WO2023090282A1 - 硫化リチウム及びその製造方法並びに硫化物固体電解質の製造方法 - Google Patents
硫化リチウム及びその製造方法並びに硫化物固体電解質の製造方法 Download PDFInfo
- Publication number
- WO2023090282A1 WO2023090282A1 PCT/JP2022/042188 JP2022042188W WO2023090282A1 WO 2023090282 A1 WO2023090282 A1 WO 2023090282A1 JP 2022042188 W JP2022042188 W JP 2022042188W WO 2023090282 A1 WO2023090282 A1 WO 2023090282A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- sulfide
- gas
- sulfur
- diffraction peak
- Prior art date
Links
- GLNWILHOFOBOFD-UHFFFAOYSA-N lithium sulfide Chemical compound [Li+].[Li+].[S-2] GLNWILHOFOBOFD-UHFFFAOYSA-N 0.000 title claims abstract description 61
- 238000004519 manufacturing process Methods 0.000 title claims description 29
- 239000002203 sulfidic glass Substances 0.000 title claims description 19
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 10
- 101000878457 Macrocallista nimbosa FMRFamide Proteins 0.000 claims abstract description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 78
- 239000007789 gas Substances 0.000 claims description 57
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 55
- 229910052808 lithium carbonate Inorganic materials 0.000 claims description 46
- 229910052717 sulfur Inorganic materials 0.000 claims description 46
- 239000011593 sulfur Substances 0.000 claims description 46
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 35
- 238000010304 firing Methods 0.000 claims description 21
- 239000002994 raw material Substances 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 14
- 239000012298 atmosphere Substances 0.000 claims description 10
- 239000011261 inert gas Substances 0.000 claims description 9
- 229910052744 lithium Inorganic materials 0.000 claims description 9
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 5
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 4
- CYQAYERJWZKYML-UHFFFAOYSA-N phosphorus pentasulfide Chemical compound S1P(S2)(=S)SP3(=S)SP1(=S)SP2(=S)S3 CYQAYERJWZKYML-UHFFFAOYSA-N 0.000 claims description 4
- -1 lithium halide Chemical class 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 description 24
- 238000010438 heat treatment Methods 0.000 description 14
- 239000007787 solid Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910018091 Li 2 S Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- JLQNHALFVCURHW-UHFFFAOYSA-N cyclooctasulfur Chemical compound S1SSSSSSS1 JLQNHALFVCURHW-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- GMKDNCQTOAHUQG-UHFFFAOYSA-L dilithium;dioxido-oxo-sulfanylidene-$l^{6}-sulfane Chemical compound [Li+].[Li+].[O-]S([O-])(=O)=S GMKDNCQTOAHUQG-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/22—Alkali metal sulfides or polysulfides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/22—Alkali metal sulfides or polysulfides
- C01B17/24—Preparation by reduction
- C01B17/28—Preparation by reduction with reducing gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to lithium sulfide and a method for producing the same.
- the present invention also relates to a method for producing a sulfide solid electrolyte using the lithium sulfide.
- a solid lithium secondary battery using a sulfide solid electrolyte synthesized from lithium sulfide or the like as a starting material does not use a flammable organic solvent, so the safety device can be simplified, and the manufacturing cost and cost are reduced. It has an advantage that it can be made excellent in productivity.
- this type of solid electrolyte does not move ion species other than lithium ions in the electrolyte, so it is advantageous from the viewpoint of improving safety and durability, such as no side reactions due to migration of anions.
- this sulfide solid electrolyte As a sulfide solid electrolyte, the present applicant previously proposed a crystalline solid electrolyte containing lithium, sulfur, phosphorus, and halogen elements such as chlorine and bromine (see Patent Document 1).
- this sulfide solid electrolyte is composed of lithium sulfide (Li 2 S), diphosphorus pentasulfide (P 2 S 5 ), and halogenated compounds such as lithium chloride (LiCl) and lithium bromide (LiBr). It is produced by a method in which lithium is mixed, elemental sulfur is further added, and the resulting mixture is heated under an argon atmosphere. This method has the advantage that the addition of elemental sulfur can effectively prevent the occurrence of sulfur deficiency in the solid electrolyte.
- the present invention also provides a method for producing lithium sulfide, A step of firing lithium carbonate in an atmosphere containing sulfur gas and hydrogen gas,
- the present invention provides a method for producing lithium sulfide, wherein the sulfur gas is contained such that the number of moles of sulfur element with respect to the number of moles of lithium carbonate is 8.0 or more and 24.0 or less.
- the present invention provides a step of mixing lithium sulfide, diphosphorus pentasulfide, and lithium halide to obtain a raw material composition; and firing the raw material composition in an inert gas or hydrogen sulfide gas atmosphere.
- the lithium sulfide of the present invention contains elemental sulfur (S) in addition to lithium sulfide (Li 2 S) itself. Since elemental sulfur has various allotropes, the lithium sulfide of the present invention may contain at least one type of elemental sulfur, and may contain two or more different types of elemental sulfur. Examples of elemental sulfur include ⁇ -sulfur S8 , which is orthorhombic system.
- a predetermined amount of elemental sulfur is contained in the lithium sulfide of the present invention.
- the amount of elemental sulfur contained in lithium sulfide can be determined based on the intensity of diffraction peaks in X-ray diffraction (hereinafter also referred to as “XRD”) measurement.
- XRD X-ray diffraction
- Diffraction peak A is a diffraction peak derived from the (200) plane of lithium sulfide.
- Diffraction peak B is a diffraction peak derived from the (222) plane of elemental sulfur.
- the positions of peak A and peak B may be, for example, ⁇ 0.7°, ⁇ 0.5°, or ⁇ 0.3 with respect to the central value.
- the value of Ib with respect to Ia is, for example, 0.012 or more. It is preferably 0.013 or more, more preferably 0.015 or more, and even more preferably 0.017 or more.
- the lithium sulfide can sufficiently contain elemental sulfur.
- the value of I b /I a can be set to 0.045 or less, for example.
- the lithium sulfide of the present invention contains lithium sulfide and elemental sulfur, and does not contain substances other than these. is preferable from the viewpoint of improvement.
- lithium sulfate, lithium thiosulfate, and lithium oxide may be by-produced, or lithium carbonate, which is the starting material, may remain.
- lithium carbonate which is the starting material
- the amount of the above-described compounds contained as impurities in the lithium sulfide of the present invention may be such that it does not adversely affect the performance of the sulfide solid electrolyte produced using the lithium sulfide of the present invention.
- the intensity of the diffraction peak C is I
- the value of I c to I a that is, the value of I c /I a is, for example, preferably 0.024 or less, more preferably 0.011 or less, and 0.009 or less. More preferably. Note that the value of I c /I a is usually greater than zero.
- Peak C is a diffraction peak derived from the (110) plane of lithium carbonate. Also, the position of the peak C may be, for example, ⁇ 0.7°, ⁇ 0.5°, or ⁇ 0.3° with respect to the central value.
- the intensity of D is I d
- the value of I d to I a that is, the value of I d /I a is, for example, preferably 0.16 or less, more preferably 0.12 or less, It is more preferably 0.07 or less. Note that the value of I d /I a is usually greater than zero.
- Peak D is a diffraction peak derived from the (11-1) plane of lithium sulfate. Also, the position of the peak D may be, for example, ⁇ 0.7°, ⁇ 0.5°, or ⁇ 0.3°.
- lithium carbonate (Li 2 CO 3 ) is used as one of the raw materials for lithium sulfide.
- lithium carbonate Li 2 CO 3
- lithium carbonate has extremely low hygroscopicity, and its particle size can be easily adjusted. It has comparatively advantageous features.
- lithium sulfide powder which is the target product, can be produced by using powdered lithium carbonate and reacting sulfur (S) vapor and hydrogen gas (H 2 ) with solid-phase lithium carbonate.
- the method for producing lithium sulfide of the present invention can employ a gas-solid reaction (in other words, a dry reaction) in which a solvent such as water is not used for the reaction.
- Hydrogen sulfide is used as the sulfur source compound in the conventionally known method for producing lithium sulfide. can be Therefore, this production method can produce lithium sulfide at a lower cost than conventionally known methods.
- a continuous system or a batch system is used as a reactor.
- the lithium carbonate powder preferably has an average particle size of, for example, 1 ⁇ m or more, more preferably 3 ⁇ m or more, and even more preferably 6 ⁇ m or more.
- the average particle size is, for example, preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and even more preferably 55 ⁇ m or less.
- the average particle size of lithium carbonate referred to in this specification is the volume cumulative particle size D50 at a cumulative volume of 50% by volume measured by a laser diffraction scattering particle size distribution measurement method.
- the lithium carbonate can be subjected to the firing step in an atmosphere containing sulfur gas and hydrogen gas while the lithium carbonate powder is left stationary or fluidized.
- the firing process can be performed in an open system. Conducting the firing process in an open system means that the reaction system in which the firing process is performed does not exist in a closed space.
- the lithium carbonate firing step in the present production method can be performed while an atmosphere containing sulfur gas and hydrogen gas is circulated through the lithium carbonate powder. Specifically, lithium carbonate can be fired while a mixed gas containing sulfur gas and hydrogen gas is circulated in a heating furnace in which lithium carbonate powder is placed. By adopting such a firing method, lithium carbonate can be industrially produced efficiently.
- the mixed gas used for firing contains sulfur gas and hydrogen gas.
- the mixed gas may contain only sulfur gas and hydrogen gas, or may contain other gases in addition to sulfur gas and hydrogen gas.
- Other gases include various inert gases such as nitrogen gas and rare gases such as argon.
- the mixed gas does not contain gases other than sulfur gas, hydrogen gas, and an inert gas that is used as necessary, in order to successfully produce the target lithium sulfide.
- the mixed gas used for producing lithium sulfide from lithium carbonate in the production method of the present invention preferably contains only sulfur gas and hydrogen gas.
- an inert gas such as nitrogen gas is used as a diluent gas, the diluent gas and hydrogen gas are mixed, and sulfur gas is mixed therein to prepare a mixed gas to be supplied to lithium carbonate.
- the ratio of hydrogen gas to the total of both is preferably, for example, 1.0% by volume or more, more preferably 1.5% by volume or more. 0 vol % or more is more preferable.
- the ratio is, for example, preferably 4.0% by volume or less, more preferably 3.5% by volume or less, and even more preferably 3.0% by volume or less. This is because excellent safety and reaction efficiency can be obtained.
- the sulfur gas to be mixed with the hydrogen gas can be obtained by liquefying solid sulfur by heating and then vaporizing it.
- sulfur gas is obtained by this method, it is preferable to heat solid sulfur to, for example, 200° C. or higher and 300° C. or lower under atmospheric pressure.
- the amount of mixed gas containing hydrogen gas and sulfur gas supplied to lithium carbonate is appropriately determined in relation to the amount of lithium carbonate. Specifically, it is as follows.
- the supply amount is determined in relation to the number of moles of lithium carbonate, which is the object to be fired. That is, sulfur gas is preferably contained in the firing atmosphere so that the number of moles of sulfur element relative to the number of moles of lithium carbonate is 8.0 or more and 24.0 or less. That is, the amount of elemental sulfur supplied for firing lithium carbonate is preferably, for example, 8.0 mol or more, more preferably 10.0 mol or more, relative to 1 mol of lithium carbonate. 0 mol or more is more preferable.
- the supply amount of the sulfur element is preferably, for example, 24.0 mol or less, more preferably 20.0 mol or less, and 18.0 mol or less per 1 mol of lithium carbonate. is more preferable.
- the sulfur gas in such a proportion, it is possible to sufficiently coexist elemental sulfur in the produced lithium sulfide.
- the amount of elemental sulfur supplied to lithium carbonate can be calculated from the amount of decrease in solid sulfur, for example, when sulfur gas is generated by heating solid sulfur.
- the supply amount is determined in relation to the number of moles of lithium carbonate, which is the object to be fired. That is, the hydrogen gas preferably has a value of the number of moles of hydrogen gas to the number of moles of lithium carbonate of, for example, 8.5 or more and 12.0 or less. That is, the amount of hydrogen gas supplied for firing lithium carbonate is preferably, for example, 8.5 mol or more, more preferably 9.0 mol or more, relative to 1 mol of lithium carbonate. It is more preferably 0.5 mol or more.
- the amount of hydrogen gas supplied is preferably, for example, 12.0 mol or less, more preferably 11.0 mol or less, and preferably 10.0 mol or less with respect to 1 mol of lithium carbonate. More preferred.
- hydrogen gas in such a ratio, elemental sulfur can sufficiently coexist in the produced lithium sulfide.
- the amount of hydrogen gas supplied to lithium carbonate can be measured, for example, by a flow meter installed between the hydrogen gas source (eg hydrogen gas cylinder) and the reaction system (eg heating furnace).
- the hydrogen gas source eg hydrogen gas cylinder
- the reaction system eg heating furnace
- the temperature for baking lithium carbonate in the present invention is not particularly limited as long as it is a temperature at which lithium sulfide can be produced. It is more preferably 723° C. or higher, which is the melting point of lithium.
- the firing temperature is, for example, preferably 1310° C. or lower, more preferably 1000° C. or lower, and even more preferably 800° C. or lower. It is possible to increase the reaction efficiency of lithium carbonate and suitably prevent the decomposition of lithium carbonate.
- the mixed gas containing sulfur gas and hydrogen gas When the mixed gas containing sulfur gas and hydrogen gas is supplied to lithium carbonate to bake the lithium carbonate, the mixed gas may be supplied to lithium carbonate after the temperature of the reaction system reaches 650 ° C. or higher. This is preferable from the viewpoint of reliably producing lithium sulfide. For example, when lithium carbonate is placed in a heating furnace and fired, it is preferable to circulate the mixed gas in the heating furnace after the temperature in the heating furnace reaches 650° C. or higher.
- the mixed gas is not supplied into the reaction system, and only the inert gas is supplied into the reaction system. is preferable from the viewpoint of being able to suppress
- an inert gas such as nitrogen gas is circulated in the heating furnace until the temperature in the heating furnace reaches 650 ° C., and the mixed gas is It is preferable not to circulate.
- the firing time is set appropriately so that the amounts of sulfur element and hydrogen gas supplied are set to the values described above, and lithium sulfide is reliably generated.
- part of the mixed gas supplied for firing lithium carbonate may be discharged from the reaction system in an unreacted state, or a by-product of the reaction may be discharged from the reaction system.
- a by-product of the reaction may be discharged from the reaction system.
- sulfur gas may be discharged from the reaction system in an unreacted state, in which case the sulfur gas can be solidified and removed by cooling the discharged gas.
- hydrogen sulfide gas may be discharged from the reaction system as a by-product of the reaction. can be removed by oxidation.
- Lithium sulfide obtained by this production method that is, lithium sulfide containing a predetermined amount of elemental sulfur, is useful as a raw material for a sulfide solid electrolyte for lithium ion batteries, for example.
- a raw material composition obtained by mixing lithium sulfide, diphosphorus pentasulfide, and a lithium halide such as lithium chloride (LiCl) and/or lithium bromide (LiBr) is heated in an inert gas atmosphere or in a hydrogen sulfide atmosphere.
- a crystalline solid electrolyte for example, a solid electrolyte having a crystal phase with an aldirodite-type crystal structure can be synthesized by firing under the conditions.
- the raw material composition can be free of elemental sulfur. Therefore, the use of the lithium sulfide of the present invention has the advantage of not complicating the production of the sulfide solid electrolyte.
- the fact that the raw material composition does not contain elemental sulfur means that elemental sulfur is present in the raw material composition independently of each component constituting the raw material composition.
- Example 1 Preparation of mixed gas Hydrogen gas (concentration 3.5 vol%) diluted with nitrogen gas was prepared. Separately, solid sulfur was prepared and placed in a flask, and the flask was heated to 200° C. to 380° C. with a mantle heater to vaporize the solid sulfur and generate sulfur gas. Then, sulfur gas and hydrogen gas diluted with nitrogen gas were mixed to obtain a mixed gas. The ratio of sulfur gas and hydrogen gas in this mixed gas was set to a predetermined ratio by adjusting the heating temperature of solid sulfur, the flow rate of hydrogen gas diluted with nitrogen gas, and the like.
- Lithium carbonate powder having a D50 of 5.9 ⁇ m was prepared. A predetermined amount of lithium carbonate powder was placed in a tubular furnace.
- Examples 2 to 6 and Comparative Examples 1 and 2 The values shown in Table 1 were used for the baking time. Also, the number of moles of sulfur element and the number of moles of hydrogen gas supplied to lithium carbonate were set as shown in the same table per 1 mole of lithium carbonate. Lithium sulfide was produced in the same manner as in Example 1 except for these.
- the lithium sulfide obtained in each example contains a predetermined amount of elemental sulfur.
- lithium sulfide that can be suitably used as a raw material for producing a sulfide solid electrolyte is provided.
- a sulfide solid electrolyte can be successfully produced without using elemental sulfur.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Conductive Materials (AREA)
Abstract
Description
したがって本発明の課題は、硫化物固体電解質の製造方法において、硫黄単体の使用を不要にし得る原料を提供することにある。
2θ=31.2°±1.0°の位置に回折ピークAを有し、2θ=23.0°±1.0°の位置に回折ピークBを有し、
前記回折ピークAの強度をIaとし前記回折ピークBの強度をIbとしたとき、前記Iaに対する前記Ibの値が0.012以上0.045以下である、硫化リチウムを提供するものである。
硫黄ガス及び水素ガスを含む雰囲気中で炭酸リチウムを焼成する工程を備え、
前記硫黄ガスは、炭酸リチウムのモル数に対する硫黄元素のモル数の値が8.0以上24.0以下となるように含まれる、硫化リチウムの製造方法を提供するものである。
前記原料組成物を不活性ガス又は硫化水素ガス雰囲気中で焼成する工程とを備える、硫化物固体電解質の製造方法を提供するものである。
(1)混合ガスの準備
窒素ガスで希釈された水素ガス(濃度3.5vol%)を用意した。これとは別に固体硫黄を用意し、これをフラスコ内に入れ、このフラスコをマントルヒーターで200℃~380℃に加熱して固体硫黄を気化させて硫黄ガスを発生させた。そして、硫黄ガスと、窒素ガスで希釈された水素ガスとを混合して混合ガスを得た。この混合ガスにおける硫黄ガスと水素ガスとの割合は、固体硫黄の加熱温度、及び窒素ガスで希釈された水素ガスの流量等を調整することで所定の割合とした。
D50が5.9μmである炭酸リチウムの粉末を準備した。所定量の炭酸リチウムの粉末を管状炉内に静置した。
管状炉に備えられた電熱ヒーターに通電して該管状炉を加熱した。このとき管状炉内に窒素ガスを流通させた。
管状炉内の温度が750℃に達した時点でこの温度を保持し、(1)で準備した混合ガスを管状炉内に流通させ、炭酸リチウムの焼成を行い、硫化リチウムの粉末を製造した。焼成時間は、以下の表1に示すとおりとした。この時間内に炭酸リチウムに供給された硫黄元素のモル数及び水素ガスのモル数は、炭酸リチウム1モル当たり同表に示すとおりであった。同表に示す時間の焼成が完了した後、混合ガスの供給を停止するとともに管状炉の加熱を停止して、反応を終了させた。
焼成時間を表1に示す値とした。また、炭酸リチウムに供給された硫黄元素のモル数及び水素ガスのモル数を、炭酸リチウム1モル当たり同表に示すとおりとした。これら以外は実施例1と同様にして硫化リチウムを製造した。
実施例及び比較例で得られた硫化リチウムについてXRD測定を行い、上述したピークA、ピークB、ピークC及びピークDの強度Ia、Ib、Ic及びIdを求め、Ib/Ia、Ic/Ia及びId/Iaを算出した。更に、各ピークの強度から、生成物中に含まれる各物質の組成(質量%)を算出した。それらの結果を以下の表1に示す。なお、表1の組成の結果における「―」は0.01以下であることを指し、ピーク強度比における「―」は0.001以下であることを指す。
XRDの測定条件は以下のとおりとした。
・装置名:全自動多目的X線回折装置 SmartLab SE(株式会社リガク製)
・線源:CuKα1
・管電圧:40kV
・管電流:50mA
・測定方法:集中法(反射法)
・光学系:多層膜ミラー発散ビーム法(CBO-α)
・検出器:一次元半導体検出器
・入射ソーラースリット:ソーラースリット2.5°
・長手制限スリット:10mm
・受光ソーラースリット:2.5°
・入射スリット:1/6°
・受光スリット:2mm(オープン)
・測定範囲:2θ=10~120°
・ステップ幅:0.02°
・スキャンスピード:1.0°/min
Claims (5)
- CuKα1線を用いたX線回折装置により測定されるX線回折パターンにおいて、
2θ=31.2°±1.0°の位置に回折ピークAを有し、2θ=23.0°±1.0°の位置に回折ピークBを有し、
前記回折ピークAの強度をIaとし前記回折ピークBの強度をIbとしたとき、前記Iaに対する前記Ibの値が0.012以上0.045以下である、硫化リチウム。 - CuKα1線を用いたX線回折装置により測定されるX線回折パターンにおいて、
2θ=21.3°±1.2°の位置の回折ピークを回折ピークCとし、
前記回折ピークCの強度をIcとしたとき、前記Iaに対する前記Icの値が0.024以下である、請求項1に記載の硫化リチウム。 - 請求項1に記載の硫化リチウムの製造方法であって、
硫黄ガス及び水素ガスを含む雰囲気中で炭酸リチウムを焼成する工程を備え、
前記硫黄ガスは、炭酸リチウムのモル数に対する硫黄元素のモル数の値が8.0以上24.0以下となるように前記雰囲気中に含まれる、硫化リチウムの製造方法。 - 請求項1又は2に記載の硫化リチウムと、五硫化二リンと、ハロゲン化リチウムとを混合して原料組成物を得る工程と、
前記原料組成物を不活性ガス又は硫化水素ガス雰囲気中で焼成する工程とを備える、硫化物固体電解質の製造方法。 - 前記原料組成物が硫黄単体を非含有である、請求項4に記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280074061.5A CN118201872A (zh) | 2021-11-22 | 2022-11-14 | 硫化锂及其制造方法以及硫化物固体电解质的制造方法 |
EP22895564.7A EP4438554A1 (en) | 2021-11-22 | 2022-11-14 | Lithium sulfide and method for producing same, and method for producing sulfide solid electrolyte |
JP2023561578A JPWO2023090282A1 (ja) | 2021-11-22 | 2022-11-14 | |
KR1020247014772A KR20240109987A (ko) | 2021-11-22 | 2022-11-14 | 황화리튬 및 그 제조 방법 그리고 황화물 고체 전해질의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-189602 | 2021-11-22 | ||
JP2021189602 | 2021-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023090282A1 true WO2023090282A1 (ja) | 2023-05-25 |
Family
ID=86396958
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042188 WO2023090282A1 (ja) | 2021-11-22 | 2022-11-14 | 硫化リチウム及びその製造方法並びに硫化物固体電解質の製造方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4438554A1 (ja) |
JP (1) | JPWO2023090282A1 (ja) |
KR (1) | KR20240109987A (ja) |
CN (1) | CN118201872A (ja) |
WO (1) | WO2023090282A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09278423A (ja) * | 1996-04-16 | 1997-10-28 | Furukawa Co Ltd | 硫化リチウムの製造方法 |
WO2012141207A1 (ja) * | 2011-04-12 | 2012-10-18 | 三井金属鉱業株式会社 | リチウムイオン電池固体電解質材料用硫化リチウムの製造方法 |
JP2013075816A (ja) * | 2011-09-13 | 2013-04-25 | Nippon Chem Ind Co Ltd | 硫化リチウム、その製造方法及び無機固体電解質の製造方法 |
JP2015174787A (ja) * | 2014-03-14 | 2015-10-05 | 東レ・ファインケミカル株式会社 | 硫化リチウム製造装置およびそれを用いた硫化リチウムの製造方法 |
JP2016216312A (ja) * | 2015-05-22 | 2016-12-22 | 日本化学工業株式会社 | 硫化リチウムの製造方法及び無機固体電解質の製造方法 |
WO2020095937A1 (ja) * | 2018-11-08 | 2020-05-14 | 三井金属鉱業株式会社 | 硫黄含有化合物、固体電解質及び電池 |
US20210020984A1 (en) | 2018-09-04 | 2021-01-21 | Mitsui Mining & Smelting Co., Ltd. | Sulfide-Type Compound Particles, Solid Electrolyte, and Lithium Secondary Battery |
CN112777571A (zh) * | 2021-02-10 | 2021-05-11 | 山东瑞福锂业有限公司 | 一种合成电池级硫化锂的方法 |
-
2022
- 2022-11-14 CN CN202280074061.5A patent/CN118201872A/zh active Pending
- 2022-11-14 KR KR1020247014772A patent/KR20240109987A/ko unknown
- 2022-11-14 WO PCT/JP2022/042188 patent/WO2023090282A1/ja active Application Filing
- 2022-11-14 EP EP22895564.7A patent/EP4438554A1/en active Pending
- 2022-11-14 JP JP2023561578A patent/JPWO2023090282A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09278423A (ja) * | 1996-04-16 | 1997-10-28 | Furukawa Co Ltd | 硫化リチウムの製造方法 |
WO2012141207A1 (ja) * | 2011-04-12 | 2012-10-18 | 三井金属鉱業株式会社 | リチウムイオン電池固体電解質材料用硫化リチウムの製造方法 |
JP2013075816A (ja) * | 2011-09-13 | 2013-04-25 | Nippon Chem Ind Co Ltd | 硫化リチウム、その製造方法及び無機固体電解質の製造方法 |
JP2015174787A (ja) * | 2014-03-14 | 2015-10-05 | 東レ・ファインケミカル株式会社 | 硫化リチウム製造装置およびそれを用いた硫化リチウムの製造方法 |
JP2016216312A (ja) * | 2015-05-22 | 2016-12-22 | 日本化学工業株式会社 | 硫化リチウムの製造方法及び無機固体電解質の製造方法 |
US20210020984A1 (en) | 2018-09-04 | 2021-01-21 | Mitsui Mining & Smelting Co., Ltd. | Sulfide-Type Compound Particles, Solid Electrolyte, and Lithium Secondary Battery |
WO2020095937A1 (ja) * | 2018-11-08 | 2020-05-14 | 三井金属鉱業株式会社 | 硫黄含有化合物、固体電解質及び電池 |
CN112777571A (zh) * | 2021-02-10 | 2021-05-11 | 山东瑞福锂业有限公司 | 一种合成电池级硫化锂的方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023090282A1 (ja) | 2023-05-25 |
EP4438554A1 (en) | 2024-10-02 |
CN118201872A (zh) | 2024-06-14 |
KR20240109987A (ko) | 2024-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6761024B2 (ja) | 固体電解質及び固体電解質の製造方法 | |
US10797344B2 (en) | Method for producing garnet type oxide solid electrolyte | |
JP7071899B2 (ja) | 固体電解質の製造方法 | |
CN110431643B (zh) | 固体电解质的制造方法 | |
WO2018110647A1 (ja) | 硫化物固体電解質の製造方法 | |
JP6063464B2 (ja) | 硫化物系ガラスと硫化物系ガラスセラミックスの製造方法 | |
JP2022103239A (ja) | 固体電解質の製造方法 | |
JP2014169196A (ja) | 硫化リチウムの製造方法及び無機固体電解質の製造方法 | |
CN115803285B (zh) | 用于锂离子二次电池的硫化物系固体电解质及其制造方法、固体电解质层以及锂离子二次电池 | |
WO2021054433A1 (ja) | 固体電解質及びその製造方法 | |
CN111788641B (zh) | 具有硫银锗矿型晶体结构的硫化物固体电解质的制造方法 | |
WO2023090282A1 (ja) | 硫化リチウム及びその製造方法並びに硫化物固体電解質の製造方法 | |
WO2023090271A1 (ja) | 硫化リチウムの製造方法 | |
WO2023090283A1 (ja) | 硫化リチウムの製造方法 | |
WO2020017500A1 (ja) | 固体電解質の製造方法 | |
CN113299998B (zh) | 硫化物固体电解质的制造方法 | |
WO2024137716A2 (en) | Solid-state electrolyte synthesis using a p 4s x material | |
KR20240065261A (ko) | 황화물계 고체 전해질 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22895564 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023561578 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280074061.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022895564 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022895564 Country of ref document: EP Effective date: 20240624 |