WO2017134900A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2017134900A1
WO2017134900A1 PCT/JP2016/084094 JP2016084094W WO2017134900A1 WO 2017134900 A1 WO2017134900 A1 WO 2017134900A1 JP 2016084094 W JP2016084094 W JP 2016084094W WO 2017134900 A1 WO2017134900 A1 WO 2017134900A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
semiconductor device
layer
gate
insulating film
Prior art date
Application number
PCT/JP2016/084094
Other languages
English (en)
French (fr)
Inventor
小山 和博
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201680080595.3A priority Critical patent/CN108604599B/zh
Priority to US16/068,919 priority patent/US10950723B2/en
Publication of WO2017134900A1 publication Critical patent/WO2017134900A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1602Diamond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane

Definitions

  • the present disclosure relates to a semiconductor device using a wide gap semiconductor such as diamond.
  • Non-Patent Document 1 a semiconductor device including a MISFET using a wide gap semiconductor, for example, a device including a vertical MISFET having an inverted trench gate structure is known (see, for example, Non-Patent Document 1).
  • the vertical MISFET has a configuration shown in FIG. 6, for example. Specifically, an n-type drift layer J2 and a p-type body layer J3 are sequentially formed on an n + -type substrate J1, and a p-type deep layer is sandwiched below the p-type body layer J3 so as to sandwich a trench gate structure. J5 is formed. An n + type source region J6 is formed in the surface layer portion of the p type body layer J3, and a trench J7 is formed so as to penetrate the n + type source region J6 and the p type body layer J3. A trench gate structure is configured by providing a gate electrode J9 on the surface of the trench J7 via a gate insulating film J8.
  • n + -type source region J6 source electrode J10 which is electrically connected to the like is provided on the back surface side of the n + -type substrate J1 is, n + -type substrate A drain electrode J11 electrically connected to J1 is provided.
  • the total resistance value R TOTAL of the on-resistance of the vertical MISFET configured as described above is a value obtained by totaling the resistance values of the resistance components of the respective parts that form the current path of the vertical MISFET, and is represented by the following expression.
  • R SC is the contact resistance between the source electrode J10 and the n + -type source region J6.
  • R S is the internal resistance of the n + -type source region J6.
  • R CH is the channel resistance in the channel region formed in the p-type body layer J3.
  • R JFET is a JFET resistance in the JFET portion formed between the p-type deep layers J5.
  • R DRIFT is the internal resistance of the n-type drift layer J2, that is, the drift resistance.
  • R SUB is an internal resistance of the n + type substrate J1.
  • R DC is the contact resistance between the n + type substrate J1 and the drain electrode J11.
  • deep p-type deep layers J5 are formed on both sides of the trench gate in order to ensure the reliability of the gate insulating film and improve the short-circuit resistance and the cutoff resistance.
  • the electric field is shared by the PN junction between the p-type deep layer J5 and the n-type drift layer J2 in the blocking state.
  • the electric field strength of the insulating film J8 can be weakened. That is, the p-type deep layer J5 can suppress the high electric field from entering the bottom of the trench gate structure. As a result, application of a high electric field to the gate insulating film J8 is suppressed, and the reliability of the gate insulating film J8 can be ensured.
  • the avalanche generation portion moves to the PN junction. Therefore, since the hole does not pass under the n + type source region J6 and directly enters the source electrode J10, the parasitic PNP transistor is not turned on. Thereby, the cutoff tolerance and the L load tolerance of the vertical MISFET can be improved. Furthermore, even when the internal diode is recovered, the holes accumulated in the n-type drift layer J2 do not pass under the n + -type source region J6 and directly enter the source electrode J10, so that the vertical MISFET does not turn on erroneously. Thereby, the recovery tolerance of the vertical MISFET can also be improved.
  • the unit cell size cannot be reduced as compared with the case where the p-type deep layer J5 is not provided. Therefore, the channel width W CH cannot be increased, and the channel resistance R CH cannot be reduced. Furthermore, a JFET is formed parasitically by a PN junction of the p-type deep layer J5 and the n-type drift layer J2. Therefore, when the interval between the p-type deep layers J5 is narrowed, the JFET resistance R JFET increases. Therefore, since the distance between the p-type deep layer J5 is not narrowed, the cell size does not become small, not to reduce the channel resistance R CH. That is, there is a limit to the lower limit value of the total resistance value R TOTAL that determines the conduction loss.
  • the present disclosure has a first object of enabling a reduction in conduction loss while realizing improvement in the withstand capability in a semiconductor device using a wide gap semiconductor.
  • a second object is to improve the reliability of the gate insulating film of the MISFET.
  • a semiconductor device includes a back surface layer of a first conductivity type configured by a wide gap semiconductor having a high impurity concentration provided on the back surface side, and a lower impurity concentration than the back surface layer provided on the front surface side.
  • a first conductivity type drift layer composed of a wide gap semiconductor, and a second conductivity type body layer composed of a wide gap semiconductor formed on the drift layer;
  • a trench gate structure having a gate insulating film formed on the inner wall surface of the trench and a gate electrode formed on the gate insulating film And a vertical MISFET having a source electrode electrically connected to the source region and a drain electrode electrically connected to the back surface layer on the back surface side of the semiconductor substrate, the gate insulating film being a small number of body layers It is made of a material that has a barrier against carriers and has no barrier against minority carriers in the drift layer.
  • the gate insulating film is made of a material having a barrier against minority carriers in the body layer and having no barrier against minority carriers in the drift layer.
  • the gate insulating film can be made of a material having a dielectric constant larger than that of the wide gap semiconductor.
  • a first embodiment will be described.
  • a semiconductor device having an inverted vertical MISFET will be described as an example of a semiconductor device having a trench gate MISFET using a wide gap semiconductor.
  • the semiconductor device shown in FIG. 1 is formed using diamond as a wide gap semiconductor, and has a structure in which a vertical MISFET 100 having a trench gate structure is formed in a cell region in a semiconductor chip.
  • the semiconductor device is a semiconductor substrate in which a p-type drift layer 2 made of p-type diamond having a lower impurity concentration than the p + -type substrate 1 is formed on the surface side of the p + -type substrate 1 made of p-type diamond having a high impurity concentration. It is formed using.
  • n-type body layer 3 is formed on the upper layer of the p-type drift layer 2.
  • the n-type body layer 3 is composed of n-type diamond having a higher impurity concentration than the p-type drift layer 2.
  • the n-type body layer 3 is formed on the p-type drift layer 2 that is a flat surface, or is formed by ion-implanting n-type impurities into the surface layer portion of the p-type drift layer 2. ing.
  • ap + type source region 4 is formed in the upper layer portion of the n type body layer 3.
  • the p + -type source region 4 is also formed on the n-type body layer 3 which is a flat surface, or is formed by ion-implanting p-type impurities into the surface layer portion of the n-type body layer 3. Has been.
  • the p + type source region 4 is disposed on both sides of a trench gate structure described later in the cross section of FIG.
  • the n-type body layer 3 is also disposed on both sides of the trench gate structure in the cross section of FIG.
  • the n-type body layer 3 is also used as a contact region that is electrically connected to the source electrode 9 to be described later.
  • the n-type body layer 3 is partly in contact with the source electrode 9.
  • a contact region with a high concentration may be provided separately.
  • a trench 6 having a longitudinal direction in the plane of the drawing as a longitudinal direction is formed so as to penetrate the n-type body layer 3 and the p + -type source region 4 and reach the p-type drift layer 2.
  • the above-described n-type body layer 3 and p + -type source region 4 are arranged so as to be in contact with the side surface of the trench 6.
  • the surface portion of the portion located between the p + type source region 4 and the p type drift layer 2 in the n type body layer 3, that is, the portion in contact with the trench 6 in the p type body layer 3 is used as a channel region.
  • a gate insulating film 7 is formed on the inner wall surface of the trench 6 including the channel region.
  • a gate electrode 8 made of doped Poly-Si is formed on the surface of the gate insulating film 7, and the trench 6 is filled with the gate insulating film 7 and the gate electrode 8.
  • a trench gate structure in which the gate insulating film 7 and the gate electrode 8 are disposed in the trench 6 is configured.
  • This trench gate structure is extended with the vertical direction in FIG. 1 as the longitudinal direction, and a plurality of trench gate structures are arranged in the left-right direction in FIG. 1 to form a stripe shape.
  • the p + -type source region 4 and the n-type body layer 3 described above also have a layout structure extending along the longitudinal direction of the trench gate structure.
  • a source electrode 9 and a gate wiring are formed on the surface of the p + -type source region 4 and the n-type body layer 3 and the surface of the gate electrode 8.
  • the source electrode 9 and the gate wiring are made of a plurality of metals such as Ni / Al.
  • the plurality of metals at least the p-type diamond, specifically, the portion in contact with the p + -type source region 4 is made of a metal capable of ohmic contact with the p-type diamond.
  • at least a portion of the plurality of metals that contacts the n-type diamond, specifically, the n-type body layer 3 is made of a metal that can make ohmic contact with the n-type diamond.
  • the source electrode 9 and the gate wiring are electrically insulated by being formed on the interlayer insulating film 10. Then, the source electrode 9 is brought into electrical contact with the p + -type source region 4 and the n-type body layer 3 through the contact hole formed in the interlayer insulating film 10, and the gate wiring is brought into electrical contact with the gate electrode 8. It has been.
  • a semiconductor device including the vertical MISFET 100 having a p-channel type inversion trench gate structure is configured.
  • the gate insulating film 7 is made of a material having a dielectric constant larger than that of n-type diamond or p-type diamond used as a wide gap semiconductor.
  • the gate insulating film 7 any one or plural layers of Al 2 O 3 , HfSiO, HfO, HfO 2 , HfAlON, and Y 2 O 3 or a composition ratio of elements of these insulating films are set. It is possible to apply a layered product of one or a plurality of layers that have been changed.
  • the gate insulating film 7 has a barrier against minority carriers of the n-type body layer 3 and has no barrier against minority carriers of the p-type drift layer 2.
  • the energy band structure of the MIS gate on the II-II line in FIG. 1, that is, the portion from the gate electrode 8 to the n-type body layer 3 through the gate insulating film 7 is as shown in FIG. That is, the gate insulating film 7 has a movement barrier from the gate electrode 8 side to the n-type body layer 3 with respect to minority carriers of the n-type body layer 3, here, holes.
  • the energy band structure of the MIS gate on the line III-III in the drawing that is, the portion from the gate electrode 8 to the p-type drift layer 2 through the gate insulating film 7 is as shown in FIG. That is, the gate insulating film 7 does not have a barrier for movement from the gate electrode 8 side to the n-type body layer 3 with respect to minority carriers of the p-type drift layer 2, here, electrons.
  • the gate insulating film J8 has a barrier to movement of minority carriers in the p-type body layer J3, here electrons, from the gate electrode J9 side to the p-type body layer J3.
  • the energy band structure of the MIS gate on the line VIII-VIII in the drawing, that is, in the portion from the gate electrode J9 to the n-type drift layer J2 through the gate insulating film J8 is in the state shown in FIG. That is, the gate insulating film J8 has a barrier against movement of minority carriers in the n-type drift layer J2, that is, holes, from the gate electrode J9 side to the p-type body layer J3.
  • the vertical MISFET 100 when a gate voltage is applied to the gate electrode 8, a channel is formed on the surface of the n-type body layer 3 in contact with the trench 6. As a result, holes injected from the drain electrode 11 pass through the channel formed in the n-type body layer 3 from the p + -type substrate 1 and the p-type drift layer 2, and then reach the p-type drift layer 2 to form the source electrode An operation of passing a current between the electrode 9 and the drain electrode 11 is performed.
  • the dielectric constant of the gate insulating film 7 is higher than that of diamond constituting each semiconductor layer during turn-off, the electric field strength in the gate insulating film 7 is reduced. For this reason, the reliability of the gate insulating film 7 can be improved.
  • the avalanche breakdown occurs when the drain voltage rises during turn-off, the avalanche occurs at the position of the tip of the gate electrode 8 in the p-type drift layer 2.
  • the gate insulating film 7 has no barrier, the electron current generated in the avalanche does not flow to the base of the parasitic pnp transistor constituted by the p + type source region 4, the n type body layer 3 and the p type drift layer 2.
  • the parasitic pnp transistor can be prevented from being turned on, and the cutoff withstand capability of the vertical MISFET 100 can be improved.
  • the gate electrode 8 itself has resistance, so that the gate potential rises due to the electron current, and a channel is formed in the n-type body layer 3 on the side surface of the trench gate structure.
  • the gate of the type MISFET 100 is turned on. When the gate is turned on, the drain voltage is reduced, so that avalanche is suppressed. That is, when an avalanche is generated, it is possible to prevent the vertical MISFET 100 from being turned on to be destroyed.
  • a material that has a barrier against minority carriers in the n-type body layer 3 and has no barrier against minority carriers in the p-type drift layer 2 is selected as the material of the gate insulating film 7.
  • the gate insulating film J8 prevents the minority carriers in the n-type drift layer J2 from moving from the gate electrode J9 side to the p-type body layer J3. have. For this reason, if the p-type deep layer J5 is not formed, when an avalanche occurs, holes flow in the path indicated by the arrow in FIG. 6 and the parasitic NPN transistor is turned on. The current concentrates on the device, leading to destruction.
  • the vertical MISFET 100 configured as described above when applied as a switching element provided in an upper and lower arm such as an inverter, it is preferable not to use the diode mode and to turn on the diode. That is, when electrons pass through the gate electrode 8 in the reverse recovery mode, the vertical MISFET 100 is turned on, causing an upper and lower arm short circuit. In order to prevent this, it is necessary to separately use a free-wheeling diode (hereinafter referred to as FWD) instead of using the body diode formed by the PN junction between the p-type drift layer 2 and the n-type body layer 3 as a diode mode. Become. In that case, the forward voltage Vf when the FWD is turned on needs to be smaller than the built-in voltage of the body diode, which enables the FWD to be turned on with priority over the body diode.
  • FWD free-wheeling diode
  • the gate insulating film 7 is made of a material that has a barrier against minority carriers of the n-type body layer 3 and has no barrier against minority carriers of the p-type drift layer 2. ing. As a result, in a semiconductor device using a wide gap semiconductor, it is possible to reduce the conduction loss while improving the withstand voltage and ensuring the reliability of the gate insulating film.
  • the circuit including the semiconductor device according to the present embodiment has a configuration in which a gate resistor 20 is connected to the gate of the vertical MISFET 100.
  • a gate resistor 20 is connected to the gate of the vertical MISFET 100.
  • the gate resistor 20 here may be an external resistor, but may be a built-in resistor of the semiconductor device.
  • the gate resistor 20 is a built-in resistor, a circuit including the semiconductor device described in this embodiment can be configured in the semiconductor device.
  • a third embodiment will be described.
  • a circuit including the semiconductor device shown in the first embodiment will be described.
  • the basic configuration of the semiconductor device is the same as that of the first embodiment.
  • the circuit also includes the gate resistor 20 described in the second embodiment. Therefore, only parts of the present embodiment that are different from the first and second embodiments will be described.
  • the circuit including the semiconductor device according to the present embodiment has the FWD 30 connected between the source and drain of the vertical MISFET 100.
  • This circuit is applied, for example, when the vertical MISFET 100 is applied as a switching element provided in an upper and lower arm such as an inverter.
  • the FWD 30 is an external diode component, and the forward voltage Vf is smaller than the built-in voltage of the body diode due to the PN junction between the p-type drift layer 2 and the n-type body layer 3 in the vertical MISFET 100.
  • the FWD 30 When the FWD 30 having such a configuration is provided, the FWD 30 can be preferentially turned on over the body diode when turned off. Therefore, the body diode can be prevented from being turned on. For this reason, it is possible to prevent electrons from passing through the gate electrode 8 in the reverse recovery mode, and it is possible to prevent the vertical MISFET 100 from being turned on and the upper and lower arms from being short-circuited.
  • diamond is described as an example of the wide gap semiconductor, but a semiconductor device using another wide gap semiconductor such as SiC may be used.
  • the p-type drift layer 2 is formed on the surface of the p + -type substrate 1 as a semiconductor substrate in which the back side is a back layer having a high impurity concentration and the front side is a drift layer having a lower impurity concentration.
  • the above structure has been described as an example. However, this is merely an example of a semiconductor substrate.
  • a semiconductor substrate in which a p-type dopant is ion-implanted into the back side of the substrate constituted by the p-type drift layer 2 or the back layer is constituted by epitaxial growth. It may be.
  • a p-channel type MISFET in which the first conductivity type is p-type and the second conductivity type is n-type has been described as an example.
  • the n-type is obtained by inverting the conductivity type of each component.
  • the present disclosure can also be applied to a channel type MISFET.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

ワイドギャプ半導体を用いた半導体装置において、ゲート絶縁膜(7)を、n型ボディ層(3)の少数キャリアに対して障壁を持ち、p型ドリフト層(2)の少数キャリアに対して障壁の無い材料によって構成する。これにより、ワイドギャプ半導体を用いた半導体装置において、遮断耐量の向上およびゲート絶縁膜の信頼性の確保を実現しつつ、導通損失の低減を図ることが可能となる。

Description

半導体装置 関連出願への相互参照
 本出願は、2016年2月5日に出願された日本特許出願番号2016-20942号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、例えばダイヤモンドなどのワイドギャップ半導体を用いた半導体装置に関するものである。
 従来より、ワイドギャップ半導体が用いられたMISFETを備えた半導体装置として、例えば反転型のトレンチゲート構造の縦型MISFETを備えたものが知られている(例えば、非特許文献1参照)。
 縦型MISFETは、例えば図6に示す構成とされている。具体的には、n+型基板J1上にn型ドリフト層J2とp型ボディ層J3が順に形成されており、p型ボディ層J3の下方にはトレンチゲート構造を挟むようにp型ディープ層J5が形成されている。p型ボディ層J3の表層部にはn+型ソース領域J6が形成され、n+型ソース領域J6とp型ボディ層J3を貫通するようにトレンチJ7が形成されている。このトレンチJ7の表面にゲート絶縁膜J8を介してゲート電極J9が備えられることでトレンチゲート構造が構成されている。そして、n+型基板J1などの表面側には、n+型ソース領域J6などに電気的に接続されたソース電極J10が備えられ、n+型基板J1の裏面側には、n+型基板J1に電気的に接続されたドレイン電極J11が備えられている。このような構造によって、トレンチゲート構造の縦型MISFETが構成されている。
 このように構成される縦型MISFETのオン抵抗の合計抵抗値RTOTALは、縦型MISFETの電流経路となる各部の抵抗成分の抵抗値を合計した値となり、次式で表される。なお、RSCは、ソース電極J10とn+型ソース領域J6とのコンタクト抵抗である。RSは、n+型ソース領域J6の内部抵抗である。RCHは、p型ボディ層J3に形成されるチャネル領域でのチャネル抵抗である。RJFETは、p型ディープ層J5の間に構成されるJFET部でのJFET抵抗である。RDRIFTは、n型ドリフト層J2の内部抵抗、つまりドリフト抵抗である。RSUBは、 n+型基板J1の内部抵抗である。RDCは、n+型基板J1とドレイン電極J11とのコンタクト抵抗である。
 (数1)
 RTOTAL=RSC+RS+RCH+RJFET+RDRIFT+RSUB+RDC
第60回応用物理学会春季学術講演会 講演予稿集(2013 春 神奈川工科大学)、27p-G22-4、低オン抵抗SiCトレンチパワーMOSFETの開発、Development ofSiC Trench MOSFET with Ultra Low ON Resistance、ローム株式会社、中村 孝、中野 佑紀、花田 俊雄著
 上記したワイドギャップ半導体で構成される縦型MISFETでは、ゲート絶縁膜の信頼性確保と短絡耐量および遮断耐量の向上のために、トレンチゲートの両側に深いp型ディープ層J5を形成している。
 具体的には、トレンチゲート構造よりも深くp型ディープ層J5を形成すると、阻止状態においてp型ディープ層J5とn型ドリフト層J2とのPN接合に電界を分担させられるため、その分、ゲート絶縁膜J8の電界強度を弱めることができる。すなわち、トレンチゲート構造の底部へ高電界が入り込むことをp型ディープ層J5によって抑制することができる。これにより、ゲート絶縁膜J8に高電界が掛かることが抑制され、ゲート絶縁膜J8の信頼性を確保することが可能になる。
 また、ゲート絶縁膜J8の近傍の電界が強くなってアバランシェブレークダウンが発生した場合は、発生したホールがn+型ソース領域J6の下のp型ボディ層J3に流れた後にソース電極J10に入る。このため、p型ボディ層J3の内部抵抗による電圧降下に基づいてp型ボディ層J3とn型ドリフト層J2とによる内蔵ダイオードのPN接合に正バイアスが掛かり、寄生PNPトランジスタがオンする。トランジスタは一度オンすると正帰還が掛かり、オンした箇所に電流が集中するため破壊に至る。また、電界の強い位置が内蔵ダイオードのPN接合部になると、アバランシェ発生個所がPN接合に移る。よって、ホールはn+型ソース領域J6の下を通らず直接ソース電極J10に入るようになるため、寄生PNPトランジスタがオンしない。これにより、縦型MISFETの遮断耐量およびL負荷耐量を向上させることができる。さらに、内臓ダイオードのリカバリ時においても、n型ドリフト層J2に蓄積されたホールはn+型ソース領域J6の下を通らず直接ソース電極J10に入るため、縦型MISFETが誤オンしない。これにより、縦型MISFETのリカバリ耐量も向上させることができる。
 しかしながら、そもそも深いp型ディープ層J5を形成する幅が必要になるため、p型ディープ層J5が無い場合に比べて単位セルサイズを小さくできない。よって、チャネル幅WCHを増やすことができず、チャネル抵抗RCHを低減させられない。更には、p型ディープ層J5およびn型ドリフト層J2のPN接合によるJFETが寄生的に形成される。よって、p型ディープ層J5の間隔を狭くするとJFET抵抗RJFETが大きくなる。したがって、p型ディープ層J5 の間隔が狭くできないため、セルサイズが小さくならず、チャネル抵抗RCHを低減させられない。すなわち、導通損失を決める合計抵抗値RTOTALの下限値に限界がある。
 本開示は、ワイドギャプ半導体を用いた半導体装置において、遮断耐量の向上を実現しつつ、導通損失の低減を図ることを可能とすることを第1の目的とする。さらに、MISFETのゲート絶縁膜の信頼性の向上を図ることを第2の目的とする。
 本開示の1つの観点における半導体装置は、裏面側に備えられた高不純物濃度のワイドギャップ半導体で構成される第1導電型の裏面層と、表面側に備えられると共に裏面層よりも低不純物濃度とされたワイドギャップ半導体にて構成される第1導電型のドリフト層と、を有する半導体基板と、ドリフト層の上に形成されたワイドギャップ半導体にて構成される第2導電型のボディ層と、ボディ層の上層部に形成され、ドリフト層よりも高不純物濃度のワイドギャップ半導体にて構成される第1導電型のソース領域と、ソース領域の表面からボディ層よりも深くまで形成されたトレンチ内に形成され、該トレンチの内壁面に形成されたゲート絶縁膜と、ゲート絶縁膜の上に形成されたゲート電極と、を有して構成されたトレンチゲート構造と、ソース領域に電気的に接続されるソース電極と、半導体基板の裏面側における裏面層と電気的に接続されるドレイン電極と、を有する縦型MISFETを備え、ゲート絶縁膜は、ボディ層の少数キャリアに対して障壁を有し、かつ、ドリフト層の少数キャリアに対して障壁の無い材料で構成されている。
 このように、ゲート絶縁膜を、ボディ層の少数キャリアに対して障壁を持ち、ドリフト層の少数キャリアに対して障壁の無い材料によって構成している。これにより、ワイドギャプ半導体を用いた半導体装置において、遮断耐量の向上を実現しつつ、導通損失の低減を図ることが可能となる。
 また、本開示の上記観点における半導体装置において、ゲート絶縁膜は、ワイドギャップ半導体よりも誘電率の大きな材料で構成可能である。
 このような構成とすると、オフ中に、ゲート絶縁膜中の電界強度が小さくなる。このため、ゲート絶縁膜の信頼性の向上を図ることが可能となる。
第1実施形態にかかるワイドギャップ半導体で構成される半導体装置の断面図である。 図1中のII-II線上のエネルギーバンド構造を示した図である。 図1中のIII-III線上のエネルギーバンド構造を示した図である。 第2実施形態にかかる半導体装置を含む回路の構成を示した図である。 第3実施形態にかかる半導体装置を含む回路の構成を示した図である。 参考例として示したワイドギャップ半導体で構成される半導体装置の断面図である。 図6中のVII-VII線上のエネルギーバンド構造を示した図である。 図6中のVIII-VIII線上のエネルギーバンド構造を示した図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 第1実施形態について説明する。本実施形態では、ワイドギャップ半導体を用いたトレンチゲート構造のMISFETを有する半導体装置として、反転型の縦型MISFETを有する半導体装置を例に挙げて説明する。
 図1に示す半導体装置は、ワイドギャップ半導体としてダイヤモンドを用いて形成されたものであり、半導体チップ中におけるセル領域にトレンチゲート構造の縦型MISFET100が形成された構造とされている。
 半導体装置は、高不純物濃度のp型ダイヤモンドからなるp+型基板1の表面側に、p+型基板1よりも低不純物濃度のp型ダイヤモンドからなるp型ドリフト層2が形成された半導体基板を用いて形成されている。
 p型ドリフト層2の上層部にはn型ボディ層3が形成されている。本実施形態の場合、n型ボディ層3は、p型ドリフト層2よりも高不純物濃度のn型ダイヤモンドで構成されている。n型ボディ層3は、平坦面となっているp型ドリフト層2の上に成膜されるか、もしくはp型ドリフト層2の表層部に対してn型不純物をイオン注入することによって形成されている。
 さらに、n型ボディ層3の上層部分にはp+型ソース領域4が形成されている。p+型ソース領域4も、平坦面となっているn型ボディ層3の上に成膜されるか、もしくはn型ボディ層3の表層部に対してp型不純物をイオン注入することによって形成されている。
 p+型ソース領域4は、図1の断面において、後述するトレンチゲート構造の両側に配置されている。同様に、n型ボディ層3も、図1の断面において、トレンチゲート構造の両側に配置されている。なお、本実施形態では、n型ボディ層3を後述するソース電極9と電気的接続が行われるコンタクト領域としても用いているが、n型ボディ層3のうちソース電極9と接触する部分に部分的に高濃度とされたコンタクト領域を別途備えるようにしても良い。
 また、n型ボディ層3およびp+型ソース領域4を貫通してp型ドリフト層2に達するように、紙面垂直方向を長手方向とするトレンチ6が形成されている。このトレンチ6の側面と接するように上述したn型ボディ層3およびp+型ソース領域4が配置されている。
 さらに、n型ボディ層3のうちp+型ソース領域4とp型ドリフト層2との間に位置する部分の表面部、つまりp型ボディ層3のうちトレンチ6に接する部分をチャネル領域として、このチャネル領域を含むトレンチ6の内壁面にはゲート絶縁膜7が形成されている。そして、ゲート絶縁膜7の表面にはドープドPoly-Siにて構成されたゲート電極8が形成されており、これらゲート絶縁膜7およびゲート電極8によってトレンチ6内が埋め尽くされている。
 このようにして、トレンチ6内にゲート絶縁膜7およびゲート電極8が配置されたトレンチゲート構造が構成されている。このトレンチゲート構造は、図1の紙面垂直方向を長手方向として延設されており、複数のトレンチゲート構造が図1中の左右方向に並べられることでストライプ状とされている。また、上述したp+型ソース領域4およびn型ボディ層3もトレンチゲート構造の長手方向に沿って延設されたレイアウト構造とされている。
 また、p+型ソース領域4およびn型ボディ層3の表面やゲート電極8の表面には、ソース電極9や図示しないゲート配線が形成されている。ソース電極9およびゲート配線は、複数の金属、例えばNi/Al等にて構成されている。そして、複数の金属のうち少なくともp型ダイヤモンド、具体的にはp+型ソース領域4と接触する部分はp型ダイヤモンドとオーミック接触可能な金属で構成されている。また、複数の金属のうち少なくともn型ダイヤモンド、具体的にはn型ボディ層3と接触する部分はn型ダイヤモンドとオーミック接触可能な金属で構成されている。なお、これらソース電極9およびゲート配線は、層間絶縁膜10上に形成されることで電気的に絶縁されている。そして、層間絶縁膜10に形成されたコンタクトホールを通じて、ソース電極9はp+型ソース領域4およびn型ボディ層3と電気的に接触させられ、ゲート配線はゲート電極8と電気的に接触させられている。
 さらに、p+型基板1の裏面側にはp+型基板1と電気的に接続されたドレイン電極11が形成されている。このような構造により、pチャネルタイプの反転型のトレンチゲート構造の縦型MISFET100が備えられた半導体装置が構成されている。
 このような構造において、本実施形態では、ゲート絶縁膜7の誘電率をワイドギャップ半導体として用いられているn型ダイヤモンドやp型ダイヤモンドよりも大きな誘電率を有する材料によって構成している。例えば、ゲート絶縁膜7として、Al23、HfSiO、HfO、HfO2、HfAlONおよびY23のうちのいずれか1つ若しくは複数層の積層体、またはこれら絶縁膜の元素の組成比を変化させたものの一つ若しくは複数層の積層体を適用することができる。このようなゲート絶縁膜7とすることで、ゲート絶縁膜7は、n型ボディ層3の少数キャリアに対して障壁を持ち、p型ドリフト層2の少数キャリアに対して障壁の無いものとなる。例えば、図1中のII-II線上、つまりゲート電極8からゲート絶縁膜7を通じてn型ボディ層3に至る部分でのMISゲートのエネルギーバンド構造は図2に示す状態となる。すなわち、ゲート絶縁膜7により、n型ボディ層3の少数キャリア、ここではホールに対してゲート電極8側からn型ボディ層3への移動の障壁を有している。また、図中III-III線上、つまりゲート電極8からゲート絶縁膜7を通じてp型ドリフト層2に至る部分でのMISゲートのエネルギーバンド構造は図3に示す状態となる。すなわち、ゲート絶縁膜7により、p型ドリフト層2の少数キャリア、ここでは電子に対してゲート電極8側からn型ボディ層3への移動の障壁を有していない。
 なお、参考として、図6に示した従来のSiCにて構成される縦型MISFETでは、図6中のVII-VII線上、つまりゲート電極J9からゲート絶縁膜J8を通じてp型ボディ層J3に至る部分でのMISゲートのエネルギーバンド構造は図7に示す状態となる。すなわち、ゲート絶縁膜J8により、p型ボディ層J3の少数キャリア、ここでは電子に対してゲート電極J9側からp型ボディ層J3への移動の障壁を有している。また、図中VIII-VIII線上、つまりゲート電極J9からゲート絶縁膜J8を通じてn型ドリフト層J2に至る部分でのMISゲートのエネルギーバンド構造は図8に示す状態となる。すなわち、ゲート絶縁膜J8により、n型ドリフト層J2の少数キャリア、ここではホールに対してゲート電極J9側からp型ボディ層J3への移動の障壁を有している。
 続いて、上記のように構成された半導体装置における反転型のトレンチゲート構造の縦型MISFET100の動作について説明する。
 縦型MISFET100は、ゲート電極8にゲート電圧を印加すると、n型ボディ層3のうちトレンチ6に接している表面にチャネルが形成される。これにより、ドレイン電極11から注入されたホールがp+型基板1やp型ドリフト層2からn型ボディ層3に形成されたチャネルを通った後、p型ドリフト層2に到達し、ソース電極9とドレイン電極11との間に電流を流すという動作が行われる。
 一方、ターンオフ中には、ゲート絶縁膜7の誘電率が各部の半導体層を構成しているダイヤモンドよりも高くしてあることから、ゲート絶縁膜7中の電界強度が小さくなる。このため、ゲート絶縁膜7の信頼性を向上することが可能となる。
 また、ターンオフ中に、ドレイン電圧が上昇してアバランシェブレークダウンが発生する場合、アバランシェはp型ドリフト層2のうちのゲート電極8の先端部の位置で発生する。このとき、ゲート絶縁膜7に障壁がないため、アバランシェで発生した電子電流はp+型ソース領域4とn型ボディ層3およびp型ドリフト層2によって構成される寄生pnpトランジスタのベースに流れず、ゲート電極8に流れる。このため、寄生pnpトランジスタがオンしないようにでき、縦型MISFET100の遮断耐量の向上を図ることが可能となる。
 さらに、ゲート電極8を電子電流が流れる際に、ゲート電極8自身に抵抗があるため、電子電流によってゲート電位が上昇し、トレンチゲート構造の側面のn型ボディ層3にチャネルが形成され、縦型MISFET100のゲートがオンする。そして、ゲートがオンすると、ドレイン電圧が減少するため、アバランシェが抑制される。すなわち、アバランシェが発生すると、縦型MISFET100がオン状態に移行することで破壊に至ることを防止することが可能となる。
 このように、n型ボディ層3の少数キャリアに対して障壁を持ち、p型ドリフト層2の少数キャリアに対して障壁の無い材料をゲート絶縁膜7の材料として選択している。これにより、上記の通り、ゲート絶縁膜7の信頼性を確保しつつ、遮断耐量の向上を図ることが可能となる。そして、これらの効果を図6に示した従来の構造のようにp型ディープ層J5を備えていなくても得ることができることから、p型ディープ層J5が備えられていることによって寄生的に形成されるJFETを無くせる。したがって、JFET抵抗RJFETを無くすことができ、合計抵抗値RTOTALの下限値を更に低下させることが可能となる。
 よって、ワイドギャプ半導体を用いた半導体装置において、遮断耐量の向上およびゲート絶縁膜の信頼性の確保を実現しつつ、導通損失の低減を図ることが可能となる。
 参考として、図6に示した従来構造の縦型MISFETの場合は、ゲート絶縁膜J8により、n型ドリフト層J2の少数キャリアに対してゲート電極J9側からp型ボディ層J3への移動の障壁を有している。このため、仮にp型ディープ層J5を形成していないと、アバランシェが発生したときに、図6中に矢印で示した経路でホールが流れ、寄生NPNトランジスタがオンしてしまうため、オンした箇所に電流が集中して破壊に至ることになる。
 なお、上記のように構成された縦型MISFET100をインバータなどの上下アームに備えられるスイッチング素子として適用する場合、ダイオードモードでの使用は行わず、ダイオードをオンさせないようにすることが好ましい。すなわち、リバースリカバリーモードで電子がゲート電極8を抜けると縦型MISFET100がオンしてしまい、上下アーム短絡が起こる。これを防ぐためには、p型ドリフト層2とn型ボディ層3とのPN接合によるボディダイオードをダイオードモードとして使用せずに、別途、還流ダイオード(以下、FWDという)を併用することが必要になる。その場合、FWDのオン時の順方向電圧Vfは、ボディダイオードのビルトイン電圧よりも小さくすることが必要であり、これによりFWDがボディダイオードよりも優先的にオンさせることが可能となる。
 以上説明したように、本実施形態では、ゲート絶縁膜7を、n型ボディ層3の少数キャリアに対して障壁を持ち、p型ドリフト層2の少数キャリアに対して障壁の無い材料によって構成している。これにより、ワイドギャプ半導体を用いた半導体装置において、遮断耐量の向上およびゲート絶縁膜の信頼性の確保を実現しつつ、導通損失の低減を図ることが可能となる。
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に示した半導体装置を含む回路について説明する。なお、半導体装置の基本的な構成については第1実施形態と同様であるため、第1実施形態と異なる回路部分についてのみ説明する。
 図4に示すように、本実施形態にかかる半導体装置を含む回路は、縦型MISFET100のゲートに対してゲート抵抗20を接続した構成とされている。このように、縦型MISFET100のゲートに対してゲート抵抗20を接続することで、ゲート電極8に対して大き過ぎる電流が流れることを抑制することができる。したがって、少量のゲート電流によって縦型MISFET100がターンオンし、ゲート電極8の保護を図ることが可能となる。
 なお、ここでいうゲート抵抗20については、外付けの抵抗とすることができるが、半導体装置の内蔵抵抗であっても良い。ゲート抵抗20を内蔵抵抗とする場合、本実施形態で説明した半導体装置を含む回路を半導体装置内において構成することができる。
 (第3実施形態)
 第3実施形態について説明する。本実施形態も、第1実施形態に示した半導体装置を含む回路について説明する。なお、半導体装置の基本的な構成については第1実施形態と同様である。また、ここでは第2実施形態で説明したゲート抵抗20についても備えた回路としている。したがって、本実施形態のうち、第1、第2実施形態と異なる部分についてのみ説明する。
 図5に示すように、本実施形態にかかる半導体装置を含む回路は、縦型MISFET100のソース-ドレイン間にFWD30を接続している。この回路は、例えば、縦型MISFET100をインバータなどの上下アームに備えられるスイッチング素子として適用する場合に適用される。
 FWD30は、外付けのダイオード部品であり、順方向電圧Vfが縦型MISFET100におけるp型ドリフト層2とn型ボディ層3とのPN接合によるボディダイオードのビルトイン電圧よりも小さくなっている。
 このような構成のFWD30を備えると、オフ時にFWD30をボディダイオードよりも優先的にオンさせることが可能となる。したがって、ボディダイオードをオンさせないようにできる。このため、リバースリカバリーモードで電子がゲート電極8を抜けないようにでき、縦型MISFET100がオンして上下アーム短絡が起こることを防ぐことが可能となる。
 (他の実施形態)
 本開示は、上記した実施形態に準拠して記述されたが、当該実施形態に限定されるものではなく、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 例えば、上記各実施形態では、ワイドギャップ半導体としてダイヤモンドを例に挙げて説明したが、他のワイドギャプ半導体、例えばSiCなどを使用した半導体装置としても良い。
 さらに、上記各実施形態では、裏面側が高不純物濃度の裏面層、表面側がそれよりも低不純物濃度なドリフト層とされた半導体基板として、p+型基板1の表面にp型ドリフト層2を形成した構造を例に挙げて説明した。しかしながら、これは半導体基板の一例を示したに過ぎず、例えばp型ドリフト層2にて構成される基板の裏面側にp型ドーパントをイオン注入すること、もしくはエピタキシャル成長によって裏面層を構成した半導体基板であっても良い。
 また、上記各実施形態では、第1導電型をp型、第2導電型をn型としたpチャネルタイプのMISFETを例に挙げて説明したが、各構成要素の導電型を反転させたnチャネルタイプのMISFETに対しても本開示を適用することができる。

Claims (6)

  1.  ワイドギャップ半導体を用いた半導体装置であって、
     裏面側に備えられた高不純物濃度の前記ワイドギャップ半導体で構成される第1導電型の裏面層(1)と、表面側に備えられると共に前記裏面層よりも低不純物濃度とされた前記ワイドギャップ半導体にて構成される第1導電型のドリフト層(2)と、を有する前記半導体基板(1、2)と、
     前記ドリフト層の上に形成された前記ワイドギャップ半導体にて構成される第2導電型のボディ層(3)と、
     前記ボディ層の上層部に形成され、前記ドリフト層よりも高不純物濃度の前記ワイドギャップ半導体にて構成される第1導電型のソース領域(4)と、
     前記ソース領域の表面から前記ボディ層よりも深くまで形成されたトレンチ(6)内に形成され、該トレンチの内壁面に形成されたゲート絶縁膜(7)と、前記ゲート絶縁膜の上に形成されたゲート電極(8)と、を有して構成されたトレンチゲート構造と、
     前記ソース領域に電気的に接続されるソース電極(9)と、
     前記半導体基板の裏面側における前記裏面層と電気的に接続されるドレイン電極(11)と、を有する縦型MISFET(100)を備え、
     前記ゲート絶縁膜は、前記ボディ層の少数キャリアに対して障壁を有し、かつ、前記ドリフト層の少数キャリアに対して障壁の無い材料で構成されている半導体装置。
  2.  前記ゲート絶縁膜は、前記ワイドギャップ半導体よりも誘電率の大きな材料で構成されている請求項1に記載の半導体装置。
  3.  前記第1導電型はp型であり、前記第2導電型はn型であり、前記ワイドギャップ半導体はダイヤモンドである請求項1または2に記載の半導体装置。
  4.  請求項1ないし3のいずれか1つに記載の半導体装置を含む回路であって、
     前記ゲート電極にゲート抵抗(20)が接続されている半導体装置を含む回路。
  5.  前記ソース電極と前記ドレイン電極との間に還流ダイオード(30)が備えられている請求項4に記載の半導体装置を含む回路。
  6.  請求項1ないし3のいずれか1つに記載の半導体装置を含む回路であって、
     前記ソース電極と前記ドレイン電極との間に還流ダイオード(30)が備えられている半導体装置を含む回路。
PCT/JP2016/084094 2016-02-05 2016-11-17 半導体装置 WO2017134900A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680080595.3A CN108604599B (zh) 2016-02-05 2016-11-17 半导体装置
US16/068,919 US10950723B2 (en) 2016-02-05 2016-11-17 Semiconductor device and circuit having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-020942 2016-02-05
JP2016020942A JP6406274B2 (ja) 2016-02-05 2016-02-05 半導体装置

Publications (1)

Publication Number Publication Date
WO2017134900A1 true WO2017134900A1 (ja) 2017-08-10

Family

ID=59500957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084094 WO2017134900A1 (ja) 2016-02-05 2016-11-17 半導体装置

Country Status (4)

Country Link
US (1) US10950723B2 (ja)
JP (1) JP6406274B2 (ja)
CN (1) CN108604599B (ja)
WO (1) WO2017134900A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112017003591T5 (de) * 2016-07-15 2019-05-02 Rohm Co., Ltd. Halbleitervorrichtung
CN116936620A (zh) * 2023-09-14 2023-10-24 凌锐半导体(上海)有限公司 一种碳化硅沟槽栅mosfet的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181752A (ja) * 2010-03-02 2011-09-15 Advanced Power Device Research Association 半導体トランジスタ
JP2012064686A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 半導体装置
WO2012105611A1 (ja) * 2011-02-02 2012-08-09 ローム株式会社 半導体パワーデバイスおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7473929B2 (en) * 2003-07-02 2009-01-06 Panasonic Corporation Semiconductor device and method for fabricating the same
JP2007043825A (ja) * 2005-08-03 2007-02-15 Denso Corp 車両用発電制御装置
DE102007013824B4 (de) * 2006-03-22 2013-10-24 Denso Corporation Schaltkreis mit einem Transistor
US7629616B2 (en) * 2007-02-28 2009-12-08 Cree, Inc. Silicon carbide self-aligned epitaxial MOSFET for high powered device applications
US8022474B2 (en) 2008-09-30 2011-09-20 Infineon Technologies Austria Ag Semiconductor device
US8203181B2 (en) * 2008-09-30 2012-06-19 Infineon Technologies Austria Ag Trench MOSFET semiconductor device and manufacturing method therefor
CN103824883B (zh) * 2012-11-19 2017-05-03 比亚迪股份有限公司 一种具有终端耐压结构的沟槽mosfet的及其制造方法
JP6081228B2 (ja) * 2013-02-28 2017-02-15 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2015056492A (ja) * 2013-09-11 2015-03-23 株式会社東芝 半導体装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181752A (ja) * 2010-03-02 2011-09-15 Advanced Power Device Research Association 半導体トランジスタ
JP2012064686A (ja) * 2010-09-15 2012-03-29 Toshiba Corp 半導体装置
WO2012105611A1 (ja) * 2011-02-02 2012-08-09 ローム株式会社 半導体パワーデバイスおよびその製造方法

Also Published As

Publication number Publication date
CN108604599B (zh) 2022-03-01
US20190027598A1 (en) 2019-01-24
JP6406274B2 (ja) 2018-10-17
CN108604599A (zh) 2018-09-28
US10950723B2 (en) 2021-03-16
JP2017139415A (ja) 2017-08-10

Similar Documents

Publication Publication Date Title
JP5981859B2 (ja) ダイオード及びダイオードを内蔵する半導体装置
JP5919121B2 (ja) ダイオードおよび半導体装置
US10177251B2 (en) Semiconductor device, inverter circuit, drive device, vehicle, and elevator
JP6063915B2 (ja) 逆導通igbt
JP6413104B2 (ja) サージ保護素子
JP5922886B2 (ja) ダイオードおよび半導体装置
JP6053050B2 (ja) 逆導通igbt
US10297593B2 (en) Semiconductor device
JP6011696B2 (ja) ダイオード、半導体装置およびmosfet
JP2016006854A (ja) 半導体素子およびその製造方法
US10083957B2 (en) Semiconductor device
JP5753814B2 (ja) ダイオード、半導体装置およびmosfet
US9620595B2 (en) Semiconductor device
US10304969B2 (en) Semiconductor device
JP2013051345A (ja) ダイオード、半導体装置およびmosfet
US10700184B2 (en) Semiconductor device
US10083956B2 (en) Semiconductor device
JP6077309B2 (ja) ダイオード及びダイオードを内蔵した半導体装置
TW201537750A (zh) 半導體裝置
WO2017134900A1 (ja) 半導体装置
JP3103655B2 (ja) 半導体装置
KR20140074971A (ko) 베이스 폭이 결정된 래칭 및 비-래칭 상태를 갖는 mct 소자
JP2016149429A (ja) 逆導通igbt
JP7472059B2 (ja) 半導体装置
KR20150076717A (ko) 전력 반도체 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889383

Country of ref document: EP

Kind code of ref document: A1