適度な量のアルミニウムを含む被膜が形成されていることとなる。このため、非水電解質と正極活物質との反応が抑制されると共に、蓄電素子の内部抵抗の増加が抑制される。従って、これにより初期放電容量や容量維持率をより高めることなどができる。なお、ここで、O1sのピークとは、529.6eV付近、より詳細には530.5から529.0eVの範囲に存在するピークのうち、もっともピーク強度が高いピークを指すものとする。このようなピークは、金属と結合している酸素に由来しているピークであり、正極活物質に含まれる酸素及び正極活物質表面の被膜に存在するアルミニウム酸化物に由来するピークである。
 当該蓄電素子(A)及び蓄電素子(B)において、上記正極活物質が金属酸化物を含み、上記正極合材のスペクトルにおいて、Al2pとO1sとのピーク高さ比(Al2p/O1s)が0.01以上であることが好ましい。上記ピーク高さ比(Al2p/O1s)が0.01以上であるということは、金属酸化物を含む正極活物質の表面近傍に、ある程度十分にアルミニウム原子が存在することを意味する。従って、これにより初期放電容量をより高めることなどができる。
 当該蓄電素子(A)及び蓄電素子(B)の正極合材のスペクトルにおいて、Al2pとP2pとのピーク高さ比(Al2p/P2p)が1.0以下であることが好ましい。これにより、正極合材(正極活物質)の表面にアルミニウムと相対して十分な量のリン原子を存在させることができ、容量維持率をより高めることなどができる。
 なお、X線光電子分光法(XPS)による正極合材のスペクトルの測定に用いる試料は、次の方法により準備する。非水電解質蓄電素子を、0.1Cの電流で、通常使用時の放電終止電圧まで放電し、放電末状態とする。ここで、「通常使用時」とは、当該蓄電素子において推奨され、又は指定される放電条件を採用して当該蓄電素子を使用する場合をいう。放電末状態の蓄電素子を解体して正極を取り出し、ジメチルカーボネートを用いて電極を充分に洗浄した後、室温にて減圧乾燥を行う。乾燥後の正極を、所定サイズ(例えば2×2cm)に切り出し、XPSスペクトル測定における試料とする。電池の解体からXPS測定までの作業は、露点-60℃以下のアルゴン雰囲気中で行う。正極合材のXPSスペクトルにおける使用装置及び測定条件は以下のとおりである。
装置:KRATOS ANALYTICAL社の「AXIS NOVA」
X線源:単色化AlKα
加速電圧:15kV
分析面積:700μm×300μm
測定範囲:O1s=543~522eV、P2p=142~125eV、Al2p=86~63eV、C1s=300~272eV
測定間隔:0.1eV
測定時間:O1s=52.5秒/回、P2p=72.3秒/回、Al2p=68.7秒/回、C1s=70.0秒/回
積算回数:O1s=8回、P2p=15回、Al2p=15回、C1s=8回
相対感度係数:C1s=1 P2p=1.19 O1s=2.93 Al2p=0.537
 また、上記スペクトルにおけるピーク位置及びピーク高さは、CasaXPS(Casa Software社製)を用いて、次のようにして求められる値とする。まず、C1sにおけるsp2炭素のピークを284.8eVとし、得られたすべてのスペクトルを補正する。次に、それぞれのスペクトルに対して、直線法を用いてバックグラウンドを除去することにより、水平化処理を行う。水平化処理後のスペクトルにおいて、上記の相対感度係数を用いて、各元素のスペクトルを補正し、ピーク強度が最も高い値をピーク高さとする。また、このピーク高さを示す結合エネルギーをピーク位置とする。
 本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、正極活物質と、リンのオキソ酸又はフッ素化されたリンのオキソ酸塩と、アルミニウムカップリング剤とを混合することを有する、当該蓄電素子(A)又は蓄電素子(B)の製造方法(α)である。
 当該製造方法(α)によれば、初期放電容量が大きく、かつ充放電サイクル後の容量維持率も高い非水電解質蓄電素子を製造することができる。この効果は、リンのオキソ酸又はフッ素化されたリンのオキソ酸塩とアルミニウムカップリング剤とにより正極合材表面に形成される被膜によるものと推測される。すなわち、上述のように、形成される上記被膜が、アルミニウム原子を含むことで良好な保護層となり、かつリンのオキソ酸等が正極合材表面におけるフッ素原子を含有する電解質塩の分解反応を抑制するためと推測される。
 当該製造方法(α)において、上記正極活物質100質量部に対する上記アルミニウムカップリング剤の混合量が、0.4質量部以上であることが好ましい。これにより、形成される被膜中のアルミニウム原子の量が特に十分なものとなり、得られる蓄電素子の初期放電容量や容量維持率をより高めることができる。
 本発明の他実施形態に係る非水電解質蓄電素子の製造方法は、正極活物質と、ジフルオロリン酸リチウムと、下記一般式(1)で表される化合物とを混合して正極ペーストを作製することを有する非水電解質蓄電素子の製造方法(β)である。
Figure JPOXMLDOC01-appb-C000005
 
(一般式(1)中、R~Rは、それぞれ独立して、炭素数1~9の炭化水素基、又は下記一般式(2)で表される基である。)
Figure JPOXMLDOC01-appb-C000006
(一般式(2)中、R及びRは、それぞれ独立して、炭素数1~18のアルキル基、又は炭素数1~18のアルコキシ基である。)
 上記一般式(1)で表される化合物は、正極活物質に接触すると、触媒作用によって加水分解し、正極活物質の表面を被覆する。ジフルオロリン酸リチウムは、非水電解質中に微量に存在するフッ酸(HF)等の酸又は活物質表面の吸着水分や表面官能基と反応して、正極活物質表面にリン酸化物の被膜を形成する。このため、正極合材ペースト中に、アルミニウム源である上記一般式(1)で表される化合物と、リン源であるジフルオロリン酸リチウムとを共存させることで、アルミニウムとリン酸化物とを含む被膜が正極活物質表面に好適に形成される。また、当該製造方法(β)によれば、正極活物質とリン原子とアルミニウム原子とを含む正極合材を有する正極を備え、X線光電子分光法による上記正極合材のスペクトルにおいて、P2pのピーク位置が134.3eV以上134.7eV以下である非水電解質蓄電素子(B)を効果的に得ることができる。すなわち、当該製造方法(β)によれば、初期放電容量が大きく、かつ充放電サイクル後の容量維持率も高いことに加え、正極合材の密着性も高い蓄電素子を得ることができる。
 当該製造方法(β)において、上記ジフルオロリン酸リチウムの混合量が、上記正極活物質100質量部に対して0.3質量部以上1質量部以下であり、上記一般式(1)で表される化合物の混合量が、上記正極活物質100質量部に対して0.3質量部以上1質量部以下であることが好ましい。これらの成分の混合量を上記範囲とすることで、形成される被膜中のリン原子及びアルミニウム原子の含有量がより好適化され、得られる蓄電素子の初期放電容量、容量維持率及び正極合材の密着性をより高めることができる。
 以下、本発明の一実施形態に係る非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法について詳説する。
<非水電解質蓄電素子(A)>
 本発明の一実施形態に係る蓄電素子(A)は、正極、負極及び非水電解質を有する。以下、非水電解質蓄電素子(A)の一例として、非水電解質二次電池について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体はケースに収納され、このケース内に非水電解質が充填される。上記非水電解質は、正極と負極との間に介在する。また、上記ケースとしては、非水電解質二次電池のケースとして通常用いられる公知のアルミニウムケース、樹脂ケース等を用いることができる。
(正極)
 上記正極は、正極基材、及びこの正極基材に直接又は中間層を介して配される正極合材層を有する。
 上記正極基材は、導電性を有する。基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属又はそれらの合金が用いられる。また、焼成炭素、導電性高分子、導電性ガラス等であってもよい。接着性、導電性及び耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタン、銀等で処理したものを用いることもできる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS-H-4000(2014年)に規定されるA1085P、A3003P等が例示できる。
 上記中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極合材層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。なお、「導電性」を有するとは、JIS-H-0505(1975年)に準拠して測定される体積抵抗率が10Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が10Ω・cm超であることを意味する。
 上記正極合材層は、正極活物質を含むいわゆる正極合材から形成される層である。この正極合材は、リン原子とアルミニウム原子とを含み、その他必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。上記リン原子とアルミニウム原子とは、正極活物質を被覆する被膜中に存在すると推測される。また、上記リン原子及びアルミニウム原子は、正極活物質の粒子表面又は粒子間に存在することが好ましく、粒子表面に存在することがより好ましい。
 上記正極活物質は、通常、金属酸化物が使用される。具体的な正極活物質としては、例えばLiMO(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα―NaFeO型結晶構造を有するLiCoO,LiNiO,LiMnO,LiNiαCo(1-α),LiNiαMnβCo(1-α-β)等、スピネル型結晶構造を有するLiMn,LiNiαMn(2-α)等)、LiMe(XO(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO,LiMnPO,LiNiPO,LiCoPO,Li(PO,LiMnSiO,LiCoPOF等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極合材層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 上記正極活物質の中でも、ニッケル原子及びマンガン原子の少なくとも一方を含む正極活物質が用いられているとき、本発明の効果をより有効に発揮させることができる。上述のように、非水電解質中に存在する微量のHFにより、正極合材層から正極活物質の成分が溶出し、これが放電容量等に影響を与える。この正極活物質が、ニッケル含有化合物やマンガン含有化合物であるとき、上記溶出が生じやすく、放電容量等に影響を与えやすい。そのため、このような正極活物質を、上記リン原子及びアルミニウム原子を含む特定の被膜で被覆することにより、ニッケル含有化合物やマンガン含有化合物の溶出を効果的に抑えることができる。また、本実施形態の正極は、例えば、ニッケル酸リチウムやリチウム過剰型のリチウム遷移金属複合酸化物を使用する高容量の正極活物質を用いた場合に、実質的な放電容量を大きくすることができる。
 X線光電子分光法による正極合材層(正極合材)のスペクトルにおいて、P2pのピーク位置は134.7eV以下であり、134eV以下が好ましいことがあり、133.7eV以下がより好ましいことがある。また、このピーク位置は130eV以上が好ましく、132eV以上がより好ましく、133eV以上がさらに好ましく、133.4eV以上がよりさらに好ましい。このピーク位置は134eV以上であってもよく、134.3eV以上であってもよい。
 上記範囲に現れるP2pのピークは、リンのオキソ酸又はフッ素化されたリンのオキソ酸塩に由来するリン原子のピークである。このようなリン原子は、通常、粒子状の正極活物質の表面に存在する。このようなリン原子により、正極近傍におけるフッ素原子を含有する電解質塩の分解反応を抑制し、正極活物質成分の溶出を抑えることができる。なお、このリン原子は、POアニオン、POアニオン、POアニオン又はPOアニオンの酸素原子の一部がフッ素原子に置換したPOアニオンを含む化合物として正極活物質の表面に存在することが好ましい。X線光電子分光法によるスペクトルにおいて、このような化合物のリン原子(P2p)のピークは133eV以上134.7eV以下の範囲に現れる。また、上記スペクトルにおいて、上記範囲外のピークが存在してもよい。134.7eVよりも結合エネルギーが高い範囲に表れるP2pのピークは、例えばリンのフッ化物に由来するリン原子のピークである。
 上記スペクトルにおいて、P2pとO1sとのピーク高さ比(P2p/O1s)の下限としては、例えば0.05が好ましく、0.08がより好ましい。一方、このピーク高さ比(P2p/O1s)の上限としては、例えば1が好ましく、0.7がより好ましく、0.5がより好ましい。さらに、このピーク高さ比(P2p/O1s)の上限は、0.2が好ましく、0.15がより好ましく、0.1がさらに好ましい。このピーク高さ比(P2p/O1s)が上記範囲であることにより、より好適な量のリン原子を正極活物質表面に存在させることができ、容量維持率をより高めることなどができる。
 上記スペクトルにおいて、Al2pとP2pとのピーク高さ比(Al2p/P2p)の下限は、0.1であり、0.15が好ましい。このピーク高さ比(Al2p/P2p)を上記下限以上とすることで、正極合材層(正極活物質)の表面に十分な量のアルミニウム原子を存在させることができ、初期放電容量を高めることができる。なお、このピーク高さ比(Al2p/P2p)の上限としては、例えば1.0であり、0.5が好ましく、0.3がより好ましい。
 上記スペクトルにおいて、Al2pとO1sとのピーク高さ比(Al2p/O1s)の下限としては、0.01が好ましく、0.02がより好ましい。このピーク高さ比(Al2p/O1s)を上記下限以上とすることで、初期放電容量をより高めることなどができる。一方、このピーク高さ比(Al2p/O1s)の上限としては、0.5が好ましく、0.2がより好ましく、0.1がさらに好ましい。
 上記導電剤としては、蓄電素子性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックス等が挙げられ、アセチレンブラックが好ましい。導電剤の形状としては、粉状、繊維状等が挙げられる。導電剤の中でも、人造黒鉛、アセチレンブラック、及び炭素繊維が好ましく、アセチレンブラックがより好ましい。導電剤の含有量の下限としては、正極合材層の総質量に対して0.1質量%が好ましく、0.5質量%がより好ましい。一方、この上限としては、50質量%が好ましく、30質量%がより好ましい。
 上記バインダー(結着剤)としては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン-プロピレン-ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。
 上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。
 上記フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。
(負極)
 上記負極は、負極基材、及びこの負極基材に直接又は中間層を介して配される負極合材層を有する。上記中間層は正極の中間層と同様の構成とすることができる。
 上記負極基材は、正極基材と同様の構成とすることができるが、材質としては、銅、ニッケル、鉄、チタン、アルミニウム、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金(Al-Cd合金等)が用いられる。また、接着性、導電性、耐還元性の目的で、銅等の表面をカーボン、ニッケル、チタン、銀等で処理した物を用いることもできる。これらの中でも、銅又は銅合金が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。
 上記負極合材層は、負極活物質を含むいわゆる負極合材から形成される。また、負極合材層を形成する負極合材は、必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。導電剤、結着剤、増粘剤、フィラー等の任意成分は、正極合材層と同様のものを用いることができる。
 上記負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材質が用いられる。具体的な負極活物質としては、例えばSi、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物;黒鉛(グラファイト)、非晶質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有し、高い作動電圧での充放電を実現できるため負極活物質として好ましく、例えば人造黒鉛及び天然黒鉛が好ましい。特に、負極活物質粒子表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから好ましい。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用しても良い。負極活物質としては、炭素質材料又はリチウム複合酸化物が安全性の点から好ましく用いられる。
 さらに、負極合材(負極合材層)は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有してもよい。
(セパレータ)
 上記セパレータの材質としては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。セパレータを構成する材料としては、例えばポリエチレン、ポリプロピレン等に代表されるポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル、ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-パーフルオロビニルエーテル共重合体、フッ化ビニリデン-テトラフルオロエチレン共重合体、フッ化ビニリデン-トリフルオロエチレン共重合体、フッ化ビニリデン-フルオロエチレン共重合体、フッ化ビニリデン-ヘキサフルオロアセトン共重合体、フッ化ビニリデン-エチレン共重合体、フッ化ビニリデン-プロピレン共重合体、フッ化ビニリデン-トリフルオロプロピレン共重合体、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-エチレン-テトラフルオロエチレン共重合体等を挙げることができる。上記セパレータの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。
 セパレータの空孔率は、強度の観点から98体積%以下が好ましい。また、充放電性能の観点から、空孔率は20体積%以上が好ましい。
 また、セパレータとして、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。非水電解質をゲル状態で用いると、漏液を防止する効果がある点で好ましい。
 さらに、セパレータとして、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため好ましい。例えば、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数μm以下の親溶媒性ポリマーを被覆したフィルムを形成し、上記フィルムの微孔内に電解質を保持させることで、上記親溶媒性ポリマーがゲル化する。
 上記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシアナート基を有するモノマー等が架橋したポリマー等が挙げられる。これらのモノマーは、電子線(EB)照射、又はラジカル開始剤を添加して加熱若しくは紫外線(UV)照射を行う等により、架橋反応を行わせることが可能である。
 なお、セパレータと電極(通常、正極)との間に、無機層が配設されていても良い。この無機層は、耐熱層等とも呼ばれる多孔質の層である。また、多孔質樹脂フィルムの一方の面に無機層が形成されたセパレータを用いることもできる。上記無機層は、通常、無機粒子及びバインダーとで構成され、その他の成分が含有されていてもよい。
(非水電解質)
 上記非水電解質としては、一般的な非水電解質二次電池に通常用いられる公知の非水電解質が使用できる。上記非水電解質は、非水溶媒と、この非水溶媒に溶解されている電解質塩を含む。
 上記非水溶媒としては、一般的な二次電池用非水電解質の非水溶媒として通常用いられる公知の非水溶媒を用いることができる。上記非水溶媒としては、環状カーボネート、鎖状カーボネート、エステル、エーテル、アミド、スルホン、ラクトン、ニトリル等を挙げることができる。これらの中でも、環状カーボネート又は鎖状カーボネートを少なくとも用いることが好ましく、環状カーボネートと鎖状カーボネートとを併用することがより好ましい。
 上記環状カーボネートとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、クロロエチレンカーボネート、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート(DFEC)、スチレンカーボネート、カテコールカーボネート、1-フェニルビニレンカーボネート、1,2-ジフェニルビニレンカーボネート等を挙げることができ、これらの中でもECが好ましい。
 上記鎖状カーボネートとしては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジフェニルカーボネート等を挙げることができ、これらの中でもEMCが好ましい。
 電解質塩としては、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができるが、リチウム塩が好ましい。上記リチウム塩としては、LiPF、LiPO、LiBF、LiPF(C、LiClO、LiN(SOF)等の無機リチウム塩、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、LiC(SOCF、LiC(SO等のフッ化炭化水素基を有するリチウム塩などを挙げることができる。
 上記電解質塩の中でも、フッ素原子を含む電解質塩が用いられているとき、本発明の効果がより奏される。上述のように、正極活物質成分の溶出を引き起こす非水電解質中のHFは、フッ素原子を含有する電解質塩の分解などによって生じる。特に、LiPF、LiPO、LiBF、LiPF(C等は、分解によりHFが発生しやすい。従って、通常、これらの電解質塩を用いた場合、正極活物質成分の溶出による放電容量の低下等を引き起こしやすくなる。しかし、当該蓄電素子においては、このようなフッ素原子を含む電解質塩が用いられている場合においても、分解によるHFの発生を抑制し、放電容量の低下を抑えることができる。
 上記非水電解質における電解質塩の濃度の下限としては、0.1mol/Lが好ましく、0.5mol/Lがより好ましい。一方、この上限としては、5mol/Lが好ましく、2.5mol/Lがより好ましい。
 上記非水電解質には、その他の添加剤が添加されていてもよい。添加剤としては、一般に非水電解質蓄電素子に使用される電解質添加剤が使用できる。例えば、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソール等の含フッ素アニソール化合物等の過充電防止剤;ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、シクロヘキサンジカルボン酸無水物等の負極被膜形成剤;亜硫酸エチレン、亜硫酸プロピレン、亜硫酸ジメチル、プロパンスルトン、プロペンスルトン、ブタンスルトン、メタンスルホン酸メチル、ブスルファン、トルエンスルホン酸メチル、硫酸ジメチル、硫酸エチレン、スルホラン、ジメチルスルホン、ジエチルスルホン、ジメチルスルホキシド、ジエチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルフィド、チオアニソール、ジフェニルジスルフィド、ジピリジニウムジスルフィド、パーフルオロオクタン、ホウ酸トリストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリル等を挙げることができる。これらは、単独で又は二種以上混合して用いることができる。これらの添加剤を添加することにより、安全性をより向上させたり、高温保存後の容量維持性能やサイクル性能を向上させたりすることができる。
 上記添加剤の含有割合は、特に限定されないが、非水電解質全体に対する下限としては、0.01質量%が好ましく、0.1質量%がより好ましく、0.2質量%がさらに好ましい。一方、この上限としては、5質量%が好ましく、3質量%がより好ましく、2質量%がさらに好ましく、1質量%であってもよく、0.1質量%であってもよい。
 上記非水電解質として、常温溶融塩、イオン液体、ポリマー固体電解質などを用いることもできる。
<非水電解質蓄電素子(B)>
 本発明の他の実施形態に係る蓄電素子(B)は、X線光電子分光法による正極合材層(正極合材)のスペクトルにおいて、Al2pとP2pとのピーク高さ比(Al2p/P2p)が0.1以上であることを必須とせず、一方、P2pのピーク位置が134.3eV以上134.7eV以下であること以外は、上述した蓄電素子(A)と同様である。
 当該蓄電素子(B)において、P2pのピーク位置の上限は、134.6eVが好ましく、134.5eVがより好ましい。また、Al2pとP2pとのピーク高さ比(Al2p/P2p)の下限は、0.1が好ましく、0.15がより好ましい。
 蓄電素子(B)におけるその他のピーク高さ比、正極合材層(正極合材)等の組成、構造等の好ましい形態は、上述した蓄電素子(A)と同様であるので、上記蓄電素子(A)の記載を参照することができる。
 当該蓄電素子(B)の正極合材層(正極合材)は、ジフルオロリン酸リチウム(LiPO)及び下記一般式(1)で表される化合物に由来する被膜を備えていることが好ましい。このような被膜を備えていることで、初期放電容量、容量維持率、密着性等をより高めることができる。
Figure JPOXMLDOC01-appb-C000007
 
 一般式(1)中、R~Rは、それぞれ独立して、炭素数1~9の炭化水素基、又は下記一般式(2)で表される基である。
Figure JPOXMLDOC01-appb-C000008
 一般式(2)中、R及びRは、それぞれ独立して、炭素数1~18のアルキル基、又は炭素数1~18のアルコキシ基である。なお、一般式(2)中のオキシ基(=O)は、式(1)中のアルミニウム原子との配位結合を形成していてもよい。
 上記炭素数1~9の炭化水素基は、炭素数1~9の脂肪族炭化水素基及び炭素数6~9芳香族炭化水素基のいずれであってもよい。
 炭素数1~9の脂肪族炭化水素基としては、
 メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基等のアルキル基;
 エテニル基、プロペニル基等のアルケニル基;
 エチニル基、プロピニル基等のアルキニル基等を挙げることができる。
 炭素数6~9の芳香族炭化水素基としては、フェニル基、ベンジル基、トリル基等を挙げることができる。
 炭素数1~18のアルキル基としては、上述したアルキル基の他、デシル基、オクタデシル基等を挙げることができる。
 炭素数1~18のアルコキシ基は、上記炭素数1~18のアルキル基に酸素原子が結合した基であり、メトキシ基、エトキシ基等を挙げることができる。
 上記R~Rとしては、アルキル基及び上記一般式(2)で表される基が好ましい。上記アルキル基の中でも、炭素数1~5のアルキル基が好ましく、i-プロピル基がより好ましい。Rとしては、アルキル基が好ましく、炭素数1~5のアルキル基がより好ましく、メチル基及びエチル基がさらに好ましい。Rとしては、アルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましく、メトキシ基及びエトキシ基がより好ましい。また、R~Rのうちの2つが、アルキル基であり、残りの1つが上記一般式(2)で表される基であることがより好ましい。
 上記一般式(1)で表される化合物としては、アルミニウムアルコキシドやアルミニウムキレートを挙げることができ、具体的には、エチルアセトアセタトアルミニウムジエトキシド、エチルアセトアセタトアルミニウムジイソプロポキシド、エチルアセトアセタトアルミニウムジ(tert-ブトキシド)、アセチルアセトナトアルミニウムジイソプロポキシド、アルミニウムトリスアセチルアセトネート、アルミニウムイソプロポキシド、アルミニウムビス(エチルアセトアセタト)アセチルアセトネート、アルミニウムトリスエチルアセトアセタト等を挙げることができる。これらの中でも、均一な被膜を形成できることなどから、エチルアセトアセタトアルミニウムジイソプロポキシドが好ましい。
<非水電解質蓄電素子の製造方法(α)>
 当該蓄電素子(A)及び(B)は、公知の製造方法を組み合わせて製造することができるが、以下の方法により製造することが好ましい。すなわち、本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、正極活物質と、リンのオキソ酸又はフッ素化されたリンのオキソ酸塩と、アルミニウムカップリング剤とを混合することを有する、当該蓄電素子(A)又は蓄電素子(B)の製造方法(α)である。
 上記正極活物質と、リンのオキソ酸又はフッ素化されたリンのオキソ酸塩と、アルミニウムカップリング剤との混合により、正極合材ペーストが得られる。この正極合材ペーストを正極基材表面に塗布し、乾燥させることにより、正極が得られる。上記正極活物質は、上述したとおりである。また、正極合材ペーストには、これらの他、上述した正極合材に含まれていてもよい各任意成分を含有させることができる。
 上記リンのオキソ酸とは、リン原子に水酸基(-OH)とオキシ基(=O)とが結合した構造を有する化合物を指す。上記リンのオキソ酸としては、リン酸(HPO)、ホスホン酸(HPO)、ホスフィン酸(HPO)、ピロリン酸(H)、ポリリン酸等が挙げられる。リンのオキソ酸としては、リン原子に結合した水酸基(-OH)の水素が有機基に置換されたエステル化合物であってもよい。有機基としては、メチル基、エチル基等の炭化水素基等が挙げられる。これらの中でも、リン酸及びホスホン酸が好ましく、ホスホン酸がより好ましい。また、フッ素化されたリンのオキソ酸塩とはしては、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム等のリチウム塩を挙げることができ、ジフルオロリン酸リチウムが好ましい。このリンのオキソ酸又はフッ素化されたリンのオキソ酸塩により、正極合材(正極活物質)に、リン原子を含む被膜を形成することができる。また、上記スペクトルにおけるこのリンのオキソ酸等に由来するリン原子(P2p)のピーク位置は、134.7eV以下に現れる。
 上記正極合材ペーストにおけるリンのオキソ酸又はフッ素化されたリンのオキソ酸塩の混合量の下限としては、正極活物質100質量部に対して、0.1質量部が好ましく、0.2質量部がより好ましく、0.3質量部がさらに好ましい。一方、この混合量の上限としては、5質量部が好ましく、2質量部がより好ましく、1質量部がさらに好ましく、0.7質量部がよりさらに好ましく、0.4質量部が特に好ましい。リンのオキソ酸又はフッ素化されたリンのオキソ酸塩の混合量を上記範囲とすることで、正極活物質に対する十分なリンを含有する被膜を形成することなどができる。
 上記アルミニウムカップリング剤とは、アルミニウム原子を含み、加溶媒分解反応等により、他の化合物(正極活物質等)に結合可能な構造を有する化合物をいう。このアルミニウムカップリング剤により、正極合材(正極活物質)に、アルミニウム原子を含む被膜を形成することができる。上記アルミニウムカップリング剤としては、例えば上述した一般式(1)で表される化合物を挙げることができ、エチルアセトアセタトアルミニウムジイソプロポキシドが好ましい。
 上記正極合材ペーストにおけるアルミニウムカップリング剤の混合量の下限としては、正極活物質100質量部に対して、例えば0.1質量部であってもよく、0.3質量部であってよいが、0.4質量部が好ましく、0.5質量部がより好ましい。一方、この混合量の上限としては、5質量部が好ましく、2質量部がより好ましく、1質量部がさらに好ましく、0.7質量部がよりさらに好ましい。アルミニウムカップリング剤の混合量を上記範囲とすることで、正極活物質に対する十分なアルミニウムを含有する被膜を形成することなどができる。
 上記正極合材ペーストには、通常、分散媒として、有機溶媒が用いられる。この有機溶媒としては、例えばN-メチル-2-ピロリドン(NMP)、アセトン、エタノール等の極性溶媒や、キシレン、トルエン、シクロヘキサン等の無極性溶媒を挙げることができ、極性溶媒が好ましく、NMPがより好ましい。
 上記正極合材ペーストの塗布方法としては特に限定されず、ローラーコーティング、スクリーンコーティング、スピンコーティング等の公知の方法により行うことができる。
 上記のような正極を作製する工程の他、当該製造方法(α)は、以下の工程等を有していてもよい。すなわち、当該製造方法(α)は、例えば、負極を作製する工程、非水電解質を調製する工程、正極及び負極を、セパレータを介して積層又は巻回することにより交互に重畳された電極体を形成する工程、正極及び負極(電極体)を電池容器(ケース)に収容する工程、並びに上記電池容器に上記非水電解質を注入する工程を備えることができる。上記注入は、公知の方法により行うことができる。注入後、注入口を封止することにより非水電解質二次電池(非水電解質蓄電素子)を得ることができる。
<非水電解質蓄電素子の製造方法(β)>
 本発明の他の実施形態に係る非水電解質蓄電素子の製造方法は、正極活物質と、ジフルオロリン酸リチウムと、上記一般式(1)で表される化合物とを混合して正極ペーストを作製することを有する非水電解質蓄電素子の製造方法(β)である。当該製造方法(β)によれば、初期放電容量が大きく、かつ充放電サイクル後の容量維持率も高いことに加え、正極合材の密着性も高い蓄電素子を得ることができる。
 当該製造方法(β)において、上記ジフルオロリン酸リチウムの混合量が、上記正極活物質100質量部に対して0.3質量部以上1質量部以下であり、上記一般式(1)で表される化合物の混合量が、上記正極活物質100質量部に対して0.3質量部以上1質量部以下であることが好ましい。
 当該製造方法(β)におけるより好ましい混合量、その他の具体的及び好適な形態は、上述した製造方法(α)と同様であるので、上記製造方法(α)の記載を参照することができる。
<その他の実施形態>
 本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、上記正極又は負極において、中間層を設けなくてもよい。また、当該非水電解質蓄電素子の正極において、正極合材は明確な層を形成していなくてもよい。例えば上記正極は、メッシュ状の正極基材に正極合材が担持された構造などであってもよい。
 また、上記実施の形態においては、非水電解質蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の非水電解質蓄電素子であってもよい。その他の非水電解質蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。
 図1に、本発明に係る非水電解質蓄電素子の一実施形態である矩形状の非水電解質蓄電素子1(非水電解質二次電池)の概略図を示す。なお、同図は、容器内部を透視した図としている。図1に示す非水電解質蓄電素子1は、電極体2が電池容器3(ケース)に収納されている。電極体2は、正極活物質を含む正極合材を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。上記正極合材の詳細は、上述したとおりである。また、電池容器3には、非水電解質が注入されている。
 本発明に係る非水電解質蓄電素子の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の非水電解質蓄電素子を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質蓄電素子1を備えている。上記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
(正極の作製)
 分散媒としてN-メチルピロリドン(NMP)を用い、正極活物質としてのLiNi1/3Co1/3Mn1/3、導電剤としてのアセチレンブラック(AB)、及びバインダーとしてのポリフッ化ビニリデン(PVDF)を固形分換算で94:3:3の質量比で混合した。この混合物に、添加剤として、正極活物質の質量に対して0.7質量%のエチルアセトアセタトアルミニウムジイソプロポキシド(EAP:下記式で表されるアルミニウムカップリング剤)と、0.3質量%のホスホン酸(HPO)とをこの順序でそれぞれ添加した後さらに混合し、正極合材ペーストを得た。この正極合材ペーストを、正極基材である厚さ15μmのアルミニウム箔の片面に塗布し、100℃で乾燥することにより、正極基材上に正極合材を形成した。正極合材ペーストの塗布量は、固形分で1.68g/100cmとした。このようにして正極を得た。
Figure JPOXMLDOC01-appb-C000009
(負極の作製)
 負極活物質としてグラファイト、バインダーとしてスチレン-ブタジエン・ゴム及びカルボキシメチルセルロース、分散媒に水を用いて負極合材ペーストを作製した。なお、負極活物質とバインダーとの質量比率は97:3とした。この負極合材ペーストを負極基材である厚さ10μmの銅箔の片面に塗布し、100℃で乾燥した。負極合材の塗布量は、固形分で1.05g/100cmとした。このようにして、負極を得た。
(非水電解質の調製)
 ECとEMCとを体積比3:7の割合で混合した混合溶媒に、ヘキサフルオロリン酸リチウム(LiPF)を1.0mol/lの濃度で溶解させ、非水電解質を調製した。
(非水電解質蓄電素子の作製)
 セパレータとして、ポリオレフィン製微多孔膜を用いた。このセパレータを介して、上記正極と上記負極とを積層することにより電極体を作製した。この電極体を金属樹脂複合フィルム製のケースに収納し、内部に上記非水電解質を注入した後、熱溶着により封口し、実施例1の非水電解質蓄電素子(二次電池)を得た。
[実施例2~5、比較例1~4]
 正極合材ペーストの作製において用いた添加剤の種類及び量を表1に示すとおりとしたこと以外は、実施例1と同様にして、実施例2~5及び比較例1~4の各非水電解質蓄電素子を得た。なお、表の添加剤の欄中の「-」は、相当する添加剤を用いていないことを示す。また、「EAP」は、エチルアセトアセタトアルミニウムジイソプロポキシドを示す。
[評価]
(初期化成)
 得られた実施例1~5及び比較例1~4の各非水電解質蓄電素子について、以下の条件にて初期化成を行った。25℃で4.35Vまで3mAの定電流充電したのちに、4.35Vで定電圧充電した。充電の終了条件は、充電電流が0.6mAとなるまでとした。充電後に10分間の休止を設けた後に、25℃で2.75Vまで3mAの定電流で放電した。
(初期容量確認試験)
 得られた実施例1~5及び比較例1~4の各非水電解質蓄電素子について、初期化成後、以下の条件にて初期容量確認試験を行った。25℃で4.35Vまで3mAの定電流充電したのちに、4.35Vで定電圧充電した。充電の終了条件は、充電電流が0.6mAとなるまでとした。充電後に10分間の休止を設けたのちに、25℃で2.75Vまで30mAで定電流放電した。これにより、初期放電容量(初期容量)を測定した。得られた初期容量を表1に示す。
 なお、本試験条件においては、初期容量が155mAh/g以上であれば、初期容量が大きいと判断することができる。
(XPS測定)
 得られた実施例1~5及び比較例1~4の各非水電解質蓄電素子について、以下の手順にてXPS測定を行った。初期容量確認試験後の放電末状態の各非水電解質蓄電素子を露点-60℃以下のアルゴン雰囲気中にて解体して正極を取り出し、ジメチルカーボネートで洗浄したのち、常温で減圧乾燥した。得られた正極をアルゴン雰囲気中にてトランスファーベッセルに封入し、上記した条件にて正極の正極合材表面のXPS測定を行った。得られたスペクトルから、上記した方法により、P2pのピーク位置、並びにO1s、P2p及びAl2pのピーク高さを求めた。得られたピーク高さから、ピーク高さ比(Al2p/P2p)、(Al2p/O1s)及び(P2p/O1s)を求めた。得られたP2pのピーク位置並びにピーク高さ比(Al2p/P2p)、(Al2p/O1s)及び(P2p/O1s)を表1に示す。
(充放電サイクル試験:容量維持率)
 実施例1~5及び比較例1~4の各非水電解質蓄電素子について、以下の条件にてサイクル試験を行った。初期容量確認試験後の各非水電解質蓄電素子を、45℃の恒温槽内に2時間保管した後、4.35Vまで30mAの定電流充電したのちに、4.35Vで定電圧(CCCV)充電した。充電の終了条件は、充電電流が0.6mAとなるまでとした。充電後に10分間の休止を設けた後に、2.75Vまで30mAで定電流(CC)放電した。これら充電及び放電の工程を1サイクルとして、このサイクルを100サイクル繰り返した。充電、放電及び休止ともに、45℃の恒温槽内で行った。
 充放電サイクル試験後の各非水電解質蓄電素子について、初期容量確認試験と同様にして、サイクル試験後の容量確認試験を行った。初期の放電容量に対するサイクル試験後の放電容量を容量維持率(%)として表1に示す。
 なお、本試験条件においては、容量維持率が92%以上であれば、容量維持率が高いと判断することができる。
Figure JPOXMLDOC01-appb-T000010
 上記表1に示されるように、実施例1~5の各非水電解質蓄電素子は、初期容量も大きく、容量維持率も高いことがわかる。一方、添加剤を用いていない比較例1においては、P2pのピーク位置が134.7eV以下に現れておらず、容量維持率が低い。アルミニウムカップリング剤のみを添加し、ホスホン酸を添加していない比較例2においても、P2pのピーク位置が134.7eV以下に現れておらず、容量維持率もそれほど高まっていない。また、ホスホン酸のみを添加し、アルミニウムカップリング剤を添加していない比較例3、及びホスホン酸及びアルミニウムカップリング剤を添加しているものの、アルミニウムカップリング剤の添加量の少ない比較例4においては、ピーク高さ比(Al2p/P2p)が0.1未満である。この比較例3及び比較例4においては、容量維持率は高いものの、初期容量は比較例1よりも大きく低下していることがわかる。
[実施例6~9、比較例5~9]
 正極合材ペーストの作製において用いた添加剤の種類及び量、並びに非水電解質の組成を表2に示すとおりとしたこと以外は、実施例1と同様にして、実施例6~9及び比較例5~9の各非水電解質蓄電素子を得た。なお、表の添加剤の欄中の「-」は、相当する添加剤を用いていないことを示す。また、比較例8、9の非水電解質におけるLiPOの濃度は蓄電素子中の正極活物質の質量に対して1質量%とした。
[評価]
(剥離強度試験)
 剥離強度試験は、JIS K 6854-2:1999に記載の180度剥離試験の方法に準拠して、以下の方法で行った。
 実施例7及び比較例5~7の非水電解質蓄電素子の作製に用いた正極を、縦3cm横4cmの長方形に切り出して、剥離強度試験用の試料を作製し、剥離試験装置の治具に固定した。3M社製のメンディングテープ(幅15mm)を試料に貼り付けた後、貼り付けたテープを引きはがして、引きはがしに要する力を荷重測定計にて測定した。引きはがしの速度は100mm/分とした。剥離試験装置はイマダ社製MH-100ACを用い、荷重測定計はイマダ社製デジタルフォースゲージDS-20Nを用いた。測定値を表2に示す。
(初期化成)
 得られた実施例6~9及び比較例5~9の各非水電解質蓄電素子について、上述した実施例1等と同様の方法にて初期化成を行った。
(初期容量確認試験)
 得られた実施例6~9及び比較例5~9の各非水電解質蓄電素子について、初期化成後、以下の条件にて初期容量確認試験を行った。25℃で4.35Vまで3mAの定電流充電したのちに、4.35Vで定電圧充電した。充電の終了条件は、充電電流が0.6mAとなるまでとした。充電後に10分間の休止を設けたのちに、25℃で2.75Vまで30mAの定電流で放電した。得られた初期容量から正極活物質質量あたりの放電容量及びエネルギー密度を算出し、初期容量及び初期エネルギー密度とした。得られた初期容量を表2に示す。
(XPS測定)
 初期容量確認試験後の放電末状態の実施例6~9及び比較例5~9の各非水電解質蓄電素子について、上述した実施例1等と同様にしてXPS測定を行った。得られたP2pのピーク位置並びにピーク高さ比(Al2p/P2p)、(Al2p/O1s)及び(P2p/O1s)を表2に示す。
 さらに、参考例として、ジフルオロリン酸リチウム(LiPO)、リン酸リチウム(LiPO)及びホスホン酸(HPO)について、それぞれ単独のXPSスペクトルを測定した。それぞれの粉末を両面接着性のカーボンテープの片面に付着させ、他方の面を試料台に接着することにより試料を作製し、上記した方法に準じてXPS測定を行った。得られたP2pのピーク位置を表3に示す。
(充放電サイクル試験:容量維持率及びエネルギー密度維持率)
<サイクル試験>
 実施例6~9及び比較例5~9の各非水電解質蓄電素子について、以下の条件にてサイクル試験を行った。初期容量確認試験後の各非水電解質蓄電素子を、45℃の恒温槽内に2時間保管した後、4.35Vまで30mAの定電流充電したのちに、4.35Vで定電圧(CCCV)充電した。充電の終了条件は、充電電流が0.15mAとなるまでとした。充電後に10分間の休止を設けた後に、2.75Vまで30mAで定電流(CC)放電した。これら充電及び放電の工程を1サイクルとして、このサイクルを100サイクル繰り返した。充電、放電及び休止ともに、45℃の恒温槽内で行った。
 充放電サイクル試験後の各非水電解質蓄電素子について、初期容量確認試験と同様にして、サイクル試験後の容量確認試験を行った。初期エネルギー密度に対するサイクル後の正極活物質質量あたりのエネルギー密度の比率をエネルギー密度維持率(%)、及び初期の放電容量に対するサイクル試験後の放電容量を容量維持率(%)として表2に示す。なお、比較例5の非水電解質蓄電素子は、サイクル試験中の容量劣化が著しかったため、50サイクルにて試験を終了した。
 なお、本試験条件においては、容量維持率が91.8%以上であれば、容量維持率が高いと判断することができる。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表2に示されるように、正極合材層に、正極活物質の質量に対してEAPを0.3~1.0質量%、LiPOを0.3~1.0質量%含む実施例6~9は、初期放電容量及び容量維持率が優れていた。また、EAPを0.5質量%、LiPOを0.5質量%含む実施例7は、正極合材層の剥離強度が高かった。これらの実施例では、表2に示されるように、正極のXPSスペクトルにおいてP2pのピーク位置が134.3~134.7eVの範囲に存在し、XPSスペクトルのAl2pにピークが観測された。正極合材層中にEAP及びLiPOを含まない比較例5の非水電解質蓄電素子では、サイクル試験後の容量低下が大きかった。比較例5の電池の正極のXPSスペクトルでは、P2pのピーク位置が134.8eVに観測された。正極合材中にEAP及びLiPOを含まない比較例5、及び正極合材中にLiPOのみを含む比較例7の正極合材層は、密着性が不十分であった。特に比較例7の正極合材層は、場所によって剥離強度にばらつきがあり、均一な接着状態ではなかった。比較例7の正極のXPSスペクトルにおけるP2pのピーク位置は134.4eVであった。正極合材層にEAPを含まず、非水電解質にLiPOを含む比較例8の非水電解質蓄電素子は、サイクル試験後の容量低下が大きかった。正極合材層にEAPのみを含む比較例6及び比較例9の非水電解質蓄電素子は、非水電解質にLiPOを含むか否かにかかわらず、サイクル試験後の容量維持率が良好でなく、正極のXPSスペクトルにおけるP2pのピーク位置が135.0eV以上であった。
 表3に示されるように、LiPO、LiPO、及びHPOのXPSスペクトルのP2pのピーク位置はそれぞれ、135.5、133.3、及び134.0eVであった。また、正極合材層にLiPOを混合した場合、サイクル性能を向上させる効果は得られなかった。これらのことから、LiPOを正極合材層に混合した場合、XPSスペクトルにおけるP2pのピーク位置が134.3~134.7eVの範囲となる被膜が形成されなかったものと推測される。すなわち、実施例6~9に係る、表面付近のXPSスペクトルにおけるP2pのピーク位置が134.3~134.7eVである正極を備えた非水電解質蓄電素子は、正極合材層にLiPOを添加することにより得ることができる。
 これらの結果から、実施例6~9において効果が発現したメカニズムは次のように考えられる。正極合材層にEAPとLiPOを混合することによって、Alと、XPSスペクトルにおけるP2pのピーク位置が134.3~134.7eVに存在するリン化合物とを含む被膜が、正極活物質表面に形成される。この被膜が存在することにより、正極合材層の密着性が向上し、優れたサイクル性能を有する非水電解質蓄電素子が得られる。XPSのP2pのピーク位置が134.3~134.7eVの範囲に存在しない比較例5、6、8、9の非水電解質蓄電素子は、サイクル試験後の容量低下が大きく、正極活物質表面の被膜にAlが含まれている比較例6、9の非水電解質蓄電素子であっても、サイクル性能は充分ではなかった。これは、XPSにおけるP2pのピーク位置が上記の範囲にあるリン化合物によって、サイクル試験後の容量低下が抑制されているためと考えられる。一方、正極合材層にLiPOのみを混合した比較例7の非水電解質蓄電素子は、XPSのP2pのピーク位置は上記範囲に存在し、サイクル性能は他の比較例に比べて高いものの不十分であり、密着性も不十分であった。すなわち、実施例6~9の非水電解質蓄電素子では、LiPOに加えてEAPを正極合材層に添加したことにより、正極合材層の密着性が向上し、初期放電容量及びサイクル性能も優れた非水電解質蓄電素子を得ることができた。
 本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車等の電源として使用される非水電解質蓄電素子等に適用できる。
1  非水電解質蓄電素子
2  電極体
3  電池容器
4  正極端子
4’ 正極リード
5  負極端子
5’ 負極リード
20  蓄電ユニット
30  蓄電装置

 

Claims (10)

  1.  正極活物質とリン原子とアルミニウム原子とを含む正極合材を有する正極を備え、
     X線光電子分光法による上記正極合材のスペクトルにおいて、P2pのピーク位置が134.7eV以下であり、Al2pとP2pとのピーク高さ比(Al2p/P2p)が0.1以上である非水電解質蓄電素子。
  2.  正極活物質とリン原子とアルミニウム原子とを含む正極合材を有する正極を備え、
     X線光電子分光法による上記正極合材のスペクトルにおいて、P2pのピーク位置が134.3eV以上134.7eV以下である非水電解質蓄電素子。
  3.  上記正極合材のスペクトルにおいて、Al2pとP2pとのピーク高さ比(Al2p/P2p)が0.1以上である請求項2の非水電解質蓄電素子。
  4.  上記正極活物質が金属酸化物を含み、
     上記正極合材のスペクトルにおいて、Al2pとO1sとのピークの高さ比Al2p/O1sが0.1以下である請求項1又は請求項2又は請求項3の非水電解質蓄電素子。
  5.  上記正極活物質が金属酸化物を含み、
     上記正極合材のスペクトルにおいて、Al2pとO1sとのピーク高さ比(Al2p/O1s)が0.01以上である請求項1から請求項4のいずれか1項の非水電解質蓄電素子。
  6.  上記正極合材のスペクトルにおいて、Al2pとP2pとのピーク高さ比(Al2p/P2p)が1.0以下である請求項1から請求項5のいずれか1項の非水電解質蓄電素子。
  7.  正極活物質と、リンのオキソ酸又はフッ素化されたリンのオキソ酸塩と、アルミニウムカップリング剤とを混合して正極合材ペーストを作製することを有する、請求項1から請求項6のいずれか1項の非水電解質蓄電素子の製造方法。
  8.  上記正極活物質100質量部に対する上記アルミニウムカップリング剤の混合量が、0.4質量部以上である請求項7の非水電解質蓄電素子の製造方法。
  9.  正極活物質と、ジフルオロリン酸リチウムと、下記一般式(1)で表される化合物とを混合して正極ペーストを作製することを有する非水電解質蓄電素子の製造方法。
    Figure JPOXMLDOC01-appb-C000001
     
    (一般式(1)中、R~Rは、それぞれ独立して、炭素数1~9の炭化水素基、又は下記一般式(2)で表される基である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R及びRは、それぞれ独立して、炭素数1~18のアルキル基、又は炭素数1~18のアルコキシ基である。)
  10.  上記ジフルオロリン酸リチウムの混合量が、上記正極活物質100質量部に対して0.3質量部以上1質量部以下であり、上記一般式(1)で表される化合物の混合量が、上記正極活物質100質量部に対して0.3質量部以上1質量部以下である請求項9の非水電解質蓄電素子の製造方法。
PCT/JP2016/086648 2015-12-11 2016-12-08 非水電解質蓄電素子及びその製造方法 WO2017099201A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680071907.4A CN108475769A (zh) 2015-12-11 2016-12-08 非水电解质蓄电元件及其制造方法
US16/060,690 US11205775B2 (en) 2015-12-11 2016-12-08 Nonaqueous electrolyte energy storage device and method for producing the same
CN202210502846.XA CN114899352B (zh) 2015-12-11 2016-12-08 非水电解质蓄电元件及其制造方法
EP16873094.3A EP3389119B1 (en) 2015-12-11 2016-12-08 Nonaqueous electrolyte energy storage device and method for producing the same
JP2017555148A JP6702338B2 (ja) 2015-12-11 2016-12-08 非水電解質蓄電素子及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-242331 2015-12-11
JP2015242331 2015-12-11
JP2016238488 2016-12-08
JP2016-238488 2016-12-08

Publications (1)

Publication Number Publication Date
WO2017099201A1 true WO2017099201A1 (ja) 2017-06-15

Family

ID=59014290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/086648 WO2017099201A1 (ja) 2015-12-11 2016-12-08 非水電解質蓄電素子及びその製造方法

Country Status (3)

Country Link
US (1) US11205775B2 (ja)
JP (1) JP6702338B2 (ja)
WO (1) WO2017099201A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129256A (ja) * 2017-02-10 2018-08-16 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
WO2019077919A1 (ja) * 2017-10-20 2019-04-25 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP2021077608A (ja) * 2019-11-13 2021-05-20 株式会社Gsユアサ 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199112A (ja) 1996-01-23 1997-07-31 Sony Corp 非水電解液二次電池
JP2007335331A (ja) 2006-06-16 2007-12-27 Sony Corp 正極活物質およびその製造方法、正極およびその製造方法ならびに二次電池
JP2008270199A (ja) 2007-03-29 2008-11-06 Mitsubishi Chemicals Corp リチウム二次電池及びそれに使用されるリチウム二次電池用正極
JP2009087885A (ja) * 2007-10-03 2009-04-23 Sony Corp 正極の製造方法
JP2011141989A (ja) * 2010-01-06 2011-07-21 Sanyo Electric Co Ltd 非水電解質二次電池及び非水電解質二次電池用正極
JP2012079448A (ja) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック
WO2012176904A1 (ja) * 2011-06-24 2012-12-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法
WO2013080722A1 (ja) * 2011-11-30 2013-06-06 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP2013152825A (ja) 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2014155989A1 (ja) * 2013-03-26 2014-10-02 三洋電機株式会社 非水電解質二次電池
JP2015122264A (ja) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 非水電解液二次電池の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290781B (en) 2004-09-02 2007-12-01 Lg Chemical Ltd Electrode active material with multi-element based oxide layers and preparation method thereof
US7871747B2 (en) * 2005-09-13 2011-01-18 Ricoh Company, Ltd. Electrophotographic photoconductor having charge blocking and moire preventing layers
JP4215078B2 (ja) 2006-07-21 2009-01-28 ソニー株式会社 非水電解質電池用正極及び非水電解質電池
CN102290573B (zh) 2007-03-30 2015-07-08 索尼株式会社 正极活性物质、正极、非水电解质电池
JP2008277003A (ja) 2007-04-26 2008-11-13 Mitsubishi Chemicals Corp 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
US9048508B2 (en) 2007-04-20 2015-06-02 Mitsubishi Chemical Corporation Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same
JP5079461B2 (ja) 2007-11-14 2012-11-21 ソニー株式会社 リチウムイオン二次電池用正極、その製造方法及びリチウムイオン二次電池
CN102544464B (zh) 2010-12-28 2014-06-25 清华大学 钛酸锂复合材料及其制备方法以及锂离子电池
CN106972167A (zh) 2011-09-30 2017-07-21 旭硝子株式会社 锂离子二次电池用正极活性物质及其制造方法
JP5418626B2 (ja) 2012-04-05 2014-02-19 ソニー株式会社 リチウムイオン電池の正極の製造方法およびリチウムイオン電池の製造方法
JP2014149960A (ja) 2013-01-31 2014-08-21 Sanyo Electric Co Ltd 非水電解質二次電池
JP2016154061A (ja) 2013-06-19 2016-08-25 日産自動車株式会社 非水電解質二次電池
JP6209435B2 (ja) 2013-12-17 2017-10-04 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6289995B2 (ja) 2014-05-13 2018-03-07 株式会社東芝 負極、負極の製造方法、及び非水電解質電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199112A (ja) 1996-01-23 1997-07-31 Sony Corp 非水電解液二次電池
JP2007335331A (ja) 2006-06-16 2007-12-27 Sony Corp 正極活物質およびその製造方法、正極およびその製造方法ならびに二次電池
JP2008270199A (ja) 2007-03-29 2008-11-06 Mitsubishi Chemicals Corp リチウム二次電池及びそれに使用されるリチウム二次電池用正極
JP2009087885A (ja) * 2007-10-03 2009-04-23 Sony Corp 正極の製造方法
JP2011141989A (ja) * 2010-01-06 2011-07-21 Sanyo Electric Co Ltd 非水電解質二次電池及び非水電解質二次電池用正極
JP2012079448A (ja) * 2010-09-30 2012-04-19 Dainippon Printing Co Ltd 非水電解液二次電池用電極板、非水電解液二次電池用電極板の製造方法、非水電解液二次電池、および電池パック
WO2012176904A1 (ja) * 2011-06-24 2012-12-27 旭硝子株式会社 リチウムイオン二次電池用正極活物質の製造方法
WO2013080722A1 (ja) * 2011-11-30 2013-06-06 三洋電機株式会社 非水電解質二次電池及びその製造方法
JP2013152825A (ja) 2012-01-24 2013-08-08 Sony Corp 電池ならびに電池パック、電子機器、電動車両、蓄電装置および電力システム
WO2014155989A1 (ja) * 2013-03-26 2014-10-02 三洋電機株式会社 非水電解質二次電池
JP2015122264A (ja) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 非水電解液二次電池の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018129256A (ja) * 2017-02-10 2018-08-16 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
WO2019077919A1 (ja) * 2017-10-20 2019-04-25 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JPWO2019077919A1 (ja) * 2017-10-20 2020-09-17 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
EP3686984A4 (en) * 2017-10-20 2021-06-16 GS Yuasa International Ltd. Anhydrous electrolyte storage element and a process for the manufacture of an anhydrous electrolyte storage element
JP7151714B2 (ja) 2017-10-20 2022-10-12 株式会社Gsユアサ 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP2021077608A (ja) * 2019-11-13 2021-05-20 株式会社Gsユアサ 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法

Also Published As

Publication number Publication date
US11205775B2 (en) 2021-12-21
JP6702338B2 (ja) 2020-06-03
JPWO2017099201A1 (ja) 2018-09-27
US20180358614A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6260619B2 (ja) 非水電解質二次電池及び非水電解質二次電池の製造方法
KR20160110380A (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
EP3686984B1 (en) Nonaqueous electrolyte storage element and method for producing nonaqueous electrolyte storage element
JP6270989B2 (ja) 二次電池用電極及びこれを含むリチウム二次電池
JP6702338B2 (ja) 非水電解質蓄電素子及びその製造方法
JP7086407B2 (ja) 正極およびこれを含むリチウム二次電池
CN112563497B (zh) 非水电解液二次电池
WO2018105701A1 (ja) 非水電解質蓄電素子及びその製造方法
CN114899352B (zh) 非水电解质蓄电元件及其制造方法
JP2018049821A (ja) 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
JP7155719B2 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
WO2020067370A1 (ja) 非水電解質、非水電解質蓄電素子、非水電解質蓄電素子の製造方法、及び非水電解質蓄電素子の使用方法
WO2020017580A1 (ja) 蓄電素子
JP2014049297A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP5708598B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP5614433B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
WO2018043369A1 (ja) 非水電解質蓄電素子
JP2019145343A (ja) 非水電解質、非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP7327400B2 (ja) 非水電解質蓄電素子、及び蓄電装置
JP6922242B2 (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP6819326B2 (ja) 非水電解質蓄電素子及びその製造方法
CN113228367A (zh) 非水电解质蓄电元件和非水电解质蓄电元件的制造方法
JP2020173998A (ja) 非水電解質蓄電素子及び非水電解質蓄電素子の製造方法
JP7377827B2 (ja) 非水電解液二次電池の製造方法
JP7484884B2 (ja) 非水電解質蓄電素子及び蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16873094

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017555148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE