WO2012105611A1 - 半導体パワーデバイスおよびその製造方法 - Google Patents

半導体パワーデバイスおよびその製造方法 Download PDF

Info

Publication number
WO2012105611A1
WO2012105611A1 PCT/JP2012/052290 JP2012052290W WO2012105611A1 WO 2012105611 A1 WO2012105611 A1 WO 2012105611A1 JP 2012052290 W JP2012052290 W JP 2012052290W WO 2012105611 A1 WO2012105611 A1 WO 2012105611A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
insulating film
gate
trench
electrode
Prior art date
Application number
PCT/JP2012/052290
Other languages
English (en)
French (fr)
Inventor
佑紀 中野
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2012555933A priority Critical patent/JP5858934B2/ja
Priority to US13/983,206 priority patent/US9472405B2/en
Publication of WO2012105611A1 publication Critical patent/WO2012105611A1/ja
Priority to US15/257,991 priority patent/US9947536B2/en
Priority to US15/935,945 priority patent/US10515805B2/en
Priority to US16/684,180 priority patent/US10840098B2/en
Priority to US17/069,345 priority patent/US11276574B2/en
Priority to US17/591,384 priority patent/US12009213B2/en
Priority to US18/652,013 priority patent/US20240304447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02241III-V semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0405Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising semiconducting carbon, e.g. diamond, diamond-like carbon
    • H01L21/0425Making electrodes
    • H01L21/044Conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28264Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being a III-V compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66015Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene
    • H01L29/66037Multistep manufacturing processes of devices having a semiconductor body comprising semiconducting carbon, e.g. diamond, diamond-like carbon, graphene the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66045Field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Definitions

  • the present invention relates to a semiconductor power device and a manufacturing method thereof.
  • FIG. 1 of Patent Document 1 discloses a Schottky barrier diode employing SiC.
  • the Schottky barrier diode includes an n-type 4H—SiC bulk substrate, an n-type epitaxial layer grown on the bulk substrate, an oxide film formed on the surface of the epitaxial layer, and partially exposing the surface of the epitaxial layer. And a Schottky electrode formed in the opening of the oxide film and having a Schottky junction with the epitaxial layer.
  • FIG. 4 of Patent Document 1 discloses a vertical MIS field effect transistor employing SiC.
  • the vertical MIS field effect transistor includes an n-type 4H—SiC bulk substrate, an n-type epitaxial layer grown on the bulk substrate, an n-type impurity region (source region) formed in a surface layer portion of the epitaxial layer, A p-type well region formed adjacent to both sides of the n-type impurity region, a gate oxide film formed on the surface of the epitaxial layer, and a gate electrode facing the p-type well region via the gate oxide film; It has.
  • epsilon SiC indicates a dielectric constant of SiC with respect to vacuum
  • epsilon SiO2 represents the dielectric constant of SiO 2 with respect to the vacuum.
  • An object of the present invention is to provide a semiconductor power device and a method for manufacturing the same that can reduce the breakdown of an insulating film when a high voltage is applied to a breakdown voltage holding layer.
  • a semiconductor power device of the present invention comprises a first electrode and a second electrode, and a semiconductor having a predetermined thickness and impurity concentration, and the first electrode and the second electrode are joined together, A breakdown voltage holding layer having an active region for moving carriers that generate electrical conduction between the first electrode and the second electrode, and a portion formed on the breakdown voltage holding layer and in contact with the breakdown voltage holding layer, And an insulating film having a high dielectric constant portion having a dielectric constant higher than that of SiO 2 .
  • the portion of the insulating film that is in contact with the breakdown voltage holding layer is formed of a high dielectric constant portion having a dielectric constant higher than that of SiO 2 . Therefore, in a state where a high voltage is applied between the first electrode and the second electrode, the electric field E High-k applied to a portion of the insulating film in contact with the breakdown voltage holding layer can be weakened.
  • an electric field applied to the insulating film can be weakened by providing a high dielectric constant portion in a portion of the insulating film that is in contact with the breakdown voltage holding layer.
  • the insulating film formed on the breakdown voltage holding layer only needs to be made of a high dielectric constant material at the portion in contact with the breakdown voltage holding layer, and the high dielectric constant insulating film as the high dielectric constant portion in contact with the breakdown voltage holding layer, It may have a laminated structure including a low dielectric constant insulating film laminated on a high dielectric constant insulating film and having a dielectric constant lower than that of the high dielectric constant insulating film.
  • the high dielectric constant portion may be formed so as to be in contact with a device outer peripheral portion surrounding the active region.
  • the breakdown voltage holding layer may be formed of a wide band gap semiconductor (for example, a band gap Eg of 2 eV or more, preferably 2.5 eV to 7 eV).
  • the breakdown voltage holding layer may be a compound semiconductor.
  • Compound semiconductors include, for example, III-V compounds exhibiting high electron mobility, binary compounds typified by II-VI compounds having a wide band gap and many mixed materials composed of the binary compounds. , Partially overlapping with the wide band gap semiconductor.
  • the first electrode includes a Schottky electrode that penetrates the field insulating film and is Schottky bonded to the breakdown voltage holding layer, and the second electrode is an ohmic electrode that is ohmic bonded to the breakdown voltage holding layer.
  • the insulating film includes a field insulating film formed on a surface of the breakdown voltage holding layer, and the field insulating film is in a portion in contact with an outer peripheral region of the Schottky junction in the breakdown voltage holding layer. It is preferable to have.
  • the field-effect transistor structure in which the breakdown voltage holding layer includes a first conductivity type source region, a second conductivity type body region in contact with the source region, and a first conductivity type drift region in contact with the body region.
  • the first electrode includes a source electrode electrically connected to the source region, and the second electrode is electrically connected to the drift region
  • the high dielectric constant portion is preferably formed so as to be in contact with the drift region.
  • the field effect transistor structure may include a vertical transistor structure in which the source region and the drift region are spaced apart via the body region in a vertical direction perpendicular to the surface of the breakdown voltage holding layer.
  • the vertical transistor structure includes a source trench that reaches the drift region through the source region and the body region from the surface of the breakdown voltage holding layer, and the source electrode includes the source region in the source trench, The body region and the drift region are preferably in contact with each other.
  • the field effect transistor structure since the field effect transistor structure is a vertical type, a large current can easily flow, and a high breakdown voltage and a low on-resistance can be easily secured. Further, the field effect transistor structure has a trench gate structure including a gate trench formed so as to straddle the source region, the body region, and the drift region, and faces the body region in the gate trench.
  • the insulating film includes a gate insulating film interposed between the gate electrode and the inner surface of the gate trench, and the bottom surface of the gate trench and / or the gate insulating film in the gate insulating film It is preferable that the high dielectric constant portion is provided in a portion in contact with a corner portion of the gate trench.
  • the bottom surface of the gate trench and / or the portion in contact with the corner portion of the gate trench may be made of a high dielectric constant material, and the bottom surface of the gate trench and / or the corner portion of the gate trench may be formed.
  • a stacked structure including a gate insulating film may be included.
  • the gate insulating film is preferably made of Al 2 O 3 . According to this configuration, the dielectric constant of the gate insulating film can be made larger than that of SiO 2 while maintaining a relatively high barrier height with respect to the breakdown voltage holding layer made of SiC. As a result, leakage current due to the quantum tunnel effect near the body region can be reduced.
  • the gate insulating film may be formed of a SiO 2 film at a portion in contact with the body region on the side surface of the gate trench. In that case, an insulating film having a dielectric constant higher than that of SiO 2 is preferably laminated on the SiO 2 film.
  • the breakdown voltage holding layer is made of SiC having a Si (silicon) surface on the surface
  • the gate trench is formed from the Si surface of the breakdown voltage holding layer made of SiC toward the inside of the breakdown voltage holding layer. It may be.
  • the high dielectric constant portion may be formed only on the bottom surface of the gate trench and / or the corner portion of the gate trench in the gate insulating film.
  • the insulating film Preferably, the interlayer insulating film is formed on the breakdown voltage holding layer so as to cover the interlayer insulating film, and the interlayer insulating film has the high dielectric constant portion in a portion in contact with a peripheral portion of the transistor surrounding the planar gate structure. .
  • the method of manufacturing a semiconductor power device of the present invention includes a semiconductor layer made of SiC, a first conductivity type source region formed in the semiconductor layer, a second conductivity type body region in contact with the source region, A drift region of a first conductivity type in contact with the body region; a gate trench formed so as to straddle the source region, the body region and the drift region; and a gate insulating film formed on an inner surface of the gate trench; A method of manufacturing a semiconductor power device having a trench gate type transistor structure including a gate electrode facing the body region via the gate insulating film, wherein the semiconductor layer is directed from the Si (silicon) surface to the inside thereof.
  • the bottom surface of the gate trench is formed as an Si surface
  • the first insulating film SiO 2 film
  • the portion of the SiO 2 film on the bottom surface (Si surface) of the gate trench becomes thinner than the portion on the side surface of the gate trench in the SiO 2 film. Therefore, if the bottom portion of the first insulating film is left, there is a high possibility that the insulating film is broken at the bottom and corners of the gate trench where the electric field is relatively concentrated.
  • the portion of the first insulating film on the bottom surface of the gate trench is removed, and the second insulating film (high dielectric constant film) is formed so as to cover the portion exposed by this removal.
  • the part where electric field concentration is likely to occur can be covered with the high dielectric constant film.
  • the SiO 2 film can be left on the side surface of the gate trench, a gate insulating film made of SiO 2 can be formed between the channel and the gate electrode.
  • the step of forming the first insulating film is a step of forming the first insulating film by a thermal oxidation method
  • the step of forming the second insulating film forms the second insulating film by a CVD method. It may be a process to do.
  • FIG. 1 is a schematic plan view of a Schottky barrier diode according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the Schottky barrier diode shown in FIG. 1 and shows a cut surface taken along a cutting line AA in FIG. 3A is a schematic cross-sectional view showing a part of the manufacturing process of the Schottky barrier diode shown in FIG. 2, and shows a cut surface at the same position as FIG.
  • FIG. 3B is a diagram showing a step subsequent to FIG. 3A.
  • FIG. 3C is a diagram showing a step subsequent to FIG. 3B.
  • 4 (a) and 4 (b) are schematic plan views of a trench gate type MIS transistor according to the second embodiment of the present invention.
  • FIG. 1 is a schematic plan view of a Schottky barrier diode according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the Schottky barrier diode shown
  • FIG. 4 (a) is an overall view
  • FIG. 4 (b) is an internal view. Each enlarged view is shown.
  • FIG. 5 is a cross-sectional view of the trench gate type MIS transistor shown in FIG. 4, and shows cross sections along the cutting lines BB and CC in FIG. 4B.
  • 6A is a schematic cross-sectional view showing a part of the manufacturing process of the trench gate type MIS transistor shown in FIG. 5, and shows a cut surface at the same position as FIG. 6B is a diagram showing a step subsequent to FIG. 6A.
  • FIG. 6C is a diagram showing a step subsequent to FIG. 6B.
  • FIG. 6D is a diagram showing a step subsequent to FIG. 6C.
  • FIG. 6E is a diagram showing a step subsequent to that in FIG. 6D.
  • FIG. 6F is a diagram showing a step subsequent to that in FIG. 6E.
  • FIG. 7 is a schematic cross-sectional view showing a first modification of the trench gate type MIS transistor shown in FIG.
  • FIG. 8 is a schematic cross-sectional view showing a second modification of the trench gate type MIS transistor shown in FIG.
  • FIG. 9 is a schematic cross-sectional view of a trench gate type MIS transistor according to a third embodiment of the present invention.
  • FIG. 10A is a schematic cross-sectional view showing a part of the manufacturing process of the trench gate type MIS transistor shown in FIG. 9, and shows a cut surface at the same position as FIG.
  • FIG. 10B is a diagram showing a step subsequent to FIG. 10A.
  • FIG. 10A is a schematic cross-sectional view showing a part of the manufacturing process of the trench gate type MIS transistor shown in FIG. 9, and shows a cut surface at the same position as FIG.
  • FIG. 10B is a diagram showing a step subsequent to FIG.
  • FIGS. 11A and 11B are schematic plan views of a planar gate type MIS transistor according to a fourth embodiment of the present invention.
  • FIG. 11A is an overall view, and FIG.
  • FIG. 12 is a cross-sectional view of the planar gate type MIS transistor shown in FIG. 11, and shows cross sections taken along section lines DD and EE in FIG.
  • FIG. 13A is a schematic cross-sectional view showing a part of the manufacturing process of the planar gate type MIS transistor shown in FIG. 12, and shows a cut surface at the same position as FIG.
  • FIG. 13B is a diagram showing a step subsequent to FIG. 13A.
  • FIG. 13C is a diagram showing a step subsequent to FIG. 13B.
  • FIG. 13D is a diagram showing a step subsequent to FIG. 13C.
  • 14A and 14B are schematic plan views of a trench gate type MIS transistor according to a fifth embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the planar gate type MIS transistor shown in FIG. 11, and shows cross sections taken along section lines DD and EE in FIG.
  • FIG. 13A is a schematic cross-sectional view showing a part of the manufacturing process of the plan
  • FIG. 14A is an overall view
  • FIG. 14B is an internal view. Each enlarged view is shown.
  • FIG. 15 is a cross-sectional view of the trench gate type MIS transistor shown in FIGS. 14A and 14B, and shows cross sections taken along the cutting lines FF, GG, and HH in FIG. Show.
  • FIG. 16 is a schematic cross-sectional view of a trench gate type MIS transistor according to a sixth embodiment of the present invention, and shows a cut surface at the same position as FIG. 17 (a) and 17 (b) are schematic plan views of a planar gate type MIS transistor according to a seventh embodiment of the present invention.
  • FIG. 17 (a) is an overall view
  • FIG. 17 (b) is an internal view. Each enlarged view is shown.
  • FIG. 17 (a) is an overall view
  • FIG. 17 (b) is an internal view. Each enlarged view is shown.
  • FIG. 17 (a) is an overall view
  • FIG. 17 (b) is an internal view. Each enlarged
  • FIGS. 18 is a cross-sectional view of the planar gate type MIS transistor of FIGS. 17A and 17B, and shows cross sections taken along lines II and JJ of FIG. 17B, respectively.
  • 19 (a) and 19 (b) are schematic plan views of a trench gate type MIS transistor according to an eighth embodiment of the present invention.
  • FIG. 19 (a) is an overall view
  • FIG. 19 (b) is an internal view. Each enlarged view is shown.
  • FIG. 20 is a cross-sectional view of the trench gate type MIS transistor of FIGS. 19A and 19B, and shows cross sections along the cutting lines KK and LL of FIG. 19B, respectively.
  • FIGS. 21A and 21B are diagrams showing a modification of the layout of the MIS transistor of FIGS. 14A and 14B.
  • FIG. 21A is an overall view
  • FIG. 22 (a) and 22 (b) are schematic plan views of a trench gate type MIS transistor according to the ninth embodiment of the present invention, in which FIG. 22 (a) is an overall view and FIG. 22 (b) is an internal view. Each enlarged view is shown.
  • FIG. 23 is a cross-sectional view of the trench gate type MIS transistor shown in FIGS. 22 (a) and 22 (b), and shows cross sections along the cutting lines MM and NN in FIG. 22 (b), respectively.
  • 24A and 24B are schematic plan views of the planar gate type MIS transistor according to the tenth embodiment of the present invention, in which FIG. 24A is an overall view and FIG. 24B is an internal view. Each enlarged view is shown.
  • FIG. 25 is a cross-sectional view of the planar gate type MIS transistor shown in FIGS. 24A and 24B, and shows cross sections along the cutting lines OO and PP in FIG. 24B, respectively.
  • FIG. 1 is a schematic plan view of a Schottky barrier diode according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the Schottky barrier diode shown in FIG. 1 and shows a cut surface taken along a cutting line AA in FIG.
  • the Schottky barrier diode 1 is a Schottky barrier diode employing SiC (a wide band gap semiconductor having a band gap width of about 3.26 eV). For example, as shown in FIG. It is.
  • the chip-like Schottky barrier diode 1 has a length of about several millimeters in the vertical and horizontal directions on the paper surface of FIG.
  • the Schottky barrier diode 1 includes an n + type SiC substrate 2 (for example, the concentration is 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ).
  • a cathode electrode 3 as an ohmic electrode (second electrode) is formed on the back surface of the SiC substrate 2 so as to cover the entire area.
  • the cathode electrode 3 is made of a metal (for example, Ni silicide, Co silicide, etc.) that is in ohmic contact with n-type SiC.
  • SiC epitaxial layer 4 having an n ⁇ type (for example, concentration of 1 ⁇ 10 15 to 1 ⁇ 10 17 cm ⁇ 3 ) having a lower concentration than SiC substrate 2 is laminated.
  • the thickness of SiC epitaxial layer 4 as the breakdown voltage holding layer is, for example, 1 ⁇ m to 100 ⁇ m.
  • an opening 6 for exposing a part of the SiC epitaxial layer 4 as an active region 5 there is an opening 6 for exposing a part of the SiC epitaxial layer 4 as an active region 5
  • a field insulating film 8 covering a field region 7 as a device outer peripheral portion surrounding the active region 5. are stacked.
  • the field insulating film 8 is a high dielectric constant insulating material having a dielectric constant higher than that of SiO 2 (silicon oxide) (which is a non-dielectric constant ⁇ r with respect to vacuum, hereinafter simply referred to as a relative dielectric constant ⁇ r ). (Hereinafter referred to as “High-k material”).
  • the field insulating film 8 is made of SiN (silicon nitride), Al 2 O 3 (alumina), or AlON (aluminum oxynitride).
  • the relative dielectric constant ⁇ r of these materials is such that the relative dielectric constant ⁇ SiN of SiN is 7.5, the relative dielectric constant ⁇ Al2O3 of Al 2 O 3 is about 8.5, and the relative dielectric constant ⁇ AlON of AlON. Is 6.
  • the thickness of the field insulating film 8 is, for example, 1000 mm or more, preferably 3000 mm to 30000 mm.
  • an anode electrode 9 as a first electrode is formed on the field insulating film 8.
  • the anode electrode 9 has a two-layer structure of a Schottky metal 10 bonded to the SiC epitaxial layer 4 in the opening 6 of the field insulating film 8 and a contact metal 11 stacked on the Schottky metal 10.
  • Schottky metal 10 is made of a metal (for example, Ni, Au, etc.) that forms a Schottky junction by bonding with n-type SiC.
  • Schottky metal 10 joined to SiC forms a Schottky barrier (potential barrier) having a height of 0.7 eV to 1.7 eV, for example, with the SiC semiconductor.
  • the Schottky metal 10 projects in a flange shape outward from the opening 6 so as to cover the peripheral edge 12 of the opening 6 in the field insulating film 8 from above. That is, the peripheral edge portion 12 of the field insulating film 8 is sandwiched by the SiC epitaxial layer 4 and the Schottky metal 10 from both the upper and lower sides over the entire circumference. Therefore, the outer peripheral region of the Schottky junction in SiC epitaxial layer 4 (that is, inner edge portion 13 of field region 7) is covered with peripheral edge portion 12 of field insulating film 8 made of SiC.
  • the protruding amount X of the anode electrode 9 covering the peripheral edge 12 of the field insulating film 8 from the end of the opening 6 of the field insulating film 8 is, for example, 10 ⁇ m or more, preferably 10 ⁇ m to 100 ⁇ m.
  • the thickness of the Schottky metal 10 is, for example, 0.01 ⁇ m to 5 ⁇ m in the first embodiment.
  • the contact metal 11 is a portion of the anode electrode 9 that is exposed on the outermost surface of the Schottky barrier diode 1 and to which a bonding wire or the like is bonded.
  • the contact metal 11 is made of, for example, Al. Further, like the Schottky metal 10, the contact metal 11 projects outwardly from the opening 6 in a flange shape so as to cover the peripheral edge 12 of the opening 6 in the field insulating film 8.
  • the thickness of the contact metal 11 is larger than that of the Schottky metal 10 in the first embodiment, for example, 0.5 ⁇ m to 10 ⁇ m.
  • a surface protective film 14 is formed on the outermost surface of the Schottky barrier diode 1.
  • An opening 15 for exposing the contact metal 11 is formed at the center of the surface protective film 14.
  • a bonding wire or the like is bonded to the contact metal 11 through the opening 15.
  • a p-type guard ring 16 is formed on the surface layer portion of the SiC epitaxial layer 4 so as to be in contact with the Schottky metal 10 of the anode electrode 9.
  • the guard ring 16 is formed along the outline of the opening 6 so as to straddle the inside and outside of the opening 6 of the field insulating film 8 (so as to straddle the active region 5 and the field region 7) in plan view. Therefore, the guard ring 16 projects inward of the opening 6, projects to the outside of the opening 6, the inner portion 18 in contact with the outer edge portion 17 as the terminal portion of the Schottky metal 10 in the opening 6, and the field insulating film 8. And an outer portion 19 that faces the anode electrode 9 (Schottky metal 10).
  • the width W 1 of the inner portion 18 of the guard ring 16 is 1 ⁇ m to 50 ⁇ m, and the width W 2 of the outer portion 19 of the guard ring 16 is 1 ⁇ m to 500 ⁇ m.
  • Overall width W of the guard ring 16 is the sum of these W 1 and W 2 are, for example, 5 [mu] m ⁇ 550 .mu.m.
  • the depth D of the guard ring 16 from the surface of the SiC epitaxial layer 4 is, for example, 1000 mm or more, and preferably 2000 mm to 7000 mm.
  • the SiC epitaxial layer 4 is activated from the cathode electrode 3 to the anode electrode 9 by being in a forward bias state in which a positive voltage is applied to the anode electrode 9 and a negative voltage is applied to the cathode electrode 3. Electrons (carriers) move through the region 5 and current flows.
  • 3A to 3C are schematic cross-sectional views showing a part of the manufacturing process of the Schottky barrier diode shown in FIG. 2, and show a cut surface at the same position as FIG.
  • n-type impurities for example, N (nitrogen), P (phosphorus), As (arsenic), etc.
  • p-type impurities for example, Al (aluminum), B (boron), etc.
  • SiC epitaxial layer 4 is heat-treated at 1400 ° C. to 2000 ° C.
  • ions of p-type impurities implanted into the surface layer portion of SiC epitaxial layer 4 are activated, and guard ring 16 is formed.
  • the heat treatment of SiC epitaxial layer 4 can be performed, for example, by controlling a resistance heating furnace or a high frequency induction heating furnace at an appropriate temperature.
  • a field insulating film 8 made of a High-k material is laminated on the SiC epitaxial layer 4 by the CVD method. Subsequently, the field insulating film 8 is patterned by a known patterning technique to form an opening 6 that exposes the active region 5 of the SiC epitaxial layer 4.
  • the materials of the Schottky metal 10 and the contact metal 11 are sequentially stacked by a method such as sputtering or vapor deposition. Then, these stacked metals are patterned by a known patterning technique to form an anode electrode 9 composed of a Schottky metal 10 and a contact metal 11.
  • the Schottky barrier diode 1 shown in FIG. 2 is obtained.
  • the field insulating film 8 is made of a High-k material (SiN, Al 2 O 3 , AlON, etc.). Therefore, even if a large reverse voltage is applied between the anode electrode 9 and the cathode electrode 3 and an avalanche breakdown occurs, the electric field E High-k applied to the field insulating film 8 can be weakened.
  • the electric field E High-k when the field insulating film 8 is made of Al 2 O 3 can be reduced by about 0.48 times compared to the case where the field insulating film 8 is made of SiO 2. it can. As a result, the breakdown of the field insulating film 8 can be reduced.
  • the electric field tends to concentrate near the outer edge 17 (the inner edge 13 of the field region 7) of the anode electrode 9 (Schottky metal 10).
  • FIG. 4 (a) and 4 (b) are schematic plan views of a trench gate type MIS transistor according to the second embodiment of the present invention.
  • FIG. 4 (a) is an overall view
  • FIG. 4 (b) is an internal view. Each enlarged view is shown.
  • FIG. 5 is a cross-sectional view of the trench gate type MIS transistor shown in FIG. 4, and shows cross sections along the cutting lines BB and CC in FIG. 4B.
  • the MIS transistor 21 is a trench gate type DMISFET (Double-diffused Metal-Insulator-Semiconductor-Field-Effect-Transistor) employing SiC, and has a square chip shape in plan view as shown in FIG. 4A, for example.
  • Each of the chip-like MIS transistors 21 has a length of about several millimeters in the vertical and horizontal directions on the paper surface of FIG.
  • a source pad 22 is formed on the surface of the MIS transistor 21.
  • the source pad 22 has a substantially square shape in plan view with four corners curved outward, and is formed to cover almost the entire surface of the MIS transistor 21.
  • the source pad 22 has a removal region 23 near the center of one side.
  • the removal region 23 is a region where the source pad 22 is not formed.
  • the MIS transistor 21 includes an n + type SiC substrate 25 (for example, the concentration is 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ).
  • the SiC substrate 25 functions as the drain of the MIS transistor 21, and the front surface 26 (upper surface) is an Si surface and the rear surface 27 (lower surface) is a C surface.
  • an n ⁇ -type SiC epitaxial layer 28 having a lower concentration than the SiC substrate 25 (for example, a concentration of 1 ⁇ 10 15 to 1 ⁇ 10 17 cm ⁇ 3 ) is laminated.
  • the thickness of SiC epitaxial layer 28 as the breakdown voltage holding layer is, for example, 1 ⁇ m to 100 ⁇ m.
  • the SiC epitaxial layer 28 is formed on the SiC substrate 25 by so-called epitaxial growth.
  • the SiC epitaxial layer 28 formed on the surface 26 that is the Si surface is grown with the Si surface as the main growth surface. Therefore, the surface 29 of the SiC epitaxial layer 28 formed by the growth is a Si surface, like the surface 26 of the SiC substrate 25.
  • the MIS transistor 21 is disposed in the center of the SiC epitaxial layer 28 in plan view, and has an active region 30 functioning as the MIS transistor 21 and a transistor peripheral region surrounding the active region 30 31 is formed.
  • body region 32 of p-type for example, the concentration is 1.0 ⁇ 10 16 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3
  • body region 32 is formed in the surface direction of SiC epitaxial layer 28 in the row direction.
  • a large number are arranged in a matrix (matrix) at a constant pitch in the column direction.
  • Each body region 32 has a square shape in plan view.
  • the length in the vertical and horizontal directions on the paper surface of FIG. 4B is about 7.2 ⁇ m.
  • the region on the SiC substrate 25 side of the body region 32 in the SiC epitaxial layer 28 is an n ⁇ -type drift region 33 in which the state after the epitaxial growth is maintained.
  • an n + -type (for example, concentration of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ) source region 34 is formed in almost the entire region on the surface 29 side.
  • a gate trench 35 is formed so as to surround each body region 32 from surface 29 of SiC epitaxial layer 28 to each drift region 33 through each source region 34 and body region 32.
  • a large number of rectangular parallelepiped unit cells each functioning as a field effect transistor are formed in the SiC epitaxial layer 28.
  • the depth direction of the gate trench 35 is the gate length direction
  • the circumferential direction of each unit cell orthogonal to the gate length direction is the gate width direction.
  • both end corners 36 in the direction orthogonal to the gate width at the bottom are curved toward the drift region 33, and the side surface 37 and the bottom surface 38 that face each other. And has a U-shaped cross section that continues through the curved surface.
  • a gate insulating film 39 is formed on the inner surface of the gate trench 35 so as to cover the entire area.
  • the gate insulating film 39 is made of a High-k material (SiN, Al 2 O 3 , AlON, etc.).
  • the gate electrode 40 is buried in the gate trench 35 by filling the inside of the gate insulating film 39 with a polysilicon material doped with n-type impurities at a high concentration.
  • a vertical MIS transistor structure is configured in which the source region 34 and the drift region 33 are spaced apart from each other via the body region 32 in the vertical direction perpendicular to the surface 29 of the SiC epitaxial layer 28.
  • a source trench 41 is formed in the center of each unit cell from the surface 29 of the SiC epitaxial layer 28 through the source region 34 and the body region 32 to reach the drift region 33.
  • the depth of the source trench 41 is the same as that of the gate trench 35 in the second embodiment.
  • the source trench 41 has both end corners 42 in the direction perpendicular to the gate width at the bottom (opposite direction to the adjacent unit cell) curved toward the drift region 33 side.
  • the opposing side surface 43 and bottom surface 44 have a U-shaped cross section that is continuous through a curved surface.
  • a p-type impurity for example, a concentration of 1.0 ⁇ 10 16 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3
  • a p-type impurity for example, a concentration of 1.0 ⁇ 10 16 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3
  • each unit cell has a A p-type region 45 is formed in a portion exposed in the source trench 41.
  • the portion on the SiC substrate 25 side with respect to the source region 34 on the inner surface of the source trench 41 that is, the portion deeper than the lower end of the source region 34 on the bottom surface 44 and the side surface 43
  • a p + type body contact region 46 (for example, an impurity concentration of 1.0 ⁇ 10 18 cm ⁇ 3 to 2.0 ⁇ 10 21 cm ⁇ 3 ) is formed at the center of the bottom surface 44 of the source trench 41.
  • the p-type guard ring 47 is spaced from the active region 30 so as to surround the unit cells (active region 30) arranged in a matrix on the surface layer portion of the SiC epitaxial layer 28. Are formed (four in the second embodiment). These guard rings 47 can be formed by the same ion implantation step as the step of forming the p-type body region 32.
  • Each guard ring 47 is formed in a square shape in plan view along the outer periphery of the MIS transistor 21 in plan view.
  • the depth of the guard ring 47 from the surface 29 of the SiC epitaxial layer 28 is substantially the same as that of the body region 32, and is, for example, 2000 mm or more, preferably 3000 mm to 10,000 mm.
  • An interlayer insulating film 48 is stacked on the SiC epitaxial layer 28 so as to cover the gate electrode 40.
  • the interlayer insulating film 48 is made of a High-k material (SiN, Al 2 O 3 , AlON, etc.).
  • a contact hole 49 having a diameter larger than that of the source trench 41 is formed in the interlayer insulating film 48 and the gate insulating film 39. Thereby, in the contact hole 49, the entire source trench 41 of each unit cell (that is, the side surface 43 and the bottom surface 44 of the source trench 41) and the peripheral portion of the source trench 41 on the surface 29 of the SiC epitaxial layer 28 are exposed. Accordingly, a step according to the height difference between the front surface 29 and the bottom surface 44 is formed.
  • a source electrode 50 as a first electrode is formed on the interlayer insulating film 48.
  • the source electrode 50 collectively enters the source trenches 41 of all unit cells via the contact holes 49.
  • the body contact region 46 and the p-type region are sequentially formed from the bottom side of the source trench 41. 45, in contact with the body region 32 and the source region 34. That is, the source electrode 50 is a common wiring for all unit cells.
  • An interlayer insulating film (not shown) is formed on the source electrode 50, and the source electrode 50 is connected to the source pad 22 (see FIG. 4A) via the interlayer insulating film (not shown). ) Is electrically connected.
  • the gate pad 24 (see FIG. 4A) is electrically connected to the gate electrode 40 through a gate wiring (not shown) routed on the interlayer insulating film (not shown). ing.
  • the source electrode 50 has a structure in which, for example, a Ti / TiN layer and an Al layer are laminated in order from the contact side with the SiC epitaxial layer 28.
  • a drain electrode 51 as a second electrode is formed on the back surface 27 of the SiC substrate 25 so as to cover the entire area.
  • the drain electrode 51 is a common electrode for all unit cells.
  • As the drain electrode 51 for example, a stacked structure (Ti / Ni / Au / Ag) in which Ti, Ni, Au, and Ag are stacked in this order from the SiC substrate 25 side can be applied.
  • a voltage equal to or higher than the threshold voltage is applied to the gate electrode 40 in a state where a predetermined potential difference is generated between the source electrode 50 and the drain electrode 51 (between the source and drain).
  • a channel is formed in the vicinity of the interface with the gate insulating film 39 in the body region 32 by the electric field from the gate electrode 40.
  • electrons (carriers) move from the source electrode 50 to the drain electrode 51 through the source region 34, the channel and the drift region 33 in the active region 30, and a current flows.
  • FIG. 6A to 6F are schematic cross-sectional views showing a part of the manufacturing process of the trench gate type MIS transistor shown in FIG. 5, and show a cut surface at the same position as FIG.
  • an n-type impurity for example, N-type
  • SiC substrate 25 Si surface
  • an epitaxial growth method such as a CVD method, an LPE method, or an MBE method.
  • SiC crystal is grown while doping (nitrogen), P (phosphorus), As (arsenic), etc.).
  • an n ⁇ -type SiC epitaxial layer 28 is formed on SiC substrate 25.
  • p-type impurities for example, Al (aluminum), B (boron), etc.
  • n-type impurities are implanted (implanted) from the surface 29 of the SiC epitaxial layer 28 into the SiC epitaxial layer 28.
  • the SiC epitaxial layer 28 is heat-treated at 1400 ° C. to 2000 ° C. Thereby, ions of p-type impurity and n-type impurity implanted into the surface layer portion of SiC epitaxial layer 28 are activated, and body region 32, source region 34, and guard ring 47 are simultaneously formed according to the implanted locations. Is done. In addition, a drift region 33 that maintains the state after epitaxial growth is formed in the base layer portion of SiC epitaxial layer 28.
  • the SiC epitaxial layer 28 is etched using a mask having openings in regions where the gate trench 35 and the source trench 41 are to be formed. Thereby, SiC epitaxial layer 28 is dry-etched from surface 29 (Si surface), and gate trench 35 and source trench 41 are formed simultaneously. At the same time, a large number of unit cells are formed in the SiC epitaxial layer 28.
  • the etching gas includes, for example, a mixed gas (SF 6 / O 2 gas) containing SF 6 (sulfur hexafluoride) and O 2 (oxygen), SF 6 , O 2 and HBr (hydrogen bromide).
  • a mixed gas (SF 6 / O 2 / HBr gas) can be used.
  • p-type impurities are implanted into the drift region 33 from the bottom surface 44 of the source trench 41.
  • Implantation is performed in a first stage in which ions are implanted at a relatively low dose and in a second stage in which ions are implanted at a relatively high dose.
  • SiC epitaxial layer 28 is heat-treated at 1400 ° C. to 2000 ° C. Thereby, ions of the p-type impurity implanted into the drift region 33 are activated, and the p-type region 45 and the body contact region 46 are formed simultaneously.
  • a High-k material is deposited from above the SiC epitaxial layer 28 by a CVD method. Thereby, the gate insulating film 39 is formed.
  • a doped polysilicon material 52 is deposited from above the SiC epitaxial layer 28 by CVD. The deposition of the polysilicon material 52 is continued until at least the gate trench 35 and the source trench 41 are filled. Thereafter, the deposited polysilicon material 52 is etched back until the etch-back surface is flush with the surface 29 of the SiC epitaxial layer 28.
  • the interlayer insulating film 48 and the gate insulating film 39 are successively patterned by a known patterning technique. As a result, contact holes 49 are formed in the interlayer insulating film 48 and the gate insulating film 39. Thereafter, the source electrode 50, the drain electrode 51, and the like are formed, whereby the MIS transistor 21 shown in FIG. 5 is obtained.
  • the gate insulating film 39 and the interlayer insulating film 48 in contact with the SiC epitaxial layer 28 are made of a High-k material (SiN, Al 2 O 3 , AlON, etc.). Therefore, even if a large reverse voltage is applied between the source electrode 50 and the drain electrode 51 and an avalanche breakdown occurs, as demonstrated by the comparison between the expressions (1) and (2) in the first embodiment, the gate The electric field E High-k applied to the insulating film 39 and the interlayer insulating film 48 can be weakened. As a result, destruction of the gate insulating film 39 and the interlayer insulating film 48 can be reduced. Therefore, a MIS transistor with high avalanche resistance can be provided.
  • a High-k material SiN, Al 2 O 3 , AlON, etc.
  • the electric field tends to concentrate on the corners 36 and the bottom surface 38 of the gate trench 35. Therefore, as in the second embodiment, if the entire gate insulating film 39 is made of the High-k material, the gate insulating film 39 made of the High-k material is also formed on both corners 36 and the bottom surface 38 of the gate trench 35. Can be contacted. Therefore, the breakdown of the gate insulating film 39 can be effectively reduced.
  • various high-k materials may be selected as the high-k material constituting the interlayer insulating film 48, but Al 2 O 3 is used as the gate insulating film 39. Is more preferable. If the gate insulating film 39 is Al 2 O 3 , the dielectric constant of the gate insulating film 39 can be made larger than that of SiO 2 while maintaining a relatively high barrier height with respect to the SiC epitaxial layer 28. As a result, leakage current due to the quantum tunnel effect near the channel (body region 32) can be reduced.
  • HfO 2 and ZrO 2 which are known as High-k materials, are not suitable for a gate insulating film in contact with SiC. That is, when HfO 2 and ZrO 2 are directly formed on SiC as the gate insulating film 39, the barrier height between these HfO 2 and ZrO 2 and SiC becomes small, and the leakage due to the quantum tunnel effect occurs near the channel. It has been found that there is a problem that the current increases.
  • the MIS transistor 21 since the MIS transistor 21 has a vertical structure, it is possible to easily flow a large current and to easily ensure a high breakdown voltage and a low on-resistance. Further, in the manufacturing process of the MIS transistor 21, the gate insulating film 39 is formed by the CVD method. Control can be performed easily.
  • FIG. 9 is a schematic cross-sectional view of a trench gate type MIS transistor according to a third embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 5 are denoted by the same reference numerals as those given to the respective parts. In the following description, only the difference between the structure shown in FIG. 9 and the structure shown in FIG. 5 will be described, and the description of each part given the same reference numeral will be omitted.
  • the gate insulating film 62 formed on the inner surface of the gate trench 35 has a two-layer structure of an SiO 2 film and a High-k film on the side surface 37 of the gate trench 35.
  • a single-layer structure consisting of only a High-k film is formed in the portion on the bottom surface 38. That is, in the third embodiment, the High-k film is formed only in the portion of the gate insulating film 62 that is in contact with the bottom surface 38 and both end corner portions 36 of the gate trench 35.
  • FIG. 10A to 10I are schematic cross-sectional views showing a part of the manufacturing process of the trench gate type MIS transistor shown in FIG. 9, and show a cut surface at the same position as FIG.
  • an n-type impurity for example, N-type
  • SiC substrate 25 Si surface
  • an epitaxial growth method such as a CVD method, an LPE method, or an MBE method.
  • SiC crystal is grown while doping (nitrogen), P (phosphorus), As (arsenic), etc.).
  • an n ⁇ -type SiC epitaxial layer 28 is formed on SiC substrate 25.
  • p-type impurities for example, Al (aluminum), B (boron), etc.
  • n-type impurities are implanted (implanted) from the surface 29 of the SiC epitaxial layer 28 into the SiC epitaxial layer 28.
  • the SiC epitaxial layer 28 is heat-treated at 1400 ° C. to 2000 ° C. Thereby, ions of p-type impurity and n-type impurity implanted into the surface layer portion of SiC epitaxial layer 28 are activated, and body region 32, source region 34, and guard ring 47 are simultaneously formed according to the implanted locations. Is done. In addition, a drift region 33 that maintains the state after epitaxial growth is formed in the base layer portion of SiC epitaxial layer 28.
  • the SiC epitaxial layer 28 is etched using a mask having openings in regions where the gate trench 35 and the source trench 41 are to be formed. Thereby, SiC epitaxial layer 28 is dry-etched from surface 29 (Si surface), and gate trench 35 and source trench 41 are formed simultaneously. At the same time, a large number of unit cells are formed in the SiC epitaxial layer 28.
  • the etching gas includes, for example, a mixed gas (SF 6 / O 2 gas) containing SF 6 (sulfur hexafluoride) and O 2 (oxygen), SF 6 , O 2 and HBr (hydrogen bromide).
  • a mixed gas (SF 6 / O 2 / HBr gas) can be used.
  • p-type impurities are implanted into the drift region 33 from the bottom surface 44 of the source trench 41.
  • Implantation is performed in a first stage in which ions are implanted at a relatively low dose and in a second stage in which ions are implanted at a relatively high dose.
  • SiC epitaxial layer 28 is heat-treated at 1400 ° C. to 2000 ° C. Thereby, ions of the p-type impurity implanted into the drift region 33 are activated, and the p-type region 45 and the body contact region 46 are formed simultaneously.
  • the SiO 2 film 63 as the first insulating film is formed on the entire surface 29 of the SiC epitaxial layer 28 (including the inner surface of the gate trench 35 and the inner surface of the source trench 41) by thermal oxidation. Is formed.
  • the portion of the SiO 2 film 63 on the Si surface of the SiC epitaxial layer 28 is selectively removed by etching. Specifically, a part of the SiO 2 film 63 on the surface 29 of the SiC epitaxial layer 28, a part of both end corners 36 and the bottom surface 38 of the gate trench 35, and one end corner part 42 of the source trench 41. And the portion on the bottom surface 44 are removed. As a result, the SiO 2 film 63 remains on the side surface 37 of the gate trench 35 and the side surface 43 of the source trench 41, and the bottom surfaces 38 and 44 and a part of each end corner portion 36 and 42 are exposed.
  • a High-k material is deposited from above the SiC epitaxial layer 28 by CVD.
  • the High-k film 64 as the second insulating film is formed so as to cover the bottom surface 38 of the gate trench 35 and the bottom surface 44 of the source trench 41, and the gate insulating film 62 is formed.
  • a doped polysilicon material 52 is deposited from above the SiC epitaxial layer 28 by CVD. The deposition of the polysilicon material 52 is continued until at least the gate trench 35 and the source trench 41 are filled. Thereafter, the deposited polysilicon material 52 is etched back until the etch-back surface is flush with the surface 29 of the SiC epitaxial layer 28.
  • the interlayer insulating film 48 and the gate insulating film 62 are successively patterned by a known patterning technique. As a result, contact holes 49 are formed in the interlayer insulating film 48 and the gate insulating film 62. Thereafter, the source electrode 50, the drain electrode 51, and the like are formed, whereby the MIS transistor 61 shown in FIG. 9 is obtained.
  • the gate insulating film 62 has a two-layer structure of the SiO 2 film and the High-k film in the portion on the side surface 37 of the gate trench 35. Therefore, the High-k film 64 that covers the corners 36 and the bottom surface 38 of the gate trench 35 is difficult to form a high barrier height with SiC, for example, in the second embodiment, Even in the case of HfO 2 and ZrO 2 described above, the insulating film in contact with the side surface 37 is the SiO 2 film 63.
  • the breakdown of the gate insulating film 62 at the corner portions 36 and the bottom surface 38 where the electric field tends to concentrate is reduced while maintaining a relatively high barrier height with respect to the SiC epitaxial layer 28 in the vicinity of the channel (body region 32). be able to.
  • the bottom surface 38 of the gate trench 35 is formed as a Si surface, ( Figure 10C) at the time of forming the SiO 2 film 63, the bottom surface of the gate trench 35 in the SiO 2 film 63 A portion on 38 (Si surface) is thinner than a portion on the side surface 37 of the gate trench 35 in the SiO 2 film 63.
  • FIGS. 11A and 11B are schematic plan views of a planar gate type MIS transistor according to a fourth embodiment of the present invention.
  • FIG. 11A is an overall view, and FIG. Each enlarged view is shown.
  • FIG. 12 is a cross-sectional view of the planar gate type MIS transistor shown in FIG. 11, and shows cross sections taken along section lines DD and EE in FIG.
  • the MIS transistor 71 is a planar gate type DMISFET employing SiC, and has, for example, a square chip shape in plan view as shown in FIG.
  • the chip-like MIS transistor 71 has a length of about several millimeters in the vertical and horizontal directions on the paper surface of FIG.
  • a source pad 72 is formed on the surface of the MIS transistor 71.
  • the source pad 72 has a substantially square shape in plan view with four corners curved outward, and is formed so as to cover almost the entire surface of the MIS transistor 71.
  • a removal region 73 is formed near the center of one side. This removal region 73 is a region where the source pad 72 is not formed.
  • the MIS transistor 71 includes an n + type SiC substrate 75 (for example, the concentration is 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ).
  • the SiC substrate 75 functions as the drain of the MIS transistor 71, and its front surface 76 (upper surface) is a Si surface and its rear surface 77 (lower surface) is a C surface.
  • an n - type SiC epitaxial layer 78 having a lower concentration than the SiC substrate 75 (for example, a concentration of 1 ⁇ 10 15 to 1 ⁇ 10 17 cm ⁇ 3 ) is laminated.
  • the thickness of the SiC epitaxial layer 78 as the breakdown voltage holding layer is, for example, 1 ⁇ m to 100 ⁇ m.
  • SiC epitaxial layer 78 is formed on SiC substrate 75 by so-called epitaxial growth.
  • the SiC epitaxial layer 78 formed on the surface 76 which is a Si surface is grown with the Si surface as a main growth surface. Therefore, the surface 79 of the SiC epitaxial layer 78 formed by the growth is a Si surface, like the surface 76 of the SiC substrate 75.
  • the MIS transistor 71 includes an active region 80 that is disposed in the center of the SiC epitaxial layer 78 in plan view and functions as the MIS transistor 71, and a transistor peripheral region that surrounds the active region 80 81 is formed.
  • body region 82 of p-type for example, the concentration is 1.0 ⁇ 10 16 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3
  • body region 82 has a square shape in plan view. For example, the length in the vertical and horizontal directions on the paper surface of FIG. 11B is about 7.2 ⁇ m.
  • the region on the SiC substrate 75 side of the body region 82 in the SiC epitaxial layer 78 is an n ⁇ type drift region 83 in which the state as it is after epitaxial growth is maintained.
  • Each body region 82 has a p + -type body contact region 84 (for example, an impurity concentration of 1.0 ⁇ 10 18 cm ⁇ 3 to 2.0 ⁇ 10 21 cm ⁇ 3 ) formed at the center thereof.
  • An n + type source region 85 (for example, an impurity concentration of 1.0 ⁇ 10 18 cm ⁇ 3 to 1.0 ⁇ 10 21 cm ⁇ 3 ) is formed so as to surround the body contact region 84.
  • the body contact region 84 has a square shape in plan view, and for example, the length in the vertical and horizontal directions on the paper surface of FIG. 11B is about 1.6 ⁇ m.
  • the source region 85 has a square ring shape in plan view, and for example, the length in the vertical and horizontal directions on the paper surface of FIG. 11B is about 5.7 ⁇ m.
  • regions between the body regions 82 arranged in a matrix at a constant pitch are constant (for example, 2.8 ⁇ m). It is a grid having a width.
  • a grid-like gate insulating film 86 is formed on the inter-body region along the inter-body region.
  • the gate insulating film 86 straddles between adjacent body regions 82 and covers a portion surrounding the source region 85 in the body region 82 (periphery of the body region 82) and the outer periphery of the source region 85.
  • the gate insulating film 86 is made of a High-k material (SiN, Al 2 O 3 , AlON, etc.), and its thickness is about 400 mm and almost uniform.
  • a gate electrode 87 is formed on the gate insulating film 86.
  • the gate electrode 87 is formed in a lattice shape along the lattice-shaped gate insulating film 86, and faces the peripheral edge of each body region 82 with the gate insulating film 86 interposed therebetween.
  • the gate electrode 87 is made of polysilicon and, for example, a p-type impurity is introduced at a high concentration.
  • the thickness of the gate electrode 87 is, for example, about 6000 mm.
  • each unit cell has, for example, a length of about 10 ⁇ m in the vertical and horizontal directions on the paper surface of FIG.
  • the depth direction of the body region 82 is the gate length direction
  • the circumferential direction of the body region 82 orthogonal to the gate length direction is the gate width direction.
  • a p-type guard ring 88 is provided on the surface layer portion of the SiC epitaxial layer 78 at a distance from the active region 80 so as to surround the unit cells (active region 80) arranged in a matrix. Are formed (four in the fourth embodiment). These guard rings 88 can be formed in the same ion implantation step as the step of forming the p-type body region 82.
  • Each guard ring 88 is formed in a square shape in plan view along the outer periphery of the MIS transistor 71 in plan view.
  • the depth of the guard ring 88 from the surface 79 of the SiC epitaxial layer 78 is substantially the same as that of the body region 82, for example, 2000 mm or more, preferably 3000 mm to 10,000 mm.
  • An interlayer insulating film 89 is laminated on the SiC epitaxial layer 78 so as to cover the gate electrode 87.
  • the interlayer insulating film 89 is made of a High-k material (SiN, Al 2 O 3 , AlON, etc.).
  • a contact hole 90 exposing the source region 85 and the body contact region 84 is formed in the interlayer insulating film 89 and the gate insulating film 86.
  • a source electrode 91 as a first electrode is formed on the interlayer insulating film 89. The source electrode 91 is in contact with the body contact region 84 and the source region 85 of all the unit cells through the contact holes 90 at once. That is, the source electrode 91 is a wiring common to all unit cells.
  • An interlayer insulating film (not shown) is formed on the source electrode 91, and the source electrode 91 is connected to the source pad 72 (see FIG. 11A) via the interlayer insulating film (not shown). ) Is electrically connected.
  • the gate pad 74 (see FIG. 11A) is electrically connected to the gate electrode 87 through a gate wiring (not shown) routed on the interlayer insulating film (not shown). ing.
  • the source electrode 91 has a structure in which, for example, a Ti / TiN layer and an Al layer are stacked in order from the contact side with the SiC epitaxial layer 78.
  • a drain electrode 92 as a second electrode is formed on the back surface 77 of the SiC substrate 75 so as to cover the entire area.
  • the drain electrode 92 is a common electrode for all unit cells.
  • As the drain electrode 92 for example, a stacked structure (Ti / Ni / Au / Ag) in which Ti, Ni, Au, and Ag are stacked in this order from the SiC substrate 75 side can be applied.
  • a voltage equal to or higher than the threshold voltage is applied to the gate electrode 87 in a state where a predetermined potential difference is generated between the source electrode 91 and the drain electrode 92 (between the source and drain).
  • a predetermined potential difference is generated between the source electrode 91 and the drain electrode 92 (between the source and drain).
  • an annular channel is formed at the peripheral edge of the body region 82 of each unit cell. In this manner, electrons (carriers) move from the source electrode 91 to the drain electrode 92 through the source region 85, the channel, and the drift region 83 in the active region 80, and a current flows.
  • FIG. 13A to 13D are schematic cross-sectional views showing a part of the manufacturing process of the planar gate type MIS transistor shown in FIG. 12, and show a cut surface at the same position as FIG.
  • an n-type impurity for example, N-type
  • SiC substrate 75 is formed on the surface 76 (Si surface) of the SiC substrate 75 by an epitaxial growth method such as a CVD method, an LPE method, or an MBE method.
  • SiC crystal is grown while doping (nitrogen), P (phosphorus), As (arsenic), etc.).
  • n ⁇ type SiC epitaxial layer 78 is formed on SiC substrate 75.
  • p-type impurities for example, Al (aluminum), B (boron), etc.
  • n-type impurities are implanted (implanted) into the SiC epitaxial layer 78 from the surface 79 of the SiC epitaxial layer 78.
  • SiC epitaxial layer 78 is heat-treated at 1400 ° C. to 2000 ° C. Thereby, ions of the p-type impurity and the n-type impurity implanted into the surface layer portion of SiC epitaxial layer 78 are activated, and body region 82, body contact region 84, source region 85, and guard according to the implanted location. A ring 88 is formed simultaneously.
  • drift region 83 that maintains the state after epitaxial growth is formed in the base layer portion of SiC epitaxial layer 78.
  • a High-k material is deposited from above the SiC epitaxial layer 78 by CVD. Thereafter, the High-k material is patterned by a known patterning technique. Thereby, the gate insulating film 86 is formed.
  • a doped polysilicon material is deposited from above the SiC epitaxial layer 78 by CVD. Thereafter, the polysilicon material is patterned by a known patterning technique. Thereby, the gate electrode 87 is formed.
  • a High-k material is deposited from above the SiC epitaxial layer 78 by CVD. Thereby, an interlayer insulating film 89 is formed. Thereafter, the interlayer insulating film 89 and the gate insulating film 86 are successively patterned to form a contact hole 90, and a source electrode 91, a drain electrode 92, and the like are formed, whereby the MIS transistor 71 shown in FIG. Is obtained.
  • the gate insulating film 86 and the interlayer insulating film 89 in contact with the SiC epitaxial layer 78 are made of a High-k material (SiN, Al 2 O 3 , AlON, etc.). Therefore, even if a large reverse voltage is applied between the source electrode 91 and the drain electrode 92 and an avalanche breakdown occurs, as demonstrated by the comparison between the expressions (1) and (2) in the first embodiment, the gate The electric field E High-k applied to the insulating film 86 and the interlayer insulating film 89 can be weakened. As a result, the breakdown of the gate insulating film 86 and the interlayer insulating film 89 can be reduced. Therefore, a MIS transistor with high avalanche resistance can be provided.
  • a High-k material SiN, Al 2 O 3 , AlON, etc.
  • the electric field tends to concentrate on the transistor peripheral region 81 surrounding the active region 80. Therefore, if the entire interlayer insulating film 89 is made of a High-k material as in the fourth embodiment, the interlayer insulating film 89 made of the High-k material is also brought into contact with the transistor peripheral region 81 of the SiC epitaxial layer 78. be able to. Therefore, the breakdown of the interlayer insulating film 89 can be effectively reduced.
  • FIGS. 14A and 14B are schematic plan views of a trench gate type MIS transistor 101 according to a fifth embodiment of the present invention.
  • FIG. 14A is an overall view, and FIG. Each internal enlarged view is shown.
  • FIG. 15 is a cross-sectional view of the trench gate type MIS transistor shown in FIGS. 14A and 14B, and shows cross sections taken along the cutting lines FF, GG, and HH in FIG. Show.
  • the MIS transistor 101 is a trench gate type DMISFET (Double-diffused Metal-Insulator-Semiconductor-Field-Effect-Transistor) employing SiC, and has, for example, a square chip shape in plan view as shown in FIG.
  • the chip-like MIS transistor 101 has a length of about several millimeters in the vertical and horizontal directions on the paper surface of FIG.
  • a source pad 102 is formed on the surface of the MIS transistor 101.
  • the source pad 102 has a substantially square shape in plan view with four corners curved outward, and is formed so as to cover almost the entire surface of the MIS transistor 101.
  • the source pad 102 has a removal region 103 near the center of one side. This removal region 103 is a region where the source pad 102 is not formed.
  • the MIS transistor 101 includes an n + type SiC substrate 105 (for example, the concentration is 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ).
  • the SiC substrate 105 functions as the drain of the MIS transistor 101, and its front surface 106 (upper surface) is a Si surface and its rear surface 107 (lower surface) is a C surface.
  • an n - type SiC epitaxial layer 108 having a lower concentration than the SiC substrate 105 (for example, a concentration of 1 ⁇ 10 15 to 1 ⁇ 10 17 cm ⁇ 3 ) is laminated.
  • the thickness of SiC epitaxial layer 108 as a semiconductor layer is, for example, 1 ⁇ m to 100 ⁇ m.
  • the SiC epitaxial layer 108 is formed on the SiC substrate 105 by so-called epitaxial growth.
  • the SiC epitaxial layer 108 formed on the surface that is the Si surface is grown using the Si surface as a growth main surface. Therefore, the surface 109 of the SiC epitaxial layer 108 formed by the growth is a Si surface, like the surface 106 of the SiC substrate 105.
  • the MIS transistor 101 is disposed in the center of the SiC epitaxial layer 108 in a plan view, and an active region 110 functioning as the MIS transistor 101 and a transistor peripheral region surrounding the active region 110 111 is formed.
  • active region 110 gate trenches 112 are formed in a lattice shape in the SiC epitaxial layer 108 (see FIG. 14B).
  • the SiC epitaxial layer 108 is partitioned into a plurality of cells 113 each having a square shape (square shape).
  • the plurality of cells 113 includes a Schottky cell 114 and a pn diode cell 115 having a relatively smaller planar area than the Schottky cell 114.
  • the Schottky cell 114 has an area corresponding to four of the pn diode cells 115, and the length of one side of the Schottky cell 114 corresponds to twice the length of one side of the pn diode cell 115.
  • the size of the pn diode cell 115 is about 6 ⁇ m in the vertical and horizontal directions on the paper surface of FIG. 14B, and the size of the Schottky cell 114 is the length in the same direction. Each is about 12 ⁇ m.
  • One Schottky cell 114 and a plurality of pn diode cells 115 (12 pn diode cells 115 in this embodiment) surrounding the Schottky cell 114 constitute one cell group.
  • Cell groups are further arranged in a matrix.
  • the pn diode cell 115 is shared. That is, the pn diode cell 115 surrounding the Schottky cell 114 of a certain cell group is also used as the pn diode cell 115 surrounding the Schottky cell 114 of the cell group adjacent to the cell group.
  • the SiC epitaxial layer 108 has an n + type (for example, a concentration of 1 ⁇ 10 18 to 1 ⁇ ) in order from the front surface 109 side to the back surface 116 side. 10 21 cm ⁇ 3 ) source region 117, p-type (for example, the concentration is 1.0 ⁇ 10 16 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3 ) body region 118 and drift region 119.
  • n + type for example, a concentration of 1 ⁇ 10 18 to 1 ⁇
  • p-type for example, the concentration is 1.0 ⁇ 10 16 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3
  • body region 118 drift region 119.
  • the drift region 119 is an n ⁇ -type region in which the state after the epitaxial growth is maintained, and is integrally connected at the bottom of all the cells 113 and shared between them. That is, the gate trench 112 partitions each cell 113 so that the source region 117 and the body region 118 are exposed to the side surface 124 and the deepest portion is located in the middle of the drift region 119.
  • Such a gate trench 112 includes a linear portion 120 extending linearly in the row direction and the column direction along the four side surfaces of each cell 113 between adjacent cells 113 and a line extending in the row direction.
  • intersect is included.
  • a gate insulating film 122 made of a High-k material SiN, Al 2 O 3 , AlON, etc.
  • the portion on the bottom surface 123 of the gate trench 112 is thicker than the portion on the side surface 124 of the gate trench 112.
  • the gate electrode 125 is embedded in the gate trench 112 by filling the inside of the gate insulating film 122 in the gate trench 112 with polysilicon.
  • the source region 117 and the drift region 119 are arranged apart from each other via the body region 118 in the vertical direction perpendicular to the surface 109 of the SiC epitaxial layer 108.
  • a vertical MIS transistor 101 structure (first and second MIS transistor structures) is configured.
  • HD source trench 126 is formed as a second source trench having a square shape in plan view, which reaches drift region 119 from surface 109 of SiC epitaxial layer 108 through source region 117 and body region 118. (See the GG cross section and the HH cross section in FIG. 14B and FIG. 15). The depth of the HD source trench 126 is the same as that of the gate trench 112.
  • a p-type (for example, concentration of 1 ⁇ 10 17 to 9 ⁇ 10 19 cm ⁇ 3 ) HD breakdown voltage holding region 127 (second breakdown voltage holding region) is formed.
  • the HD withstand voltage holding region 127 is formed by intersecting the bottom surface 128 and the side surface 129 of the HD source trench 126, and the annular edge portion 130 that surrounds the periphery of the bottom surface 128 and the side surface 129 of the HD source trench 126 from the edge portion 130.
  • An annular shape reaching the exposed body region 118 is formed.
  • a square-shaped Schottky region 131 in plan view made of a part of the drift region 119 is formed at the center of the bottom surface 128 of the HD source trench 126 surrounded by the HD breakdown voltage holding region 127.
  • the Schottky region 131 is formed in an area where a depletion layer generated from the pn junction (body diode 132) between the Schottky region 131 and the HD breakdown voltage holding region 127 is not connected.
  • the length L 1 of one side thereof Is 4 ⁇ m or more.
  • a Di source as a first source trench having a square shape in plan view that reaches the drift region 119 from the surface 109 of the SiC epitaxial layer 108 through the source region 117 and the body region 118.
  • a trench 133 is formed (see the FF cross section and the HH cross section in FIG. 14B and FIG. 15).
  • the depth of the Di source trench 133 is the same as that of the gate trench 112.
  • the area of Di source trenches 133, smaller than the Schottky region 131, the length L 2 of one side is about 3 [mu] m.
  • Di breakdown voltage holding region 134 (first breakdown voltage holding region) is formed.
  • the Di withstand voltage holding region 134 is formed on the entire bottom surface 135 of the Di source trench 133, and is further formed by intersecting the bottom surface 135 and the side surface 136, and an annular edge portion 137 surrounding the periphery of the bottom surface 135 and the edge portion 137. To the body region 118 exposed on the side surface 136 of the Di source trench 133.
  • the Di source trench 133 has a p + type (for example, a concentration of 1.0 ⁇ 10 18 cm ⁇ 3 to 2.0 ⁇ 10 21) on the surface layer portion of the Di breakdown voltage holding region 134 at the center of the bottom surface 135. cm ⁇ 3 ) bottom body contact region 138 is formed.
  • a contact can be made (electrically connected) to the body region 118 of the pn diode cell 115 via the Di breakdown voltage holding region 134.
  • the pn diode cell 115 is formed by a pn junction between the Di breakdown voltage holding region 134 and the drift region 119, and serves as a bottom body contact as an anode side contact.
  • a body diode 139 having a contact region 138 and having a SiC substrate 105 as a cathode side contact is incorporated.
  • a G breakdown voltage holding region 140 (relay region) is formed at each intersection 121 of the gate trench 112 that partitions the plurality of cells 113.
  • the G withstand voltage holding region 140 is formed on the entire bottom surface 123 of the gate trench 112 at the intersection 121 and is further formed below the corners of the cells 113 facing the intersection 121 from the bottom 123.
  • the corner edge portion 141 is formed so as to reach the body region 118 immediately above the corner edge portion 141.
  • the G breakdown voltage holding region 140 is formed in a square shape slightly larger than the intersection 121 of the gate trench 112 in plan view, and each corner of each cell 113 facing the intersection 121 is provided. In each.
  • the concentration of the G breakdown voltage holding region 140 is higher than that of the body region 118 and higher than that of the drift region 119, for example, 1 ⁇ 10 17 to 9 ⁇ 10 19 cm ⁇ 3 .
  • 140 ⁇ Contact can be made to the HD withstand voltage holding region 127 of the Schottky cell 114 via the body region 118 of the Schottky cell 114.
  • a plurality of p-type guard rings 142 are provided in the surface layer portion of the SiC epitaxial layer 108 so as to surround the active region 110 at intervals from the active region 110 (four in the fifth embodiment). Is formed. These guard rings 142 can be formed by the same ion implantation step as the step of forming the p-type body region 118. Each guard ring 142 is formed in a square ring shape in plan view along the outer periphery of the MIS transistor 101 in plan view.
  • contact holes 144 and 145 having larger diameters than the HD source trench 126 and the Di source trench 133 are formed.
  • a source electrode 146 is formed on the interlayer insulating film 143.
  • the source electrode 146 enters all the HD source trenches 126 and the Di source trenches 133 through the contact holes 144 and 145 at the same time.
  • the source electrode 146 is in contact with the Schottky region 131, the HD withstand voltage holding region 127, and the source region 117 in order from the bottom side of the HD source trench 126.
  • the bottom body contact region 138, the Di breakdown voltage holding region 134 and the source region 117 are in contact with each other in order from the bottom side of the Di source trench 133. That is, the source electrode 146 is a common wiring for all the cells 113.
  • An interlayer insulating film 143 (not shown) is formed on the source electrode 146, and the source electrode 146 is connected to the source pad 102 (FIG. 14 (a) via the interlayer insulating film 143 (not shown). ))) Is electrically connected.
  • the gate pad 104 (see FIG. 14A) is electrically connected to the gate electrode 125 through a gate wiring (not shown) routed on the interlayer insulating film 143 (not shown). Has been.
  • the source electrode 146 includes a polysilicon layer 147, an intermediate layer 148, and a metal layer 149 as a barrier forming layer in order from the side in contact with the SiC epitaxial layer 108.
  • the polysilicon layer 147 is a doped layer formed using doped polysilicon doped with impurities. For example, it is 1 ⁇ 10 15 cm ⁇ 3 or more, preferably 1 ⁇ 10 19 to 1 ⁇ 10 21 cm. This is a heavily doped layer doped with impurities at a high concentration of ⁇ 3 .
  • Impurities when forming the polysilicon layer 147 as a doped layer include n-type impurities such as N (nitrogen), P (phosphorus), As (arsenic), Al (aluminum), B A p-type impurity such as (boron) can be used. Further, the thickness of the polysilicon layer 147 is, for example, 5000 mm to 10,000 mm.
  • the polysilicon layer 147 is formed so as to cover the entire surface of the cell 113 exposed in the contact holes 144 and 145, and the Schottky region 131 and the HD breakdown voltage in the HD source trench 126. All of the holding region 127 and the source region 117 are in contact with all of the bottom body contact region 138, the Di withstand voltage holding region 134 and the source region 117 in the Di source trench 133.
  • the polysilicon layer 147 forms a Schottky junction with the source region 117 in the Schottky cell 114.
  • the polysilicon layer 147 is formed between the Schottky region 131 and the body diode 150 (the pn junction between the body region 118 and the drift region 119) incorporated in the Schottky cell 114 and the pn diode cell 115, respectively.
  • the heterojunction for example, the height of the junction barrier is 1 eV to 1.5 eV
  • having a junction barrier smaller than the diffusion potential (for example, 2.8 eV to 3.2 eV) of the diode is formed.
  • a heterojunction diode 151 (HD) is formed between the source electrode 146 and the Schottky region 131.
  • Polysilicon layer 147 forms an ohmic contact between bottom body contact region 138 and source region 117 in pn diode cell 115.
  • the intermediate layer 148 is a metal layer 149 laminated on the polysilicon layer 147, and is composed of a single layer containing Ti (titanium) or a plurality of layers including a layer containing Ti.
  • the layer containing Ti can be formed using Ti, TiN (titanium nitride), or the like. Further, the thickness of the intermediate layer 148 is, for example, 200 nm to 500 nm.
  • the metal layer 149 is laminated on the intermediate layer 148 and contains, for example, Al (aluminum), Au (gold), Ag (silver), Cu (copper), Mo (molybdenum), alloys thereof, and the like. It can be formed using a metal material.
  • the metal layer 149 is the outermost layer of the source electrode 146.
  • the thickness of the metal layer 149 is, for example, 1 ⁇ m to 5 ⁇ m.
  • polysilicon polysilicon layer 147
  • Ti intermediate layer 148
  • TiN intermediate layer 1448
  • It is a laminated structure (polysilicon / Ti / TiN / Al) in which Al (metal layer 149) is sequentially laminated.
  • the metal layer 149 preferably has a Mo layer. Since Mo has a high melting point, if the Mo layer is included in the metal layer 149, the metal layer 149 can be prevented from being melted by heat generated when a large current flows through the source electrode 146.
  • a drain electrode 152 is formed on the back surface 107 of the SiC substrate 105 so as to cover the entire area.
  • the drain electrode 152 is a common electrode for all the cells 113.
  • As the drain electrode 152 for example, a laminated structure (Ti / Ni / Au / Ag) in which Ti, Ni, Au, and Ag are laminated in this order from the SiC substrate 105 side can be applied.
  • the MIS transistor 101 is used as a switching element of a drive circuit (inverter circuit) of an electric motor (an example of an inductive load), for example.
  • a predetermined voltage (gate threshold voltage) is applied to the gate pad 104 with a drain voltage having a positive drain side applied between the source pad 102 (source electrode 146) and the drain electrode 152 (between the source and drain).
  • the gate trench 112 near the n-type drift region 119 (for example, the gate trench 112).
  • majority carrier electrons may recombine with holes transferred from the p-type body region 118. Therefore, the SiC crystal defects of SiC epitaxial layer 108 may expand in a direction parallel to the stacking direction of SiC epitaxial layer 108 due to the energy generated by the coupling, and may reach a drain current path (for example, a channel) when ON. There is. Then, when the MIS transistor 101 performs a switching operation by forming a channel in the vicinity of the side surface 124 of the gate trench 112 in the body region 118, the on-resistance may increase.
  • the polysilicon layer 147 forms a heterojunction with the drift region 119 (Schottky region 131), and the heterojunction diode 151 is built therein. Therefore, current flows preferentially through the heterojunction diode 151, and the current flowing through the body diode 150 can be reduced or eliminated.
  • the current flowing through the MIS transistor 101 in this way can be passed to the electric motor as a return current, for example.
  • the off-state current flows to the heterojunction diode 151 formed in the HD source trench 126 at the center of the Schottky cell 114, so that it is in the vicinity of the gate trench 112 (ie, the p-type body region 118 and the n-type drift). There is almost no carrier movement between the region 119). Therefore, recombination of holes and electrons in the drift region 119 can be prevented. As a result, expansion of SiC crystal defects in the SiC epitaxial layer 108 can be suppressed, so that an increase in on-resistance of the transistor can be suppressed. In addition, since the current flowing through the body diode 150 can be reduced or eliminated, loss when the MIS transistor 101 operates can be reduced.
  • the length L1 of one side of the Schottky region 131 constituting the heterojunction diode 151 is set so that the depletion layer generated from the body diode 132 is not connected. Therefore, when the heterojunction diode 151 operates, it is possible to prevent the current path from being closed by the depletion layer. As a result, low on-resistance of the heterojunction diode 151 can be achieved.
  • an electric field is applied to gate insulating film 122 interposed between gate electrode 125 and SiC epitaxial layer 108. This electric field is generated due to a potential difference between the gate electrode 125 and the SiC epitaxial layer 108.
  • equipotential surfaces with a very high potential are distributed with the gate electrode 125 as a reference (0 V), and the interval between the equipotential surfaces is small, so a very large electric field is generated.
  • an equipotential surface of 900 V is distributed in the vicinity of the back surface 107 of the SiC substrate 105 in contact with the drain electrode 152, and from the back surface 107 of the SiC substrate 105 to the surface 109 side of the SiC epitaxial layer 108.
  • a voltage drop occurs as it goes, an equipotential surface of about several tens of volts is distributed near the bottom surface 123 of the gate trench 112. Therefore, a very large electric field is generated on the bottom surface 123 of the gate trench 112 toward the gate electrode 125 side.
  • each corner of the cell 113 is displayed.
  • the dielectric breakdown of the gate insulating film 122 is particularly likely to occur.
  • the G breakdown voltage holding region 140 is formed in the corner edge portion 141 of the gate trench 112.
  • the body diode 155 can be formed in the vicinity of the corner edge portion 141 of the gate trench 112 by the pn junction between the G breakdown voltage holding region 140 and the drift region 119.
  • an HD breakdown voltage holding region 127 is formed at the edge portion 130 of the HD source trench 126 of the Schottky cell 114, and the Di breakdown voltage is held at the bottom surface 135 of the Di source trench 133 and the edge portion 137 of the pn diode cell 115. Region 134 is formed.
  • an annular body diode 132 surrounding the edge portion 130 of the HD source trench 126 is formed by the pn junction between the HD breakdown voltage holding region 127 and the drift region 119 and the pn junction between the Di breakdown voltage holding region 134 and the drift region 119. be able to.
  • a vessel-shaped body diode 139 covering the bottom of the Di source trench 133 can be formed.
  • the G breakdown voltage holding region 140 is formed so as to reach the body region 118 immediately above the corner edge portion 141, but a channel is not formed or formed at the corner portion of the cell 113.
  • the current flowing through the channel is very small. Therefore, by forming the G withstand voltage holding region 140 so as to reach the portion immediately above the corner edge portion 141 in the body region 118, the effect of preventing the gate insulating film 122 from being destroyed is further improved without substantially affecting the performance of the device. Can be made.
  • FIG. 16 is a schematic cross-sectional view of a trench gate type MIS transistor 161 according to the sixth embodiment of the present invention, and shows a cut surface at the same position as FIG.
  • portions corresponding to the respective portions shown in FIG. 15 are denoted by the same reference numerals as those denoted for the respective portions, and description thereof will be omitted.
  • the HD source trench 126 has a planar shape in which no step is formed on the side surface thereof.
  • the HD source trench 162 of the MIS transistor 161 according to the sixth embodiment is made of SiC.
  • the HD source trench 162 has a two-stage structure in which the side surface of the HD upper layer trench 163 extends one step outward from the side surface of the HD lower layer trench 164.
  • Di source trench 166 of MIS transistor 161 is narrower than Di upper trench 167 (first upper trench) having a depth from surface 109 of SiC epitaxial layer 108 to body region 118 and smaller than Di upper trench 167.
  • Di lower trench 168 (first lower trench) having a depth from body region 118 to drift region 119. Accordingly, the Di source trench 166 has a two-stage structure in which the side surface of the Di upper layer trench 167 extends one step outward from the side surface of the Di lower layer trench 168.
  • a body region 118 is exposed in a ring shape at a step portion between the Di upper layer trench 167 and the Di lower layer trench 168, and a p + -type Di body contact region 169 is formed in the exposed portion.
  • this MIS transistor 161 can achieve the same function and effect as those of the MIS transistor 101 described above.
  • each of the trenches 162 and 166 has a two-stage structure, and the HD body contact region 165 and the Di body contact region 169 are formed. Therefore, the body of each of the Schottky cell 114 and the pn diode cell 115 is formed. Direct contact can be made to region 118. As a result, the potential of the body region 118 can be precisely controlled.
  • FIGS. 17A and 17B are schematic plan views of a planar gate type MIS transistor 181 according to the seventh embodiment of the present invention.
  • FIG. 17A is an overall view, and FIG. Each internal enlarged view is shown.
  • 18 is a cross-sectional view of the planar gate type MIS transistor 181 shown in FIGS. 17A and 17B, and shows cross sections taken along lines II and JJ in FIG. 17B, respectively.
  • parts corresponding to the parts shown in FIGS. 14 and 15 are denoted by the same reference numerals as those given to those parts, and the description thereof is omitted.
  • a gate insulating film 182 made of a high-k material (SiN, Al 2 O 3 , AlON, etc.) is formed on the surface 109 of the SiC epitaxial layer 108 instead of being formed on the inner surface of the gate trench 112.
  • a gate electrode 183 is formed thereon.
  • FIGS. 19A and 19B are schematic plan views of a trench gate type MIS transistor 191 according to the eighth embodiment of the present invention.
  • FIG. 19A is an overall view, and FIG. Each internal enlarged view is shown.
  • 20 is a cross-sectional view of the trench gate type MIS transistor 191 shown in FIGS. 19A and 19B, and shows cross sections taken along the cutting lines KK and LL in FIG. 19B, respectively.
  • 19 and 20 parts corresponding to those shown in FIGS. 14 and 15 are denoted by the same reference numerals as those assigned to the respective parts, and description thereof will be omitted.
  • the Schottky cell 114 has a larger area than the pn diode cell 115, but the area of the Schottky cell 114 and the pn diode cell 115 may be the same.
  • the MIS transistor 191 according to the eighth embodiment Schottky cells 114 and pn diode cells 115 having a square shape in the same plan view are arranged in a matrix (matrix shape), and the Schottky cell 114 is a pn diode. It is surrounded by the cell 115.
  • the MIS transistor 101 structure having the source region 117, the body region 118, and the drift region 119 and having the HD source trench 126 formed therein is not formed.
  • Schottky region 131 appears on the same plane as surface 109 of SiC epitaxial layer 108. As described above, this MIS transistor 191 can also achieve the same effects as those of the MIS transistor 101 described above.
  • the Schottky cell 114 has an area corresponding to, for example, nine pn diode cells 115 as shown in FIGS.
  • the length of one side of the Schottky cell 114 may correspond to three times the length of one side of the pn diode cell 115.
  • FIG. 22 (a) and 22 (b) are schematic plan views of a trench gate type MIS transistor according to the ninth embodiment of the present invention, in which FIG. 22 (a) is an overall view and FIG. 22 (b) is an internal view. Each enlarged view is shown.
  • FIG. 2 is a cross-sectional view of the trench gate type MIS transistor shown in FIGS. 22A and 22B, and shows cross sections along the cutting lines MM and NN in FIG. 22B, respectively.
  • the MIS transistor 201 is a trench gate type DMISFET (Double diffused Metal Insulator Semiconductor Field Effect Transistor) adopting SiC, and has, for example, a square chip shape in plan view as shown in FIG.
  • the chip-like MIS transistor 201 has a length of about several millimeters in the vertical and horizontal directions on the paper surface of FIG.
  • a source pad 202 is formed on the surface of the MIS transistor 201.
  • the source pad 202 has a substantially square shape in plan view with four corners curved outward, and is formed to cover almost the entire surface of the MIS transistor 201.
  • the source pad 202 has a removal region 203 near the center of one side. This removal region 203 is a region where the source pad 202 is not formed.
  • the MIS transistor 201 includes an n + type SiC substrate 205 (for example, the concentration is 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ).
  • the SiC substrate 205 functions as the drain of the MIS transistor 201, and its front surface 206 (upper surface) is an Si surface and its rear surface 207 (lower surface) is a C surface.
  • an n - type SiC epitaxial layer 208 having a lower concentration than the SiC substrate 205 (for example, a concentration of 1 ⁇ 10 15 to 1 ⁇ 10 17 cm ⁇ 3 ) is laminated.
  • the thickness of SiC epitaxial layer 208 as a semiconductor layer is, for example, 1 ⁇ m to 100 ⁇ m.
  • SiC epitaxial layer 208 is formed on SiC substrate 205 by so-called epitaxial growth.
  • the SiC epitaxial layer 208 formed on the surface 206 which is a Si surface is grown using the Si surface as a main growth surface. Therefore, the surface 209 of the SiC epitaxial layer 208 formed by the growth is a Si surface, like the surface 206 of the SiC substrate 205.
  • the MIS transistor 201 is disposed in the center of the SiC epitaxial layer 208 in plan view, and has an active region 210 functioning as the MIS transistor 201 and a transistor peripheral region surrounding the active region 210 211 is formed.
  • body region 212 of p-type for example, the concentration is 1.0 ⁇ 10 16 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3
  • a large number are arranged in a matrix (matrix) at a constant pitch in the column direction.
  • Each body region 212 has a square shape in plan view, and for example, the length in the vertical and horizontal directions on the paper surface of FIG. 22B is about 7.2 ⁇ m.
  • the region on the SiC substrate 205 side with respect to the body region 212 in the SiC epitaxial layer 208 is an n ⁇ -type drift region 213 in which the state after the epitaxial growth is maintained.
  • an n + -type source region 214 (for example, a concentration of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ) is formed in almost the entire region on the surface 209 side.
  • Gate trenches 215 are formed in a lattice shape so as to surround each body region 212 from surface 209 of SiC epitaxial layer 208 through each source region 214 and body region 212 to reach drift region 213.
  • the gate trench 215 includes a linear portion 216 extending linearly in each of the row direction and the column direction along the four side surfaces of each body region 212 between the adjacent body regions 212, and the row region 216.
  • a linear portion 216 extending in the direction and a crossing portion 217 intersecting with the linear portion 216 extending in the column direction are included.
  • the intersecting portion 217 is surrounded by the inner corners of the four arranged body regions 212 and is defined by the extended lines of the four sides of the body region 212. This is a square portion in plan view.
  • the gate trench 215 has a U-shaped cross section in which a side surface 218 and a bottom surface 219 facing each other are continuous via a curved surface.
  • the SiC epitaxial layer 208 a large number of rectangular parallelepiped unit cells 221 having four corners 220 are formed in each window portion surrounded by the lattice-like gate trench 215.
  • the depth direction of the gate trench 215 is the gate length direction
  • the circumferential direction of each unit cell 221 orthogonal to the gate length direction is the gate width direction.
  • a gate insulating film 222 made of a High-k material (SiN, Al 2 O 3 , AlON, etc.) is formed on the inner surface of the gate trench 215 so as to cover the entire area. Then, the gate electrode 223 is embedded in the gate trench 215 by filling the inside of the gate insulating film 222 with a polysilicon material doped with n-type impurities at a high concentration.
  • a vertical MIS transistor structure is configured in which the source region 214 and the drift region 213 are spaced apart from each other via the body region 212 in the vertical direction perpendicular to the surface 209 of the SiC epitaxial layer 208.
  • a source trench 224 having a square shape in a plan view is formed in the center of each unit cell 221 and reaches the drift region 213 from the surface 209 of the SiC epitaxial layer 208 through the source region 214 and the body region 212. Yes.
  • the depth of the source trench 224 is the same as that of the gate trench 215 in the ninth embodiment.
  • the source trench 224 has a U-shaped cross section in which a side surface 225 and a bottom surface 226 facing each other are continuous via a curved surface.
  • the gate breakdown voltage holding region 227 is formed along the lattice-shaped gate trench 215, and the first region 229 as the second breakdown voltage holding region formed at the intersection 217 of the gate trench 215 and the line of the gate trench 215 It integrally includes a second region 230 as a third withstand voltage holding region formed in the shape portion 216.
  • the first region 229 includes a bottom surface 219 of the gate trench 215 at the intersecting portion 217 and a corner edge portion 231 of the gate trench 215 formed at each corner 220 of the four unit cells 221 facing the intersecting portion 217 from the bottom surface 219. And the body region 212 is formed immediately above the corner edge portion 231. That is, the first region 229 is formed in a square shape slightly larger than the intersecting portion 217 of the gate trench 215 in plan view, and each corner of each of the four unit cells 221 facing the intersecting portion 217 is formed. Each part enters the portion 220.
  • the concentration of the first region 229 is higher than the concentration of the body region 212 and higher than the concentration of the drift region 213, for example, 1 ⁇ 10 17 to 9 ⁇ 10 19 cm ⁇ 3 . Further, the thickness T 1 along the direction from the bottom surface of the gate trench 215 toward the SiC substrate 205 in the first region 229 is, for example, about 0.8 ⁇ m.
  • the second region 230 is formed in a straight line having a constant width that connects the centers of the sides of the intersecting portions 217 adjacent to each other in plan view, and the width of the linear portion 216 (the distance between the side surfaces of the gate trenches 215 facing each other (
  • the width of the second region 230 is higher than that of the body region 212 and higher than that of the first region 229.
  • the second thickness T 2 along the direction toward the SiC substrate 205 from the bottom of the gate trench 215 in the second region 230, the thickness of the first region 229 T 1 (ie, T 1 > T 2 ), for example, about 0.7 ⁇ m.
  • the source breakdown voltage holding region 228 includes the edge portion 232 of the source trench 224 where the bottom surface 226 and the side surface 225 intersect so that the bottom surface 226 of the source trench 224 is exposed, and a part of the side surface 225 of the source trench 224 from the edge portion 232. It is formed so as to reach the body region 212 forming the. As a result, a drift exposure region 233 having a square shape in plan view and formed of a part of the drift region 213 is formed at the center of the bottom surface 226 of the source trench 224.
  • the concentration of the source breakdown voltage holding region 228 is the same as that of the first region 229 of the gate breakdown voltage holding region 227 (for example, 1 ⁇ 10 17 to 9 ⁇ 10 19 cm ⁇ 3 .
  • Thickness T 3 along the direction from the bottom surface of trench 224 toward SiC substrate 205 is the same as thickness T 1 of first region 229 of gate breakdown voltage holding region 227 (for example, about 0.8 ⁇ m).
  • a p-type guard ring is provided on the surface layer portion of the SiC epitaxial layer 208 at a distance from the active region 210 so as to surround the unit cells 221 (active region 210) arranged in a matrix.
  • a plurality of 234 are formed. These guard rings 234 can be formed in the same ion implantation step as the step of forming the p-type body region 212.
  • Each guard ring 234 is formed in a square shape in plan view along the outer periphery of the MIS transistor 201 in plan view.
  • An interlayer insulating film 235 made of a High-k material (SiN, Al 2 O 3 , AlON, etc.) is laminated on the SiC epitaxial layer 208 so as to cover the gate electrode 223.
  • a contact hole 236 having a diameter larger than that of the source trench 224 is formed.
  • the entire source trench 224 of each unit cell 221 that is, the side surface 225 and the bottom surface 226 of the source trench 2214 and the peripheral portion of the source trench 224 on the surface 209 of the SiC epitaxial layer 208 are exposed in the contact hole 236.
  • a level difference corresponding to the height difference between the surface 209 and the bottom surface 226 is formed.
  • a source electrode 237 is formed on the interlayer insulating film 235.
  • the source electrode 237 enters the source trenches 224 of all the unit cells 221 through the contact holes 236 at once, and in each unit cell 221, the drift exposed region 233 and the source are sequentially formed from the bottom side of the source trench 224. It is in contact with the breakdown voltage holding region 228, the body region 212, and the source region 214. That is, the source electrode 237 is a common wiring for all the unit cells 221.
  • An interlayer insulating film (not shown) is formed on the source electrode 237, and the source electrode 237 is connected to the source pad 202 (see FIG. 22A) via the interlayer insulating film (not shown). ) Is electrically connected.
  • the gate pad 204 (see FIG. 22A) is electrically connected to the gate electrode 223 through a gate wiring (not shown) routed on the interlayer insulating film (not shown). ing.
  • the source electrode 237 includes a polysilicon layer 238, an intermediate layer 239, and a metal layer 240 as barrier forming layers in order from the side in contact with the SiC epitaxial layer 208.
  • the polysilicon layer 238 is a doped layer formed using doped polysilicon doped with impurities. For example, it is 1 ⁇ 10 15 cm ⁇ 3 or more, preferably 1 ⁇ 10 19 to 1 ⁇ 10 21 cm. This is a heavily doped layer doped with impurities at a high concentration of ⁇ 3 .
  • Impurities when forming the polysilicon layer 238 as a doped layer include n-type impurities such as N (nitrogen), P (phosphorus), As (arsenic), Al (aluminum), B A p-type impurity such as (boron) can be used. Further, the thickness of the polysilicon layer 238 is, for example, 5000 to 10,000 mm.
  • the polysilicon layer 238 is formed so as to cover the entire surface of the unit cell 221 exposed in the contact hole 236, and the drift exposed region 233 and the source breakdown voltage holding region are formed in the source trench 224. 228 and all of the source region 214 are in contact. That is, the polysilicon layer 238 is in contact with the source breakdown voltage holding region 228 at the side surface 225 of the source trench 224, and the first portion 241 is in contact with the source region 214 at the peripheral portion of the side surface 225 and the surface 209 of the SiC epitaxial layer 208. And a second portion 242 in contact with the drift exposed region 233 on the bottom surface 226 of the source trench 224.
  • the first portion 241 forms an ohmic junction between both the source breakdown voltage holding region 228 and the source region 214.
  • the diffusion potential for example, a pn diode formed by the junction of the body region 212 and the drift region 213
  • Heterojunction for example, the height of the junction barrier is 1 eV to 1.5 eV
  • having a junction barrier smaller than 2.8 eV to 3.2 eV is formed.
  • the intermediate layer 239 is a metal layer stacked on the polysilicon layer 238 and includes a single layer of a layer containing Ti (titanium) or a plurality of layers including a layer containing Ti.
  • the layer containing Ti can be formed using Ti, TiN (titanium nitride), or the like. Further, the thickness of the intermediate layer 239 is, for example, 200 nm to 500 nm.
  • the metal layer 240 is laminated on the intermediate layer 239 and contains, for example, Al (aluminum), Au (gold), Ag (silver), Cu (copper), Mo (molybdenum), alloys thereof, and the like. It can be formed using a metal material.
  • the metal layer 240 is the outermost layer of the source electrode 237.
  • the thickness of the metal layer 240 is, for example, 1 ⁇ m to 5 ⁇ m.
  • the metal layer 240 As a combination of the polysilicon layer 238, the intermediate layer 239, and the metal layer 240 as described above, in the ninth embodiment, Poly-Si (polysilicon layer 238), Ti (intermediate layer 239), TiN (intermediate layer 239) And a stacked structure (Poly-Si / Ti / TiN / Al) in which Al (metal layer 240) is sequentially stacked.
  • the metal layer 240 preferably has a Mo layer. Since Mo has a high melting point, if the Mo layer is included in the metal layer 240, melting damage of the metal layer 240 due to heat generated when a large current flows through the source electrode 237 can be suppressed.
  • a drain electrode 244 is formed on the back surface 207 of the SiC substrate 205 so as to cover the entire area.
  • the drain electrode 244 is a common electrode for all the unit cells 221.
  • the MIS transistor 201 is used, for example, as a switching element of a drive circuit (inverter circuit) of an electric motor (an example of an inductive load).
  • a predetermined voltage (gate threshold voltage) is applied to the gate pad 204 in a state where a drain voltage having a positive drain side is applied between the source pad 202 (source electrode 237) and the drain electrode 244 (between the source and drain).
  • gate threshold voltage a predetermined voltage having a positive drain side is applied between the source pad 202 (source electrode 237) and the drain electrode 244 (between the source and drain).
  • the SiC crystal defects of SiC epitaxial layer 208 may expand in a direction parallel to the stacking direction of SiC epitaxial layer 208 and reach a drain current path (for example, a channel) at the time of ON due to energy generated by the coupling. There is. Then, when the MIS transistor 201 performs a switching operation by forming a channel in the vicinity of the side surface 218 of the gate trench 215 in the body region 212, the on-resistance may increase.
  • the polysilicon layer 238 forms a heterojunction with the drift region 213 (drift exposed region 233). Therefore, current flows preferentially through the heterojunction between the second portion 242 of the polysilicon layer 238 and the drift region 213, and the current flowing through the body diode 243 can be reduced or eliminated.
  • the current flowing through the MIS transistor 201 in this way can be supplied to the electric motor as a return current, for example.
  • the off-state current flows from the second portion 242 of the polysilicon layer 238 formed in the source trench 224 in the center of the unit cell 221 surrounded by the gate trench 215 to the drift region 213, Nearly 215 (that is, between the p-type body region 212 and the n-type drift region 213) hardly causes carrier movement. Therefore, recombination of holes and electrons in the drift region 213 can be prevented. As a result, expansion of SiC crystal defects in the SiC epitaxial layer 208 can be suppressed, so that an increase in on-resistance of the transistor 201 can be suppressed.
  • an electric field is applied to gate insulating film 222 interposed between gate electrode 223 and SiC epitaxial layer 208. This electric field is generated due to a potential difference between the gate electrode 223 and the SiC epitaxial layer 208.
  • an equipotential surface having a very high potential is distributed with the gate electrode 223 as a reference (0 V), and the interval between the equipotential surfaces is small, so that a very large electric field is generated.
  • an equipotential surface of 900 V is distributed in the vicinity of the back surface 207 of the SiC substrate 205 in contact with the drain electrode 244, and from the back surface 207 of the SiC substrate 205 to the surface 209 side of the SiC epitaxial layer 208.
  • a voltage drop occurs as it goes, an equipotential surface of about several tens of volts is distributed in the vicinity of the bottom surface 219 of the gate trench 215. Therefore, a very large electric field is generated on the bottom surface 219 of the gate trench 215 toward the gate electrode 223 side.
  • the gate trenches 215 are formed in a lattice shape and the rectangular columnar unit cells 221 are arranged in the windows of the lattice-like gate trenches 215, In the vicinity of the corner edge portion 231 of the gate trench 215 formed in each corner 220, the dielectric breakdown of the gate insulating film 222 is particularly likely to occur.
  • the distance D 1 (see the MM cross section of FIG. 23) of the source trenches 224 that are adjacent to each other on the diagonal line of the intersecting portion 217 of the gate trench 215 is equal to each other across the linear portion 216 of the gate trench 215. It becomes larger than the distance D 2 between adjacent source trenches 224 (see the NN cross section in FIG. 23) (for example, in the ninth embodiment, D 1 is 1.4 times D 2 ). For this reason, the equipotential surface enters immediately below the corner edge portion 231 of the gate trench 215 having a relatively wide space, and the equipotential surfaces are densely formed. As a result, the dielectric breakdown of the gate insulating film 222 is particularly likely to occur near the corner edge portion 231 of the gate trench 215.
  • the gate breakdown voltage holding region 227 (first region 229) is formed at the corner edge portion 231 of the gate trench 215. Accordingly, the body diode 248 can be formed in the vicinity of the corner edge portion 231 of the gate trench 215 by the junction (pn junction) between the first region 229 and the drift region 213. Further, in the MIS transistor 201, a source breakdown voltage holding region 228 is formed at the edge portion 232 of the source trench 224 formed in the central portion of each unit cell 221. Therefore, an annular body diode 249 surrounding the edge portion 232 of the source trench 224 can be formed by the junction (pn junction) between the source breakdown voltage holding region 228 and the drift region 213.
  • the presence of the depletion layer generated in these body diodes 248 and 249 can prevent an equipotential surface from entering between the corner edge portion 231 of the gate trench 215 and the edge portion 232 of the source trench 224, and the gate insulating film 222. Can be kept away from As a result, crowding of equipotential surfaces in the vicinity of the corner edge portion 231 of the gate trench 215 can be prevented. As a result, the electric field applied to the gate insulating film 222 can be reduced, so that dielectric breakdown can be suppressed.
  • the concentration of the first region 229 is higher than the concentration of the drift region 213, the depletion layer generated by the junction (pn junction) between the first region 229 and the drift region 213 is prevented from spreading too much in the SiC epitaxial layer 208. can do.
  • the first region 229 is formed so as to reach the body region 212 immediately above the corner edge portion 231 through the corner edge portion 231, but a channel is formed in the corner portion 220 of the unit cell 221. It is not formed or even if it is formed, the current flowing through the channel is very small. Therefore, by forming the gate breakdown voltage holding region 227 (first region 229) so as to reach the portion immediately above the corner edge portion 231 in the body region 212, the performance of the gate insulating film 222 is hardly affected. The destruction prevention effect can be further improved.
  • a gate breakdown voltage holding region 227 (second region 230) having a width smaller than the width of the linear portion 216 is formed in the linear portion 216 of the gate trench 215.
  • a depletion layer generated by the junction (pn junction) between the second region 230 and the drift region 213 can be generated along the linear portion 216 of the gate trench 215. Therefore, an electric field generated immediately below the linear portion 216 of the gate trench 215 can be relaxed by the depletion layer.
  • the electric field generated in the gate insulating film 222 can be alleviated evenly throughout.
  • the gate breakdown voltage holding region 227 (second region 230) is not formed on the side surface 218 of the linear portion 216 of the gate trench 215 (that is, the portion where the channel is formed in the unit cell 221). Therefore, the channel characteristics can be controlled with high accuracy.
  • the concentration of the second region 230 is higher than the concentration of the first region 229, furthermore, the thickness T 2 of the second region 230 is smaller than the thickness T 1 of the first region 229 (T 1> T 2) Therefore, an increase in channel resistance can be prevented.
  • FIGS. 24A and 24B are schematic plan views of the planar gate type MIS transistor according to the tenth embodiment of the present invention, in which FIG. 24A is an overall view and FIG. 24B is an internal view. Each enlarged view is shown.
  • FIG. 25 is a cross-sectional view of the planar gate type MIS transistor shown in FIGS. 24A and 24B, and shows cross sections along the cutting lines OO and PP in FIG. 24B, respectively.
  • the MIS transistor 251 is a planar gate type DMISFET employing SiC, and has, for example, a square chip shape in plan view as shown in FIG.
  • Each of the chip-like MIS transistors 251 has a length of about several millimeters in the vertical and horizontal directions on the paper surface of FIG.
  • a source pad 252 is formed on the surface of the MIS transistor 251.
  • the source pad 252 has a substantially square shape in plan view with four corners curved outward, and is formed so as to cover almost the entire surface of the MIS transistor 251.
  • the source pad 252 has a removal region 253 near the center of one side.
  • the removal region 253 is a region where the source pad 252 is not formed.
  • the MIS transistor 251 includes an n + type SiC substrate 255 (for example, the concentration is 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ).
  • the SiC substrate 255 functions as the drain of the MIS transistor 251, and its front surface 256 (upper surface) is an Si surface and its rear surface 257 (lower surface) is a C surface.
  • an n - type SiC epitaxial layer 258 having a lower concentration than the SiC substrate 255 (for example, a concentration of 1 ⁇ 10 15 to 1 ⁇ 10 17 cm ⁇ 3 ) is laminated.
  • the thickness of SiC epitaxial layer 258 as a semiconductor layer is, for example, 1 ⁇ m to 100 ⁇ m.
  • the SiC epitaxial layer 258 is formed on the SiC substrate 255 by so-called epitaxial growth.
  • the SiC epitaxial layer 258 formed on the surface 256 which is a Si surface is grown with the Si surface as a main growth surface. Therefore, the surface 259 of the SiC epitaxial layer 258 formed by the growth is a Si surface, like the surface 256 of the SiC substrate 255.
  • the MIS transistor 251 includes an active region 260 that is disposed in the center of the SiC epitaxial layer 258 in plan view and functions as the MIS transistor 251, and a transistor peripheral region that surrounds the active region 260 261 is formed.
  • body region 262 of p-type for example, the concentration is 1.0 ⁇ 10 16 cm ⁇ 3 to 1.0 ⁇ 10 19 cm ⁇ 3
  • a large number are arranged in a matrix (matrix) at a constant pitch in the column direction.
  • Each body region 262 has a square shape in plan view. For example, the length in the vertical and horizontal directions on the paper surface of FIG. 24B is about 7.2 ⁇ m.
  • the region on the SiC substrate 255 side with respect to the body region 262 in the SiC epitaxial layer 258 is an n ⁇ -type drift region 263 that is maintained as it is after the epitaxial growth.
  • an n + -type (for example, concentration of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3 ) source region 264 is formed in almost the entire region on the surface 259 side.
  • regions between the body regions 262 arranged in a matrix at a constant pitch have a lattice shape having a constant (for example, 2.8 ⁇ m) width.
  • the inter-body region 265 includes a linear portion 266 extending linearly in the row direction and the column direction along the four side surfaces of each body region 262 between the adjacent body regions 262, and It includes an intersecting portion 267 where the linear portion 266 extending in the row direction intersects with the linear portion 266 extending in the column direction.
  • the intersecting portion 267 is surrounded by the inner corners of the four arranged body regions 262, and is defined by the extended lines of the four sides of the body region 262. This is a square portion in plan view.
  • each unit cell has, for example, a length of about 10 ⁇ m in the vertical and horizontal directions on the paper surface of FIG.
  • the depth direction of the body region 262 is the gate length direction
  • the circumferential direction of the body region 262 orthogonal to the gate length direction is the gate width direction.
  • a lattice-like gate insulating film 272 is formed on the inter-body region 265 along the inter-body region 265.
  • the gate insulating film 272 spans between adjacent body regions 262 and covers a portion surrounding the source region 264 in the body region 262 (peripheral portion of the body region 262) and an outer peripheral edge of the source region 264.
  • the gate insulating film 272 is made of a High-k material (SiN, Al 2 O 3 , AlON, etc.), and its thickness is approximately uniform at about 400 mm.
  • a gate electrode 273 is formed on the gate insulating film 272.
  • the gate electrode 273 is formed in a lattice shape along the lattice-shaped gate insulating film 272, and faces the peripheral portion of each body region 262 with the gate insulating film 272 interposed therebetween.
  • the gate electrode 273 is made of polysilicon and, for example, is doped with an n-type impurity at a high concentration.
  • the thickness of the gate electrode 273 is, for example, about 6000 mm.
  • a source trench 274 having a square shape in plan view that reaches the drift region 263 from the surface 259 of the SiC epitaxial layer 258 through the source region 264 and the body region 262 is formed.
  • the source trench 274 has a U-shaped cross section in which a side surface 275 and a bottom surface 276 facing each other are continuous via a curved surface.
  • the gate breakdown voltage holding region 277 is formed along the lattice-shaped inter-body region 265, and a first region 279 as a fourth breakdown voltage holding region formed at the intersection 267 of the inter-body region 265, and the inter-body region And a second region 280 as a fifth withstand voltage holding region formed in the linear portion 266 of H.265.
  • the first region 279 is formed so as to reach the corner portion 281 of the body region 262 formed at each corner portion 270 of the four unit cells 271 facing the intersecting portion 267. That is, the first region 279 is formed in a square shape slightly larger than the intersecting portion 267 of the inter-body region 265 in a plan view, and each corner of each of the four unit cells 271 facing the intersecting portion 267 is formed.
  • the concentration of the first region 279 is equal to or higher than the concentration of the body region 262 and higher than the concentration of the drift region 263, for example, 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 .
  • thickness T 4 along the direction from surface 259 of SiC epitaxial layer 258 toward SiC substrate 255 in first region 279 is, for example, about 0.8 ⁇ m.
  • the second region 280 is formed in a straight line having a constant width that connects the centers of the sides of the intersecting portions 267 adjacent in plan view, and is narrower than the width of the linear portion 266 (for example, 3.0 ⁇ m) ( For example, 1.5 ⁇ m).
  • the concentration of the second region 280 is higher than that of the body region 262 and higher than that of the first region 279, for example, 2 ⁇ 10 18 to 2 ⁇ 10 19 cm ⁇ 3 .
  • the thickness T 5 along the direction from the surface 259 of the SiC epitaxial layer 258 to the SiC substrate 255 in the second region 280 is equal to or less than the thickness T 4 of the first region 279 (that is, T 4 ⁇ T 5 ). is there.
  • the source breakdown voltage holding region 278 includes the edge portion 282 of the source trench 274 where the bottom surface 276 and the side surface 275 intersect so that the bottom surface 276 of the source trench 274 is exposed, and a part of the side surface 275 of the source trench 274 from the edge portion 282. It is formed so as to reach the body region 262 forming the.
  • a drift exposure region 283 having a square shape in plan view and formed of a part of the drift region 263 is formed at the center of the bottom surface 276 of the source trench 274.
  • the concentration of the source breakdown voltage holding region 278 is the same as that of the first region 279 of the gate breakdown voltage holding region 277 (for example, 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 ). Further, the thickness T 6 along the direction from the bottom surface of the source trench 274 to the SiC substrate 255 in the source breakdown voltage holding region 278 is, for example, about 0.8 ⁇ m, and the deepest portion of the source breakdown voltage holding region 278 is the gate breakdown voltage holding.
  • the region 277 (the first region 279 and the second region 280) is deeper than the deepest portion.
  • the p-type guard ring is spaced from the active region 260 so as to surround the unit cells 271 (active region 260) arranged in a matrix on the surface layer portion of the SiC epitaxial layer 258.
  • a plurality of 284 are formed. These guard rings 284 can be formed by the same ion implantation process as the process of forming the p-type body region 262.
  • Each guard ring 284 is formed in a square shape in plan view along the outer periphery of the MIS transistor 251 in plan view.
  • An interlayer insulating film 285 made of a High-k material (SiN, Al 2 O 3 , AlON, etc.) is laminated on the SiC epitaxial layer 258 so as to cover the gate electrode 273.
  • a contact hole 286 having a diameter larger than that of the source trench 274 is formed in the interlayer insulating film 285 and the gate insulating film 272.
  • the entire source trench 274 of each unit cell 271 that is, the side surface 275 and the bottom surface 276 of the source trench 274
  • the peripheral portion of the source trench 274 on the surface 259 of the SiC epitaxial layer 258 are exposed in the contact hole 286.
  • a level difference corresponding to the height difference between the surface 259 and the bottom surface 276 is formed.
  • a source electrode 287 is formed on the interlayer insulating film 285.
  • the source electrode 287 collectively enters the source trenches 274 of all the unit cells 271 through the contact holes 286, and in each unit cell 271, the drift exposed region 283, the source The breakdown voltage holding region 278, the body region 262, and the source region 264 are in contact with each other. That is, the source electrode 287 is a common wiring for all the unit cells 271.
  • An interlayer insulating film (not shown) is formed on the source electrode 287, and the source electrode 287 is connected to the source pad 252 (see FIG. 24A) via the interlayer insulating film (not shown). ) Is electrically connected.
  • the gate pad 254 (see FIG. 24A) is electrically connected to the gate electrode 273 via a gate wiring (not shown) routed on the interlayer insulating film (not shown). ing.
  • the source electrode 287 includes a polysilicon layer 288 as a barrier forming layer, an intermediate layer 289, and a metal layer 290 in order from the side in contact with the SiC epitaxial layer 258.
  • the polysilicon layer 288 is a doped layer formed using doped polysilicon doped with impurities, and is, for example, 1 ⁇ 10 15 cm ⁇ 3 or more, preferably 1 ⁇ 10 19 to 1 ⁇ 10 21 cm. This is a heavily doped layer doped with impurities at a high concentration of ⁇ 3 .
  • Impurities when forming the polysilicon layer 288 as a doped layer include n-type impurities such as N (nitrogen), P (phosphorus), As (arsenic), Al (aluminum), B A p-type impurity such as (boron) can be used.
  • the thickness of the polysilicon layer 288 is, for example, 5000 to 10,000 mm.
  • the polysilicon layer 288 is formed so as to cover the entire surface of the unit cell 271 exposed in the contact hole 286, and the drift exposed region 283 and the source breakdown voltage holding region are formed in the source trench 274. 278 and all of source region 264 are in contact. That is, the polysilicon layer 288 is in contact with the source breakdown voltage holding region 278 at the side surface 275 of the source trench 274, and is in contact with the source region 264 at the peripheral portion of the source trench 274 at the side surface 275 and the surface 259 of the SiC epitaxial layer 258. And a second portion 292 in contact with the drift exposed region 283 at the bottom surface 276 of the source trench 274.
  • the first portion 291 forms an ohmic junction between both the source breakdown voltage holding region 278 and the source region 264.
  • the diffusion potential of body diode 293 (pn diode formed by the junction of source breakdown voltage holding region 278 and drift region 263) inherent in MIS transistor 251 is between second portion 292 and drift exposed region 283.
  • a heterojunction (for example, the height of the junction barrier is 1 eV to 1.5 eV) having a junction barrier smaller than (for example, 2.8 eV to 3.2 eV) is formed.
  • the intermediate layer 289 is a metal layer stacked on the polysilicon layer 288, and is composed of a single layer containing Ti (titanium) or a plurality of layers including a layer containing Ti.
  • the layer containing Ti can be formed using Ti, TiN (titanium nitride), or the like.
  • the thickness of the intermediate layer 289 is, for example, 200 nm to 500 nm.
  • the metal layer 290 is laminated on the intermediate layer 289 and contains, for example, Al (aluminum), Au (gold), Ag (silver), Cu (copper), Mo (molybdenum), alloys thereof, and the like. It can be formed using a metal material.
  • the metal layer 290 is the outermost layer of the source electrode 287. Further, the thickness of the metal layer 290 is, for example, 1 ⁇ m to 5 ⁇ m.
  • the metal layer 290 As a combination of the polysilicon layer 288, the intermediate layer 289, and the metal layer 290 as described above, in the tenth embodiment, Poly-Si (polysilicon layer 288), Ti (intermediate layer 289), TiN (intermediate layer 289) And a laminated structure (Poly-Si / Ti / TiN / Al) in which Al (metal layer 290) is sequentially laminated.
  • the metal layer 290 preferably has a Mo layer. Since Mo has a high melting point, if the Mo layer is included in the metal layer 290, the metal layer 290 can be prevented from being melted by heat generated when a large current flows through the source electrode 287.
  • a drain electrode 294 is formed on the back surface 257 of the SiC substrate 255 so as to cover the entire area.
  • the drain electrode 294 is a common electrode for all the unit cells 271.
  • the structure of the MIS transistor 251 can also exhibit the same operational effects as the MIS transistor 201 of the tenth embodiment described above. That is, in the tenth embodiment, the polysilicon layer 288 forms a heterojunction with the drift region 263 (drift exposed region 283). Therefore, when a back electromotive force is applied between the source and the drain, a current flows preferentially through the heterojunction between the second portion 292 of the polysilicon layer 288 and the drift region 263, and the current flowing through the body diode 293 is reduced. Or can be eliminated.
  • the current that has flowed through the MIS transistor 251 in this manner can be supplied to the electric motor as a return current, for example.
  • the off-state current flows from the second portion 292 of the polysilicon layer 288 formed in the source trench 274 at the center of the unit cell 271 surrounded by the inter-body region 265 to the drift region 263.
  • Almost no carrier movement occurs in the vicinity of the intermediate region 265 (that is, between the p-type body region 262 and the n-type drift region 263). Therefore, recombination of holes and electrons in the drift region 263 can be prevented.
  • expansion of SiC crystal defects in the SiC epitaxial layer 258 can be suppressed, so that an increase in on-resistance of the transistor 251 can be suppressed.
  • the inter-body regions 265 are formed in a lattice shape as in the tenth embodiment, and the window portion of the lattice-like inter-body region 265 is formed.
  • the dielectric breakdown of the gate insulating film 272 occurs particularly in the vicinity of the corner portion 281 of the body region 262 formed in each corner portion 270 of the unit cell 271.
  • D 4 is 1.4 times D 4 . Therefore, the equipotential surface enters directly under the corner portion 281 of the body region 262 having a relatively wide space, and the equipotential surfaces are densely formed.
  • the dielectric breakdown of the gate insulating film 272 is particularly likely to occur near the corner portion 281 of the body region 262.
  • the gate breakdown voltage holding region 277 (first region 279) is formed in the corner portion 281 of the body region 262.
  • the body diode 298 can be formed near the corner portion 281 of the body region 262 by the junction (pn junction) between the first region 279 and the drift region 263.
  • a source breakdown voltage holding region 278 is formed at the edge portion 282 of the source trench 274 formed in the central portion of each unit cell 271. Therefore, an annular body diode 299 surrounding the edge portion 282 of the source trench 274 can be formed by the junction (pn junction) between the source breakdown voltage holding region 278 and the drift region 263.
  • the presence of a depletion layer generated in these body diodes 298 and 299 can prevent an equipotential surface from entering between the corner portion 281 of the body region 262 and the edge portion 282 of the source trench 274, and the gate insulating film 272 You can keep away. As a result, crowding of equipotential surfaces in the vicinity of the corner portion 281 of the body region 262 can be prevented. As a result, the electric field applied to the gate insulating film 272 can be reduced, so that dielectric breakdown can be suppressed.
  • the concentration of the first region 279 is higher than the concentration of the drift region 263, a depletion layer caused by the junction (pn junction) between the first region 279 and the drift region 263 is prevented from spreading too much into the SiC epitaxial layer 258. can do.
  • a gate breakdown voltage holding region 277 (second region 280) having a width narrower than the width of the linear portion 266 is formed in the linear portion 266 of the inter-body region 265.
  • a depletion layer generated by the junction (pn junction) between the second region 280 and the drift region 263 can be generated along the linear portion 266 of the inter-body region 265. Therefore, an electric field generated immediately below the linear portion 266 of the inter-body region 265 can be relaxed by the depletion layer. As a result, the electric field generated in the gate insulating film 272 can be alleviated uniformly.
  • the gate breakdown voltage holding region 277 (second region 280) is not formed in the peripheral portion of the body region 262 (that is, the portion where the channel is formed in the unit cell 271). Therefore, the channel characteristics can be controlled with high accuracy.
  • this invention can also be implemented with another form. For example, even if the above-described Schottky barrier diode 1 and each MIS transistor 21, 61, 71, 101, 161, 181, 191, 201, 247, 251, 297 have a configuration in which the conductivity type is inverted is adopted. Good.
  • the p-type portion may be n-type and the n-type portion may be p-type.
  • the layer forming the breakdown voltage holding layer is not limited to the epitaxial layer made of SiC, but other than SiC.
  • compound semiconductors represented by III-V group compounds and II-VI group compounds may be used.
  • a portion in contact with the outer peripheral portion of the device such as an interlayer insulating film of a JFET (junction field effect transistor), an interlayer insulating film of a bipolar transistor, or an interlayer insulating film of a thyristor,
  • the form formed using k material may be sufficient.
  • the semiconductor power device of the present invention is, for example, a power used for an inverter circuit constituting a drive circuit for driving an electric motor used as a power source for an electric vehicle (including a hybrid vehicle), a train, an industrial robot, and the like. Can be incorporated into modules. It can also be incorporated into a power module used in an inverter circuit that converts electric power generated by a solar cell, wind power generator, or other power generation device (especially an in-house power generation device) to match the power of a commercial power source.
  • SYMBOLS 1 Schottky barrier diode, 3 ... Cathode electrode, 4 ... SiC epitaxial layer, 5 ... Active region, 7 ... Field region, 8 ... Field insulating film, 9 ... Anode electrode, 10 ... Schottky metal, 12 ... peripheral edge (of field insulating film), 13 ... inner edge of (field region), 17 ... outer edge of (Schottky metal), 21 ... MIS transistor, 28 ... SiC epitaxial layer, 29 ... (epitaxial layer) surface, 30 ... active region, 31 ... transistor peripheral region, 32 ... body region, 33 ... -Drift region, 34 ... Source region, 35 ... Gate trench, 36 ...
  • MIS transistor 182... Gate insulating film, 183... Gate electrode, 191.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 本発明の半導体パワーデバイスは、第1電極および第2電極と、所定の厚さおよび不純物濃度を有する半導体からなり、前記第1電極および前記第2電極が接合され、当該第1電極と第2電極との間に電気伝導を発生させるキャリヤが移動するための活性領域を有する耐圧保持層と、前記耐圧保持層上に形成され、前記耐圧保持層に接する部分に、SiOよりも高い誘電率を有する高誘電率部を有する絶縁膜とを含む。

Description

半導体パワーデバイスおよびその製造方法
 本発明は、半導体パワーデバイスおよびその製造方法に関する。
 従来、モータ制御システム、電力変換システムなど、各種パワーエレクトロニクス分野におけるシステムに主として使用される半導体パワーデバイスが注目されている。
 たとえば、特許文献1の図1は、SiCが採用されたショットキーバリアダイオードを開示している。当該ショットキーバリアダイオードは、n型4H-SiCバルク基板と、バルク基板上に成長したn型のエピタキシャル層と、エピタキシャル層の表面に形成され、エピタキシャル層の表面を部分的に露出させる酸化膜と、酸化膜の開口内に形成され、エピタキシャル層に対してショットキー接合するショットキー電極とを備えている。
 また、特許文献1の図4は、SiCが採用された縦型MIS電界効果トランジスタを開示している。当該縦型MIS電界効果トランジスタは、n型4H-SiCバルク基板と、バルク基板上に成長したn型のエピタキシャル層と、エピタキシャル層の表層部に形成されたn型不純物領域(ソース領域)と、当該n型不純物領域の両サイドに隣接して形成されたp型ウェル領域と、エピタキシャル層の表面に形成されたゲート酸化膜と、ゲート酸化膜を介してp型ウェル領域に対向するゲート電極とを備えている。
特開2005-79339号公報
 特許文献1のショットキーバリアダイオードおよびトランジスタにおいて、逆バイアス時にアバランシェ降伏が生じると、SiCエピタキシャル層に接する材料には、当該エピタキシャル層にかかる電界よりも大きな電界がかかる。
 たとえば、ショットキーバリアダイオードの酸化膜にかかる電界ESiO2は、ガウスの法則により、ESiO2=(εSiC/εSiO2)・ESiC=(10/3.9)・ESiC=約2.5ESiCMV/cmと求められる。すなわち、酸化膜には、SiCにかかる電界ESiCの約2.5倍の電界がかかる。なお、εSiCは真空に対するSiCの比誘電率を示し、εSiO2は真空に対するSiOの比誘電率を示している。
 そのため、アバランシェ降伏時(高電圧印加時)に酸化膜が絶縁破壊しやすく、このことがアバランシェ耐量の低下を招いている。
 本発明の目的は、耐圧保持層に対する高電圧の印加時に絶縁膜の破壊を低減できる、半導体パワーデバイスおよびその製造方法を提供することである。
 上記目的を達成するための本発明の半導体パワーデバイスは、第1電極および第2電極と、所定の厚さおよび不純物濃度を有する半導体からなり、前記第1電極および前記第2電極が接合され、当該第1電極と第2電極との間に電気伝導を発生させるキャリヤが移動するための活性領域を有する耐圧保持層と、前記耐圧保持層上に形成され、前記耐圧保持層に接する部分に、SiOよりも高い誘電率を有する高誘電率部を有する絶縁膜とを含む。
 この構成によれば、絶縁膜における耐圧保持層に接する部分が、SiOよりも高い誘電率を有する高誘電率部からなる。そのため、第1電極と第2電極との間に高電圧が印加された状態において、絶縁膜における耐圧保持層との接する部分にかかる電界EHigh-kを弱めることができる。
 たとえば、真空に対する高誘電率部の比誘電率をεHigh-kとし、真空に対する耐圧保持層の比誘電率をεとし、真空に対するSiOの比誘電率をεSiO2とし、耐圧保持層にかかる電界をEとする。この場合、電界EHigh-kは、ガウスの法則により、EHigh-k=(ε/εHigh-k)・E・・・(1)と求められる。一方、絶縁膜がSiOである場合、絶縁膜(SiO膜)にかかる電界ESiO2は、ESiO2=(ε/εSiO2)・E・・・(2)と求められる。式(1)および(2)を比較すると、εHigh-k>εSiO2であるため、EHigh-k<ESiO2となる。
 すなわち、絶縁膜における耐圧保持層との接する部分に高誘電率部を設けることにより、絶縁膜にかかる電界を弱めることができる。その結果、絶縁膜の破壊を低減することができる。
 耐圧保持層上に形成された絶縁膜は、耐圧保持層に接する部分が高誘電率材料からなっていればよく、耐圧保持層に接する前記高誘電率部としての高誘電率絶縁膜と、当該高誘電率絶縁膜上に積層され、前記高誘電率絶縁膜よりも低い誘電率を有する低誘電率絶縁膜とを含む積層構造を有していてもよい。
 また、前記高誘電率部は、前記活性領域を取り囲むデバイス外周部に接するように形成されていてもよい。
 これにより、活性領域に形成されるデバイスの構造の種類(ショットキーバリアダイオード構造、MISFET構造、JFET構造、バイポーラトランジスタ構造等)に関わらず、当該デバイスの外周に電界が集中しても、その電界による絶縁膜の破壊を低減することができる。
 また、前記高誘電率部は、SiN(比誘電率εSiN=約7.5)、Al(比誘電率εAl2O3=約8.5)またはAlON(比誘電率εAlON=約6)からなることが好ましい。
 また、前記耐圧保持層は、ワイドバンドギャップ半導体(たとえば、バンドギャップEgが2eV以上、好ましくは、2.5eV~7eV)からなっていてもよく、具体的には、SiC(バンドギャップEgSiC=約3.2eV)、GaN(バンドギャップEgGaN=約3.4eV)またはダイヤモンド(バンドギャップEgdia=約5.5eV)であってもよい。
 また、前記耐圧保持層は、化合物半導体であってもよい。化合物半導体は、たとえば、高い電子移動度を示すIII-V族化合物、広いバンドギャップを持つ材料の多いII-VI族化合物に代表される2元化合物とそれからなる3元以上の混晶半導体を含み、前記ワイドバンドギャップ半導体と一部重複する。
 III-V族化合物としては、たとえば、GaAs(バンドギャップEgGaAs=約1.4eV)、AlAs(バンドギャップEgAlAs=約2.1eV)、GaN(バンドギャップEgGaN=約3.4eV)、AlN(バンドギャップEgAlN=約6.2eV)が代表例である。
 また、II-VI族化合物としては、たとえば、ZnSe(バンドギャップEgZnSe=約2.8eV)、ZnS(バンドギャップEgZnS=約3.8eV)、CdTe(バンドギャップEgCdTe=約1.6eV)、ZnTe(バンドギャップEgZnTe=約2.4eV)、CdS(バンドギャップEgCdS=約2.5eV)が代表例である。
 また、前記第1電極が、前記フィールド絶縁膜を貫通して前記耐圧保持層にショットキー接合されたショットキー電極を含み、前記第2電極が、前記耐圧保持層にオーミック接合されたオーミック電極を含む場合、前記絶縁膜は、前記耐圧保持層の表面に形成されたフィールド絶縁膜を含み、当該フィールド絶縁膜が、前記耐圧保持層におけるショットキー接合の外周領域に接する部分に前記高誘電率部を有していることが好ましい。
 この構成により、電界が比較的集中しやすいショットキー接合の外周領域(ショットキー電極の終端部付近の領域)における絶縁膜の破壊を低減することができる。
 また、前記耐圧保持層が、第1導電型のソース領域と、前記ソース領域に接する第2導電型のボディ領域と、前記ボディ領域に接する第1導電型のドリフト領域とを含む電界効果トランジスタ構造を前記活性領域内に有しており、前記第1電極が、前記ソース領域に電気的に接続されたソース電極を含み、前記第2電極が、前記ドリフト領域に電気的に接続されたドレイン電極を含む場合、前記高誘電率部は、前記ドリフト領域に接するように形成されていることが好ましい。
 また、前記電界効果トランジスタ構造が、前記ソース領域と前記ドリフト領域とが前記耐圧保持層の表面に垂直な縦方向に前記ボディ領域を介して離間して配置された、縦型トランジスタ構造を含む場合、前記縦型トランジスタ構造は、前記耐圧保持層の表面から前記ソース領域および前記ボディ領域を貫通して前記ドリフト領域に達するソーストレンチを含み、前記ソース電極は、前記ソーストレンチ内において前記ソース領域、前記ボディ領域および前記ドリフト領域に接していることが好ましい。
 この構成によれば、電界効果トランジスタ構造が縦型であるため、大電流を容易に流すことができ、さらに、高耐圧および低オン抵抗を確保し易くできる。
 また、前記電界効果トランジスタ構造が、前記ソース領域、前記ボディ領域および前記ドリフト領域に跨るように形成されたゲートトレンチを含むトレンチゲート構造を有し、前記ゲートトレンチ内に、前記ボディ領域に対向するゲート電極が形成されている場合、前記絶縁膜は、前記ゲート電極と前記ゲートトレンチの内面との間に介在されたゲート絶縁膜を含み、当該ゲート絶縁膜における前記ゲートトレンチの底面および/または前記ゲートトレンチの角部に接する部分に前記高誘電率部を有していることが好ましい。
 この構成により、トレンチゲート構造のMISFETにおいて、電界が比較的集中しやすいゲートトレンチの底部および角部におけるゲート絶縁膜の破壊を低減することができる。
 このようなゲート絶縁膜は、ゲートトレンチの底面および/またはゲートトレンチの角部に接する部分が高誘電率材料からなっていればよく、前記ゲートトレンチの底面および/または前記ゲートトレンチの角部に接する部分に形成された前記高誘電率部としての高誘電率ゲート絶縁膜と、当該高誘電率ゲート絶縁膜上に積層され、前記高誘電率ゲート絶縁膜よりも低い誘電率を有する低誘電率ゲート絶縁膜とを含む積層構造を有していてもよい。
 また、前記耐圧保持層がSiCからなる場合、前記ゲート絶縁膜は、Alからなることが好ましい。
 この構成によれば、SiCからなる耐圧保持層に対して比較的高い障壁高さを維持しながら、ゲート絶縁膜の誘電率をSiOに比べて大きくすることができる。その結果、ボディ領域付近における量子トンネル効果によるリーク電流を低減することができる。
 また、前記ゲート絶縁膜は、前記ゲートトレンチの側面における前記ボディ領域に接する部分がSiO膜からなっていてもよい。その場合、前記SiO膜上に、SiOよりも高い誘電率を有する絶縁膜が積層されていることが好ましい。
 また、前記耐圧保持層が、その表面にSi(シリコン)面を有するSiCからなる場合、前記ゲートトレンチは、SiCからなる前記耐圧保持層のSi面から前記耐圧保持層の内側へ向かって形成されていてもよい。
 また、前記高誘電率部は、前記ゲート絶縁膜における前記ゲートトレンチの底面および/または前記ゲートトレンチの角部のみに形成されていてもよい。
 また、前記電界効果トランジスタ構造が、前記耐圧保持層の表面に形成されたゲート絶縁膜を介してゲート電極が前記ボディ領域に対向するプレーナゲート構造を有する場合、前記絶縁膜は、前記ゲート電極を覆うように前記耐圧保持層上に形成された層間絶縁膜を含み、当該層間絶縁膜は、前記プレーナゲート構造を取り囲むトランジスタ周辺部に接する部分に前記高誘電率部を有していることが好ましい。
 この構成により、プレーナゲート構造のMISFETにおいて、電界が比較的集中しやすいトランジスタ周辺部に接する層間絶縁膜の破壊を低減することができる。
 また、本発明の半導体パワーデバイスの製造方法は、SiCからなる半導体層と、この半導体層に形成され、第1導電型のソース領域と、前記ソース領域に接する第2導電型のボディ領域と、前記ボディ領域に接する第1導電型のドリフト領域と、前記ソース領域、前記ボディ領域および前記ドリフト領域に跨るように形成されたゲートトレンチと、前記ゲートトレンチの内面に形成されたゲート絶縁膜と、前記ゲート絶縁膜を介して前記ボディ領域に対向するゲート電極とを含むトレンチゲート型トランジスタ構造を有する半導体パワーデバイスの製造方法であって、前記半導体層のSi(シリコン)面からその内側へ向かって前記ゲートトレンチを形成する工程と、前記ゲートトレンチの内面にSiOからなる第1絶縁膜を形成する工程と、前記第1絶縁膜における前記ゲートトレンチの底面上の部分を除去する工程と、前記第1絶縁膜の除去により露出した前記ゲートトレンチの前記底面を覆うように、SiOよりも高い誘電率を有する第2絶縁膜を形成する工程とを含む。
 この方法によれば、ゲートトレンチの底面がSi面として形成されるので、第1絶縁膜(SiO膜)を形成したときに、当該SiO膜におけるゲートトレンチの底面(Si面)上の部分が、当該SiO膜におけるゲートトレンチの側面上の部分よりも薄くなる。したがって、この第1絶縁膜の底面部分を残存させたのでは、電界が比較的集中しやすいゲートトレンチの底部および角部において絶縁膜の破壊を生じる可能性が高くなる。
 そこで、本発明では、第1絶縁膜におけるゲートトレンチの底面上の部分を除去し、この除去により露出した部分を覆うように第2絶縁膜(高誘電率膜)を形成している。これにより、電界集中の発生し易い箇所を高誘電率膜で覆うことができる。
 一方、ゲートトレンチの側面にSiO膜を残存させることができるので、チャネルとゲート電極との間には、SiOからなるゲート絶縁膜を形成することができる。
 また、前記第1絶縁膜を形成する工程が、熱酸化法により前記第1絶縁膜を形成する工程であり、前記第2絶縁膜を形成する工程が、CVD法により前記第2絶縁膜を形成する工程であってもよい。
図1は、本発明の第1実施形態に係るショットキーバリアダイオードの模式的な平面図である。 図2は、図1に示すショットキーバリアダイオードの断面図であって、図1の切断線A-Aでの切断面を示す。 図3Aは、図2に示すショットキーバリアダイオードの製造工程の一部を示す模式的な断面図であって、図2と同じ位置での切断面を示す。 図3Bは、図3Aの次の工程を示す図である。 図3Cは、図3Bの次の工程を示す図である。 図4(a)(b)は、本発明の第2実施形態に係るトレンチゲート型MISトランジスタの模式的な平面図であって、図4(a)は全体図、図4(b)は内部拡大図をそれぞれ示す。 図5は、図4に示すトレンチゲート型MISトランジスタの断面図であって、図4(b)の切断線B-BおよびC-Cでの切断面をそれぞれ示す。 図6Aは、図5に示すトレンチゲート型MISトランジスタの製造工程の一部を示す模式的な断面図であって、図5と同じ位置での切断面を示す。 図6Bは、図6Aの次の工程を示す図である。 図6Cは、図6Bの次の工程を示す図である。 図6Dは、図6Cの次の工程を示す図である。 図6Eは、図6Dの次の工程を示す図である。 図6Fは、図6Eの次の工程を示す図である。 図7は、図5に示すトレンチゲート型MISトランジスタの第1変形例を示す模式的な断面図である。 図8は、図5に示すトレンチゲート型MISトランジスタの第2変形例を示す模式的な断面図である。 図9は、本発明の第3実施形態に係るトレンチゲート型MISトランジスタの模式的な断面図である。 図10Aは、図9に示すトレンチゲート型MISトランジスタの製造工程の一部を示す模式的な断面図であって、図9と同じ位置での切断面を示す。 図10Bは、図10Aの次の工程を示す図である。 図10Cは、図10Bの次の工程を示す図である。 図10Dは、図10Cの次の工程を示す図である。 図10Eは、図10Dの次の工程を示す図である。 図10Fは、図10Eの次の工程を示す図である。 図10Gは、図10Fの次の工程を示す図である。 図10Hは、図10Gの次の工程を示す図である。 図10Iは、図10Hの次の工程を示す図である。 図11(a)(b)は、本発明の第4実施形態に係るプレーナゲート型MISトランジスタの模式的な平面図であって、図11(a)は全体図、図11(b)は内部拡大図をそれぞれ示す。 図12は、図11に示すプレーナゲート型MISトランジスタの断面図であって、図11(b)の切断線D-DおよびE-Eでの切断面をそれぞれ示す。 図13Aは、図12に示すプレーナゲート型MISトランジスタの製造工程の一部を示す模式的な断面図であって、図12と同じ位置での切断面を示す。 図13Bは、図13Aの次の工程を示す図である。 図13Cは、図13Bの次の工程を示す図である。 図13Dは、図13Cの次の工程を示す図である。 図14(a)(b)は、本発明の第5実施形態に係るトレンチゲート型MISトランジスタの模式的な平面図であって、図14(a)は全体図、図14(b)は内部拡大図をそれぞれ示す。 図15は、図14(a)(b)のトレンチゲート型MISトランジスタの断面図であって、図14(b)の切断線F-F、G-GおよびH-Hでの切断面をそれぞれ示す。 図16は、本発明の第6実施形態に係るトレンチゲート型MISトランジスタの模式的な断面図であって、図15と同じ位置での切断面を示す。 図17(a)(b)は、本発明の第7実施形態に係るプレーナゲート型MISトランジスタの模式的な平面図であって、図17(a)は全体図、図17(b)は内部拡大図をそれぞれ示す。 図18は、図17(a)(b)のプレーナゲート型MISトランジスタの断面図であって、図17(b)の切断線I-IおよびJ-Jでの切断面をそれぞれ示す。 図19(a)(b)は、本発明の第8実施形態に係るトレンチゲート型MISトランジスタの模式的な平面図であって、図19(a)は全体図、図19(b)は内部拡大図をそれぞれ示す。 図20は、図19(a)(b)のトレンチゲート型MISトランジスタの断面図であって、図19(b)の切断線K-KおよびL-Lでの切断面をそれぞれ示す。 図21(a)(b)は、図14(a)(b)のMISトランジスタのレイアウトの変形例を示す図であって、図21(a)は全体図、図21(b)は内部拡大図をそれぞれ示す。 図22(a)(b)は、本発明の第9実施形態に係るトレンチゲート型MISトランジスタの模式的な平面図であって、図22(a)は全体図、図22(b)は内部拡大図をそれぞれ示す。 図23は、図22(a)(b)に示すトレンチゲート型MISトランジスタの断面図であって、図22(b)の切断線M-MおよびN-Nでの切断面をそれぞれ示す。 図24(a)(b)は、本発明の第10実施形態に係るプレーナゲート型MISトランジスタの模式的な平面図であって、図24(a)は全体図、図24(b)は内部拡大図をそれぞれ示す。 図25は、図24(a)(b)に示すプレーナゲート型MISトランジスタの断面図であって、図24(b)の切断線O-OおよびP-Pでの切断面をそれぞれ示す。
 以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
 図1は、本発明の第1実施形態に係るショットキーバリアダイオードの模式的な平面図である。図2は、図1に示すショットキーバリアダイオードの断面図であって、図1の切断線A-Aでの切断面を示す。
 ショットキーバリアダイオード1は、SiC(バンドギャップの幅は約3.26eVのワイドバンドギャップ半導体)が採用されたショットキーバリアダイオードであり、たとえば、図1に示すように、平面視正方形のチップ状である。
 チップ状のショットキーバリアダイオード1は、図1の紙面における上下左右方向の長さがそれぞれ数mm程度である。
 ショットキーバリアダイオード1は、n型(たとえば、濃度が1×1018~1×1021cm-3)のSiC基板2を備えている。SiC基板2の裏面には、その全域を覆うようにオーミック電極(第2電極)としてのカソード電極3が形成されている。カソード電極3は、n型のSiCとオーミック接触する金属(たとえば、Niシリサイド、Coシリサイドなど)からなる。
 SiC基板2の表面には、SiC基板2よりも低濃度のn型(たとえば、濃度が1×1015~1×1017cm-3)のSiCエピタキシャル層4が積層されている。耐圧保持層としてのSiCエピタキシャル層4の厚さは、たとえば、1μm~100μmである。
 SiCエピタキシャル層4の表面には、SiCエピタキシャル層4の一部を活性領域5として露出させる開口6を有し、当該活性領域5を取り囲むデバイス外周部としてのフィールド領域7を覆うフィールド絶縁膜8が積層されている。
 フィールド絶縁膜8は、SiO(酸化シリコン)よりも高い誘電率(真空に対する非誘電率εrのことであり、以下では、単に比誘電率εrとする。)を有する高誘電率絶縁材料(以下、High-k材料とする。)からなる。
 具体的には、フィールド絶縁膜8は、SiN(窒化シリコン)、Al(アルミナ)またはAlON(酸窒化アルミニウム)からなる。これらの材料の比誘電率εrは、SiNの比誘電率εSiNが7.5であり、Alの比誘電率εAl2O3が約8.5であり、AlONの比誘電率εAlONが6である。また、フィールド絶縁膜8の厚さは、たとえば、1000Å以上、好ましくは、3000Å~30000Åである。
 フィールド絶縁膜8上には、第1電極としてのアノード電極9が形成されている。
 アノード電極9は、フィールド絶縁膜8の開口6内でSiCエピタキシャル層4に接合されたショットキーメタル10と、このショットキーメタル10に積層されたコンタクトメタル11との2層構造を有している。
 ショットキーメタル10は、n型のSiCとの接合によりショットキー接合を形成する金属(たとえば、Ni、Auなど)からなる。SiCに接合されるショットキーメタル10は、SiC半導体との間に、たとえば、0.7eV~1.7eVの高さのショットキー障壁(電位障壁)を形成する。
 ショットキーメタル10は、フィールド絶縁膜8における開口6の周縁部12を上から覆うように、当該開口6の外方へフランジ状に張り出している。すなわち、フィールド絶縁膜8の周縁部12は、SiCエピタキシャル層4およびショットキーメタル10により、全周にわたってその上下両側から挟まれている。したがって、SiCエピタキシャル層4におけるショットキー接合の外周領域(すなわち、フィールド領域7の内縁部13)は、SiCからなるフィールド絶縁膜8の周縁部12により覆われることとなる。
 フィールド絶縁膜8の周縁部12を覆うアノード電極9の、フィールド絶縁膜8の開口6端からのはみ出し量Xは、たとえば、10μm以上、好ましくは、10μm~100μmである。
 また、ショットキーメタル10の厚さは、この第1実施形態では、たとえば、0.01μm~5μmである。
 コンタクトメタル11は、アノード電極9において、ショットキーバリアダイオード1の最表面に露出して、ボンディングワイヤなどが接合される部分である。コンタクトメタル11は、たとえば、Alからなる。
 また、コンタクトメタル11は、ショットキーメタル10と同様に、フィールド絶縁膜8における開口6の周縁部12を上から覆うように、当該開口6の外方へフランジ状に張り出している。
 また、コンタクトメタル11の厚さは、この第1実施形態では、ショットキーメタル10よりも大きく、たとえば、0.5μm~10μmである。
 ショットキーバリアダイオード1の最表面には、表面保護膜14が形成されている。表面保護膜14の中央部には、コンタクトメタル11を露出させる開口15が形成されている。ボンディングワイヤなどは、この開口15を介してコンタクトメタル11に接合される。
 また、SiCエピタキシャル層4の表層部には、アノード電極9のショットキーメタル10に接するようにp型のガードリング16が形成されている。このガードリング16は、平面視において、フィールド絶縁膜8の開口6の内外に跨るように(活性領域5およびフィールド領域7に跨るように)、当該開口6の輪郭に沿って形成されている。したがって、ガードリング16は、開口6の内方へ張り出し、開口6内のショットキーメタル10の終端部としての外縁部17に接する内側部分18と、開口6の外方へ張り出し、フィールド絶縁膜8の周縁部12を挟んでアノード電極9(ショットキーメタル10)に対向する外側部分19とを有している。
 ガードリング16の内側部分18の幅Wは、1μm~50μmであり、ガードリング16の外側部分19の幅Wは、1μm~500μmである。これらWとWとの合計であるガードリング16の全体幅Wは、たとえば、5μm~550μmである。また、ガードリング16のSiCエピタキシャル層4の表面からの深さDは、たとえば、1000Å以上、好ましくは、2000Å~7000Åである。
 このショットキーバリアダイオード1では、アノード電極9に正電圧、カソード電極3に負電圧が印加される順方向バイアス状態になることにより、カソード電極3からアノード電極9へと、SiCエピタキシャル層4の活性領域5を介して電子(キャリヤ)が移動して電流が流れる。
 図3A~図3Cは、図2に示すショットキーバリアダイオードの製造工程の一部を示す模式的な断面図であって、図2と同じ位置での切断面を示す。
 ショットキーバリアダイオード1を製造するには、図3Aに示すように、CVD(Chemical Vapor Deposition:化学気相成長)法、LPE(Liquid Phase Epitaxy:液相エピタキシ)法、MBE(Molecular Beam Epitaxy:分子線エピタキシ)法などのエピタキシャル成長法により、SiC基板2の表面(Si面)上に、n型不純物(たとえば、N(窒素)、P(リン)、As(ひ素)等)をドーピングしながらSiC結晶が成長させられる。これにより、SiC基板2上に、n型のSiCエピタキシャル層4が形成される。
 続いて、p型不純物(たとえば、Al(アルミニウム)、B(ホウ素)等)が、SiCエピタキシャル層4の表面からSiCエピタキシャル層4の内部にインプランテーション(注入)される。
 続いて、たとえば、1400℃~2000℃でSiCエピタキシャル層4が熱処理される。これにより、SiCエピタキシャル層4の表層部に注入されたp型不純物のイオンが活性化され、ガードリング16が形成される。なお、SiCエピタキシャル層4の熱処理は、たとえば、抵抗加熱炉、高周波誘導加熱炉を適当な温度で制御することによって行うことができる。
 次に、図3Bに示すように、CVD法により、SiCエピタキシャル層4上にHigh-k材料からなるフィールド絶縁膜8が積層される。
 続いて、公知のパターニング技術により、フィールド絶縁膜8がパターニングされることにより、SiCエピタキシャル層4の活性領域5を露出させる開口6が形成される。
 次に、図3Cに示すように、スパッタ法、蒸着法などの方法により、ショットキーメタル10およびコンタクトメタル11の材料が順に積層される。そして、これら積層されたメタルが、公知のパターニング技術によりパターニングされてショットキーメタル10およびコンタクトメタル11からなるアノード電極9が形成される。
 その後、SiC基板2の裏面にカソード電極3が形成され、SiCエピタキシャル層4の表面を覆うように表面保護膜14が形成される。
 以上の工程を経て、図2に示すショットキーバリアダイオード1が得られる。
 以上のように、この第1実施形態によれば、フィールド絶縁膜8が、High-k材料(SiN、Al、AlON等)からなる。そのため、アノード電極9-カソード電極3間に大きな逆電圧が印加され、アバランシェ降伏が生じても、フィールド絶縁膜8にかかる電界EHigh-kを弱めることができる。
 たとえば、フィールド絶縁膜8がAlからなる場合、フィールド絶縁膜8にかかる電界EHigh-kは、ガウスの法則により、EAl2O3=(εSiC/εAl2O3)・ESiC=(10/8.5)・ESiC=約1.2ESiCMV/cm・・・(1)と求められる。
 一方、フィールド絶縁膜8がSiOからなる場合、当該フィールド絶縁膜8(SiO膜)にかかる電界ESiO2は、ESiO2=(εSiC/εSiO2)・ESiC=(10/3.9)・ESiC=約2.5ESiCMV/cm・・・(2)と求められる。
 式(1)および(2)の結果、フィールド絶縁膜8がAlからなる場合の電界EHigh-kは、SiOからなる場合に比べて、約0.48倍に低減することができる。その結果、フィールド絶縁膜8の破壊を低減することができる。
 とりわけ、この第1実施形態のショットキーバリアダイオード1の構造では、アノード電極9(ショットキーメタル10)の外縁部17付近(フィールド領域7の内縁部13)に電界が集中しやすい。
 そこで、この第1実施形態のように、フィールド絶縁膜8全体をHigh-k材料により構成すれば、フィールド領域7の内縁部13にもHigh-k材料からなるフィールド絶縁膜8を接触させることができる。そのため、フィールド絶縁膜8の破壊を効果的に低減することができる。
 図4(a)(b)は、本発明の第2実施形態に係るトレンチゲート型MISトランジスタの模式的な平面図であって、図4(a)は全体図、図4(b)は内部拡大図をそれぞれ示す。図5は、図4に示すトレンチゲート型MISトランジスタの断面図であって、図4(b)の切断線B-BおよびC-Cでの切断面をそれぞれ示す。
 MISトランジスタ21は、SiCが採用されたトレンチゲート型DMISFET(Double diffused Metal Insulator Semiconductor Field Effect Transistor)であり、たとえば、図4(a)に示すように、平面視正方形のチップ状である。チップ状のMISトランジスタ21は、図4(a)の紙面における上下左右方向の長さがそれぞれ数mm程度である。
 MISトランジスタ21の表面には、ソースパッド22が形成されている。ソースパッド22は、四隅が外方へ湾曲した平面視略正方形状であり、MISトランジスタ21の表面のほぼ全域を覆うように形成されている。このソースパッド22には、その一辺の中央付近に除去領域23が形成されている。この除去領域23は、ソースパッド22が形成されていない領域である。
 除去領域23には、ゲートパッド24が配置されている。ゲートパッド24とソースパッド22との間には間隔が設けられており、これらは互いに絶縁されている。
 次に、MISトランジスタ21の内部構造について説明する。
 MISトランジスタ21は、n型(たとえば、濃度が1×1018~1×1021cm-3)のSiC基板25を備えている。SiC基板25は、この第2実施形態では、MISトランジスタ21のドレインとして機能し、その表面26(上面)がSi面であり、その裏面27(下面)がC面である。
 SiC基板25の表面26には、SiC基板25よりも低濃度のn型(たとえば、濃度が1×1015~1×1017cm-3)のSiCエピタキシャル層28が積層されている。耐圧保持層としてのSiCエピタキシャル層28の厚さは、たとえば、1μm~100μmである。SiCエピタキシャル層28は、SiC基板25上に、いわゆるエピタキシャル成長によって形成されている。Si面である表面26上に形成されるSiCエピタキシャル層28は、Si面を成長主面として成長させられる。したがって、成長により形成されるSiCエピタキシャル層28の表面29は、SiC基板25の表面26と同様、Si面である。
 MISトランジスタ21には、図4(a)に示すように、平面視でSiCエピタキシャル層28の中央部に配置され、MISトランジスタ21として機能する活性領域30と、この活性領域30を取り囲むトランジスタ周辺領域31が形成されている。
 活性領域30において、SiCエピタキシャル層28の表層部には、p型(たとえば、濃度が1.0×1016cm-3~1.0×1019cm-3)のボディ領域32が、行方向および列方向に一定のピッチで行列状(マトリクス状)に配列されて多数形成されている。各ボディ領域32は、平面視正方形状であり、たとえば、図4(b)の紙面における上下左右方向の長さがそれぞれ7.2μm程度である。
 一方、SiCエピタキシャル層28における、ボディ領域32よりもSiC基板25側の領域は、エピタキシャル成長後のままの状態が維持された、n型のドリフト領域33となっている。
 各ボディ領域32には、その表面29側のほぼ全域にn型(たとえば、濃度が1×1018~1×1021cm-3)のソース領域34が形成されている。
 そして、各ボディ領域32を取り囲むように、SiCエピタキシャル層28の表面29から各ソース領域34およびボディ領域32を貫通してドリフト領域33に達するゲートトレンチ35が形成されている。
 これにより、SiCエピタキシャル層28に、それぞれが電界効果トランジスタとして機能する直方体形状(平面視正方形状)の単位セルが多数形成されている。単位セルでは、ゲートトレンチ35の深さ方向がゲート長方向であり、そのゲート長方向に直交する各単位セルの周方向がゲート幅方向である。
 ゲートトレンチ35は、その底部におけるゲート幅に直交する方向(隣接する単位セルとの対向方向)の両端角部36がドリフト領域33側へ向かって湾曲していて、互いに対向する側面37と底面38とが湾曲面を介して連続する断面U字状である。これにより、単位セルのターンオフ時に、ゲートトレンチ35の底部における両端角部36に加わる電界を、両端角部36以外の部分へ分散させることができるため、ゲート絶縁膜39(後述)における底面38上の部分の絶縁破壊を抑制することができる。
 ゲートトレンチ35の内面には、その全域を覆うように、ゲート絶縁膜39が形成されている。ゲート絶縁膜39は、High-k材料(SiN、Al、AlON等)からなる。
 そして、ゲート絶縁膜39の内側をn型不純物が高濃度にドーピングされたポリシリコン材料で埋め尽くすことにより、ゲートトレンチ35内にゲート電極40が埋設されている。こうして、ソース領域34とドリフト領域33とが、SiCエピタキシャル層28の表面29に垂直な縦方向にボディ領域32を介して離間して配置された、縦型MISトランジスタ構造が構成されている。
 また、各単位セルの中央部には、SiCエピタキシャル層28の表面29から各ソース領域34およびボディ領域32を貫通してドリフト領域33に達するソーストレンチ41が形成されている。ソーストレンチ41の深さは、この第2実施形態では、ゲートトレンチ35と同じである。また、ソーストレンチ41も、ゲートトレンチ35同様、その底部におけるゲート幅に直交する方向(隣接する単位セルとの対向方向)の両端角部42がドリフト領域33側へ向かって湾曲していて、互いに対向する側面43と底面44とが湾曲面を介して連続する断面U字状である。
 また、ドリフト領域33には、選択的にp型不純物(たとえば、濃度が1.0×1016cm-3~1.0×1019cm-3)が導入されることにより、各単位セルのソーストレンチ41内に露出する部分にp型領域45が形成されている。これにより、ソーストレンチ41の内面におけるソース領域34に対してSiC基板25側の部分(すなわち、底面44および側面43におけるソース領域34の下端より深い部分)は、その全域がp型の領域とされている。
 また、ソーストレンチ41の底面44の中央部には、p型のボディコンタクト領域46(たとえば、不純物濃度が1.0×1018cm-3~2.0×1021cm-3)が形成されている。
 また、トランジスタ周辺領域31において、SiCエピタキシャル層28の表層部には、マトリクス状に配列された単位セル(活性領域30)を取り囲むように、活性領域30から間隔を開けてp型のガードリング47が複数本(この第2実施形態では、4本)形成されている。これらのガードリング47は、p型のボディ領域32を形成する工程と同一のイオン注入工程で形成することができる。
 各ガードリング47は、平面視において、MISトランジスタ21の外周に沿う平面視四角環状に形成されている。また、ガードリング47のSiCエピタキシャル層28の表面29からの深さは、ボディ領域32とほぼ同じ深さであり、たとえば、2000Å以上、好ましくは、3000Å~10000Åである。
 SiCエピタキシャル層28上には、ゲート電極40を被覆するように、層間絶縁膜48が積層されている。層間絶縁膜48は、High-k材料(SiN、Al、AlON等)からなる。
 層間絶縁膜48およびゲート絶縁膜39には、ソーストレンチ41よりも大径のコンタクトホール49が形成されている。これにより、コンタクトホール49内には、各単位セルのソーストレンチ41の全体(すなわち、ソーストレンチ41の側面43および底面44)およびSiCエピタキシャル層28の表面29におけるソーストレンチ41の周縁部が露出していて、表面29と底面44との高低差に応じた段差が形成されている。
 層間絶縁膜48上には、第1電極としてのソース電極50が形成されている。ソース電極50は、各コンタクトホール49を介して、すべての単位セルのソーストレンチ41に一括して入り込んでいて、各単位セルにおいて、ソーストレンチ41の底側から順にボディコンタクト領域46、p型領域45、ボディ領域32およびソース領域34に接触している。すなわち、ソース電極50は、すべての単位セルに対して共通の配線となっている。
 そして、このソース電極50上には層間絶縁膜(図示せず)が形成されており、その層間絶縁膜(図示せず)を介して、ソース電極50がソースパッド22(図4(a)参照)に電気的に接続されている。一方、ゲートパッド24(図4(a)参照)は、当該層間絶縁膜(図示せず)上に引き回されたゲート配線(図示せず)を介して、ゲート電極40に電気的に接続されている。
 また、ソース電極50は、たとえば、SiCエピタキシャル層28との接触側から順にTi/TiN層と、Al層とが積層された構造を有している。
 SiC基板25の裏面27には、その全域を覆うように第2電極としてのドレイン電極51が形成されている。このドレイン電極51は、すべての単位セルに対して共通の電極となっている。ドレイン電極51としては、たとえば、SiC基板25側から順にTi、Ni、AuおよびAgが積層された積層構造(Ti/Ni/Au/Ag)を適用することができる。
 このMISトランジスタ21では、ソース電極50とドレイン電極51との間(ソース-ドレイン間)に所定の電位差を発生させた状態で、ゲート電極40に閾値電圧以上の電圧が印加される。これにより、ゲート電極40からの電界によりボディ領域32におけるゲート絶縁膜39との界面近傍にチャネルが形成される。こうして、ソース電極50からドレイン電極51へと、活性領域30内のソース領域34、チャネルおよびドリフト領域33を介して電子(キャリヤ)が移動して電流が流れる。
 図6A~図6Fは、図5に示すトレンチゲート型MISトランジスタの製造工程の一部を示す模式的な断面図であって、図5と同じ位置での切断面を示す。
 MISトランジスタ21を製造するには、図6Aに示すように、CVD法、LPE法、MBE法などのエピタキシャル成長法により、SiC基板25の表面26(Si面)上に、n型不純物(たとえば、N(窒素)、P(リン)、As(ひ素)等)をドーピングしながらSiC結晶が成長させられる。これにより、SiC基板25上に、n型のSiCエピタキシャル層28が形成される。
 続いて、p型不純物(たとえば、Al(アルミニウム)、B(ホウ素)等)が、SiCエピタキシャル層28の表面29からSiCエピタキシャル層28の内部にインプランテーション(注入)される。
 続いて、n型不純物が、SiCエピタキシャル層28の表面29からSiCエピタキシャル層28の内部にインプランテーション(注入)される。
 続いて、たとえば、1400℃~2000℃でSiCエピタキシャル層28が熱処理される。これにより、SiCエピタキシャル層28の表層部に注入されたp型不純物およびn型不純物のイオンが活性化され、注入された箇所に応じて、ボディ領域32、ソース領域34およびガードリング47が同時に形成される。また、SiCエピタキシャル層28の基層部には、エピタキシャル成長後のままの状態を維持するドリフト領域33が形成される。
 次に、図6Bに示すように、SiCエピタキシャル層28が、ゲートトレンチ35およびソーストレンチ41を形成すべき領域に開口を有するマスクを用いてエッチングされる。これにより、SiCエピタキシャル層28が表面29(Si面)からドライエッチングされて、ゲートトレンチ35およびソーストレンチ41が同時に形成される。それとともに、SiCエピタキシャル層28に多数の単位セルが形成される。なお、エッチングガスとしては、たとえば、SF(六フッ化硫黄)およびO(酸素)を含む混合ガス(SF/Oガス)、SF、OおよびHBr(臭化水素)を含む混合ガス(SF/O/HBrガス)を用いることができる。
 続いて、p型不純物が、ソーストレンチ41の底面44からドリフト領域33の内部にインプランテーション(注入)される。インプランテーションは、相対的に低いドーズ量でイオンを注入する第1段階と、相対的に高いドーズ量でイオンを注入する第2段階で実施される。その後、たとえば、1400℃~2000℃でSiCエピタキシャル層28が熱処理される。これにより、ドリフト領域33に注入されたp型不純物のイオンが活性化され、p型領域45およびボディコンタクト領域46が同時に形成される。
 次に、図6Cに示すように、CVD法により、High-k材料がSiCエピタキシャル層28の上方から堆積される。これにより、ゲート絶縁膜39が形成される。
 続いて、CVD法により、ドーピングされたポリシリコン材料52がSiCエピタキシャル層28の上方から堆積される。ポリシリコン材料52の堆積は、少なくともゲートトレンチ35およびソーストレンチ41が埋め尽くされるまで続けられる。その後、堆積したポリシリコン材料52が、エッチバック面がSiCエピタキシャル層28の表面29に対して面一になるまでエッチバックされる。
 次に、図6Dに示すように、ソーストレンチ41内に残存するポリシリコン材料52のみがドライエッチングにより除去される。これにより、ゲートトレンチ35内に残存するポリシリコン材料52からなるゲート電極40が形成される。
 次に、図6Eに示すように、CVD法により、High-k材料がSiCエピタキシャル層28の上方から堆積される。これにより、層間絶縁膜48が形成される。
 次に、図6Fに示すように、公知のパターニング技術により、層間絶縁膜48およびゲート絶縁膜39が連続してパターニングされる。これにより、層間絶縁膜48およびゲート絶縁膜39にコンタクトホール49が形成される。
 この後、ソース電極50、ドレイン電極51などが形成されることにより、図5に示すMISトランジスタ21が得られる。
 以上のように、この第2実施形態によれば、SiCエピタキシャル層28に接するゲート絶縁膜39および層間絶縁膜48が、High-k材料(SiN、Al、AlON等)からなる。そのため、ソース電極50-ドレイン電極51間に大きな逆電圧が印加され、アバランシェ降伏が生じても、前述の第1実施形態で式(1)と(2)との比較により証明したように、ゲート絶縁膜39および層間絶縁膜48にかかる電界EHigh-kを弱めることができる。その結果、ゲート絶縁膜39および層間絶縁膜48の破壊を低減することができる。よって、アバランシェ耐量の高いMISトランジスタを提供することができる。
 とりわけ、この第2実施形態のMISトランジスタ21のようなトレンチゲート型構造では、ゲートトレンチ35の両端角部36および底面38に電界が集中しやすい。
 そこで、この第2実施形態のように、ゲート絶縁膜39全体をHigh-k材料により構成すれば、ゲートトレンチ35の両端角部36および底面38にもHigh-k材料からなるゲート絶縁膜39を接触させることができる。そのため、ゲート絶縁膜39の破壊を効果的に低減することができる。
 また、この第2実施形態では、層間絶縁膜48を構成するHigh-k材料としては種々のHigh-k材料を選択すればよいが、ゲート絶縁膜39としては、Alを採用することがより好ましい。
 ゲート絶縁膜39がAlであれば、SiCエピタキシャル層28に対して比較的高い障壁高さを維持しながら、ゲート絶縁膜39の誘電率をSiOに比べて大きくすることができる。その結果、チャネル(ボディ領域32)付近における量子トンネル効果によるリーク電流を低減することができる。
 本発明者が鋭意検討したところ、High-k材料として知られているHfOおよびZrOは、SiCに接するゲート絶縁膜に適さないことがわかった。すなわち、HfOおよびZrOをゲート絶縁膜39としてSiC上に直接形成したのでは、これらHfOおよびZrOとSiCとの間の障壁高さが小さくなり、チャネル付近では、量子トンネル効果によるリーク電流が増加するという不具合を生じることがわかった。
 具体的には、SiCにHfO(バンドギャップEgHfO2=約5.7eV 比誘電率εHfO2=約24)を接触させた場合、電子側および正孔側の障壁高さはそれぞれ、1.3eV(電子側)、1.2(正孔側)となる。また、SiCにZrO(バンドギャップEgZrO2=約5.8eV 比誘電率εZrO2=約18)を接触させた場合も同様に、電子側および正孔側の障壁高さはそれぞれ、1.3eV(電子側)、1.2(正孔側)となる。一方、SiCにSiO(バンドギャップEgSiO2=約9eV 比誘電率εSiO2=約3.9)を接触させた場合、電子側および正孔側の障壁高さはそれぞれ、3.0eV(電子側)、2.8(正孔側)となる。したがって、HfOおよびZrOをゲート絶縁膜39としてSiC上に直接形成したのでは、ゲート絶縁膜39としてSiOを採用する場合よりもリーク電流が増加することがわかった。
 これに対し、SiCにAlを接触させた場合、電子側および正孔側の障壁高さはそれぞれ、2.6eV(電子側)、2.2(正孔側)となり、SiOを採用する場合とほぼ同等の障壁高さを維持することができる。しかも、Alは比誘電率εAl2O3が約8.5のHigh-k材料であるため、ゲート絶縁膜39とボディ領域32との間の界面状態を良好に維持しながら、ゲート絶縁膜39の膜厚をかせぐことができる。その結果、SiOを採用する場合に比べて、リーク電流を一層低減することができる。
 さらに、このMISトランジスタ21は縦型構造であるため、大電流を容易に流すことができ、さらに、高耐圧および低オン抵抗を確保し易くできる。
 また、MISトランジスタ21の製造過程においては、ゲート絶縁膜39がCVD法により形成されるので、スパッタ法を使用して形成する場合に比べて、ゲート絶縁膜39における側面37上の部分の膜厚制御を簡単に行なうことができる。
 なお、この第2実施形態では、図7に示すように、High-k材料からなるゲート絶縁膜39に代えて、SiOからなるゲート絶縁膜53が採用されてもよい。
 また、図8に示すように、High-k材料からなる層間絶縁膜48に代えて、SiOからなる層間絶縁膜54が採用されてもよい。
 図9は、本発明の第3実施形態に係るトレンチゲート型MISトランジスタの模式的な断面図である。図9において、図5に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付している。そして、以下では、図9に示す構造について、図5に示す構造との相違点のみを説明し、同一の参照符号を付した各部の説明を省略する。
 図9に示すMISトランジスタ61において、ゲートトレンチ35の内面に形成されたゲート絶縁膜62は、ゲートトレンチ35の側面37上の部分において、SiO膜とHigh-k膜との2層構造になっており、底面38上の部分において、High-k膜のみからなる単層構造になっている。
 すなわち、この第3実施形態では、High-k膜は、ゲート絶縁膜62において、ゲートトレンチ35の底面38および両端角部36に接する部分のみに形成されている。
 図10A~図10Iは、図9に示すトレンチゲート型MISトランジスタの製造工程の一部を示す模式的な断面図であって、図9と同じ位置での切断面を示す。
 MISトランジスタ61を製造するには、図10Aに示すように、CVD法、LPE法、MBE法などのエピタキシャル成長法により、SiC基板25の表面26(Si面)上に、n型不純物(たとえば、N(窒素)、P(リン)、As(ひ素)等)をドーピングしながらSiC結晶が成長させられる。これにより、SiC基板25上に、n型のSiCエピタキシャル層28が形成される。
 続いて、p型不純物(たとえば、Al(アルミニウム)、B(ホウ素)等)が、SiCエピタキシャル層28の表面29からSiCエピタキシャル層28の内部にインプランテーション(注入)される。
 続いて、n型不純物が、SiCエピタキシャル層28の表面29からSiCエピタキシャル層28の内部にインプランテーション(注入)される。
 続いて、たとえば、1400℃~2000℃でSiCエピタキシャル層28が熱処理される。これにより、SiCエピタキシャル層28の表層部に注入されたp型不純物およびn型不純物のイオンが活性化され、注入された箇所に応じて、ボディ領域32、ソース領域34およびガードリング47が同時に形成される。また、SiCエピタキシャル層28の基層部には、エピタキシャル成長後のままの状態を維持するドリフト領域33が形成される。
 次に、図10Bに示すように、SiCエピタキシャル層28が、ゲートトレンチ35およびソーストレンチ41を形成すべき領域に開口を有するマスクを用いてエッチングされる。これにより、SiCエピタキシャル層28が表面29(Si面)からドライエッチングされて、ゲートトレンチ35およびソーストレンチ41が同時に形成される。それとともに、SiCエピタキシャル層28に多数の単位セルが形成される。なお、エッチングガスとしては、たとえば、SF(六フッ化硫黄)およびO(酸素)を含む混合ガス(SF/Oガス)、SF、OおよびHBr(臭化水素)を含む混合ガス(SF/O/HBrガス)を用いることができる。
 続いて、p型不純物が、ソーストレンチ41の底面44からドリフト領域33の内部にインプランテーション(注入)される。インプランテーションは、相対的に低いドーズ量でイオンを注入する第1段階と、相対的に高いドーズ量でイオンを注入する第2段階で実施される。その後、たとえば、1400℃~2000℃でSiCエピタキシャル層28が熱処理される。これにより、ドリフト領域33に注入されたp型不純物のイオンが活性化され、p型領域45およびボディコンタクト領域46が同時に形成される。
 次に、図10Cに示すように、熱酸化法により、SiCエピタキシャル層28の表面29全域(ゲートトレンチ35の内面およびソーストレンチ41の内面を含む)に、第1絶縁膜としてのSiO膜63が形成される。
 次に、図10Dに示すように、エッチングにより、SiO膜63におけるSiCエピタキシャル層28のSi面上の部分が選択的に除去される。具体手には、SiO膜63におけるSiCエピタキシャル層28の表面29上の部分、ゲートトレンチ35の両端角部36の一部および底面38上の部分、ならびにソーストレンチ41の両端角部42の一部および底面44上の部分が除去される。これにより、SiO膜63が、ゲートトレンチ35の側面37およびソーストレンチ41の側面43に残存し、各底面38,44および各両端角部36,42の一部が露出することとなる。
 次に、図10Eに示すように、CVD法により、High-k材料がSiCエピタキシャル層28の上方から堆積される。これにより、ゲートトレンチ35の底面38およびソーストレンチ41の底面44を覆うように、第2絶縁膜としてのHigh-k膜64が形成され、ゲート絶縁膜62が形成される。
 次に、図10Fに示すように、CVD法により、ドーピングされたポリシリコン材料52がSiCエピタキシャル層28の上方から堆積される。ポリシリコン材料52の堆積は、少なくともゲートトレンチ35およびソーストレンチ41が埋め尽くされるまで続けられる。その後、堆積したポリシリコン材料52が、エッチバック面がSiCエピタキシャル層28の表面29に対して面一になるまでエッチバックされる。
 次に、図10Gに示すように、ソーストレンチ41内に残存するポリシリコン材料52のみがドライエッチングにより除去される。これにより、ゲートトレンチ35内に残存するポリシリコン材料52からなるゲート電極40が形成される。
 次に、図10Hに示すように、CVD法により、High-k材料がSiCエピタキシャル層28の上方から堆積される。これにより、層間絶縁膜48が形成される。
 次に、図10Iに示すように、公知のパターニング技術により、層間絶縁膜48およびゲート絶縁膜62が連続してパターニングされる。これにより、層間絶縁膜48およびゲート絶縁膜62にコンタクトホール49が形成される。
 この後、ソース電極50、ドレイン電極51などが形成されることにより、図9に示すMISトランジスタ61が得られる。
 このMISトランジスタ61の構造によっても、前述の第2実施形態のMISトランジスタ21と同様の作用効果を発現することができる。
 また、この第3実施形態によれば、ゲート絶縁膜62は、ゲートトレンチ35の側面37上の部分において、SiO膜とHigh-k膜との2層構造になっている。そのため、ゲートトレンチ35の両端角部36および底面38を覆うHigh-k膜64が、SiCとの間に高い障壁高さを形成することが困難なHigh-k材料(たとえば、第2実施形態で説明したHfO、ZrO等)であっても、側面37に接する絶縁膜がSiO膜63である。
 したがって、チャネル(ボディ領域32)付近においてSiCエピタキシャル層28に対して比較的高い障壁高さを維持しながら、電界の集中しやすい両端角部36および底面38におけるゲート絶縁膜62の破壊を低減することができる。
 また、この第3実施形態によれば、ゲートトレンチ35の底面38がSi面として形成されるので、SiO膜63を形成したときに(図10C)、SiO膜63におけるゲートトレンチ35の底面38(Si面)上の部分が、SiO膜63におけるゲートトレンチ35の側面37上の部分よりも薄くなる。したがって、SiO膜63の底面部分を残存させてゲート絶縁膜としたのでは、電界が比較的集中しやすいゲートトレンチ35の底面38および両端角部36において絶縁膜の破壊を生じる可能性が高くなる。
 そこで、この第3実施形態では、SiO膜63におけるゲートトレンチ35の底面38上の部分を除去し(図10D)、この除去により露出した部分を覆うようにHigh-k膜64を形成している(図10E)。これにより、電界集中の発生し易い箇所をHigh-k膜64で簡単に覆うことができる。
 図11(a)(b)は、本発明の第4実施形態に係るプレーナゲート型MISトランジスタの模式的な平面図であって、図11(a)は全体図、図11(b)は内部拡大図をそれぞれ示す。図12は、図11に示すプレーナゲート型MISトランジスタの断面図であって、図11(b)の切断線D-DおよびE-Eでの切断面をそれぞれ示す。
 MISトランジスタ71は、SiCが採用されたプレーナゲート型DMISFETであり、たとえば、図11(a)に示すように、平面視正方形のチップ状である。チップ状のMISトランジスタ71は、図11(a)の紙面における上下左右方向の長さがそれぞれ数mm程度である。
 MISトランジスタ71の表面には、ソースパッド72が形成されている。ソースパッド72は、四隅が外方へ湾曲した平面視略正方形状であり、MISトランジスタ71の表面のほぼ全域を覆うように形成されている。このソースパッド72には、その一辺の中央付近に除去領域73が形成されている。この除去領域73は、ソースパッド72が形成されていない領域である。
 除去領域73には、ゲートパッド74が配置されている。ゲートパッド74とソースパッド72との間には間隔が設けられており、これらは互いに絶縁されている。
 次に、MISトランジスタ71の内部構造について説明する。
 MISトランジスタ71は、n型(たとえば、濃度が1×1018~1×1021cm-3)のSiC基板75を備えている。SiC基板75は、この第4実施形態では、MISトランジスタ71のドレインとして機能し、その表面76(上面)がSi面であり、その裏面77(下面)がC面である。
 SiC基板75の表面76には、SiC基板75よりも低濃度のn型(たとえば、濃度が1×1015~1×1017cm-3)のSiCエピタキシャル層78が積層されている。耐圧保持層としてのSiCエピタキシャル層78の厚さは、たとえば、1μm~100μmである。SiCエピタキシャル層78は、SiC基板75上に、いわゆるエピタキシャル成長によって形成されている。Si面である表面76上に形成されるSiCエピタキシャル層78は、Si面を成長主面として成長させられる。したがって、成長により形成されるSiCエピタキシャル層78の表面79は、SiC基板75の表面76と同様、Si面である。
 MISトランジスタ71には、図11(a)に示すように、平面視でSiCエピタキシャル層78の中央部に配置され、MISトランジスタ71として機能する活性領域80と、この活性領域80を取り囲むトランジスタ周辺領域81が形成されている。
 活性領域80において、SiCエピタキシャル層78の表層部には、p型(たとえば、濃度が1.0×1016cm-3~1.0×1019cm-3)のボディ領域82が、行方向および列方向に一定のピッチで行列状(マトリクス状)に配列されて多数形成されている。各ボディ領域82は、平面視正方形状であり、たとえば、図11(b)の紙面における上下左右方向の長さがそれぞれ7.2μm程度である。
 一方、SiCエピタキシャル層78における、ボディ領域82よりもSiC基板75側の領域は、エピタキシャル成長後のままの状態が維持された、n型のドリフト領域83となっている。
 各ボディ領域82には、その中央部にp型のボディコンタクト領域84(たとえば、不純物濃度が1.0×1018cm-3~2.0×1021cm-3)が形成されており、このボディコンタクト領域84を取り囲むように、n型のソース領域85(たとえば、不純物濃度が1.0×1018cm-3~1.0×1021cm-3)が形成されている。ボディコンタクト領域84は、平面視正方形状であり、たとえば、図11(b)の紙面における上下左右方向の長さがそれぞれ1.6μm程度である。
 ソース領域85は、平面視正方形環状であり、たとえば、図11(b)の紙面における上下左右方向の長さがそれぞれ5.7μm程度である。
 また、活性領域80において、一定のピッチで行列状に配列されたボディ領域82の各間の領域(隣り合うボディ領域82の側面により挟まれるボディ間領域)は、一定(たとえば、2.8μm)幅を有する格子状である。
 このボディ間領域上には、ボディ間領域に沿って、格子状のゲート絶縁膜86が形成されている。ゲート絶縁膜86は、隣り合うボディ領域82の間に跨っていて、ボディ領域82におけるソース領域85を取り囲む部分(ボディ領域82の周縁部)およびソース領域85の外周縁を覆っている。ゲート絶縁膜86は、High-k材料(SiN、Al、AlON等)からなり、その厚さは400Å程度でほぼ一様である。
 ゲート絶縁膜86上には、ゲート電極87が形成されている。ゲート電極87は、格子状のゲート絶縁膜86に沿って格子状に形成されていて、ゲート絶縁膜86を挟んで、各ボディ領域82の周縁部に対向している。ゲート電極87は、ポリシリコンからなり、たとえば、p型不純物が高濃度に導入されている。また、ゲート電極87の厚さは、たとえば、6000Å程度である。
 このMISトランジスタ71では、ボディ間領域の幅方向中央に単位セル間の境界が設定されている。各単位セルは、たとえば、図11(b)の紙面における上下左右方向の長さがそれぞれ10μm程度である。各単位セルでは、ボディ領域82の深さ方向がゲート長方向であり、そのゲート長方向に直交するボディ領域82の周方向がゲート幅方向である。
 また、トランジスタ周辺領域81において、SiCエピタキシャル層78の表層部には、マトリクス状に配列された単位セル(活性領域80)を取り囲むように、活性領域80から間隔を開けてp型のガードリング88が複数本(この第4実施形態では、4本)形成されている。これらのガードリング88は、p型のボディ領域82を形成する工程と同一のイオン注入工程で形成することができる。
 各ガードリング88は、平面視において、MISトランジスタ71の外周に沿う平面視四角環状に形成されている。また、ガードリング88のSiCエピタキシャル層78の表面79からの深さは、ボディ領域82とほぼ同じ深さであり、たとえば、2000Å以上、好ましくは、3000Å~10000Åである。
 SiCエピタキシャル層78上には、ゲート電極87を被覆するように、層間絶縁膜89が積層されている。層間絶縁膜89は、High-k材料(SiN、Al、AlON等)からなる。
 層間絶縁膜89およびゲート絶縁膜86には、ソース領域85およびボディコンタクト領域84を露出させるコンタクトホール90が形成されている。
 層間絶縁膜89上には、第1電極としてのソース電極91が形成されている。ソース電極91は、各コンタクトホール90を介して、すべての単位セルのボディコンタクト領域84およびソース領域85に一括して接触している。すなわち、ソース電極91は、すべての単位セルに対して共通の配線となっている。
 そして、このソース電極91上には層間絶縁膜(図示せず)が形成されており、その層間絶縁膜(図示せず)を介して、ソース電極91がソースパッド72(図11(a)参照)に電気的に接続されている。一方、ゲートパッド74(図11(a)参照)は、当該層間絶縁膜(図示せず)上に引き回されたゲート配線(図示せず)を介して、ゲート電極87に電気的に接続されている。
 また、ソース電極91は、たとえば、SiCエピタキシャル層78との接触側から順にTi/TiN層と、Al層とが積層された構造を有している。
 SiC基板75の裏面77には、その全域を覆うように第2電極としてのドレイン電極92が形成されている。このドレイン電極92は、すべての単位セルに対して共通の電極となっている。ドレイン電極92としては、たとえば、SiC基板75側から順にTi、Ni、AuおよびAgが積層された積層構造(Ti/Ni/Au/Ag)を適用することができる。
 このMISトランジスタ71では、ソース電極91とドレイン電極92との間(ソース-ドレイン間)に所定の電位差を発生させた状態で、ゲート電極87に閾値電圧以上の電圧が印加される。これにより、各単位セルのボディ領域82の周縁部に環状のチャネルを形成される。こうして、ソース電極91からドレイン電極92へと、活性領域80内のソース領域85、チャネルおよびドリフト領域83を介して電子(キャリヤ)が移動して電流が流れる。
 図13A~図13Dは、図12に示すプレーナゲート型MISトランジスタの製造工程の一部を示す模式的な断面図であって、図12と同じ位置での切断面を示す。
 MISトランジスタ71を製造するには、図13Aに示すように、CVD法、LPE法、MBE法などのエピタキシャル成長法により、SiC基板75の表面76(Si面)上に、n型不純物(たとえば、N(窒素)、P(リン)、As(ひ素)等)をドーピングしながらSiC結晶が成長させられる。これにより、SiC基板75上に、n型のSiCエピタキシャル層78が形成される。
 続いて、p型不純物(たとえば、Al(アルミニウム)、B(ホウ素)等)が、SiCエピタキシャル層78の表面79からSiCエピタキシャル層78の内部にインプランテーション(注入)される。
 続いて、n型不純物が、SiCエピタキシャル層78の表面79からSiCエピタキシャル層78の内部にインプランテーション(注入)される。
 続いて、p型不純物が、SiCエピタキシャル層78の表面79からSiCエピタキシャル層78の内部にインプランテーション(注入)される。
 続いて、たとえば、1400℃~2000℃でSiCエピタキシャル層78が熱処理される。これにより、SiCエピタキシャル層78の表層部に注入されたp型不純物およびn型不純物のイオンが活性化され、注入された箇所に応じて、ボディ領域82、ボディコンタクト領域84、ソース領域85およびガードリング88が同時に形成される。また、SiCエピタキシャル層78の基層部には、エピタキシャル成長後のままの状態を維持するドリフト領域83が形成される。
 次に、図13Bに示すように、CVD法により、High-k材料がSiCエピタキシャル層78の上方から堆積される。その後、公知のパターニング技術により、当該High-k材料がパターニングされる。これにより、ゲート絶縁膜86が形成される。
 次に、図13Cに示すように、CVD法により、ドーピングされたポリシリコン材料がSiCエピタキシャル層78の上方から堆積される。その後、公知のパターニング技術により、当該ポリシリコン材料がパターニングされる。これにより、ゲート電極87が形成される。
 次に、図13Dに示すように、CVD法により、High-k材料がSiCエピタキシャル層78の上方から堆積される。これにより、層間絶縁膜89が形成される。
 この後、層間絶縁膜89およびゲート絶縁膜86が連続してパターニングされることによりコンタクトホール90が形成され、ソース電極91、ドレイン電極92などが形成されることにより、図12に示すMISトランジスタ71が得られる。
 以上のように、この第4実施形態によれば、SiCエピタキシャル層78に接するゲート絶縁膜86および層間絶縁膜89が、High-k材料(SiN、Al、AlON等)からなる。そのため、ソース電極91-ドレイン電極92間に大きな逆電圧が印加され、アバランシェ降伏が生じても、前述の第1実施形態で式(1)と(2)との比較により証明したように、ゲート絶縁膜86および層間絶縁膜89にかかる電界EHigh-kを弱めることができる。その結果、ゲート絶縁膜86および層間絶縁膜89の破壊を低減することができる。よって、アバランシェ耐量の高いMISトランジスタを提供することができる。
 とりわけ、この第4実施形態のMISトランジスタ71のようなプレーナゲート型構造では、活性領域80を取り囲むトランジスタ周辺領域81に電界が集中しやすい。
 そこで、この第4実施形態のように、層間絶縁膜89全体をHigh-k材料により構成すれば、SiCエピタキシャル層78のトランジスタ周辺領域81にもHigh-k材料からなる層間絶縁膜89を接触させることができる。そのため、層間絶縁膜89の破壊を効果的に低減することができる。
 図14(a)(b)は、本発明の第5実施形態に係るトレンチゲート型MISトランジスタ101の模式的な平面図であって、図14(a)は全体図、図14(b)は内部拡大図をそれぞれ示す。図15は、図14(a)(b)のトレンチゲート型MISトランジスタの断面図であって、図14(b)の切断線F-F、G-GおよびH-Hでの切断面をそれぞれ示す。
 MISトランジスタ101は、SiCが採用されたトレンチゲート型DMISFET(Double diffused Metal Insulator Semiconductor Field Effect Transistor)であり、たとえば、図14(a)に示すように、平面視正方形のチップ状である。チップ状のMISトランジスタ101は、図14(a)の紙面における上下左右方向の長さがそれぞれ数mm程度である。
 MISトランジスタ101の表面には、ソースパッド102が形成されている。ソースパッド102は、四隅が外方へ湾曲した平面視略正方形状であり、MISトランジスタ101の表面のほぼ全域を覆うように形成されている。このソースパッド102には、その一辺の中央付近に除去領域103が形成されている。この除去領域103は、ソースパッド102が形成されていない領域である。
 除去領域103には、ゲートパッド104が配置されている。ゲートパッド104とソースパッド102との間には間隔が設けられており、これらは互いに絶縁されている。
 次に、MISトランジスタ101の内部構造について説明する。
 MISトランジスタ101は、n型(たとえば、濃度が1×1018~1×1021cm-3)のSiC基板105を備えている。SiC基板105は、第5実施形態では、MISトランジスタ101のドレインとして機能し、その表面106(上面)がSi面であり、その裏面107(下面)がC面である。
 SiC基板105の表面106には、SiC基板105よりも低濃度のn型(たとえば、濃度が1×1015~1×1017cm-3)のSiCエピタキシャル層108が積層されている。半導体層としてのSiCエピタキシャル層108の厚さは、たとえば、1μm~100μmである。SiCエピタキシャル層108は、SiC基板105上に、いわゆるエピタキシャル成長によって形成されている。Si面である表面上に形成されるSiCエピタキシャル層108は、Si面を成長主面として成長させられる。したがって、成長により形成されるSiCエピタキシャル層108の表面109は、SiC基板105の表面106と同様、Si面である。
 MISトランジスタ101には、図14(a)に示すように、平面視でSiCエピタキシャル層108の中央部に配置され、MISトランジスタ101として機能する活性領域110と、この活性領域110を取り囲むトランジスタ周辺領域111が形成されている。
 活性領域110において、SiCエピタキシャル層108にはゲートトレンチ112が格子状に形成されている(図14(b)参照)。このゲートトレンチ112によりSiCエピタキシャル層108は、それぞれが四角状(正方形状)の複数のセル113に区画されている。
 複数のセル113は、ショットキーセル114と、ショットキーセル114よりも相対的に平面面積の小さいpnダイオードセル115とを含む。たとえばショットキーセル114は、pnダイオードセル115の4つ分に相当する面積を有していて、ショットキーセル114の一辺の長さはpnダイオードセル115の一辺の長さの2倍に相当する。具体的には、pnダイオードセル115の大きさは、図14(b)の紙面における上下左右方向の長さがそれぞれ6μm程度であり、ショットキーセル114の大きさは、同方向の長さがそれぞれ12μm程度である。
 そして、1つのショットキーセル114と、そのショットキーセル114を包囲する複数のpnダイオードセル115(この実施形態では、12個のpnダイオードセル115)により1つのセル群が構成されており、このセル群がさらに行列状に配列されている。互いに隣り合うセル群において、pnダイオードセル115は共有されている。つまり、或るセル群のショットキーセル114を包囲するpnダイオードセル115は、当該セル群の隣のセル群のショットキーセル114を包囲するpnダイオードセル115としても用いられている。
 ショットキーセル114およびpnダイオードセル115に共通する要素として、SiCエピタキシャル層108には、その表面109側から裏面116側へ向かって順に、n型(たとえば、濃度が1×1018~1×1021cm-3)ソース領域117、p型(たとえば、濃度が1.0×1016cm-3~1.0×1019cm-3)ボディ領域118およびドリフト領域119を有している。
 ドリフト領域119は、エピタキシャル成長後のままの状態が維持された、n型の領域であり、全てのセル113の底部で一体的に繋がっており、それらの間で共有されている。つまり、ゲートトレンチ112は、ソース領域117およびボディ領域118を側面124に露出させ、その最深部がドリフト領域119の途中部に位置するように各セル113を区画している。
 このようなゲートトレンチ112は、隣り合うセル113の各間を、各セル113の4つの側面に沿って行方向および列方向のそれぞれに直線状に延びる線状部120と、行方向に延びる線状部120と列方向に延びる線状部120とが交差する交差部121とを含んでいる。
 ゲートトレンチ112の内面には、High-k材料(SiN、Al、AlON等)からなるゲート絶縁膜122が、その全域を覆うように形成されている。ゲート絶縁膜122は、ゲートトレンチ112の底面123上の部分が、ゲートトレンチ112の側面124上の部分よりも厚くなっている。
 そして、ゲートトレンチ112におけるゲート絶縁膜122の内側をポリシリコンで埋め尽くすことにより、ゲートトレンチ112内にゲート電極125が埋設されている。こうして、各ショットキーセル114およびpnダイオードセル115には、ソース領域117とドリフト領域119とが、SiCエピタキシャル層108の表面109に垂直な縦方向にボディ領域118を介して離間して配置された、縦型MISトランジスタ101構造(第1および第2MISトランジスタ構造)が構成されている。
 ショットキーセル114の中央部には、SiCエピタキシャル層108の表面109からソース領域117およびボディ領域118を貫通してドリフト領域119に達する、平面視正方形状の第2ソーストレンチとしてのHDソーストレンチ126が形成されている(図14(b)および図15のG-G断面、H-H断面参照)。HDソーストレンチ126の深さは、ゲートトレンチ112と同じである。
 このHDソーストレンチ126には、p型(たとえば、濃度が1×1017~9×1019cm-3)のHD耐圧保持領域127(第2耐圧保持領域)が形成されている。HD耐圧保持領域127は、HDソーストレンチ126の底面128と側面129とが交わって形成され、当該底面128の周囲を取り囲む環状のエッジ部130および当該エッジ部130からHDソーストレンチ126の側面129に露出するボディ領域118に至る環状に形成されている。これにより、HD耐圧保持領域127に囲まれるHDソーストレンチ126の底面128の中央部には、ドリフト領域119の一部からなる平面視正方形状のショットキー領域131が形成されている。
 ショットキー領域131は、ショットキー領域131とHD耐圧保持領域127とのpn接合部(ボディダイオード132)から発生する空乏層が繋がらない面積で形成されており、たとえば、その一辺の長さLが4μm以上である。
 一方、pnダイオードセル115の中央部には、SiCエピタキシャル層108の表面109からソース領域117およびボディ領域118を貫通してドリフト領域119に達する、平面視正方形状の第1ソーストレンチとしてのDiソーストレンチ133が形成されている(図14(b)および図15のF-F断面、H-H断面参照)。Diソーストレンチ133の深さは、ゲートトレンチ112と同じである。また、Diソーストレンチ133の面積は、ショットキー領域131よりも小さくて、その一辺の長さLが3μm程度である。
 このDiソーストレンチ133には、p型(たとえば、1×1017~9×1019cm-3の濃度)のDi耐圧保持領域134(第1耐圧保持領域)が形成されている。Di耐圧保持領域134は、Diソーストレンチ133の底面135全面に形成され、さらに、底面135と側面136とが交わって形成され、当該底面135の周囲を取り囲む環状のエッジ部137および当該エッジ部137からDiソーストレンチ133の側面136に露出するボディ領域118に至る器状に形成されている。
 また、Diソーストレンチ133には、その底面135の中央部におけるDi耐圧保持領域134の表層部に、p型(たとえば、濃度が1.0×1018cm-3~2.0×1021cm-3)の底部ボディコンタクト領域138が形成されている。底部ボディコンタクト領域138に電極をオーミック接触させることにより、Di耐圧保持領域134を介してpnダイオードセル115のボディ領域118に対してコンタクトをとることができる(電気的に接続することができる)。
 そして、Diソーストレンチ133にDi耐圧保持領域134が形成されていることにより、pnダイオードセル115は、Di耐圧保持領域134とドリフト領域119とのpn接合により構成され、アノード側のコンタクトとして底部ボディコンタクト領域138を有し、カソード側のコンタクトとしてSiC基板105を有するボディダイオード139を内蔵している。
 また、複数のセル113を区画するゲートトレンチ112の各交差部121には、G耐圧保持領域140(中継領域)が形成されている。
 G耐圧保持領域140は、交差部121におけるゲートトレンチ112の底面123全面に形成され、さらに、当該底面123から交差部121に臨む各セル113の各角部の下部に形成されたゲートトレンチ112のコーナーエッジ部141をおよびコーナーエッジ部141直上のボディ領域118に至るように形成されている。
 すなわち、G耐圧保持領域140は、平面視では、ゲートトレンチ112の交差部121よりもやや大きい正方形状に形成されていて、その各角が、当該交差部121に臨む各セル113の各角部にそれぞれ入り込んでいる。また、G耐圧保持領域140の濃度は、ボディ領域118の濃度よりも高く、ドリフト領域119の濃度よりも高く、たとえば、1×1017~9×1019cm-3である。
 このG耐圧保持領域140の中継により、図15のH-H断面の実線矢印に示すように、底部ボディコンタクト領域138→Di耐圧保持領域134→pnダイオードセル115のボディ領域118→G耐圧保持領域140→ショットキーセル114のボディ領域118を介して、ショットキーセル114のHD耐圧保持領域127に対してコンタクトをとることができる。
 トランジスタ周辺領域111において、SiCエピタキシャル層108の表層部には活性領域110を取り囲むように、活性領域110から間隔を開けてp型のガードリング142が複数本(第5実施形態では、4本)形成されている。これらのガードリング142は、p型のボディ領域118を形成する工程と同一のイオン注入工程で形成することができる。各ガードリング142は、平面視において、MISトランジスタ101の外周に沿う平面視四角環状に形成されている。
 SiCエピタキシャル層108上には、ゲート電極125を被覆するように、High-k材料(SiN、Al、AlON等)からなる層間絶縁膜143が積層されている。
 層間絶縁膜143およびゲート絶縁膜122には、HDソーストレンチ126およびDiソーストレンチ133よりも大径のコンタクトホール144,145が形成されている。
 層間絶縁膜143上には、ソース電極146が形成されている。ソース電極146は、各コンタクトホール144,145を介して、すべてのHDソーストレンチ126およびDiソーストレンチ133に一括して入り込んでいる。
 ソース電極146は、ショットキーセル114において、HDソーストレンチ126の底側から順にショットキー領域131、HD耐圧保持領域127およびソース領域117に接触している。また、pnダイオードセル115において、Diソーストレンチ133の底側から順に底部ボディコンタクト領域138、Di耐圧保持領域134およびソース領域117に接触している。すなわち、ソース電極146は、すべてのセル113に対して共通の配線となっている。
 そして、このソース電極146上には層間絶縁膜143(図示せず)が形成されており、その層間絶縁膜143(図示せず)を介して、ソース電極146がソースパッド102(図14(a)参照)に電気的に接続されている。一方、ゲートパッド104(図14(a)参照)は、当該層間絶縁膜143(図示せず)上に引き回されたゲート配線(図示せず)を介して、ゲート電極125に電気的に接続されている。
 また、ソース電極146は、SiCエピタキシャル層108との接触側から順に、障壁形成層としてのポリシリコン層147、中間層148およびメタル層149を有している。
 ポリシリコン層147は、不純物がドーピングされたドープトポリシリコンを用いて形成されたドープ層であり、たとえば、1×1015cm-3以上、好ましくは、1×1019~1×1021cm-3の高濃度で不純物がドーピングされた高濃度ドープ層である。ポリシリコン層147をドープ層(高濃度ドープ層を含む)として形成するときの不純物としては、N(窒素)、P(リン)、As(ひ素)などのn型不純物、Al(アルミニウム)、B(ホウ素)などのp型不純物を用いることができる。また、ポリシリコン層147の厚さは、たとえば、5000Å~10000Åである。
 また、ポリシリコン層147は、第5実施形態では、コンタクトホール144,145内に露出するセル113の表面全域を覆うように形成されていて、HDソーストレンチ126内でショットキー領域131、HD耐圧保持領域127およびソース領域117の全て、Diソーストレンチ133内で底部ボディコンタクト領域138、Di耐圧保持領域134およびソース領域117の全てに接触している。
 そして、ポリシリコン層147は、ショットキーセル114においてソース領域117との間にショットキー接合を形成している。これにより、ポリシリコン層147は、ショットキー領域131との間に、ショットキーセル114およびpnダイオードセル115にそれぞれ内蔵されたボディダイオード150(ボディ領域118とドリフト領域119とのpn接合により形成されるダイオード)の拡散電位(たとえば、2.8eV~3.2eV)よりも接合障壁の小さいヘテロ接合(たとえば、接合障壁の高さが1eV~1.5eV)を形成している。これにより、ショットキーセル114においては、ソース電極146とショットキー領域131との間にヘテロ接合ダイオード151(HD)が形成されている。
 また、ポリシリコン層147は、pnダイオードセル115において底部ボディコンタクト領域138およびソース領域117との間にオーミック接触を形成している。
 中間層148は、ポリシリコン層147上に積層されたメタル層149であり、Ti(チタン)を含有する層の単層またはTiを含有する層を含む複数の層からなる。Tiを含有する層は、Ti、TiN(窒化チタン)などを用いて形成することができる。また、中間層148の厚さは、たとえば、200nm~500nmである。
 メタル層149は、中間層148上に積層されており、たとえば、Al(アルミニウム)、Au(金)、Ag(銀)、Cu(銅)、Mo(モリブデン)、それらの合金およびそれらを含有するメタル材料を用いて形成することができる。メタル層149は、ソース電極146の最表層をなしている。また、メタル層149の厚さは、たとえば、1μm~5μmである。
 上記のようなポリシリコン層147、中間層148およびメタル層149の組み合わせとしては、第5実施形態では、ポリシリコン(ポリシリコン層147)、Ti(中間層148)、TiN(中間層148)およびAl(メタル層149)が順に積層される積層構造(ポリシリコン/Ti/TiN/Al)である。また、これらに加えて、メタル層149がMo層を有していることが好ましい。Moは融点が高いので、メタル層149にMo層が含まれていれば、ソース電極146に大電流が流れたときに生じる熱によるメタル層149の溶損を抑制することができる。
 SiC基板105の裏面107には、その全域を覆うようにドレイン電極152が形成されている。このドレイン電極152は、すべてのセル113に対して共通の電極となっている。ドレイン電極152としては、たとえば、SiC基板105側から順にTi、Ni、AuおよびAgが積層された積層構造(Ti/Ni/Au/Ag)を適用することができる。
 このMISトランジスタ101は、たとえば、電動モータ(誘導性負荷の一例)の駆動回路(インバータ回路)のスイッチング素子として利用される。この場合、ソースパッド102(ソース電極146)とドレイン電極152との間(ソース-ドレイン間)にドレイン側が正となるドレイン電圧が印加された状態で、ゲートパッド104に所定の電圧(ゲート閾値電圧以上の電圧)がオン/オフされることによって、電動モータに流す電流をオン/オフするスイッチングを行なう。
 電動モータに流れる電流を遮断すると(つまり、ゲート電圧がオフにされると)、電動モータのモータコイルに逆起電力が発生する。この逆起電力に起因して、ソース側が正となる電圧が、ソース-ドレイン間にかかる場合がある。
 このような場合に、ボディダイオード150の整流作用により、電流が、たとえば還流電流としてモータコイルに流れると、以下の不具合がある。
 つまり、ボディダイオード150を構成するp型ボディ領域118からn型ドリフト領域119に正孔(ホール)が移動して電流が流れると、n型ドリフト領域119においてゲートトレンチ112付近(たとえば、ゲートトレンチ112の側方)では、多数キャリヤの電子と、p型ボディ領域118から移動した正孔とが再結合する場合がある。そのため、その結合により生じるエネルギーによって、SiCエピタキシャル層108のSiCの結晶欠陥が、SiCエピタキシャル層108の積層方向に平行な方向に拡張し、オン時のドレイン電流の経路(たとえば、チャネル)に達するおそれがある。そうすると、このMISトランジスタ101が、ボディ領域118におけるゲートトレンチ112の側面124付近にチャネルを形成してスイッチング動作する際、オン抵抗が上昇するおそれがある。
 そこで、このMISトランジスタ101では、ポリシリコン層147がドリフト領域119(ショットキー領域131)に対してヘテロ接合を形成していて、ヘテロ接合ダイオード151が内蔵されている。そのため、このヘテロ接合ダイオード151に優先的に電流が流れ、ボディダイオード150に流れる電流を少なくするか、またはなくすことができる。こうしてMISトランジスタ101を流れた電流は、たとえば還流電流として電動モータに流すことができる。
 このように、オフ時の電流は、ショットキーセル114の中央のHDソーストレンチ126内に形成されたヘテロ接合ダイオード151へ流れるから、ゲートトレンチ112付近(すなわち、p型ボディ領域118とn型ドリフト領域119との間)でのキャリヤの移動はほとんど生じない。そのため、ドリフト領域119内での正孔と電子との再結合を防止することができる。その結果、SiCエピタキシャル層108におけるSiCの結晶欠陥の拡張を抑制することができるので、トランジスタのオン抵抗の上昇を抑制することができる。また、ボディダイオード150に流れる電流を少なくするか、またはなくすことができるので、MISトランジスタ101が動作する際の損失を低減することができる。
 しかもMISトランジスタ101では、ヘテロ接合ダイオード151を構成するショットキー領域131の一辺の長さLが、ボディダイオード132から発生する空乏層が繋がらないように設定されている。そのため、ヘテロ接合ダイオード151が動作するときに、その電流路が当該空乏層で閉じられることを防止することができる。その結果、ヘテロ接合ダイオード151の低オン抵抗化を達成することができる。
 また、オフ状態(つまり、ゲート電圧が0Vの状態)においては、ゲート電極125とSiCエピタキシャル層108との間に介在するゲート絶縁膜122に電界がかかる。
 この電界は、ゲート電極125とSiCエピタキシャル層108との電位差に起因して生じるものである。そして、ゲートトレンチ112の底面123においては、ゲート電極125を基準(0V)として非常に高い電位の等電位面が分布し、しかも等電位面の間隔が小さいため、非常に大きな電界が生じる。たとえば、ドレイン電圧が900Vであれば、ドレイン電極152に接するSiC基板105の裏面107付近では900Vの等電位面が分布しており、SiC基板105の裏面107からSiCエピタキシャル層108の表面109側へ向かうにつれて電圧降下を生じるが、ゲートトレンチ112の底面123付近では、数十V程度の等電位面が分布する。そのため、ゲートトレンチ112の底面123では、ゲート電極125側へ向かう非常に大きな電界が生じる。とりわけ、このMISトランジスタ101のように、ゲートトレンチ112が格子状に形成されており、格子状のゲートトレンチ112の窓部に四角柱状のセル113が配列されている場合は、セル113の各角部に形成されたゲートトレンチ112のコーナーエッジ部141付近において、ゲート絶縁膜122の絶縁破壊が特に発生しやすい。
 そこで、このMISトランジスタ101では、ゲートトレンチ112のコーナーエッジ部141にG耐圧保持領域140が形成されている。これにより、G耐圧保持領域140とドリフト領域119とのpn接合により、ゲートトレンチ112のコーナーエッジ部141付近にボディダイオード155を形成することができる。さらにこのMISトランジスタ101では、ショットキーセル114のHDソーストレンチ126のエッジ部130にHD耐圧保持領域127が形成され、pnダイオードセル115のDiソーストレンチ133の底面135およびエッジ部137にDi耐圧保持領域134が形成されている。そのため、HD耐圧保持領域127とドリフト領域119とのpn接合、およびDi耐圧保持領域134とドリフト領域119とのpn接合により、HDソーストレンチ126のエッジ部130を取り囲む環状のボディダイオード132を形成することができる。また、Diソーストレンチ133の底部を覆う器状のボディダイオード139を形成することができる。
 これらのボディダイオード132,139に発生する空乏層の存在により、ゲートトレンチ112とHDソーストレンチ126との間、およびゲートトレンチ112とDiソーストレンチ133との間に等電位面が入り込むことを防止でき、ゲート絶縁膜122から遠ざけることができる。その結果、ゲートトレンチ112のコーナーエッジ部141付近における等電位面の密集を防止することができる。その結果、ゲート絶縁膜122にかかる電界を小さくすることができるので、絶縁破壊を防止することができる。
 また、MISトランジスタ101では、G耐圧保持領域140がコーナーエッジ部141直上のボディ領域118に至るように形成されているが、セル113の角部には、チャネルが形成されないか、形成されても当該チャネルを流れる電流は微量である。したがって、ボディ領域118におけるコーナーエッジ部141直上の部分に至るようにG耐圧保持領域140を形成することにより、デバイスの性能にほとんど影響を与えずに、ゲート絶縁膜122の破壊防止効果を一層向上させることができる。
 図16は、本発明の第6実施形態に係るトレンチゲート型MISトランジスタ161の模式的な断面図であって、図15と同じ位置での切断面を示す。図16において、図15に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 前述の第5実施形態では、HDソーストレンチ126は、その側面に段差が形成されていない平面状のものであったが、この第6実施形態に係るMISトランジスタ161のHDソーストレンチ162は、SiCエピタキシャル層108の表面109からボディ領域118までの深さのHD上層トレンチ163(第2上層トレンチ)と、HD上層トレンチ163よりも幅が狭く、ボディ領域118からドリフト領域119までの深さのHD下層トレンチ164(第2下層トレンチ)とを含む。これによりHDソーストレンチ162では、HD上層トレンチ163の側面がHD下層トレンチ164の側面よりも外側に一段広がった2段構造を有している。
 そして、HD上層トレンチ163とHD下層トレンチ164との段差部分には、ボディ領域118が環状に露出しており、その露出した部分に、p型のHDボディコンタクト領域165が形成されている。
 同様に、MISトランジスタ161のDiソーストレンチ166は、SiCエピタキシャル層108の表面109からボディ領域118までの深さのDi上層トレンチ167(第1上層トレンチ)と、Di上層トレンチ167よりも幅が狭く、ボディ領域118からドリフト領域119までの深さのDi下層トレンチ168(第1下層トレンチ)とを含む。これによりDiソーストレンチ166では、Di上層トレンチ167の側面がDi下層トレンチ168の側面よりも外側に一段広がった2段構造を有している。
 そして、Di上層トレンチ167とDi下層トレンチ168との段差部分には、ボディ領域118が環状に露出しており、その露出した部分に、p型のDiボディコンタクト領域169が形成されている。
 以上のように、このMISトランジスタ161によっても、前述のMISトランジスタ101と同様の作用効果を達成することができる。
 さらに、このMISトランジスタ161では、各トレンチ162,166が2段構造であり、HDボディコンタクト領域165およびDiボディコンタクト領域169が形成されているので、ショットキーセル114およびpnダイオードセル115それぞれのボディ領域118に対して直接コンタクトをとることができる。その結果、ボディ領域118の電位を精密に制御することができる。
 また、pnダイオードセル115の底部ボディコンタクト領域138や、ゲートトレンチ112の交差部121のG耐圧保持領域140を省略することができる。
 図17(a)(b)は、本発明の第7実施形態に係るプレーナゲート型MISトランジスタ181の模式的な平面図であって、図17(a)は全体図、図17(b)は内部拡大図をそれぞれ示す。図18は、図17(a)(b)のプレーナゲート型MISトランジスタ181の断面図であって、図17(b)の切断線I-IおよびJ-Jでの切断面をそれぞれ示す。図17および図18において、図14および図15に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 前述の第5および第6実施形態では、トレンチゲート型MISトランジスタ101,161の例をとりあげたが、本発明は、この第7実施形態に係るMISトランジスタ181のように、プレーナゲート型のトランジスタにも採用することができる。
 プレーナ型MISトランジスタ181では、High-k材料(SiN、Al、AlON等)からなるゲート絶縁膜182は、ゲートトレンチ112の内面に形成される代わりに、SiCエピタキシャル層108の表面109に形成され、その上に、ゲート電極183が形成されている。
 以上のように、このMISトランジスタ181によっても、前述のMISトランジスタ101と同様の作用効果を達成することができる。
 図19(a)(b)は、本発明の第8実施形態に係るトレンチゲート型MISトランジスタ191の模式的な平面図であって、図19(a)は全体図、図19(b)は内部拡大図をそれぞれ示す。図20は、図19(a)(b)のトレンチゲート型MISトランジスタ191の断面図であって、図19(b)の切断線K-KおよびL-Lでの切断面をそれぞれ示す。図19および図20において、図14および図15に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 前述の第5~第7実施形態では、ショットキーセル114がpnダイオードセル115よりも面積が大きい例をとりあげたが、ショットキーセル114とpnダイオードセル115の面積は同じであってもよい。
 この第8実施形態に係るMISトランジスタ191では、互いに同じ大きさの平面視四角形のショットキーセル114およびpnダイオードセル115が行列状(マトリクス状)に配列されており、ショットキーセル114はpnダイオードセル115に包囲されている。
 また、ショットキーセル114において、ソース領域117、ボディ領域118およびドリフト領域119を有し、HDソーストレンチ126が形成されたMISトランジスタ101構造が形成されていない。ショットキー領域131は、SiCエピタキシャル層108の表面109と同一平面上に現れている。
 以上のように、このMISトランジスタ191によっても、前述のMISトランジスタ101と同様の作用効果を達成することができる。
 さらに、このMISトランジスタ191では、MISトランジスタ構造の形成するためのスペースが必要ないので、セル113が大きくなくても十分な面積のショットキー領域131を露出させることができるので、ヘテロ接合ダイオード151の低抵抗化を達成することができる。
 なお、前述の第5~第8の実施形態において、ショットキーセル114は、図21(a)(b)に示すように、たとえば、pnダイオードセル115の9つ分に相当する面積を有していて、ショットキーセル114の一辺の長さがpnダイオードセル115の一辺の長さの3倍に相当していてもよい。
 図22(a)(b)は、本発明の第9実施形態に係るトレンチゲート型MISトランジスタの模式的な平面図であって、図22(a)は全体図、図22(b)は内部拡大図をそれぞれ示す。図2は、図22(a)(b)に示すトレンチゲート型MISトランジスタの断面図であって、図22(b)の切断線M-MおよびN-Nでの切断面をそれぞれ示す。
 MISトランジスタ201は、SiCが採用されたトレンチゲート型DMISFET(Double diffused Metal Insulator Semiconductor Field Effect Transistor)であり、たとえば、図22(a)に示すように、平面視正方形のチップ状である。チップ状のMISトランジスタ201は、図22(a)の紙面における上下左右方向の長さがそれぞれ数mm程度である。
 MISトランジスタ201の表面には、ソースパッド202が形成されている。ソースパッド202は、四隅が外方へ湾曲した平面視略正方形状であり、MISトランジスタ201の表面のほぼ全域を覆うように形成されている。このソースパッド202には、その一辺の中央付近に除去領域203が形成されている。この除去領域203は、ソースパッド202が形成されていない領域である。
 除去領域203には、ゲートパッド204が配置されている。ゲートパッド204とソースパッド202との間には間隔が設けられており、これらは互いに絶縁されている。
 次に、MISトランジスタ201の内部構造について説明する。
 MISトランジスタ201は、n型(たとえば、濃度が1×1018~1×1021cm-3)のSiC基板205を備えている。SiC基板205は、第9実施形態では、MISトランジスタ201のドレインとして機能し、その表面206(上面)がSi面であり、その裏面207(下面)がC面である。
 SiC基板205の表面206には、SiC基板205よりも低濃度のn型(たとえば、濃度が1×1015~1×1017cm-3)のSiCエピタキシャル層208が積層されている。半導体層としてのSiCエピタキシャル層208の厚さは、たとえば、1μm~100μmである。SiCエピタキシャル層208は、SiC基板205上に、いわゆるエピタキシャル成長によって形成されている。Si面である表面206上に形成されるSiCエピタキシャル層208は、Si面を成長主面として成長させられる。したがって、成長により形成されるSiCエピタキシャル層208の表面209は、SiC基板205の表面206と同様、Si面である。
 MISトランジスタ201には、図22(a)に示すように、平面視でSiCエピタキシャル層208の中央部に配置され、MISトランジスタ201として機能する活性領域210と、この活性領域210を取り囲むトランジスタ周辺領域211が形成されている。
 活性領域210において、SiCエピタキシャル層208の表層部には、p型(たとえば、濃度が1.0×1016cm-3~1.0×1019cm-3)のボディ領域212が、行方向および列方向に一定のピッチで行列状(マトリクス状)に配列されて多数形成されている。各ボディ領域212は、平面視正方形状であり、たとえば、図22(b)の紙面における上下左右方向の長さがそれぞれ7.2μm程度である。
 一方、SiCエピタキシャル層208における、ボディ領域212に対してSiC基板205側の領域は、エピタキシャル成長後のままの状態が維持された、n型のドリフト領域213となっている。
 各ボディ領域212には、その表面209側のほぼ全域にn型(たとえば、濃度が1×1018~1×1021cm-3)のソース領域214が形成されている。
 そして、各ボディ領域212を取り囲むように、SiCエピタキシャル層208の表面209から各ソース領域214およびボディ領域212を貫通してドリフト領域213に達するゲートトレンチ215が格子状に形成されている。
 具体的には、ゲートトレンチ215は、隣り合うボディ領域212の各間を、各ボディ領域212の4つの側面に沿って行方向および列方向のそれぞれに直線状に延びる線状部216と、行方向に延びる線状部216と列方向に延びる線状部216とが交差する交差部217とを含んでいる。交差部217は、平面視で2行2列に配列されたボディ領域212に着目したとき、配列された4つのボディ領域212の内側の角に取り囲まれ、ボディ領域212の四辺の延長線により区画される平面視正方形状の部分である。また、ゲートトレンチ215は、互いに対向する側面218と底面219とが湾曲面を介して連続する断面U字状である。
 これにより、SiCエピタキシャル層208には、格子状のゲートトレンチ215で取り囲まれる各窓部分に、4つの角部220を有する直方体形状(平面視正方形状)の単位セル221が多数形成されている。単位セル221では、ゲートトレンチ215の深さ方向がゲート長方向であり、そのゲート長方向に直交する各単位セル221の周方向がゲート幅方向である。
 ゲートトレンチ215の内面には、その全域を覆うように、High-k材料(SiN、Al、AlON等)からなるゲート絶縁膜222が形成されている。
 そして、ゲート絶縁膜222の内側をn型不純物が高濃度にドーピングされたポリシリコン材料で埋め尽くすことにより、ゲートトレンチ215内にゲート電極223が埋設されている。こうして、ソース領域214とドリフト領域213とが、SiCエピタキシャル層208の表面209に垂直な縦方向にボディ領域212を介して離間して配置された、縦型MISトランジスタ構造が構成されている。
 また、各単位セル221の中央部には、SiCエピタキシャル層208の表面209から各ソース領域214およびボディ領域212を貫通してドリフト領域213に達する、平面視正方形状のソーストレンチ224が形成されている。ソーストレンチ224の深さは、第9実施形態では、ゲートトレンチ215と同じである。また、ソーストレンチ224も、ゲートトレンチ215同様、互いに対向する側面225と底面226とが湾曲面を介して連続する断面U字状である。
 また、SiCエピタキシャル層208には、SiCエピタキシャル層208にp型不純物をインプランテーションすることにより形成された、p型のゲート耐圧保持領域227および第1耐圧保持領域としてのソース耐圧保持領域228が形成されている。
 ゲート耐圧保持領域227は、格子状のゲートトレンチ215に沿って形成されており、ゲートトレンチ215の交差部217に形成された第2耐圧保持領域としての第1領域229と、ゲートトレンチ215の線状部216に形成された第3耐圧保持領域としての第2領域230とを一体的に含んでいる。
 第1領域229は、交差部217におけるゲートトレンチ215の底面219および当該底面219から交差部217に臨む4つの単位セル221の各角部220の下部に形成されたゲートトレンチ215のコーナーエッジ部231を経て、コーナーエッジ部231直上のボディ領域212に至るように形成されている。すなわち、第1領域229は、平面視では、ゲートトレンチ215の交差部217よりもやや大きい正方形状に形成されていて、その各角が、当該交差部217に臨む4つの単位セル221の各角部220にそれぞれ入り込んでいる。また、第1領域229の濃度は、ボディ領域212の濃度よりも高く、ドリフト領域213の濃度よりも高く、たとえば、1×1017~9×1019cm-3である。また、第1領域229におけるゲートトレンチ215の底面からSiC基板205へ向かう方向に沿う厚さTは、たとえば、0.8μm程度である。
 第2領域230は、平面視で隣り合う交差部217の各辺中央同士を繋ぐ一定幅の直線状に形成されていて、線状部216の幅(互いに向き合うゲートトレンチ215の側面間の距離(たとえば、1μm)よりも狭い幅(たとえば、0.8μm)を有している。また、第2領域230の濃度は、ボディ領域212の濃度よりも高く、第1領域229よりも高く、たとえば、2×1017~1×1020cm-3である。また、第2領域230におけるゲートトレンチ215の底面からSiC基板205へ向かう方向に沿う厚さTは、第1領域229の厚さTよりも小さく(すなわち、T>T)、たとえば、0.7μm程度である。
 ソース耐圧保持領域228は、ソーストレンチ224の底面226を露出させるように、当該底面226と側面225とが交わるソーストレンチ224のエッジ部232および当該エッジ部232からソーストレンチ224の側面225の一部を形成するボディ領域212に至るように形成されている。
 これにより、ソーストレンチ224の底面226の中央部には、ドリフト領域213の一部からなる平面視正方形状のドリフト露出領域233が形成されている。
 また、ソース耐圧保持領域228の濃度は、ゲート耐圧保持領域227の第1領域229と同じである(たとえば、1×1017~9×1019cm-3。また、ソース耐圧保持領域228におけるソーストレンチ224の底面からSiC基板205へ向かう方向に沿う厚さTは、ゲート耐圧保持領域227の第1領域229の厚さTと同じである(たとえば、0.8μm程度)。
 また、トランジスタ周辺領域211において、SiCエピタキシャル層208の表層部には、マトリクス状に配列された単位セル221(活性領域210)を取り囲むように、活性領域210から間隔を開けてp型のガードリング234が複数本(第9実施形態では、4本)形成されている。これらのガードリング234は、p型のボディ領域212を形成する工程と同一のイオン注入工程で形成することができる。
 各ガードリング234は、平面視において、MISトランジスタ201の外周に沿う平面視四角環状に形成されている。
 SiCエピタキシャル層208上には、ゲート電極223を被覆するように、High-k材料(SiN、Al、AlON等)からなる層間絶縁膜235が積層されている。
 層間絶縁膜235およびゲート絶縁膜222には、ソーストレンチ224よりも大径のコンタクトホール236が形成されている。これにより、コンタクトホール236内には、各単位セル221のソーストレンチ224の全体(すなわち、ソーストレンチ224の側面225および底面226)およびSiCエピタキシャル層208の表面209におけるソーストレンチ224の周縁部が露出していて、表面209と底面226との高低差に応じた段差が形成されている。
 層間絶縁膜235上には、ソース電極237が形成されている。ソース電極237は、各コンタクトホール236を介して、すべての単位セル221のソーストレンチ224に一括して入り込んでいて、各単位セル221において、ソーストレンチ224の底側から順にドリフト露出領域233、ソース耐圧保持領域228、ボディ領域212およびソース領域214に接触している。すなわち、ソース電極237は、すべての単位セル221に対して共通の配線となっている。
 そして、このソース電極237上には層間絶縁膜(図示せず)が形成されており、その層間絶縁膜(図示せず)を介して、ソース電極237がソースパッド202(図22(a)参照)に電気的に接続されている。一方、ゲートパッド204(図22(a)参照)は、当該層間絶縁膜(図示せず)上に引き回されたゲート配線(図示せず)を介して、ゲート電極223に電気的に接続されている。
 また、ソース電極237は、SiCエピタキシャル層208との接触側から順に、障壁形成層としてのポリシリコン層238、中間層239およびメタル層240を有している。
 ポリシリコン層238は、不純物がドーピングされたドープトポリシリコンを用いて形成されたドープ層であり、たとえば、1×1015cm-3以上、好ましくは、1×1019~1×1021cm-3の高濃度で不純物がドーピングされた高濃度ドープ層である。ポリシリコン層238をドープ層(高濃度ドープ層を含む)として形成するときの不純物としては、N(窒素)、P(リン)、As(ひ素)などのn型不純物、Al(アルミニウム)、B(ホウ素)などのp型不純物を用いることができる。また、ポリシリコン層238の厚さは、たとえば、5000Å~10000Åである。
 また、ポリシリコン層238は、第9実施形態では、コンタクトホール236内に露出する単位セル221の表面全域を覆うように形成されていて、ソーストレンチ224内でドリフト露出領域233、ソース耐圧保持領域228およびソース領域214の全てに接触している。
 すなわち、ポリシリコン層238は、ソーストレンチ224の側面225においてソース耐圧保持領域228に接し、側面225およびSiCエピタキシャル層208の表面209におけるソーストレンチ224の周縁部においてソース領域214に接する第1部分241と、ソーストレンチ224の底面226においてドリフト露出領域233に接する第2部分242とを有している。
 そして、ポリシリコン層238は、第1部分241が、ソース耐圧保持領域228およびソース領域214の両方との間にオーミック接合を形成している。一方で、第2部分242が、ドリフト露出領域233との間に、MISトランジスタ201に内在するボディダイオード243(ボディ領域212とドリフト領域213との接合により形成されるpnダイオード)の拡散電位(たとえば、2.8eV~3.2eV)よりも接合障壁の小さいヘテロ接合(たとえば、接合障壁の高さが1eV~1.5eV)を形成している。
 中間層239は、ポリシリコン層238上に積層されたメタル層であり、Ti(チタン)を含有する層の単層またはTiを含有する層を含む複数の層からなる。Tiを含有する層は、Ti、TiN(窒化チタン)などを用いて形成することができる。また、中間層239の厚さは、たとえば、200nm~500nmである。
 メタル層240は、中間層239上に積層されており、たとえば、Al(アルミニウム)、Au(金)、Ag(銀)、Cu(銅)、Mo(モリブデン)、それらの合金およびそれらを含有するメタル材料を用いて形成することができる。メタル層240は、ソース電極237の最表層をなしている。また、メタル層240の厚さは、たとえば、1μm~5μmである。
 上記のようなポリシリコン層238、中間層239およびメタル層240の組み合わせとしては、第9実施形態では、Poly-Si(ポリシリコン層238)、Ti(中間層239)、TiN(中間層239)およびAl(メタル層240)が順に積層される積層構造(Poly-Si/Ti/TiN/Al)である。また、これらに加えて、メタル層240がMo層を有していることが好ましい。Moは融点が高いので、メタル層240にMo層が含まれていれば、ソース電極237に大電流が流れたときに生じる熱によるメタル層240の溶損を抑制することができる。
 SiC基板205の裏面207には、その全域を覆うようにドレイン電極244が形成されている。このドレイン電極244は、すべての単位セル221に対して共通の電極となっている。ドレイン電極244としては、たとえば、SiC基板205側から順にTi、Ni、AuおよびAgが積層された積層構造(Ti/Ni/Au/Ag)を適用することができる。
 このMISトランジスタ201は、たとえば、電動モータ(誘導性負荷の一例)の駆動回路(インバータ回路)のスイッチング素子として利用される。この場合、ソースパッド202(ソース電極237)とドレイン電極244との間(ソース-ドレイン間)にドレイン側が正となるドレイン電圧が印加された状態で、ゲートパッド204に所定の電圧(ゲート閾値電圧以上の電圧)がオン/オフされることによって、電動モータに流す電流をオン/オフするスイッチングを行なう。
 電動モータに流れる電流を遮断すると(つまり、ゲート電圧がオフにされると)、電動モータのモータコイルに逆起電力が発生する。この逆起電力に起因して、ソース側が正となる電圧が、ソース-ドレイン間にかかる場合がある。
 このような場合に、ボディダイオード243の整流作用により、電流が、たとえば還流電流としてモータコイルに流れると、以下の不具合がある。
 つまり、ボディダイオード243を構成するp型ボディ領域212からn型ドリフト領域213に正孔(ホール)が移動して電流が流れると、n型ドリフト領域213においてゲートトレンチ215付近(たとえば、ゲートトレンチ215の側方)では、多数キャリヤの電子と、p型ボディ領域212から移動した正孔とが再結合する場合がある。そのため、その結合により生じるエネルギーによって、SiCエピタキシャル層208のSiCの結晶欠陥が、SiCエピタキシャル層208の積層方向に平行な方向に拡張し、オン時のドレイン電流の経路(たとえば、チャネル)に達するおそれがある。そうすると、このMISトランジスタ201が、ボディ領域212におけるゲートトレンチ215の側面218付近にチャネルを形成してスイッチング動作する際、オン抵抗が上昇するおそれがある。
 そこで、第9実施形態では、ポリシリコン層238がドリフト領域213(ドリフト露出領域233)に対してヘテロ接合を形成している。そのため、ポリシリコン層238の第2部分242とドリフト領域213とのヘテロ接合部に優先的に電流が流れ、ボディダイオード243に流れる電流を少なくするか、またはなくすことができる。こうしてMISトランジスタ201を流れた電流は、たとえば還流電流として電動モータに流すことができる。
 このように、オフ時の電流は、ゲートトレンチ215で取り囲まれた単位セル221の中央のソーストレンチ224内に形成されたポリシリコン層238の第2部分242からドリフト領域213へ流れるから、ゲートトレンチ215付近(すなわち、p型ボディ領域212とn型ドリフト領域213との間)でのキャリヤの移動はほとんど生じない。そのため、ドリフト領域213内での正孔と電子との再結合を防止することができる。その結果、SiCエピタキシャル層208におけるSiCの結晶欠陥の拡張を抑制することができるので、トランジスタ201のオン抵抗の上昇を抑制することができる。
 また、オフ状態(つまり、ゲート電圧が0Vの状態)においては、ゲート電極223とSiCエピタキシャル層208との間に介在するゲート絶縁膜222に電界がかかる。
 この電界は、ゲート電極223とSiCエピタキシャル層208との電位差に起因して生じるものである。そして、ゲートトレンチ215の底面219においては、ゲート電極223を基準(0V)として非常に高い電位の等電位面が分布し、しかも等電位面の間隔が小さいため、非常に大きな電界が生じる。たとえば、ドレイン電圧が900Vであれば、ドレイン電極244に接するSiC基板205の裏面207付近では900Vの等電位面が分布しており、SiC基板205の裏面207からSiCエピタキシャル層208の表面209側へ向かうにつれて電圧降下を生じるが、ゲートトレンチ215の底面219付近では、数十V程度の等電位面が分布する。そのため、ゲートトレンチ215の底面219では、ゲート電極223側へ向かう非常に大きな電界が生じる。とりわけ、第9実施形態のように、ゲートトレンチ215が格子状に形成されており、格子状のゲートトレンチ215の窓部に四角柱状の単位セル221が配列されている場合は、単位セル221の各角部220に形成されたゲートトレンチ215のコーナーエッジ部231付近において、ゲート絶縁膜222の絶縁破壊が特に発生しやすい。
 具体的には、ゲートトレンチ215の交差部217の対角線上で互いに隣り合うソーストレンチ224の距離D(図23のM-M断面参照)は、ゲートトレンチ215の線状部216を挟んで互いに隣り合うソーストレンチ224の距離D(図23のN-N断面参照)に比べて大きくなる(たとえば、第9実施形態では、DはDの1.4倍)。そのため、相対的に広いスペースがあるゲートトレンチ215のコーナーエッジ部231の直下に等電位面が入り込み、等電位面の密集を生じる。その結果、ゲートトレンチ215のコーナーエッジ部231付近において、ゲート絶縁膜222の絶縁破壊が特に発生しやすい。
 そこで、第9実施形態のMISトランジスタ201では、ゲートトレンチ215のコーナーエッジ部231にゲート耐圧保持領域227(第1領域229)が形成されている。これにより、第1領域229とドリフト領域213との接合(pn接合)により、ゲートトレンチ215のコーナーエッジ部231付近にボディダイオード248を形成することができる。さらにこのMISトランジスタ201では、各単位セル221の中央部に形成されたソーストレンチ224のエッジ部232に、ソース耐圧保持領域228が形成されている。そのため、このソース耐圧保持領域228とドリフト領域213との接合(pn接合)により、ソーストレンチ224のエッジ部232を取り囲む環状のボディダイオード249を形成することができる。
 これらのボディダイオード248,249に発生する空乏層の存在により、ゲートトレンチ215のコーナーエッジ部231とソーストレンチ224のエッジ部232との間に等電位面が入り込むことを防止でき、ゲート絶縁膜222から遠ざけることができる。その結果、ゲートトレンチ215のコーナーエッジ部231付近における等電位面の密集を防止することができる。その結果、ゲート絶縁膜222にかかる電界を小さくすることができるので、絶縁破壊を抑制することができる。また、第1領域229の濃度がドリフト領域213の濃度よりも高いので、第1領域229とドリフト領域213との接合(pn接合)により生じる空乏層がSiCエピタキシャル層208内に広がり過ぎることを防止することができる。
 また、MISトランジスタ201では、第1領域229がコーナーエッジ部231を経て、コーナーエッジ部231直上のボディ領域212に至るように形成されているが、単位セル221の角部220には、チャネルが形成されないか、形成されても当該チャネルを流れる電流は微量である。したがって、ボディ領域212におけるコーナーエッジ部231直上の部分に至るようにゲート耐圧保持領域227(第1領域229)を形成することにより、デバイスの性能にほとんど影響を与えずに、ゲート絶縁膜222の破壊防止効果を一層向上させることができる。
 一方、ゲートトレンチ215の線状部216には、線状部216の幅よりも狭い幅のゲート耐圧保持領域227(第2領域230)が形成されている。これにより、第2領域230とドリフト領域213との接合(pn接合)により生じる空乏層を、ゲートトレンチ215の線状部216に沿って発生させることができる。そのため、ゲートトレンチ215の線状部216の直下に生じる電界を、当該空乏層により緩和することができる。その結果、ゲート絶縁膜222に生じる電界を、全体にわたって満遍なく緩和することができる。
 しかも、ゲート耐圧保持領域227(第2領域230)がゲートトレンチ215の線状部216の側面218(つまり、単位セル221においてチャネルが形成される部分)に形成されていない。よって、チャネル特性の制御を精度よく行うこともできる。
 また、第2領域230の濃度が第1領域229の濃度よりも高く、さらに、第2領域230の厚さTが第1領域229の厚さTよりも小さい(T>T)ので、チャネル抵抗の上昇を防止することもできる。
 また、上記の製造方法によれば、ゲート耐圧保持領域227およびソース耐圧保持領域228を同時に形成することができる。その結果、ゲート絶縁膜222の絶縁破壊を防止するためのMISトランジスタ201の構造を簡単に作製することができる。
 図24(a)(b)は、本発明の第10実施形態に係るプレーナゲート型MISトランジスタの模式的な平面図であって、図24(a)は全体図、図24(b)は内部拡大図をそれぞれ示す。図25は、図24(a)(b)に示すプレーナゲート型MISトランジスタの断面図であって、図24(b)の切断線O-OおよびP-Pでの切断面をそれぞれ示す。
 MISトランジスタ251は、SiCが採用されたプレーナゲート型DMISFETであり、たとえば、図24(a)に示すように、平面視正方形のチップ状である。チップ状のMISトランジスタ251は、図24(a)の紙面における上下左右方向の長さがそれぞれ数mm程度である。
 MISトランジスタ251の表面には、ソースパッド252が形成されている。ソースパッド252は、四隅が外方へ湾曲した平面視略正方形状であり、MISトランジスタ251の表面のほぼ全域を覆うように形成されている。このソースパッド252には、その一辺の中央付近に除去領域253が形成されている。この除去領域253は、ソースパッド252が形成されていない領域である。
 除去領域253には、ゲートパッド254が配置されている。ゲートパッド254とソースパッド252との間には間隔が設けられており、これらは互いに絶縁されている。
 次に、MISトランジスタ251の内部構造について説明する。
 MISトランジスタ251は、n型(たとえば、濃度が1×1018~1×1021cm-3)のSiC基板255を備えている。SiC基板255は、第10実施形態では、MISトランジスタ251のドレインとして機能し、その表面256(上面)がSi面であり、その裏面257(下面)がC面である。
 SiC基板255の表面256には、SiC基板255よりも低濃度のn型(たとえば、濃度が1×1015~1×1017cm-3)のSiCエピタキシャル層258が積層されている。半導体層としてのSiCエピタキシャル層258の厚さは、たとえば、1μm~100μmである。SiCエピタキシャル層258は、SiC基板255上に、いわゆるエピタキシャル成長によって形成されている。Si面である表面256上に形成されるSiCエピタキシャル層258は、Si面を成長主面として成長させられる。したがって、成長により形成されるSiCエピタキシャル層258の表面259は、SiC基板255の表面256と同様、Si面である。
 MISトランジスタ251には、図24(a)に示すように、平面視でSiCエピタキシャル層258の中央部に配置され、MISトランジスタ251として機能する活性領域260と、この活性領域260を取り囲むトランジスタ周辺領域261が形成されている。
 活性領域260において、SiCエピタキシャル層258の表層部には、p型(たとえば、濃度が1.0×1016cm-3~1.0×1019cm-3)のボディ領域262が、行方向および列方向に一定のピッチで行列状(マトリクス状)に配列されて多数形成されている。各ボディ領域262は、平面視正方形状であり、たとえば、図24(b)の紙面における上下左右方向の長さがそれぞれ7.2μm程度である。
 一方、SiCエピタキシャル層258における、ボディ領域262に対してSiC基板255側の領域は、エピタキシャル成長後のままの状態が維持された、n型のドリフト領域263となっている。
 各ボディ領域262には、その表面259側のほぼ全域にn型(たとえば、濃度が1×1018~1×1021cm-3)のソース領域264が形成されている。
 また、活性領域260において、一定のピッチで行列状に配列されたボディ領域262の各間の領域(ボディ間領域265)は、一定(たとえば、2.8μm)幅を有する格子状である。
 具体的には、ボディ間領域265は、隣り合うボディ領域262の各間を、各ボディ領域262の4つの側面に沿って行方向および列方向のそれぞれに直線状に延びる線状部266と、行方向に延びる線状部266と列方向に延びる線状部266とが交差する交差部267とを含んでいる。交差部267は、平面視で2行2列に配列されたボディ領域262に着目したとき、配列された4つのボディ領域262の内側の角に取り囲まれ、ボディ領域262の四辺の延長線により区画される平面視正方形状の部分である。
 これにより、SiCエピタキシャル層258には、格子状のボディ間領域265で取り囲まれる各窓部分に、4つの角部270を有する平面視正方形状の単位セル271が多数形成されている。すなわち、ボディ間領域265の幅方向中央に単位セル271間の境界が設定されている。各単位セルは、たとえば、図24(b)の紙面における上下左右方向の長さがそれぞれ10μm程度である。各単位セル271では、ボディ領域262の深さ方向がゲート長方向であり、そのゲート長方向に直交するボディ領域262の周方向がゲート幅方向である。
 ボディ間領域265上には、ボディ間領域265に沿って、格子状のゲート絶縁膜272が形成されている。ゲート絶縁膜272は、隣り合うボディ領域262の間に跨っていて、ボディ領域262におけるソース領域264を取り囲む部分(ボディ領域262の周縁部)およびソース領域264の外周縁を覆っている。ゲート絶縁膜272は、High-k材料(SiN、Al、AlON等)からなり、その厚さは400Å程度でほぼ一様である。
 ゲート絶縁膜272上には、ゲート電極273が形成されている。ゲート電極273は、格子状のゲート絶縁膜272に沿って格子状に形成されていて、ゲート絶縁膜272を挟んで、各ボディ領域262の周縁部に対向している。ゲート電極273は、ポリシリコンからなり、たとえば、n型不純物が高濃度にドーピングされている。また、ゲート電極273の厚さは、たとえば、6000Å程度である。
 各単位セル271の中央部には、SiCエピタキシャル層258の表面259から各ソース領域264およびボディ領域262を貫通してドリフト領域263に達する、平面視正方形状のソーストレンチ274が形成されている。ソーストレンチ274は、互いに対向する側面275と底面276とが湾曲面を介して連続する断面U字状である。
 また、SiCエピタキシャル層258には、SiCエピタキシャル層258にp型不純物をインプランテーションすることにより形成された、p型のゲート耐圧保持領域277および第1耐圧保持領域としてのソース耐圧保持領域278が形成されている。
 ゲート耐圧保持領域277は、格子状のボディ間領域265に沿って形成されており、ボディ間領域265の交差部267に形成された第4耐圧保持領域としての第1領域279と、ボディ間領域265の線状部266に形成された第5耐圧保持領域としての第2領域280とを一体的に含んでいる。
 第1領域279は、交差部267に臨む4つの単位セル271の各角部270に形成されたボディ領域262のコーナ部281に至るように形成されている。すなわち、第1領域279は、平面視では、ボディ間領域265の交差部267よりもやや大きい正方形状に形成されていて、その各角が、当該交差部267に臨む4つの単位セル271の各角部270にそれぞれ入り込んでいる。また、第1領域279の濃度は、ボディ領域262の濃度以上で、ドリフト領域263の濃度よりも高く、たとえば、1×1018~1×1019cm-3である。また、第1領域279におけるSiCエピタキシャル層258の表面259からSiC基板255へ向かう方向に沿う厚さTは、たとえば、0.8μm程度である。
 第2領域280は、平面視で隣り合う交差部267の各辺中央同士を繋ぐ一定幅の直線状に形成されていて、線状部266の幅(たとえば、3.0μm)よりも狭い幅(たとえば、1.5μm)を有している。また、第2領域280の濃度は、ボディ領域262の濃度よりも高く、第1領域279よりも高く、たとえば、2×1018~2×1019cm-3である。また、第2領域280におけるSiCエピタキシャル層258の表面259からからSiC基板255へ向かう方向に沿う厚さTは、第1領域279の厚さT以下(すなわち、T≧T)である。
 ソース耐圧保持領域278は、ソーストレンチ274の底面276を露出させるように、当該底面276と側面275とが交わるソーストレンチ274のエッジ部282および当該エッジ部282からソーストレンチ274の側面275の一部を形成するボディ領域262に至るように形成されている。
 これにより、ソーストレンチ274の底面276の中央部には、ドリフト領域263の一部からなる平面視正方形状のドリフト露出領域283が形成されている。
 また、ソース耐圧保持領域278の濃度は、ゲート耐圧保持領域277の第1領域279と同じである(たとえば、1×1018~1×1019cm-3)。また、ソース耐圧保持領域278におけるソーストレンチ274の底面からSiC基板255へ向かう方向に沿う厚さTは、たとえば、0.8μm程度であり、ソース耐圧保持領域278の最深部が、ゲート耐圧保持領域277(第1領域279および第2領域280)の最深部よりも深い位置にある。
 また、トランジスタ周辺領域261において、SiCエピタキシャル層258の表層部には、マトリクス状に配列された単位セル271(活性領域260)を取り囲むように、活性領域260から間隔を開けてp型のガードリング284が複数本(第10実施形態では、4本)形成されている。これらのガードリング284は、p型のボディ領域262を形成する工程と同一のイオン注入工程で形成することができる。
 各ガードリング284は、平面視において、MISトランジスタ251の外周に沿う平面視四角環状に形成されている。
 SiCエピタキシャル層258上には、ゲート電極273を被覆するように、High-k材料(SiN、Al、AlON等)からなる層間絶縁膜285が積層されている。
 層間絶縁膜285およびゲート絶縁膜272には、ソーストレンチ274よりも大径のコンタクトホール286が形成されている。これにより、コンタクトホール286内には、各単位セル271のソーストレンチ274の全体(すなわち、ソーストレンチ274の側面275および底面276)およびSiCエピタキシャル層258の表面259におけるソーストレンチ274の周縁部が露出していて、表面259と底面276との高低差に応じた段差が形成されている。
 層間絶縁膜285上には、ソース電極287が形成されている。ソース電極287は、各コンタクトホール286を介して、すべての単位セル271のソーストレンチ274に一括して入り込んでいて、各単位セル271において、ソーストレンチ274の底側から順にドリフト露出領域283、ソース耐圧保持領域278、ボディ領域262およびソース領域264に接触している。すなわち、ソース電極287は、すべての単位セル271に対して共通の配線となっている。
 そして、このソース電極287上には層間絶縁膜(図示せず)が形成されており、その層間絶縁膜(図示せず)を介して、ソース電極287がソースパッド252(図24(a)参照)に電気的に接続されている。一方、ゲートパッド254(図24(a)参照)は、当該層間絶縁膜(図示せず)上に引き回されたゲート配線(図示せず)を介して、ゲート電極273に電気的に接続されている。
 また、ソース電極287は、SiCエピタキシャル層258との接触側から順に、障壁形成層としてのポリシリコン層288、中間層289およびメタル層290を有している。
 ポリシリコン層288は、不純物がドーピングされたドープトポリシリコンを用いて形成されたドープ層であり、たとえば、1×1015cm-3以上、好ましくは、1×1019~1×1021cm-3の高濃度で不純物がドーピングされた高濃度ドープ層である。ポリシリコン層288をドープ層(高濃度ドープ層を含む)として形成するときの不純物としては、N(窒素)、P(リン)、As(ひ素)などのn型不純物、Al(アルミニウム)、B(ホウ素)などのp型不純物を用いることができる。また、ポリシリコン層288の厚さは、たとえば、5000Å~10000Åである。
 また、ポリシリコン層288は、第10実施形態では、コンタクトホール286内に露出する単位セル271の表面全域を覆うように形成されていて、ソーストレンチ274内でドリフト露出領域283、ソース耐圧保持領域278およびソース領域264の全てに接触している。
 すなわち、ポリシリコン層288は、ソーストレンチ274の側面275においてソース耐圧保持領域278に接し、側面275およびSiCエピタキシャル層258の表面259におけるソーストレンチ274の周縁部においてソース領域264に接する第1部分291と、ソーストレンチ274の底面276においてドリフト露出領域283に接する第2部分292とを有している。
 そして、ポリシリコン層288は、第1部分291が、ソース耐圧保持領域278およびソース領域264の両方との間にオーミック接合を形成している。一方で、第2部分292が、ドリフト露出領域283との間に、MISトランジスタ251に内在するボディダイオード293(ソース耐圧保持領域278とドリフト領域263との接合により形成されるpnダイオード)の拡散電位(たとえば、2.8eV~3.2eV)よりも接合障壁の小さいヘテロ接合(たとえば、接合障壁の高さが1eV~1.5eV)を形成している。
 中間層289は、ポリシリコン層288上に積層されたメタル層であり、Ti(チタン)を含有する層の単層またはTiを含有する層を含む複数の層からなる。Tiを含有する層は、Ti、TiN(窒化チタン)などを用いて形成することができる。また、中間層289の厚さは、たとえば、200nm~500nmである。
 メタル層290は、中間層289上に積層されており、たとえば、Al(アルミニウム)、Au(金)、Ag(銀)、Cu(銅)、Mo(モリブデン)、それらの合金およびそれらを含有するメタル材料を用いて形成することができる。メタル層290は、ソース電極287の最表層をなしている。また、メタル層290の厚さは、たとえば、1μm~5μmである。
 上記のようなポリシリコン層288、中間層289およびメタル層290の組み合わせとしては、第10実施形態では、Poly-Si(ポリシリコン層288)、Ti(中間層289)、TiN(中間層289)およびAl(メタル層290)が順に積層される積層構造(Poly-Si/Ti/TiN/Al)である。また、これらに加えて、メタル層290がMo層を有していることが好ましい。Moは融点が高いので、メタル層290にMo層が含まれていれば、ソース電極287に大電流が流れたときに生じる熱によるメタル層290の溶損を抑制することができる。
 SiC基板255の裏面257には、その全域を覆うようにドレイン電極294が形成されている。このドレイン電極294は、すべての単位セル271に対して共通の電極となっている。ドレイン電極294としては、たとえば、SiC基板255側から順にTi、Ni、AuおよびAgが積層された積層構造(Ti/Ni/Au/Ag)を適用することができる。
 このMISトランジスタ251の構造によっても、前述の第10実施形態のMISトランジスタ201と同様の作用効果を発現することができる。
 すなわち、第10実施形態では、ポリシリコン層288がドリフト領域263(ドリフト露出領域283)に対してヘテロ接合を形成している。そのため、ソース-ドレイン間に逆起電力がかかった場合、ポリシリコン層288の第2部分292とドリフト領域263とのヘテロ接合部に優先的に電流が流れ、ボディダイオード293に流れる電流を少なくするか、またはなくすことができる。こうしてMISトランジスタ251を流れた電流は、たとえば還流電流として電動モータに流すことができる。
 このように、オフ時の電流は、ボディ間領域265で取り囲まれた単位セル271の中央のソーストレンチ274内に形成されたポリシリコン層288の第2部分292からドリフト領域263へ流れるから、ボディ間領域265付近(すなわち、p型ボディ領域262とn型ドリフト領域263との間)でのキャリヤの移動はほとんど生じない。そのため、ドリフト領域263内での正孔と電子との再結合を防止することができる。その結果、SiCエピタキシャル層258におけるSiCの結晶欠陥の拡張を抑制することができるので、トランジスタ251のオン抵抗の上昇を抑制することができる。
 また、オフ状態(つまり、ゲート電圧が0Vの状態)においては、とりわけ、第10実施形態のように、ボディ間領域265が格子状に形成されており、格子状のボディ間領域265の窓部に平面視四角形状の単位セル271が配列されている場合は、単位セル271の各角部270に形成されたボディ領域262のコーナ部281付近において、ゲート絶縁膜272の絶縁破壊が特に発生しやすい。
 具体的には、ボディ間領域265の交差部267の対角線上で互いに隣り合うソーストレンチ274の距離D(図25のO-O断面参照)は、ボディ間領域265の線状部266を挟んで互いに隣り合うソーストレンチ274の距離D(図25のP-P断面参照)に比べて大きくなる(たとえば、第10実施形態では、DはDの1.4倍)。そのため、相対的に広いスペースがあるボディ領域262のコーナ部281の直下に等電位面が入り込み、等電位面の密集を生じる。その結果、ボディ領域262のコーナ部281付近において、ゲート絶縁膜272の絶縁破壊が特に発生しやすい。
 そこで、第10実施形態のMISトランジスタ251では、ボディ領域262のコーナ部281にゲート耐圧保持領域277(第1領域279)が形成されている。これにより、第1領域279とドリフト領域263との接合(pn接合)により、ボディ領域262のコーナ部281付近にボディダイオード298を形成することができる。さらにこのMISトランジスタ251では、各単位セル271の中央部に形成されたソーストレンチ274のエッジ部282に、ソース耐圧保持領域278が形成されている。そのため、このソース耐圧保持領域278とドリフト領域263との接合(pn接合)により、ソーストレンチ274のエッジ部282を取り囲む環状のボディダイオード299を形成することができる。
 これらのボディダイオード298,299に発生する空乏層の存在により、ボディ領域262のコーナ部281とソーストレンチ274のエッジ部282との間に等電位面が入り込むことを防止でき、ゲート絶縁膜272から遠ざけることができる。その結果、ボディ領域262のコーナ部281付近における等電位面の密集を防止することができる。その結果、ゲート絶縁膜272にかかる電界を小さくすることができるので、絶縁破壊を抑制することができる。また、第1領域279の濃度がドリフト領域263の濃度よりも高いので、第1領域279とドリフト領域263との接合(pn接合)により生じる空乏層がSiCエピタキシャル層258内に広がり過ぎることを防止することができる。
 一方、ボディ間領域265の線状部266には、線状部266の幅よりも狭い幅のゲート耐圧保持領域277(第2領域280)が形成されている。これにより、第2領域280とドリフト領域263との接合(pn接合)により生じる空乏層を、ボディ間領域265の線状部266に沿って発生させることができる。そのため、ボディ間領域265の線状部266の直下に生じる電界を、当該空乏層により緩和することができる。その結果、ゲート絶縁膜272に生じる電界を、全体にわたって満遍なく緩和することができる。
 しかも、ゲート耐圧保持領域277(第2領域280)がボディ領域262の周縁部(つまり、単位セル271においてチャネルが形成される部分)に形成されていない。よって、チャネル特性の制御を精度よく行うこともできる。
 以上、本発明の実施形態を説明したが、本発明は、他の形態で実施することもできる。
 たとえば、前述のショットキーバリアダイオード1および各MISトランジスタ21,61,71,101,161,181,191,201,247,251,297の各半導体部分の導電型を反転した構成が採用されてもよい。たとえば、MISトランジスタ21において、p型の部分がn型であり、n型の部分がp型であってもよい。
 また、各デバイス1,21,61,71,101,161,181,191,201,247,251,297において、耐圧保持層を形成する層は、SiCからなるエピタキシャル層に限らず、SiC以外のワイドバンドギャップ半導体、具体的には、GaN(バンドギャップEgGaN=約3.4eV)またはダイヤモンド(バンドギャップEgdia=約5.5eV)からなる層であってもよい。また、III-V族化合物、II-VI族化合物に代表される化合物半導体であってもよい。
 また、本発明の他の実施形態としては、たとえば、JFET(接合型電界効果トランジスタ)の層間絶縁膜、バイポーラトランジスタの層間絶縁膜、サイリスタの層間絶縁膜などのデバイス外周部に接する部分をHigh-k材料を用いて形成する形態であってもよい。
 本発明の半導体パワーデバイスは、たとえば、電気自動車(ハイブリッド車を含む)、電車、産業用ロボットなどの動力源として利用される電動モータを駆動するための駆動回路を構成するインバータ回路に用いられるパワーモジュールに組み込むことができる。また、太陽電池、風力発電機その他の発電装置(とくに自家発電装置)が発生する電力を商用電源の電力と整合するように変換するインバータ回路に用いられるパワーモジュールにも組み込むことができる。
 本発明の実施形態は、本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。
 また、本発明の各実施形態において表した構成要素は、本発明の範囲で組み合わせることができる。
 本出願は、2011年2月2日に日本国特許庁に提出された特願2011-020729号に対応しており、この出願の全開示はここに引用により組み込まれるものとする。
 1・・・ショットキーバリアダイオード、3・・・カソード電極、4・・・SiCエピタキシャル層、5・・・活性領域、7・・・フィールド領域、8・・・フィールド絶縁膜、9・・・アノード電極、10・・・ショットキーメタル、12・・・(フィールド絶縁膜の)周縁部、13・・・(フィールド領域の)内縁部、17・・・(ショットキーメタルの)外縁部、21・・・MISトランジスタ、28・・・SiCエピタキシャル層、29・・・(エピタキシャル層の)表面、30・・・活性領域、31・・・トランジスタ周辺領域、32・・・ボディ領域、33・・・ドリフト領域、34・・・ソース領域、35・・・ゲートトレンチ、36・・・(ゲートトレンチの)両端角部、37・・・(ゲートトレンチの)側面、38・・・(ゲートトレンチの)底面、39・・・ゲート絶縁膜、40・・・ゲート電極、41・・・ソーストレンチ、48・・・層間絶縁膜、50・・・ソース電極、51・・・ドレイン電極、53・・・ゲート絶縁膜、54・・・層間絶縁膜、61・・・MISトランジスタ、62・・・ゲート絶縁膜、63・・・SiO膜、64・・・High-k膜、71・・・MISトランジスタ、78・・・SiCエピタキシャル層、79・・・(エピタキシャル層の)表面、80・・・活性領域、81・・・トランジスタ周辺領域、82・・・ボディ領域、83・・・ドリフト領域、85・・・ソース領域、86・・・ゲート絶縁膜、87・・・ゲート電極、89・・・層間絶縁膜、91・・・ソース電極、92・・・ドレイン電極、101・・・MISトランジスタ、108・・・SiCエピタキシャル層、109・・・(エピタキシャル層の)表面、110・・・活性領域、111・・・トランジスタ周辺領域、112・・・ゲートトレンチ、117・・・ソース領域、118・・・ボディ領域、119・・・ドリフト領域、122・・・ゲート絶縁膜、123・・・(ゲートトレンチの)底面、124・・・(ゲートトレンチの)側面、125・・・ゲート電極、126・・・SBDソーストレンチ、143・・・層間絶縁膜、152・・・ドレイン電極、161・・・MISトランジスタ、162・・・SBDソーストレンチ、166・・・Diソーストレンチ、181・・・MISトランジスタ、182・・・ゲート絶縁膜、183・・・ゲート電極、191・・・MISトランジスタ、201・・・MISトランジスタ、208・・・SiCエピタキシャル層、209・・・(エピタキシャル層の)表面、210・・・活性領域、211・・・トランジスタ周辺領域、212・・・ボディ領域、213・・・ドリフト領域、214・・・ソース領域、215・・・ゲートトレンチ、218・・・(ゲートトレンチの)側面、219・・・(ゲートトレンチの)底面、222・・・ゲート絶縁膜、223・・・ゲート電極、224・・・ソーストレンチ、235・・・層間絶縁膜、247・・・MISトランジスタ、251・・・MISトランジスタ、258・・・SiCエピタキシャル層、259・・・(エピタキシャル層の)表面、260・・・活性領域、261・・・トランジスタ周辺領域、262・・・ボディ領域、263・・・ドリフト領域、264・・・ソース領域、272・・・ゲート絶縁膜、273・・・ゲート電極、274・・・ソーストレンチ、285・・・層間絶縁膜、287・・・ソース電極、297・・・MISトランジスタ

Claims (20)

  1.  第1電極および第2電極と、
     所定の厚さおよび不純物濃度を有する半導体からなり、前記第1電極および前記第2電極が接合され、当該第1電極と第2電極との間に電気伝導を発生させるキャリヤが移動するための活性領域を有する耐圧保持層と、
     前記耐圧保持層上に形成され、前記耐圧保持層に接する部分に、SiOよりも高い誘電率を有する高誘電率部を有する絶縁膜とを含む、半導体パワーデバイス。
  2.  前記絶縁膜は、前記高誘電率部としての高誘電率絶縁膜と、当該高誘電率絶縁膜上に積層され、前記高誘電率絶縁膜よりも低い誘電率を有する低誘電率絶縁膜とを含む積層構造を有する、請求項1に記載の半導体パワーデバイス。
  3.  前記高誘電率部は、前記活性領域を取り囲むデバイス外周部に接するように形成されている、請求項1または2に記載の半導体パワーデバイス。
  4.  前記高誘電率部が、SiN、AlまたはAlONからなる、請求項1~3のいずれか一項に記載の半導体パワーデバイス。
  5.  前記耐圧保持層が、ワイドバンドギャップ半導体からなる、請求項1~4のいずれか一項に記載の半導体パワーデバイス。
  6.  前記ワイドバンドギャップ半導体が、SiC、GaNまたはダイヤモンドである、請求項5に記載の半導体パワーデバイス。
  7.  前記耐圧保持層が、化合物半導体からなる、請求項1~5のいずれか一項に記載の半導体パワーデバイス。
  8.  前記絶縁膜は、前記耐圧保持層の表面に形成されたフィールド絶縁膜を含み、
     前記第1電極が、前記フィールド絶縁膜を貫通して前記耐圧保持層にショットキー接合されたショットキー電極を含み、
     前記第2電極が、前記耐圧保持層にオーミック接合されたオーミック電極を含み、
     前記フィールド絶縁膜は、前記耐圧保持層におけるショットキー接合の外周領域に接する部分に前記高誘電率部を有している、請求項1~7のいずれか一項に記載の半導体パワーデバイス。
  9.  前記耐圧保持層は、第1導電型のソース領域と、前記ソース領域に接する第2導電型のボディ領域と、前記ボディ領域に接する第1導電型のドリフト領域とを含む電界効果トランジスタ構造を前記活性領域内に有しており、
     前記第1電極が、前記ソース領域に電気的に接続されたソース電極を含み、
     前記第2電極が、前記ドリフト領域に電気的に接続されたドレイン電極を含み、
     前記高誘電率部が、前記ドリフト領域に接するように形成されている、請求項1~8のいずれか一項に記載の半導体パワーデバイス。
  10.  前記電界効果トランジスタ構造は、前記ソース領域と前記ドリフト領域とが前記耐圧保持層の表面に垂直な縦方向に前記ボディ領域を介して離間して配置された、縦型トランジスタ構造を含み、
     前記縦型トランジスタ構造は、前記耐圧保持層の表面から前記ソース領域および前記ボディ領域を貫通して前記ドリフト領域に達するソーストレンチを含み、
     前記ソース電極は、前記ソーストレンチ内において前記ソース領域、前記ボディ領域および前記ドリフト領域に接している、請求項9に記載の半導体パワーデバイス。
  11.  前記電界効果トランジスタ構造は、前記ソース領域、前記ボディ領域および前記ドリフト領域に跨るように形成されたゲートトレンチを含むトレンチゲート構造を有し、
     前記ゲートトレンチ内には、前記ボディ領域に対向するゲート電極が形成されており、
     前記絶縁膜は、前記ゲート電極と前記ゲートトレンチの内面との間に介在されたゲート絶縁膜を含み、当該ゲート絶縁膜における前記ゲートトレンチの底面および/または前記ゲートトレンチの角部に接する部分に前記高誘電率部を有している、請求項9または10に記載の半導体パワーデバイス。
  12.  前記ゲート絶縁膜は、前記ゲートトレンチの底面および/または前記ゲートトレンチの角部に接する部分に形成された前記高誘電率部としての高誘電率ゲート絶縁膜と、当該高誘電率ゲート絶縁膜上に積層され、前記高誘電率ゲート絶縁膜よりも低い誘電率を有する低誘電率ゲート絶縁膜とを含む積層構造を有する、請求項11に記載の半導体パワーデバイス。
  13.  前記耐圧保持層は、SiCからなり、
     前記ゲート絶縁膜は、Alからなる、請求項11または12に記載の半導体パワーデバイス。
  14.  前記ゲート絶縁膜は、前記ゲートトレンチの側面における前記ボディ領域に接する部分に形成されたSiO膜を含む、請求項11または12に記載の半導体パワーデバイス。
  15.  前記ゲート絶縁膜は、前記SiO膜上に積層され、SiOよりも高い誘電率を有する絶縁膜を含む、請求項14に記載の半導体パワーデバイス。
  16.  前記耐圧保持層は、その表面にSi(シリコン)面を有するSiCからなり、
     前記ゲートトレンチは、SiCからなる前記耐圧保持層のSi面から前記耐圧保持層の内側へ向かって形成されている、請求項14または15に記載の半導体パワーデバイス。
  17.  前記高誘電率部が、前記ゲート絶縁膜における前記ゲートトレンチの底面および/または前記ゲートトレンチの角部のみに形成されている、請求項14~16のいずれか一項に記載の半導体パワーデバイス。
  18.  前記電界効果トランジスタ構造は、前記耐圧保持層の表面に形成されたゲート絶縁膜を介してゲート電極が前記ボディ領域に対向するプレーナゲート構造を有し、
     前記絶縁膜は、前記ゲート電極を覆うように前記耐圧保持層上に形成された層間絶縁膜を含み、当該層間絶縁膜は、前記プレーナゲート構造を取り囲むトランジスタ周辺部に接する部分に前記高誘電率部を有している、請求項9または10に記載の半導体パワーデバイス。
  19.  SiCからなる半導体層と、この半導体層に形成され、第1導電型のソース領域と、前記ソース領域に接する第2導電型のボディ領域と、前記ボディ領域に接する第1導電型のドリフト領域と、前記ソース領域、前記ボディ領域および前記ドリフト領域に跨るように形成されたゲートトレンチと、前記ゲートトレンチの内面に形成されたゲート絶縁膜と、前記ゲート絶縁膜を介して前記ボディ領域に対向するゲート電極とを含むトレンチゲート型トランジスタ構造を有する半導体パワーデバイスの製造方法であって、
     前記半導体層のSi(シリコン)面からその内側へ向かって前記ゲートトレンチを形成する工程と、
     前記ゲートトレンチの内面にSiOからなる第1絶縁膜を形成する工程と、
     前記第1絶縁膜における前記ゲートトレンチの底面上の部分を除去する工程と、
     前記第1絶縁膜の除去により露出した前記ゲートトレンチの前記底面を覆うように、SiOよりも高い誘電率を有する第2絶縁膜を形成する工程とを含む、半導体パワーデバイスの製造方法。
  20.  前記第1絶縁膜を形成する工程が、熱酸化法により前記第1絶縁膜を形成する工程であり、
     前記第2絶縁膜を形成する工程が、CVD法により前記第2絶縁膜を形成する工程である、請求項19に記載の半導体パワーデバイスの製造方法。
PCT/JP2012/052290 2011-02-02 2012-02-01 半導体パワーデバイスおよびその製造方法 WO2012105611A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012555933A JP5858934B2 (ja) 2011-02-02 2012-02-01 半導体パワーデバイスおよびその製造方法
US13/983,206 US9472405B2 (en) 2011-02-02 2012-02-01 Semiconductor power device and method for producing same
US15/257,991 US9947536B2 (en) 2011-02-02 2016-09-07 Semiconductor power device and method for producing same
US15/935,945 US10515805B2 (en) 2011-02-02 2018-03-26 Semiconductor power device and method for producing same
US16/684,180 US10840098B2 (en) 2011-02-02 2019-11-14 Semiconductor power device and method for producing same
US17/069,345 US11276574B2 (en) 2011-02-02 2020-10-13 Semiconductor power device and method for producing same
US17/591,384 US12009213B2 (en) 2011-02-02 2022-02-02 Semiconductor power device and method for producing same
US18/652,013 US20240304447A1 (en) 2011-02-02 2024-05-01 Semiconductor power device and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011020729 2011-02-02
JP2011-020729 2011-02-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/983,206 A-371-Of-International US9472405B2 (en) 2011-02-02 2012-02-01 Semiconductor power device and method for producing same
US15/257,991 Division US9947536B2 (en) 2011-02-02 2016-09-07 Semiconductor power device and method for producing same

Publications (1)

Publication Number Publication Date
WO2012105611A1 true WO2012105611A1 (ja) 2012-08-09

Family

ID=46602818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052290 WO2012105611A1 (ja) 2011-02-02 2012-02-01 半導体パワーデバイスおよびその製造方法

Country Status (3)

Country Link
US (7) US9472405B2 (ja)
JP (1) JP5858934B2 (ja)
WO (1) WO2012105611A1 (ja)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102842599A (zh) * 2012-09-25 2012-12-26 复旦大学 一种碳化硅肖特基二极管及其制作方法
WO2014030589A1 (ja) * 2012-08-20 2014-02-27 ローム株式会社 半導体装置
JP2014090057A (ja) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp 炭化珪素半導体装置
JP2014110402A (ja) * 2012-12-04 2014-06-12 Rohm Co Ltd 半導体装置
US20140167061A1 (en) * 2012-12-14 2014-06-19 Toyoda Gosei Co., Ltd. Semiconductor device
US20140167148A1 (en) * 2012-12-14 2014-06-19 Toyoda Gosei Co., Ltd. Semiconductor device
JP2015023072A (ja) * 2013-07-17 2015-02-02 豊田合成株式会社 半導体装置
CN104425570A (zh) * 2013-09-11 2015-03-18 株式会社东芝 半导体装置及其制造方法
JP2015153769A (ja) * 2014-02-10 2015-08-24 ローム株式会社 ショットキーバリアダイオード
JP2016015482A (ja) * 2014-06-09 2016-01-28 パナソニックIpマネジメント株式会社 半導体装置
JP2016506080A (ja) * 2012-12-28 2016-02-25 クリー インコーポレイテッドCree Inc. トランジスタ構造およびその製造方法
WO2016038695A1 (ja) * 2014-09-10 2016-03-17 株式会社日立製作所 半導体装置、パワーモジュール、電力変換装置、および鉄道車両
US20160181372A1 (en) * 2013-07-26 2016-06-23 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
US20170025529A1 (en) * 2011-11-30 2017-01-26 Rohm Co., Ltd. Semiconductor device
JP2017038088A (ja) * 2016-11-09 2017-02-16 東京エレクトロン株式会社 成膜方法及び成膜装置
JP2017139415A (ja) * 2016-02-05 2017-08-10 株式会社デンソー 半導体装置
JP2017147377A (ja) * 2016-02-18 2017-08-24 富士電機株式会社 炭化珪素半導体装置用ゲート絶縁膜の製造方法
JP2018133579A (ja) * 2018-04-18 2018-08-23 ローム株式会社 半導体装置
JP2019054064A (ja) * 2017-09-13 2019-04-04 富士電機株式会社 半導体装置
JP2019087690A (ja) * 2017-11-09 2019-06-06 株式会社豊田中央研究所 窒化物半導体装置とその製造方法
DE212018000096U1 (de) 2017-01-25 2019-06-13 Rohm Co., Ltd. Halbleitervorrichtung
JP2020004956A (ja) * 2018-05-07 2020-01-09 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag シリコンカーバイド半導体素子
JP2020150085A (ja) * 2019-03-12 2020-09-17 豊田合成株式会社 半導体素子
US10840367B2 (en) 2012-12-28 2020-11-17 Cree, Inc. Transistor structures having reduced electrical field at the gate oxide and methods for making same
CN112885889A (zh) * 2021-01-14 2021-06-01 电子科技大学 一种含组合介质深槽的横向耐压区
US11417760B2 (en) 2017-12-21 2022-08-16 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
US11489069B2 (en) 2017-12-21 2022-11-01 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074787B2 (ja) * 2012-05-25 2017-02-08 国立研究開発法人産業技術総合研究所 炭化珪素半導体装置およびその製造方法
JP6007769B2 (ja) * 2012-12-14 2016-10-12 豊田合成株式会社 半導体装置
US10418476B2 (en) 2014-07-02 2019-09-17 Hestia Power Inc. Silicon carbide semiconductor device
US10483389B2 (en) * 2014-07-02 2019-11-19 Hestia Power Inc. Silicon carbide semiconductor device
JP6589143B2 (ja) * 2014-07-24 2019-10-16 パナソニックIpマネジメント株式会社 炭化珪素半導体素子およびその製造方法
CN113838912A (zh) * 2014-11-18 2021-12-24 罗姆股份有限公司 半导体装置及半导体装置的制造方法
US9397205B1 (en) * 2015-07-22 2016-07-19 Macronix International Co., Ltd. Semiconductor device
US10903163B2 (en) * 2015-10-19 2021-01-26 Vishay-Siliconix, LLC Trench MOSFET with self-aligned body contact with spacer
JP6667893B2 (ja) * 2015-10-20 2020-03-18 富士電機株式会社 半導体装置および半導体装置の製造方法
KR101802410B1 (ko) * 2016-08-10 2017-11-29 파워큐브세미(주) SiC 와이드 트랜치형 정션 배리어 쇼트키 다이오드 및 그 제조방법
JP6640691B2 (ja) * 2016-09-21 2020-02-05 株式会社東芝 半導体装置及びその製造方法
CN109716531B (zh) * 2016-09-23 2022-07-29 三菱电机株式会社 碳化硅半导体装置
US9748359B1 (en) 2016-10-27 2017-08-29 International Business Machines Corporation Vertical transistor bottom spacer formation
WO2018088063A1 (ja) * 2016-11-11 2018-05-17 住友電気工業株式会社 炭化珪素半導体装置
US9991379B1 (en) * 2016-11-17 2018-06-05 Sanken Electric Co., Ltd. Semiconductor device with a gate insulating film formed on an inner wall of a trench, and method of manufacturing the same
KR101896332B1 (ko) * 2016-12-13 2018-09-07 현대자동차 주식회사 반도체 소자 및 그 제조 방법
JP6996082B2 (ja) * 2016-12-22 2022-01-17 富士電機株式会社 半導体装置および半導体装置の製造方法
DE102017215029A1 (de) * 2017-08-29 2019-02-28 Robert Bosch Gmbh Vertikaler Leistungstransistor mit hoher Leitfähigkeit und hohem Sperrverhalten
US10147875B1 (en) * 2017-08-31 2018-12-04 Micron Technology, Inc. Semiconductor devices and electronic systems having memory structures
EP3726586A4 (en) * 2017-12-14 2021-07-21 Shindengen Electric Manufacturing Co., Ltd. WIDE-BAND SEMICONDUCTOR DEVICE
JP7156314B2 (ja) * 2018-02-06 2022-10-19 住友電気工業株式会社 炭化珪素半導体装置
CN109148591A (zh) * 2018-08-29 2019-01-04 电子科技大学 一种集成肖特基二极管的碳化硅槽栅mos器件
JP7101101B2 (ja) 2018-11-15 2022-07-14 ルネサスエレクトロニクス株式会社 半導体装置
EP3726587A1 (en) 2019-04-16 2020-10-21 Infineon Technologies Austria AG Semiconductor transistor device and method of manufacturing the same
JP7370781B2 (ja) * 2019-09-24 2023-10-30 株式会社東芝 半導体装置
US20210134996A1 (en) * 2019-10-31 2021-05-06 Genesic Semiconductor Inc. Silicon carbide power devices
CN114512403B (zh) * 2020-11-16 2023-06-23 苏州东微半导体股份有限公司 半导体器件的制造方法
US11183566B1 (en) * 2021-05-05 2021-11-23 Genesic Semiconductor Inc. Performance silicon carbide power devices
CN113964185A (zh) * 2021-10-08 2022-01-21 泰科天润半导体科技(北京)有限公司 一种基于AlN的SiC PIN二极管及其制造方法
CN113921594A (zh) * 2021-10-08 2022-01-11 泰科天润半导体科技(北京)有限公司 一种基于金刚石的SiC PIN二极管及其制造方法
CN114203825B (zh) * 2021-12-13 2023-03-24 无锡新洁能股份有限公司 一种垂直型碳化硅功率mosfet器件及其制造方法
US11908933B2 (en) 2022-03-04 2024-02-20 Genesic Semiconductor Inc. Designs for silicon carbide MOSFETs
US20240021478A1 (en) * 2022-07-13 2024-01-18 Leap Semiconductor Corp. Method of manufacturing silicon carbide semiconductor power device
CN115831757B (zh) * 2023-02-08 2023-04-28 合肥晶合集成电路股份有限公司 半导体结构的制作方法以及半导体结构

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291121A (ja) * 1986-06-11 1987-12-17 Nec Corp プレ−ナ型半導体装置
JPH04188877A (ja) * 1990-11-22 1992-07-07 Yokogawa Electric Corp 高耐圧パワーmosfet
JPH11297995A (ja) * 1998-04-07 1999-10-29 Hitachi Ltd 半導体装置
JP2000106428A (ja) * 1998-09-28 2000-04-11 Toshiba Corp 半導体装置
JP2005285913A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2008226879A (ja) * 2007-03-08 2008-09-25 Tokyo Electron Ltd プラズマ処理装置のクリーニング方法、プラズマ処理装置、制御プログラム及びコンピュータ記憶媒体
JP2009016530A (ja) * 2007-07-04 2009-01-22 Mitsubishi Electric Corp 炭化珪素電界効果型トランジスタ及びその製造方法
JP2009054640A (ja) * 2007-08-23 2009-03-12 National Institute Of Advanced Industrial & Technology 高出力ダイヤモンド半導体素子
JP2009059912A (ja) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd ショットキーバリアダイオード
JP2009224365A (ja) * 2008-03-13 2009-10-01 Rohm Co Ltd 半導体装置およびその製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069070A (en) * 1993-09-20 2000-05-30 East/West Technology Partners, Ltd. Multilevel interconnections of electronic components
US6667246B2 (en) * 2001-12-04 2003-12-23 Matsushita Electric Industrial Co., Ltd. Wet-etching method and method for manufacturing semiconductor device
JP2004319964A (ja) * 2003-03-28 2004-11-11 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2005079339A (ja) 2003-08-29 2005-03-24 National Institute Of Advanced Industrial & Technology 半導体装置、およびその半導体装置を用いた電力変換器、駆動用インバータ、汎用インバータ、大電力高周波通信機器
US7465986B2 (en) * 2004-08-27 2008-12-16 International Rectifier Corporation Power semiconductor device including insulated source electrodes inside trenches
JP3914226B2 (ja) * 2004-09-29 2007-05-16 株式会社東芝 高耐圧半導体装置
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US7952139B2 (en) * 2005-02-11 2011-05-31 Alpha & Omega Semiconductor Ltd. Enhancing Schottky breakdown voltage (BV) without affecting an integrated MOSFET-Schottky device layout
JP4802542B2 (ja) * 2005-04-19 2011-10-26 株式会社デンソー 炭化珪素半導体装置
US8368165B2 (en) * 2005-10-20 2013-02-05 Siliconix Technology C. V. Silicon carbide Schottky diode
JP4900662B2 (ja) * 2006-03-02 2012-03-21 独立行政法人産業技術総合研究所 ショットキーダイオードを内蔵した炭化ケイ素mos電界効果トランジスタおよびその製造方法
JP5086665B2 (ja) * 2007-03-02 2012-11-28 株式会社東芝 半導体装置およびその製造方法
US20090050899A1 (en) 2007-08-23 2009-02-26 National Institute of Advanced Industrial Scinece and Technology High-output diamond semiconductor element
US20100013009A1 (en) * 2007-12-14 2010-01-21 James Pan Structure and Method for Forming Trench Gate Transistors with Low Gate Resistance
US8878292B2 (en) * 2008-03-02 2014-11-04 Alpha And Omega Semiconductor Incorporated Self-aligned slotted accumulation-mode field effect transistor (AccuFET) structure and method
JP5530602B2 (ja) * 2008-04-09 2014-06-25 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US7863685B2 (en) * 2008-05-28 2011-01-04 Force-Mos Technology Corp. Trench MOSFET with embedded junction barrier Schottky diode
US9245792B2 (en) * 2008-07-25 2016-01-26 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming interconnect structures
US8039877B2 (en) * 2008-09-09 2011-10-18 Fairchild Semiconductor Corporation (110)-oriented p-channel trench MOSFET having high-K gate dielectric
JP2010182822A (ja) * 2009-02-04 2010-08-19 Renesas Electronics Corp 半導体装置およびその製造方法
JP2010238738A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 半導体装置および半導体装置の製造方法
JP5525940B2 (ja) * 2009-07-21 2014-06-18 ローム株式会社 半導体装置および半導体装置の製造方法
US8415671B2 (en) * 2010-04-16 2013-04-09 Cree, Inc. Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices
US8779510B2 (en) * 2010-06-01 2014-07-15 Alpha And Omega Semiconductor Incorporated Semiconductor power devices manufactured with self-aligned processes and more reliable electrical contacts
JP5380376B2 (ja) * 2010-06-21 2014-01-08 日立オートモティブシステムズ株式会社 パワー半導体装置
US8786012B2 (en) * 2010-07-26 2014-07-22 Infineon Technologies Austria Ag Power semiconductor device and a method for forming a semiconductor device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62291121A (ja) * 1986-06-11 1987-12-17 Nec Corp プレ−ナ型半導体装置
JPH04188877A (ja) * 1990-11-22 1992-07-07 Yokogawa Electric Corp 高耐圧パワーmosfet
JPH11297995A (ja) * 1998-04-07 1999-10-29 Hitachi Ltd 半導体装置
JP2000106428A (ja) * 1998-09-28 2000-04-11 Toshiba Corp 半導体装置
JP2005285913A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2008226879A (ja) * 2007-03-08 2008-09-25 Tokyo Electron Ltd プラズマ処理装置のクリーニング方法、プラズマ処理装置、制御プログラム及びコンピュータ記憶媒体
JP2009016530A (ja) * 2007-07-04 2009-01-22 Mitsubishi Electric Corp 炭化珪素電界効果型トランジスタ及びその製造方法
JP2009054640A (ja) * 2007-08-23 2009-03-12 National Institute Of Advanced Industrial & Technology 高出力ダイヤモンド半導体素子
JP2009059912A (ja) * 2007-08-31 2009-03-19 Sumitomo Electric Ind Ltd ショットキーバリアダイオード
JP2009224365A (ja) * 2008-03-13 2009-10-01 Rohm Co Ltd 半導体装置およびその製造方法

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170025529A1 (en) * 2011-11-30 2017-01-26 Rohm Co., Ltd. Semiconductor device
US10580852B2 (en) 2012-08-20 2020-03-03 Rohm Co., Ltd. Semiconductor device
US9368616B2 (en) 2012-08-20 2016-06-14 Rohm Co., Ltd. Semiconductor device
US9911844B2 (en) 2012-08-20 2018-03-06 Rohm Co., Ltd. Semiconductor device
US10312320B2 (en) 2012-08-20 2019-06-04 Rohm Co., Ltd. Semiconductor device
WO2014030589A1 (ja) * 2012-08-20 2014-02-27 ローム株式会社 半導体装置
CN102842599A (zh) * 2012-09-25 2012-12-26 复旦大学 一种碳化硅肖特基二极管及其制作方法
JP2014090057A (ja) * 2012-10-30 2014-05-15 Mitsubishi Electric Corp 炭化珪素半導体装置
JP2014110402A (ja) * 2012-12-04 2014-06-12 Rohm Co Ltd 半導体装置
US9391150B2 (en) * 2012-12-14 2016-07-12 Toyoda Gosei Co., Ltd. Semiconductor Device
US20140167061A1 (en) * 2012-12-14 2014-06-19 Toyoda Gosei Co., Ltd. Semiconductor device
US20140167148A1 (en) * 2012-12-14 2014-06-19 Toyoda Gosei Co., Ltd. Semiconductor device
US9443950B2 (en) * 2012-12-14 2016-09-13 Toyoda Gosei Co., Ltd. Semiconductor device
US10840367B2 (en) 2012-12-28 2020-11-17 Cree, Inc. Transistor structures having reduced electrical field at the gate oxide and methods for making same
JP2016506080A (ja) * 2012-12-28 2016-02-25 クリー インコーポレイテッドCree Inc. トランジスタ構造およびその製造方法
US10115815B2 (en) 2012-12-28 2018-10-30 Cree, Inc. Transistor structures having a deep recessed P+ junction and methods for making same
JP2015023072A (ja) * 2013-07-17 2015-02-02 豊田合成株式会社 半導体装置
US20160181372A1 (en) * 2013-07-26 2016-06-23 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
US10192960B2 (en) * 2013-07-26 2019-01-29 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
US20190140056A1 (en) * 2013-07-26 2019-05-09 Sumitomo Electric Industries, Ltd. Silicon carbide semiconductor device and method for manufacturing same
CN104425570A (zh) * 2013-09-11 2015-03-18 株式会社东芝 半导体装置及其制造方法
JP2015153769A (ja) * 2014-02-10 2015-08-24 ローム株式会社 ショットキーバリアダイオード
JP2016015482A (ja) * 2014-06-09 2016-01-28 パナソニックIpマネジメント株式会社 半導体装置
US10361266B2 (en) 2014-06-09 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device
WO2016038695A1 (ja) * 2014-09-10 2016-03-17 株式会社日立製作所 半導体装置、パワーモジュール、電力変換装置、および鉄道車両
WO2017134900A1 (ja) * 2016-02-05 2017-08-10 株式会社デンソー 半導体装置
JP2017139415A (ja) * 2016-02-05 2017-08-10 株式会社デンソー 半導体装置
JP2017147377A (ja) * 2016-02-18 2017-08-24 富士電機株式会社 炭化珪素半導体装置用ゲート絶縁膜の製造方法
JP2017038088A (ja) * 2016-11-09 2017-02-16 東京エレクトロン株式会社 成膜方法及び成膜装置
DE112018000517T5 (de) 2017-01-25 2019-10-10 Rohm Co., Ltd. Halbleitervorrichtung
DE212018000096U1 (de) 2017-01-25 2019-06-13 Rohm Co., Ltd. Halbleitervorrichtung
US11749749B2 (en) 2017-01-25 2023-09-05 Rohm Co., Ltd. Semiconductor device
US11088272B2 (en) 2017-01-25 2021-08-10 Rohm Co., Ltd. Semiconductor device
JP2019054064A (ja) * 2017-09-13 2019-04-04 富士電機株式会社 半導体装置
JP2019087690A (ja) * 2017-11-09 2019-06-06 株式会社豊田中央研究所 窒化物半導体装置とその製造方法
JP7031238B2 (ja) 2017-11-09 2022-03-08 株式会社豊田中央研究所 窒化物半導体装置とその製造方法
US11417760B2 (en) 2017-12-21 2022-08-16 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
US12087854B2 (en) 2017-12-21 2024-09-10 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
US11489069B2 (en) 2017-12-21 2022-11-01 Wolfspeed, Inc. Vertical semiconductor device with improved ruggedness
JP2018133579A (ja) * 2018-04-18 2018-08-23 ローム株式会社 半導体装置
JP7460331B2 (ja) 2018-05-07 2024-04-02 インフィネオン テクノロジーズ アーゲー シリコンカーバイド半導体素子
JP2020004956A (ja) * 2018-05-07 2020-01-09 インフィネオン テクノロジーズ アーゲーInfineon Technologies Ag シリコンカーバイド半導体素子
JP7163830B2 (ja) 2019-03-12 2022-11-01 豊田合成株式会社 半導体素子
JP2020150085A (ja) * 2019-03-12 2020-09-17 豊田合成株式会社 半導体素子
CN112885889B (zh) * 2021-01-14 2022-06-03 电子科技大学 一种含组合介质深槽的横向耐压区
CN112885889A (zh) * 2021-01-14 2021-06-01 电子科技大学 一种含组合介质深槽的横向耐压区

Also Published As

Publication number Publication date
US20220157606A1 (en) 2022-05-19
JP5858934B2 (ja) 2016-02-10
US10840098B2 (en) 2020-11-17
US20200161133A1 (en) 2020-05-21
US20180277371A1 (en) 2018-09-27
US20160379825A1 (en) 2016-12-29
US20130313576A1 (en) 2013-11-28
US9472405B2 (en) 2016-10-18
US20240304447A1 (en) 2024-09-12
US10515805B2 (en) 2019-12-24
US12009213B2 (en) 2024-06-11
US9947536B2 (en) 2018-04-17
US20210043456A1 (en) 2021-02-11
US11276574B2 (en) 2022-03-15
JPWO2012105611A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5858934B2 (ja) 半導体パワーデバイスおよびその製造方法
JP6065335B2 (ja) 半導体装置
JP6021032B2 (ja) 半導体素子およびその製造方法
US20200006327A1 (en) Method of manufacturing a semiconductor device
WO2011078346A1 (ja) SiC電界効果トランジスタ
CN102203936B (zh) 半导体器件及其制造方法
WO2016052261A1 (ja) 半導体装置
US10770582B2 (en) Semiconductor device
WO2012105613A1 (ja) 半導体装置およびその製造方法
US20120326207A1 (en) Semiconductor device and manufacturing method
US20120146055A1 (en) SiC SEMICONDUCTOR DEVICE
JP2019165206A (ja) 絶縁ゲート型半導体装置及びその製造方法
JP6168370B2 (ja) SiC電界効果トランジスタ
JP5646044B2 (ja) 炭化珪素半導体装置およびその製造方法
CN112466922A (zh) 半导体装置
US11411105B2 (en) Silicon carbide semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555933

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13983206

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741812

Country of ref document: EP

Kind code of ref document: A1