WO2023032701A1 - 硫化リチウムの製造方法 - Google Patents

硫化リチウムの製造方法 Download PDF

Info

Publication number
WO2023032701A1
WO2023032701A1 PCT/JP2022/031280 JP2022031280W WO2023032701A1 WO 2023032701 A1 WO2023032701 A1 WO 2023032701A1 JP 2022031280 W JP2022031280 W JP 2022031280W WO 2023032701 A1 WO2023032701 A1 WO 2023032701A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
reaction
lithium sulfide
gas
sulfide
Prior art date
Application number
PCT/JP2022/031280
Other languages
English (en)
French (fr)
Inventor
誠二 東
良太 安藤
則史 大森
秀悦 関
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023032701A1 publication Critical patent/WO2023032701A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • C01B17/24Preparation by reduction
    • C01B17/26Preparation by reduction with carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing lithium sulfide.
  • Lithium sulfide is known, for example, as a raw material for solid electrolytes used in all-solid-state lithium-ion secondary batteries.
  • a known method for producing lithium sulfide is to react lithium hydroxide with a sulfur-containing gas.
  • a sulfur-containing gas for example, hydrogen sulfide and sulfur gas (sulfur vapor) are known (for example, Patent Document 1).
  • Lithium hydroxide reacts with carbon dioxide in the atmosphere to easily form lithium carbonate. Therefore, lithium hydroxide usually contains lithium carbonate as an impurity. Since lithium carbonate hardly reacts with hydrogen sulfide, lithium carbonate may remain as an impurity in the resulting reaction product in the method of reacting lithium hydroxide and hydrogen sulfide. Further, in the method of reacting lithium hydroxide and sulfur gas, lithium sulfate may be further generated, and lithium sulfate may be contained as an impurity in the resulting reaction product.
  • an object of the present invention is to provide a method for producing lithium sulfide that can produce lithium sulfide with few impurities.
  • a method for producing lithium sulfide comprising reacting carbon disulfide and lithium hydroxide to synthesize lithium sulfide.
  • 2. The method for producing lithium sulfide according to 1 above, wherein the reaction temperature is 350° C. or higher and 650° C. or lower.
  • 3. The lithium sulfide according to 1 or 2 above, wherein the proportion (mol%) of lithium carbonate contained as an impurity in the lithium sulfide is smaller than the proportion (mol%) of lithium carbonate contained as an impurity in the lithium hydroxide. Production method.
  • FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus used in this embodiment.
  • FIG. 2 is a diagram showing simulation results of Example 2.
  • FIG. 3 is a diagram showing simulation results of Example 3.
  • FIG. 4 is a flow chart showing an example of the manufacturing method according to this embodiment.
  • FIG. 4 is a flowchart showing an example of the manufacturing method according to this embodiment.
  • the method for producing lithium sulfide according to the present embodiment includes reacting carbon disulfide and lithium hydroxide to synthesize lithium sulfide as a first reaction S11.
  • the reaction between carbon disulfide and lithium hydroxide (hereinafter also referred to as the first reaction) is represented by the following reaction formula (1).
  • carbon disulfide (CS 2 ) and lithium hydroxide (LiOH) react to form lithium sulfide (Li 2 S), with carbon dioxide (CO 2 ) and water (H 2 ) as by-products. O) is generated.
  • the first reaction is typically a reaction of carbon disulfide gas and solid lithium hydroxide to produce solid lithium sulfide, carbon dioxide gas and water vapor.
  • the first reaction can be performed by bringing carbon disulfide gas and solid lithium hydroxide into contact and heating.
  • Carbon disulfide is liquid at room temperature.
  • carbon disulfide gas can be generated by heating liquid carbon disulfide.
  • lithium hydroxide either lithium hydroxide anhydride or lithium hydroxide monohydrate may be used, or a mixture thereof may be used.
  • lithium hydroxide monohydrate from the viewpoint of improving the reaction efficiency, it is preferable to previously heat-treat the lithium hydroxide monohydrate to remove water of crystallization.
  • the shape of lithium hydroxide is not particularly limited, but from the viewpoint of improving the reaction efficiency, a shape with a large specific surface area is preferred, for example, granular or powdery.
  • the reaction temperature T1 in the first reaction is preferably 350°C to 650°C, more preferably 400°C to 600°C, even more preferably 450°C to 550°C, and particularly preferably 450°C to 520°C. That is, the temperature T1 is preferably 350° C. or higher, more preferably 400° C. or higher, and even more preferably 450° C. or higher. When the temperature T1 is equal to or higher than the above lower limit, the purity of lithium sulfide to be produced can be easily improved, which is preferable.
  • the reaction temperature T1 in the first reaction is preferably 650° C. or lower, more preferably 600° C. or lower, still more preferably 550° C. or lower, and particularly preferably 520° C. or lower. It is preferable for the temperature T1 to be equal to or lower than the above upper limit value because corrosion of the reactor can be easily suppressed.
  • the reaction time t1 in the first reaction is preferably 10 minutes to 300 minutes, more preferably 30 minutes to 240 minutes, even more preferably 60 minutes to 150 minutes. That is, t1 is preferably 10 minutes or longer, more preferably 30 minutes or longer, and even more preferably 60 minutes or longer. When t1 is at least the above lower limit value, lithium hydroxide and impurities can be sufficiently reacted with carbon disulfide, and the purity of lithium sulfide produced can be further improved. On the other hand, the reaction time t1 in the first reaction is preferably 300 minutes or less, more preferably 240 minutes or less, and even more preferably 150 minutes or less. When t1 is equal to or less than the above upper limit value, the production efficiency of lithium sulfide can be further improved.
  • the purity of lithium sulfide obtained by the reaction can be improved.
  • lithium hydroxide readily reacts with carbon dioxide in the atmosphere to form lithium carbonate (Li 2 CO 3 ). Therefore, lithium hydroxide usually contains lithium carbonate as an impurity.
  • the present inventors have found that when synthesizing lithium sulfide by the first reaction, carbon disulfide reacts not only with lithium hydroxide but also with lithium carbonate. By reaction with carbon disulfide, lithium carbonate becomes carbon dioxide and lithium sulfide (reaction formula (2) below). Therefore, according to this production method, the amount of lithium carbonate in the reaction product can be reduced, and lithium sulfide with few impurities can be produced. 2Li 2 CO 3 +CS 2 ⁇ 2Li 2 S+3CO 2 (2)
  • the ratio (mol%) of lithium carbonate contained as an impurity in lithium sulfide is less than that of lithium carbonate contained as an impurity in lithium hydroxide used as a raw material for the first reaction. It becomes smaller than the ratio (mol%).
  • the use of such lithium sulfide in various applications is expected to improve the performance of articles to which it is applied.
  • the proportion (mol%) of lithium carbonate contained as an impurity in lithium sulfide and the proportion (mol%) of lithium carbonate contained as an impurity in lithium hydroxide are determined, for example, for each of lithium sulfide and lithium hydroxide. An X-ray diffraction measurement can be performed and the results can be compared.
  • the ratio (mol%) of lithium carbonate contained as an impurity in the synthesized lithium sulfide the CuK ⁇ X-ray diffraction measurement peak of the synthesized lithium sulfide is measured, and the lithium sulfide at around 27.06°
  • the integrated intensity ratio between the (111) peak and the lithium carbonate (110) peak near 21.37° is determined.
  • the proportion (mol %) of lithium carbonate can be determined by comparing the determined integrated intensity ratio with the integrated intensity ratio obtained by previously mixing reagents at a known ratio and measuring CuK ⁇ X-ray diffraction.
  • the first reaction and another reaction may be combined to synthesize lithium sulfide.
  • Combining the first reaction and another reaction means performing both the first reaction and the other reaction in the process of synthesizing lithium sulfide.
  • the first reaction and the other reaction are continuously performed. It can be performed, performed in parallel, or the like.
  • Other reactions include, for example, a reaction of synthesizing lithium sulfide from hydrogen sulfide and lithium hydroxide, a reaction of synthesizing lithium sulfide from sulfur gas and lithium hydroxide, and the like.
  • the timing of performing the other reaction is not particularly limited, but the first reaction is preferably performed at the end of the reaction for synthesizing lithium sulfide.
  • a preferred embodiment is to synthesize lithium sulfide by first reacting a portion of the lithium hydroxide provided by another reaction and then reacting the rest of the lithium hydroxide by the first reaction. .
  • the advantages of each reaction can be combined to efficiently synthesize lithium sulfide.
  • the reaction between hydrogen sulfide and lithium hydroxide has the advantage of a high reaction rate
  • the reaction between sulfur gas and lithium hydroxide has the advantage of cost reduction.
  • lithium sulfate Li 2 SO 4
  • the lithium sulphate can also be an impurity in the resulting lithium sulphide
  • carbon disulfide also reacts with lithium sulphate when lithium sulphate is present during the first reaction.
  • lithium sulfate becomes lithium sulfide, sulfur dioxide gas and carbon dioxide (reaction formula (3) below). Therefore, according to this production method, it is possible to suppress the decrease in purity due to the production of lithium sulfate.
  • FIG. 1 is a schematic diagram showing an example of a manufacturing apparatus used in this embodiment.
  • manufacturing apparatus 100 includes first reaction vessel 10 .
  • the first reaction takes place in the first reaction vessel 10.
  • the first reaction vessel is not particularly limited as long as it is a vessel or apparatus capable of performing the first reaction, but is preferably a vessel made of stainless steel or a ceramics vessel such as alumina.
  • the carbon disulfide gas and lithium hydroxide can be reacted.
  • the timing and order of charging lithium hydroxide, introducing carbon disulfide gas, and heating can be changed as appropriate within the range where the first reaction occurs.
  • Carbon disulfide gas is generated, for example, by putting carbon disulfide into a separately prepared container 50 and heating the container 50 .
  • the container 50 is not particularly limited, a container having pressure resistance and heat resistance that can withstand the heating of carbon disulfide and the generation of carbon disulfide gas is preferable.
  • the heating temperature of the container 50 for generating the carbon disulfide gas can be appropriately set, but is preferably 46°C to 100°C, more preferably 60°C to 85°C.
  • the heating temperature of the container 50 is preferably 46° C. or higher, more preferably 60° C. or higher, from the viewpoint of sufficiently generating carbon disulfide gas.
  • the heating temperature is preferably 100° C. or lower, more preferably 85° C. or lower, from the viewpoint of easily ensuring the pressure resistance of the container.
  • carbon disulfide gas generated in vessel 50 is introduced into first reaction vessel 10 .
  • the carbon disulfide gas may be mixed with an inert gas before it is supplied to the first reaction vessel 10, if necessary, in order to adjust the concentration of the introduced gas.
  • FIG. 1 illustrates the case of using nitrogen gas (N 2 ) as the inert gas
  • the inert gas may be another inert gas such as argon gas.
  • the concentration of the carbon disulfide gas is preferably 10% to 100% by volume, more preferably 50% to 100% by volume, out of the total gas introduced into the first reaction vessel 10. From the viewpoint of efficiently advancing the first reaction, the carbon disulfide gas concentration is preferably 10% by volume or more, more preferably 50% by volume or more, and may be 100% by volume.
  • the total amount of carbon disulfide gas introduced into the first reaction vessel 10 is preferably in excess of the amount required for the reaction with lithium hydroxide in the first reaction vessel. This makes it easier for the carbon disulfide gas to sufficiently react not only with lithium hydroxide but also with lithium carbonate and lithium sulfate.
  • the carbon disulfide gas and the optionally used inert gas are preferably introduced into the first reaction vessel 10 through separate mass flow controllers (MFC) 40, respectively. Thereby, the flow rate and supply amount of each gas introduced into the first reaction vessel 10 can be appropriately adjusted. The flow rate and supply amount of each gas may be adjusted using a device or the like other than the mass flow controller (MFC) 40 .
  • the method of generating carbon disulfide gas and the method of introducing it are not limited to these, and other methods may be used as appropriate as long as the object of the present invention is not hindered.
  • the heating of the first reaction vessel can be performed by a known method.
  • the preferred range of the temperature inside the first reaction vessel 10 is the same as the preferred range of the reaction temperature T1 described above.
  • the carbon disulfide gas and lithium hydroxide are brought into contact with each other in the first reaction vessel 10 and kept in a heated state for an appropriate time.
  • the preferable retention time is the same as the preferable range of the reaction time t1 described above.
  • the first reaction vessel 10 it is also preferable to stir the inside of the reaction vessel from the viewpoint of improving reaction uniformity. It is also preferable to increase the contact efficiency between carbon disulfide gas and lithium hydroxide by a method such as spraying carbon disulfide gas onto lithium hydroxide.
  • Lithium sulfide is obtained as a solid in the first reaction vessel 10 after the first reaction.
  • Gas by-products (CO 2 , H 2 O) of the first reaction, products (not shown) resulting from the reaction of impurities and carbon disulfide, unreacted gas (not shown), etc. is preferably discharged from the reaction vessel 10.
  • Lithium sulfide may be recovered by a known method, but it is preferable to carry out the recovery operation in an environment where lithium sulfide does not come into contact with the air, for example, in an inert gas atmosphere.
  • the recovered lithium sulfide can be identified by X-ray diffraction measurement.
  • the ratio of Li 2 S, Li 2 CO 3 and Li 2 SO 4 was calculated using the results of X-ray diffraction measurement and the peak intensity ratio for which a calibration curve was prepared in advance. The purity of lithium can be evaluated.
  • the lithium sulfide obtained by this production method is suitably used as a raw material for solid electrolytes, a raw material for positive electrode active materials, a raw material for negative electrode active materials, an intermediate raw material for chemicals, etc. used in all-solid-state lithium ion secondary batteries.
  • Lithium sulfide obtained by this production method has a relatively high purity with a reduced content of impurities. The use of such lithium sulfide for each of the above applications is expected to improve the battery characteristics of the resulting all-solid-state lithium ion secondary battery, improve the purity of chemicals, and the like.
  • Example 1 is an example of this production method
  • Examples 2 and 3 are reference examples for further explaining this production method.
  • Example 1 5 g of anhydrous LiOH is charged to a reaction vessel and heated to 500°C. At the same time, an appropriate amount of carbon disulfide (CS 2 ) is put into a separately prepared container and heated to 70°C. CS2 gas generated by heating CS2 is flowed at a flow rate of 50 sccm through a mass flow controller, combined with nitrogen gas flowed at a flow rate of 50 sccm from another line through the mass flow controller, and allowed to flow into the reactor for 130 minutes. This causes CS2 to react with LiOH to synthesize Li2S . Stirring was not performed in this example because the amount of charged LiOH was relatively small.
  • 1 sccm means that a gas is flowed in an amount corresponding to 1 cm 3 of gas per minute at 0° C. and 1 atmospheric pressure. Thereafter, the flow rate of CS2 is set to zero, and only nitrogen gas is supplied for 60 minutes to completely replace the gas in the reaction vessel with nitrogen, and the reaction vessel is cooled. Next, the reaction vessel is opened in a glove box purged with nitrogen, and the reaction product is recovered.
  • Example 2 Under the initial conditions of Examples 2 and 3 shown below, the thermal equilibrium composition at each temperature was calculated using HSC Chemistry Ver. 4 was used for calculation.
  • the initial conditions for Example 2 assume the presence of excess CS 2 in addition to predetermined amounts of Li 2 S, Li 2 CO 3 and Li 2 SO 4 .
  • the simulation results of Example 2 show that when Li 2 S is synthesized by reacting CS 2 with LiOH under conditions containing predetermined amounts of Li 2 CO 3 and Li 2 SO 4 , the reaction product It suggests to what extent Li 2 S, Li 2 CO 3 and Li 2 SO 4 are contained in. Also, Example 3 is obtained by replacing CS 2 in Example 2 with H 2 S.
  • Example 2 The simulation results of Example 2 are shown in FIG. 2, and the simulation results of Example 3 are shown in FIG.
  • Example 2 it is considered that stable Li 2 CO 3 is formed by C contained in the added CS 2 and O contained in Li 2 SO 4 in the low temperature part lower than 350°C. Therefore, it is considered that under conditions where Li 2 SO 4 is mixed as an impurity, the coexistence of CS 2 can increase the amount of Li 2 CO 3 produced.
  • C contained in CS2 exerts a reducing action and deprives Li2CO3 and Li2SO4 of O.
  • the effect of reducing Li 2 CO 3 and Li 2 SO 4 as impurities is obtained in the region of 350° C. or higher.
  • Example 3 in order to make the total amount of S the same as in Example 2, 20 kmol of H 2 S, twice as much as in Example 2, was added to calculate the thermal equilibrium composition. Unlike CS2 , H2S does not react with impurity components at low temperature. Therefore, the residual amount of Li 2 S in the low temperature part of Example 3 is larger than that in the same temperature range of Example 2. However, in Example 3, it can be seen from the calculation results that a temperature condition higher than 650° C. is necessary to cause the impurities and H 2 S to react and disappear.
  • the temperature at which impurities can be completely removed is about 200° C. lower than under the conditions of Example 3.
  • the temperature of the reactor is higher than 650° C. under the condition that H 2 S is present, corrosion of the reactor rapidly progresses due to the influence of sulfidation gas. Synthesizing lithium is inferior in terms of productivity.
  • the method for producing lithium sulfide of the present invention using CS2 lithium sulfide with higher purity can be obtained at a lower reaction temperature.
  • Example 2 is a result assuming a condition in which a predetermined amount of impurities is contained, but when the amount of impurities is smaller, even in a temperature range lower than 350 ° C., CS 2 causes Li 2 CO, which is an impurity. 3 and Li 2 SO 4 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Conductive Materials (AREA)

Abstract

本発明は、二硫化炭素と水酸化リチウムを反応させて硫化リチウムを合成することを含む、硫化リチウムの製造方法に関する。

Description

硫化リチウムの製造方法
 本発明は、硫化リチウムの製造方法に関する。
 硫化リチウムは、例えば全固体型リチウムイオン二次電池に用いられる固体電解質の原材料等として知られている。
 硫化リチウムの製造方法として、水酸化リチウムと硫黄含有ガスを反応させる方法が知られている。硫黄含有ガスとしては、例えば硫化水素や硫黄ガス(硫黄蒸気)が使用される例が知られている(例えば、特許文献1)。
日本国特開平9-278423号公報
 水酸化リチウムは大気中の二酸化炭素と反応し容易に炭酸リチウムを形成する。そのため、水酸化リチウムには通常、不純物として炭酸リチウムが含まれる。炭酸リチウムは硫化水素と反応しにくいため、水酸化リチウムと硫化水素を反応させる方法では、得られる反応生成物に炭酸リチウムが不純物として残ってしまう場合があった。また、水酸化リチウムと硫黄ガスを反応させる方法では、さらに硫酸リチウムが生成し、得られる反応生成物に硫酸リチウムが不純物として含有される場合があった。
 上記の事情に鑑み、本発明は、不純物の少ない硫化リチウムを製造できる硫化リチウムの製造方法を提供することを目的とする。
 従来、水酸化リチウムと反応させる硫黄含有ガスとして二硫化炭素を用い、実際に硫化リチウムを合成した例は知られていなかった。本発明者らは鋭意検討の結果、二硫化炭素と水酸化リチウムとを反応させて硫化リチウムを合成する場合、二硫化炭素が水酸化リチウムのみならず炭酸リチウムとも反応することを見出した。これにより、反応生成物に含有される炭酸リチウムの量を低減でき、不純物の少ない硫化リチウムを製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下の1~3に関する。
1.二硫化炭素と水酸化リチウムを反応させて硫化リチウムを合成することを含む、硫化リチウムの製造方法。
2.前記反応における反応温度が350℃以上650℃以下である、前記1に記載の硫化リチウムの製造方法。
3.前記硫化リチウムに不純物として含有される炭酸リチウムの割合(mol%)が、前記水酸化リチウムに不純物として含有される炭酸リチウムの割合(mol%)より小さい、前記1又は2に記載の硫化リチウムの製造方法。
 本発明によれば、不純物の少ない硫化リチウムを製造できる硫化リチウムの製造方法を提供できる。
図1は、本実施形態で使用される製造装置の一例を示す模式図である。 図2は、例2のシミュレーション結果を示す図である。 図3は、例3のシミュレーション結果を示す図である。 図4は、本実施形態に係る製造方法の一例を示すフローチャートである。
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 図4は、本実施形態に係る製造方法の一例を示すフローチャートである。本実施形態に係る硫化リチウムの製造方法(以下、本製造方法ともいう。)は、第1の反応S11として、二硫化炭素と水酸化リチウムを反応させて硫化リチウムを合成することを含む。
 二硫化炭素と水酸化リチウムの反応(以下、第1の反応ともいう。)は、下記反応式(1)で表される。第1の反応において、二硫化炭素(CS)と水酸化リチウム(LiOH)が反応して硫化リチウム(LiS)が生成し、副生成物として二酸化炭素(CO)及び水(HO)が生成する。
 CS+4LiOH→2LiS+CO+2HO   (1)
 第1の反応は、典型的には、二硫化炭素ガスと固体の水酸化リチウムとの反応により、固体の硫化リチウム、二酸化炭素ガス及び水蒸気が生成する反応である。例えば、二硫化炭素ガスと固体の水酸化リチウムを接触させて加熱することで第1の反応を行える。
 二硫化炭素は常温で液体である。例えば液体の二硫化炭素を加熱することで二硫化炭素ガスを発生させられる。
 水酸化リチウムとしては水酸化リチウム無水物及び水酸化リチウム一水和物のいずれを用いてもよく、これらの混合物を用いてもよい。水酸化リチウム一水和物を用いる場合、反応効率を向上する観点から、予め水酸化リチウム一水和物の加熱処理を行い結晶水を除去することが好ましい。
 水酸化リチウムの形状は特に限定されないが、反応効率を向上する観点からは比表面積が大きくなる形状が好ましく、例えば粒状や粉末状が好ましい。
 第1の反応における反応温度T1は350℃~650℃が好ましく、400℃~600℃がより好ましく、450℃~550℃がさらに好ましく、450℃~520℃が特に好ましい。すなわち、温度T1は350℃以上が好ましく、400℃以上がより好ましく、450℃以上がさらに好ましい。温度T1が上記下限値以上であることで、生成する硫化リチウムの純度を向上しやすいため好ましい。第1の反応における反応温度T1は650℃以下が好ましく、600℃以下がより好ましく、550℃以下がさらに好ましく、520℃以下が特に好ましい。温度T1が上記上限値以下であることで、反応器の腐食を抑制しやすいため好ましい。
 第1の反応における反応時間t1は10分~300分が好ましく、30分~240分がより好ましく、60分~150分がさらに好ましい。すなわち、t1は10分以上が好ましく、30分以上がより好ましく、60分以上がさらに好ましい。t1が上記下限値以上であることで、水酸化リチウムや不純物を十分に二硫化炭素と反応させられ、生成する硫化リチウムの純度をより向上できる。
 一方、第1の反応における反応時間t1は300分以下が好ましく、240分以下がより好ましく、150分以下がさらに好ましい。t1が上記上限値以下であることで、硫化リチウムの生成効率をより向上できる。
 第1の反応を含む本製造方法によれば、当該反応により得られる硫化リチウムの純度を向上できる。上述の通り、水酸化リチウムは大気中の二酸化炭素と反応し容易に炭酸リチウム(LiCO)を形成する。そのため、水酸化リチウムには通常、不純物として炭酸リチウムが含まれる。本発明者らは、第1の反応により硫化リチウムを合成する場合、二硫化炭素が水酸化リチウムのみならず炭酸リチウムとも反応することを見出した。二硫化炭素との反応により、炭酸リチウムは二酸化炭素と硫化リチウムとなる(下記反応式(2))。したがって、本製造方法によれば反応生成物における炭酸リチウムの量を低減でき、不純物の少ない硫化リチウムを製造できる。
 2LiCO+CS→2LiS+3CO   (2)
 具体的に、本製造方法によれば、硫化リチウムに不純物として含有される炭酸リチウムの割合(mol%)が、第1の反応の原料として用いられる水酸化リチウムに不純物として含有される炭酸リチウムの割合(mol%)より小さくなる。かかる硫化リチウムが各用途に用いられることで、適用された物品の性能向上等が期待される。
 なお、硫化リチウムに不純物として含有される炭酸リチウムの割合(mol%)及び水酸化リチウムに不純物として含有される炭酸リチウムの割合(mol%)の大小は、例えば硫化リチウム及び水酸化リチウムのそれぞれについてX線回折測定を行い、その結果をもとに比較できる。
 例えば、合成された硫化リチウムに不純物として含有される炭酸リチウムの割合(mol%)を調べる場合、合成された硫化リチウムのCuKαX線回折測定ピークを測定し、27.06°付近にある硫化リチウムの(111)ピークと21.37°付近にある炭酸リチウムの(110)ピークの積分強度比を求める。求めた積分強度比を、予め試薬を既知の割合で混合してCuKαX線回折測定しておいた積分強度比と比較することで、炭酸リチウムの割合(mol%)を求めることができる。
 本製造方法において、第1の反応と他の反応とを組み合わせて硫化リチウムを合成してもよい。第1の反応と他の反応とを組み合わせるとは、硫化リチウムを合成する過程で第1の反応と他の反応の両方を行うことをいい、例えば第1の反応と他の反応を連続的に行うことや、並行して行うこと等が挙げられる。他の反応として、例えば硫化水素と水酸化リチウムにより硫化リチウムを合成する反応、硫黄ガスと水酸化リチウムにより硫化リチウムを合成する反応等が挙げられる。
 第1の反応と他の反応とを組み合わせる場合、他の反応を行うタイミングは特に限定されないが、第1の反応は、硫化リチウムを合成する反応の終期に行うことが好ましい。好ましい具体例として、最初に他の反応を行い、用意した水酸化リチウムの一部を反応させ、次いで第1の反応により水酸化リチウムの残りを反応させることで硫化リチウムを合成することが挙げられる。
 第1の反応と他の反応とを組み合わせて硫化リチウムを合成することで、各反応の利点を組み合わせて効率的に硫化リチウムを合成できる。例えば、硫化水素と水酸化リチウムの反応は反応速度が速いという利点があり、硫黄ガスと水酸化リチウムの反応はコスト抑制の観点で優れるという利点がある。そして、硫化リチウムを合成する反応の終期に第1の反応を行うことで、反応生成物に含まれる不純物の量を低減でき、得られる硫化リチウムの純度を向上できる。また、他の反応により硫化リチウムを合成した後、二硫化炭素ガス雰囲気下で反応生成物を加熱処理することによっても、反応生成物に含まれる不純物の量を低減でき得る。
 なお、水酸化リチウムと硫黄ガスが反応する場合、硫化リチウムに加え硫酸リチウム(LiSO)が生成することがある。当該硫酸リチウムも得られる硫化リチウムにおける不純物となり得るが、第1の反応時に硫酸リチウムが存在する場合、二硫化炭素は硫酸リチウムとも反応することがわかった。二硫化炭素との反応により、硫酸リチウムは硫化リチウム、二酸化硫黄ガスおよび二酸化炭素となる(下記反応式(3))。したがって、本製造方法によれば、硫酸リチウムの生成による純度の低下も抑制できる。
 2LiSO+CS→LiS+CO+2SO   (3)
 以下、本発明の実施形態に係る硫化リチウムの製造方法について図面を用いてさらに説明する。以下では、他の反応は組み合わせずに、第1の反応単独で硫化リチウムを合成する場合を例として説明する。以下は本発明の実施形態の一例であり、本発明の目的を達成できる範囲において、適宜変形や改良が可能である。
 図1は、本実施形態で使用される製造装置の一例を示す模式図である。図1において、製造装置100は、第1の反応容器10を含む。
 第1の反応は、第1の反応容器10で行われる。第1の反応容器は、第1の反応が行える容器や装置であれば特に限定されないが、例えばステンレス製の容器や、アルミナなどのセラミックス容器が好ましい。
 例えば、予め水酸化リチウム(LiOH)を投入して加熱した第1の反応容器10に二硫化炭素(CS)ガスを導入することで、二硫化炭素ガスと水酸化リチウムとを反応させられる。第1の反応が行われる範囲であれば、水酸化リチウムの投入、二硫化炭素ガスの導入及び加熱のタイミングや順序は適宜変更できる。
 二硫化炭素ガスは、例えば別途用意される容器50に二硫化炭素を投入し、容器50を加熱することで発生させられる。
 容器50としては特に限定されないが、二硫化炭素の加熱及び二硫化炭素ガスの発生に耐えうる耐圧性及び耐熱性を備える容器が好ましい。
 二硫化炭素ガスを発生させるための容器50の加熱温度は適宜設定できるが、例えば46℃~100℃が好ましく、60℃~85℃がより好ましい。容器50の加熱温度は、二硫化炭素ガスを十分に発生させる観点から46℃以上が好ましく、60℃以上がより好ましい。また、容器の耐圧性を確保しやすい観点から加熱温度は100℃以下が好ましく、85℃以下がより好ましい。
 図1において、容器50で発生させた二硫化炭素ガスが第1の反応容器10に導入される。導入ガスの濃度の調整等のため、二硫化炭素ガスは、必要に応じて第1の反応容器10に供給される前に不活性ガスと混合されてもよい。図1においては、不活性ガスとして窒素ガス(N)を使用する場合を例示したが、不活性ガスはアルゴンガス等の他の不活性ガスであってもよい。
 第1の反応容器10に導入されるガス全体のうち、二硫化炭素ガスの濃度は、10体積%~100体積%が好ましく、50体積%~100体積%がより好ましい。二硫化炭素ガスの濃度は、第1の反応を効率的に進める観点から10体積%以上が好ましく、50体積%以上がより好ましく、二硫化炭素ガスの濃度は100体積%であってもよい。
 第1の反応容器10に導入される二硫化炭素ガスの総量は、第1の反応容器中の水酸化リチウムとの反応に必要な量よりも過剰であることが好ましい。これにより、二硫化炭素ガスを水酸化リチウムのみならず炭酸リチウムや硫酸リチウムとも十分に反応させやすくなる。
 二硫化炭素ガス及び必要に応じ使用される不活性ガスはそれぞれ、別個のマスフローコントローラ(MFC)40を通じて第1の反応容器10に導入されることが好ましい。これにより、第1の反応容器10に導入される各ガスの流量や供給量を適切に調整できる。各ガスの流量や供給量の調整は、マスフローコントローラ(MFC)40以外の装置等を用いて行われてもよい。
 二硫化炭素ガスの発生方法や導入方法はこれらに限定されず、本発明の目的を妨げない範囲であれば、適宜他の方法を用いてもよい。
 第1の反応容器の加熱は、公知の方法で行える。第1の反応容器10の内部の温度の好ましい範囲は、上述した反応温度T1の好ましい範囲と同様である。
 第1の反応容器10において、二硫化炭素ガスと水酸化リチウムが接触し、加熱された状態で適切な時間保持されることが好ましい。具体的には、好ましい保持時間は上述した反応時間t1の好ましい範囲と同様である。
 第1の反応容器10において、反応均一性を向上する観点から、反応容器内の撹拌を行うことも好ましい。また、二硫化炭素ガスを水酸化リチウムに吹き付ける等の方法により、二硫化炭素ガスと水酸化リチウムとの接触効率を高めることも好ましい。
 第1の反応後、第1の反応容器10内で固体として硫化リチウムが得られる。第1の反応の気体副生成物(CO、HO)、不純物と二硫化炭素の反応による生成物(不図示)及び未反応ガス(不図示)等は、除害装置60を通じて第1の反応容器10から排出されることが好ましい。
 硫化リチウムの回収は公知の方法により行えばよいが、硫化リチウムが大気に触れない環境下、例えば不活性ガス雰囲気下で回収作業を行うことが好ましい。
 回収された硫化リチウムは、X線回折測定により同定できる。また、X線回折測定の結果と、予め検量線を作成したピーク強度比とを用いて、LiS、LiCO及びLiSOの割合をそれぞれ算出することにより、得られた硫化リチウムの純度を評価できる。
 本製造方法により得られる硫化リチウムは、全固体型リチウムイオン二次電池に用いられる固体電解質の原材料、正極活物質の原材料、負極活物質の原材料、化学薬品の中間原料等として好適に用いられる。本製造方法により得られる硫化リチウムは、不純物の含有割合が低減され、比較的高純度である。かかる硫化リチウムが上記の各用途に用いられることで、得られる全固体型リチウムイオン二次電池の電池特性の向上や、化学薬品の純度の向上等が期待される。
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。例1は本製造方法の実施例であり、例2及び例3は本製造方法をさらに説明する参考例である。
 (例1)
 無水LiOHを5g反応容器に仕込み500℃に加熱する。同時に別途用意される容器に適量の二硫化炭素(CS)を入れ、70℃に加熱する。CSの加熱により発生させたCSガスをマスフローコントローラで50sccmの流量で流し、別ラインからマスフローコントローラを通して50sccmの流量で流した窒素ガスと合流させ、反応容器内に130分流入させる。これにより、CSをLiOHと反応させてLiSを合成する。本例ではLiOH仕込み量が比較的少ないので撹拌は行っていない。ここで1sccmは0℃、1気圧で毎分1cmの気体に相当する量の気体を流すことを意味する。
 その後、CSの流量をゼロとし、60分間、窒素ガスのみを流して反応容器内のガスを完全に窒素と置換し、反応容器を冷却する。次いで、窒素で置換したグローブボックス内で反応容器を開け反応生成物の回収を行う。回収される反応生成物を試料台に固定し大気に触れないようにカプトンテープで封止した後、X線回折装置で試料を測定し、予め検量線を作成したピーク強度比からLiS、LiCO及びLiSOの割合を算出することにより、反応生成物にLiS、LiCO及びLiSOがそれぞれどの程度含まれるか確認できる。
 (例2、例3)
 以下に示す例2及び例3の各初期条件において、各温度における熱平衡組成を計算ソフトウェア HSC Chemistry Ver.4を用いて計算した。例2の初期条件は、所定量のLiS、LiCO及びLiSOに加え、過剰なCSが存在する状態を想定したものである。例2のシミュレーション結果は、所定量のLiCO及びLiSOが含まれる条件で、CSとLiOHを反応させてLiSを合成した場合、その反応温度ごとに、反応生成物中にどの程度LiS、LiCO及びLiSOが含まれるかを示唆するものである。また、例3は、例2におけるCSをHSに置き換えたものである。
 (例2の初期条件)
 LiS 1kmol、LiCO 1kmol、LiSO 1kmol、CS 10kmol
 (例3の初期条件)
 LiS 1kmol、LiCO 1kmol、LiSO 1kmol、HS 20kmol
 例2のシミュレーション結果を図2に、例3のシミュレーション結果を図3にそれぞれ示す。例2において、350℃より温度の低い低温部では、添加したCSに含まれるCとLiSOに含まれるOにより安定なLiCOが形成されると考えられる。そのため、LiSOが不純物として混合する条件においては、CSが併存することでLiCOの生成量が増加し得ると考えられる。一方で、温度を上げると、CSに含まれるCが還元作用を発揮し、LiCO及びLiSOのOを奪うと考えられる。これにより、350℃以上の領域では不純物であるLiCO及びLiSOを減少させる効果が得られる。
 例3では、Sの総量を例2と同じにするため、例2の2倍のHS 20kmolを入れて熱平衡組成の計算を行った。HSはCSと異なり低温部では不純物成分と反応しない。そのため、例3の低温部において、LiSの残存量は、例2の同じ温度域における残存量より多い。しかしながら、例3において、不純物とHSを反応させて消失させるためには650℃より高い温度条件が必要であることが計算結果よりわかる。
 以上より、例2の条件によれば、不純物を完全に除去できる温度は例3の条件と比較して200℃程度低くなることがわかる。ここで、HSが存在する条件で反応器を650℃より高い温度にすると、硫化ガスの影響により反応器腐食が急激に進むため、HSを用いた反応のみで不純物を含有しない硫化リチウムを合成するのは生産性の点で劣る。一方で、CSを用いる本発明の硫化リチウムの製造方法によれば、より低い反応温度でより純度の高い硫化リチウムが得られる。なお、例2は所定量の不純物が含まれる条件を想定した結果であるが、不純物の量がより少ない場合は、350℃よりさらに低い温度域であってもCSにより不純物であるLiCO及びLiSOを減少させる効果が得られると考えられる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2021年9月2日出願の日本特許出願(特願2021-143385)に基づくものであり、その内容はここに参照として取り込まれる。
100 製造装置
10  第1の反応容器
40  マスフローコントローラ(MFC)
50  容器
60  除害装置

Claims (3)

  1.  二硫化炭素と水酸化リチウムを反応させて硫化リチウムを合成することを含む、硫化リチウムの製造方法。
  2.  前記反応における反応温度が350℃以上650℃以下である、請求項1に記載の硫化リチウムの製造方法。
  3.  前記硫化リチウムに不純物として含有される炭酸リチウムの割合(mol%)が、前記水酸化リチウムに不純物として含有される炭酸リチウムの割合(mol%)より小さい、請求項1又は2に記載の硫化リチウムの製造方法。
PCT/JP2022/031280 2021-09-02 2022-08-18 硫化リチウムの製造方法 WO2023032701A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021143385 2021-09-02
JP2021-143385 2021-09-02

Publications (1)

Publication Number Publication Date
WO2023032701A1 true WO2023032701A1 (ja) 2023-03-09

Family

ID=85411144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031280 WO2023032701A1 (ja) 2021-09-02 2022-08-18 硫化リチウムの製造方法

Country Status (1)

Country Link
WO (1) WO2023032701A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221819A (ja) * 2011-04-12 2012-11-12 Mitsui Mining & Smelting Co Ltd リチウムイオン電池固体電解質材料用硫化リチウムの製造方法
JP2014169196A (ja) * 2013-03-01 2014-09-18 Nippon Chem Ind Co Ltd 硫化リチウムの製造方法及び無機固体電解質の製造方法
JP2014179265A (ja) * 2013-03-15 2014-09-25 Toyota Motor Corp 硫化物固体電解質材料の製造方法
US20200165129A1 (en) * 2017-02-03 2020-05-28 Hannes Vitze Highly Reactive, Dust-Free and Free-Flowing Lithium Sulphide and Method for the Production Thereof
CN112125283A (zh) * 2020-08-03 2020-12-25 浙江工业大学 一种利用固液混合加热制备硫化锂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221819A (ja) * 2011-04-12 2012-11-12 Mitsui Mining & Smelting Co Ltd リチウムイオン電池固体電解質材料用硫化リチウムの製造方法
JP2014169196A (ja) * 2013-03-01 2014-09-18 Nippon Chem Ind Co Ltd 硫化リチウムの製造方法及び無機固体電解質の製造方法
JP2014179265A (ja) * 2013-03-15 2014-09-25 Toyota Motor Corp 硫化物固体電解質材料の製造方法
US20200165129A1 (en) * 2017-02-03 2020-05-28 Hannes Vitze Highly Reactive, Dust-Free and Free-Flowing Lithium Sulphide and Method for the Production Thereof
CN112125283A (zh) * 2020-08-03 2020-12-25 浙江工业大学 一种利用固液混合加热制备硫化锂的方法

Similar Documents

Publication Publication Date Title
US9017582B2 (en) Process for preparing lithium sulfide
CN106241757B (zh) 一种双氟磺酰亚胺锂盐的制备方法
CN111977681B (zh) 硫化物固态电解质材料及其原料的气相合成方法及应用
JP6292996B2 (ja) フルオロ硫酸リチウムとそれを含む溶液の製造方法
CN112520703B (zh) 一种硫化锂的绿色制备方法
JP2024518469A (ja) ジフルオロビス(オキサラト)リン酸リチウム、その調製方法および使用
WO2023032701A1 (ja) 硫化リチウムの製造方法
US20180162730A1 (en) Complex comprising sulfur, a method for manufacturing the same, and a method for manufacturing a solid electrolyte
JP2022549731A (ja) 硫化物固体電解質およびその前駆体ii
JP2022550137A (ja) 硫化物固体電解質およびその前駆体
JP2016204219A (ja) 硫化リチウム、及び硫化物固体電解質の製造方法
WO2023008250A1 (ja) 硫化リチウムの製造方法
WO2012026360A1 (ja) ビス(フルオロスルホニル)イミドの製造方法
JP6281841B2 (ja) 硫化リチウムの製造方法
JP6256754B2 (ja) 硫化リチウムの製造方法
JP6996262B2 (ja) リチウムニッケル複合酸化物製造用水酸化リチウムの製造方法、リチウムニッケル複合酸化物製造用水酸化リチウム原料、及びリチウムニッケル複合酸化物の製造方法
JP6150229B2 (ja) 硫化リチウムの製造方法
CN108584992A (zh) 一种气相法制备无水氯化锂的方法
JPH0280432A (ja) ポリフェニレンスルフィドの製造方法
CN115432697B (zh) 一种石墨烯的制备方法
CN115611245B (zh) 一种双氯磺酰亚胺酸及双氟磺酰亚胺锂的制备方法
US3726957A (en) Conversion of metal sulfates to sulfur and substantially sulfide-free solid
JP7491659B2 (ja) 水酸化リチウム水和物、水酸化リチウム水和物の製造方法、リチウムニッケル複合酸化物の製造方法
JP3685000B2 (ja) 溶銑の脱珪方法
WO2024137716A2 (en) Solid-state electrolyte synthesis using a p 4s x material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864285

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE