JP2016006854A - 半導体素子およびその製造方法 - Google Patents

半導体素子およびその製造方法 Download PDF

Info

Publication number
JP2016006854A
JP2016006854A JP2015096524A JP2015096524A JP2016006854A JP 2016006854 A JP2016006854 A JP 2016006854A JP 2015096524 A JP2015096524 A JP 2015096524A JP 2015096524 A JP2015096524 A JP 2015096524A JP 2016006854 A JP2016006854 A JP 2016006854A
Authority
JP
Japan
Prior art keywords
region
silicon carbide
electrode
schottky
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015096524A
Other languages
English (en)
Other versions
JP6021032B2 (ja
Inventor
内田 正雄
Masao Uchida
正雄 内田
楠本 修
Osamu Kusumoto
修 楠本
信之 堀川
Nobuyuki Horikawa
信之 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015096524A priority Critical patent/JP6021032B2/ja
Publication of JP2016006854A publication Critical patent/JP2016006854A/ja
Application granted granted Critical
Publication of JP6021032B2 publication Critical patent/JP6021032B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8213Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using SiC technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0705Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type
    • H01L27/0727Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common comprising components of the field effect type in combination with diodes, or capacitors or resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

【課題】MISFETとSBDとを同一素子内に含み、かつ高耐圧化および大電流化を実現可能な半導体素子を提供する。【解決手段】本開示の一態様に係る半導体素子100は、第1導電型の基板101の表面上に位置する第1導電型の第1炭化珪素半導体層102と、複数のトランジスタセル100uを含むトランジスタ領域100Tと、ショットキー領域100Sと、境界領域100Gとを有し、境界領域100Gは、第2ボディ領域103dと、その上に絶縁膜を介して配置され、かつゲート電極108と電気的に接続されたゲート接続部108gとを備え、ショットキー領域100Sは、第1炭化珪素半導体層102上に配置されたショットキー電極151を備える。【選択図】図3

Description

本開示は、半導体素子およびその製造方法に関する。特に、炭化珪素を含む半導体素子およびその製造方法に関する。
炭化珪素(シリコンカーバイド:SiC)は、珪素(Si)に比べてバンドギャップが大きくかつ高硬度の半導体材料である。SiCは、例えば、スイッチング素子および整流素子などのパワー素子に応用されている。SiCを用いたパワー素子は、Siを用いたパワー素子に比べて、例えば、電力損失を低減することができるという利点がある。
SiCを用いた代表的な半導体素子は、金属−絶縁体−半導体電界効果トランジスタ(Metal−Insulator−Semiconductor Field−Effect Transistor:MISFET)およびショットキーバリアダイオード(Schottky−Barrier Diode:SBD)である。金属−酸化物−半導体電界効果トランジスタ(Metal−Oxide−Semiconductor Field−Effect Transistor:MOSFET)は、MISFETの一種である。また、ジャンクションバリアショットキーダイオード(Juction−barrier Schottky−Barrier Diode:JBS)はSBDの一種である。
SiC−MISFETは、例えば、モータ等の負荷を駆動制御する電力変換器などに用いるスイッチング素子として使用することが検討されている。電力変換器のスイッチング素子としてMISFETを用いる場合、MISFETがオフ状態であるときに、電力変換器に還流電流を流すことがある。一般的なインバータ回路では、MISFETに対して逆並列に外付けで還流ダイオードを接続することにより、還流ダイオードが還流電流の経路となる。SiC−FETをインバータ回路に適用する場合には、還流ダイオードとしてSiCからなるショットキーバリアダイオードが選択される。
しかしながら、トランジスタと、還流ダイオードとして機能するダイオードとをそれぞれ独立した半導体チップで形成すると、総チップ数の増加に伴って実装面積が増大する可能性がある。また、チップ間配線が増えるため、寄生インダクタンスが増加してノイズが発生する可能性がある。このため、トランジスタとダイオードとを1つの半導体チップ内に形成する構成が提案されている。本明細書では、このような構成を有するトランジスタを、「ダイオード内蔵トランジスタ」と称する。
本出願人による特許文献1には、SiCを用いた電界効果トランジスタ、例えばSiC−MISFETにおいて、複数のトランジスタセルが形成された領域の外周に沿って、ショットキー電極を有するダイオードセルを配置させる例が開示されている。この例では、MISFETに対して逆並列に接続されたショットキーバリアダイオードをチップ内に形成できるので、MISFETのスイッチングの機能と還流ダイオードの機能とを併せ持つ半導体チップが得られる。
国際公開第2007/013367号
ダイオード内蔵トランジスタには、さらなる高耐圧化および大電流化が求められている。
本開示の一態様は、金属−絶縁体―半導体電界効果トランジスタ(MISFET)と、ショットキーバリアダイオード(SBD)とを同一素子内に含み、かつ、高耐圧化および大電流化を実現可能な半導体素子を提供する。
本開示の一態様は、表面および裏面を有する基板と、前記基板の前記表面上に配置された第1導電型の第1炭化珪素半導体層とを備える半導体素子であって、複数のトランジスタセルを含むトランジスタ領域と、ショットキー領域と、前記基板の前記表面の法線方向から見て、前記トランジスタ領域と前記ショットキー領域との間に位置する境界領域とを有し、前記複数のトランジスタセルのそれぞれは、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型のボディ領域と、前記ボディ領域に接して配置された第1導電型のソース領域と、少なくとも前記ボディ領域の一部を覆うゲート絶縁膜と、前記ゲート絶縁膜上に配置されたゲート電極と、前記ソース領域と電気的に接続されたソース電極と、前記基板の前記裏面に配置されたドレイン電極とを備え、前記境界領域は、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型の第2ボディ領域と、前記第2ボディ領域上に絶縁膜を介して配置され、かつ、前記ゲート電極と電気的に接続されたゲート接続部とを備え、前記ショットキー領域は、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する、第2導電型のガードリング領域と、前記ガードリング領域の一部および前記第1炭化珪素半導体層上に配置されたショットキー電極とを備え、前記半導体素子は、前記第2ボディ領域と電気的に接続された第1電極と、前記ソース電極および前記第1電極と、前記ショットキー電極とを並列接続する上部配線層と、前記ゲート接続部と電気的に接続されたゲート配線およびゲートパッドとをさらに備え、前記ゲート配線の少なくとも一部および前記ゲートパッドの少なくとも一部は、前記境界領域に配置されており、前記基板の前記表面の法線方向から見て、前記トランジスタ領域、前記ショットキー領域および前記境界領域よりも外側に配置された終端領域をさらに有し、前記終端領域は、前記第1炭化珪素半導体層の表面に位置する少なくとも1つの第2導電型のリング領域を備え、前記基板の前記表面の法線方向から見て、前記ショットキー領域は前記トランジスタ領域を包囲するように配置されており、前記第2ボディ領域は、前記境界領域から前記ショットキー領域に延設され、前記ショットキー電極の一部の下に配置されている半導体素子を含む。
本開示の一態様によると、MISFETとSBDとを同一素子内に含む半導体素子において、高耐圧化および大電流化を実現できる。
実施の形態1の半導体素子の仮想領域を示す概念図である。 (a)は、ゲート配線層(配線およびパッドを含む)および上部配線層の配置を示す上面図であり、(b)は、トランジスタ領域、ショットキー領域および境界領域の配置を示す上面図である。 (a)および(b)は、それぞれ、図2(a)に示す半導体素子100のA−A’線およびB−B’線に沿った断面図である。 (a)および(b)は、それぞれ、半導体素子100の製造方法の一例を説明するための工程断面図である。 (a)および(b)は、それぞれ、半導体素子100の製造方法の一例を説明するための工程断面図である。 (a)および(b)は、それぞれ、半導体素子100の製造方法の一例を説明するための工程断面図である。 (a)および(b)は、それぞれ、半導体素子100の製造方法の一例を説明するための工程断面図である。 (a)および(b)は、それぞれ、半導体素子100の製造方法の一例を説明するための工程断面図である。 (a)および(b)は、それぞれ、半導体素子100の製造方法の一例を説明するための工程断面図である。 (a)および(b)は、それぞれ、半導体素子100の製造方法の一例を説明するための工程断面図である。 (a)および(b)は、それぞれ、実施の形態1の変形例である半導体素子1001のA−A’線およびB−B’線に沿った断面図である。 (a)および(b)は、それぞれ、半導体素子1001の製造方法の一例を説明するための工程断面図である。 (a)および(b)は、それぞれ、実施の形態1の他の変形例である半導体素子1002のA−A’線およびB−B’線に沿った断面図である。 (a)および(b)は、それぞれ、実施の形態1のさらに他の変形例である半導体素子1003のA−A’線およびB−B’線に沿った断面図である。 実施の形態1のさらに他の変形例である半導体素子1004を例示する断面図である。 (a)は、半導体素子1004のゲート配線層および上部配線層の配置を示す上面図であり、(b)は、トランジスタ領域、ショットキー領域および境界領域の配置を示す上面図である。 実施の形態1のさらに他の変形例である半導体素子を例示する断面図である。 実施の形態1のさらに他の変形例である半導体素子を例示する断面図である。 実施の形態1のさらに他の変形例である半導体素子1005を例示する断面図である。
本開示の半導体素子の一態様は、表面および裏面を有する基板と、前記基板の前記表面上に配置された第1導電型の第1炭化珪素半導体層とを備える半導体素子であって、複数のトランジスタセルを含むトランジスタ領域と、ショットキー領域と、前記基板の前記表面の法線方向から見て、前記トランジスタ領域と前記ショットキー領域との間に位置する境界領域とを有し、前記複数のトランジスタセルのそれぞれは、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型のボディ領域と、前記ボディ領域に接して配置された第1導電型のソース領域と、少なくとも前記ボディ領域の一部を覆うゲート絶縁膜と、前記ゲート絶縁膜上に配置されたゲート電極と、前記ソース領域と電気的に接続されたソース電極と、前記基板の前記裏面に配置されたドレイン電極とを備え、前記境界領域は、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型の第2ボディ領域と、前記第2ボディ領域上に絶縁膜を介して配置され、かつ、前記ゲート電極と電気的に接続されたゲート接続部とを備え、前記ショットキー領域は、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する、第2導電型のガードリング領域と、前記ガードリング領域の一部および前記第1炭化珪素半導体層上に配置されたショットキー電極とを備え、前記半導体素子は、前記第2ボディ領域と電気的に接続された第1電極と、前記ソース電極および前記第1電極と、前記ショットキー電極とを並列接続する上部配線層と、前記ゲート接続部と電気的に接続されたゲート配線およびゲートパッドとをさらに備え、前記ゲート配線の少なくとも一部および前記ゲートパッドの少なくとも一部は、前記境界領域に配置されており、前記基板の前記表面の法線方向から見て、前記トランジスタ領域、前記ショットキー領域および前記境界領域よりも外側に配置された終端領域をさらに有し、前記終端領域は、前記第1炭化珪素半導体層の表面に位置する少なくとも1つの第2導電型のリング領域を備え、前記基板の前記表面の法線方向から見て、前記ショットキー領域は前記トランジスタ領域を包囲するように配置されており、前記第2ボディ領域は、前記境界領域から前記ショットキー領域に延設され、前記ショットキー電極の一部の下に配置されている。
前記少なくとも1つのリング領域は、例えば、前記第1炭化珪素半導体層の表面において、間隔を隔てて配置された複数のリング領域である。
本開示の半導体素子の他の態様は、前記上部配線層と前記ソース電極との間、前記上部配線層と前記第1電極との間、ならびに、前記ゲート配線および前記ゲートパッドと前記ゲート電極との間に配置されたバリア金属層をさらに備えてもよい。
前記バリア金属層および前記ショットキー電極は、例えば、同一の金属材料からなる。
前記複数のトランジスタセルのそれぞれは、前記第1炭化珪素半導体層と前記ゲート絶縁膜との間に、第1導電型の第2炭化珪素半導体層をさらに有してもよい。
前記第2炭化珪素半導体層は、さらに、前記ショットキー電極と前記第1炭化珪素半導体層との間に配置されていてもよい。
前記第2炭化珪素半導体層のうち前記ショットキー電極との接触面における第1導電型の不純物濃度は、前記第2炭化珪素半導体層の厚さ方向における平均不純物濃度よりも小さくてもよい。
前記第2炭化珪素半導体層は、例えば、前記第1炭化珪素半導体層上にエピタキシャル成長により形成されている。
前記ショットキー領域は、前記第1炭化珪素半導体層の表面の一部に、前記第2ボディ領域および前記ガードリング領域と間隔を空けて配置された少なくとも1つの第2導電型領域をさらに備えてもよい。前記ショットキー電極は、前記少なくとも1つの第2導電型領域、および、前記第1炭化珪素半導体層における第1導電型の領域の両方と接してもよい。
本開示の一態様の半導体素子の製造方法は、表面および裏面を有する基板と、前記基板の前記表面上に配置された第1導電型の第1炭化珪素半導体層と、複数のトランジスタセルを含むトランジスタ領域と、ショットキー領域と、前記基板の前記表面の法線方向から見て、前記トランジスタ領域と前記ショットキー領域との間に位置する境界領域とを有する半導体素子の製造方法であって、(a)前記第1炭化珪素半導体層を前記表面に有する前記基板を準備する工程であって、前記第1炭化珪素半導体層は、前記トランジスタ領域に、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型のボディ領域と、前記ボディ領域内に接して配置された第1導電型のソース領域とを有し、前記境界領域に、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型の第2ボディ領域を有し、前記ショットキー領域に前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型のガードリング領域を有する、工程と、(b)少なくとも前記ボディ領域上および前記第2ボディ領域上にゲート絶縁膜を形成する工程と、(c)前記ゲート絶縁膜上にゲート電極用導電膜を形成し、前記ゲート電極用導電膜を所定の形状に加工することにより、前記トランジスタ領域における前記ボディ領域上に、前記ゲート絶縁膜を介して配置されたゲート電極と、前記境界領域における前記第2ボディ領域上に、前記ゲート絶縁膜を介して配置されたゲート接続部とを形成する工程であって、前記ゲート接続部は前記ゲート電極と電気的に接続されている、工程と、(d)前記ゲート電極および前記ゲート絶縁膜を覆う層間絶縁膜を形成する工程と、(e)前記層間絶縁膜および前記ゲート絶縁膜に、前記ソース領域を露出するソースコンタクトホールと、前記第2ボディ領域を露出するボディコンタクトホールとを形成する工程と、(f)前記層間絶縁膜上、ならびに前記ソースコンタクトホールおよびボディコンタクトホール内にソース電極用導電膜を形成し、前記ソース電極用導電膜を所定の形状に加工することにより、前記トランジスタ領域における前記ソース領域に接するソース電極と、前記第2ボディ領域に接する第1電極とを形成する工程と、(g)前記層間絶縁膜および前記ゲート絶縁膜に、前記境界領域において前記ゲート接続部を露出するゲートコンタクトホールと、前記ショットキー領域において前記第1炭化珪素半導体層における第1導電型の領域および前記ガードリング領域の一部を露出するショットキーコンタクトホールとを形成する工程と、(h)前記ソース電極上、前記第1電極上、前記ゲートコンタクトホールによって露出した前記ゲート接続部上、ならびに前記ショットキーコンタクトホールによって露出した前記第1導電型の領域および前記ガードリング領域の一部上に、バリア金属層を形成する工程と、(i)前記基板の裏面にドレイン電極を形成する工程と、(j)前記バリア金属層上に、配線用金属膜を形成し、前記配線用金属膜を所定の形状に加工することにより、前記トランジスタ領域および前記ショットキー領域に位置し、かつ、前記ソース電極および前記第1電極と前記ショットキーコンタクトホールによって露出した前記第1導電型の領域および前記ガードリング領域の一部上に形成された前記バリア金属層とを並列接続する上部配線層と、前記境界領域に位置し、かつ、前記ゲート接続部と電気的に接続されたゲート配線およびゲートパッドとを形成する工程とを包含する。
本開示の他の一態様の半導体素子の製造方法は、表面および裏面を有する基板と、前記基板の前記表面上に配置された第1導電型の第1炭化珪素半導体層と、複数のトランジスタセルを含むトランジスタ領域と、ショットキー領域と、前記基板の前記表面の法線方向から見て、前記トランジスタ領域と前記ショットキー領域との間に位置する境界領域とを有する半導体素子の製造方法であって、(A)前記第1炭化珪素半導体層を前記表面に有する前記基板を準備する工程であって、前記第1炭化珪素半導体層は、前記トランジスタ領域に、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型のボディ領域と、前記ボディ領域内に接して配置された第1導電型のソース領域とを有し、前記境界領域に、前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型の第2ボディ領域を有し、前記ショットキー領域に前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型のガードリング領域を有する、工程と、(B)前記第1炭化珪素半導体層上に、第2導電型の第2炭化珪素半導体層を形成する工程と、(C)前記第2炭化珪素半導体層のうち前記ボディ領域上および前記第2ボディ領域上に位置する部分上にゲート絶縁膜を形成する工程と、(D)前記ゲート絶縁膜上にゲート電極用導電膜を形成し、前記ゲート電極用導電膜を所定の形状に加工することにより、前記トランジスタ領域における前記ボディ領域上に、前記ゲート絶縁膜を介して配置されたゲート電極と、前記境界領域における前記第2ボディ領域上に、前記ゲート絶縁膜を介して配置されたゲート接続部とを形成する工程であって、前記ゲート接続部は前記ゲート電極と電気的に接続されている、工程と、(E)前記ゲート電極および前記ゲート絶縁膜を覆う層間絶縁膜を形成する工程と、(F)前記層間絶縁膜および前記ゲート絶縁膜に、前記ソース領域を露出するソースコンタクトホールと、前記第2ボディ領域を露出するボディコンタクトホールとを形成する工程と、(G)前記層間絶縁膜上、ならびに前記ソースコンタクトホールおよびボディコンタクトホール内にソース電極用導電膜を形成し、前記ソース電極用導電膜を所定の形状に加工することにより、前記トランジスタ領域における前記ソース領域に接するソース電極と、前記第2ボディ領域に接する第1電極とを形成する工程と、(H)前記層間絶縁膜および前記ゲート絶縁膜に、前記境界領域において前記ゲート接続部を露出するゲートコンタクトホールと、前記ショットキー領域において前記第2炭化珪素半導体層を露出するショットキーコンタクトホールとを形成する工程と、(I)前記ソース電極上、前記第1電極上、前記ゲートコンタクトホールによって露出した前記ゲート接続部上、前記ショットキーコンタクトホールによって露出した前記第2炭化珪素半導体層上に、バリア金属層を形成する工程と、(J)前記基板の裏面にドレイン電極を形成する工程と(K)前記バリア金属層上に、配線用金属膜を形成し、前記配線用金属膜を所定の形状に加工することにより、前記トランジスタ領域および前記ショットキー領域に位置し、かつ、前記ソース電極および前記第1電極と前記ショットキーコンタクトホールによって露出した前記第2炭化珪素半導体層上に形成された前記バリア金属層とを並列接続する上部配線層と、前記境界領域に位置し、かつ、前記ゲート接続部と電気的に接続されたゲート配線およびゲートパッドとを形成する工程とを包含する。
(実施の形態1)
以下、本開示による実施の形態1の半導体素子を説明する。ここでは、ダイオード内蔵SiC−MISFETを例に説明するが、本実施形態の半導体素子は、ダイオードと電界効果トランジスタとが1つの素子内に、同一の炭化珪素半導体層を用いて形成された素子であればよい。
本実施形態の半導体素子は、例えば、複数のユニットセル(トランジスタセル)から構成され、かつ、ショットキーバリアダイオード(SBD)を内蔵するSiC−MISFETである。一般に、SBDは電極としてアノードおよびカソード、MISFETはソース、ドレインおよびゲートを有するが、本実施形態の半導体素子では、SBDのアノードとMISFETのソースとを共通とし、SBDのカソードとMISFETのドレインとを共通とする。
図1は、本実施形態の半導体素子における仮想的な領域を例示する上面図である。本実施形態の半導体素子は、複数のトランジスタセルを含むトランジスタ領域100Tと、ショットキーバリアダイオードを含むショットキー領域100Sと、境界領域100Gとに仮想的に分けられる。境界領域100Gにはゲート配線およびゲートパッドが設けられる。この例では、トランジスタ領域100Tを包囲するようにショットキー領域100Sが配置されている。境界領域100Gは、トランジスタ領域100Tとショットキー領域100Sとの間に配置されている。半導体素子は、終端領域100Eをさらに有していてもよい。終端領域100Eは、トランジスタ領域100T、境界領域100G、およびショットキー領域100Sの外側に配置される。図1に示す例においては、終端領域100Eは、ショットキー領域100Sの外側に配置されている。
以下、本実施形態の半導体素子をより具体的に説明する。
図2および図3は、本実施形態の一例である半導体素子100の構成を示す図である。図2(a)は、半導体素子100のゲート配線層および上部配線層の配置を示す模式的な上面図である。図2(b)は、半導体素子100におけるトランジスタ領域100T、ショットキー領域100Sおよび境界領域100Gを示す模式的な上面図である。
図2(a)に示すように、半導体素子100は、複数のトランジスタセルにおけるゲート電極に電気的に接続されたゲート配線層114と、複数のトランジスタセルにおけるソース電極およびショットキー電極に電気的に接続された上部配線層112とを有している。上部配線層112とゲート配線層114とは互いに絶縁されている。ゲート配線層114は、ゲートパッド114Pと、ゲートパッド114Pから延びるゲート配線114Lとを含む。ゲートパッド114Pとゲート配線114Lとは電気的に接続されている。上部配線層112、ゲートパッド114Pおよびゲート配線114Lは同一の導電層から形成されていてもよい。
なお、本明細書では、「ゲート配線層」とは、各トランジスタセルのゲート電極同士を接続するための配線層であればよく、ゲートパッドだけでなく、ゲートパッドから延伸されたゲート配線をも含み得る。ゲート配線は、隣接するトランジスタセルのゲート電極をつなぐように延びる。ゲート配線の幅はゲートパッドの幅よりも小さい。ゲート配線の幅は、例えば、各トランジスタセルのセルピッチ以上、ゲートパッドの短辺の長さ以下である。各トランジスタセルのセルピッチは、例えば5μmであり、ゲートパッドの短辺の長さは、例えば200μmである。同様に、「上部配線層」とは、各トランジスタセルのソース電極同士を接続するための配線層であればよく、ソースパッドだけでなく、ソースパッドから延伸されたソース配線をも含み得る。ソースパッドおよびソース配線と、ショットキー電極のアノード(「上部電極」と呼ぶ)とが一体的に形成されて、上部配線層を構成していてもよい。ゲートパッドおよびソースパッドは、例えばワイヤボンディングのためのパッドである。
図2(a)および(b)から分かるように、半導体素子100では、境界領域100Gは、トランジスタ領域100Tとショットキー領域100Sとの境界の一部に配置されている。トランジスタ領域100Tの一部は、ショットキー領域100Sと隣接している。このため、トランジスタ領域100Tとショットキー領域100Sとが隣接している領域において、トランジスタ領域100Tのソースとショットキー領域100Sのアノードとを上部配線層112で接続することができる。また、境界領域100Gには、ゲート配線114Lの少なくとも一部およびゲートパッド114Pの少なくとも一部が配置されている。
図示する例では、上部配線層112は、トランジスタ領域100Tの少なくとも一部およびショットキー領域100Sの少なくとも一部に配置されている。上部配線層112は、トランジスタ領域100Tに配置され、ソース電極に電気的に接続される第1部分と、ショットキー領域100Sに配置され、ショットキー電極に電気的に接続される第2部分とを一体的に含むパターンを有していてもよい。ゲート配線層114のうちゲート配線114Lの一部およびゲートパッド114Pは境界領域100Gに配置されている。ゲート配線114Lの一部はトランジスタ領域100Tに配置されている。
続いて、図3を参照しながら、半導体素子100の断面構造を説明する。
図3(a)および(b)は、それぞれ、図2(a)に示す半導体素子100のA−A’線およびB−B’線に沿った断面図である。図3(a)は、半導体素子100におけるトランジスタ領域100T、境界領域100G、ショットキー領域100S、終端領域100Eに対応する断面、図3(b)は、トランジスタ領域100T、ショットキー領域100S、終端領域100Eに対応する断面を示している。図3(a)に示す断面では、トランジスタ領域100Tとショットキー領域100Sとの間に境界領域100Gが配置されている。これに対し、図3(b)に示す断面では、トランジスタ領域100Tとショットキー領域100Sとは隣接している。
半導体素子100は、基板101と、基板101の主面上に位置する第1導電型の第1炭化珪素半導体層(ドリフト層)102とを備える。ここでは、第1導電型がn型であり第2導電型がp型である例を説明する。なお、第1導電型がp型であり、第2導電型がn型であってもよい。基板101として、例えばn+型の導電性を有する炭化珪素基板を用いる。第1炭化珪素半導体層102は、n-型である。nまたはpの導電型の右肩の「+」または「−」は、不純物の相対的な濃度を表している。「n+」は「n」よりもn型不純物濃度が高いことを意味し、「n-」は「n」よりもn型不純物濃度が低いことを意味している。
トランジスタ領域100Tには、複数のトランジスタセル100uが配列されている。これらのトランジスタセル100uは並列接続されている。1つのトランジスタセル100uは、基板101の主面の法線方向から半導体素子100を見たとき、例えば正方形状を有している。トランジスタセル100uは、長方形、または四角形以外の多角形形状を有していてもよいし、一方向に伸びた縦長のユニットセルであってもよい。
各トランジスタセル100uは、第1炭化珪素半導体層102の表面の少なくとも一部に位置する第2導電型のボディ領域103と、ボディ領域103内に位置する第1導電型のソース領域104と、少なくともボディ領域103の一部を覆うゲート絶縁膜107と、ゲート電極108と、ソース電極109と、ドレイン電極110とを備える。第1炭化珪素半導体層102のうち、ボディ領域103および第2ボディ領域103dなどの第2導電型領域が形成されていない第1導電型の領域はドリフト領域102dとなる。本実施形態において、ボディ領域103はp型であり、ソース領域104はn+型である。
ゲート絶縁膜107は、少なくとも、各トランジスタセル100uにおいて第1炭化珪素半導体層102の表面に露出したボディ領域103上を覆っている。この例では、ゲート絶縁膜107はボディ領域103と接している。なお、後述するように、ボディ領域103とゲート絶縁膜107との間にチャネル層が設けられていてもよい。
ゲート電極108は、ボディ領域103上にゲート絶縁膜107を介して配置されている。ここでは、ゲート電極108は、第1炭化珪素半導体層102の表面において、ボディ領域103のうち、第1導電型のドリフト領域102dとソース領域104とに挟まれた部分の上方に位置している。ボディ領域103のうち、ドリフト領域102dとソース領域104とに挟まれた部分は、チャネルが形成される領域に相当する。
ソース電極109は、第1炭化珪素半導体層102上に設けられ、ソース領域104と電気的に接続されている。この例では、ソース電極109はソース領域104に対してオーミック接合を形成している。ボディ領域103内には、ボディ領域103よりも高い不純物濃度を有する第2導電型のコンタクト領域105が設けられていてもよい。本実施形態において、コンタクト領域105はp+型である。コンタクト領域105は、ボディ領域103に接している。ソース電極109は、ソース領域104およびコンタクト領域105の両方と接するように配置され、ソース領域104およびコンタクト領域105の両方と電気的に接続されている。ソース電極109は、ソース領域104およびコンタクト領域105の両方とオーミック接合を形成していてもよい。なお、ボディ領域103の不純物濃度が十分に大きい場合には、コンタクト領域105を設けなくてもよい。この場合、ソース領域104に、ボディ領域103を露出するコンタクトトレンチを設け、トレンチ内にソース電極109を形成することによりボディ領域103とソース電極109とを直接接触させてもよい。
ドレイン電極110は、基板101の主面と反対側の表面(裏面)に配置されている。ドレイン電極110上に裏面電極113が形成されていてもよい。
本実施形態では、トランジスタ領域100Tにおいて、ゲート電極108を覆うように層間絶縁膜111が形成されている。層間絶縁膜111上には、上部配線層112が設けられている。上部配線層112は、層間絶縁膜111に設けられたコンタクトホール内において、各トランジスタセル100uのソース電極109に電気的に接続されている。図示するように、層間絶縁膜111およびコンタクトホール内にバリア金属層115が設けられていてもよい。この場合、層間絶縁膜111上にバリア金属層115を介して上部配線層112が設けられる。上部配線層112は、バリア金属層115を介してソース電極109に接続されている。
境界領域100Gは、第1炭化珪素半導体層102の表面の少なくとも一部に位置する第2導電型の第2ボディ領域103dと、ゲート電極108と電気的に接続されたゲート接続部108gと、ゲート接続部108gと電気的に接続されたゲート配線層114とを有する。本実施形態では、ゲート電極108とゲート接続部108gとは、同一の導電膜から形成されている。また、本実施形態において、第2ボディ領域103dはp型である。基板101の主面の法線方向から見て、第2ボディ領域103dは、複数のトランジスタセル100uを囲むように形成される。ゲート配線層114は、ゲートパッド114Pと、ゲートパッド114Pから延びるゲート配線114Lとを含む。
第2ボディ領域103dは少なくとも境界領域100Gに配置されていればよい。本実施形態では、第2ボディ領域103dは、トランジスタ領域100Tから境界領域100Gを横切ってショットキー領域100Sまで延びている。第2ボディ領域103dは、トランジスタセル100uにおけるボディ領域103とは離間しているほうが好ましい。第2ボディ領域103dはボディ領域103と同様のプロセスで同時に形成されてもよい。この場合、第2ボディ領域103dおよびボディ領域103の不純物濃度および深さはほぼ同じであってもよい。
ゲート接続部108gは、第2ボディ領域103d上に絶縁膜を介して配置されている。本実施形態において、ゲート接続部108gは、第2ボディ領域103d上にゲート絶縁膜107を介して配置されている。本実施形態では、境界領域100Gに隣接するトランジスタセル100uのゲート電極108が境界領域100Gに延設され、ゲート接続部108gとして機能している。ゲート配線層114は、ゲート接続部108g上に配置されている。ゲート配線層114と層間絶縁膜111との間には、バリア金属層115が配置されていてもよい。ゲート配線層114は、バリア金属層115を介して、ゲート電極108およびゲート接続部108gと電気的に接続されている。なお、図3(b)に示す例では、バリア金属層115はトランジスタ領域100Tとショットキー領域100Sとの境界で分離しているが、繋がっていてもよい。
第2ボディ領域103d上には、第2ボディ領域103dと電気的に接続された第1電極109aが設けられている。第1電極109aは、第2ボディ領域103dと直接接していてもよいし、第2ボディ領域103dに設けられたコンタクト領域105と接していてもよい。トランジスタセル100uのソース電極109と第1電極109aとは上部配線層112に並列に接続される。
なお、後述する例のように、第1電極109aは、トランジスタ領域100Tに配置されていてもよい。加えて、基板101の主面の法線方向から見て、ゲート配線層114よりもショットキー電極151側にも配置されていてもよい。第1電極109aは、例えばショットキー領域100S内にも配置されていてもよい。
ショットキー領域100Sは、第1炭化珪素半導体層102の表面の少なくとも一部に位置する、第2導電型のガードリング領域103rと、第1炭化珪素半導体層102の上面に対してショットキー接合を形成するショットキー電極151とを有する。本実施形態において、ガードリング領域103rはp型である。基板101の主面の法線方向から見て、ガードリング領域103rは、トランジスタ領域100Tを囲むように形成されていてもよい。ガードリング領域103rは、ボディ領域103および第2ボディ領域103dと同様のプロセスで同時に形成されてもよい。ショットキー電極151は、第1炭化珪素半導体層102の表面のうち、第2ボディ領域103dとガードリング領域103rとの間に位置する第1導電型の領域と接している。ショットキー電極151のガードリング領域側外側の端部151bは、ガードリング領域103rの一部と接している。本実施形態において、ショットキー電極151のガードリング領域側は、終端領域100E側に相当する。ショットキー電極151のトランジスタ領域100T側の端部151aは、境界領域100Gから延設された第2ボディ領域103dの一部と接していてもよい。この例では、ショットキー電極151は、第2ボディ領域103dとガードリング領域103rとを跨ぐように配置されている。
ショットキー電極151の上には、アノードとして機能する上部電極112Sが配置される。上部電極112Sは、上部配線層112と同じ導電層から同時に形成されてもよい。上部電極112Sは、上部配線層112の一部であってもよい。ソース電極109、第1電極109aおよびショットキー電極151は、上部配線層112により並列接続されている。
本実施形態では、第2ボディ領域103dの一部および第1電極109aは、トランジスタ領域100Tの端部においてダイオードセル100dを構成している。ダイオードセル100dの電極構造はトランジスタセル100uとほぼ同様であってもよい。ただし、ダイオードセル100dは、第2ボディ領域103d内にソース領域104を有していない。また、ダイオードセル100dはゲート電極108を有していなくてもよい。第1電極109aは、第2ボディ領域103dに対してオーミック接合を形成していてもよい。第1電極109aと第2ボディ領域103dとの接触がオーミック接触となるように、トランジスタセル100uと同様のコンタクト領域105を第2ボディ領域103d内に設けてもよい。
複数のダイオードセル100dは、トランジスタ領域100T内において、複数のトランジスタセル100uの外側に配置されていてもよい。ここでは、複数のダイオードセル100dは、基板101の主面の法線方向から見て、トランジスタセル100uが形成された領域を囲むように配列されている。各ダイオードセル100dは、隣接するダイオードセルと、第2ボディ領域103dで結合されていてもよい。
半導体素子100は、基板101の主面の法線方向から見て、トランジスタ領域100T、境界領域100Gおよびショットキー領域100Sの外側に、終端領域100Eを有していてもよい。終端領域100Eでは、第1炭化珪素半導体層102は層間絶縁膜111で覆われている。また、第1炭化珪素半導体層102の表面に、ガードリング領域103rを囲むように、複数の第2導電型リング103fが間を隔てて形成されていてもよい。第2導電型リング103fは、ボディ領域103と同様のプロセスで同時に形成されていてもよい。
本実施形態によると、トランジスタセルのデザインを変更することなく、SBDを内蔵したトランジスタ素子を提供できる。SBDはMISFETに対して逆並列に接続されており、1チップでMISFETのスイッチング機能と還流ダイオードの機能とを併せ持つことが可能になる。還流ダイオードとして機能し得るSBDを内蔵させることにより、インバータ回路などを構成する際に還流ダイオードを別個に配置する必要がなくなるので、回路面積を低減できる。
また、以下に詳しく説明するように、従来よりもアバランシェ耐量を高めることが可能になる。
従来のMISFETでは、トランジスタ領域100Tよりも周縁部側に配置された第2導電型領域にアバランシェ電流が流れる結果、第2導電型領域上のゲート絶縁膜に絶縁破壊が生じる可能性がある。これに対し、半導体素子100では、基板101の主面の法線方向から見て、トランジスタ領域100Tよりも外側(周縁部側)にSBDが配置されており、ショットキー電極151の外側の端部がガードリング領域103rと接している。これにより、アバランシェ電流の一部を、ガードリング領域103rからショットキー電極151を介して上部配線層112に流すことができる。従って、ゲート絶縁膜のうち第2導電型領域上に位置する部分の絶縁破壊を抑制できる。本実施形態では、ゲート絶縁膜のうち第2ボディ領域103d上に位置する部分の絶縁破壊を抑制できる。また、基板101の主面の法線方向から見て、SBDはゲート配線層114よりも外側(周縁部側)に配置されているので、ゲート絶縁膜のうちゲート配線層114の下方に位置する部分の絶縁破壊も抑制され得る。
ショットキー電極151のトランジスタ領域100T側の端部は、第2ボディ領域103dと接していてもよい。これにより、ショットキー電極151端の電界集中が緩和され、ショットキー電極151端での素子破壊が抑制できる。なお、半導体素子100における充放電電流の一部はショットキー電極151を介して上部配線層112に流すことができるので、ゲート絶縁膜の破壊をより効果的に抑制できる。
半導体素子100は、ゲート配線114Lを備えているため、次のような利点を有する。一般に、半導体素子はゲートパッドを有していればよく、ゲート配線の有無は半導体素子の大きさによる。比較的小さい半導体素子には、ゲート配線は形成されていない。各トランジスタセルのゲート電極のそれぞれは並列に配置されており、すべての電気信号はゲートパッドからゲート電極に送られる。ゲート配線が存在しない場合には、ゲートパッドに近いトランジスタセルのゲート電極が信号を受け取った後に、より遠いトランジスタセルのゲート電極が信号を受け取る。ゲート電極が、例えば、金属配線よりも抵抗の高いポリシリコンから構成されている場合に、このような信号の遅延が問題となる場合があるしたがって、ゲート電極だけでゲート信号を伝播させると、ゲートパッドからの距離に応じて信号遅延が発生し、その結果、半導体素子のスイッチング速度が低下するおそれがある。これに対し、本実施形態の半導体素子100は、ゲートパッド114Pから延びるゲート配線114Lを有している。ゲート配線114Lを導入することにより、ゲートパッド114Pから送られるゲート信号は、ゲート電極108より低抵抗なゲート配線114L側を伝播するので、ゲートパッド114Pから遠いトランジスタセル100uのゲート電極108への信号遅延を低減できる。例えば、大電流通電が必要な場合には、半導体素子100のチップサイズを大きくするが、チップサイズを大きくしても、ゲート配線114Lが形成されていると、上述のようにゲート信号の遅延を抑制できる。従って、ゲート配線114Lを適切に配置することにより、ゲート信号の遅延を抑制しつつ、半導体素子100の大面積化を実現できる。本実施形態の半導体素子100は、ゲート配線114Lがゲートパッド114Pから最も遠いトランジスタセルの近傍まで延びているので、信号遅延をより効果的に抑制できる。半導体素子100は、例えば、10A以上の大電流通電が要求される用途にも適用可能である。
さらに、ゲート配線層114の少なくとも一部を、第2ボディ領域103d上に配置するので、ゲート配線114Lをトランジスタ領域100Tの周辺に沿って延設させることができる。これにより、高いスイッチング速度を確保しつつ、ゲート配線114Lの下方に位置するゲート絶縁膜の破壊を抑制できる。
トランジスタセル100uの構成は上記の構成に限定されない。図示しないが、ボディ領域103が形成されていない第1炭化珪素半導体層102の表面の領域の少なくとも一部に、第1炭化珪素半導体層102の不純物濃度よりも高い第1導電型の不純物を導入してもよい。これにより、ボディ領域103が形成されていない第1炭化珪素半導体層102の表面の領域の電気抵抗を低減できる。
後述するように、ショットキー領域100Sは、基板101の主面の法線方向から見て、第2ボディ領域103dとガードリング領域103rとの間に、第2導電型領域(図示しない)をさらに有していてもよい。ショットキー電極151は、第1導電型のドリフト領域102dおよび第2導電型領域の両方と接するように設けられてもよい。これにより、JBS構造を有するショットキーバリアダイオードが得られる。
次に、半導体素子100の動作について説明する。半導体素子100はゲート配線層114、上部配線層112および裏面電極113を有する縦型の3端子パワーデバイスである。ゲート配線層114はゲート電極108と接続され、上部配線層112はソース電極109および第1電極109aと接続され、裏面電極113はドレイン電極110と接続されている。以下の説明では、ゲート配線層、上部電極層および裏面電極をそれぞれ、ゲート、ソースおよびドレインと称する。
まず、半導体素子100のオン状態について説明する。上述したように、半導体素子100はSBDを内蔵するMISFETである。MISFETの閾値電圧をVthとする。ボディ領域103の濃度、ゲート絶縁膜107の厚さ、ゲート電極108の材質等を適切に選択することにより、閾値電圧Vthは正の値を有する。例えば、ソースを0Vとし、ソースに対するゲートの電圧VgsをVth以上に設定し、ソースに対するドレインの電圧Vdsを正にバイアスすることにより、トランジスタ領域100T内の複数のトランジスタセル100uでは、ドレインからソースに向かって電流が流れる。ダイオードセル100dにおいては、Vdsが正の場合、第2導電型の第2ボディ領域103dと第1導電型の第1炭化珪素半導体層102との間に形成されるpn接合は逆バイアス状態となるため、電流は流れない。また、ショットキー領域100Sにおいては、ショットキー電極151と第1導電型の第1炭化珪素半導体層102との間に形成されるショットキー接合が逆バイアス状態となるため、電流は流れない。つまり、半導体素子100がオン状態のとき、そのオン電流は、実効的にはトランジスタセル100uでのみ流れている。
次に、半導体素子100のオフ状態について説明する。Vdsが正の場合であっても、VgsをVthよりも小さい電圧に設定すると、トランジスタ領域100Tに流れていた電流は遮断される。ここでVdsを大きくすると、トランジスタ領域100Tおよび境界領域100Gにおける、第2導電型のボディ領域103および第2ボディ領域103dと、第1導電型のドリフト領域102dとの間にそれぞれ形成されるpn接合は逆バイアス状態となる。このため、pn接合界面から空乏層が拡がり、Vdsが高電圧状態であっても電流を遮断する。また、ショットキー領域100Sにおいては、ショットキー電極151と第1導電型の第1炭化珪素半導体層102との間に形成されるショットキー接合も逆バイアス状態となる。このため、ショットキー接合界面から空乏層が拡がって、Vdsが高電圧状態であっても電流を遮断する。第2ボディ領域103dおよびガードリング領域103rは、ショットキー電極151が第1炭化珪素半導体層102と接する端部151aおよび151bにおける電界集中を緩和する働きを有する。第2導電型リング103fはガードリング領域103rにおける電界集中を緩和する働きを有する。
次に、Vdsが負の場合について説明する。例えば、ソースを0Vとし、ソースに対するゲートの電圧Vgsを0V未満に設定し、ソースに対するドレインの電圧Vdsを負にバイアスする。このとき、第2導電型のボディ領域103および第2ボディ領域103dと、第1導電型のドリフト領域102dとの間にそれぞれ形成されるpn接合は順バイアス状態となる。ショットキー電極151と第1導電型の第1炭化珪素半導体層102との間に形成されるショットキー接合も順バイアス状態となる。第1炭化珪素半導体層102として4H−SiCを選択した場合、pn接合は約3Vの順バイアスでpn電流が流れ始める。また、ショットキー電極として例えばTiを選択した場合、ショットキー接合は0.8V程度の順バイアスでショットキー電流が流れ始める。したがって、Vdsが負の場合、pn接合がオン状態にならない程度の|Vds|(例えばVds=−1.5V)を印加することにより、ショットキー領域100Sにのみショットキー電流を流すことができる。
このように、本実施形態の半導体素子100は、Vds>0の場合はMISFETとして機能し、Vds<0の場合はSBDとして機能する。
次に、本実施形態における半導体素子100の製造方法について説明する。図4から図12の(a)および(b)は、それぞれ、半導体素子100の製造方法を説明するための工程断面図であり、図2(a)におけるA−A’線に沿った断面構造を示している。
まず、基板101を準備する。基板101は、例えば、抵抗率が0.02Ωcm程度である低抵抗のn型4H−SiCオフカット基板である。
図4(a)に示すように、基板101の上に高抵抗でn型の第1炭化珪素半導体層102をエピタキシャル成長により形成する。第1炭化珪素半導体層102を形成する前に、基板101上に、n型で高不純物濃度のSiCによって構成されるバッファー層を堆積してもよい。バッファー層の不純物濃度は、例えば、1×1018cm-3であり、バッファー層の厚さは、例えば、1μmである。第1炭化珪素半導体層102は、例えば、n型4H−SiCによって構成され、不純物濃度および厚さは、それぞれ、例えば1×1016cm-3および10μmである。
次に、図4(b)に示すように、第1炭化珪素半導体層102の上に、例えばSiO2からなるマスク201を形成し、例えばAl(アルミニウム)イオンを第1炭化珪素半導体層102に注入する。これにより、トランジスタセルを画定するボディ注入領域103’、第2ボディ注入領域103d’、ガードリング注入領域103r’およびリング注入領域103f’を同時に形成する。例えば、注入されるAlイオンの濃度は2×1017cm-3程度であり、注入されるAlイオンの深さが0.5から1.0μm程度となるように、イオン注入のエネルギーとドーズ量とを調整する。ここでいう深さとは、第1炭化珪素半導体層102の表面から、注入されたAlイオンの濃度が第1炭化珪素半導体層102のn型不純物濃度と等しくなる位置までの距離に相当する。基板101の主面に垂直な方向における不純物濃度の深さプロファイルは、ボディ注入領域103’、第2ボディ注入領域103d’、ガードリング注入領域103r’およびリング注入領域103f’で同じとなる。
次に、図5(a)に示すように、イオン注入後、マスク201を除去し、例えばSiO2からなるマスク202を形成する。マスク202を用いてトランジスタセル100uを画定するボディ注入領域103’に、例えば窒素をイオン注入することによってソース注入領域104’を形成する。ソース注入領域104’の深さは例えば250nm、平均的な不純物濃度は約5×1019cm-3となるように、イオン注入プロファイルを調整する。イオン注入後、マスク202を除去する。
なお、マスク201の一部を残したままで、さらにSiO2等を堆積し、部分的に加工することにより、マスク201の側壁にマスクとしてサイドウォールを形成してもよい。この場合、マスク201およびサイドウォールをマスク202として用いることができる。つまり、ボディ注入領域103’に対してソース注入領域104’を自己整合的に形成する、いわゆるセルフアラインプロセスを適用することができる。
次いで、図5(b)に示すように、マスク203を形成した後に、第1炭化珪素半導体層102にAlを注入することによって、コンタクト注入領域105’を形成する。コンタクト注入領域105’はボディ注入領域103’内に、ボディ注入領域103’と接するように配置される。コンタクト注入領域105’の深さは例えば400nm、平均的な不純物濃度は約1×1020cm-3である。コンタクト注入領域105’の深さは、例えば5×1017cm-3の不純物濃度が得られる深さとする。この後、マスク203を除去する。
このとき、基板101の主面の法線方向から見て、トランジスタ領域100Tの各トランジスタセル100u内において、第1炭化珪素半導体層102のうちボディ注入領域103’、ソース注入領域104’およびコンタクト注入領域105’のいずれも形成されていない領域をJFET領域102jとする。JFET領域102jに対し、基板101の主面の法線方向から見て、JFET領域102jを囲むように、第1導電型の注入領域(図示せず)を形成してもよい。この注入領域は、例えばNをイオン注入して形成する。この注入領域は、基板101の垂直方向に対して、第1炭化珪素半導体層102の表面から、ボディ注入領域103’より深い位置まで形成されてもよい。この注入領域の平均不純物濃度は、例えば、約1×1017cm-3に設定される。
これらのイオン注入後に、第1炭化珪素半導体層102に注入された不純物を活性化させる高温熱処理(活性化アニール)を行う。これにより、図6(a)に示すように、ボディ領域103、第2ボディ領域103d、ガードリング領域103r、第2導電型リング103f、ソース領域104およびコンタクト領域105が得られる。活性化アニールは、例えば第1炭化珪素半導体層102上にカーボン膜を200nm程度堆積し、ArまたはN2等の不活性ガス雰囲気中または真空中にて、約1700℃で30分程度熱処理することで実現できる。
活性化アニール後の第1炭化珪素半導体層102の表面清浄化のために、第1炭化珪素半導体層102の表層を除去してもよい。例えば第1炭化珪素半導体層102の表層を50nm除去した場合、ボディ領域103、第2ボディ領域103d、ガードリング領域103r、第2導電型リング103f、ソース領域104およびコンタクト領域105の深さは、全て50nmほど小さくなる。ここでは、例えば熱酸化後にその熱酸化膜を除去する工程(犠牲酸化工程)と、後に示すゲート酸化膜を形成する工程を行う。これにより、例えば第1炭化珪素半導体層102の表面は約50nm除去される。
次に、図6(b)に示すように、ゲート絶縁膜107およびゲート電極108を形成する。ここでは、第1炭化珪素半導体層102の表面部分を犠牲酸化で除去した後、熱酸化工程を行うことによって、第1炭化珪素半導体層102表面にゲート絶縁膜107を形成する。この後、ゲート絶縁膜107上に、ゲート電極用導電膜として、例えばリンを7×1020cm-3程度ドーピングした多結晶シリコン膜を堆積する。多結晶シリコン膜の厚さは、例えば、500nm程度である。続いて、マスク(不図示)を用いて、多結晶シリコン膜をドライエッチングすることにより、所望の領域にゲート電極108およびゲート接続部108gを形成する。
続いて、図7(a)に示すように、ゲート電極108の表面、ゲート接続部108gの表面および第1炭化珪素半導体層102の表面を覆うように、例えばSiO2を用いた層間絶縁膜111をCVD法によって堆積する。層間絶縁膜111の厚さは、例えば1μmである。
次に、図7(b)に示すように、フォトレジストによるマスク(不図示)を用いて、ドライエッチングにより、コンタクト領域105の表面上と、ソース領域104の一部の表面上とにある層間絶縁膜111およびゲート絶縁膜107を除去する。これにより、層間絶縁膜111およびゲート絶縁膜107に、各トランジスタセルのソース領域104およびコンタクト領域105を露出するソースコンタクトホール111c、および、各ダイオードセルのコンタクト領域105を露出するボディコンタクトホール111cgが形成される。
この後、図8(a)に示すように、ソースコンタクトホール111c内にソース電極109、ボディコンタクトホール111cg内に第1電極109aを形成する。ここでは、ソース電極用導電膜として、例えば厚さ100nm程度のNi膜を、層間絶縁膜111上、ならびにソースコンタクトホール111cおよびボディコンタクトホール111cg内に形成する。次いで、不活性雰囲気中で、例えば950℃の温度で、1分間の熱処理を行う。これにより、Ni膜と第1炭化珪素半導体層102とが反応し、Niシリサイドで構成されるソース電極109および第1電極109aが得られる。次いで、エッチングによって、層間絶縁膜111上のNi膜を除去する。
次に、基板101の裏面にドレイン電極110を形成する。ここでは、例えば基板101の裏面全体にNi膜を堆積し、上記と同様の熱処理を行うことによって、基板101の裏面とNi膜とを反応させ、Niシリサイドからなるドレイン電極110を形成する。
次に、図9(a)に示したように、フォトレジストによるマスク(図示しない)を形成後、境界領域100Gにおけるゲート接続部108gを露出し、ショットキー領域100Sにおけるドリフト領域102dおよびガードリング領域103rの一部を露出するよう、層間絶縁膜111の一部およびゲート絶縁膜107の一部をエッチングする。これにより、ゲートコンタクトホール114cおよびショットキーコンタクトホール151cを形成する。
次に、図9(b)に示すように、ショットキーコンタクトホール151c内にショットキー電極151を形成する。ここでは、まず、層間絶縁膜111を有する側の表面にフォトレジストを塗布し、ショットキー領域100Sにおいて、ショットキーコンタクトホール151cよりもわずかに広いレジスト開口を形成する。次いで、レジスト開口によって暴露された第1炭化珪素半導体層102表面をバッファードフッ酸等で清浄する。清浄した後、レジスト開口の上方から、ショットキー電極となるTi膜(厚さ:例えば200nm)を形成する。この後、リフトオフプロセスを用いて、Ti膜のうちレジスト上に位置する部分を除去する。これにより、ショットキーコンタクトホール151c内にショットキー電極151が形成される。ショットキー電極151は、第2ボディ領域103d、ガードリング領域103rおよびこれらの間に位置するドリフト領域102dに接している。この例では、ショットキー電極151の端部は層間絶縁膜111上にある。ただし、ショットキー電極151の端部が第2ボディ領域103dおよびガードリング領域103r上にあってもよい。
続いて、図10(a)に示すように、ソースコンタクトホール111c、ゲートコンタクトホール114c、およびショットキーコンタクトホール151c内において、それぞれソース電極109、ゲート接続部108g、およびショットキー電極151を覆うように、バリア金属層(例えばTiおよびTiNを含む積層膜)115を形成する。ここでは、まず、層間絶縁膜111上ならびにソースコンタクトホール111c、ゲートコンタクトホール114c、およびショットキーコンタクトホール151c内に、例えばTiを下層とし、TiNを上層とする積層膜を堆積する。ここでは、下層のTi膜は、ソース電極109、ゲート接続部108gおよびショットキー電極151と接するように配置される。次いで、フォトレジストによるマスク(非図示)を形成し、積層膜のエッチングを行う。これにより、バリア金属層115が所望の位置に形成される。バリア金属層115におけるTi膜の厚さは例えば20nm、TiN膜の厚さは例えば40nmである。
続いて、図10(b)に示すように、上部配線層112およびゲート配線層114を形成する。ここでは、バリア金属層115および層間絶縁膜111の上に、配線用金属膜として、アルミニウム膜(厚さ:例えば4μm程度)を堆積し、所望のパターンにエッチングする。これにより、ソース電極109および第1電極109aと接する上部配線層112が得られる。同時に、ゲート接続部108gと接するゲート配線層114、および、ショットキー電極151と接する上部電極112Sも形成される。上部電極112Sは上部配線層112と一体的に形成されてもよい。
さらに、ドレイン電極110の裏面に、ダイボンド用の裏面電極113を形成する。ここでは、例えばTi膜、Ni膜およびAg膜をこの順で堆積することにより、Ti/Ni/Agの積層膜からなる裏面電極113を得る。Ti膜、Ni膜およびAg膜の厚さは、それぞれ、例えば0.1μm、0.3μmおよび0.7μmである。このようにして、半導体素子100が製造される。
なお、特に図示していないが、層間絶縁膜111、ゲート配線層114、上部配線層112および上部電極112Sの上にパッシベーション膜を堆積し、パッシベーション膜に、上部配線層112の一部およびゲートパッド114Pの一部を露出する開口を形成してもよい。
(変形例1−1)
図11を参照しながら、本実施形態の半導体素子の変形例を説明する。
図11(a)および(b)は、それぞれ、変形例の半導体素子1001のA−A’線およびB−B’線に沿った断面図である。半導体素子1001の上面図は、図2に示す半導体素子100の上面図と同様なので省略する。半導体素子1001のA−A’線およびB−B’線は、それぞれ、図2(a)に示すA−A’線およびB−B’線に対応する。
半導体素子1001では、バリア金属層115のうちショットキー領域100Sに形成された部分がショットキー電極として機能する点で、半導体素子100と異なる。バリア金属層115は、上述のように、Ti膜とTiN膜とを含む積層構造を有していてもよい。バリア金属層115のTi膜は、ショットキー領域100Sにおいて、第1炭化珪素半導体層102と直接接する構造を有していてもよい。バリア金属層115をショットキー電極としても機能させるため、必要に応じて、バリア金属層115におけるTi膜の厚さを例えば100から200nmに大きくしてもよい。
次に、図12を参照しながら、半導体素子1001の製造方法の一例を説明する。ここでは、図4から図10に示す半導体素子100の製造方法と異なる工程のみを説明し、同様の工程については説明を省略する。
まず、図12(a)に示すように、図4から図9(a)を参照しながら前述した方法と同様の方法で、層間絶縁膜111の形成までの工程を行う。
続いて、図12(b)に示すように、バリア金属層115を形成する。ここでは、まず、ショットキーコンタクトホール151cにて暴露された第1炭化珪素半導体層102表面を希フッ酸等で清浄化する。この後、層間絶縁膜111上、ならびにソースコンタクトホール111c、ボディコンタクトホール111cg、ゲートコンタクトホール114c、およびショットキーコンタクトホール151c内に、例えばTi膜とTiN膜とをこの順で堆積することにより、積層膜を形成する。Ti膜はソース電極109、ゲート接続部108gおよび第1炭化珪素半導体層102と接するように配置される。この積層膜上にフォトレジストによるマスク(非図示)を形成し、積層膜のエッチングを行う。これにより、バリア金属層115を所望の位置に形成する。この例では、バリア金属層115は、ソースコンタクトホール111c、ボディコンタクトホール111cg、ゲートコンタクトホール114c、およびショットキーコンタクトホール151c内において、それぞれソース電極109、ゲート接続部108gおよび第1炭化珪素半導体層102を覆っている。また、ショットキー領域100S内において、バリア金属層115は、第2ボディ領域103dの一部、ガードリング領域103rの一部、および、第1炭化珪素半導体層102のうち第2ボディ領域103dとガードリング領域103rとの間に位置する第1導電型の部分と接している。バリア金属層115におけるTi膜の厚さは例えば200nm、TiN膜の厚さは例えば40nmである。
この後、図示しないが、図10(b)を参照しながら前述した方法と同様の方法で、上部配線層112、ゲート配線層114、上部電極112S、裏面電極113を形成する。このようにして、半導体素子1001が得られる。
半導体素子1001では、バリア金属層115の一部がショットキー電極を兼用する。このため、ショットキー電極151を単独で形成する工程(図9(b))を削減できるので、工程簡略化によって製造コストを低減できる。
(変形例1−2)
図13を参照しながら、本実施形態の半導体素子の他の変形例を説明する。
図13(a)および(b)は、それぞれ、変形例の半導体素子1002のA−A’線およびB−B’線に沿った断面図である。半導体素子1002の上面図は、図2に示す半導体素子100の上面図と同様なので省略する。半導体素子1002のA−A’線およびB−B’線は、それぞれ、図2(a)に示すA−A’線およびB−B’線に対応する。
半導体素子1002は、第1導電型の第2炭化珪素半導体層106をさらに有する点で、半導体素子100と異なる。第2炭化珪素半導体層106は、各トランジスタセル100uにおいて、ゲート絶縁膜107とボディ領域103との間に形成される。第2炭化珪素半導体層106はチャネル層とも呼ばれる。第2炭化珪素半導体層106を導入することにより、各トランジスタセル100uのチャネル抵抗が低減する。第2炭化珪素半導体層106をエピタキシャル成長で形成してもよい。これにより、イオン注入で形成されたボディ領域103の表面にチャネルを形成する構成に比べて、チャネル部分の結晶性を高くできるので、トランジスタのチャネル抵抗を低減できる。
第1導電型がn型の場合、n型の第2炭化珪素半導体層106を導入すると、トランジスタの閾値電圧が低下する。このため、ボディ領域103の不純物濃度を調整して、閾値を所望の値に設定してもよい。例えば、第2炭化珪素半導体層106の不純物濃度が7×1017cm-3程度、厚さが50nm程度のとき、p型のボディ領域103の不純物濃度は例えば2×1018cm-3程度に設定される。
第2炭化珪素半導体層106は、トランジスタ領域100Tだけでなく、境界領域100Gの少なくとも一部にも形成されていてもよい。第2炭化珪素半導体層106は、ショットキー領域100Sおよび終端領域100Eに存在しなくてもよい。
トランジスタセル100uにおいて、第2炭化珪素半導体層106はボディ領域103上に形成される。本変形例においては、第2炭化珪素半導体層106はソース領域104上にも形成されている。なお、例えば第2炭化珪素半導体層106を形成後に、第2炭化珪素半導体層106の一部およびボディ領域103の一部を含むようにソース注入領域を形成し、それを活性化して、第2炭化珪素半導体層106に直接ソース領域104を形成してもよい。第2炭化珪素半導体層106上にはゲート絶縁膜107が形成されている。第2炭化珪素半導体層106はトランジスタセル100uにおいてチャネル層として機能する。
次に、半導体素子1002の製造方法を説明する。ここでは、図4から図10に示す半導体素子100の製造方法と異なる工程のみを説明し、同様の工程については説明を省略する。
まず、図4から図6(a)を参照しながら前述した方法と同様の方法で、第1炭化珪素半導体層102にボディ領域103およびソース領域104などを形成する。ただし、上述のように、ボディ領域103の濃度を調整する。ここでは、ボディ領域103の濃度を例えば2×1018cm-3とする。
高温熱処理(活性化アニール)を行なった後、第1炭化珪素半導体層102上に、例えば、n型の第2炭化珪素半導体膜をエピタキシャル成長により形成する。ここでは、第2炭化珪素半導体膜の不純物濃度は例えば約7×1017cm-3とし、厚さは例えば100nm程度とする。
次に、図13に示すように、第2炭化珪素半導体膜の一部をエッチング除去することにより、第2炭化珪素半導体層106を得る。この例では、例えばショットキー領域100Sおよび終端領域100Eに形成された第2炭化珪素半導体膜を除去する。これによりトランジスタ領域100Tおよび境界領域100Gの少なくとも一部に、第2炭化珪素半導体層106を形成する。
次に、第2炭化珪素半導体層106の表面と、第1炭化珪素半導体層102の表面のうち第2炭化珪素半導体層106で覆われていない部分とを酸化し、得られた酸化膜を除去する、いわゆる犠牲酸化工程を行う。次いで、第1および第2炭化珪素半導体層の表面を清浄化した後に、さらに酸化することで、少なくとも第2炭化珪素半導体層106上にゲート絶縁膜107を形成する。この犠牲酸化工程およびゲート酸化工程を経て、第2炭化珪素半導体層106の厚さは例えば50nmに調整される。
この後の工程は、図6(b)から図10を参照しながら前述した工程と同様である。なお、層間絶縁膜111およびゲート絶縁膜107にソースコンタクトホール111cを形成する際には、ソースコンタクトホール111cにより露出される第2炭化珪素半導体層106をエッチング除去してもよいし、その一部または全部を残存させてもよい。ただし、ソースコンタクトホール111cにおいて、第2炭化珪素半導体層106の少なくとも一部が残っている場合には、金属電極のシリサイド化反応によってソース電極109を形成する工程において、ソース電極109がソース領域104およびコンタクト領域105と電気的に接続し、ソース電極109とソース領域104との接触がオーミック接触となるよう、金属電極の厚さならびにシリサイド化反応の温度、および時間等を調整してもよい。ソース電極109は、コンタクト領域105ともオーミック接合を形成してもよい。
(変形例1−3)
図14を参照しながら、本実施形態の半導体素子のさらに他の変形例を説明する。
図14(a)および(b)は、それぞれ、変形例の半導体素子1003のA−A’線およびB−B’線に沿った断面図である。半導体素子1003の上面図は、図2に示す半導体素子100の上面図と同様なので省略する。半導体素子1003のA−A’線およびB−B’線は、それぞれ、図2(a)に示すA−A’線およびB−B’線に対応する。
半導体素子1003は、第1導電型の第2炭化珪素半導体層106がショットキー領域100Sにまで延設されている点で、変形例1−2の半導体素子1002と異なる。
半導体素子1003の製造方法は、変形例1−2の半導体素子1002の製造方法とほぼ同様なので詳細な説明は省略する。
本変形例では、第1炭化珪素半導体層102上に第2炭化珪素半導体膜を形成した後、第2炭化珪素半導体膜のパターニングにより、トランジスタ領域100Tおよび境界領域100Gだけでなく、ショットキー領域100Sにも第2炭化珪素半導体層106を形成する。
また、ショットキー領域100Sにおいて、層間絶縁膜111およびゲート絶縁膜107に、第2炭化珪素半導体層106を露出するショットキーコンタクトホール151cを形成する。この後、第2炭化珪素半導体層106と接するようにショットキー電極151を設ける。ここで、第2炭化珪素半導体層106と接するようにショットキー電極として機能するバリア金属層を設けてもよい。
なお、ショットキーコンタクトホール151c内において、第2炭化珪素半導体層106の一部がエッチングされ、第2炭化珪素半導体層106の少なくとも一部が残存していてもよい。この場合には、ショットキー電極151が第2炭化珪素半導体層106と直接接する。ショットキー電極151との接触面における第2炭化珪素半導体層106の濃度は、第2炭化珪素半導体層106の、基板101の主面に垂直な方向における平均濃度よりも小さくてもよい。言い換えると、第2炭化珪素半導体層106は、基板101の主面に垂直な方向に濃度分布を有し、ショットキー電極151に接する側の濃度が第1炭化珪素半導体層102に接する側の濃度より小さくてもよい。さらには、第2炭化珪素半導体層106のショットキー電極151に接する側の濃度は、第1炭化珪素半導体層102の表面における濃度よりも小さくてもよい。ショットキー接合の整流性は、ショットキー電極の仕事関数と、半導体の電子親和力により決定される。半導体の不純物濃度が高い場合、ショットキー界面から半導体側に形成される空乏層が拡がりにくくなるため、界面に形成されるショットキー障壁をトンネルするキャリアの存在確率が増える。つまりショットキー接合におけるリーク電流が増加する。従って、第2炭化珪素半導体層106において、ショットキー電極151に接する側の濃度を第1炭化珪素半導体層102に接する側の濃度より小さくすると、基板101の主面に垂直な方向に一様に不純物がドープされた第2炭化珪素半導体層を採用する場合よりも、ショットキーバリアダイオードとしてのリーク電流を低減できる。また、第2炭化珪素半導体層106のショットキー電極151に接する側の濃度を、第1炭化珪素半導体層102の表面における濃度よりも小さくすることにより、ショットキー電極151が直接第1炭化珪素半導体層102に接する場合に比べて、ショットキーバリアダイオードとしてのリーク電流を低減できる。
第2炭化珪素半導体層106の一例として、不純物濃度の高いドープ層と、ドープ層よりも不純物濃度の低いアンドープ層とを積み重ねた構造を有する炭化珪素エピタキシャル層が挙げられる。具体的には、第2炭化珪素半導体層106は、例えば1.4×1018cm-3の不純物濃度を有するドープ層(厚さ:例えば25nm)と、実効的には5×1015cm-3以下の不純物濃度を有するアンドープ層(厚さ:例えば25nm)とを、第1炭化珪素半導体層102上にこの順で積み重ねた構造を有していてもよい。アンドープ層の不純物濃度は特に限定しないが、第1炭化珪素半導体層102のうちドリフト領域102dの不純物濃度(例えば1×1016cm-3)よりも小さくてもよい。これにより、第2炭化珪素半導体層106の表面の不純物濃度を、第1炭化珪素半導体層102の表面の不純物濃度より小さくできる。
上記のような第2炭化珪素半導体層106は次のようにして形成できる。まず、第1炭化珪素半導体層102上に、例えば厚さ25nmのドープ層と、厚さ75nmのアンドープ層とを順に堆積する。この後、前述した犠牲酸化およびゲート絶縁膜(熱酸化膜)形成工程を行う。これにより、アンドープ層の表面部分が熱酸化され、ゲート絶縁膜が形成される。アンドープ層の厚さは、これらの工程によって小さくなり、例えば25nm程度になる。
(変形例1−4)
図15は、本実施形態のさらに他の変形例の半導体素子1004を示す断面図である。図16(a)は、半導体素子1004における上部配線層112およびゲート配線層114の配置を説明するための上面図である。図16(b)は、半導体素子1004において、上部配線層112およびゲート配線層114の下方に形成された各領域の配置を説明するための上面図である。
半導体素子1004は、図13に示す半導体素子1002と同様に、第2炭化珪素半導体層106を有している。ただし、第2炭化珪素半導体層106はガードリング領域103r上にも配置されている。また、以下の点で半導体素子1002と異なっている。
本変形例では、トランジスタ領域100Tの端部においてダイオードセルが配置されていない。第1電極109aは、ショットキー領域100Sにおいて、第2ボディ領域103dと電気的に接続されるように配置されている。第1電極109aは、第2ボディ領域103d内に形成されたコンタクト領域105と接するように配置されていてもよい。これにより、ダイオードが構成される。この例では、第1電極109aの上面は、ショットキー電極151と接しており、ショットキー電極151を介して上部配線層112と電気的に接続されている。
また、半導体素子1004は、ガードリング領域103rと電気的に接続されるように第2電極109bを有している。これにより、アバランシェ耐量をより効果的に高めることができる。ここでは、ガードリング領域103rにコンタクト領域105が設けられており、コンタクト領域105上に第2電極109bが配置されている。第2電極109bの上面は、ショットキー電極151と接しており、ショットキー電極151を介して上部配線層112と電気的に接続されている。
また、本変形例において、図17に示すように、トランジスタ領域100Tの端部において、第2ボディ領域103d内に第1電極109aがさらに配置され、第2ボディ領域103dの一部および第1電極109aがダイオードセル100dを構成していてもよい。なお、図18に示すように、変形例1−4と同様に、トランジスタ領域100Tおよび境界領域100Gだけでなく、ショットキー領域100Sにも第2炭化珪素半導体層106が配置されていてもよい。
(変形例1−5)
図19は、本実施形態のさらに他の変形例の半導体素子1005を示す断面図である。
半導体素子1005は、以下の点で、図3に示す半導体素子100と異なっている。
半導体素子1005では、ショットキー領域100Sにおいて、第1炭化珪素半導体層102のうち第2ボディ領域103dとガードリング領域103rとの間に位置する領域の一部に、少なくとも1つの第2導電型領域103jを有している。第2導電型領域103jは、ボディ領域103と同様のプロセスで同時に形成されてもよい。この例では、2つの第2導電型領域103jが間隔をあけて配置されている。第2導電型領域103jと、第1炭化珪素半導体層102のうち第2導電体領域が形成されていない第1導電型の部分とは、ショットキー電極151と接している。これにより、ショットキー領域100Sに、JBS構造を有するショットキーバリアダイオードが形成される。
なお、変形例1−2から1−5においても、変形例1−1で示したように、バリア金属層115の一部をショットキー電極151として用いてもよい。
上記の実施の形態1の半導体素子が還流ダイオードを有するMISFETである場合、MISFETの有効面積は、ショットキー領域の有効面積よりも大きくてもよい。MISFETの有効面積は、基板の主面の法線方向から見たときの、トランジスタ領域におけるトランジスタセルの総面積であり、ショットキー領域の有効面積は、ショットキー電極が、第2ボディ領域およびガードリング領域を含む第1炭化珪素半導体層と接している部分の総面積である。
上記の実施の形態1では、終端領域は、第2導電型のリングを有する、いわゆるFLR(Floating Limiting Ring)構造を有しているが、終端領域の構造はこれに限定されない。例えば、半導体素子の周縁側に対して第2導電型不純物の濃度勾配を有する、いわゆるJTE(Junction Termination Extension)構造を有していてもよい。
例えば図3に示す半導体素子100のように、チャネル層として機能する第2炭化珪素半導体層を有しない場合には、第1炭化珪素半導体層102表面の所定領域にさらに第1導電型不純物を注入することにより、チャネル領域における第1導電型濃度を変更してもよい。
上記の実施の形態1では、炭化珪素が4H−SiCである例を説明したが、炭化珪素は、6H−SiC、3C−SiC、15R−SiCなどの他のポリタイプであってもよい。また、基板101として、主面が(0001)面からオフカットした面であるSiC基板を用いているが、代わりに、主面が(11−20)面、(1−100)面、(000−1)面、またはこれらのオフカット面であるSiC基板を用いてもよい。また、基板101はSi基板であり、第1炭化珪素半導体層102が3C−SiC層であってもよい。この場合、3C−SiC層に注入された不純物イオンを活性化するためのアニールは、Si基板の融点以下の温度で実施してもよい。
本開示の一態様にかかる半導体素子は、ダイオードとトランジスタとを併用する半導体デバイス用途において有用である。特に、車載用、産業機器用等の電力変換器に搭載するためのパワー半導体デバイス用途において有用である。
100、1001、1002、1003、1004、1005 半導体素子
100T トランジスタ領域
100S ショットキー領域
100G 境界領域
100E 終端領域
101 基板
102 第1炭化珪素半導体層(ドリフト層)
102d ドリフト領域
103 ボディ領域
103r ガードリング領域
103d、103gr 第2ボディ領域
104 ソース領域
105 コンタクト領域
106 第2炭化珪素半導体層(チャネル層)
107 ゲート絶縁膜
108 ゲート電極
109 ソース電極
109a 第1電極
110 ドレイン電極
111 層間絶縁膜
112 上部配線層
112S 上部電極
113 裏面電極
114 ゲート配線層
114P ゲートパッド
114L ゲート配線
115 バリア金属層
151 ショットキー電極

Claims (9)

  1. 表面および裏面を有する基板と、前記基板の前記表面上に配置された第1導電型の第1炭化珪素半導体層とを備える半導体素子であって、
    複数のトランジスタセルを含むトランジスタ領域と、ショットキー領域と、前記基板の前記表面の法線方向から見て、前記トランジスタ領域と前記ショットキー領域との間に位置する境界領域とを有し、
    前記複数のトランジスタセルのそれぞれは、
    前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型のボディ領域と、
    前記ボディ領域に接して配置された第1導電型のソース領域と、
    少なくとも前記ボディ領域の一部を覆うゲート絶縁膜と、
    前記ゲート絶縁膜上に配置されたゲート電極と、
    前記ソース領域と電気的に接続されたソース電極と、
    前記基板の前記裏面に配置されたドレイン電極と
    を備え、
    前記境界領域は、
    前記第1炭化珪素半導体層の表面の少なくとも一部に位置する第2導電型の第2ボディ領域と、
    前記第2ボディ領域上に絶縁膜を介して配置され、かつ、前記ゲート電極と電気的に接続されたゲート接続部と
    を備え、
    前記ショットキー領域は、
    前記第1炭化珪素半導体層の表面の少なくとも一部に位置する、第2導電型のガードリング領域と、
    前記ガードリング領域の一部および前記第1炭化珪素半導体層上に配置されたショットキー電極と
    を備え、
    前記半導体素子は、
    前記第2ボディ領域と電気的に接続された第1電極と、
    前記ソース電極および前記第1電極と、前記ショットキー電極とを並列接続する上部配線層と、
    前記ゲート接続部と電気的に接続されたゲート配線およびゲートパッドと
    をさらに備え、
    前記ゲート配線の少なくとも一部および前記ゲートパッドの少なくとも一部は、前記境界領域に配置されており、
    前記基板の前記表面の法線方向から見て、前記トランジスタ領域、前記ショットキー領域および前記境界領域よりも外側に配置された終端領域をさらに有し、
    前記終端領域は、前記第1炭化珪素半導体層の表面に位置する少なくとも1つの第2導電型のリング領域を備え、
    前記基板の前記表面の法線方向から見て、前記ショットキー領域は前記トランジスタ領域を包囲するように配置されており、
    前記第2ボディ領域は、前記境界領域から前記ショットキー領域に延設され、前記ショットキー電極の一部の下に配置されている半導体素子。
  2. 前記少なくとも1つのリング領域は、前記第1炭化珪素半導体層の表面において、間隔を隔てて配置された複数のリング領域である、請求項1に記載の半導体素子。
  3. 前記上部配線層と前記ソース電極との間、前記上部配線層と前記第1電極との間、ならびに、前記ゲート配線および前記ゲートパッドと前記ゲート電極との間に配置されたバリア金属層をさらに備える、請求項1または2に記載の半導体素子。
  4. 前記バリア金属層および前記ショットキー電極は同一の金属材料からなる、請求項3に記載の半導体素子。
  5. 前記複数のトランジスタセルのそれぞれは、前記第1炭化珪素半導体層と前記ゲート絶縁膜との間に、第1導電型の第2炭化珪素半導体層をさらに有する、請求項1から4のいずれかに記載の半導体素子。
  6. 前記第2炭化珪素半導体層は、さらに、前記ショットキー電極と前記第1炭化珪素半導体層との間に配置されている、請求項5に記載の半導体素子。
  7. 前記第2炭化珪素半導体層のうち前記ショットキー電極との接触面における第1導電型の不純物濃度は、前記第2炭化珪素半導体層の厚さ方向における平均不純物濃度よりも小さい、請求項6に記載の半導体素子。
  8. 前記第2炭化珪素半導体層は、前記第1炭化珪素半導体層上にエピタキシャル成長により形成されている、請求項5から7のいずれかに記載の半導体素子。
  9. 前記ショットキー領域は、前記第1炭化珪素半導体層の表面の一部に、前記第2ボディ領域および前記ガードリング領域と間隔を空けて配置された少なくとも1つの第2導電型領域をさらに備え、
    前記ショットキー電極は、前記少なくとも1つの第2導電型領域、および、前記第1炭化珪素半導体層における第1導電型の領域の両方と接する、請求項1から8のいずれかに記載の半導体素子。
JP2015096524A 2014-05-28 2015-05-11 半導体素子およびその製造方法 Active JP6021032B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096524A JP6021032B2 (ja) 2014-05-28 2015-05-11 半導体素子およびその製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014110025 2014-05-28
JP2014110025 2014-05-28
JP2015096524A JP6021032B2 (ja) 2014-05-28 2015-05-11 半導体素子およびその製造方法

Publications (2)

Publication Number Publication Date
JP2016006854A true JP2016006854A (ja) 2016-01-14
JP6021032B2 JP6021032B2 (ja) 2016-11-02

Family

ID=54702730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096524A Active JP6021032B2 (ja) 2014-05-28 2015-05-11 半導体素子およびその製造方法

Country Status (2)

Country Link
US (1) US9252211B2 (ja)
JP (1) JP6021032B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168677A (ja) * 2016-03-16 2017-09-21 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
US9887285B1 (en) 2016-09-21 2018-02-06 Kabushiki Kaisha Toshiba Semiconductor device
WO2018037701A1 (ja) * 2016-08-25 2018-03-01 三菱電機株式会社 半導体装置
JP2018046187A (ja) * 2016-09-15 2018-03-22 富士電機株式会社 半導体装置
KR101875634B1 (ko) * 2016-10-27 2018-07-06 현대자동차 주식회사 반도체 소자 및 그 제조 방법
JP2018200920A (ja) * 2017-05-25 2018-12-20 富士電機株式会社 炭化ケイ素mosfet及びその製造方法
JP2019046977A (ja) * 2017-09-01 2019-03-22 トヨタ自動車株式会社 半導体装置
JP2019110331A (ja) * 2017-02-24 2019-07-04 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JP2020077664A (ja) * 2018-11-05 2020-05-21 国立大学法人 筑波大学 炭化珪素半導体装置
JP2020145316A (ja) * 2019-03-06 2020-09-10 豊田合成株式会社 半導体装置
JP2020155704A (ja) * 2019-03-22 2020-09-24 三菱電機株式会社 半導体装置
WO2022102262A1 (ja) * 2020-11-10 2022-05-19 住友電気工業株式会社 炭化珪素半導体装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6244763B2 (ja) * 2013-09-12 2017-12-13 住友電気工業株式会社 炭化珪素半導体装置
US9691759B2 (en) * 2015-10-01 2017-06-27 Panasonic Intellectual Property Management Co., Ltd. Semiconductor device including semiconductor substrate, silicon carbide semiconductor layer, unit cells, source, and gate
JP6524950B2 (ja) * 2016-03-29 2019-06-05 豊田合成株式会社 半導体装置およびその製造方法
JP7048497B2 (ja) * 2016-08-19 2022-04-05 ローム株式会社 半導体装置および半導体装置の製造方法
JP6659516B2 (ja) * 2016-10-20 2020-03-04 トヨタ自動車株式会社 半導体装置
CN110226234B (zh) * 2017-01-25 2023-09-22 罗姆股份有限公司 半导体装置
JP7026314B2 (ja) * 2018-02-07 2022-02-28 パナソニックIpマネジメント株式会社 炭化珪素半導体装置
JP7113221B2 (ja) * 2018-02-08 2022-08-05 パナソニックIpマネジメント株式会社 炭化珪素半導体装置
JP6904279B2 (ja) * 2018-02-27 2021-07-14 三菱電機株式会社 半導体装置およびその製造方法並びに電力変換装置
JP2020047679A (ja) 2018-09-14 2020-03-26 株式会社東芝 半導体装置
JP7030665B2 (ja) 2018-09-15 2022-03-07 株式会社東芝 半導体装置
JP7259609B2 (ja) * 2019-07-17 2023-04-18 株式会社デンソー 半導体装置
CN113054016B (zh) * 2019-12-26 2023-04-07 株洲中车时代半导体有限公司 一种碳化硅mosfet器件的元胞结构及功率半导体器件
US20210343847A1 (en) * 2020-04-30 2021-11-04 Cree, Inc. Diffusion and/or enhancement layers for electrical contact regions
US11600724B2 (en) * 2020-09-24 2023-03-07 Wolfspeed, Inc. Edge termination structures for semiconductor devices
JP2023046068A (ja) * 2021-09-22 2023-04-03 株式会社東芝 半導体装置
CN116031304A (zh) * 2023-03-23 2023-04-28 派恩杰半导体(杭州)有限公司 一种平面型碳化硅场效应管及其制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133557A (ja) * 2001-10-26 2003-05-09 Hitachi Ltd 半導体装置
JP2003229570A (ja) * 2001-11-27 2003-08-15 Nissan Motor Co Ltd 炭化珪素半導体を用いた電界効果トランジスタ
JP2006524432A (ja) * 2003-04-24 2006-10-26 クリー インコーポレイテッド 一体化逆並列接合障壁ショットキーフリーホイーリングダイオードを備えた炭化珪素mosfetおよびその製造方法
WO2007013367A1 (ja) * 2005-07-25 2007-02-01 Matsushita Electric Industrial Co., Ltd. 半導体素子及び電気機器
JP2009094203A (ja) * 2007-10-05 2009-04-30 Denso Corp 炭化珪素半導体装置
JP2009194127A (ja) * 2008-02-14 2009-08-27 Panasonic Corp 半導体装置およびその製造方法
JP2009535849A (ja) * 2006-04-29 2009-10-01 アルファ アンド オメガ セミコンダクター,リミテッド 集積化mosfet−ショットキーデバイスのレイアウトに影響を与えずにショットキーブレークダウン電圧(bv)を高める
JP2009253139A (ja) * 2008-04-09 2009-10-29 Renesas Technology Corp 半導体装置およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886383A (en) 1997-01-10 1999-03-23 International Rectifier Corporation Integrated schottky diode and mosgated device
CN100550383C (zh) 2005-07-08 2009-10-14 松下电器产业株式会社 半导体装置和电气设备
JP5222466B2 (ja) 2006-08-09 2013-06-26 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2010109221A (ja) 2008-10-31 2010-05-13 Rohm Co Ltd 半導体装置
JP5396953B2 (ja) 2009-03-19 2014-01-22 株式会社デンソー 炭化珪素半導体装置およびその製造方法
CN102217070B (zh) * 2009-09-03 2013-09-25 松下电器产业株式会社 半导体装置及其制造方法
JP2013201286A (ja) 2012-03-26 2013-10-03 Toshiba Corp 半導体素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133557A (ja) * 2001-10-26 2003-05-09 Hitachi Ltd 半導体装置
JP2003229570A (ja) * 2001-11-27 2003-08-15 Nissan Motor Co Ltd 炭化珪素半導体を用いた電界効果トランジスタ
JP2006524432A (ja) * 2003-04-24 2006-10-26 クリー インコーポレイテッド 一体化逆並列接合障壁ショットキーフリーホイーリングダイオードを備えた炭化珪素mosfetおよびその製造方法
WO2007013367A1 (ja) * 2005-07-25 2007-02-01 Matsushita Electric Industrial Co., Ltd. 半導体素子及び電気機器
JP2009535849A (ja) * 2006-04-29 2009-10-01 アルファ アンド オメガ セミコンダクター,リミテッド 集積化mosfet−ショットキーデバイスのレイアウトに影響を与えずにショットキーブレークダウン電圧(bv)を高める
JP2009094203A (ja) * 2007-10-05 2009-04-30 Denso Corp 炭化珪素半導体装置
JP2009194127A (ja) * 2008-02-14 2009-08-27 Panasonic Corp 半導体装置およびその製造方法
JP2009253139A (ja) * 2008-04-09 2009-10-29 Renesas Technology Corp 半導体装置およびその製造方法

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017168677A (ja) * 2016-03-16 2017-09-21 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JPWO2018037701A1 (ja) * 2016-08-25 2019-02-14 三菱電機株式会社 半導体装置
US10707341B2 (en) 2016-08-25 2020-07-07 Mitsubishi Electric Corporation Semiconductor device
WO2018037701A1 (ja) * 2016-08-25 2018-03-01 三菱電機株式会社 半導体装置
CN109564942B (zh) * 2016-08-25 2022-02-11 三菱电机株式会社 半导体装置
CN109564942A (zh) * 2016-08-25 2019-04-02 三菱电机株式会社 半导体装置
JP2018046187A (ja) * 2016-09-15 2018-03-22 富士電機株式会社 半導体装置
US9887285B1 (en) 2016-09-21 2018-02-06 Kabushiki Kaisha Toshiba Semiconductor device
KR101875634B1 (ko) * 2016-10-27 2018-07-06 현대자동차 주식회사 반도체 소자 및 그 제조 방법
JP7357713B2 (ja) 2017-02-24 2023-10-06 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JP2019110331A (ja) * 2017-02-24 2019-07-04 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JP2022078997A (ja) * 2017-02-24 2022-05-25 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JP7041086B2 (ja) 2017-02-24 2022-03-23 三菱電機株式会社 炭化珪素半導体装置および電力変換装置
JP2018200920A (ja) * 2017-05-25 2018-12-20 富士電機株式会社 炭化ケイ素mosfet及びその製造方法
JP2019046977A (ja) * 2017-09-01 2019-03-22 トヨタ自動車株式会社 半導体装置
JP2020077664A (ja) * 2018-11-05 2020-05-21 国立大学法人 筑波大学 炭化珪素半導体装置
JP7333509B2 (ja) 2018-11-05 2023-08-25 国立大学法人 筑波大学 炭化珪素半導体装置
JP2020145316A (ja) * 2019-03-06 2020-09-10 豊田合成株式会社 半導体装置
JP2020155704A (ja) * 2019-03-22 2020-09-24 三菱電機株式会社 半導体装置
JP7188210B2 (ja) 2019-03-22 2022-12-13 三菱電機株式会社 半導体装置
WO2022102262A1 (ja) * 2020-11-10 2022-05-19 住友電気工業株式会社 炭化珪素半導体装置

Also Published As

Publication number Publication date
US20150349051A1 (en) 2015-12-03
JP6021032B2 (ja) 2016-11-02
US9252211B2 (en) 2016-02-02

Similar Documents

Publication Publication Date Title
JP6021032B2 (ja) 半導体素子およびその製造方法
JP5858934B2 (ja) 半導体パワーデバイスおよびその製造方法
JP5940235B1 (ja) 半導体装置
JP5678866B2 (ja) 半導体装置およびその製造方法
JP5271515B2 (ja) 半導体装置
US9691759B2 (en) Semiconductor device including semiconductor substrate, silicon carbide semiconductor layer, unit cells, source, and gate
JP6282088B2 (ja) 半導体装置及びその製造方法
JP2019071313A (ja) 半導体装置
JP6641488B2 (ja) 半導体装置
JP5646044B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6560444B2 (ja) 半導体装置
JP2015185700A (ja) 半導体装置
JP2010040686A (ja) 半導体装置およびその製造方法
JP5547022B2 (ja) 半導体装置
JP2024019464A (ja) 半導体装置
JP7172216B2 (ja) 半導体装置および半導体回路装置
JP5865860B2 (ja) 半導体装置
US8482060B2 (en) Semiconductor device
JP6289600B2 (ja) 半導体装置
JP2013201286A (ja) 半導体素子
JP7103435B2 (ja) 半導体装置および半導体装置の製造方法
JP7318226B2 (ja) 半導体装置および半導体装置の製造方法
JP7451981B2 (ja) 半導体装置
JP7371426B2 (ja) 半導体装置
JP2023114929A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160923

R151 Written notification of patent or utility model registration

Ref document number: 6021032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151