WO2014115604A1 - 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池 - Google Patents
二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池 Download PDFInfo
- Publication number
- WO2014115604A1 WO2014115604A1 PCT/JP2014/050470 JP2014050470W WO2014115604A1 WO 2014115604 A1 WO2014115604 A1 WO 2014115604A1 JP 2014050470 W JP2014050470 W JP 2014050470W WO 2014115604 A1 WO2014115604 A1 WO 2014115604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- positive electrode
- active material
- electrode active
- solid electrolyte
- secondary battery
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/043—Processes of manufacture in general involving compressing or compaction
- H01M4/0433—Molding
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
- H01M4/1391—Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a positive electrode for a secondary battery, a method for producing a positive electrode for a secondary battery, and an all-solid secondary battery including the positive electrode.
- secondary batteries In addition to being able to discharge chemical energy by converting it into electrical energy, secondary batteries can convert electrical energy into chemical energy and store it (charge) by passing a current in the opposite direction to that during discharge. It is a possible battery. 2. Description of the Related Art In recent years, secondary batteries such as lithium secondary batteries have been widely used as on-vehicle power supplies or power supplies for portable devices such as notebook personal computers and mobile phones. In particular, an all-solid-state secondary battery using a solid electrolyte instead of an electrolyte using a flammable organic solvent as a solvent has been attracting attention as a battery having excellent safety without fear of leakage.
- a secondary battery generally has a positive electrode having a positive electrode active material layer containing a positive electrode active material, a negative electrode having a negative electrode active material layer containing a negative electrode active material, and an electrolyte layer interposed between these electrodes.
- various studies have been made on positive electrode active materials and electrolytes used in secondary batteries (for example, Patent Documents 1 to 3).
- Patent Document 1 as a method for producing a positive electrode for a secondary battery, a positive electrode active material, a conductive material, and a binder are mixed in a solvent to form a slurry, and the slurry is applied onto a current collector.
- a method of producing a positive electrode by drying and pressurizing is used.
- the oil absorption amount is defined as an index of applicability of the positive electrode active material, and the oil absorption amount with respect to N-methylpyrrolidone (NMP) is 30 ml to 50 ml per 100 g. It is described that the secondary battery using the substance for the positive electrode has high battery characteristics.
- the electrolyte solution penetrates into the gaps between the positive electrode active material particles in the positive electrode active material layer, which increases the interface area between the positive electrode active material and the electrolyte and increases the efficiency. Ion can be conducted electrically.
- the electrolyte layer is a solid electrolyte layer made of a solid electrolyte, the solid electrolyte particles hardly penetrate into the gaps between the positive electrode active material particles in the positive electrode active material layer.
- the all-solid-state secondary battery has a problem that the interface area between the positive electrode active material and the solid electrolyte is small and the ionic conductivity is low as compared with the secondary battery using the electrolyte solution in the electrolyte layer. Therefore, the positive electrode active material layer of the all-solid-state secondary battery is usually formed using a mixture containing positive electrode active material particles and solid electrolyte particles, so that the interface between the positive electrode active material particles and the solid electrolyte particles is obtained. The area is secured and ion conductivity is increased.
- the positive electrode active material used for the positive electrode active material layer of the secondary battery is known to expand and contract because it absorbs and releases ions during charge and discharge, but there are voids between the positive electrode active material particles. It is considered that the expansion and contraction of the positive electrode active material is absorbed by the voids.
- the contact property (adhesiveness) between the positive electrode active material particles and the solid electrolyte particles is desirable.
- a high molding pressure is applied to the mixture including the positive electrode active material particles and the solid electrolyte particles in order to improve the contact between the positive electrode active material particles and the solid electrolyte particles.
- it is required to minimize the gap between the positive electrode active material particles and the solid electrolyte particles.
- voids between the positive electrode active material particles are reduced, so that the expansion and contraction of the positive electrode active material due to charge / discharge is hardly absorbed, and the positive electrode active material cracks, the positive electrode active material layer cracks, the positive electrode active material particles
- the contact between the battery and the solid electrolyte particles decreases, and the capacity retention rate of the secondary battery decreases.
- the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a positive electrode for a secondary battery having a high capacity retention rate, a method for producing a positive electrode for a secondary battery, and an all-solid-state battery provided with the positive electrode.
- the next battery is to provide.
- the positive electrode for secondary battery of the present invention is a positive electrode for secondary battery having a positive electrode active material layer containing at least a positive electrode active material and a solid electrolyte,
- the positive electrode active material has an oil absorption of 35 to 50 ml per 100 g;
- the solid electrolyte has an average particle size of 1.5 to 2.5 ⁇ m;
- the positive electrode active material layer is formed by mixing the positive electrode active material and the solid electrolyte in the absence of a solvent, and pressure-molding the mixture.
- the positive electrode active material having the specific oil absorption amount and the solid electrolyte having the specific average particle diameter are combined, and these are mixed and pressure-molded in the absence of a solvent, thereby forming a secondary battery.
- the capacity maintenance rate can be increased.
- the positive electrode active material preferably has a layered crystal structure.
- the solid electrolyte is preferably a sulfide solid electrolyte. This is because the sulfide-based solid electrolyte is soft and easily deforms and easily forms an ion conduction path.
- the all-solid-state secondary battery of the present invention includes the positive electrode for a secondary battery, a negative electrode, and a solid electrolyte layer interposed between the positive electrode and the negative electrode. Since the all solid state secondary battery of the present invention includes the positive electrode for the secondary battery of the present invention, the capacity retention rate is excellent.
- the method for producing a positive electrode for a secondary battery of the present invention comprises at least a positive electrode active material having an oil absorption of 35 to 50 ml per 100 g and a solid electrolyte having an average particle size of 1.5 to 2.5 ⁇ m without solvent. It has the process of preparing the mixture mixed below, and the process of pressure-molding the said mixture.
- the present invention it is possible to suppress the generation of cracks in the positive electrode active material, the cracks in the positive electrode active material layer, and the like accompanying expansion and contraction of the positive electrode active material during charge / discharge, so that the capacity retention rate of the secondary battery is increased. can do.
- FIG. 5 is a diagram showing a relative value of viscosity with time of an NMP slurry and a heptane slurry. It is a cross-sectional schematic diagram which shows an example of the all-solid-state secondary battery which has a positive electrode for secondary batteries. It is a figure which shows the relationship between the average particle diameter of a solid electrolyte, the capacity
- the positive electrode for secondary battery of the present invention is a positive electrode for secondary battery having a positive electrode active material layer containing at least a positive electrode active material and a solid electrolyte,
- the positive electrode active material has an oil absorption of 35 to 50 ml per 100 g;
- the solid electrolyte has an average particle size of 1.5 to 2.5 ⁇ m;
- the positive electrode active material layer is formed by mixing the positive electrode active material and the solid electrolyte in the absence of a solvent, and pressure-molding the mixture.
- the inventor suppresses the occurrence of cracking of the positive electrode active material, cracking of the positive electrode active material layer, etc. accompanying expansion and contraction of the positive electrode active material during charge and discharge while ensuring the contact between the positive electrode active material and the solid electrolyte.
- intensive studies were conducted.
- this inventor mixes a positive electrode active material and a solid electrolyte under a solvent, makes a slurry, applies the said slurry on a board
- the method was examined. In such a method using slurry application, the capacity retention rate of the secondary battery may be reduced.
- the reason is considered as follows. That is, when NMP or water is used as the slurry solvent, it reacts with a solid electrolyte such as a sulfide solid electrolyte, and therefore cannot be used as a solvent for the slurry.
- the slurry has poor viscosity stability over time.
- FIG. 1 shows a relative value of the time-dependent viscosity of the slurry by an E-type viscometer when NMP is used as a solvent and when heptane is used.
- the distance between the surface of the positive electrode active material layer and the surface of the solid electrolyte layer becomes non-uniform, and accordingly, the reaction in the positive electrode active material layer becomes non-uniform.
- the low smoothness of the coating film also causes an initial fine short circuit.
- the present inventor has found that the capacity retention rate can be improved by combining a positive electrode active material having an oil absorption of 35 to 50 ml per 100 g with a solid electrolyte having an average particle size of 1.5 to 2.5 ⁇ m. . This is presumably because the contact between the positive electrode active material and the solid electrolyte is ensured, and the positive electrode active material is not easily cracked and the positive electrode active material layer is not easily cracked. That is, since the positive electrode active material has an oil absorption of 35 ml or more per 100 g, appropriate voids exist in the positive electrode active material particles (primary particles) and / or between the positive electrode active material particles (primary particles).
- the crack of the positive electrode active material causes a decrease in the occlusion / release function of ions during charge and discharge, and the crack of the positive electrode active material layer causes a decrease in ion conductivity, electron conductivity, and the like in the positive electrode active material layer.
- the positive electrode active material has sufficient mechanical strength, the positive electrode active material and the positive electrode active material layer are not easily cracked during pressure molding.
- the solid electrolyte has an average particle size of 1.5 ⁇ m or more, even if the positive electrode active material expands and contracts during charge and discharge, it is difficult to displace in the positive electrode active material layer, and the positive electrode active material expands due to charge and discharge. The solid electrolyte easily follows the shrinkage.
- the said solid electrolyte has an average particle diameter of 2.5 micrometers or less, it can ensure the interface area with a positive electrode active material. Therefore, even if charging / discharging is repeated, it is estimated that the interface area of the positive electrode active material and solid electrolyte in a positive electrode active material layer is ensured.
- the present inventor has completed the present invention. That is, combining a positive electrode active material having an appropriate oil absorption amount and a solid electrolyte having an appropriate average particle diameter, mixing the positive electrode active material and the solid electrolyte in the absence of a solvent, and press-molding the mixture.
- a secondary battery positive electrode capable of increasing the capacity retention rate of the secondary battery was successfully obtained.
- the rate of increase in resistance of the secondary battery can also be suppressed by using the positive electrode for the secondary battery obtained as described above.
- the positive electrode for a secondary battery of the present invention is produced by mixing the specific positive electrode active material and the specific solid electrolyte in the absence of a solvent, and pressure-molding the mixture to form a positive electrode active material layer. In the process, it is not necessary to select an appropriate solvent for slurrying. In addition, since no solvent is used, the capacity retention rate of the secondary battery can be increased, and a drying process is unnecessary, which can reduce the manufacturing cost.
- the oil absorption amount of the positive electrode active material indicates the volume (ml) of linseed oil absorbed per 100 g of the positive electrode active material, and the pores in the positive electrode active material particles and / or the positive electrode active material particles. It is used as an index that indirectly represents the size, form, etc. of the gaps between them.
- the oil absorption amount can be measured according to JIS K6217 standard. Specifically, it can be measured using linseed oil by an absorption measuring instrument S-410 type manufactured by Asahi Research Institute. More specifically, linseed oil is dropped while kneading a predetermined amount of the positive electrode active material, and a change in viscosity characteristics is measured by a torque detector. By dividing the linseed oil amount at a point where the torque becomes 70% of the maximum torque by the positive electrode active material input amount, the oil absorption amount per 100 g of the positive electrode active material can be calculated.
- the average particle size of the particles in the present invention is calculated by a conventional method.
- An example of a method for calculating the average particle size of the particles is as follows. First, in a transmission electron microscope (TEM) image at a magnification of 400,000 or 1,000,000, a particle diameter is calculated for a certain particle when the particle is regarded as spherical. Such calculation of the average particle diameter by TEM observation is performed for 200 to 300 particles of the same type, and the average of these particles is defined as the average particle diameter.
- TEM transmission electron microscope
- “mixing the positive electrode active material and the solid electrolyte in the absence of a solvent and pressure molding the mixture” means that the mixture of the positive electrode active material and the solid electrolyte and the pressure molding of the mixture are solvent Is not used substantially. That is, it is different from a so-called wet process in which a positive electrode active material or a solid electrolyte is slurried using a solvent, and the slurry is applied and dried (the solvent is volatilized) to form a positive electrode active material layer. This is so-called compacting, in which body material is pressed and molded.
- substantially not using a solvent means that it is ideal that no solvent is used at the time of mixing the positive electrode active material and the solid electrolyte and at the time of pressure molding of the mixture. It is not excluded that a trace amount of the solvent used during the synthesis of the positive electrode active material remains and is contained in the mixture.
- the positive electrode of the present invention can be used as a positive electrode constituting a secondary battery, and there is no limitation on the type and use of the secondary battery.
- the positive electrode of the present invention is suitably used for an all-solid-state secondary battery having a solid electrolyte layer because the interface area between the positive electrode active material and the solid electrolyte in the positive electrode active material layer is ensured without using an electrolytic solution. be able to.
- the positive electrode for a secondary battery of the present invention has a positive electrode active material layer containing at least a positive electrode active material and a solid electrolyte.
- the positive electrode for a secondary battery of the present invention may include a positive electrode current collector and a positive electrode lead connected to the positive electrode current collector.
- the positive electrode active material is not particularly limited as long as it has an oil absorption of 35 to 50 ml per 100 g.
- the method for controlling the oil absorption amount of the positive electrode active material within the above range is not particularly limited.
- conditions at the time of synthesis of the positive electrode active material for example, pH at the time of co-precipitation of primary particles, baking conditions at the time of firing secondary particles, etc.
- it can be controlled by adjusting the conditions during the pulverization of the positive electrode active material.
- the crystal structure of the positive electrode active material is not particularly limited, and examples thereof include a layered structure, an olivine structure, and a spinel structure, and those having a layered structure are preferable.
- the positive electrode active material may be appropriately selected according to the conductive ion species (for example, lithium ion).
- the positive electrode active material of the lithium secondary battery specifically, nickel cobalt lithium manganate (LiNi x Co 1-y-x Mn y O 2), LiCo x Mn y O 2, LiCoMnO 4, LiNi x Co y O 2, LiNi x Mn y O 2, Li 2 NiMn 3 O 8, lithium cobaltate (LiCoO 2 ), Lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), LiMn 2 O 4 , iron olivine (LiFePO 4 ), Li 3 Fe 2 (PO 4 ) 3 , cobalt olivine (LiCoPO 4 ), nickel olivine ( LiNiPO 4), manganese olivine (LiMnPO 4), lithium titanate Li 4 Ti 5 O 12), lithium vanadium phosphate (Li 3 V 2 (PO 4 )
- a chalcogen compound such as copper subrel (Cu 2 Mo 6 S 8 ), iron sulfide (FeS), cobalt sulfide (CoS), nickel sulfide (NiS), and the like.
- the positive electrode active material having a layered structure include LiNi 1/3 Co 1/3 Mn 1/3 O 2 , lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and the like.
- Examples of the positive electrode active material having an olivine structure include iron olivine (LiFePO 4 ), Li 3 Fe 2 (PO 4 ) 3 , cobalt olivine (LiCoPO 4 ), nickel olivine (LiNiPO 4 ), manganese olivine (LiMnPO 4 ), and the like. It is done.
- Examples of the positive electrode active material having a spinel structure include lithium manganate (LiMnO 2 ), LiMn 2 O 4 , LiCoMnO 4 , Li 2 NiMn 3 O 8 , and the like.
- the average particle diameter of the positive electrode active material is preferably 3 to 15 ⁇ m, particularly 4 to 8 ⁇ m, for example. If the average particle size of the positive electrode active material is too small, the conductive material and the solid electrolyte necessary for electron conduction and ion conduction are excessively required as the specific surface area increases, and the energy density decreases. On the other hand, when the average particle diameter of the positive electrode active material is excessive, it becomes difficult to fill a solid electrolyte necessary for maintaining ionic conduction between the particles. In addition, the average particle diameter of a positive electrode active material can be calculated
- the content ratio of the positive electrode active material in the positive electrode active material layer is not particularly limited, but is preferably larger from the viewpoint of battery capacity.
- the total mass of the positive electrode active material layer is 100% by mass, it is preferably 60 to 75% by mass.
- the solid electrolyte is not particularly limited as long as the average particle size is in the range of 1.5 to 2.5 ⁇ m.
- the average particle size of the solid electrolyte can be determined by a method using the above TEM observation.
- the solid electrolyte is preferably particulate. This is because in the positive electrode active material layer, voids can be formed between the solid electrolyte particles, and mechanical displacement when the positive electrode active material expands and contracts can be absorbed by the voids.
- the solid electrolyte may be appropriately selected according to the conductive ion species (for example, lithium ion), and examples thereof include oxide-based solid electrolytes and sulfide-based solid electrolytes, and are sulfide-based solid electrolytes. preferable. This is because the sulfide-based solid electrolyte is soft and easily deforms and easily forms an ion conduction path.
- the conductive ion species for example, lithium ion
- the sulfide-based solid electrolyte is not particularly limited as long as it contains sulfur (S) and has ion conductivity and insulating properties.
- S sulfur
- oxide-based solid electrolyte examples include NASICON type oxides, perovskite type oxides, LISICON type oxides, garnet type oxides, and the like.
- NASICON type oxides examples include NASICON type oxides, perovskite type oxides, LISICON type oxides, garnet type oxides, and the like.
- specific examples of the oxide-based solid electrolyte that can be used in the all-solid lithium secondary battery will be given.
- Examples of the NASICON type oxide include the following materials and similar materials having different composition ratios of the respective elements. That is, Li a Xb Y cP d O e (X is at least one selected from the group consisting of B, Al, Ga, In, C, Si, Ge, Sn, Sb and Se, and Y is Ti , Zr, Ge, In, Ga, Sn, and Al, and a to e are 0.5 ⁇ a ⁇ 5.0, 0 ⁇ b ⁇ 2.98, 0.8. 5 ⁇ c ⁇ 3.0, 0.02 ⁇ d ⁇ 3.0, 2.0 ⁇ b + d ⁇ 4.0, and 3.0 ⁇ e ⁇ 12.0. be able to.
- perovskite oxide examples include oxides represented by Li x La 1-x TiO 3 (Li—La—Ti—O-based perovskite oxide).
- Li 4 XO 4 -Li 3 YO 4 (X is at least one selected from Si, Ge, and Ti, and Y is at least one selected from P, As, and V)
- Li 4 XO 4 —Li 2 AO 4 (X is at least one selected from Si, Ge, and Ti, A is at least one selected from Mo and S)
- Li 4 XO 4 —Li 2 ZO 2 (X is At least one selected from Si, Ge, and Ti, Z is at least one selected from Al, Ga, and Cr)
- Li 4 XO 4 -Li 2 BXO 4 (where X is Si, Ge, And at least one selected from Ti and B, at least one selected from Ca and Zn)
- Li 3 DO 3 -Li 3 YO 4 (D is selected from B, Y is selected from P, As and V) And at least one kind).
- Li 4 SiO 4 —Li 3 YO 4 (X is at least one selected from Si, Ge, and Ti, and Y is at
- Examples of the garnet-type oxide include an oxide represented by Li 3 + x A y G z M 2 -v B v O 12 and similar materials having different composition ratios of the respective elements.
- A, G, M and B are metal cations.
- A is preferably an alkaline earth metal cation such as Ca, Sr, Ba and Mg, or a transition metal cation such as Zn.
- G is preferably a transition metal cation such as La, Y, Pr, Nd, Sm, Lu, or Eu.
- Examples of M include transition metal cations such as Zr, Nb, Ta, Bi, Te, and Sb. Among these, Zr is preferable.
- B is preferably In, for example.
- x preferably satisfies 0 ⁇ x ⁇ 5, and more preferably satisfies 4 ⁇ x ⁇ 5.
- y preferably satisfies 0 ⁇ y ⁇ 3, and more preferably satisfies 0 ⁇ y ⁇ 2.
- z preferably satisfies 0 ⁇ z ⁇ 3, and more preferably satisfies 1 ⁇ z ⁇ 3.
- v preferably satisfies 0 ⁇ v ⁇ 2, and more preferably satisfies 0 ⁇ v ⁇ 1.
- O may be partially or completely exchanged with a divalent anion and / or a trivalent anion, for example, N 3 ⁇ .
- Li—La—Zr—O-based oxides such as Li 7 La 3 Zr 2 O 12 are preferable.
- the content ratio of the solid electrolyte in the positive electrode active material layer is not particularly limited as long as ion conductivity can be ensured, but it is preferably smaller from the viewpoint of securing the capacity of the battery.
- the total mass of the positive electrode active material layer is 100% by mass, it is preferably 25 to 40% by mass.
- the positive electrode active material layer may contain a conductive material, a binder, and the like as necessary.
- the conductive material is not particularly limited as long as the conductivity of the positive electrode active material layer can be improved, and examples thereof include a conductive carbon material.
- the conductive carbon material is not particularly limited, but a carbon material having a high specific surface area is preferable from the viewpoint of reaction field area and space.
- the conductive carbon material preferably has a specific surface area of 10 m 2 / g or more, particularly 100 m 2 / g or more, and more preferably 600 m 2 / g or more.
- conductive carbon materials having a high specific surface area include carbon black (for example, acetylene black, ketjen black), activated carbon, carbon carbon fiber (for example, carbon nanotube (CNT), carbon nanofiber, vapor grown carbon) Fiber etc.).
- the specific surface area of the conductive material can be measured by, for example, the BET method.
- the content of the conductive material in the positive electrode active material layer varies depending on the type of the conductive material, but is usually 1 to 30% by mass when the total mass of the positive electrode active material layer is 100% by mass. Is preferred.
- the binder examples include polyvinylidene fluoride (PVdF) and polytetrafluoroethylene (PTFE).
- the content ratio of the binder in the positive electrode active material layer may be a level that can fix the positive electrode active material or the like, and is preferably less.
- the content ratio of the binder is usually preferably 1 to 10% by mass when the total mass of the positive electrode active material layer is 100% by mass.
- the thickness of the positive electrode active material layer varies depending on the intended use of the battery, etc., but is preferably 10 to 250 ⁇ m, more preferably 20 to 200 ⁇ m, and further preferably 30 to 150 ⁇ m. preferable.
- the positive electrode current collector has a function of collecting the positive electrode active material layer.
- Examples of the material for the positive electrode current collector include aluminum, SUS, nickel, iron, carbon, and titanium.
- Examples of the shape of the positive electrode current collector include a foil shape, a plate shape, and a mesh shape.
- the positive electrode for a secondary battery according to the present invention is formed by mixing the positive electrode active material and the solid electrolyte as described above in the absence of a solvent and pressure-molding the mixture. is there.
- the method for forming the positive electrode active material layer will be described in detail in “2. Method for producing positive electrode for secondary battery” below.
- the secondary battery positive electrode production method of the present invention comprises at least a positive electrode active material having an oil absorption of 35 to 50 ml per 100 g, and an average particle size of 1.5 to 2.5 ⁇ m. Preparing a mixture in which a solid electrolyte is mixed in the absence of a solvent; And a step of pressure-molding the mixture.
- a positive electrode active material layer is formed by mixing a positive electrode active material and a solid electrolyte in the absence of a solvent and press-molding the mixture.
- the manufacturing cost can be reduced.
- the positive electrode for secondary batteries of this invention demonstrated above can be manufactured, and it contributes also to the improvement of the capacity maintenance rate of a secondary battery.
- the mixture preparation step at least a positive electrode active material having an oil absorption amount of 35 to 50 ml per 100 g and a solid electrolyte having an average particle size of 1.5 to 2.5 ⁇ m are mixed in the absence of a solvent. It is a process.
- the positive electrode active material and the solid electrolyte can be the same as the materials and contents described in “1. Positive electrode for secondary battery”.
- the method for mixing the positive electrode active material and the solid electrolyte is not particularly limited as long as the mixing is performed in the absence of a solvent, and examples thereof include a mixing method using a mortar, a bead mill, a ball mill, or the like.
- the said mixture may contain the electrically conductive material, the binder, etc.
- a positive electrode active material and a solid electrolyte as needed other than a positive electrode active material and a solid electrolyte.
- a electrically conductive material and a binder it can be made to be the same as that of the material demonstrated in said "1. Positive electrode for secondary batteries", and content.
- the mixture containing the conductive material and the binder is prepared by mixing the conductive material and the binder together with the positive electrode active material and the solid electrolyte in the absence of a solvent.
- the mixture prepared as described above is pressure molded to form a positive electrode active material layer.
- Pressure during pressure molding from the viewpoint of the capacity retention rate improves, 0.5ton / cm 2 ( ⁇ 49MPa ) or more, preferably particularly 1.5ton / cm 2 ( ⁇ 147MPa) above, 7 ton / cm 2 ( ⁇ 686 MPa) or less, particularly 4 ton / cm 2 ( ⁇ 392 MPa) or less. If the pressure is too low, the contact (adhesiveness) between the solid electrolyte and the positive electrode active material in the positive electrode active material layer may not be ensured.
- the method of pressure-molding the mixture is not particularly limited, and examples thereof include a method in which the prepared mixture is filled in a mold such as a mold and pressed.
- a positive electrode current collector or a solid electrolyte layer to be described later is disposed in the mold, and a positive electrode active material layer laminated with the positive electrode current collector or the solid electrolyte layer can be produced by applying pressure together with the mixture.
- All-solid secondary battery comprises the positive electrode for a secondary battery of the present invention, a negative electrode, and a solid electrolyte layer interposed between the positive electrode and the negative electrode. To do.
- FIG. 2 is a diagram showing an example of the all solid state secondary battery of the present invention, and is a schematic view of a cross section cut in the stacking direction. Note that the all solid state secondary battery of the present invention is not necessarily limited to this example.
- the all-solid-state secondary battery 100 includes a positive electrode 6 including the positive electrode active material layer 2 and the positive electrode current collector 4, a negative electrode 7 including the negative electrode active material layer 3 and the negative electrode current collector 5, and the positive electrode 6 and the negative electrode 7.
- a solid electrolyte layer 1 is provided.
- the all-solid-state secondary battery of the present invention will be described for each configuration.
- the negative electrode includes a negative electrode active material layer containing a negative electrode active material.
- the negative electrode used in the present invention may include a negative electrode current collector and a negative electrode lead connected to the negative electrode current collector in addition to the negative electrode active material layer.
- the negative electrode active material is not particularly limited as long as it can occlude and release conductive ion species, typically metal ions.
- carbon materials such as mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), hard carbon, and soft carbon; lithium transition metal oxides such as lithium titanate (Li 4 Ti 5 O 12 ); La 3 Ni Examples thereof include metal alloys such as 2 Sn 7 .
- the negative electrode active material may be in the form of a powder or a thin film.
- the negative electrode active material layer may contain a solid electrolyte, a conductive material, a binder, and the like as necessary.
- the details of the solid electrolyte, the conductive material, and the binder are the same as those of the solid electrolyte, the conductive material, and the binder in the positive electrode active material layer described above.
- the layer thickness of the negative electrode active material layer is not particularly limited, but is preferably 10 to 100 ⁇ m, and more preferably 10 to 50 ⁇ m, for example.
- the negative electrode current collector has a function of collecting current from the negative electrode active material layer. Examples of the material for the negative electrode current collector include SUS, nickel, copper, and carbon. Moreover, as a shape of a negative electrode collector, the thing similar to the shape of the positive electrode collector mentioned above is employable.
- the method for producing the negative electrode is not particularly limited, but when a powdered negative electrode active material is used, the negative electrode active material or the mixture containing the negative electrode active material is pressure-molded in the absence of a solvent from the viewpoint of reducing the production cost of the battery. Thus, a method of forming the negative electrode active material layer is preferable. At this time, a negative electrode active material layer laminated with the negative electrode current collector or the solid electrolyte layer can be produced by applying pressure in a state where the mixture is disposed on the negative electrode current collector or a solid electrolyte layer described later.
- the content rate of the solid electrolyte in a negative electrode active material layer can be made to be the same as the content rate of the solid electrolyte in the positive electrode active material layer mentioned above.
- the pressure at the time of the pressure molding of the negative electrode active material layer is not particularly limited.
- the solid electrolyte layer is interposed between the positive electrode and the negative electrode, and has a function of exchanging conductive ion species between the positive electrode and the negative electrode.
- the solid electrolyte layer contains at least a solid electrolyte and may contain the above-described binder as necessary.
- the solid electrolyte contained in the solid electrolyte layer the same solid electrolyte as that contained in the positive electrode active material layer can be used.
- the content of the solid electrolyte in the solid electrolyte layer is not particularly limited as long as a desired insulating property can be obtained.
- the content is in the range of 10 to 100% by volume, and in particular, 50 to 100% by volume. It is preferable to be within the range.
- the thickness of the solid electrolyte layer is preferably in the range of 0.1 to 1000 ⁇ m, and more preferably in the range of 0.1 to 300 ⁇ m.
- the method of press-molding the solid electrolyte or the mixture containing a solid electrolyte in the absence of a solvent is preferable.
- a solid electrolyte layer laminated with the positive electrode active material layer or the negative electrode active material layer can be produced by applying pressure in a state where the mixture is disposed on the positive electrode active material layer or the negative electrode active material layer.
- the all-solid-state secondary battery of the present invention may include a battery case that houses a positive electrode, a solid electrolyte layer, a negative electrode, and the like.
- a battery case that houses a positive electrode, a solid electrolyte layer, a negative electrode, and the like.
- Specific examples of the shape of the battery case include a coin type, a flat plate type, a cylindrical type, and a laminate type.
- Examples of the all-solid secondary battery of the present invention include an all-solid lithium secondary battery, an all-solid sodium secondary battery, an all-solid magnesium secondary battery, and an all-solid calcium secondary battery.
- a solid lithium secondary battery is preferred.
- Example 1 a solid electrolyte having an average particle size of 1.5 ⁇ m was used.
- LiNi 1/3 Co 1/3 Mn 1/3 O 2 oil absorption 35.7 ml / 100 g, manufactured by Nichia Corporation
- VGCF registered trademark Showa Showa
- a 15 ⁇ m Al foil (manufactured by Nippon Foil Co., Ltd.) is laminated on the positive electrode side, and a 10 ⁇ m Cu foil (manufactured by Nippon Foil Co., Ltd.) is laminated on the negative electrode side to obtain an all solid lithium secondary battery. It was.
- Example 2 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a positive electrode active material having an oil absorption of 40.2 ml / 100 g.
- Example 3 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a positive electrode active material having an oil absorption of 45.5 ml / 100 g.
- Example 4 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 2.5 ⁇ m and a positive electrode active material having an oil absorption of 35.7 ml / 100 g.
- Example 5 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 2.5 ⁇ m and a positive electrode active material having an oil absorption of 40.2 ml / 100 g.
- Example 6 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 2.5 ⁇ m and a positive electrode active material having an oil absorption of 45.5 ml / 100 g.
- Example 7 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle size of 2.0 ⁇ m and a positive electrode active material having an oil absorption of 35.7 ml / 100 g.
- Example 2 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a positive electrode active material having an oil absorption of 24.6 ml / 100 g.
- Example 5 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle size of 0.8 ⁇ m and a positive electrode active material having an oil absorption of 35.7 ml / 100 g.
- Example 6 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 5 ⁇ m and a positive electrode active material having an oil absorption of 35.7 ml / 100 g.
- Example 7 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle size of 0.8 ⁇ m and a positive electrode active material having an oil absorption of 19.2 ml / 100 g.
- Example 8 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 5 ⁇ m and a positive electrode active material having an oil absorption of 19.2 ml / 100 g.
- Example 9 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 0.8 ⁇ m and a positive electrode active material having an oil absorption of 53.3 ml / 100 g.
- Example 10 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 5 ⁇ m and a positive electrode active material having an oil absorption of 53.3 ml / 100 g.
- Example 11 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 2.5 ⁇ m and a positive electrode active material having an oil absorption of 19.2 ml / 100 g.
- Example 12 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 2.5 ⁇ m and a positive electrode active material having an oil absorption of 53.3 ml / 100 g.
- Example 13 An all-solid lithium secondary battery was produced in the same manner as in Example 1 except that a positive electrode active material layer was produced using a solid electrolyte having an average particle diameter of 2 ⁇ m and a positive electrode active material having an oil absorption of 19.2 ml / 100 g.
- Table 1 shows the capacity retention rate and resistance increase rate after 100 cycles of Examples 1 to 7 and Comparative Examples 1 to 14.
- FIG. 3 shows the relationship between the average particle size of the solid electrolytes of Examples 1, 4 and 7, and Comparative Examples 5 and 6, and the capacity retention rate and resistance increase rate after 100 cycles. Further, the relationship between the oil absorption amount of the positive electrode active materials of Examples 1 to 3 and Comparative Examples 1 to 4 using a solid electrolyte having an average particle diameter of 1.5 ⁇ m, the capacity retention rate after 100 cycles, and the resistance increase rate is shown in FIG. 4 shows the relationship between the oil absorption amount of the positive electrode active materials of Example 7 and Comparative Examples 13 and 14 using a solid electrolyte having an average particle diameter of 2.0 ⁇ m, the capacity retention rate and the resistance increase rate after 100 cycles.
- FIG. 7 shows the capacity retention rate for each 10 cycles of Examples 1 to 7 and Comparative Examples 1 to 14, and FIG. 8 shows the resistance increase rate.
- a positive electrode active material having an oil absorption of 35 to 50 ml per 100 g and a solid electrolyte having an average particle size of 1.5 to 2.5 ⁇ m are combined and pressure-molded in the absence of a solvent.
- the capacity retention rate was high, and the resistance increase rate was low.
- Comparative Examples 1 to 4 and 11 to 14 each using a positive electrode active material and a solid electrolyte having an average particle size in the range of 1.5 to 2.5 ⁇ m were compared with Examples 1 to 7 in capacity.
- the maintenance rate was low, and the resistance increase rate was inferior.
- the oil absorption per 100 g of the positive electrode active material is set in the range of 35-50 ml (35.7 ml), and the average particle size of the solid electrolyte is set in the range of 1.5-2.5 ⁇ m.
- the capacity retention rate is improved and the resistance increase rate is decreased.
- FIGS. 4 to 6 when the average particle size of the solid electrolyte is set to 1.5, 2.0 and 2.5 ⁇ m, the capacity is maintained if the oil absorption amount of the positive electrode active material is 35 to 50 ml per 100 g. It can be seen that the rate increases and the resistance increase rate decreases.
- Examples 1 to 7 have a higher capacity retention rate every 10 cycles than Comparative Examples 1 to 14.
- FIG. 8 it can be seen that Examples 1-7 have a lower resistance increase rate every 10 cycles than Comparative Examples 1-14.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
容量維持率の高い二次電池用正極、二次電池用正極の製造方法、及び、当該正極を備える全固体二次電池を提供する。正極活物質と固体電解質とを少なくとも含む正極活物質層を有する二次電池用正極であって、前記正極活物質の吸油量が100g当たり35~50mlであり、前記固体電解質の平均粒径が1.5~2.5μmであり、前記正極活物質層が、前記正極活物質と前記固体電解質とを無溶媒下で混合し、当該混合物を加圧成型してなることを特徴とする、二次電池用正極を提供することにより、上記課題を解決する。
Description
本発明は、二次電池用正極、二次電池用正極の製造方法、及び、当該正極を備える全固体二次電池に関する。
二次電池は、化学エネルギーを電気エネルギーに変換し放電を行うことができる他に、放電時と逆方向に電流を流すことにより、電気エネルギーを化学エネルギーに変換して蓄積(充電)することが可能な電池である。
近年、車両搭載用電源、或いは、ノート型のパーソナルコンピューターや、携帯電話機等の携帯機器の電源として、リチウム二次電池等の二次電池が幅広く用いられている。特に可燃性の有機溶媒を溶媒とする電解液ではなく固体電解質を用いる全固体二次電池は、漏液する恐れがなく、安全性に優れた電池として注目されている。
近年、車両搭載用電源、或いは、ノート型のパーソナルコンピューターや、携帯電話機等の携帯機器の電源として、リチウム二次電池等の二次電池が幅広く用いられている。特に可燃性の有機溶媒を溶媒とする電解液ではなく固体電解質を用いる全固体二次電池は、漏液する恐れがなく、安全性に優れた電池として注目されている。
二次電池は、一般的に、正極活物質を含む正極活物質層を有する正極と、負極活物質を含む負極活物質層を有する負極と、これら電極の間に介在する電解質層とを有する。
二次電池の性能向上のために、二次電池に用いられる正極活物質や電解質について様々な研究がされている(例えば、特許文献1~3)。
例えば、特許文献1では、二次電池用正極の製造方法として、正極活物質と導電材と結着剤とを溶媒下で混合してスラリー化し、当該スラリーを集電体上に塗布した後、乾燥し、加圧して正極を製造する方法が用いられている。そして、正極活物質をスラリー化するのを前提として、正極活物質の塗布性の指標として吸油量を規定し、N-メチルピロリドン(NMP)に対する吸油量が100g当たり30ml以上50ml以下である正極活物質を正極に用いた二次電池は、高い電池特性を有することが記載されている。
二次電池の性能向上のために、二次電池に用いられる正極活物質や電解質について様々な研究がされている(例えば、特許文献1~3)。
例えば、特許文献1では、二次電池用正極の製造方法として、正極活物質と導電材と結着剤とを溶媒下で混合してスラリー化し、当該スラリーを集電体上に塗布した後、乾燥し、加圧して正極を製造する方法が用いられている。そして、正極活物質をスラリー化するのを前提として、正極活物質の塗布性の指標として吸油量を規定し、N-メチルピロリドン(NMP)に対する吸油量が100g当たり30ml以上50ml以下である正極活物質を正極に用いた二次電池は、高い電池特性を有することが記載されている。
電解質層に電解液を用いた二次電池の場合には、正極活物質層において正極活物質粒子間の空隙に電解液が浸透するため、正極活物質と電解質との界面面積が増大し、効率的にイオンを伝導させることができる。
一方、全固体二次電池の場合は、電解質層が固体電解質からなる固体電解質層であるため、固体電解質の粒子は正極活物質層における正極活物質粒子間の空隙に浸透しにくい。そのため、全固体二次電池は、電解質層に電解液を用いた二次電池と比較して正極活物質と固体電解質との界面面積が小さく、イオン伝導性が低いという問題がある。
それゆえ、全固体二次電池の正極活物質層は、通常、正極活物質粒子と固体電解質粒子とを含む混合物を用いて形成することにより、正極活物質粒子と固体電解質粒子との間の界面面積を確保し、イオン伝導性を高めている。
一方、全固体二次電池の場合は、電解質層が固体電解質からなる固体電解質層であるため、固体電解質の粒子は正極活物質層における正極活物質粒子間の空隙に浸透しにくい。そのため、全固体二次電池は、電解質層に電解液を用いた二次電池と比較して正極活物質と固体電解質との界面面積が小さく、イオン伝導性が低いという問題がある。
それゆえ、全固体二次電池の正極活物質層は、通常、正極活物質粒子と固体電解質粒子とを含む混合物を用いて形成することにより、正極活物質粒子と固体電解質粒子との間の界面面積を確保し、イオン伝導性を高めている。
二次電池の正極活物質層に用いられる正極活物質は、充放電の際にイオンを吸蔵放出するため、膨張収縮することが知られているが、正極活物質粒子間に空隙が存在する場合、この空隙により、正極活物質の膨張収縮が吸収されると考えられる。
一方で、全固体二次電池の正極活物質層では、正極活物質と固体電解質との間の高イオン伝導性を得る観点から、正極活物質粒子と固体電解質粒子との接触性(密着性)が高いことが望ましい。そのため、全固体二次電池の正極を製造する際には、正極活物質粒子と固体電解質粒子との接触性を高めるべく、正極活物質粒子と固体電解質粒子を含む混合物に対して高い成型圧力を付加し、正極活物質粒子と固体電解質粒子との間の隙間をできるだけ少なくすることが要求される。しかしながら、その結果、正極活物質粒子間の空隙が減少するため、充放電に伴う正極活物質の膨張収縮が吸収されにくくなり、正極活物質の割れ、正極活物質層の割れ、正極活物質粒子と固体電解質粒子との接触性の低下等が生じ、二次電池の容量維持率が低下してしまう。
一方で、全固体二次電池の正極活物質層では、正極活物質と固体電解質との間の高イオン伝導性を得る観点から、正極活物質粒子と固体電解質粒子との接触性(密着性)が高いことが望ましい。そのため、全固体二次電池の正極を製造する際には、正極活物質粒子と固体電解質粒子との接触性を高めるべく、正極活物質粒子と固体電解質粒子を含む混合物に対して高い成型圧力を付加し、正極活物質粒子と固体電解質粒子との間の隙間をできるだけ少なくすることが要求される。しかしながら、その結果、正極活物質粒子間の空隙が減少するため、充放電に伴う正極活物質の膨張収縮が吸収されにくくなり、正極活物質の割れ、正極活物質層の割れ、正極活物質粒子と固体電解質粒子との接触性の低下等が生じ、二次電池の容量維持率が低下してしまう。
また、正極活物質及び固体電解質を含む正極活物質層の製造において、特許文献1のように、スラリーを塗布、乾燥する方法を用いると、容量維持率が低下するという問題がある。また、スラリーの乾燥プロセスは、量産時に大掛かりな装置が必要となり、製造コストがかかるという問題がある。
本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、容量維持率の高い二次電池用正極、二次電池用正極の製造方法、及び、当該正極を備える全固体二次電池を提供することである。
本発明の二次電池用正極は、正極活物質と固体電解質とを少なくとも含む正極活物質層を有する二次電池用正極であって、
前記正極活物質の吸油量が100g当たり35~50mlであり、
前記固体電解質の平均粒径が1.5~2.5μmであり、
前記正極活物質層が、前記正極活物質と前記固体電解質とを無溶媒下で混合し、当該混合物を加圧成型してなることを特徴とする。
本発明では、上記特定の吸油量を有する正極活物質と上記特定の平均粒径を有する固体電解質とを組み合わせ、且つ、これらを無溶媒下で混合、加圧成型することによって、二次電池の容量維持率を高くすることができる。これは、正極活物質と固体電解質との接触性を確保しつつ、充放電時の正極活物質の膨張収縮に伴う正極活物質の割れ、正極活物質層の割れ等の発生を抑制することができるためである。
前記正極活物質の吸油量が100g当たり35~50mlであり、
前記固体電解質の平均粒径が1.5~2.5μmであり、
前記正極活物質層が、前記正極活物質と前記固体電解質とを無溶媒下で混合し、当該混合物を加圧成型してなることを特徴とする。
本発明では、上記特定の吸油量を有する正極活物質と上記特定の平均粒径を有する固体電解質とを組み合わせ、且つ、これらを無溶媒下で混合、加圧成型することによって、二次電池の容量維持率を高くすることができる。これは、正極活物質と固体電解質との接触性を確保しつつ、充放電時の正極活物質の膨張収縮に伴う正極活物質の割れ、正極活物質層の割れ等の発生を抑制することができるためである。
本発明の二次電池用正極において前記正極活物質は、層状の結晶構造を有することが好ましい。
本発明の二次電池用正極において前記固体電解質は、硫化物系固体電解質であることが好ましい。硫化物系固体電解質は軟らかいため、変形しやすく、イオン伝導経路を形成しやすいからである。
本発明の全固体二次電池は、前記二次電池用正極と、負極と、前記正極及び前記負極の間に介在する固体電解質層と、を備えることを特徴とするものである。本発明の全固体二次電池は、本発明の二次電池用正極を備えているため、容量維持率が優れている。
本発明の二次電池用正極の製造方法は、少なくとも、吸油量が100g当たり35~50mlである正極活物質、及び、平均粒径が1.5~2.5μmである固体電解質を、無溶媒下で混合した混合物を準備する工程と、前記混合物を、加圧成型する工程と、を有することを特徴とする。
本発明によれば、充放電時の正極活物質の膨張収縮に伴う正極活物質の割れ、正極活物質層の割れ等の発生を抑制することができるため、二次電池の容量維持率を高くすることができる。
以下、本発明の二次電池用正極、二次電池用正極の製造方法、及び、当該二次電池用正極を備える全固体二次電池について詳しく説明する。
1.二次電池用正極
本発明の二次電池用正極は、正極活物質と固体電解質とを少なくとも含む正極活物質層を有する二次電池用正極であって、
前記正極活物質の吸油量が100g当たり35~50mlであり、
前記固体電解質の平均粒径が1.5~2.5μmであり、
前記正極活物質層が、前記正極活物質と前記固体電解質とを無溶媒下で混合し、当該混合物を加圧成型してなることを特徴とするものである。
本発明の二次電池用正極は、正極活物質と固体電解質とを少なくとも含む正極活物質層を有する二次電池用正極であって、
前記正極活物質の吸油量が100g当たり35~50mlであり、
前記固体電解質の平均粒径が1.5~2.5μmであり、
前記正極活物質層が、前記正極活物質と前記固体電解質とを無溶媒下で混合し、当該混合物を加圧成型してなることを特徴とするものである。
本発明者は、正極活物質と固体電解質との接触性を確保しつつ、充放電時の正極活物質の膨張収縮に伴う正極活物質の割れ、正極活物質層の割れ等の発生を抑制し、優れた容量維持率を示す二次電池を得るべく、鋭意検討した。
まず、本発明者は、特許文献1のように、正極活物質と固体電解質とを溶媒下で混合してスラリー化し、当該スラリーを基板上に塗布、乾燥して、正極活物質層を形成する方法について検討した。
このようなスラリー塗布を用いた方法では、二次電池の容量維持率が低下する場合がある。その理由は次のように考えられる。すなわち、スラリー溶媒としてNMPや水を用いると、硫化物固体電解質等の固体電解質と反応してしまうため、スラリーの溶媒として使用できない。そこで、溶媒として酪酸ブチルやヘプタン等を使用すると、スラリーの経時粘度安定性が乏しく、例えば、図1に示すように、NMP系では数日~1週間に対して、数分~10分程度となる。なお、図1は、溶媒としてNMPを用いた場合及びヘプタンを用いた場合のE型粘度計によるスラリーの経時粘度の相対値を示したものである。経時粘度安定性に乏しいスラリーを用いると、塗膜の表面平滑性が大きく低下する。その結果、正極活物質層表面と固体電解質層表面との距離が不均一となり、これに伴い、正極活物質層における反応が不均一となるため、容量維持率が低下すると考えられる。塗膜の平滑性が低いことは、初期の微短絡の原因にもなる。
このようなスラリー塗布を用いた方法では、二次電池の容量維持率が低下する場合がある。その理由は次のように考えられる。すなわち、スラリー溶媒としてNMPや水を用いると、硫化物固体電解質等の固体電解質と反応してしまうため、スラリーの溶媒として使用できない。そこで、溶媒として酪酸ブチルやヘプタン等を使用すると、スラリーの経時粘度安定性が乏しく、例えば、図1に示すように、NMP系では数日~1週間に対して、数分~10分程度となる。なお、図1は、溶媒としてNMPを用いた場合及びヘプタンを用いた場合のE型粘度計によるスラリーの経時粘度の相対値を示したものである。経時粘度安定性に乏しいスラリーを用いると、塗膜の表面平滑性が大きく低下する。その結果、正極活物質層表面と固体電解質層表面との距離が不均一となり、これに伴い、正極活物質層における反応が不均一となるため、容量維持率が低下すると考えられる。塗膜の平滑性が低いことは、初期の微短絡の原因にもなる。
また、本発明者は、吸油量が100g当たり35~50mlの正極活物質と、平均粒径が1.5~2.5μmの固体電解質とを組み合わせることで、容量維持率を向上できることを見出した。これは、正極活物質と固体電解質との接触性が確保されると共に、正極活物質の割れや正極活物質層の割れ等が生じ難くなるからと考えられる。
すなわち、上記正極活物質は、吸油量が100g当たり35ml以上であるため、正極活物質粒子(一次粒子)内及び/又は正極活物質粒子(一次粒子)間に適度な空隙が存在する。この空隙によって、充放電時の正極活物質の膨張収縮が抑制されたり、発生した膨張収縮が吸収されると考えられる。また、上記正極活物質は、吸油量が100g当たり50ml以下であるため、正極活物質そのものの強度も確保されている。従って、充放電を繰り返しても正極活物質の割れや正極活物質層の割れ等が発生するのを抑制できると推測される。正極活物質の割れは、充放電時のイオンの吸蔵・放出機能の低下を招き、正極活物質層の割れは、正極活物質層におけるイオン伝導性、電子伝導性等の低下を招く。しかも、上記正極活物質は機械的強度が確保されているため、加圧成型時の正極活物質及び正極活物質層の割れも発生しにくい。
また、上記固体電解質は、平均粒径が1.5μm以上であるため、充放電時に正極活物質が膨張収縮しても正極活物質層内において変位しにくく、充放電に伴う正極活物質の膨張収縮に固体電解質が追従し易い。また、上記固体電解質は、平均粒径が2.5μm以下であるため、正極活物質との界面面積を確保することができる。従って、充放電を繰り返しても、正極活物質層における正極活物質と固体電解質との界面面積が確保されると推測される。
すなわち、上記正極活物質は、吸油量が100g当たり35ml以上であるため、正極活物質粒子(一次粒子)内及び/又は正極活物質粒子(一次粒子)間に適度な空隙が存在する。この空隙によって、充放電時の正極活物質の膨張収縮が抑制されたり、発生した膨張収縮が吸収されると考えられる。また、上記正極活物質は、吸油量が100g当たり50ml以下であるため、正極活物質そのものの強度も確保されている。従って、充放電を繰り返しても正極活物質の割れや正極活物質層の割れ等が発生するのを抑制できると推測される。正極活物質の割れは、充放電時のイオンの吸蔵・放出機能の低下を招き、正極活物質層の割れは、正極活物質層におけるイオン伝導性、電子伝導性等の低下を招く。しかも、上記正極活物質は機械的強度が確保されているため、加圧成型時の正極活物質及び正極活物質層の割れも発生しにくい。
また、上記固体電解質は、平均粒径が1.5μm以上であるため、充放電時に正極活物質が膨張収縮しても正極活物質層内において変位しにくく、充放電に伴う正極活物質の膨張収縮に固体電解質が追従し易い。また、上記固体電解質は、平均粒径が2.5μm以下であるため、正極活物質との界面面積を確保することができる。従って、充放電を繰り返しても、正極活物質層における正極活物質と固体電解質との界面面積が確保されると推測される。
本発明者は、上記知見に基づき、本発明を完成させるに至った。すなわち、適切な吸油量を有する正極活物質と適切な平均粒径を有する固体電解質とを組み合わせ、且つ、これら正極活物質と固体電解質を無溶媒下で混合し、当該混合物を加圧成型することにより、二次電池の容量維持率を高くすることができる二次電池用正極を得ることに成功した。
さらに、本発明者によって、上記のようにして得られた二次電池用正極を用いることにより二次電池の抵抗増加率も抑制できることが確認された。これは、本発明の二次電池用正極において、上記したような、正極活物質及び正極活物質層の割れ、正極活物質層における固体電解質の変位等が抑制されているためと考えられる。すなわち、本発明によれば、高い容量維持率と共に低い抵抗増加率を有する二次電池用正極を提供することも可能である。
本発明の正極は、上記特定の正極活物質及び上記特定の固体電解質を無溶媒下で混合し、当該混合物を加圧成型して正極活物質層が形成されているため、正極活物質層製造工程において、スラリー化に適切な溶媒を選択する必要がない。また、溶媒を用いないため、二次電池の容量維持率を高くすることができると共に、乾燥工程が不要であり、製造コストを下げることができる。
さらに、本発明者によって、上記のようにして得られた二次電池用正極を用いることにより二次電池の抵抗増加率も抑制できることが確認された。これは、本発明の二次電池用正極において、上記したような、正極活物質及び正極活物質層の割れ、正極活物質層における固体電解質の変位等が抑制されているためと考えられる。すなわち、本発明によれば、高い容量維持率と共に低い抵抗増加率を有する二次電池用正極を提供することも可能である。
本発明の正極は、上記特定の正極活物質及び上記特定の固体電解質を無溶媒下で混合し、当該混合物を加圧成型して正極活物質層が形成されているため、正極活物質層製造工程において、スラリー化に適切な溶媒を選択する必要がない。また、溶媒を用いないため、二次電池の容量維持率を高くすることができると共に、乾燥工程が不要であり、製造コストを下げることができる。
本発明において、正極活物質の吸油量とは、正極活物質100g当たりに吸液される亜麻仁油の体積(ml)を示し、正極活物質粒子内の細孔、及び/又は、正極活物質粒子間の空隙の大きさ、形態等を間接的に表した指標として用いている。
吸油量の測定は、JIS K6217規格に準拠して行うことができる。具体的には、株式会社あさひ総研製の吸収量測定器S-410型により亜麻仁油を用いて測定することができる。より具体的には、所定量の乾燥した正極活物質を混練しながら、亜麻仁油を滴下し、粘度特性の変化をトルク検出器によって測定する。最大トルクの70%のトルクとなる点での亜麻仁油量を正極活物質投入量で除算することで、正極活物質の100g当たりの吸油量を算出することができる。
吸油量の測定は、JIS K6217規格に準拠して行うことができる。具体的には、株式会社あさひ総研製の吸収量測定器S-410型により亜麻仁油を用いて測定することができる。より具体的には、所定量の乾燥した正極活物質を混練しながら、亜麻仁油を滴下し、粘度特性の変化をトルク検出器によって測定する。最大トルクの70%のトルクとなる点での亜麻仁油量を正極活物質投入量で除算することで、正極活物質の100g当たりの吸油量を算出することができる。
また、本発明における粒子の平均粒径は、常法により算出される。粒子の平均粒径の算出方法の例は以下の通りである。まず、400,000倍又は1,000,000倍の透過型電子顕微鏡(TEM)画像において、ある1つの粒子について、当該粒子を球状と見なした際の粒径を算出する。このようなTEM観察による平均粒径の算出を、同じ種類の200~300個の粒子について行い、これらの粒子の平均を平均粒径とする。
また、本発明において「正極活物質と固体電解質とを無溶媒下で混合し、当該混合物を加圧成型する」とは、正極活物質と固体電解質の混合及び該混合物の加圧成型時に、溶媒を実質的に使用しないことを意味する。すなわち、正極活物質や固体電解質等を、溶媒を用いてスラリー化し、該スラリーを塗布、乾燥(溶媒を揮発)して正極活物質層を成型する、いわゆる湿式プロセスとは異なるものであり、粉体材料を加圧して成型する、いわゆる圧粉成型である。ここで、「溶媒を実質的に使用しない」とは、正極活物質と固体電解質との混合時及び該混合物の加圧成型時に、溶媒を全く使用しないことが理想であるが、例えば、固体電解質や正極活物質の合成時に使用された溶媒が極微量残存し、上記混合物に含まれることを排除するものではない。
本発明の正極は、二次電池を構成する正極として利用することができ、二次電池の種類、用途等に限定はない。本発明の正極は、電解液を用いなくても正極活物質層における正極活物質と固体電解質との界面面積が確保されていることから、固体電解質層を有する全固体二次電池に好適に用いることができる。
以下、本発明の二次電池用正極の構成について詳しく説明する。
本発明の二次電池用正極は、正極活物質と固体電解質とを少なくとも含む正極活物質層を有する。本発明の二次電池用正極は、正極活物質層に加えて、正極集電体、及び当該正極集電体に接続された正極リードを備えていてもよい。
本発明の二次電池用正極は、正極活物質と固体電解質とを少なくとも含む正極活物質層を有する。本発明の二次電池用正極は、正極活物質層に加えて、正極集電体、及び当該正極集電体に接続された正極リードを備えていてもよい。
正極活物質は、100g当たり35~50mlの吸油量を有するものであれば特に限定されない。
正極活物質の吸油量を上記範囲に制御する方法は、特に限定されないが、例えば、正極活物質合成時の条件(例えば、一次粒子共沈時のpH、二次粒子焼成時の焼成条件等)や、正極活物質粉砕時の条件等を調整することにより制御することができる。
正極活物質の結晶構造は、特に限定されず、層状構造、オリビン構造、スピネル構造等が挙げられ、層状構造を有するものが好ましい。
正極活物質の吸油量を上記範囲に制御する方法は、特に限定されないが、例えば、正極活物質合成時の条件(例えば、一次粒子共沈時のpH、二次粒子焼成時の焼成条件等)や、正極活物質粉砕時の条件等を調整することにより制御することができる。
正極活物質の結晶構造は、特に限定されず、層状構造、オリビン構造、スピネル構造等が挙げられ、層状構造を有するものが好ましい。
正極活物質は、伝導イオン種(例えば、リチウムイオン等)に応じて、適宜選択すればよく、例えば、リチウム二次電池の正極活物質としては、具体的には、ニッケルコバルトマンガン酸リチウム(LiNixCo1-y-xMnyO2)、LiCoxMnyO2、LiCoMnO4、LiNixCoyO2、LiNixMnyO2、Li2NiMn3O8、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、LiMn2O4、鉄オリビン(LiFePO4)、Li3Fe2(PO4)3、コバルトオリビン(LiCoPO4)、ニッケルオリビン(LiNiPO4)、マンガンオリビン(LiMnPO4)、チタン酸リチウム(Li4Ti5O12)、リン酸バナジウムリチウム(Li3V2(PO4)3)[LVPと称することがある。]等のリチウム遷移金属化合物、銅シュブレル(Cu2Mo6S8)、硫化鉄(FeS)、硫化コバルト(CoS)、硫化ニッケル(NiS)等のカルコゲン化合物などが挙げられる。
層状構造を有する正極活物質としては、LiNi1/3Co1/3Mn1/3O2、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、等が挙げられる。
オリビン構造を有する正極活物質としては、鉄オリビン(LiFePO4)、Li3Fe2(PO4)3、コバルトオリビン(LiCoPO4)、ニッケルオリビン(LiNiPO4)、マンガンオリビン(LiMnPO4)等が挙げられる。
スピネル構造を有する正極活物質としては、マンガン酸リチウム(LiMnO2)、LiMn2O4、LiCoMnO4、Li2NiMn3O8、等が挙げられる。
層状構造を有する正極活物質としては、LiNi1/3Co1/3Mn1/3O2、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、等が挙げられる。
オリビン構造を有する正極活物質としては、鉄オリビン(LiFePO4)、Li3Fe2(PO4)3、コバルトオリビン(LiCoPO4)、ニッケルオリビン(LiNiPO4)、マンガンオリビン(LiMnPO4)等が挙げられる。
スピネル構造を有する正極活物質としては、マンガン酸リチウム(LiMnO2)、LiMn2O4、LiCoMnO4、Li2NiMn3O8、等が挙げられる。
正極活物質の平均粒径としては、例えば3~15μm、特に4~8μmであることが好ましい。
正極活物質の平均粒径が過小だと、比表面積増加に伴い、電子伝導、イオン伝導に必要な導電材と固体電解質が過剰に必要となり、エネルギー密度が低下する。一方、正極活物質の平均粒径が過大だと、粒子間にイオン伝導を維持するために必要な固体電解質を充填することが困難になる。
なお、正極活物質の平均粒径は、上記TEM観察を用いた方法により求めることができる。
本発明において、正極活物質は粒子状であることが好ましい。正極活物質層において、固体電解質粒子間に空隙を形成することができ、正極活物質が膨張収縮した際の機械的な変位を空隙により吸収することができるからである。
正極活物質の平均粒径が過小だと、比表面積増加に伴い、電子伝導、イオン伝導に必要な導電材と固体電解質が過剰に必要となり、エネルギー密度が低下する。一方、正極活物質の平均粒径が過大だと、粒子間にイオン伝導を維持するために必要な固体電解質を充填することが困難になる。
なお、正極活物質の平均粒径は、上記TEM観察を用いた方法により求めることができる。
本発明において、正極活物質は粒子状であることが好ましい。正極活物質層において、固体電解質粒子間に空隙を形成することができ、正極活物質が膨張収縮した際の機械的な変位を空隙により吸収することができるからである。
正極活物質層における正極活物質の含有割合は、特に限定されないが、電池容量の観点からは、より多いことが好ましい。例えば、正極活物質層の総質量を100質量%としたとき、好ましくは60~75質量%である。
固体電解質は、平均粒径が1.5~2.5μmの範囲であれば特に限定されない。
固体電解質の平均粒径は、上記TEM観察を用いた方法により求めることができる。
本発明においては、固体電解質が、粒子状であることが好ましい。正極活物質層において、固体電解質粒子間に空隙を形成することができ、正極活物質が膨張収縮した際の機械的な変位を空隙により吸収することができるからである。
固体電解質の平均粒径は、上記TEM観察を用いた方法により求めることができる。
本発明においては、固体電解質が、粒子状であることが好ましい。正極活物質層において、固体電解質粒子間に空隙を形成することができ、正極活物質が膨張収縮した際の機械的な変位を空隙により吸収することができるからである。
固体電解質は、伝導イオン種(例えば、リチウムイオン等)に応じて適宜選択すればよく、例えば、酸化物系固体電解質や硫化物系固体電解質等が挙げられ、硫化物系固体電解質であることが好ましい。硫化物系固体電解質は軟らかいため、変形しやすく、イオン伝導経路を形成しやすいからである。
硫化物系固体電解質としては、硫黄(S)を含有し、かつ、イオン伝導性および絶縁性を有するものであれば特に限定されず、例えば、以下に示す各材料及び各元素の組成比が異なる類似の材料が挙げられる。すなわち、Li2S-P2S5(Li2S:P2S5=50:50~100:0(モル比))、Li2S-P2S5-LiI、Li2S-P2S5-Li2O-LiI、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-LiBr、Li2S-SiS2-LiCl、Li2S-SiS2-B2S3-LiI、Li2S-SiS2-P2S5-LiI、Li2S-B2S3、Li2S-P2S5-ZmSn(Z=Ge、Zn、Ga)、Li2S-GeS2、Li3.25P0.25Ge0.76S4、Li4-xGe1-xPxS4、Li7P3S11、Li2S-SiS2-Li3PO4、Li2S-SiS2-LixMOy(M=P、Si、Ge、B、Al、Ga、In)等が挙げられる。
酸化物系固体電解質としては、例えば、NASICON型酸化物、ペロブスカイト型酸化物、LISICON型酸化物、ガーネット型酸化物等が挙げられる。以下、全固体リチウム二次電池に使用可能な酸化物系固体電解質の具体例を挙げる。
NASICON型酸化物としては、例えば、以下に示す各材料及び各元素の組成比が異なる類似の材料が挙げられる。すなわち、LiaXbYcPdOe(XはB、Al、Ga、In、C、Si、Ge、Sn、Sb及びSeよりなる群から選択される少なくとも1種であり、YはTi、Zr、Ge、In、Ga、Sn及びAlよりなる群から選択される少なくとも1種であり、a~eは、0.5<a<5.0、0≦b<2.98、0.5≦c<3.0、0.02<d≦3.0、2.0<b+d<4.0、3.0<e≦12.0の関係を満たす)で表される酸化物を挙げることができる。特に、上記式において、X=Al、Y=Tiである酸化物(Li-Al-Ti-P-O系NASICON型酸化物)、及び、X=Al、Y=Ge若しくはX=Ge、Y=Alである酸化物(Li-Al-Ge-P-O系NASICON型酸化物)が好ましく、具体的には、Li1.5Al0.5Ge1.5(PO4)3[LAGPと称することがある]が挙げられる。
ペロブスカイト型酸化物としては、例えば、LixLa1-xTiO3等で表される酸化物(Li-La-Ti-O系ペロブスカイト型酸化物)を挙げることができる。
LISICON型酸化物としては、例えば、以下に示す各材料及び各元素の組成比が異なる類似の材料が挙げられる。すなわち、Li4XO4-Li3YO4(XはSi、Ge、及びTiから選ばれる少なくとも1種であり、YはP、As及びVから選ばれる少なくとも1種である)、Li4XO4-Li2AO4(XはSi、Ge、及びTiから選ばれる少なくとも1種であり、AはMo及びSから選ばれる少なくとも1種である)、Li4XO4-Li2ZO2(XはSi、Ge、及びTiから選ばれる少なくとも1種であり、ZはAl、Ga及びCrから選ばれる少なくとも1種である)、並びに、Li4XO4-Li2BXO4(XはSi、Ge、及びTiから選ばれる少なくとも1種であり、BはCa及びZnから選ばれる少なくとも1種である)、Li3DO3-Li3YO4(DはB、YはP、As及びVから選ばれる少なくとも1種である)等が挙げられる。特に、Li4SiO4-Li3PO4、Li3BO3-Li3PO4等が好ましい。
ガーネット型酸化物としては、例えば、Li3+xAyGzM2-vBvO12で表される酸化物及び各元素の組成比が異なる類似の材料を挙げることができる。ここで、A、G、MおよびBは金属カチオンである。Aは、Ca、Sr、Ba及びMg等のアルカリ土類金属カチオン、又は、Zn等の遷移金属カチオンであることが好ましい。また、Gは、La、Y、Pr、Nd、Sm、Lu、Eu等の遷移金属カチオンであることが好ましい。また、Mとしては、Zr、Nb、Ta、Bi、Te、Sb等の遷移金属カチオンを挙げることができ、中でもZrが好ましい。また、Bは、例えばInであることが好ましい。xは、0≦x≦5を満たすことが好ましく、4≦x≦5を満たすことがより好ましい。yは、0≦y≦3を満たすことが好ましく、0≦y≦2を満たすことがより好ましい。zは、0≦z≦3を満たすことが好ましく、1≦z≦3を満たすことがより好ましい。vは、0≦v≦2を満たすことが好ましく、0≦v≦1を満たすことがより好ましい。なお、Oは部分的に、または、完全に二価アニオン及び/又は三価のアニオン、例えばN3-と交換されていてもよい。ガーネット型酸化物としては、Li7La3Zr2O12等のLi-La-Zr-O系酸化物が好ましい。
また、正極活物質層における固体電解質の含有割合は、イオン伝導性を確保できれば特に限定されないが、電池の容量確保の観点から、より少ないことが好ましい。例えば、正極活物質層の総質量を100質量%としたとき、好ましくは25~40質量%である。
正極活物質層は、必要に応じて導電材及び結着剤等を含有していても良い。
導電材としては、正極活物質層の導電性を向上させることができれば特に限定されるものではないが、例えば、導電性炭素材料が挙げられる。
導電性炭素材料としては特に限定されないが、反応場の面積や空間の観点から、高比表面積を有する炭素材料が好ましい。具体的には、導電性炭素材料は10m2/g以上、特に100m2/g以上、さらに600m2/g以上の比表面積を有することが好ましい。
高比表面積を有する導電性炭素材料の具体例として、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック等)、活性炭、カーボン炭素繊維(例えば、カーボンナノチューブ(CNT)、カーボンナノファイバー、気相法炭素繊維等)等を挙げることができる。
ここで、導電材の比表面積は、たとえばBET法によって測定することができる。
また、正極活物質層における導電材の含有割合は、導電材の種類によって異なるものであるが、正極活物質層の総質量を100質量%としたとき、通常、1~30質量%であることが好ましい。
導電材としては、正極活物質層の導電性を向上させることができれば特に限定されるものではないが、例えば、導電性炭素材料が挙げられる。
導電性炭素材料としては特に限定されないが、反応場の面積や空間の観点から、高比表面積を有する炭素材料が好ましい。具体的には、導電性炭素材料は10m2/g以上、特に100m2/g以上、さらに600m2/g以上の比表面積を有することが好ましい。
高比表面積を有する導電性炭素材料の具体例として、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック等)、活性炭、カーボン炭素繊維(例えば、カーボンナノチューブ(CNT)、カーボンナノファイバー、気相法炭素繊維等)等を挙げることができる。
ここで、導電材の比表面積は、たとえばBET法によって測定することができる。
また、正極活物質層における導電材の含有割合は、導電材の種類によって異なるものであるが、正極活物質層の総質量を100質量%としたとき、通常、1~30質量%であることが好ましい。
結着剤としては、例えばポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等を挙げることができる。また、正極活物質層における結着剤の含有割合は、正極活物質等を固定化できる程度であれば良く、より少ないことが好ましい。結着剤の含有割合は、正極活物質層の総質量を100質量%としたとき、通常、1~10質量%であることが好ましい。
正極活物質層の厚さは、目的とする電池の用途等により異なるものであるが、10~250μmであることが好ましく、20~200μmであることがより好ましく、30~150μmであることがさらに好ましい。
正極集電体は、上記正極活物質層の集電を行う機能を有するものである。正極集電体の材料としては、例えば、アルミニウム、SUS、ニッケル、鉄、カーボン及びチタン等を挙げることができる。正極集電体の形状としては、例えば、箔状、板状、メッシュ状等を挙げることができる。
本発明の二次電池用正極は、正極活物質層が、上記したような正極活物質と固体電解質とを、無溶媒下で混合し、当該混合物を加圧成型することによって形成されたものである。
正極活物質層の形成方法については、下記「2.二次電池用正極の製造方法」において詳しく説明する。
正極活物質層の形成方法については、下記「2.二次電池用正極の製造方法」において詳しく説明する。
2.二次電池用正極の製造方法
本発明の二次電池用正極の製造方法は、少なくとも、吸油量が100g当たり35~50mlである正極活物質、及び、平均粒径が1.5~2.5μmである固体電解質を、無溶媒下で混合した混合物を準備する工程と、
前記混合物を、加圧成型する工程と、を有することを特徴とする。
本発明の二次電池用正極の製造方法は、正極活物質と固体電解質とを無溶媒下で混合し、当該混合物を加圧成型することによって正極活物質層を形成するため、乾燥工程が不要であり、製造コストを下げることができる。また、上記にて説明した、本発明の二次電池用正極を製造することができ、二次電池の容量維持率の向上にも貢献するものである。
本発明の二次電池用正極の製造方法は、少なくとも、吸油量が100g当たり35~50mlである正極活物質、及び、平均粒径が1.5~2.5μmである固体電解質を、無溶媒下で混合した混合物を準備する工程と、
前記混合物を、加圧成型する工程と、を有することを特徴とする。
本発明の二次電池用正極の製造方法は、正極活物質と固体電解質とを無溶媒下で混合し、当該混合物を加圧成型することによって正極活物質層を形成するため、乾燥工程が不要であり、製造コストを下げることができる。また、上記にて説明した、本発明の二次電池用正極を製造することができ、二次電池の容量維持率の向上にも貢献するものである。
混合物準備工程は、少なくとも、吸油量が100g当たり35~50mlである正極活物質、及び、平均粒径が1.5~2.5μmである固体電解質を、無溶媒下で混合した混合物を準備する工程である。
正極活物質及び固体電解質については、上記「1.二次電池用正極」において説明した材料、含有量と同様にすることができる。
正極活物質と固体電解質を混合する方法は、無溶媒下での混合であれば特に限定されず、乳鉢、ビーズミル、ボールミル等を用いた混合方法が挙げられる。
また、上記混合物は、正極活物質及び固体電解質の他、必要に応じて、導電材や結着剤等を含んでいてもよい。導電材や結着剤については、上記「1.二次電池用正極」において説明した材料、含有量と同様にすることができる。導電材や結着剤を含む混合物は、正極活物質及び固体電解質と共に、導電材や結着剤を無溶媒下で混合することで、準備される。
正極活物質及び固体電解質については、上記「1.二次電池用正極」において説明した材料、含有量と同様にすることができる。
正極活物質と固体電解質を混合する方法は、無溶媒下での混合であれば特に限定されず、乳鉢、ビーズミル、ボールミル等を用いた混合方法が挙げられる。
また、上記混合物は、正極活物質及び固体電解質の他、必要に応じて、導電材や結着剤等を含んでいてもよい。導電材や結着剤については、上記「1.二次電池用正極」において説明した材料、含有量と同様にすることができる。導電材や結着剤を含む混合物は、正極活物質及び固体電解質と共に、導電材や結着剤を無溶媒下で混合することで、準備される。
加圧成型工程では、上記のようにして準備された混合物を加圧成型し、正極活物質層を形成する。
加圧成型時の圧力は、容量維持率向上の観点から、0.5ton/cm2(≒49MPa)以上、特に1.5ton/cm2(≒147MPa)以上であることが好ましく、7ton/cm2(≒686MPa)以下、特に4ton/cm2(≒392MPa)以下であることが好ましい。圧力が低すぎると、正極活物質層における固体電解質と正極活物質との接触性(密着性)が確保できない恐れがある。一方、圧力が高すぎると、正極活物質粒子間の空隙が減少し、当該空隙が充放電に伴う正極活物質の膨張収縮を吸収しきれず、正極活物質の構造の破壊や正極活物質の割れ等が生じ、二次電池の容量維持率が低下する恐れがある。
上記混合物を加圧成型する方法は、特に限定されず、例えば、準備した混合物を、金型等成型型内に充填し加圧する方法が挙げられる。このとき、型内に正極集電体や後述する固体電解質層を配置し、上記混合物と共に加圧することで、正極集電体や固体電解質層と積層した正極活物質層を作製することができる。
加圧成型時の圧力は、容量維持率向上の観点から、0.5ton/cm2(≒49MPa)以上、特に1.5ton/cm2(≒147MPa)以上であることが好ましく、7ton/cm2(≒686MPa)以下、特に4ton/cm2(≒392MPa)以下であることが好ましい。圧力が低すぎると、正極活物質層における固体電解質と正極活物質との接触性(密着性)が確保できない恐れがある。一方、圧力が高すぎると、正極活物質粒子間の空隙が減少し、当該空隙が充放電に伴う正極活物質の膨張収縮を吸収しきれず、正極活物質の構造の破壊や正極活物質の割れ等が生じ、二次電池の容量維持率が低下する恐れがある。
上記混合物を加圧成型する方法は、特に限定されず、例えば、準備した混合物を、金型等成型型内に充填し加圧する方法が挙げられる。このとき、型内に正極集電体や後述する固体電解質層を配置し、上記混合物と共に加圧することで、正極集電体や固体電解質層と積層した正極活物質層を作製することができる。
3.全固体二次電池
本発明の全固体二次電池は、上記本発明の二次電池用正極と、負極と、前記正極及び前記負極の間に介在する固体電解質層と、を備えることを特徴とするものである。
本発明の全固体二次電池は、上記本発明の二次電池用正極と、負極と、前記正極及び前記負極の間に介在する固体電解質層と、を備えることを特徴とするものである。
図2は、本発明の全固体二次電池の一例を示す図であって、積層方向に切断した断面の模式図である。なお、本発明の全固体二次電池は、必ずしもこの例のみに限定されない。
全固体二次電池100は、正極活物質層2及び正極集電体4を含む正極6と、負極活物質層3及び負極集電体5を含む負極7と、当該正極6及び当該負極7に挟持される固体電解質層1を備える。
以下、本発明の全固体二次電池について、構成ごとに説明する。
全固体二次電池100は、正極活物質層2及び正極集電体4を含む正極6と、負極活物質層3及び負極集電体5を含む負極7と、当該正極6及び当該負極7に挟持される固体電解質層1を備える。
以下、本発明の全固体二次電池について、構成ごとに説明する。
負極は、負極活物質を含有する負極活物質層を備える。本発明に用いられる負極は、負極活物質層に加えて、負極集電体、及び当該負極集電体に接続された負極リードを備えていてもよい。
負極活物質としては、伝導イオン種、典型的には金属イオンを吸蔵、放出可能なものであれば特に限定されない。例えば、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等のカーボン材料;チタン酸リチウム(Li4Ti5O12)等のリチウム遷移金属酸化物;La3Ni2Sn7等の金属合金等を挙げることができる。また、負極活物質は、粉末状であっても良く、薄膜状であっても良い。
負極活物質としては、伝導イオン種、典型的には金属イオンを吸蔵、放出可能なものであれば特に限定されない。例えば、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)、ハードカーボン、ソフトカーボン等のカーボン材料;チタン酸リチウム(Li4Ti5O12)等のリチウム遷移金属酸化物;La3Ni2Sn7等の金属合金等を挙げることができる。また、負極活物質は、粉末状であっても良く、薄膜状であっても良い。
負極活物質層は、必要に応じて固体電解質、導電材及び結着剤等を含有していても良い。
固体電解質、導電材及び結着剤の詳細は、上述した正極活物質層における固体電解質、導電材及び結着剤等と同様である。
負極活物質層の層厚としては、特に限定されるものではないが、例えば10~100μm、中でも10~50μmであることが好ましい。
負極集電体は、上記負極活物質層の集電を行う機能を有するものである。負極集電体の材料としては、例えば、SUS、ニッケル、銅及びカーボン等を挙げることができる。また、負極集電体の形状としては、上述した正極集電体の形状と同様のものを採用することができる。
固体電解質、導電材及び結着剤の詳細は、上述した正極活物質層における固体電解質、導電材及び結着剤等と同様である。
負極活物質層の層厚としては、特に限定されるものではないが、例えば10~100μm、中でも10~50μmであることが好ましい。
負極集電体は、上記負極活物質層の集電を行う機能を有するものである。負極集電体の材料としては、例えば、SUS、ニッケル、銅及びカーボン等を挙げることができる。また、負極集電体の形状としては、上述した正極集電体の形状と同様のものを採用することができる。
負極を製造する方法は、特に限定されないが、粉末状の負極活物質を用いる場合、電池の製造コスト低減の観点から、無溶媒下、負極活物質又は負極活物質を含む混合物を加圧成型することで負極活物質層を形成する方法が好ましい。このとき、負極集電体や後述する固体電解質層上に上記混合物を配置した状態で加圧することで、負極集電体や固体電解質層と積層した負極活物質層を作製することができる。
なお、負極活物質層における固体電解質の含有割合は、上述した正極活物質層における固体電解質の含有割合と同様とすることができる。また、負極活物質層の加圧成型時の圧力は特に限定されない。
なお、負極活物質層における固体電解質の含有割合は、上述した正極活物質層における固体電解質の含有割合と同様とすることができる。また、負極活物質層の加圧成型時の圧力は特に限定されない。
固体電解質層は、正極及び負極の間に介在し、正極及び負極の間で伝導イオン種を交換する働きを有する。
固体電解質層は、少なくとも固体電解質を含み、必要に応じて、上述した結着剤を含有していても良い。固体電解質層に含まれる固体電解質は、正極活物質層に含まれる固体電解質と同様のものを用いることができる。
固体電解質層における固体電解質の含有量は、所望の絶縁性が得られる割合であれば特に限定されるものではないが、例えば、10~100体積%の範囲内、中でも、50~100体積%の範囲内であることが好ましい。
固体電解質層の厚さは、例えば、0.1~1000μmの範囲内であることが好ましく、0.1~300μmの範囲内であることがより好ましい。
固体電解質層の製造方法としては、特に限定されないが、製造コスト低減の観点から、無溶媒下、固体電解質又は固体電解質を含む混合物を加圧成型する方法が好ましい。このとき、正極活物質層や負極活物質層上に上記混合物を配置した状態で加圧することで、正極活物質層や負極活物質層と積層した固体電解質層を作製することができる。
固体電解質層は、少なくとも固体電解質を含み、必要に応じて、上述した結着剤を含有していても良い。固体電解質層に含まれる固体電解質は、正極活物質層に含まれる固体電解質と同様のものを用いることができる。
固体電解質層における固体電解質の含有量は、所望の絶縁性が得られる割合であれば特に限定されるものではないが、例えば、10~100体積%の範囲内、中でも、50~100体積%の範囲内であることが好ましい。
固体電解質層の厚さは、例えば、0.1~1000μmの範囲内であることが好ましく、0.1~300μmの範囲内であることがより好ましい。
固体電解質層の製造方法としては、特に限定されないが、製造コスト低減の観点から、無溶媒下、固体電解質又は固体電解質を含む混合物を加圧成型する方法が好ましい。このとき、正極活物質層や負極活物質層上に上記混合物を配置した状態で加圧することで、正極活物質層や負極活物質層と積層した固体電解質層を作製することができる。
本発明の全固体二次電池は、正極、固体電解質層及び負極等を収納する電池ケースを備えていてもよい。電池ケースの形状としては、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。
本発明の全固体二次電池の種類としては、全固体リチウム二次電池、全固体ナトリウム二次電池、全固体マグネシウム二次電池および全固体カルシウム二次電池等を挙げることができ、中でも、全固体リチウム二次電池が好ましい。
(実施例1)
[固体電解質の合成]
Li2S(日本化学工業株式会社製)とP2S5(アルドリッチ社製)を出発原料として用い、Li2Sを0.7656g、P2S5を1.2344g秤量し、メノウ乳鉢で5分混合した。続いて、ヘプタンを4g入れ、遊星型ボールミルを用いて、40時間メカニカルミリングを行い、固体電解質Li2S-P2S5(モル比 Li2S:P2S5=75:25)を得た。その後、分級することにより、平均粒径0.8μm、1.5μm、2.5μm、5μmの固体電解質に分離した。実施例1では、平均粒径1.5μmの固体電解質を用いた。
[電池の作製]
まず、正極活物質として層状構造を有するLiNi1/3Co1/3Mn1/3O2(吸油量35.7ml/100g、日亜化学工業株式会社製)、導電材としてVGCF(登録商標 昭和電工株式会社製)を準備した。正極活物質12.03mgと、導電材0.51mgと、合成した固体電解質(平均粒径1.5μm)5.03mgとを秤量し、無溶媒下で混合して正極混合物(質量比 正極活物質:固体電解質:導電材=68:29:3)を調製した。
一方、負極活物質としてグラファイト(吸油量59.2ml/100g、三菱化学株式会社製)を準備した。負極活物質9.06mgと、上記と同様にして合成した固体電解質8.24mg(平均粒径10μm)とを秤量し、無溶媒下で混合して負極混合物(質量比 負極活物質:固体電解質=52:48)を調製した。
次に、上記と同様にして合成した固体電解質(平均粒径1.0μm)を18mg秤量して1cm2の金型に充填し、1ton/cm2(≒98MPa)でプレスし、固体電解質層を作製した。金型中の固体電解質層の片側に、正極混合物を17.57mg入れ、1ton/cm2(≒98MPa)でプレスして正極活物質層を作製した。さらに、金型中の固体電解質層の逆側に、負極混合物を17.3mg入れ、4ton/cm2(≒392MPa)でプレスすることで負極活物質層を作製した。また、集電体として、正極側に15μmのAl箔(日本製箔株式会社製)、負極側に10μmのCu箔(日本製箔株式会社製)を積層し、全固体リチウム二次電池を得た。
[固体電解質の合成]
Li2S(日本化学工業株式会社製)とP2S5(アルドリッチ社製)を出発原料として用い、Li2Sを0.7656g、P2S5を1.2344g秤量し、メノウ乳鉢で5分混合した。続いて、ヘプタンを4g入れ、遊星型ボールミルを用いて、40時間メカニカルミリングを行い、固体電解質Li2S-P2S5(モル比 Li2S:P2S5=75:25)を得た。その後、分級することにより、平均粒径0.8μm、1.5μm、2.5μm、5μmの固体電解質に分離した。実施例1では、平均粒径1.5μmの固体電解質を用いた。
[電池の作製]
まず、正極活物質として層状構造を有するLiNi1/3Co1/3Mn1/3O2(吸油量35.7ml/100g、日亜化学工業株式会社製)、導電材としてVGCF(登録商標 昭和電工株式会社製)を準備した。正極活物質12.03mgと、導電材0.51mgと、合成した固体電解質(平均粒径1.5μm)5.03mgとを秤量し、無溶媒下で混合して正極混合物(質量比 正極活物質:固体電解質:導電材=68:29:3)を調製した。
一方、負極活物質としてグラファイト(吸油量59.2ml/100g、三菱化学株式会社製)を準備した。負極活物質9.06mgと、上記と同様にして合成した固体電解質8.24mg(平均粒径10μm)とを秤量し、無溶媒下で混合して負極混合物(質量比 負極活物質:固体電解質=52:48)を調製した。
次に、上記と同様にして合成した固体電解質(平均粒径1.0μm)を18mg秤量して1cm2の金型に充填し、1ton/cm2(≒98MPa)でプレスし、固体電解質層を作製した。金型中の固体電解質層の片側に、正極混合物を17.57mg入れ、1ton/cm2(≒98MPa)でプレスして正極活物質層を作製した。さらに、金型中の固体電解質層の逆側に、負極混合物を17.3mg入れ、4ton/cm2(≒392MPa)でプレスすることで負極活物質層を作製した。また、集電体として、正極側に15μmのAl箔(日本製箔株式会社製)、負極側に10μmのCu箔(日本製箔株式会社製)を積層し、全固体リチウム二次電池を得た。
(実施例2)
吸油量40.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
吸油量40.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(実施例3)
吸油量45.5ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
吸油量45.5ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(実施例4)
平均粒径2.5μmの固体電解質、吸油量35.7ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径2.5μmの固体電解質、吸油量35.7ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(実施例5)
平均粒径2.5μmの固体電解質、吸油量40.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径2.5μmの固体電解質、吸油量40.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(実施例6)
平均粒径2.5μmの固体電解質、吸油量45.5ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径2.5μmの固体電解質、吸油量45.5ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(実施例7)
平均粒径2.0μmの固体電解質、吸油量35.7ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径2.0μmの固体電解質、吸油量35.7ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例1)
吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例2)
吸油量24.6ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
吸油量24.6ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例3)
吸油量31.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
吸油量31.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例4)
吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例5)
平均粒径0.8μmの固体電解質、吸油量35.7ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径0.8μmの固体電解質、吸油量35.7ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例6)
平均粒径5μmの固体電解質、吸油量35.7ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径5μmの固体電解質、吸油量35.7ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例7)
平均粒径0.8μmの固体電解質、吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径0.8μmの固体電解質、吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例8)
平均粒径5μmの固体電解質、吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径5μmの固体電解質、吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例9)
平均粒径0.8μmの固体電解質、吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径0.8μmの固体電解質、吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例10)
平均粒径5μmの固体電解質、吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径5μmの固体電解質、吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例11)
平均粒径2.5μmの固体電解質、吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径2.5μmの固体電解質、吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例12)
平均粒径2.5μmの固体電解質、吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径2.5μmの固体電解質、吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例13)
平均粒径2μmの固体電解質、吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径2μmの固体電解質、吸油量19.2ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
(比較例14)
平均粒径2μmの固体電解質、吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
平均粒径2μmの固体電解質、吸油量53.3ml/100gの正極活物質を用いて正極活物質層を作製した以外は実施例1と同様にして全固体リチウム二次電池を作製した。
[充放電試験]
25℃に保ったアルゴン雰囲気デシケータ(温度調節機能付)内において、実施例1~7、比較例1~14で作製した電池に対して、1ton/cm2(≒98MPa)の圧をかけた状態で、0.3mAで4.2Vまで定電流(CC)充電した後、0.3mAで2.5VまでCC放電する充放電サイクルを3サイクル実施した。3サイクル目の放電容量を測定し、初期容量とした。
その後、0.3mAで3.6VまでCC充電し、0.003mAまで3.6Vのまま定電圧(CV)充電した後、±0.1mA、±0.3mA、±1mAの10秒間放電を交互に実施し、IV線図を作図し、傾きから初期抵抗を求めた。
[サイクル試験]
初期抵抗測定後、0.3mAで2.5VまでCC放電した。その後、雰囲気温度を60℃に上げ、セルの温度が十分馴染んだことを確認し、0.3mAで4.2VまでCC充電した後、0.3mAで2.5VまでCC放電する充放電サイクルを10サイクル繰り返した。
続いて、雰囲気温度を25℃に下げ、セルの温度が十分馴染んだことを確認し、0.3mAで4.2VまでCC充電した後、0.3mAで2.5VまでCC放電したときの放電容量を測定した。この放電容量を初期容量で除することで容量維持率を算出した。
その後、0.3mAで3.6VまでCC充電し、0.003mAまで3.6VのままCV充電した後、±0.1mA、±0.3mA、±1mAの10秒間放電を交互に実施し、IV線図を作図し、傾きからサイクル試験後の抵抗を求めた。この抵抗を初期抵抗で除することで抵抗増加率を算出した。
以降、上記サイクル試験を100サイクルまで継続し、容量維持率と抵抗増加率のデータを得た。
25℃に保ったアルゴン雰囲気デシケータ(温度調節機能付)内において、実施例1~7、比較例1~14で作製した電池に対して、1ton/cm2(≒98MPa)の圧をかけた状態で、0.3mAで4.2Vまで定電流(CC)充電した後、0.3mAで2.5VまでCC放電する充放電サイクルを3サイクル実施した。3サイクル目の放電容量を測定し、初期容量とした。
その後、0.3mAで3.6VまでCC充電し、0.003mAまで3.6Vのまま定電圧(CV)充電した後、±0.1mA、±0.3mA、±1mAの10秒間放電を交互に実施し、IV線図を作図し、傾きから初期抵抗を求めた。
[サイクル試験]
初期抵抗測定後、0.3mAで2.5VまでCC放電した。その後、雰囲気温度を60℃に上げ、セルの温度が十分馴染んだことを確認し、0.3mAで4.2VまでCC充電した後、0.3mAで2.5VまでCC放電する充放電サイクルを10サイクル繰り返した。
続いて、雰囲気温度を25℃に下げ、セルの温度が十分馴染んだことを確認し、0.3mAで4.2VまでCC充電した後、0.3mAで2.5VまでCC放電したときの放電容量を測定した。この放電容量を初期容量で除することで容量維持率を算出した。
その後、0.3mAで3.6VまでCC充電し、0.003mAまで3.6VのままCV充電した後、±0.1mA、±0.3mA、±1mAの10秒間放電を交互に実施し、IV線図を作図し、傾きからサイクル試験後の抵抗を求めた。この抵抗を初期抵抗で除することで抵抗増加率を算出した。
以降、上記サイクル試験を100サイクルまで継続し、容量維持率と抵抗増加率のデータを得た。
[サイクル試験結果]
実施例1~7、比較例1~14の100サイクル後の容量維持率と抵抗増加率を表1に示す。
実施例1~7、比較例1~14の100サイクル後の容量維持率と抵抗増加率を表1に示す。
実施例1、4及び7、比較例5及び6の固体電解質の平均粒径と100サイクル後の容量維持率及び抵抗増加率との関係を図3に示す。
また、平均粒径が1.5μmの固体電解質を用いた実施例1~3、比較例1~4の正極活物質の吸油量と100サイクル後の容量維持率及び抵抗増加率との関係を図4に、平均粒径が2.0μmの固体電解質を用いた実施例7、比較例13及び14の正極活物質の吸油量と100サイクル後の容量維持率及び抵抗増加率との関係を図5に、平均粒径が2.5μmの固体電解質を用いた実施例4~6、比較例11及び12の正極活物質の吸油量と100サイクル後の容量維持率及び抵抗増加率との関係を図6に示す。
また、実施例1~7、比較例1~14の10サイクルごとの容量維持率を図7、抵抗増加率を図8に示す。
また、平均粒径が1.5μmの固体電解質を用いた実施例1~3、比較例1~4の正極活物質の吸油量と100サイクル後の容量維持率及び抵抗増加率との関係を図4に、平均粒径が2.0μmの固体電解質を用いた実施例7、比較例13及び14の正極活物質の吸油量と100サイクル後の容量維持率及び抵抗増加率との関係を図5に、平均粒径が2.5μmの固体電解質を用いた実施例4~6、比較例11及び12の正極活物質の吸油量と100サイクル後の容量維持率及び抵抗増加率との関係を図6に示す。
また、実施例1~7、比較例1~14の10サイクルごとの容量維持率を図7、抵抗増加率を図8に示す。
表1に示すように、吸油量が100g当たり35~50mlの正極活物質と、平均粒径が1.5~2.5μmの固体電解質とを組み合わせ、且つ、無溶媒下で加圧成型して正極活物質層を形成した実施例1~7は、容量維持率が高く、しかも、抵抗増加率が低かった。
一方、平均粒径が1.5~2.5μmの範囲外の固体電解質及び吸油量が100g当たり35~50mlの範囲外の正極活物質を用いた比較例7~10と、平均粒径が1.5~2.5μmの範囲外の固体電解質及び吸油量が100g当たり35~50mlの範囲内の正極活物質を用いた比較例5、6と、並びに吸油量が100g当たり35~50mlの範囲外の正極活物質及び平均粒径が1.5~2.5μmの範囲内の固体電解質を用いた比較例1~4、11~14は、いずれも、実施例1~7と比較して、容量維持率が低く、さらには、抵抗増加率も劣っていた。
また、図3に示すように、正極活物質の100g当たりの吸油量を35~50ml(35.7ml)の範囲に設定すると共に、固体電解質の平均粒径を1.5~2.5μmに設定すれば、容量維持率が向上し、抵抗増加率が低下することがわかる。
図4~6に示すように、固体電解質の平均粒径を1.5、2.0及び2.5μmに設定した場合、正極活物質の吸油量が100g当たり35~50mlであれば、容量維持率が向上し、抵抗増加率が低下することがわかる。
図7に示すように、実施例1~7は、比較例1~14と比較して、10サイクルごとの容量維持率が高いことがわかる。
図8に示すように、実施例1~7は、比較例1~14と比較して、10サイクルごとの抵抗増加率が低いことがわかる。
一方、平均粒径が1.5~2.5μmの範囲外の固体電解質及び吸油量が100g当たり35~50mlの範囲外の正極活物質を用いた比較例7~10と、平均粒径が1.5~2.5μmの範囲外の固体電解質及び吸油量が100g当たり35~50mlの範囲内の正極活物質を用いた比較例5、6と、並びに吸油量が100g当たり35~50mlの範囲外の正極活物質及び平均粒径が1.5~2.5μmの範囲内の固体電解質を用いた比較例1~4、11~14は、いずれも、実施例1~7と比較して、容量維持率が低く、さらには、抵抗増加率も劣っていた。
また、図3に示すように、正極活物質の100g当たりの吸油量を35~50ml(35.7ml)の範囲に設定すると共に、固体電解質の平均粒径を1.5~2.5μmに設定すれば、容量維持率が向上し、抵抗増加率が低下することがわかる。
図4~6に示すように、固体電解質の平均粒径を1.5、2.0及び2.5μmに設定した場合、正極活物質の吸油量が100g当たり35~50mlであれば、容量維持率が向上し、抵抗増加率が低下することがわかる。
図7に示すように、実施例1~7は、比較例1~14と比較して、10サイクルごとの容量維持率が高いことがわかる。
図8に示すように、実施例1~7は、比較例1~14と比較して、10サイクルごとの抵抗増加率が低いことがわかる。
1 固体電解質層
2 正極活物質層
3 負極活物質層
4 正極集電体
5 負極集電体
6 正極
7 負極
100 全固体二次電池
2 正極活物質層
3 負極活物質層
4 正極集電体
5 負極集電体
6 正極
7 負極
100 全固体二次電池
Claims (5)
- 正極活物質と固体電解質とを少なくとも含む正極活物質層を有する二次電池用正極であって、
前記正極活物質の吸油量が100g当たり35~50mlであり、
前記固体電解質の平均粒径が1.5~2.5μmであり、
前記正極活物質層が、前記正極活物質と前記固体電解質とを無溶媒下で混合し、当該混合物を加圧成型してなることを特徴とする、二次電池用正極。 - 前記正極活物質が、層状の結晶構造を有する、請求項1に記載の二次電池用正極。
- 前記固体電解質が、硫化物系固体電解質である、請求項1又は2に記載の二次電池用正極。
- 前記請求項1乃至3のいずれか一項に記載の二次電池用正極と、負極と、前記正極及び前記負極の間に介在する固体電解質層と、を備えることを特徴とする全固体二次電池。
- 少なくとも、吸油量が100g当たり35~50mlである正極活物質、及び、平均粒径が1.5~2.5μmである固体電解質を、無溶媒下で混合した混合物を準備する工程と、
前記混合物を、加圧成型する工程と、
を有することを特徴とする、二次電池用正極の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/763,031 US9601759B2 (en) | 2013-01-25 | 2014-01-14 | Cathode for secondary batteries, method for producing cathode for secondary batteries, and all-solid-state secondary battery |
CN201480005747.4A CN104937749B (zh) | 2013-01-25 | 2014-01-14 | 二次电池用正极、二次电池用正极的制造方法以及全固体二次电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-011905 | 2013-01-25 | ||
JP2013011905A JP5594379B2 (ja) | 2013-01-25 | 2013-01-25 | 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014115604A1 true WO2014115604A1 (ja) | 2014-07-31 |
Family
ID=51227396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/050470 WO2014115604A1 (ja) | 2013-01-25 | 2014-01-14 | 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9601759B2 (ja) |
JP (1) | JP5594379B2 (ja) |
CN (1) | CN104937749B (ja) |
WO (1) | WO2014115604A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018225494A1 (ja) * | 2017-06-09 | 2018-12-13 | 日本電気硝子株式会社 | 全固体ナトリウムイオン二次電池 |
US10396394B2 (en) * | 2016-01-12 | 2019-08-27 | Toyota Jidosha Kabushiki Kaisha | Method for producing sulfide all-solid-state battery and sulfide all-solid-state battery |
Families Citing this family (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6287945B2 (ja) * | 2015-05-08 | 2018-03-07 | トヨタ自動車株式会社 | 電極積層体の製造方法 |
JP6411959B2 (ja) * | 2015-06-29 | 2018-10-24 | トヨタ自動車株式会社 | 正極合材および全固体リチウム電池 |
CN105322157A (zh) * | 2015-10-31 | 2016-02-10 | 芜湖迈特电子科技有限公司 | 充电宝用锂聚合物电池的掺锰的锂钴氧化物的制备方法 |
CN105489931A (zh) * | 2015-12-24 | 2016-04-13 | 国联汽车动力电池研究院有限责任公司 | 硫化物电解质在制备全固态电池中的应用 |
JP6421809B2 (ja) * | 2016-01-12 | 2018-11-14 | トヨタ自動車株式会社 | 硫化物全固体電池の製造方法および硫化物全固体電池 |
US10734642B2 (en) | 2016-03-30 | 2020-08-04 | Global Graphene Group, Inc. | Elastomer-encapsulated particles of high-capacity anode active materials for lithium batteries |
CN107968219A (zh) * | 2016-10-19 | 2018-04-27 | 东莞新能源科技有限公司 | 无机固态电解质薄膜及其制备方法及无机全固态电池 |
JP7129144B2 (ja) * | 2017-01-24 | 2022-09-01 | 日立造船株式会社 | 全固体電池およびその製造方法 |
JP6944783B2 (ja) | 2017-01-24 | 2021-10-06 | 日立造船株式会社 | 全固体電池用電極の製造方法および全固体電池の製造方法 |
US11495792B2 (en) | 2017-02-16 | 2022-11-08 | Global Graphene Group, Inc. | Method of manufacturing a lithium secondary battery having a protected high-capacity anode active material |
US10840502B2 (en) | 2017-02-24 | 2020-11-17 | Global Graphene Group, Inc. | Polymer binder for lithium battery and method of manufacturing |
US11978904B2 (en) | 2017-02-24 | 2024-05-07 | Honeycomb Battery Company | Polymer binder for lithium battery and method of manufacturing |
US10985373B2 (en) | 2017-02-27 | 2021-04-20 | Global Graphene Group, Inc. | Lithium battery cathode and method of manufacturing |
US11742475B2 (en) | 2017-04-03 | 2023-08-29 | Global Graphene Group, Inc. | Encapsulated anode active material particles, lithium secondary batteries containing same, and method of manufacturing |
US10916766B2 (en) | 2017-04-10 | 2021-02-09 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method |
US10483533B2 (en) * | 2017-04-10 | 2019-11-19 | Global Graphene Group, Inc. | Encapsulated cathode active material particles, lithium secondary batteries containing same, and method of manufacturing |
KR102398467B1 (ko) * | 2017-04-12 | 2022-05-13 | 한국전기연구원 | 황화물계 고체전해질 분말을 포함하는 복합체 제조방법, 이를 이용한 고체전해질층, 전극복합체층 제조방법 및 이를 포함하는 전고체전지 |
US10862129B2 (en) | 2017-04-12 | 2020-12-08 | Global Graphene Group, Inc. | Lithium anode-protecting polymer layer for a lithium metal secondary battery and manufacturing method |
US10804537B2 (en) | 2017-08-14 | 2020-10-13 | Global Graphene Group, Inc. | Protected particles of anode active materials, lithium secondary batteries containing same and method of manufacturing |
US10964951B2 (en) | 2017-08-14 | 2021-03-30 | Global Graphene Group, Inc. | Anode-protecting layer for a lithium metal secondary battery and manufacturing method |
US20190157722A1 (en) * | 2017-11-17 | 2019-05-23 | Maxwell Technologies, Inc. | Non-aqueous solvent electrolyte formulations for energy storage devices |
US10601034B2 (en) | 2018-02-21 | 2020-03-24 | Global Graphene Group, Inc. | Method of producing protected particles of anode active materials for lithium batteries |
US10573894B2 (en) | 2018-02-21 | 2020-02-25 | Global Graphene Group, Inc. | Protected particles of anode active materials for lithium batteries |
US11721832B2 (en) | 2018-02-23 | 2023-08-08 | Global Graphene Group, Inc. | Elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10971722B2 (en) | 2018-03-02 | 2021-04-06 | Global Graphene Group, Inc. | Method of manufacturing conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US10964936B2 (en) | 2018-03-02 | 2021-03-30 | Global Graphene Group, Inc. | Conducting elastomer composite-encapsulated particles of anode active materials for lithium batteries |
US11005094B2 (en) | 2018-03-07 | 2021-05-11 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
US10818926B2 (en) | 2018-03-07 | 2020-10-27 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of anode active materials for lithium batteries |
KR102536633B1 (ko) | 2018-03-14 | 2023-05-25 | 주식회사 엘지에너지솔루션 | 양극의 제조 방법 |
JP6881382B2 (ja) * | 2018-04-03 | 2021-06-02 | トヨタ自動車株式会社 | 全固体電池 |
US10971723B2 (en) | 2018-04-16 | 2021-04-06 | Global Graphene Group, Inc. | Process for alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles |
US11043694B2 (en) | 2018-04-16 | 2021-06-22 | Global Graphene Group, Inc. | Alkali metal-selenium secondary battery containing a cathode of encapsulated selenium particles |
JP7162274B2 (ja) * | 2018-05-31 | 2022-10-28 | パナソニックIpマネジメント株式会社 | 正極活物質およびそれを備えた電池 |
US10978698B2 (en) | 2018-06-15 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting sulfur cathode materials for alkali metal-sulfur secondary battery |
US11121398B2 (en) | 2018-06-15 | 2021-09-14 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing cathode material particulates |
JP6797241B2 (ja) * | 2018-06-15 | 2020-12-09 | 株式会社豊島製作所 | 電極部材、全固体電池、電極部材用粉末、電極部材の製造方法及び全固体電池の製造方法 |
US10978744B2 (en) | 2018-06-18 | 2021-04-13 | Global Graphene Group, Inc. | Method of protecting anode of a lithium-sulfur battery |
US10854927B2 (en) | 2018-06-18 | 2020-12-01 | Global Graphene Group, Inc. | Method of improving cycle-life of alkali metal-sulfur secondary battery |
US10957912B2 (en) | 2018-06-18 | 2021-03-23 | Global Graphene Group, Inc. | Method of extending cycle-life of a lithium-sulfur battery |
US10862157B2 (en) | 2018-06-18 | 2020-12-08 | Global Graphene Group, Inc. | Alkali metal-sulfur secondary battery containing a conductive electrode-protecting layer |
US11276852B2 (en) | 2018-06-21 | 2022-03-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing an elastic anode-protecting layer |
US10777810B2 (en) | 2018-06-21 | 2020-09-15 | Global Graphene Group, Inc. | Lithium metal secondary battery containing a protected lithium anode |
US10873088B2 (en) | 2018-06-25 | 2020-12-22 | Global Graphene Group, Inc. | Lithium-selenium battery containing an electrode-protecting layer and method of improving cycle-life |
US11043662B2 (en) | 2018-08-22 | 2021-06-22 | Global Graphene Group, Inc. | Electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US11239460B2 (en) | 2018-08-22 | 2022-02-01 | Global Graphene Group, Inc. | Method of producing electrochemically stable elastomer-encapsulated particles of cathode active materials for lithium batteries |
US10886528B2 (en) | 2018-08-24 | 2021-01-05 | Global Graphene Group, Inc. | Protected particles of cathode active materials for lithium batteries |
US11223049B2 (en) | 2018-08-24 | 2022-01-11 | Global Graphene Group, Inc. | Method of producing protected particles of cathode active materials for lithium batteries |
JP7086800B2 (ja) * | 2018-09-19 | 2022-06-20 | 株式会社東芝 | 電極、積層体、リチウムイオン二次電池、電池パック及び車両 |
US10629899B1 (en) | 2018-10-15 | 2020-04-21 | Global Graphene Group, Inc. | Production method for electrochemically stable anode particulates for lithium secondary batteries |
US10971724B2 (en) | 2018-10-15 | 2021-04-06 | Global Graphene Group, Inc. | Method of producing electrochemically stable anode particulates for lithium secondary batteries |
US11108035B2 (en) * | 2019-01-08 | 2021-08-31 | Samsung Electronics Co., Ltd. | Solid-state positive electrode, method of manufacture thereof, and battery including the electrode |
US10971725B2 (en) | 2019-01-24 | 2021-04-06 | Global Graphene Group, Inc. | Lithium metal secondary battery containing elastic polymer foam as an anode-protecting layer |
US11791450B2 (en) | 2019-01-24 | 2023-10-17 | Global Graphene Group, Inc. | Method of improving cycle life of a rechargeable lithium metal battery |
JP7453747B2 (ja) * | 2019-03-28 | 2024-03-21 | 太陽誘電株式会社 | 全固体電池およびその製造方法 |
CN112117432B (zh) * | 2019-06-21 | 2024-08-09 | 贝特瑞新材料集团股份有限公司 | 一种电极浆料的配料方法及其制备的电极浆料 |
CN110518278B (zh) * | 2019-08-19 | 2021-11-19 | 南方科技大学 | 具有负极界面层的固态电解质及制备方法和固态电池 |
KR20210030737A (ko) | 2019-09-10 | 2021-03-18 | 주식회사 엘지화학 | 전고체전지의 양극합제 제조방법 및 이를 이용하여 제조된 전고체전지의 양극합제 |
WO2021132500A1 (ja) * | 2019-12-27 | 2021-07-01 | 株式会社村田製作所 | 固体電池 |
CN113745456B (zh) * | 2020-05-27 | 2023-08-22 | 北京卫蓝新能源科技有限公司 | 一种兼具高安全、高容量的锂电池用三元正极极片及其制备方法和用途 |
CN113745454A (zh) * | 2020-05-27 | 2021-12-03 | 北京卫蓝新能源科技有限公司 | 一种正极片、其制备方法和在半固态电池中的应用 |
CN113745455A (zh) * | 2020-05-27 | 2021-12-03 | 北京卫蓝新能源科技有限公司 | 兼具高安全、高容量和长循环的锂电池用三元正极片及其制备方法和用途 |
WO2022038670A1 (ja) * | 2020-08-18 | 2022-02-24 | TeraWatt Technology株式会社 | リチウム2次電池 |
CN113937253A (zh) * | 2021-10-09 | 2022-01-14 | 桂林理工大学 | 一种提升锂离子电池正极性能的简易方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196095A (ja) * | 2000-01-07 | 2001-07-19 | At Battery:Kk | 非水系電解液二次電池の製造方法 |
JP2006156256A (ja) * | 2004-11-30 | 2006-06-15 | Nippon Zeon Co Ltd | カソードフィルム用ポリエーテル系重合体組成物、カソードフィルム及び電池 |
WO2011033707A1 (ja) * | 2009-09-18 | 2011-03-24 | パナソニック株式会社 | 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池 |
WO2012176904A1 (ja) * | 2011-06-24 | 2012-12-27 | 旭硝子株式会社 | リチウムイオン二次電池用正極活物質の製造方法 |
JP2013073749A (ja) * | 2011-09-27 | 2013-04-22 | Toyota Motor Corp | 蓄電デバイス用電極の製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3976529B2 (ja) * | 2001-09-18 | 2007-09-19 | シャープ株式会社 | リチウムポリマー二次電池およびその製造方法 |
JP5403925B2 (ja) | 2008-03-04 | 2014-01-29 | 出光興産株式会社 | 固体電解質及びその製造方法 |
JP2009238636A (ja) | 2008-03-27 | 2009-10-15 | Toyota Motor Corp | 正極層形成用材料 |
KR101250710B1 (ko) | 2008-12-05 | 2013-04-03 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | 리튬 이온 전지용 정극 활물질, 동 정극 활물질을 사용한 2 차 전지용 정극 및 2 차 전지 정극을 사용한 리튬 이온 2 차 전지 |
JP5158008B2 (ja) * | 2009-04-28 | 2013-03-06 | トヨタ自動車株式会社 | 全固体電池 |
-
2013
- 2013-01-25 JP JP2013011905A patent/JP5594379B2/ja active Active
-
2014
- 2014-01-14 WO PCT/JP2014/050470 patent/WO2014115604A1/ja active Application Filing
- 2014-01-14 CN CN201480005747.4A patent/CN104937749B/zh active Active
- 2014-01-14 US US14/763,031 patent/US9601759B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001196095A (ja) * | 2000-01-07 | 2001-07-19 | At Battery:Kk | 非水系電解液二次電池の製造方法 |
JP2006156256A (ja) * | 2004-11-30 | 2006-06-15 | Nippon Zeon Co Ltd | カソードフィルム用ポリエーテル系重合体組成物、カソードフィルム及び電池 |
WO2011033707A1 (ja) * | 2009-09-18 | 2011-03-24 | パナソニック株式会社 | 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池 |
WO2012176904A1 (ja) * | 2011-06-24 | 2012-12-27 | 旭硝子株式会社 | リチウムイオン二次電池用正極活物質の製造方法 |
JP2013073749A (ja) * | 2011-09-27 | 2013-04-22 | Toyota Motor Corp | 蓄電デバイス用電極の製造方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10396394B2 (en) * | 2016-01-12 | 2019-08-27 | Toyota Jidosha Kabushiki Kaisha | Method for producing sulfide all-solid-state battery and sulfide all-solid-state battery |
WO2018225494A1 (ja) * | 2017-06-09 | 2018-12-13 | 日本電気硝子株式会社 | 全固体ナトリウムイオン二次電池 |
CN110521046A (zh) * | 2017-06-09 | 2019-11-29 | 日本电气硝子株式会社 | 全固体钠离子二次电池 |
JPWO2018225494A1 (ja) * | 2017-06-09 | 2020-04-09 | 日本電気硝子株式会社 | 全固体ナトリウムイオン二次電池 |
US11404726B2 (en) | 2017-06-09 | 2022-08-02 | Nippon Electric Glass Co., Ltd. | All-solid-state sodium ion secondary battery |
JP7120230B2 (ja) | 2017-06-09 | 2022-08-17 | 日本電気硝子株式会社 | 全固体ナトリウムイオン二次電池 |
Also Published As
Publication number | Publication date |
---|---|
US9601759B2 (en) | 2017-03-21 |
JP5594379B2 (ja) | 2014-09-24 |
CN104937749B (zh) | 2019-08-06 |
CN104937749A (zh) | 2015-09-23 |
US20150325844A1 (en) | 2015-11-12 |
JP2014143133A (ja) | 2014-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5594379B2 (ja) | 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池 | |
CN109390622B (zh) | 锂固体电池 | |
JP5413355B2 (ja) | 全固体電池 | |
JP6085370B2 (ja) | 全固体電池、全固体電池用電極及びその製造方法 | |
JP4595987B2 (ja) | 正極活物質 | |
JP5516755B2 (ja) | 電極体および全固体電池 | |
WO2015125800A1 (ja) | 固体電解質組成物およびその製造方法、これを用いた電池用電極シートおよび全固体二次電池 | |
WO2013084302A1 (ja) | 全固体電池 | |
WO2019039567A1 (ja) | 非水系電解質二次電池用正極活物質とその製造方法、非水系電解質二次電池用正極合材ペーストおよび非水系電解質二次電池 | |
JP6259704B2 (ja) | 全固体電池用電極の製造方法及び全固体電池の製造方法 | |
JP5928252B2 (ja) | 全固体電池用負極体および全固体電池 | |
JP2009158489A (ja) | リチウム電池に用いる正極材料 | |
US20200358086A1 (en) | Solid State Battery System Usable at High Temperatures and Methods of Use and Manufacture Thereof | |
KR20120010552A (ko) | 고체 리튬 이온 이차 전지 및 이에 사용될 수 있는 전극 | |
JP6840946B2 (ja) | 固体電解質、全固体電池、およびそれらの製造方法 | |
JP2013045738A (ja) | 固体電解質焼結体、及びその製造方法、並びに全固体リチウム電池 | |
JP2019160407A (ja) | 全固体電池 | |
JP2017112044A (ja) | 全固体電池 | |
JP2013218838A (ja) | 電極焼結体の製造方法および電極焼結体 | |
US20200194829A1 (en) | Solid electrolyte layer and all-solid-state battery | |
JP6988738B2 (ja) | 硫化物全固体電池用負極及び硫化物全固体電池 | |
KR20230106531A (ko) | 고체 이차 전지용 양극 및 이를 포함하는 고체 이차 전지 | |
WO2015159331A1 (ja) | 全固体電池、全固体電池用電極及びその製造方法 | |
JP2021051864A (ja) | 全固体電池 | |
JP2020140778A (ja) | リチウムイオン二次電池用正極活物質の製造方法、リチウムイオン二次電池用正極活物質、およびリチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14742943 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14763031 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14742943 Country of ref document: EP Kind code of ref document: A1 |