WO2012141207A1 - リチウムイオン電池固体電解質材料用硫化リチウムの製造方法 - Google Patents

リチウムイオン電池固体電解質材料用硫化リチウムの製造方法 Download PDF

Info

Publication number
WO2012141207A1
WO2012141207A1 PCT/JP2012/059889 JP2012059889W WO2012141207A1 WO 2012141207 A1 WO2012141207 A1 WO 2012141207A1 JP 2012059889 W JP2012059889 W JP 2012059889W WO 2012141207 A1 WO2012141207 A1 WO 2012141207A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
sulfide
lithium sulfide
solid electrolyte
lithium carbonate
Prior art date
Application number
PCT/JP2012/059889
Other languages
English (en)
French (fr)
Inventor
宮下 徳彦
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to EP12770613.3A priority Critical patent/EP2698856A4/en
Priority to US14/110,800 priority patent/US20140037535A1/en
Priority to KR1020137023272A priority patent/KR20130130818A/ko
Publication of WO2012141207A1 publication Critical patent/WO2012141207A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • C01B17/24Preparation by reduction
    • C01B17/28Preparation by reduction with reducing gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method for producing lithium sulfide (Li 2 S) that can be suitably used as a solid electrolyte of a lithium ion battery.
  • Lithium-ion batteries are secondary batteries that have a structure in which lithium is melted as ions from the positive electrode during charging, moves to the negative electrode and is stored, and lithium ions return from the negative electrode to the positive electrode during discharge. It has been widely used as a power source for home appliances such as video cameras, portable electronic devices such as notebook computers and mobile phones, and power tools such as power tools. Then, it is applied also to the large sized battery mounted in an electric vehicle (EV) or a hybrid electric vehicle (HEV).
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • This type of lithium ion battery is composed of a positive electrode, a negative electrode, and an ion conductive layer sandwiched between the two electrodes.
  • the ion conductive layer includes a separator made of a porous film such as polyethylene or polypropylene, and a nonaqueous electrolytic cell.
  • the one filled with liquid is generally used.
  • the electrolyte is an organic electrolyte that uses a flammable organic solvent as a solvent, improvements in structure and materials to prevent volatilization and leakage were necessary. It was also necessary to improve the structure and materials in order to prevent the occurrence of short circuits by installing safety devices that suppress the temperature rise.
  • an all solid-state lithium battery obtained by solidifying a battery using a solid electrolyte using lithium sulfide (Li 2 S) as a raw material does not use a flammable organic solvent in the battery.
  • the safety device can be simplified, and the manufacturing cost and productivity can be improved.
  • Lithium sulfide (Li 2 S) suitable as a solid electrolyte material is not produced as a natural mineral product, so it must be synthesized.
  • Conventional methods for producing this kind of lithium sulfide include, for example, 1) a method in which lithium sulfate is heated and reduced with an organic substance such as sucrose or starch in an inert gas atmosphere or in a vacuum, or 2) an inert gas atmosphere or in a vacuum. In this method, lithium sulfate is heated and reduced with carbon black or graphite powder, 3) a method of thermally decomposing lithium hydrogen sulfide ethanolate in a hydrogen stream, and 4) metallic lithium and hydrogen sulfide or sulfur vapor are subjected to normal pressure or pressure.
  • a method of directly reacting by heating with is known.
  • Patent Document 1 discloses a lithium sulfide production method in which lithium sulfide is synthesized by a reaction between lithium hydroxide and a gaseous sulfur source as a new method for synthesizing lithium sulfide.
  • a method for producing lithium sulfide characterized in that the powder is 0.1 mm to 1.5 mm and the heating temperature during the reaction is 130 ° C. or higher and 445 ° C. or lower.
  • Patent Document 2 discloses that hydrogen sulfide gas is blown into a slurry composed of lithium hydroxide and a hydrocarbon-based organic solvent to react lithium hydroxide and hydrogen sulfide, and water generated by the reaction is removed from the slurry.
  • a method for producing lithium sulfide characterized in that after the reaction is continued and water in the system is substantially lost, blowing of hydrogen sulfide is stopped and inert gas is blown.
  • the present invention provides a process for preparing lithium sulfide (Li 2 S) in dry method, it is possible to produce lithium sulfide (Li 2 S) in a more easy and low cost. Moreover, as the solid electrolyte of a lithium ion battery The present invention proposes a new method for producing lithium sulfide (Li 2 S) capable of achieving fine powdering of lithium sulfide (Li 2 S) so that excellent performance can be exhibited.
  • the present invention relates to a method for producing lithium sulfide (Li 2 S) for a lithium ion battery solid electrolyte material used as a solid electrolyte material for a lithium ion battery, wherein a lithium carbonate powder and a gas containing sulfur (S) are dry-processed. And a method for producing lithium sulfide (Li 2 S) for a solid electrolyte material of a lithium ion battery, wherein the lithium carbonate powder is obtained by heating the lithium carbonate.
  • lithium sulfide (Li 2 S) can be manufactured in a dry state, it can be manufactured more easily and at low cost. Moreover, since lithium carbonate as a Li raw material is neither ignitable nor hygroscopic, it is easy to handle, and by atomizing lithium carbonate powder, the obtained lithium sulfide (Li 2 S) is atomized. Therefore, the reactivity as a solid electrolyte of a lithium ion battery can be further enhanced.
  • the method for producing lithium sulfide (Li 2 S) according to the present embodiment is a lithium carbonate powder and a gas containing sulfur (S) (referred to as “S-containing gas”). In a dry manner, and the lithium carbonate powder is obtained by heating the lithium carbonate.
  • Lithium carbonate powder does not have hygroscopic properties such as lithium hydroxide, and the particle size can be adjusted, and the particle size can be particularly reduced. Have.
  • the particle size of the lithium carbonate in the powder form By adjusting the particle size of the lithium carbonate powder as a raw material, the particle size of the obtained lithium sulfide (Li 2 S) can be adjusted. That is, by atomizing the lithium carbonate powder, it is possible to atomize the obtained lithium sulfide (Li 2 S). For example, if the average particle size of the lithium carbonate powder (D 50) of about 1 [mu] m, an average particle size of the lithium sulfide obtained by (D 50) can be about 1.5 [mu] m ⁇ 3 [mu] m.
  • lithium sulfide (Li 2 S) can be achieved in this way, the reactivity of the solid electrolyte can be increased.
  • the reactivity of lithium sulfide (Li 2 S) can be enhanced by setting the average particle diameter (D 50 ) of lithium sulfide (Li 2 S) to 20 ⁇ m or less.
  • the average particle diameter (D 50 ) of lithium sulfide (Li 2 S) In order to obtain fine lithium sulfide having an average particle diameter (D 50 ) of 20 ⁇ m or less, lithium carbonate having an average particle diameter of 1/3 to 2/3 of the average particle diameter (D 50 ) of the target fine lithium sulfide is used. Lithium carbonate having an average particle diameter (D 50 ) of 2/5 to 3/5 is more preferably used.
  • the use of the average particle size (D 50) lithium carbonate powder of 8 [mu] m ⁇ 12 [mu] m it is possible to average particle diameter of the lithium sulfide (D 50) and 20 ⁇ m or less, an average of lithium carbonate powder If the particle diameter (D 50 ) is 4 ⁇ m to 6 ⁇ m, the average particle diameter (D 50 ) of lithium sulfide can be 10 ⁇ m or less, and the average particle diameter (D 50 ) of the lithium carbonate powder is 0.8 ⁇ m to 1 ⁇ m. When the thickness is set to 2 ⁇ m, the average particle diameter (D 50 ) of lithium sulfide can be set to 2 ⁇ m or less.
  • the S-containing gas examples include hydrogen sulfide gas (H 2 S), carbon disulfide gas (CS 2 ), and sulfur gas obtained by evaporating solid sulfur (S) to a boiling point or higher. Since lithium carbonate decomposes into lithium oxide (Li 2 O), when reacting with the S-containing gas, it is mixed with a reducing gas such as hydrogen (H) or carbon (C) together with the S-containing gas, Since lithium oxide (Li 2 O) is reduced, high-purity lithium sulfide containing no oxygen can be obtained.
  • H 2 S hydrogen sulfide gas
  • CS 2 carbon disulfide gas
  • sulfur gas obtained by evaporating solid sulfur (S) to a boiling point or higher examples of the S-containing gas. Since lithium carbonate decomposes into lithium oxide (Li 2 O), when reacting with the S-containing gas, it is mixed with a reducing gas such as hydrogen (H) or carbon (C) together with the S-containing gas, Since lithium oxide (Li 2
  • H 2 S hydrogen sulfide gas
  • CS 2 carbon disulfide gas
  • the reaction between the lithium carbonate and the S-containing gas is a dry reaction (solid-gas reaction). That is, it is a method in which solid lithium carbonate and gas are brought into contact with each other in a dry state without using a solvent such as water.
  • the reaction formula is as follows when an H 2 S-containing gas is used as the S-containing gas. Li 2 CO 3 + H 2 S ⁇ Li 2 S + H 2 O ⁇ + CO 2 ⁇
  • the reaction formula when CS 2 gas is used as the S-containing gas is as follows. Li 2 CO 3 + 1 / 2CS 2 ⁇ Li 2 S + 3 / 2CO 2 ⁇
  • the lithium carbonate reacts with the S-containing gas while being decomposed.
  • Lithium carbonate usually decomposes at 700 ° C. or higher, but S-containing gas, particularly CS 2 or H 2 S, contacts the lithium carbonate to promote the decomposition reaction and lower the decomposition temperature. It can be considered that decomposition occurs at 600 ° C. or higher.
  • the melting point of lithium carbonate is 723 ° C. and dissolves at 800 ° C. or higher, the lithium carbonate powder is heated to a temperature range of 500 ° C. to 750 ° C., particularly 600 ° C. or higher, or 720 ° C. or lower. Is preferred.
  • reaction products As an effective means for promoting the reaction, a method of increasing the surface area by reducing the particle size of lithium carbonate, or a method of sending out reaction products, that is, H 2 O and CO 2 out of the system in the above reaction formula Can be mentioned.
  • the reaction apparatus may be a continuous type, a batch type or a fluid type.
  • the concentration of the S-containing gas to be supplied is preferably 10 to 100 vol%.
  • the concentration of the S-containing gas being 100 vol% means a gas composed only of the S-containing gas, that is, a pure gas. If it is less than 100 vol%, the S-containing gas and an inert gas such as Ar or nitrogen are used. This means a mixed gas with a reducing gas such as hydrogen.
  • the concentration of the S-containing gas is 10 vol% or more, the contact reaction with lithium carbonate occurs sufficiently, lithium sulfide can be generated, and the remaining lithium carbonate can be prevented. Therefore, from this viewpoint, the S-containing gas concentration is more preferably 10 vol% to 100 vol%, and particularly preferably 50 vol% to 100 vol%.
  • lithium sulfide (Li 2 S) can be produced by a dry method, and therefore can be produced more easily and at low cost.
  • lithium carbonate as a Li raw material is neither ignitable nor hygroscopic, it is easy to handle, and by adjusting the particle size of the lithium carbonate powder, lithium sulfide (Li 2 S) particles obtained are obtained. The diameter can also be adjusted.
  • lithium sulfide Li 2 S
  • Li 2 S 5 lithium sulfide and diphosphorus pentasulfide
  • Solid electrolytes such as Li 7 P 3 S 11 and Li 3 PS 4 can be produced.
  • the time of the mechanical milling reaction can be shortened by using atomized lithium sulfide (Li 2 S) obtained by the present lithium sulfide production method.
  • the target product phase can be produced at low temperature.
  • Li 2 S lithium sulfide
  • SiS 2 silicon sulfide
  • GeS 2 germanium sulfide
  • the “solid electrolyte” means any substance that can move ions such as Li + in the solid state.
  • X to Y X and Y are arbitrary numbers
  • it means “preferably greater than X” or “preferably greater than Y” with the meaning of “X to Y” unless otherwise specified.
  • the meaning of “small” is also included.
  • X or more” X is an arbitrary number
  • Y or less Y is an arbitrary number
  • S-containing gas H 2 S gas, concentration: 100 vol%
  • S-containing gas H 2 S gas, concentration: 100 vol%
  • Example 3 A sample (L 2 S) was obtained in the same manner as in Example 1 except that the heating and holding temperature in the electric furnace was 480 ° C. which was lower than the decomposition temperature of lithium carbonate.
  • Example 4 A sample (L 2 S) was obtained in the same manner as in Example 1 except that the heating and holding temperature in the electric furnace was 800 ° C. which was higher than the melting point of lithium carbonate.
  • Examples 5 to 7 A sample (L 2 S) was obtained in the same manner as in Example 1 except that the heating and holding temperature in the electric furnace was changed to the temperature shown in Table 1.
  • Example 8 Except for changing the S-containing gas in the electric furnace to a mixed gas of S-containing gas (H 2 S gas) and inert gas (Ar gas) (H 2 S gas concentration 90 vol%, Ar gas concentration 10 vol%) In the same manner as in Example 2, a sample (L 2 S) was obtained.
  • H 2 S gas S-containing gas
  • Ar gas inert gas
  • Example 9 The S-containing gas in the electric furnace was changed to a mixed gas of S-containing gas (H 2 S gas) and reducing gas (H 2 gas) (H 2 S gas concentration 90 vol%, H 2 gas concentration 10 vol%).
  • a sample (L 2 S) was obtained in the same manner as in Example 2 except for the above.
  • Example 1 In Examples 1, 2 and Examples 4 to 9, only the peak attributed to lithium sulfide (Li 2 S) was confirmed, and the resulting lithium sulfide powder was a single phase of lithium sulfide. I found out. On the other hand, in Example 3, an unreacted lithium carbonate peak was also confirmed in addition to the lithium sulfide peak. It was also found that the Li / S molar ratio of the obtained lithium sulfide was almost stoichiometric in Examples 1 and 2 and Examples 4 to 9. Moreover, regarding purity, it was confirmed that in Examples 1, 2, 4, 7, 8, and 9, it was 99% or more.
  • the carbon concentration indicating the amount of unreacted lithium carbonate was less than 1,500 ppm, and it was confirmed that there was almost no remaining.
  • Example 3 it became Li excess composition, and it was confirmed that reaction with hydrogen sulfide is still incomplete.
  • the carbon concentration was as very high as 8,400 ppm, and it was confirmed that a large amount of unreacted lithium carbonate remained as shown in the X-ray diffraction measurement result.
  • the average particle size (D50) of the lithium carbonate powder is set to 5 ⁇ m or less
  • the average particle size (D 50 ) of lithium sulfide can be set to 10 ⁇ m or less.
  • Example 4 if the heating is performed at a temperature equal to or higher than the temperature at which lithium carbonate melts as in Example 4, the resulting lithium sulfide particles become coarse, and the particle size cannot be adjusted. Therefore, it was found that it is preferable to heat to a temperature region where lithium carbonate does not melt.
  • the lithium carbonate powder it is preferable to heat the lithium carbonate powder to a temperature range above the temperature at which lithium carbonate decomposes and at which lithium carbonate does not melt. Specifically, it has been found that heating is preferably performed in a temperature range of 500 ° C. to 750 ° C., particularly 600 ° C. or higher, or 720 ° C. or lower.
  • Li 2 S lithium sulfide
  • the reaction product was subjected to heat treatment at 300 ° C. for 1 hour in a glove box.
  • the reaction product after the heat treatment is uniaxially pressed in a glove box at a pressure of 200 MPa to produce a pellet.
  • a carbon paste as an electrode is applied to both the upper and lower surfaces of the pellet, and then 30 ° C. at 180 ° C.
  • a fractional heat treatment was performed to prepare a sample for measuring ionic conductivity.
  • the ionic conductivity was measured by the AC impedance method.
  • the ionic conductivity of the produced reactant was 9.8 ⁇ 10 ⁇ 4 S / cm at room temperature.
  • Example 2 The sample (Li 2 S) obtained in Example 2 was mechanically milled for 8 hours, 16 hours, or 24 hours in the same manner as described above to obtain a reaction product (white yellow powder).
  • a peak of lithium sulfide (Li 2 S) as a raw material was slightly observed in a sample subjected to mechanical milling for 8 hours, but the sample treated for 16 and 24 hours. Then, lithium sulfide (Li 2 S) and other peaks were not confirmed, and it was confirmed that the obtained sample was in an amorphous state.
  • lithium sulfide (Li 2 S) can be produced more easily and at low cost, and excellent performance as a solid electrolyte of a lithium ion battery can be obtained. It was found that the particle size of lithium sulfide (Li 2 S) as a raw material can be adjusted so that it can be exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

 より容易かつ低コストで硫化リチウムを製造でき、硫化リチウムの微粉化を図ることができる、新たな乾式法による硫化リチウムの製法を提案する。 リチウムイオン電池の固体電解質材料として用いるリチウムイオン電池固体電解質材料用硫化リチウム(Li2S)の製造方法であって、炭酸リチウム粉末と、硫黄(S)を含有するガスとを乾式にて接触させると共に、前記炭酸リチウムを加熱することにより、硫化リチウム粉末を得ることを特徴とするリチウムイオン電池固体電解質材料用硫化リチウム(Li2S)の製造方法を提案する。

Description

リチウムイオン電池固体電解質材料用硫化リチウムの製造方法
 本発明は、リチウムイオン電池の固体電解質として好適に用いることができる硫化リチウム(Li2S)の製造方法に関する。
 リチウムイオン電池は、充電時には正極からリチウムがイオンとして溶け出して負極へ移動して吸蔵され、放電時には逆に負極から正極へリチウムイオンが戻る構造の二次電池であり、エネルギー密度が大きく、寿命が長いなどの特徴を有しているため、ビデオカメラ等の家電製品や、ノート型パソコン、携帯電話機等の携帯型電子機器、パワーツールなどの電動工具などの電源として広く用いられており、最近では、電気自動車(EV)やハイブリッド電気自動車(HEV)などに搭載される大型電池へも応用されている。
 この種のリチウムイオン電池は、正極、負極、及びこの両電極に挟まれたイオン伝導層から構成され、当該イオン伝導層には、ポリエチレン、ポリプロピレン等の多孔質フィルムからなるセパレータに非水系の電解液を満たしたものが一般的に用いられている。
 ところが、このように電解質として、可燃性の有機溶剤を溶媒とする有機電解液が使用されているため、揮発や漏出を防ぐための構造・材料面での改善が必要であったほか、短絡時の温度上昇を抑える安全装置の取り付けや短絡防止のための構造・材料面での改善も必要であった。
 これに対し、硫化リチウム(Li2S)などを原料として用いた固体電解質を用いて、電池を全固体化してなる全固体型リチウム電池は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化を図ることができ、製造コストや生産性に優れたものとすることができる。
 固体電解質の材料として好適な硫化リチウム(Li2S)は、天然鉱産物としては産出しないため、合成する必要がある。
 この種の硫化リチウムの製造方法としては、従来、例えば1)不活性ガス雰囲気あるいは真空下で、硫酸リチウムを庶糖、澱粉などの有機物で加熱還元する方法や、2)不活性ガス雰囲気あるいは真空下で、硫酸リチウムをカーボンブラックや黒鉛粉末で加熱還元する方法、3)硫化水素リチウムエタノール化物を水素気流中で加熱分解する方法、4)金属リチウムと硫化水素や硫黄蒸気とを常圧や加圧下で加熱し直接反応させる方法などが知られている。
 例えば特許文献1には、硫化リチウムの新たな合成法として、水酸化リチウムとガス状硫黄源との反応によって硫化リチウムを合成する硫化リチウムの製造方法であって、水酸化リチウムを粒子の直径が0.1mmから1.5mmの粉体とし、反応時の加熱温度を130℃以上、445℃以下とすることを特徴とする硫化リチウムの製造方法が提案されている。
 また、特許文献2には、水酸化リチウムと炭化水素系有機溶媒からなるスラリー中に、硫化水素ガスを吹き込み、水酸化リチウムと硫化水素を反応させ、反応により生じる水を、スラリーから除去しながら反応を継続し、系内の水分が実質的に無くなった後、硫化水素の吹き込みを止め、不活性ガスを吹き込むことを特徴とする硫化リチウムの製造方法が提案されている。
特開平09-278423号公報 特開2010-163356号公報
 有機溶媒を用いる湿式法による合成法では、有機溶媒の除去工程が必要となるばかりか、圧力容器が必要となるため、合成装置が大型化してコスト高となってしまう。この点、乾式法による合成であれば、設備コストを抑えることができる。
 しかし、乾式法においては、従来提案されていたようにLi原料として水酸化リチウムを用いた場合、水酸化リチウムは吸湿性が高いため、凝集し易くて取り扱いが難しいばかりか、得られる硫化リチウム(Li2S)の微粉化を図ることが難しいという課題を抱えていた。
 そこで本発明は、乾式方法で硫化リチウム(Li2S)を製造する方法において、より容易かつ低コストで硫化リチウム(Li2S)を製造することができ、しかも、リチウムイオン電池の固体電解質として優れた性能を発揮し得るように、硫化リチウム(Li2S)の微粉化を図ることができる、新たな硫化リチウム(Li2S)の製造方法を提案せんとするものである。
 本発明は、リチウムイオン電池の固体電解質材料として用いるリチウムイオン電池固体電解質材料用硫化リチウム(Li2S)の製造方法であって、炭酸リチウム粉末と、硫黄(S)を含有するガスとを乾式にて接触させると共に、前記炭酸リチウムを加熱することにより、硫化リチウム粉末を得ることを特徴とするリチウムイオン電池固体電解質材料用硫化リチウム(Li2S)の製造方法を提案する。
 本発明が提案する製造方法によれば、乾式状態で硫化リチウム(Li2S)を製造することができるため、より容易かつ低コストで製造することができる。しかも、Li原料としての炭酸リチウムは、発火性も吸湿性もないため、取り扱いが容易であるばかりか、炭酸リチウム粉末を微粒化することによって、得られる硫化リチウム(Li2S)を微粒化することができるから、リチウムイオン電池の固体電解質としての反応性をより一層高めることができる。
 以下に本発明の実施形態について詳細に述べるが、本発明の範囲が以下に説明する実施形態に限定されるものではない。
<本硫化リチウム製法>
 本実施形態に係る硫化リチウム(Li2S)の製造方法(以下「本硫化リチウム製法」と称する)は、炭酸リチウム粉末と、硫黄(S)を含有するガス(「S含有ガス」と称する)とを乾式にて接触させると共に、前記炭酸リチウムを加熱することにより、硫化リチウム粉末を得ることを特徴とする方法である。
(原料)
 炭酸リチウム粉末は、水酸化リチウムなどのような吸湿性がなく、粒径を調整することができ、特に粒径を小さくすることができるなど、他のリチウム塩の粉末に比べて有利な特徴を有している。
 炭酸リチウムをS含有ガスと効率よく反応させるため、粉末形態における炭酸リチウムの粒子径を微粒化するのが好ましい。原料としての炭酸リチウム粉末の粒径を調整することで、得られる硫化リチウム(Li2S)の粒径を調整することができる。すなわち、炭酸リチウム粉末を微粒化することで、得られる硫化リチウム(Li2S)の微粒化を図ることができる。例えば炭酸リチウム粉末の平均粒径(D50)を1μm程度とすれば、得られる硫化リチウムの平均粒径(D50)を1.5μm~3μm程度とすることができる。
 このように硫化リチウム(Li2S)の微粒化を図ることができれば、固体電解質の反応性を高めることができる。特に硫化リチウム(Li2S)の平均粒径(D50)を20μm以下とすることにより、硫化リチウム(Li2S)の反応性を高めることができる。
 平均粒径(D50)が20μm以下の微粒硫化リチウムを得るためには、目的とする微粒硫化リチウムの平均粒径(D50)の1/3~2/3の平均粒径の炭酸リチウムを用いればよく、より好ましくは2/5~3/5の平均粒径(D50)の炭酸リチウムを用いるのがよい。より具体的には、例えば平均粒径(D50)が8μm~12μmの炭酸リチウム粉末を用いれば、硫化リチウムの平均粒径(D50)を20μm以下とすることができ、炭酸リチウム粉末の平均粒径(D50)を4μm~6μmとすれば、硫化リチウムの平均粒径(D50)を10μm以下とすることができ、炭酸リチウム粉末の平均粒径(D50)を0.8μm~1.2μmとすれば、硫化リチウムの平均粒径(D50)を2μm以下とすることができる。
 S含有ガスとしては、硫化水素ガス(H2S)や二硫化炭素ガス(CS)、或いは固体硫黄(S)を沸点以上まで加熱して気化させた硫黄ガスなどを挙げることができる。
 なお、炭酸リチウムは分解すると酸化リチウム(LiO)となるため、S含有ガスと反応させる場合、S含有ガスとともに水素(H)や炭素(C)などの還元性ガスと混合させることで、酸化リチウム(LiO)が還元するため、酸素を含まない高純度な硫化リチウムを得ることができる。他方、S含有ガスとして硫化水素ガス(H2S)や二硫化炭素ガス(CS)を用いる場合は、ガス成分として水素(H)や炭素(C)を含むため、酸素を含まない高純度な硫化リチウムを製造するにはより一層好ましい。
(接触方法)
 炭酸リチウムとS含有ガスとの反応は乾式反応(固気反応)である。つまり、水等の溶媒を用いることなく、固体の炭酸リチウムとガスとを乾式状態で接触させて反応させる方法である。
 反応式としては、S含有ガスとしてH2S含有ガスを用いた場合、次のようになる。
 Li2CO3+H2S →Li2S+H2O↑+CO2
 また、S含有ガスとしてCS2ガスを用いた場合の反応式は、次のようになる。
 Li2CO3+1/2CS2 →Li2S+3/2CO2
 炭酸リチウムを加熱しつつS含有ガスを供給すると、炭酸リチウムは分解しながらS含有ガスと反応する。この反応において、炭酸リチウム粉末の加熱は、炭酸リチウムが分解する温度以上で、かつ、炭酸リチウムが溶融しない温度領域に加熱するのが好ましい。
 炭酸リチウムは通常700℃以上で分解するが、S含有ガス、特にCSやH2Sが炭酸リチウムと接触することで分解反応を促進して分解温度を低下させるため、500℃以上、好ましくは600℃以上であれば分解すると考えることができる。
 他方、炭酸リチウムの融点は723℃であり、800℃以上では溶解してしまうため、炭酸リチウム粉末の加熱は、500℃~750℃、特に600℃以上、或いは720℃以下の温度領域に加熱するのが好ましい。
 上記反応を促進する有効な手段としては、炭酸リチウムの粒径を小さくして表面積を大きくしたり、反応生成物、上記反応式で言えばH2OやCO2を系外に送り出したりする方法を挙げることができる。
 反応装置としては、連続式、バッチ式でも流動式でもよい。
 供給するS含有ガスの濃度は、10~100vol%とするのが好ましい。なお、S含有ガスの濃度が100vol%というのは、S含有ガスのみからなるガス、すなわち純ガスの意味であり、100vol%未満の場合は、S含有ガスと、Arや窒素等の不活性ガスや水素などの還元性ガスとの混合ガスの意味である。S含有ガスの濃度が10vol%以上であれば、炭酸リチウムとの接触反応が十分に起こり、硫化リチウムを生成させることができ、炭酸リチウムの残存を防止することができる。よって、かかる観点から、S含有ガス濃度は10vol%~100vol%とするのがさらに好ましく、特に50vol%~100vol%とするのがさらに好ましい。
 なお、未反応のH2SやCS2ガスは、有毒ガスであるため、排気ガスをバーナーなどで完全燃焼させた後、水酸化ナトリウム溶液で中和させて硫化ナトリウムなどとして処理するのが好ましい。
<本硫化リチウムの用途>
 本硫化リチウム製法によれば、乾式方法で硫化リチウム(Li2S)を製造することができるため、より容易かつ低コストで製造することができる。しかも、Li原料としての炭酸リチウムは、発火性も吸湿性もないため、取り扱いが容易であるばかりか、炭酸リチウム粉末の粒径を調整することによって、得られる硫化リチウム(Li2S)の粒径を調整することもできる。特に、炭酸リチウム粉末の粒径を微粒化することで硫化リチウム(Li2S)を微粒化することができ、微粒化した反応性が高い微粒硫化リチウム(Li2S)を製造することができ、このような微粒硫化リチウム(Li2S)を用いることにより、リチウムイオン電池の硫化物系固体電解質の作製をより一層容易とすることができる。
 硫化リチウム(Li2S)をリチウムイオン電池の硫化物系固体電解質として用いる場合、例えば硫化リチウムと五硫化二リン(P25)、或いはその他の硫化物と、メカニカルミリング反応させて、例えばLi7311やLiPS4などの固体電解質を作製することができる。この際、本硫化リチウム製法で得られる微粒化した硫化リチウム(Li2S)を用いることにより、メカニカルミリング反応の時間を短縮化することができる。また、反応性が高いため,低温で目的とする生成相を作成することができる。
 なお、固体電解質を作製するために、硫化リチウム(Li2S)と反応させる物質としては、特に限定するものではない。例えば上記の五硫化二リン(P25)のほか、硫化ケイ素(SiS2)、硫化ゲルマニウム(GeS)などを挙げることができる。
<用語の解説>
 本発明において「固体電解質」とは、固体状態のままイオン、例えばLi+が移動し得る物質全般を意味する。
 本発明において「X~Y」(X、Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と記載した場合、「Xより大きいことが好ましい」或いは「Yより小さいことが好ましい」旨の意図を包含する。
 以下、実施例に基づいて本発明を説明する。但し、本発明はこれらに限定されて解釈されるものではない。
(炭酸リチウム及び硫化リチウムの粒径の測定方法)
 炭酸リチウム及び硫化リチウムの粒度分布は、500~5,000倍のFE-SEM画像を用い、画像解析式粒度分布測定ソフトウェア(マウンテック社、Mac-View、Ver.4)を用いた。粒度分布を測定するために用いた粒子数は約1,000個程度であり、ソフトウェアの解析処理により得られたHeywood径(投影面積円相当径)を採用し、この解析結果より体積基準による平均粒径(D50)及びD90を求めた。
<実施例1>
 アルミナボート内に炭酸リチウム粉末(D50=4.1μm、D90=8.4μm)2gを充填し、ガス置換が可能な管状炉内に前記アルミナボートを装填した。そして、電気炉内を、S含有ガス(H2Sガス、濃度100vol%)で完全に置換させた後、電気炉の温度を加熱して700℃、4時間を保持し、その後、自然冷却して電気炉内から試料(L2S)を取り出した。
<実施例2>
 実施例1で用いた炭酸リチウム粉末を、ビーズミルで粉砕処理を行なって微粒化した炭酸リチウム粉末(D50=0.9μm、D90=2.2μm)2gを、アルミナボート内に充填し、ガス置換が可能な管状炉内に前記アルミナボートを装填した。そして、電気炉内を、S含有ガス(H2Sガス、濃度100vol%)で完全に置換させた後、電気炉の温度を加熱して700℃、4時間を保持し、その後、自然冷却して電気炉内から試料(L2S)を取り出した。
<実施例3>
 電気炉内加熱保持温度を、炭酸リチウムの分解温度よりも低い480℃とした以外は、実施例1と同様に行って試料(L2S)を得た。
<実施例4>
 電気炉内加熱保持温度を、炭酸リチウムの融点よりも高い800℃とした以外は、実施例1と同様に行って試料(L2S)を得た。
<実施例5~7>
 電気炉内加熱保持温度を、表1に示した温度とした以外は、実施例1と同様に行って試料(L2S)を得た。
<実施例8>
 電気炉内のS含有ガスを、S含有ガス(H2Sガス)と不活性ガス(Arガス)との混合ガス(H2Sガス濃度90vol%、Arガス濃度10vol%)に変更した以外は、実施例2と同様に行って試料(L2S)を得た。
<実施例9>
 電気炉内のS含有ガスを、S含有ガス(H2Sガス)と還元性ガス(Hガス)との混合ガス(H2Sガス濃度90vol%、H2ガス濃度10vol%)に変更した以外は、実施例2と同様に行って試料(L2S)を得た。
 実施例1~9で得られた試料について、生成相をX線回折法で測定し、Li/Sモル比及び純度をICP発光分析法で測定し、炭素濃度を燃焼-赤外線吸収法で測定した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 得られた硫化リチウム粉末の生成相は、実施例1、2及び実施例4~9では、硫化リチウム(Li2S)に帰属されるピークのみが確認され、硫化リチウムの単一相になっていることが分かった。一方、実施例3では、硫化リチウムのピーク以外に未反応の炭酸リチウムのピークも確認された。
 また、得られた硫化リチウムのLi/Sモル比は、実施例1、2及び実施例4~9では、ほぼ化学量論組成となっていることが分かった。また、純度に関しても、実施例1、2、4、7、8及び9では99%以上であることが確認された。更にこれらの実施例では、未反応の炭酸リチウム量を示す炭素濃度は1,500ppm未満となっており、ほとんど残存していないことが確認された。
 その一方、実施例3では、Li過剰組成となっており、硫化水素との反応がまだ不完全であることが確認された。また炭素濃度も8,400ppmと非常に高く、X線回折測定結果でも示したように未反応の炭酸リチウムが多く残存していることが確認された。
 更に得られた硫化リチウムの粒子径は、実施例1及び2のように原料である炭酸リチウムの粒子径を調整すると、得られる硫化リチウム(Li2S)の調整することができることが分かった。具体的には、炭酸リチウム粉末の平均粒径(D50)を5μm以下とすることにより、硫化リチウムの平均粒径(D50)を10μm以下とするのができ、炭酸リチウム粉末の平均粒径(D50)を1μm以下と微粒化することにより、硫化リチウムの平均粒径(D50)を2μm以下と微粒化することができることが分かった。ただし、実施例4のように炭酸リチウムが溶融する温度以上で加熱すると、得られる硫化リチウムの粒子は粗大化してしまうため、粒径を調整することができなくなってしまう。従って、炭酸リチウムが溶融しない温度領域に加熱するのが好ましいことが分かった。
 以上の結果から、炭酸リチウム粉末の加熱は、炭酸リチウムが分解する温度以上で、かつ、炭酸リチウムが溶融しない温度領域に加熱するのが好ましい。具体的には、500℃~750℃、特に600℃以上、或いは720℃以下の温度領域に加熱するのが良いことが分かった。
<固体電解質の製造>
 実施例1で得た試料(LiS)1.63gと、P(アルドリッチ社製)3.37gとを、φ5mmのジルコニアボール90gとともに、約80mlのジルコニア製容器に入れ、上蓋と容器との間に真空グリースを塗布した後、密閉した。この際、上記計量、密閉作業は全て、十分に乾燥されたArガス(露点-60℃以上)で置換されたグローブボックス内で実施した。
 この反応生成物のX線回折測定を行なった結果、メカニカルミリング処理8時間及び16時間の試料では原料である硫化リチウム(Li2S)のピークが僅かに観測されたが、24時間処理した試料では、LiSやその他のピークは確認されず、得られた試料はアモルファス状態になっていることが確認された。
 さらに、上記24時間のメカニカルミリング処理後、反応物をグローブボックスで300℃、1時間の加熱処理を施した。加熱処理後の反応物のX線回折測定を行ったところ、Li11に帰属されるピークのみ確認された。
 またさらに、上記加熱処理後の反応物をグローブボックス内で200MPaの圧力にて一軸加圧成形してペレットを作製し、更にペレット上下両面に電極としてのカーボンペーストを塗布した後、180℃で30分熱処理を行い、イオン導電率測定用サンプルを作製した。イオン導電率測定は交流インピーダンス法にて行った。その結果、作製した反応物のイオン導電率は室温で、9.8×10-4S/cmであった。
 上記実施例2で得た試料(LiS)を、上記と同様に8時間、16時間又は24時間メカニカルミリング処理し、反応生成物(白黄色の粉体)を得た。
 この反応生成物のX線回折測定を行なった結果、メカニカルミリング処理8時間の試料では、原料である硫化リチウム(Li2S)のピークが僅かに観測されたが、16及び24時間処理した試料では、硫化リチウム(Li2S)やその他のピークは確認されず、得られた試料はアモルファス状態になっていることが確認された。
 さらに、上記メカニカルミリング16時間処理後の生成物を、上記同様に300℃で1時間の加熱処理を施したところ、反応物のX線回折測定ではLi11に帰属されるピークのみ確認された。またイオン導電率は室温で、1.1×10-3S/cmであった。
 以上のことから、本発明の硫化リチウムの製造方法によれば、より容易かつ低コストで硫化リチウム(Li2S)を製造することができ、しかも、リチウムイオン電池の固体電解質として優れた性能を発揮できるよう、原料となる硫化リチウム(Li2S)の粒径を調整することができることが分かった。
 

Claims (6)

  1.  リチウムイオン電池の固体電解質材料として用いるリチウムイオン電池固体電解質材料用硫化リチウム(Li2S)の製造方法であって、炭酸リチウム粉末と、硫黄(S)を含有するガスとを乾式にて接触させると共に、前記炭酸リチウムを加熱することにより、硫化リチウム粉末を得ることを特徴とするリチウムイオン電池固体電解質材料用硫化リチウム(Li2S)の製造方法。
  2.  炭酸リチウム粉末の加熱は、炭酸リチウムが分解する温度以上で、かつ、炭酸リチウムが溶融しない温度領域に加熱することを特徴とする請求項1記載の硫化リチウム(Li2S)の製造方法。
  3.  請求項1又は2に記載の硫化リチウム(Li2S)の製造方法において、炭酸リチウム粉末の粒径を小さくすることにより、得られる硫化リチウム粉末の粒径を小さくすることを特徴とする微粒硫化リチウム(Li2S)の製造方法。
  4.  請求項1~3の何れかに記載された硫化リチウム(Li2S)の製造方法によって製造されたリチウムイオン電池固体電解質材料用硫化リチウム。
  5.  請求項4に記載された硫化リチウムを用いてなるリチウムイオン電池用固体電解質。
  6.  請求項5に記載された固体電解質を備えたリチウムイオン電池。
     
PCT/JP2012/059889 2011-04-12 2012-04-11 リチウムイオン電池固体電解質材料用硫化リチウムの製造方法 WO2012141207A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12770613.3A EP2698856A4 (en) 2011-04-12 2012-04-11 PROCESS FOR PRODUCING LITHIUM SULFIDE FOR SOLID ELECTROLYTE MATERIAL FOR LITHIUM-ION CELL
US14/110,800 US20140037535A1 (en) 2011-04-12 2012-04-11 Method for Producing Lithium Sulfide for Lithium Ion Cell Solid Electrolyte Material
KR1020137023272A KR20130130818A (ko) 2011-04-12 2012-04-11 리튬 이온 전지 고체 전해질 재료용 황화리튬의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-087953 2011-04-12
JP2011087953A JP4948659B1 (ja) 2011-04-12 2011-04-12 リチウムイオン電池固体電解質材料用硫化リチウムの製造方法

Publications (1)

Publication Number Publication Date
WO2012141207A1 true WO2012141207A1 (ja) 2012-10-18

Family

ID=46498730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059889 WO2012141207A1 (ja) 2011-04-12 2012-04-11 リチウムイオン電池固体電解質材料用硫化リチウムの製造方法

Country Status (5)

Country Link
US (1) US20140037535A1 (ja)
EP (1) EP2698856A4 (ja)
JP (1) JP4948659B1 (ja)
KR (1) KR20130130818A (ja)
WO (1) WO2012141207A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090282A1 (ja) * 2021-11-22 2023-05-25 三井金属鉱業株式会社 硫化リチウム及びその製造方法並びに硫化物固体電解質の製造方法

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075816A (ja) * 2011-09-13 2013-04-25 Nippon Chem Ind Co Ltd 硫化リチウム、その製造方法及び無機固体電解質の製造方法
JP2014055097A (ja) * 2012-08-16 2014-03-27 Toray Fine Chemicals Co Ltd 金属硫化物の製造方法
JP5950160B2 (ja) * 2012-09-03 2016-07-13 東レ・ファインケミカル株式会社 酸化リチウムの製造方法
JP6256754B2 (ja) * 2013-02-27 2018-01-10 東レ・ファインケミカル株式会社 硫化リチウムの製造方法
JP6162981B2 (ja) * 2013-03-01 2017-07-12 日本化学工業株式会社 硫化リチウムの製造方法及び無機固体電解質の製造方法
JP6103499B2 (ja) * 2013-06-21 2017-03-29 東レ・ファインケミカル株式会社 硫化リチウムの製造方法
JP6150229B2 (ja) * 2013-09-12 2017-06-21 東レ・ファインケミカル株式会社 硫化リチウムの製造方法
JP6281841B2 (ja) * 2014-01-20 2018-02-21 東レ・ファインケミカル株式会社 硫化リチウムの製造方法
JP2015196621A (ja) * 2014-04-01 2015-11-09 日本化学工業株式会社 硫化リチウムの製造方法及び無機固体電解質の製造方法
DE102014211421A1 (de) * 2014-06-13 2015-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung von Alkalimetallsulfid-Nanopartikeln, Alkalimetallsulfid-Nanopartikel, Verwendung der Alkalimetallsulfid-Nanopartikel sowie Alkalimetall-Schwefel-Batterie
JP6414674B2 (ja) * 2014-08-04 2018-10-31 東レ・ファインケミカル株式会社 硫化リチウムの製造方法
WO2016098351A1 (ja) 2014-12-16 2016-06-23 出光興産株式会社 硫化リチウム製造用装置及び硫化リチウムの製造方法
US10840539B2 (en) 2015-06-22 2020-11-17 King Abdullah University Of Science And Technology Lithium batteries, anodes, and methods of anode fabrication
US10399853B2 (en) 2016-01-19 2019-09-03 Colorado School Of Mines Production of alkali sulfide cathode material and methods for processing hydrogen sulfide
US20200243900A1 (en) * 2017-08-04 2020-07-30 Toyota Motor Europe Method for producing electrodes for all-solid state batteries
JP6620953B2 (ja) * 2018-01-09 2019-12-18 東レ・ファインケミカル株式会社 硫化リチウム製造装置
CN111200121A (zh) * 2018-11-20 2020-05-26 深圳市贝特瑞纳米科技有限公司 一种高性能复合二元正极材料及其制备方法和锂离子电池
JP6909365B2 (ja) * 2019-04-19 2021-07-28 三井金属鉱業株式会社 硫化物固体電解質の製造方法
US11233282B2 (en) 2019-06-17 2022-01-25 Makita Corporation Battery-powered portable tool
CN110526219A (zh) * 2019-08-26 2019-12-03 浙江工业大学 一种硫化锂粉体的合成方法
JP2021147251A (ja) 2020-03-17 2021-09-27 三菱マテリアル株式会社 硫化リチウムの製造方法
KR102597513B1 (ko) * 2020-12-21 2023-11-01 주식회사 포스코 황화 리튬의 제조방법
JP7484737B2 (ja) * 2021-01-19 2024-05-16 トヨタ自動車株式会社 硫化物固体電解質、前駆体、全固体電池および硫化物固体電解質の製造方法
JP2022135690A (ja) 2021-03-05 2022-09-15 三菱マテリアル株式会社 硫化リチウムの製造方法
KR20220161749A (ko) 2021-05-31 2022-12-07 한양대학교 산학협력단 고순도의 황화 리튬 제조방법
WO2023008250A1 (ja) * 2021-07-30 2023-02-02 Agc株式会社 硫化リチウムの製造方法
WO2023032701A1 (ja) * 2021-09-02 2023-03-09 Agc株式会社 硫化リチウムの製造方法
KR20230051800A (ko) 2021-10-12 2023-04-19 한국세라믹기술원 황화리튬의 제조방법
WO2023090283A1 (ja) 2021-11-22 2023-05-25 三井金属鉱業株式会社 硫化リチウムの製造方法
WO2023090271A1 (ja) * 2021-11-22 2023-05-25 三井金属鉱業株式会社 硫化リチウムの製造方法
KR20230084681A (ko) 2021-12-06 2023-06-13 한국세라믹기술원 황화리튬 미분말의 제조방법
KR20230092272A (ko) 2021-12-17 2023-06-26 주식회사 이수스페셜티케미컬 고수율 및 고순도로 황화리튬 결정체를 제조하는 방법 및 이 방법으로 제조한 황화리튬 결정체
KR20230119457A (ko) 2022-02-07 2023-08-16 주식회사 월덱스 황화리튬의 제조 방법
KR20230141519A (ko) 2022-03-31 2023-10-10 주식회사 솔리비스 고순도의 알칼리 금속황화물의 제조방법
KR102664345B1 (ko) 2022-11-10 2024-05-09 전북대학교산학협력단 황화 리튬 미분말의 제조방법
CN117163922B (zh) * 2023-09-20 2024-03-26 天齐锂业股份有限公司 Ev级硫化锂及其制备方法
CN117566692A (zh) * 2023-12-06 2024-02-20 华南师范大学 一种硫化锂纳米颗粒的制备方法、硫化锂纳米颗粒及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126666A (en) * 1978-01-25 1978-11-21 Foote Mineral Company Process for producing high purity lithium sulfide
JPH09278423A (ja) 1996-04-16 1997-10-28 Furukawa Co Ltd 硫化リチウムの製造方法
JP2005209649A (ja) * 2004-01-19 2005-08-04 Samsung Sdi Co Ltd リチウム二次電池用のカソード活物質及びこれを利用したリチウム二次電池
JP2006263612A (ja) * 2005-03-24 2006-10-05 Toshiba Corp 炭酸ガス吸収材および炭酸ガスを含む被処理ガスの処理方法
JP2009176484A (ja) * 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池
JP2010163356A (ja) 2008-12-15 2010-07-29 Idemitsu Kosan Co Ltd 硫化リチウムの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052718B1 (en) * 1998-12-03 2007-08-01 Sumitomo Electric Industries, Ltd. Lithium storage battery
GB2464455B (en) * 2008-10-14 2010-09-15 Iti Scotland Ltd Lithium-containing transition metal sulfide compounds
JP2013075816A (ja) * 2011-09-13 2013-04-25 Nippon Chem Ind Co Ltd 硫化リチウム、その製造方法及び無機固体電解質の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4126666A (en) * 1978-01-25 1978-11-21 Foote Mineral Company Process for producing high purity lithium sulfide
JPH09278423A (ja) 1996-04-16 1997-10-28 Furukawa Co Ltd 硫化リチウムの製造方法
JP2005209649A (ja) * 2004-01-19 2005-08-04 Samsung Sdi Co Ltd リチウム二次電池用のカソード活物質及びこれを利用したリチウム二次電池
JP2006263612A (ja) * 2005-03-24 2006-10-05 Toshiba Corp 炭酸ガス吸収材および炭酸ガスを含む被処理ガスの処理方法
JP2009176484A (ja) * 2008-01-22 2009-08-06 Idemitsu Kosan Co Ltd 全固体リチウム二次電池用正極及び負極、並びに全固体リチウム二次電池
JP2010163356A (ja) 2008-12-15 2010-07-29 Idemitsu Kosan Co Ltd 硫化リチウムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2698856A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023090282A1 (ja) * 2021-11-22 2023-05-25 三井金属鉱業株式会社 硫化リチウム及びその製造方法並びに硫化物固体電解質の製造方法

Also Published As

Publication number Publication date
EP2698856A4 (en) 2014-09-24
KR20130130818A (ko) 2013-12-02
JP4948659B1 (ja) 2012-06-06
EP2698856A1 (en) 2014-02-19
JP2012221819A (ja) 2012-11-12
US20140037535A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP4948659B1 (ja) リチウムイオン電池固体電解質材料用硫化リチウムの製造方法
JP5701808B2 (ja) 硫化物系固体電解質の製造方法
CN109417194B (zh) 锂二次电池用硫化物系固体电解质
JP5957144B2 (ja) リチウムイオン電池用硫化物系固体電解質
JP6475159B2 (ja) 複合材料
WO2013099834A1 (ja) 硫化物系固体電解質
JP5912550B2 (ja) 電極材料、電極及びそれを用いた電池
JP2013075816A (ja) 硫化リチウム、その製造方法及び無機固体電解質の製造方法
JP6878529B2 (ja) リチウムイオン伝導性酸化物
JP5864993B2 (ja) 複合電極材料及びその製造方法、並びに該複合電極材料を用いたリチウム電池
JP7332761B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
CN111816912A (zh) 硫化物固体电解质、硫化物固体电解质的制造方法、电极体和全固体电池
TWI699926B (zh) 鹼離子二次電池用正極活性物質
CN111490286A (zh) 硫化物系固体电解质粒子的制造方法
KR102580338B1 (ko) 황화리튬 제조 방법
JP7435927B1 (ja) 硫化物系固体電解質粉末、硫化物系固体電解質粉末の製造方法、硫化物系固体電解質層及びリチウムイオン二次電池
WO2023219067A1 (ja) 硫化物系固体電解質粉末の製造方法及び製造装置
WO2023053657A1 (ja) 硫化物系固体電解質粉末及びその製造方法
JP7171896B2 (ja) 硫化物系無機固体電解質材料の製造方法
KR102666522B1 (ko) 황화 리튬의 제조방법
KR102664345B1 (ko) 황화 리튬 미분말의 제조방법
JP7158990B2 (ja) 五硫化二リン組成物の製造方法
JP6783736B2 (ja) 硫化物固体電解質
JP2014091664A (ja) 固体電解質ガラス粒子及びリチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12770613

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023272

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012770613

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14110800

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE