WO2014030589A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2014030589A1
WO2014030589A1 PCT/JP2013/071936 JP2013071936W WO2014030589A1 WO 2014030589 A1 WO2014030589 A1 WO 2014030589A1 JP 2013071936 W JP2013071936 W JP 2013071936W WO 2014030589 A1 WO2014030589 A1 WO 2014030589A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
trench
source
semiconductor device
conductivity type
Prior art date
Application number
PCT/JP2013/071936
Other languages
English (en)
French (fr)
Inventor
佑紀 中野
中村 亮太
寛之 坂入
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to US14/423,034 priority Critical patent/US9368616B2/en
Publication of WO2014030589A1 publication Critical patent/WO2014030589A1/ja
Priority to US15/155,885 priority patent/US9911844B2/en
Priority to US15/878,038 priority patent/US10312320B2/en
Priority to US16/400,734 priority patent/US10580852B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7804Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode
    • H01L29/7805Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a pn-junction diode in antiparallel, e.g. freewheel diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • H01L29/7806Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device the other device being a Schottky barrier diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation

Definitions

  • the present invention relates to a semiconductor device.
  • SiC semiconductor device As this type of semiconductor power device, for example, a SiC semiconductor device is known (see, for example, Patent Document 1).
  • the semiconductor device disclosed in Patent Document 1 is formed on a SiC substrate, an n-type high resistance layer formed on the SiC substrate, a p-well layer formed on the n-type high-resistance layer, and a surface layer portion of the p-well layer. and n + emitter region, a p + contact region reaching the p-well layer through the n + emitter region, a trench reaching the n-type high-resistance layer through the p-well layer from the surface of n + emitter region, A gate oxide film formed on the inner surface of the trench and a polysilicon gate electrode embedded in the trench are included.
  • the semiconductor device of the present invention includes a semiconductor layer in which a trench having a side surface and a bottom surface is formed, a second conductivity type layer formed in the semiconductor layer on the side surface and the bottom surface of the trench, and the second conductivity type layer.
  • a first conductive type layer formed in the semiconductor layer so as to be in contact with the first electrode; a first electrode electrically connected to the first conductive type layer; and embedded in the trench and electrically connected to the second conductive type layer.
  • the depletion layer generated at the pn junction is It spreads to the trench side and easily reaches the side of the trench.
  • punch-through can be suppressed by the barrier forming layer even if the trench side surface is reached. As a result, generation of leakage current can be suppressed.
  • the barrier forming layer is further disposed at an edge portion of the bottom surface of the trench.
  • the barrier forming layer may include a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier forming layer may include a first conductivity type polysilicon layer.
  • the barrier forming layer may include an insulating layer made of any one of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON). .
  • the semiconductor device includes a semiconductor layer having a side surface and a bottom surface, wherein a tapered trench in which the side surface is inclined at an obtuse angle with respect to the bottom surface is formed, and the semiconductor layer on the side surface and the bottom surface of the tapered trench.
  • a second conductivity type layer formed in the lateral direction along the surface of the semiconductor layer with the inclination of the side surface of the tapered trench, and the semiconductor layer in contact with the second conductivity type layer.
  • a first conductivity type layer formed, a first electrode electrically connected to the first conductivity type layer, and a second electrode embedded in the tapered trench and electrically connected to the second conductivity type layer. Electrodes.
  • a depletion layer is generated at the pn junction between the first conductivity type layer and the second conductivity type layer, and when a reverse bias is applied, the depletion layer is in contact with the pn junction. Expands to the taper trench side.
  • the second conductivity type layer is formed with a certain thickness in the lateral direction from the side surface of the trench, the depletion layer extending from the pn junction reaches the side surface of the trench and contacts the second electrode. There is a risk. Therefore, in this semiconductor device, the second conductivity type layer is formed so as to increase in thickness in the lateral direction as the side surface of the tapered trench is inclined.
  • the distance between the side surface of the tapered trench and the pn junction can be increased compared to the former case where the second conductivity type layer having a constant thickness is formed. This makes it difficult for the depletion layer extending from the pn junction to reach the side surface of the tapered trench. As a result, punch-through can be suppressed and generation of leakage current can be suppressed.
  • the semiconductor device is disposed between the side surface of the tapered trench and the second electrode, and has a potential barrier higher than a potential barrier between the second conductivity type layer and the second electrode. It is preferable to further include a barrier forming layer formed between the mold layer.
  • the depletion layer generated in the pn junction between the first conductivity type layer and the second conductivity type layer is applied to the taper trench side with respect to the pn junction by applying a reverse bias. Even if it spreads to reach the side surface of the tapered trench, punch-through can be suppressed by the barrier forming layer.
  • the barrier forming layer is further disposed at an edge portion of the bottom surface of the tapered trench.
  • the barrier forming layer may include a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier forming layer may include a first conductivity type polysilicon layer.
  • an insulating layer made of any one of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON) may be included.
  • the semiconductor device of the present invention is disposed so as to be exposed on a surface of the semiconductor layer, a semiconductor layer in which a gate trench having a side surface and a bottom surface, a source trench having a side surface and a bottom surface is formed, and the gate trench A source layer of a first conductivity type that forms the side surface and the side surface of the source trench; and is disposed on the back surface side of the semiconductor layer with respect to the source layer so as to contact the source layer, and the side surface of the gate trench and A channel layer of a second conductivity type that forms part of the side surface of the source trench; and the bottom surface of the gate trench, disposed on the back surface side of the semiconductor layer with respect to the channel layer so as to contact the channel layer And a drain layer of a first conductivity type that forms the bottom surface of the source trench, and a gate embedded in the gate trench.
  • a source breakdown voltage holding layer of the second conductivity type, a drain electrode electrically connected to the drain layer, embedded in the source trench, and electrically connected to the source layer and the source breakdown voltage holding layer A source electrode and a barrier forming layer disposed between the side surface of the source trench and the source electrode and having a potential barrier higher than a potential barrier between the source breakdown voltage holding layer and the source electrode.
  • the barrier forming layer is further disposed at an edge portion of the bottom surface of the source trench.
  • the barrier forming layer is preferably arranged so that the source layer is exposed from the side surface of the source trench.
  • the barrier forming layer may include a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier forming layer may include a first conductivity type polysilicon layer.
  • the barrier forming layer may include an insulating layer made of any one of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON). .
  • the semiconductor device of the present invention is a semiconductor layer in which a gate trench having a side surface and a bottom surface and a source trench having a side surface and a bottom surface are formed, and the source trench is a tapered trench having the side surface inclined at an obtuse angle with respect to the bottom surface.
  • the bottom surface of the gate trench and the source trench are disposed on the back surface side of the gate trench so as to be in contact with the channel layer.
  • the second side surface of the source trench is continuous with the channel layer, and the second side surface of the source trench is thickened in the lateral direction along the surface of the semiconductor layer as the side surface of the source trench is inclined.
  • a depletion layer is generated at the pn junction between the second conductivity type source breakdown voltage holding layer and the first conductivity type drain layer, and when a reverse bias is applied, the depletion layer is It spreads toward the source trench with respect to the pn junction.
  • the source breakdown voltage holding layer of the second conductivity type is formed with a certain thickness in the lateral direction from the side surface of the trench, the depletion layer extending from the pn junction reaches the side surface of the trench and becomes the second electrode. There is a risk of touching and punching through. Therefore, in this semiconductor device, the source breakdown voltage holding layer is formed so as to increase in thickness in the lateral direction with the inclination of the side surface of the source trench.
  • the distance between the side surface of the source trench and the pn junction can be increased as compared with the former case where the second conductivity type layer having a constant thickness is formed. This makes it difficult for the depletion layer extending from the pn junction to reach the side surface of the source trench. As a result, punch-through can be suppressed and generation of leakage current can be suppressed.
  • the semiconductor device is disposed between the side surface of the source trench and the source electrode, and has a potential barrier higher than a potential barrier between the source breakdown voltage holding layer and the source electrode with the source breakdown voltage holding layer. It is preferable to further include a barrier forming layer formed therebetween.
  • the depletion layer generated at the pn junction between the second conductivity type source withstand voltage holding layer and the first conductivity type drain layer is applied to the pn junction by applying a reverse bias. Even if it extends to the side of the trench and reaches the side surface of the source trench, punch-through can be suppressed by the barrier forming layer.
  • the barrier forming layer is further disposed at an edge portion of the bottom surface of the source trench.
  • the barrier forming layer is preferably arranged so that the source layer is exposed from the side surface of the source trench.
  • the barrier forming layer may include, for example, a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • a first conductivity type polysilicon layer may be included.
  • an insulating layer made of any one of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON) may be included.
  • the semiconductor device of the present invention is disposed so as to be exposed on a surface of the semiconductor layer, a semiconductor layer in which a gate trench having a side surface and a bottom surface, a source trench having a side surface and a bottom surface is formed, and the gate trench
  • a source layer of a first conductivity type that forms the side surface and the side surface of the source trench and is disposed on the back surface side of the semiconductor layer with respect to the source layer so as to contact the source layer, and the side surface of the gate trench and A channel layer of a second conductivity type that forms a part of the side surface of the source trench; and is disposed on the back surface side of the semiconductor layer with respect to the channel layer so as to be in contact with the channel layer;
  • the depletion layer generated at the pn junction is reduced. , It spreads toward the source trench side with respect to the pn junction and easily reaches the side surface of the source trench.
  • punch-through can be suppressed by the insulating layer. Even if the depletion layer crosses the insulating layer and reaches the source electrode, since the polysilicon layer is provided on the insulating layer, the further expansion of the depletion layer can be suppressed. That is, since punch-through can be suppressed in two stages, that is, the insulating layer and the polysilicon layer, generation of leakage current can be suppressed satisfactorily.
  • the gate electrode is made of polysilicon
  • the gate electrode and the polysilicon layer can be formed in the same process. Therefore, the manufacturing process can be simplified.
  • the insulating layer is preferably arranged so that the source layer is exposed from the side surface of the source trench.
  • the polysilicon layer is embedded in a region inside the insulating layer in the source trench, and the source electrode includes a metal layer stacked on the embedded polysilicon layer.
  • the polysilicon layer is simply embedded in the source trench, so that the polysilicon layer can be easily formed.
  • the difference in height between the apparent bottom surface of the source trench (the upper surface of the polysilicon layer) and the surface of the semiconductor layer can be reduced. Therefore, the surface of the metal layer can be made smooth or flat.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a semiconductor device according to the second embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a semiconductor device according to the third embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a semiconductor device according to the fourth embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a semiconductor device according to the sixth embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a semiconductor device according to a seventh embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a semiconductor device according to the second
  • FIG. 8 is a schematic cross-sectional view of a semiconductor device according to the eighth embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a semiconductor device according to the ninth embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of a semiconductor device according to the tenth embodiment of the present invention.
  • FIG. 11 is a schematic cross-sectional view of a semiconductor device according to an eleventh embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view of a semiconductor device according to a twelfth embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a semiconductor device according to a thirteenth embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional view of a semiconductor device according to a thirteenth embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional view of a semiconductor device according to a fourteenth embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view of a semiconductor device according to a fifteenth embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view of a semiconductor device according to a sixteenth embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view of a semiconductor device according to a seventeenth embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional view of a semiconductor device according to an eighteenth embodiment of the present invention.
  • FIG. 19 is a schematic cross-sectional view of a semiconductor device according to a nineteenth embodiment of the present invention.
  • FIG. 20 is a schematic cross-sectional view of a semiconductor device according to a twentieth embodiment of the present invention.
  • FIG. 21 is a schematic cross-sectional view of a semiconductor device according to a twenty-first embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a semiconductor device 1 according to a first embodiment of the present invention.
  • the semiconductor device 1 includes a SiC substrate 2 and a SiC epitaxial layer 3 formed on the SiC substrate 2.
  • the SiC substrate 2 and the SiC epitaxial layer 3 are shown as an example of the semiconductor layer of the present invention.
  • the conductivity type of SiC substrate 2 is, for example, an n + type having an n-type dopant concentration of 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • n-type dopant for example, N (nitrogen), P (phosphorus), As (arsenic), or the like can be used (hereinafter the same).
  • a trench 7 having a side surface 5 and a bottom surface 6 is formed on the surface 4 of the SiC epitaxial layer 3.
  • a plurality of trenches 7 may be formed in a stripe shape.
  • the side surface 5 of the trench 7 is inclined at an angle ⁇ of 90 ° with respect to the bottom surface 6 of the trench 7.
  • the trench 7 has a certain width from the bottom surface 6 to the opening end.
  • the SiC epitaxial layer 3 includes a p-type layer 8 as an example of the second conductivity type layer of the present invention formed following the side surface 5 and the bottom surface 6 of the trench 7, and the back surface of the SiC substrate 2 with respect to the p-type layer 8. 9 and an n ⁇ type layer 10 as an example of the first conductivity type layer of the present invention formed in contact with the 9 side.
  • the conductivity type of the p-type layer 8 is, for example, a p-type with a p-type dopant concentration of 1 ⁇ 10 16 cm ⁇ 3 to 1 ⁇ 10 20 cm ⁇ 3 .
  • B boron
  • Al aluminum
  • n - conductivity type type layer 10 n-type dopant concentration n of 1 ⁇ 10 15 ⁇ 1 ⁇ 10 17 cm -3 - a type.
  • the n ⁇ type layer 10 functions as, for example, a drain region (drift region) of a MISFET (Metal Insulator Semiconductor Field Effect Transistor), a drift region of an IGBT (Insulated Gate Bipolar Transistor), and an n-type region of a pn diode. May be.
  • p-type layer 8 is formed so that interface 11 with n ⁇ -type layer 10 is along surface 4 of SiC epitaxial layer 3, side surface 5 of trench 7 and bottom surface 6 of trench 7 (for example, in parallel), It is formed continuously in a twisted manner in a cross-sectional view.
  • an interface 11 between the p-type layer 8 and the n ⁇ -type layer 10 is set at each of an upper position and a lower position with respect to the bottom surface 6 of the trench 7. Therefore, the n ⁇ -type layer 10 selectively enters (protrudes) to the side of the trench 7.
  • the p-type layer 8 has different thicknesses between the bottom surface 6 and the side surface 5 of the trench 7. Specifically, the portion on the bottom surface 6 of the p-type layer 8 is thicker than the portion on the side surface 5, thereby providing a difference in the thickness of the p-type layer 8 between the bottom surface 6 and the side surface 5. ing.
  • This layer thickness difference is caused by, for example, a difference in the incident angle of ions with respect to the side surface 5 of the trench 7 and the bottom surface 6 of the trench 7 when the p-type layer 8 is formed by ion implantation. That is, since ions are incident on the bottom surface 6 of the trench 7 substantially perpendicularly, the ions are implanted deeper than the side surface 5 of the trench 7 where the ions are incident at a very small inclination angle. 8 is formed.
  • the p-type layer 8 includes a p + -type contact layer 12 having a higher concentration than other parts of the p-type layer 8.
  • the p + -type contact layer 12 is formed at the center in the width direction of the bottom surface 6 of the trench 7, for example, spaced from the side surface 5 of the trench 7.
  • the conductivity type of the p + -type contact layer 12 is, for example, a p + -type having a p-type dopant concentration of 1 ⁇ 10 18 cm ⁇ 3 to 2 ⁇ 10 21 cm ⁇ 3 .
  • a back electrode 13 as an example of the first electrode of the present invention is formed on the back surface 9 of the SiC substrate 2.
  • Back electrode 13 is electrically connected to n ⁇ type layer 10 via SiC substrate 2.
  • the back electrode 13 has a laminated structure of, for example, Ti, Ni, Cu, Al, Ag, Au, TiN, W, or any combination thereof.
  • a surface electrode 14 as an example of the second electrode of the present invention is formed on the SiC epitaxial layer 3.
  • the surface electrode 14 is formed so as to fill the trench 7 and cover the surface 4 of the SiC epitaxial layer 3.
  • the surface electrode 14 is electrically connected to the p-type layer 8 in the p + -type contact layer 12.
  • the surface electrode 14 has a laminated structure of, for example, Ti, Ni, Cu, Al, Ag, Au, TiN, W, or any combination thereof.
  • a barrier forming layer 15 having a potential barrier higher than the potential barrier between the p-type layer 8 and the surface electrode 14 is formed between the side surface 5 and the surface electrode 14. Specifically, the barrier forming layer 15 is selectively formed on the edge portions of the side surface 5 and the bottom surface 6 of the trench 7 so that the p-type layer 8 is selectively exposed from the bottom surface 6 of the trench 7.
  • a p + -type contact layer 12 is exposed on the bottom surface 6 of the trench 7 from which the barrier forming layer 15 has been selectively removed.
  • the side surface 5 of the trench 7 is covered with a barrier forming layer 15 in a region from the bottom surface 6 to the opening end.
  • the barrier forming layer 15 may be, for example, a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier forming layer 15 may be an n-type polysilicon layer, and may be any of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON). Alternatively, an insulating layer made of one kind may be used.
  • a depletion layer is generated at the pn junction 16 between the p-type layer 8 and the n ⁇ -type layer 10.
  • the depletion layer spreads, for example, as indicated by the broken line shown in FIG.
  • punch-through occurs because the depletion layer that reaches the side surface 5 of the trench 7 reaches the surface electrode 14 as it is.
  • punch-through can be suppressed by the barrier forming layer 15 even if the depletion layer spreads and reaches the side surface 5 of the trench 7. As a result, generation of leakage current can be suppressed.
  • FIG. 2 is a schematic cross-sectional view of a semiconductor device 21 according to the second embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 1 are denoted by the same reference numerals as those given to the respective parts, and description thereof will be omitted.
  • a tapered trench 22 is formed in the surface 4 of the SiC epitaxial layer 3 of the semiconductor device 21 according to the second embodiment.
  • the side surface 23 of the tapered trench 22 is inclined with respect to the bottom surface 24 at an obtuse angle (for example, the narrow angle between the side surface 23 and the bottom surface 24 of the tapered trench 22 is an angle ⁇ of 20 ° to 70 °).
  • SiC epitaxial layer 3 is a p-type layer 25 formed along side surface 23 and bottom surface 24 of tapered trench 22, and an n ⁇ type formed in contact with p-type layer 25 on the back surface 9 side of SiC substrate 2.
  • Layer 10 is a p-type layer 25 formed along side surface 23 and bottom surface 24 of tapered trench 22, and an n ⁇ type formed in contact with p-type layer 25 on the back surface 9 side of SiC substrate 2.
  • the p-type layer 25 is continuously formed in a twisted manner in a sectional view like the p-type layer 25 of the first embodiment. Moreover, since the part along the taper trench side surface of the p-type layer 25 is formed so as to increase in thickness in the lateral direction as the side surface 23 of the taper trench 22 is inclined, it has different layer thickness differences. Specifically, the portion of the p-type layer 25 is continuously thick as the opening width of the tapered trench 22 is continuously narrowed in the depth direction.
  • the p-type layer 25 includes a p + -type contact layer 26 having a higher concentration than other parts of the p-type layer 25.
  • the p + -type contact layer 26 is formed at the center in the width direction of the bottom surface 24 of the tapered trench 22, for example, spaced from the side surface 23 of the tapered trench 22.
  • the surface electrode 14 is in direct contact with the side surface 23 of the tapered trench 22 without interposing the barrier forming layer.
  • a depletion layer is generated at the pn junction 27 between the p-type layer 25 and the n ⁇ -type layer 10.
  • the depletion layer spreads, for example, as shown by the broken line in FIG.
  • the p-type layer 25 is formed with a constant width so as to follow the side surface 23 and the bottom surface 24 of the tapered trench 22
  • the depletion layer extending from the pn junction 27 reaches the side surface 23 of the tapered trench 22.
  • the p-type layer 25 is formed so as to increase in thickness in the lateral direction as the side surface 23 of the tapered trench 22 is inclined. Therefore, in the former case, the p-type layer having a constant thickness is formed. As compared with the above, the distance between the side surface 23 of the tapered trench 22 and the pn junction 27 can be increased. As a result, the depletion layer extending from the pn junction 27 can hardly reach the side surface 23 of the tapered trench 22. As a result, punch-through can be suppressed and generation of leakage current can be suppressed.
  • FIG. 3 is a schematic cross-sectional view of a semiconductor device 31 according to the third embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 1 or FIG. 2 are given the same reference numerals as those given to those parts, and the description of those parts is omitted.
  • the semiconductor device 31 according to the third embodiment is further provided between the side surface 23 of the tapered trench 22 and the surface electrode 14 and between the p-type layer 25 and the surface electrode 14.
  • a barrier formation layer 28 having a higher potential barrier than the potential barrier is included.
  • the barrier forming layer 28 is selectively formed on the edge portions of the side surface 23 and the bottom surface 24 of the tapered trench 22 so that the p-type layer 25 is selectively exposed from the bottom surface 24 of the tapered trench 22. Yes.
  • a p + -type contact layer 26 is exposed on the bottom surface 24 of the tapered trench 22 from which the barrier forming layer 28 has been selectively removed. Further, the side surface 23 of the tapered trench 22 is covered with a barrier forming layer 28 in a region from the bottom surface 24 to the opening end.
  • the barrier formation layer 28 may be, for example, a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier forming layer 28 may be an n-type polysilicon layer, and may be any one of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON). Alternatively, an insulating layer made of one kind may be used.
  • a depletion layer is generated at the pn junction 27 between the p-type layer 25 and the n ⁇ -type layer 10.
  • the depletion layer spreads, for example, as shown by the broken line in FIG.
  • punch-through can be suppressed by the barrier forming layer 28 even if the depletion layer spreads and reaches the side surface 23 of the tapered trench 22. As a result, generation of leakage current can be suppressed.
  • FIG. 4 is a schematic cross-sectional view of a semiconductor device 41 according to the fourth embodiment of the present invention.
  • the semiconductor device 41 according to the fourth embodiment includes a trench gate type MISFET in which an SiC substrate 42 and an SiC epitaxial layer 43 formed on the SiC substrate 42 are employed.
  • the SiC substrate 42 and the SiC epitaxial layer 43 are shown as an example of the semiconductor layer of the present invention.
  • a gate trench 44 is formed in the SiC epitaxial layer 43.
  • the gate trench 44 may be, for example, a lattice shape, a stripe shape, or a honeycomb shape.
  • a plurality of unit cells 45 are formed in a portion surrounded by the gate trench 44 in the SiC epitaxial layer 43.
  • a source trench 46 is formed at the center of each unit cell 45.
  • the side surface 47 of the source trench 46 is inclined at an angle ⁇ of 90 ° with respect to the bottom surface 48 of the source trench 46.
  • the source trench 46 has a certain width from the bottom surface 48 to the opening end.
  • the depth of the source trench 46 is the same as that of the gate trench 44.
  • a source layer 51, a channel layer 52, and a drift layer 53 are formed in this order from the surface 49 side to the back surface 50 side of the SiC epitaxial layer 43, and these layers are in contact with each other.
  • the source layer 51 and the drift layer 53 are n-type as the first conductivity type
  • the channel layer 52 is p-type as the second conductivity type.
  • the source layer 51 is, for example, an n + type having a dopant concentration of 1 ⁇ 10 18 to 1 ⁇ 10 21 cm ⁇ 3
  • the channel layer 52 is, for example, a dopant concentration of 1.0 ⁇ 10 16.
  • the drift layer 53 a lower concentration than the source layer 51, for example, the dopant concentration of 1 ⁇ 10 15 ⁇ 1 ⁇ 10 17 cm -3 n - type.
  • the source layer 51 forms a part of the side surface 54 of the gate trench 44 and a part of the side surface 47 of the source trench 46.
  • the channel layer 52 forms part of the side surface 54 of the gate trench 44 and part of the side surface 47 of the source trench 46.
  • the drift layer 53 forms the side surface 54 and the bottom surface 55 of the gate trench 44 and the side surface 47 and the bottom surface 48 of the source trench 46.
  • the source breakdown voltage holding layer 56 is formed so as to continue to the channel layer 52 along the side surface 47 of the source trench 46 from the bottom surface 48 of the source trench 46.
  • the source breakdown voltage holding layer 56 has different thicknesses between the bottom surface 48 and the side surface 47 of the source trench 46. Specifically, the portion on the bottom surface 48 of the source breakdown voltage holding layer 56 is thicker than the portion on the side surface 47, and thereby the difference in the thickness of the source breakdown voltage holding layer 56 between the bottom surface 48 and the side surface 47. Is provided.
  • This layer thickness difference is caused by, for example, differences in the incident angles of ions with respect to the side surface 47 of the source trench 46 and the bottom surface 48 of the source trench 46 when the source breakdown voltage holding layer 56 is formed by ion implantation. That is, since ions are incident on the bottom surface 48 of the source trench 46 substantially perpendicularly, the ions are implanted deeper than the side surface 47 of the source trench 46 where the ions are incident at a very small inclination angle. A breakdown voltage holding layer 56 is formed.
  • the source breakdown voltage holding layer 56 is higher in concentration than the other portions of the source breakdown voltage holding layer 56, for example, p + having a dopant concentration of 1.0 ⁇ 10 18 cm ⁇ 3 to 2.0 ⁇ 10 21 cm ⁇ 3.
  • a mold contact layer 57 is included. The contact layer 57 is formed at the center in the width direction of the bottom surface 48 of the source trench 46, for example, spaced from the side surface 47 of the source trench 46.
  • a barrier formation layer 59 having a higher potential barrier than the potential barrier between the source breakdown voltage holding layer 56 and the source electrode 58 is formed between the side surface 47 and the source electrode 58 (described later). .
  • the barrier formation layer 59 is selectively formed on the edge portions of the side surface 47 and the bottom surface 48 of the source trench 46 so that the source breakdown voltage holding layer 56 is selectively exposed from the bottom surface 48 of the source trench 46. ing.
  • a p + -type contact layer 57 is exposed on the bottom surface 48 of the source trench 46 from which the barrier forming layer 59 has been selectively removed. Further, the side surface 47 of the source trench 46 is covered with a barrier forming layer 59 in a region from the bottom surface 48 to the opening end.
  • the barrier formation layer 59 may be, for example, a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier formation layer 59 may be an n-type polysilicon layer, and any of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON).
  • an insulating layer made of one kind may be used.
  • a gate electrode 61 is embedded in the gate trench 44 through a gate insulating film 60.
  • the gate electrode 61 is made of, for example, polysilicon.
  • An interlayer film 62 made of an insulating material is formed on the surface 49 of the SiC epitaxial layer 43 so as to cover the gate electrode 61.
  • a contact hole 63 is formed in the interlayer film 62 and the gate insulating film 60. As a result, the entire source trench 46 of each unit cell 45 and the peripheral edge of the source trench 46 in the SiC epitaxial layer 43 are exposed in the contact hole 63, and the surface 49 of the SiC epitaxial layer 43 and the source trench 46. A step corresponding to the height difference from the bottom surface 48 is formed.
  • a source electrode 58 made of a metal material such as a laminated structure of Ti, Ni, Cu, Al, Ag, Au, TiN, W or any combination thereof is formed on the surface 49 of the SiC epitaxial layer 43, for example. Yes.
  • the source electrode 58 enters the source trenches 46 of all the unit cells 45 at once through the contact holes 63.
  • the source electrode 58 is a common wiring for all the unit cells 45.
  • An electrode 65 is formed.
  • the drain electrode 65 is a common electrode for all the unit cells 45.
  • a depletion layer is generated at the pn junction 67 between the source breakdown voltage holding layer 56 and the drift layer 53.
  • the depletion layer spreads, for example, as shown by the broken line in FIG.
  • the depletion layer that reaches the edge portions of the side surface 47 and the bottom surface 48 of the source trench 46 also reaches the source electrode 58 as it is, and punch-through occurs.
  • punch-through can be suppressed by the barrier formation layer 59 even if the depletion layer spreads and reaches the edge portions of the side surface 47 and the bottom surface 48 of the source trench 46. As a result, generation of leakage current can be suppressed.
  • FIG. 5 is a schematic cross-sectional view of a semiconductor device 71 according to the fifth embodiment of the present invention.
  • parts corresponding to the respective parts shown in FIG. 4 are denoted by the same reference numerals as those given to the respective parts, and description thereof is omitted.
  • a semiconductor device 71 according to the fifth embodiment includes a source electrode 74 having a polysilicon layer 72 and a metal layer 73 stacked on the polysilicon layer 72 in place of the source electrode 58 of the fourth embodiment.
  • the polysilicon layer 72 is embedded in the source trench 46 and is formed flat so as to cover the surface 49 of the SiC epitaxial layer 43 and the interlayer film 62.
  • the polysilicon layer 72 is formed on the surface 49 of the SiC epitaxial layer 43 so as to fill the source trench 46 and the contact hole 63, the surface of the apparent SiC epitaxial layer 43 is obtained.
  • the height difference of 49 can be reduced. Therefore, the surface of the source electrode 74 can be made smooth or flat.
  • FIG. 6 is a schematic cross-sectional view of a semiconductor device 81 according to the sixth embodiment of the present invention.
  • parts corresponding to the respective parts shown in FIG. 5 are denoted by the same reference numerals as those given to the respective parts, and description thereof will be omitted.
  • the semiconductor device 81 according to the sixth embodiment includes a structure in which the region below the bottom surface 48 in the source breakdown voltage holding layer 56 including the contact layer 57 is selectively removed from the fifth embodiment.
  • the source breakdown voltage holding layer 56 selectively disposed on the bottom surface 48 of the source trench 46 is formed in an annular shape so as to cover the periphery of the edge portion of the bottom surface 48 of the source trench 46.
  • the drift layer 53 enters the central portion of the bottom surface 48 of the source trench 46 surrounded by the source breakdown voltage holding layer 56, and the polysilicon layer 72 forming the source electrode 74 and the drift layer 53 form a heterojunction.
  • a portion 82 is formed.
  • the heterojunction portion 82 includes a heterojunction diode 84 having a junction barrier smaller than a diffusion potential (for example, 2.8 eV to 3.2 eV) of a body diode 83 formed by a pn junction between the channel layer 52 and the drift layer 53.
  • a diffusion potential for example, 2.8 eV to 3.2 eV
  • the height of the junction barrier is 1 eV to 1.5 eV.
  • this semiconductor device 81 when a reverse bias is applied to the pn junction 67 between the channel layer 52 and the drift layer 53, a current flows preferentially through the heterojunction diode 84, so that SiC in the SiC epitaxial layer 43 Expansion of crystal defects can be suppressed. As a result, an increase in on-resistance can be suppressed and loss of the semiconductor device 81 can be reduced.
  • FIG. 7 is a schematic cross-sectional view of a semiconductor device 91 according to a seventh embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 4 are denoted by the same reference numerals as those given to the respective parts, and the description of those parts is omitted.
  • the semiconductor device 91 according to the seventh embodiment includes a structure in which the barrier forming layer 59 is arranged so that the source layer 51 is exposed from the side surface 47 of the source trench 46 in the configuration of FIG.
  • the barrier forming layer 59 is disposed so as to selectively cover a portion below the channel layer 52 on the side surface 47 of the source trench 46. As a result, the source layer 51 and the channel layer 52 are exposed on the side surface 47 of the source trench 46.
  • the contact area of the source layer 51 with respect to the source electrode 74 can be increased, so that good conductivity can be ensured between them.
  • FIG. 8 is a schematic cross-sectional view of a semiconductor device 101 according to the eighth embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 5 are given the same reference numerals as those given to the respective parts, and description thereof will be omitted.
  • the semiconductor device 101 according to the eighth embodiment includes a structure in which a barrier forming layer 59 is arranged so that the source layer 51 is exposed from the side surface 47 of the source trench 46 in the configuration of FIG.
  • the barrier forming layer 59 is disposed so as to selectively cover a portion below the channel layer 52 on the side surface 47 of the source trench 46. As a result, the source layer 51 and the channel layer 52 are exposed on the side surface 47 of the source trench 46.
  • the contact area of the source layer 51 with respect to the source electrode 74 can be increased, so that good conductivity can be ensured between them.
  • FIG. 9 is a schematic cross-sectional view of a semiconductor device 111 according to the ninth embodiment of the present invention. 9, parts corresponding to those shown in FIG. 6 are denoted by the same reference numerals as those given to the respective parts, and description thereof will be omitted.
  • the semiconductor device 111 according to the ninth embodiment includes a structure in which the barrier forming layer 59 is arranged so that the source layer 51 is exposed from the side surface 47 of the source trench 46 in the configuration of FIG.
  • the barrier forming layer 59 is disposed so as to selectively cover a portion below the channel layer 52 on the side surface 47 of the source trench 46. As a result, the source layer 51 and the channel layer 52 are exposed on the side surface 47 of the source trench 46.
  • the contact area of the source layer 51 with respect to the source electrode 74 can be increased, so that good conductivity can be ensured between them.
  • FIG. 10 is a schematic cross-sectional view of a semiconductor device 121 according to the tenth embodiment of the present invention. 10, parts corresponding to the parts shown in FIG. 4 are denoted by the same reference numerals as those given to the respective parts, and description thereof will be omitted.
  • the semiconductor device 121 includes a trench gate type MISFET in which an SiC substrate 42 and an SiC epitaxial layer 43 formed on the SiC substrate 42 are employed.
  • the SiC substrate 42 and the SiC epitaxial layer 43 are shown as an example of the semiconductor layer of the present invention.
  • a gate trench 44 is formed in the SiC epitaxial layer 43.
  • the gate trench 44 may be, for example, a lattice shape, a stripe shape, or a honeycomb shape.
  • a plurality of unit cells 45 are formed in a portion surrounded by the gate trench 44 in the SiC epitaxial layer 43.
  • a tapered trench 122 is formed at the center of each unit cell 45.
  • the side surface 123 of the tapered trench 122 is inclined with an obtuse angle with respect to the bottom surface 124 (for example, the narrow angle between the side surface 123 and the bottom surface 124 of the tapered trench 122 is an angle ⁇ of 20 ° to 70 °).
  • a source layer 125, a channel layer 126, and a drift layer 127 are formed in this order from the front surface 49 side to the rear surface 50 side of the SiC epitaxial layer 43, and these layers are in contact with each other.
  • the source layer 125 and the drift layer 127 are n-type as the first conductivity type
  • the channel layer 126 is p-type as the second conductivity type.
  • the source layer 125 forms part of the side surface 54 of the gate trench 44 and part of the side surface 123 of the tapered trench 122.
  • the channel layer 126 forms part of the side surface 54 of the gate trench 44 and part of the side surface 123 of the tapered trench 122.
  • the drift layer 127 forms the side surface 54 and the bottom surface 55 of the gate trench 44 and the side surface 123 and the bottom surface 124 of the tapered trench 122.
  • the source breakdown voltage holding layer 128 is formed so as to continue to the channel layer 126 along the side surface 123 of the tapered trench 122 from the bottom surface 124 of the tapered trench 122.
  • the portion of the source breakdown voltage holding layer 128 along the side surface 123 of the taper trench is formed so as to increase in thickness in the lateral direction as the side surface 123 of the taper trench 122 is inclined. Yes. Specifically, the portion of the source breakdown voltage holding layer 128 is continuously thick as the opening width of the tapered trench 122 is continuously narrowed in the depth direction.
  • the source breakdown voltage holding layer 128 includes a p + -type contact layer 129 having a higher concentration than other portions of the source breakdown voltage holding layer 128.
  • the contact layer 129 is formed at the center in the width direction of the bottom surface 124 of the tapered trench 122, for example, spaced from the side surface 123 of the tapered trench 122.
  • a gate electrode 61 is embedded in the gate trench 44 through a gate insulating film 60.
  • the gate electrode 61 is made of, for example, polysilicon.
  • An interlayer film 62 is laminated on the surface 49 of the SiC epitaxial layer 43 so as to cover the gate electrode 61.
  • a contact hole 63 is formed in the interlayer film 62 and the gate insulating film 60.
  • the entire tapered trench 122 of each unit cell 45 and the peripheral edge of the tapered trench 122 in the SiC epitaxial layer 43 are exposed in the contact hole 63, and the surface 49 of the SiC epitaxial layer 43 and the tapered trench 122.
  • a step corresponding to the height difference from the bottom surface 124 is formed.
  • a source electrode 58 made of a metal material such as a laminated structure of Ti, Ni, Cu, Al, Ag, Au, TiN, W or any combination thereof is formed on the surface 49 of the SiC epitaxial layer 43, for example. Yes.
  • the source electrode 58 enters the tapered trenches 122 of all the unit cells 45 at once through the contact holes 63.
  • the source electrode 58 is a common wiring for all the unit cells 45.
  • the source electrode 58 is in direct contact with the side surface 123 of the tapered trench 122 without using the barrier forming layer.
  • An electrode 65 is formed.
  • the drain electrode 65 is a common electrode for all the unit cells 45.
  • a depletion layer is generated at the pn junction 131 between the source breakdown voltage holding layer 128 and the drift layer 127.
  • the depletion layer spreads, for example, as shown by a broken line in FIG.
  • the source breakdown voltage holding layer 128 is formed with a constant width so as to be along the side surface 123 and the bottom surface 124 of the tapered trench 122
  • the depletion layer extending from the pn junction 131 reaches the side surface 123 of the tapered trench 122. There is a risk of punching through in contact with the source electrode 58.
  • the source breakdown voltage holding layer 128 is formed so as to increase in the lateral direction as the side surface 123 of the tapered trench 122 is inclined, the source breakdown voltage holding layer 128 having a constant thickness is formed. Compared to the former case, the distance between the side surface 123 of the tapered trench 122 and the pn junction 131 can be increased. As a result, the depletion layer extending from the pn junction 131 can hardly reach the side surface 123 of the tapered trench 122. As a result, punch-through can be suppressed and generation of leakage current can be suppressed.
  • FIG. 11 is a schematic cross-sectional view of a semiconductor device 141 according to the eleventh embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 11 are corresponding to the parts shown in FIG.
  • the semiconductor device 141 according to the eleventh embodiment includes a source electrode 74 having a polysilicon layer 72 and a metal layer 73 stacked on the polysilicon layer 72 instead of the source electrode 58 of the tenth embodiment.
  • the polysilicon layer 72 is embedded in the tapered trench 122 and is formed flat so as to cover the SiC epitaxial layer 43 and the interlayer film 62.
  • the polysilicon layer 72 is formed on the surface 49 of the SiC epitaxial layer 43 so as to fill the tapered trench 122 and the contact hole 63, the surface of the apparent SiC epitaxial layer 43 is obtained.
  • the height difference of 49 can be reduced. Therefore, the surface of the source electrode 74 can be made smooth or flat.
  • FIG. 12 is a schematic cross-sectional view of a semiconductor device 151 according to the twelfth embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 12 are corresponding to the parts shown in FIG.
  • the semiconductor device 151 according to the twelfth embodiment includes a structure in which the region below the bottom surface 124 in the source withstand voltage holding layer 128 including the contact layer 129 is selectively removed from the eleventh embodiment.
  • the source breakdown voltage holding layer 128 selectively disposed on the bottom surface 124 of the tapered trench 122 is formed in an annular shape so as to cover the periphery of the edge portion of the bottom surface 124 of the tapered trench 122.
  • the drain layer 130 enters the center of the bottom surface 124 of the tapered trench 122 surrounded by the source breakdown voltage holding layer 128, and the drain layer 130 forms a heterojunction with the polysilicon layer 72 forming the source electrode 74.
  • a portion 82 is formed.
  • the heterojunction portion 82 includes a heterojunction diode 84 having a junction barrier smaller than the diffusion potential (for example, 2.8 eV to 3.2 eV) of the body diode 83 formed by the pn junction between the channel layer 126 and the drain layer 130. (For example, the height of the junction barrier is 1 eV to 1.5 eV).
  • this semiconductor device 151 when a reverse bias is applied to the pn junction 131 between the channel layer 126 and the drain layer 130, a current flows preferentially through the heterojunction diode 84. Expansion of crystal defects can be suppressed. As a result, an increase in on-resistance can be suppressed and loss of the semiconductor device 151 can be reduced.
  • FIG. 13 is a schematic cross-sectional view of a semiconductor device 161 according to a thirteenth embodiment of the present invention.
  • portions corresponding to the respective portions shown in FIG. 13 are corresponding to the respective portions shown in FIG.
  • the semiconductor device 161 according to the thirteenth embodiment further includes a gap between the source breakdown voltage holding layer 128 and the source electrode 74 between the side surface 123 of the tapered trench 122 and the source electrode 74.
  • a barrier formation layer 162 having a higher potential barrier than the first potential barrier.
  • the barrier formation layer 162 is selectively formed on the edge portions of the side surface 123 and the bottom surface 124 of the tapered trench 122 so that the source breakdown voltage holding layer 128 is selectively exposed from the bottom surface 124 of the tapered trench 122. ing.
  • the barrier formation layer 162 may be, for example, a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier formation layer 162 may be an n-type polysilicon layer, and may be any of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON). Alternatively, an insulating layer made of one kind may be used.
  • a depletion layer is generated at the pn junction 131 between the source breakdown voltage holding layer 128 and the drain layer 130.
  • a reverse bias is applied to the pn junction 131, a depletion layer spreads in the pn junction 131.
  • the depletion layer reaches the side surface 123 of the tapered trench 122, the depletion layer reaches the source electrode 58 as it is, so that punch-through may occur. is there.
  • punch-through can be suppressed by the barrier forming layer 162 even if the depletion layer spreads and reaches the side surface 123 of the tapered trench 122. As a result, generation of leakage current can be suppressed.
  • FIG. 14 is a schematic cross-sectional view of a semiconductor device 171 according to a fourteenth embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 14 are corresponding to the parts shown in FIG. 14
  • the semiconductor device 171 according to the fourteenth embodiment further includes a gap between the source breakdown voltage holding layer 128 and the source electrode 58 between the side surface 123 of the tapered trench 122 and the source electrode 74.
  • a barrier formation layer 162 having a higher potential barrier than the first potential barrier.
  • the barrier formation layer 162 is selectively formed on the edge portions of the side surface 123 and the bottom surface 124 of the tapered trench 122 so that the source breakdown voltage holding layer 128 is selectively exposed from the bottom surface 124 of the tapered trench 122. ing.
  • the barrier formation layer 162 may be, for example, a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier formation layer 162 may be an n-type polysilicon layer, and may be any of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON). Alternatively, an insulating layer made of one kind may be used.
  • a depletion layer is generated at the pn junction 131 between the source breakdown voltage holding layer 128 and the drain layer.
  • a reverse bias is applied to the pn junction 131, a depletion layer spreads in the pn junction 131.
  • the depletion layer reaches the side surface 123 of the tapered trench 122, the depletion layer reaches the source electrode 74 as it is, so that punch-through may occur. is there.
  • punch-through can be suppressed by the barrier forming layer 162 even if the depletion layer spreads and reaches the side surface 123 of the tapered trench 122. As a result, generation of leakage current can be suppressed.
  • FIG. 15 is a schematic cross-sectional view of a semiconductor device 181 according to a fifteenth embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 15 are corresponding to the parts shown in FIG.
  • the semiconductor device 181 according to the fifteenth embodiment further includes a gap between the source breakdown voltage holding layer 128 and the source electrode 74 between the side surface 123 of the tapered trench 122 and the source electrode 74.
  • a barrier formation layer 162 having a higher potential barrier than the first potential barrier.
  • the barrier formation layer 162 is selectively formed on the edge portions of the side surface 123 and the bottom surface 124 of the tapered trench 122 so that the source breakdown voltage holding layer 128 is selectively exposed from the bottom surface of the tapered trench 122. Yes.
  • the barrier formation layer 162 may be, for example, a metal layer made of any one of tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), and molybdenum (Mo).
  • the barrier formation layer 162 may be an n-type polysilicon layer, and may be any of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON). Alternatively, an insulating layer made of one kind may be used.
  • a depletion layer is generated at the pn junction 131 between the source breakdown voltage holding layer 128 and the drain layer 130.
  • a reverse bias is applied to the pn junction 131, a depletion layer spreads in the pn junction 131.
  • the depletion layer reaches the side surface 123 of the tapered trench 122, the depletion layer reaches the source electrode 74 as it is, so that punch-through may occur. is there.
  • FIG. 16 is a schematic cross-sectional view of a semiconductor device 191 according to a sixteenth embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 16 are corresponding to the parts shown in FIG.
  • the semiconductor device 191 includes a structure in which the barrier forming layer 162 is disposed so that the source layer 125 is exposed from the side surface 123 of the tapered trench 122 in the configuration of FIG.
  • the barrier forming layer 162 is disposed so as to selectively cover a portion below the channel layer 126 on the side surface 123 of the tapered trench 122. As a result, the source layer 125 and the channel layer 126 are exposed on the side surface 123 of the tapered trench 122.
  • the contact area of the source layer 125 with respect to the source electrode 58 can be increased, so that good conductivity can be ensured between them.
  • FIG. 17 is a schematic sectional view of a semiconductor device 201 according to the seventeenth embodiment of the present invention.
  • parts corresponding to the parts shown in FIG. 17 are corresponding to the parts shown in FIG. 17
  • the semiconductor device 201 includes a structure in which the barrier forming layer 162 is disposed so that the source layer 125 is exposed from the side surface 123 of the tapered trench 122 in the configuration of FIG.
  • the barrier forming layer 162 is disposed so as to selectively cover a portion below the channel layer 126 on the side surface 123 of the tapered trench 122. As a result, the source layer 125 and the channel layer 126 are exposed on the side surface 123 of the tapered trench 122.
  • the contact area of the source layer 125 with respect to the source electrode 74 can be increased, so that good conductivity can be ensured between them.
  • FIG. 18 is a schematic cross-sectional view of a semiconductor device 211 according to an eighteenth embodiment of the present invention. In FIG. 18, parts corresponding to the parts shown in FIG.
  • the semiconductor device 211 according to the eighteenth embodiment includes a structure in which the barrier forming layer 162 is disposed so that the source layer 125 is exposed from the side surface 123 of the tapered trench 122 in the configuration of FIG.
  • the barrier forming layer 162 is disposed so as to selectively cover a portion below the channel layer 126 on the side surface 123 of the tapered trench 122. As a result, the source layer 125 and the channel layer 126 are exposed on the side surface 123 of the tapered trench 122.
  • the contact area of the source layer 125 with respect to the source electrode 74 can be increased, so that good conductivity can be ensured between them.
  • FIG. 19 is a schematic cross-sectional view of a semiconductor device 221 according to a nineteenth embodiment of the present invention.
  • parts corresponding to the respective parts shown in FIG. 19 are corresponding to the respective parts shown in FIG.
  • the semiconductor device 221 according to the nineteenth embodiment includes, for example, non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON) in the configuration according to the fourth embodiment.
  • a barrier forming layer made of any one of the insulating layers 222 is included.
  • the semiconductor device 221 includes a source electrode 262 having a polysilicon layer 260 and a metal layer 261 instead of the source electrode 58.
  • the polysilicon layer 260 is laminated on the insulating layer 222 so that one surface and the other surface thereof are along the insulating layer 222. As a result, the upper region (the upper region of the contact layer 57) where the insulating layer 222 is selectively removed is a space not occupied by the polysilicon layer 260.
  • Metal layer 261 is embedded in a region inside the stacked structure of insulating layer 222 and polysilicon layer 260 in source trench 46, and is formed flat so as to cover surface 49 of SiC epitaxial layer 43 and interlayer film 62. ing. Thereby, the source electrode 262 is connected to the contact layer 57 by the metal layer 261.
  • a barrier formation in which the stacked structure of the insulating layer 222 and the polysilicon layer 260 has a potential barrier higher than the potential barrier between the source breakdown voltage holding layer 56 and the source electrode 262 is substantially formed. Functions as a layer. Therefore, even if a depletion layer spreading as shown by a broken line shown in FIG. 19 reaches the side surface 47 of the source trench 46 by applying a reverse bias to the pn junction 67, first, punch-through is suppressed by the insulating layer 222. Can do.
  • the gate electrode 61 is polysilicon
  • the gate electrode 61 and the polysilicon layer 260 can be formed in the same process. Therefore, the manufacturing process can be simplified.
  • FIG. 20 is a schematic cross-sectional view of a semiconductor device 231 according to a twentieth embodiment of the present invention. 20, parts corresponding to those shown in FIG. 19 are given the same reference numerals as those given to the respective parts, and description thereof will be omitted.
  • the stacked structure (barrier forming layer) of the insulating layer 222 and the polysilicon layer 260 is arranged so that the source layer 51 is exposed from the side surface 47 of the source trench 46 in the configuration of FIG. Including structures.
  • the insulating layer 222 is disposed so as to selectively cover a portion below the channel layer 52 on the side surface 47 of the source trench 46, and the polysilicon layer 260 is laminated on the insulating layer 222. Yes. As a result, the source layer 51 and the channel layer 52 are exposed on the side surfaces of the source trench 46.
  • the contact area of the source layer 51 with respect to the source electrode 58 can be increased, so that good conductivity can be secured between them.
  • FIG. 21 is a schematic cross-sectional view of a semiconductor device 231 according to a twenty-first embodiment of the present invention.
  • portions corresponding to the respective portions shown in FIG. 21 are schematic cross-sectional views of a semiconductor device 231 according to a twenty-first embodiment of the present invention.
  • the source trench 46 has a planar shape in which no step is formed on the side surface 47 thereof.
  • the semiconductor device 241 according to the twenty-first embodiment has an upper trench 242 having a depth from the surface 49 of the SiC epitaxial layer 43 to the channel layer 52 and a width narrower than that of the upper trench 242.
  • a source trench 46 including a lower trench 243 having a depth up to the drift layer 53 is provided.
  • the source trench 46 has a two-stage structure in which the side surface 244 of the upper layer trench 242 extends one step outward from the side surface 236 of the lower layer trench 243.
  • the channel layer 52 is exposed in a ring shape at the step portion between the upper trench 242 and the lower trench 243, and the contact layer 57 is formed in the exposed portion.
  • the semiconductor device 231 includes an insulating layer 250 that covers the entire inner surface (bottom surface and side surface) of the lower trench 243 instead of the insulating layer 222 described above. Specifically, the insulating layer 250 is formed so that one surface and the other surface thereof are along the inner surface of the lower trench 243. As a result, the inner region of the lower trench 243 is a space not occupied by the insulating layer 250.
  • the insulating layer 250 is made of any one of non-doped polysilicon, silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and aluminum oxynitride (AlON), for example.
  • the semiconductor device 241 includes a source electrode 253 having a polysilicon layer 251 and a metal layer 252 instead of the source electrode 58.
  • the polysilicon layer 251 is embedded in the inner region of the insulating layer 250 in the lower trench 243 and has an upper surface that is flush with the bottom surface 245 of the upper trench 242.
  • the metal layer 252 is formed so as to be embedded in the upper trench 242 by being laminated on the polysilicon layer 251 and to cover the surface 49 of the SiC epitaxial layer 43 and the interlayer film 62. Thereby, the source electrode 253 is connected to the contact layer 57 by the metal layer 252.
  • the polysilicon layer 251 is simply embedded in the source trench 46, the polysilicon layer 251 can be easily formed.
  • the polysilicon layer 251 is formed so as to fill the lower trench 243, there is a difference in height between the apparent bottom surface of the source trench 46 (the upper surface of the polysilicon layer 251) and the surface 49 of the SiC epitaxial layer 43. Can be reduced. Therefore, the surface of the source electrode 58 can be made smooth or flat.
  • the gate electrode 61 is polysilicon, the gate electrode 61 and the polysilicon layer 251 can be formed in the same process. Therefore, the manufacturing process can be simplified.
  • the conductivity type of each semiconductor portion of each semiconductor device described above may be employed.
  • the p-type portion may be n-type and the n-type portion may be p-type.
  • the semiconductor device of the present invention is a power module used in an inverter circuit constituting a drive circuit for driving an electric motor used as a power source for an electric vehicle (including a hybrid vehicle), a train, an industrial robot, etc., for example. Can be incorporated into. It can also be incorporated into a power module used in an inverter circuit that converts electric power generated by a solar cell, wind power generator, or other power generation device (especially an in-house power generation device) to match the power of a commercial power source.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 本発明の半導体装置は、側面および底面を有するトレンチが形成された半導体層と、前記トレンチの前記側面および前記底面の前記半導体層に形成された第2導電型層と、前記第2導電型層に接するように前記半導体層に形成された第1導電型層と、前記第1導電型層に電気的に接続された第1電極と、前記トレンチに埋め込まれ、前記第2導電型層に電気的に接続された第2電極と、前記トレンチの前記側面と前記第2電極との間に配置され、前記第2導電型層と前記第2電極との間の電位障壁よりも高い電位障壁を前記第2導電型層との間に形成する障壁形成層とを含む。

Description

半導体装置
 本発明は、半導体装置に関する。
 従来、モータ制御システム、電力変換システム等、各種パワーエレクトロニクス分野におけるシステムに主として使用される半導体パワーデバイスが注目されている。この種の半導体パワーデバイスとして、たとえば、SiC半導体装置が公知である(たとえば、特許文献1参照)。
 特許文献1の半導体装置は、SiC基板と、SiC基板上に形成されたn型高抵抗層と、n型高抵抗層上に形成されたpウェル層と、pウェル層の表層部に形成されたn+エミッタ領域と、n+エミッタ領域を貫通してpウェル層に達するp+コンタクト領域と、n+エミッタ領域の表面からpウェル層を貫通してn型高抵抗層に達するトレンチと、トレンチの内面に形成されたゲート酸化膜と、トレンチに埋め込まれたポリシリコンゲート電極とを含む。
特開2008-294210号公報
 本発明の半導体装置は、側面および底面を有するトレンチが形成された半導体層と、前記トレンチの前記側面および前記底面の前記半導体層に形成された第2導電型層と、前記第2導電型層に接するように前記半導体層に形成された第1導電型層と、前記第1導電型層に電気的に接続された第1電極と、前記トレンチに埋め込まれ、前記第2導電型層に電気的に接続された第2電極と、前記トレンチの前記側面と前記第2電極との間に配置され、前記第2導電型層と前記第2電極との間の電位障壁よりも高い電位障壁を前記第2導電型層との間に形成する障壁形成層とを含む。
 この構成によれば、第1導電型層と第2導電型層とのpn接合部に逆方向バイアスが印加されると、そのpn接合部で発生している空乏層が、pn接合部に対してトレンチ側に広がってトレンチの側面に達しやすい。しかし、この構成では、たとえトレンチ側面に達しても、障壁形成層によってパンチスルーを抑制することができる。その結果、リーク電流の発生を抑制することができる。
 前記障壁形成層は、さらに前記トレンチの前記底面のエッジ部に配置されていることが好ましい。
 この構成によれば、トレンチの底面のエッジ部におけるパンチスルーを抑制することもできる。
 前記障壁形成層は、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層を含んでいてもよい。
 また、前記障壁形成層は、第1導電型のポリシリコン層を含んでもいてもよい。
 また、前記障壁形成層は、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層を含んでいてもよい。
 本発明の半導体装置は、側面および底面を有し、前記底面に対して前記側面が鈍角に傾斜したテーパトレンチが形成された半導体層と、前記テーパトレンチの前記側面および前記底面の前記半導体層に形成され、前記テーパトレンチの前記側面の傾斜に伴って当該側面から前記半導体層の表面に沿う横方向に厚くなる第2導電型層と、前記第2導電型層に接するように前記半導体層に形成された第1導電型層と、前記第1導電型層に電気的に接続された第1電極と、前記テーパトレンチに埋め込まれ、前記第2導電型層に電気的に接続された第2電極とを含む。
 この構成によれば、第1導電型層と第2導電型層とのpn接合部で空乏層が発生しており、逆方向バイアスが印加されると、その空乏層がpn接合部に対してテーパトレンチ側に広がる。このとき、第2導電型層がトレンチの側面から横方向に一定の厚さで形成されていると、当該pn接合部から広がる空乏層がトレンチの側面に達して第2電極に接し、パンチスルーするおそれがある。そこで、この半導体装置では、第2導電型層が、テーパトレンチの側面の傾斜に伴って横方向に厚くなるように形成されている。そのため、一定厚さの第2導電型層が形成された前者の場合に比べて、テーパトレンチの側面とpn接合部との距離を広げることができる。これにより、当該pn接合部から広がる空乏層がテーパトレンチの側面に達し難くすることができる。その結果、パンチスルーを抑制でき、リーク電流の発生を抑制することができる。
 前記半導体装置は、前記テーパトレンチの前記側面と前記第2電極との間に配置され、前記第2導電型層と前記第2電極との間の電位障壁よりも高い電位障壁を前記第2導電型層との間に形成する障壁形成層をさらに含むことが好ましい。
 この構成によれば、第1導電型層と第2導電型層とのpn接合部で発生している空乏層が、逆方向バイアスが印加されることにより、pn接合部に対してテーパトレンチ側に広がってテーパトレンチの側面に達しても、障壁形成層によってパンチスルーを抑制することができる。
 前記障壁形成層は、さらに前記テーパトレンチの前記底面のエッジ部に配置されていることが好ましい。
 この構成によれば、テーパトレンチの底面のエッジ部におけるパンチスルーを抑制することもできる。
 前記障壁形成層は、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層を含んでいてもよい。
 また、前記障壁形成層は、第1導電型のポリシリコン層を含んでもいてもよい。
 また、たとえば、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層を含んでいてもよい。
 本発明の半導体装置は、側面および底面を有するゲートトレンチと、側面および底面を有するソーストレンチとが形成された半導体層と、前記半導体層の表面に露出するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面を形成する第1導電型のソース層と、前記ソース層に対して前記半導体層の裏面側に前記ソース層に接するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面の一部形成する第2導電型のチャネル層と、前記チャネル層に対して前記半導体層の前記裏面側に前記チャネル層に接するように配置され、前記ゲートトレンチの前記底面および前記ソーストレンチの前記底面を形成する第1導電型のドレイン層と、前記ゲートトレンチに埋め込まれたゲート電極と、前記ゲートトレンチの前記側面および前記底面と、前記ゲート電極との間に配置されたゲート絶縁膜と、前記チャネル層に連なるように形成され、前記ソーストレンチの前記側面および前記底面に配置された第2導電型のソース耐圧保持層と、前記ドレイン層に電気的に接続されたドレイン電極と、前記ソーストレンチに埋め込まれ、前記ソース層および前記ソース耐圧保持層に電気的に接続されたソース電極と、前記ソーストレンチの前記側面と前記ソース電極との間に配置され、前記ソース耐圧保持層と前記ソース電極との間の電位障壁よりも高い電位障壁を有する障壁形成層とを含む。
 この構成によれば、第2導電型のソース耐圧保持層と第1導電型のドレイン層とのpn接合部に逆方向バイアスが印加されると、そのpn接合部で発生している空乏層が、pn接合部に対してソーストレンチ側に広がってソーストレンチの側面に達しやすい。しかし、この構成では、たとえソーストレンチ側面に達しても、障壁形成層によってパンチスルーを抑制することができる。その結果、リーク電流の発生を抑制することができる。
 前記障壁形成層は、さらに前記ソーストレンチの前記底面のエッジ部に配置されていることが好ましい。
 この構成によれば、ソーストレンチの底面のエッジ部におけるパンチスルーを抑制することができる。
 前記障壁形成層は、前記ソーストレンチの前記側面から前記ソース層が露出するように配置されていることが好ましい。
 この構成によれば、ソース電極に対するソース層のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 前記障壁形成層は、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層を含んでいてもよい。
 また、前記障壁形成層は、第1導電型のポリシリコン層を含んでもいてもよい。
 また、前記障壁形成層は、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層を含んでいてもよい。
 本発明の半導体装置は、側面および底面を有するゲートトレンチと、側面および底面を有するソーストレンチとが形成され、前記ソーストレンチが前記底面に対して前記側面が鈍角に傾斜したテーパトレンチである半導体層と、前記半導体層の表面に露出するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面を形成する第1導電型のソース層と、前記ソース層に対して前記半導体層の裏面側に前記ソース層に接するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面の一部を形成する第2導電型のチャネル層と、前記チャネル層に対して前記半導体層の前記裏面側に前記チャネル層に接するように配置され、前記ゲートトレンチの前記底面および前記ソーストレンチの前記底面を形成する第1導電型のドレイン層と、前記ゲートトレンチに埋め込まれたゲート電極と、前記ゲートトレンチの前記側面および前記底面と、前記ゲート電極との間に配置されたゲート絶縁膜と、前記チャネル層に連なるように前記ソーストレンチの前記側面および前記底面に配置され、前記ソーストレンチの前記側面の傾斜に伴って当該側面から前記半導体層の前記表面に沿う横方向に厚くなる第2導電型のソース耐圧保持層と、前記ドレイン層に電気的に接続されたドレイン電極と、前記ソーストレンチに埋め込まれ、前記ソース層および前記ソース耐圧保持層に電気的に接続されたソース電極とを含む。
 この構成によれば、第2導電型のソース耐圧保持層と第1導電型のドレイン層とのpn接合部で空乏層が発生しており、逆方向バイアスが印加されると、その空乏層がpn接合部に対してソーストレンチ側に広がる。このとき、第2導電型のソース耐圧保持層がトレンチの側面から横方向に一定の厚さで形成されていると、当該pn接合部から広がる空乏層がトレンチの側面に達して第2電極に接し、パンチスルーするおそれがある。そこで、この半導体装置では、ソース耐圧保持層が、ソーストレンチの側面の傾斜に伴って横方向に厚くなるように形成されている。そのため、一定厚さの第2導電型層が形成された前者の場合に比べて、ソーストレンチの側面とpn接合部との距離を広げることができる。これにより、当該pn接合部から広がる空乏層がソーストレンチの側面に達し難くすることができる。その結果、パンチスルーを抑制でき、リーク電流の発生を抑制することができる。
 前記半導体装置は、前記ソーストレンチの前記側面と前記ソース電極との間に配置され、前記ソース耐圧保持層と前記ソース電極との間の電位障壁よりも高い電位障壁を前記ソース耐圧保持層との間に形成する障壁形成層をさらに含むことが好ましい。
 この構成によれば、第2導電型のソース耐圧保持層と第1導電型のドレイン層とのpn接合部で発生している空乏層が、逆方向バイアスの印加によりpn接合部に対してソーストレンチ側に広がってソーストレンチの側面に達しても、障壁形成層によってパンチスルーを抑制することができる。
 前記障壁形成層は、さらに前記ソーストレンチの前記底面のエッジ部に配置されていることが好ましい。
 この構成によれば、ソーストレンチの底面のエッジ部におけるパンチスルーを抑制することもできる。
 前記障壁形成層は、前記ソーストレンチの前記側面から前記ソース層が露出するように配置されていることが好ましい。
 この構成によれば、ソース電極に対するソース層のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 前記障壁形成層は、たとえば、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層を含んでいてもよい。
 また、たとえば、第1導電型のポリシリコン層を含んでもいてもよい。
 また、たとえば、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層を含んでいてもよい。
 本発明の半導体装置は、側面および底面を有するゲートトレンチと、側面および底面を有するソーストレンチとが形成された半導体層と、前記半導体層の表面に露出するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面を形成する第1導電型のソース層と、前記ソース層に対して前記半導体層の裏面側に前記ソース層に接するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面の一部を形成する第2導電型のチャネル層と、前記チャネル層に対して前記半導体層の前記裏面側に前記チャネル層に接するように配置され、前記ゲートトレンチの前記底面および前記ソーストレンチの前記底面を形成する第1導電型のドレイン層と、前記ゲートトレンチに埋め込まれたポリシリコンからなるゲート電極と、前記ゲートトレンチの前記側面および前記底面と、前記ゲート電極との間に配置されたゲート絶縁膜と、前記チャネル層に連なるように形成され、前記ソーストレンチの前記側面および前記底面に配置された第2導電型のソース耐圧保持層と、前記ソーストレンチの前記側面および前記底面のエッジ部に配置された絶縁層と、前記ドレイン層に電気的に接続されたドレイン電極と、前記ソーストレンチに埋め込まれ、少なくとも前記絶縁層上にポリシリコン層を有しており、前記ソース層および前記ソース耐圧保持層に電気的に接続されたソース電極とを含む。
 この構成によれば、第2導電型のソース耐圧保持層と第1導電型のドレイン層とのpn接合部に逆方向バイアスが印加されると、そのpn接合部で発生している空乏層が、pn接合部に対してソーストレンチ側に広がってソーストレンチの側面に達しやすい。しかし、この構成では、絶縁層によってパンチスルーを抑制することができる。たとえ空乏層が絶縁層をも横切ってソース電極に達しても、絶縁層上にポリシリコン層が設けられているため、それ以上の空乏層の広がりを抑制することができる。すなわち、パンチスルーを絶縁層およびポリシリコン層の2段階で抑制できるので、リーク電流の発生を良好に抑制することができる。
 また、ゲート電極がポリシリコンからなるため、ゲート電極とポリシリコン層とを同一工程で形成することができる。そのため、製造工程を簡略化することもできる。
 前記絶縁層は、前記ソーストレンチの前記側面から前記ソース層が露出するように配置されていることが好ましい。
 この構成によれば、ソース電極に対するソース層のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 前記ポリシリコン層は、前記ソーストレンチにおいて前記絶縁層の内側の領域に埋め込まれており、前記ソース電極は、前記埋め込まれたポリシリコン層に積層された金属層を含むことが好ましい。
 この構成によれば、ポリシリコン層を単にソーストレンチに埋め込めばよいので、ポリシリコン層を簡単に形成することができる。また、ソーストレンチがポリシリコン層で埋め戻されることによって、見かけ上のソーストレンチの底面(ポリシリコン層の上面)と半導体層の表面との高低差を小さくすることができる。そのため、金属層の表面を滑らかもしくは平坦にすることができる。
図1は、本発明の第1実施形態に係る半導体装置の模式的な断面図である。 図2は、本発明の第2実施形態に係る半導体装置の模式的な断面図である。 図3は、本発明の第3実施形態に係る半導体装置の模式的な断面図である。 図4は、本発明の第4実施形態に係る半導体装置の模式的な断面図である。 図5は、本発明の第5実施形態に係る半導体装置の模式的な断面図である。 図6は、本発明の第6実施形態に係る半導体装置の模式的な断面図である。 図7は、本発明の第7実施形態に係る半導体装置の模式的な断面図である。 図8は、本発明の第8実施形態に係る半導体装置の模式的な断面図である。 図9は、本発明の第9実施形態に係る半導体装置の模式的な断面図である。 図10は、本発明の第10実施形態に係る半導体装置の模式的な断面図である。 図11は、本発明の第11実施形態に係る半導体装置の模式的な断面図である。 図12は、本発明の第12実施形態に係る半導体装置の模式的な断面図である。 図13は、本発明の第13実施形態に係る半導体装置の模式的な断面図である。 図14は、本発明の第14実施形態に係る半導体装置の模式的な断面図である。 図15は、本発明の第15実施形態に係る半導体装置の模式的な断面図である。 図16は、本発明の第16実施形態に係る半導体装置の模式的な断面図である。 図17は、本発明の第17実施形態に係る半導体装置の模式的な断面図である。 図18は、本発明の第18実施形態に係る半導体装置の模式的な断面図である。 図19は、本発明の第19実施形態に係る半導体装置の模式的な断面図である。 図20は、本発明の第20実施形態に係る半導体装置の模式的な断面図である。 図21は、本発明の第21実施形態に係る半導体装置の模式的な断面図である。
 図1は、本発明の第1実施形態に係る半導体装置1の模式的な断面図である。
 半導体装置1は、SiC基板2と、SiC基板2上に形成されたSiCエピタキシャル層3とを含む。この実施形態では、SiC基板2およびSiCエピタキシャル層3を、本発明の半導体層の一例として示している。
 SiC基板2の導電型は、たとえば、n型ドーパント濃度が1×1018cm-3~1×1021cm-3のn+型である。なお、n型ドーパントとしては、たとえば、N(窒素)、P(リン)、As(ひ素)等を使用できる(以下、同じ)。
 SiCエピタキシャル層3の表面4には、側面5および底面6を有するトレンチ7が形成されている。トレンチ7は、たとえば、ストライプ状に複数本形成されていてもよい。また、この実施形態では、トレンチ7の側面5は、トレンチ7の底面6に対して90°の角度θで傾斜している。これにより、トレンチ7は、底面6から開口端にかけて一定幅を有している。
 SiCエピタキシャル層3は、トレンチ7の側面5および底面6に倣って形成された本発明の第2導電型層の一例としてのp型層8と、p型層8に対してSiC基板2の裏面9側に接して形成された、本発明の第1導電型層の一例としてのn-型層10とを含む。p型層8の導電型は、たとえば、p型ドーパント濃度が1×1016cm-3~1×1020cm-3のp型である。なお、p型ドーパントとしては、たとえば、B(ホウ素)、Al(アルミニウム)等を使用できる。また、n-型層10の導電型は、n型ドーパント濃度が1×1015~1×1017cm-3のn-型である。このn-型層10は、たとえば、MISFET(Metal Insulator Semiconductor Field Effect Transistor)のドレイン領域(ドリフト領域)、IGBT(Insulated Gate Bipolar Transistor)のドリフト領域およびpnダイオードのn型領域として、それぞれ機能していてもよい。
 p型層8は、具体的には、n-型層10との界面11がSiCエピタキシャル層3の表面4、トレンチ7の側面5およびトレンチ7の底面6に沿うように(たとえば平行に)、断面視で葛折状に連続して形成されている。これにより、トレンチ7の底面6に対して上方位置および下方位置それぞれに、p型層8とn-型層10との界面11が設定されている。したがって、n-型層10は、トレンチ7の側方に選択的に入り込んでいる(突出している)。
 また、p型層8は、トレンチ7の底面6と側面5との間において互いに異なる厚さを有している。具体的には、p型層8の底面6上の部分が側面5上の部分に比べて厚く、これにより、底面6と側面5との間でp型層8の厚さに差が設けられている。この層厚差は、たとえば、イオン注入によってp型層8を形成するときの、トレンチ7の側面5およびトレンチ7の底面6それぞれに対するイオンの入射角度の違いによって生じる。すなわち、トレンチ7の底面6には、イオンがほぼ垂直に入射するため、イオンが非常に小さい傾斜角で入射するトレンチ7の側面5に比べて、イオンが深くまで注入されて、厚くp型層8が形成される。
 また、p型層8は、p型層8の他の部分に比べて高濃度なp+型コンタクト層12を含む。p+型コンタクト層12は、たとえば、トレンチ7の側面5から間隔を隔てて、トレンチ7の底面6の幅方向中央に形成されている。p+型コンタクト層12の導電型は、たとえば、p型ドーパント濃度が1×1018cm-3~2×1021cm-3のp+型である。
 SiC基板2の裏面9には、本発明の第1電極の一例としての裏面電極13が形成されている。裏面電極13は、SiC基板2を介してn-型層10に電気的に接続されている。また、裏面電極13は、たとえば、Ti、Ni、Cu、Al、Ag、Au、TiN、Wまたはこれらいずれかの組み合わせの積層構造からなる。
 一方、SiCエピタキシャル層3には、本発明の第2電極の一例としての表面電極14が形成されている。表面電極14は、トレンチ7を埋め戻し、SiCエピタキシャル層3の表面4を覆うように形成されている。表面電極14は、p+型コンタクト層12においてp型層8に電気的に接続されている。また、表面電極14は、たとえば、Ti、Ni、Cu、Al、Ag、Au、TiN、Wまたはこれらいずれかの組み合わせの積層構造からなる。
 トレンチ7において側面5と表面電極14との間には、p型層8と表面電極14との間の電位障壁よりも高い電位障壁を有する障壁形成層15が形成されている。障壁形成層15は、具体的には、トレンチ7の底面6からp型層8が選択的に露出するように、トレンチ7の側面5および底面6のエッジ部に選択的に形成されている。
 障壁形成層15が選択的に除去されたトレンチ7の底面6には、p+型コンタクト層12が露出している。また、トレンチ7の側面5は、底面6から開口端まで至る領域が障壁形成層15によって覆われている。
 障壁形成層15は、たとえば、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層であってもよい。また、障壁形成層15は、n型のポリシリコン層であってもよいし、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層であってもよい。
 この半導体装置1によれば、p型層8とn-型層10とのpn接合部16に空乏層が発生している。このpn接合部16に逆方向バイアスが印加されると、空乏層は、たとえば、図1で示した破線のように広がる。このとき、障壁形成層15を有しない半導体装置の場合では、トレンチ7の側面5に達した空乏層がそのまま表面電極14にも達するため、パンチスルーが発生する。しかし、この半導体装置1によれば、たとえ、空乏層が広がってトレンチ7の側面5に達しても、障壁形成層15によってパンチスルーを抑制することができる。その結果、リーク電流の発生を抑制することができる。
 図2は、本発明の第2実施形態に係る半導体装置21の模式的な断面図である。図2において、図1に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第2実施形態に係る半導体装置21のSiCエピタキシャル層3の表面4には、テーパトレンチ22が形成されている。テーパトレンチ22は、その側面23が底面24に対して鈍角(たとえば、テーパトレンチ22の側面23と底面24との狭角が20°~70°の角度θ)で傾斜している。
 SiCエピタキシャル層3は、テーパトレンチ22の側面23および底面24に倣って形成されたp型層25と、p型層25に対してSiC基板2の裏面9側に接して形成されたn-型層10とを含む。
 p型層25は、第1実施形態のp型層25のように、断面視で葛折状に連続して形成されている。また、p型層25のテーパトレンチ側面に沿う部分は、テーパトレンチ22の側面23の傾斜に伴って横方向に厚くなるように形成されているため、異なる層厚差を有している。具体的には、p型層25の当該部分は、テーパトレンチ22の開口幅が深さ方向に連続的に狭くなるにつれて、連続的に厚くなっている。
 また、p型層25は、p型層25の他の部分に比べて高濃度なp+型コンタクト層26を含む。p+型コンタクト層26は、たとえば、テーパトレンチ22の側面23から間隔を隔てて、テーパトレンチ22の底面24の幅方向中央に形成されている。
 テーパトレンチ22には、表面電極14が、第1実施形態とは異なり、障壁形成層を介さずにテーパトレンチ22の側面23に直接、接している。
 この半導体装置21によれば、p型層25とn-型層10のpn接合部27で空乏層が発生している。このpn接合部27に逆方向バイアスが印加されると、空乏層は、たとえば、図2で示した破線のように広がる。このとき、p型層25がテーパトレンチ22の側面23および底面24に沿うように、一定幅で形成されている場合では、pn接合部27から広がる空乏層がテーパトレンチ22の側面23に達して表面電極14に接し、パンチスルーするおそれがある。
 この半導体装置21では、p型層25が、テーパトレンチ22の側面23の傾斜に伴って横方向に厚くなるように形成されているため、一定厚さのp型層が形成された前者の場合に比べて、テーパトレンチ22の側面23とpn接合部27との距離を広げることができる。これにより、当該pn接合部27から広がる空乏層がテーパトレンチ22の側面23に達し難くすることができる。その結果、パンチスルーを抑制でき、リーク電流の発生を抑制することができる。
 図3は、本発明の第3実施形態に係る半導体装置31の模式的な断面図である。図3において、図1または図2に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第3実施形態に係る半導体装置31は、第2実施形態の構成に加えて、さらに、テーパトレンチ22の側面23と表面電極14との間に、p型層25と表面電極14との間の電位障壁よりも高い電位障壁を有する障壁形成層28を含む。
 障壁形成層28は、具体的には、テーパトレンチ22の底面24からp型層25が選択的に露出するように、テーパトレンチ22の側面23および底面24のエッジ部に選択的に形成されている。
 障壁形成層28が選択的に除去されたテーパトレンチ22の底面24には、p+型コンタクト層26が露出している。また、テーパトレンチ22の側面23は、底面24から開口端まで至る領域が障壁形成層28によって覆われている。
 障壁形成層28は、たとえば、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層であってもよい。また、障壁形成層28は、n型のポリシリコン層であってもよいし、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層であってもよい。
 この半導体装置31によれば、p型層25とn-型層10とのpn接合部27に空乏層が発生している。このpn接合部27に逆方向バイアスが印加されると、空乏層は、たとえば、図3で示した破線のように広がる。このとき、障壁形成層28を有しない半導体装置の場合では、テーパトレンチ22の側面23に空乏層が達してしまうと、空乏層がそのまま表面電極14にも達するため、パンチスルーが発生するおそれがある。しかし、この半導体装置31によれば、たとえ、空乏層が広がってテーパトレンチ22の側面23に達しても、障壁形成層28によってパンチスルーを抑制することができる。その結果、リーク電流の発生を抑制することができる。
 図4は、本発明の第4実施形態に係る半導体装置41の模式的な断面図である。
 第4実施形態に係る半導体装置41は、SiC基板42と、SiC基板42上に形成されたSiCエピタキシャル層43とが採用されたトレンチゲート型のMISFETを含む。この実施形態では、SiC基板42およびSiCエピタキシャル層43を、本発明の半導体層の一例として示している。
 SiCエピタキシャル層43には、ゲートトレンチ44が形成されている。ゲートトレンチ44は、たとえば、格子状、ストライプ状、または、ハニカム状等であってもよい。ゲートトレンチ44が形成されることにより、SiCエピタキシャル層43には、ゲートトレンチ44で取り囲まれた部分に、単位セル45が複数形成されている。
 各単位セル45の中央部にはソーストレンチ46が形成されている。この実施形態では、ソーストレンチ46の側面47は、ソーストレンチ46の底面48に対して90°の角度θで傾斜している。これにより、ソーストレンチ46は、底面48から開口端にかけて一定幅を有している。また、ソーストレンチ46の深さはゲートトレンチ44と同じである。
 各単位セル45には、SiCエピタキシャル層43の表面49側から裏面50側へ向かって順にソース層51、チャネル層52およびドリフト層53が形成され、これらの層は互いに接している。これらの層の導電型は、ソース層51およびドリフト層53が第1導電型としてのn型であり、チャネル層52は第2導電型としてのp型である。具体的には、ソース層51は、たとえば、ドーパント濃度が1×1018~1×1021cm-3のn+型であり、チャネル層52は、たとえば、ドーパント濃度が1.0×1016cm-3~1.0×1019cm-3のp型であり、ドリフト層53は、ソース層51よりも低濃度、たとえば、ドーパント濃度が1×1015~1×1017cm-3のn-型である。
 ソース層51は、ゲートトレンチ44の側面54の一部およびソーストレンチ46の側面47の一部を形成している。チャネル層52も同様に、ゲートトレンチ44の側面54の一部およびソーストレンチ46の側面47の一部を形成している。そして、ドリフト層53は、ゲートトレンチ44の側面54および底面55、ならびにソーストレンチ46の側面47および底面48を形成している。
 ソース耐圧保持層56は、ソーストレンチ46の底面48からソーストレンチ46の側面47に沿って、チャネル層52に連なるように形成されている。
 また、ソース耐圧保持層56は、ソーストレンチ46の底面48と側面47との間において互いに異なる厚さを有している。具体的には、ソース耐圧保持層56の底面48上の部分が側面47上の部分に比べて厚く、これにより、底面48と側面47との間でソース耐圧保持層56の厚さに差が設けられている。
 この層厚差は、たとえば、イオン注入によってソース耐圧保持層56を形成するときの、ソーストレンチ46の側面47およびソーストレンチ46の底面48それぞれに対するイオンの入射角度の違いによって生じる。すなわち、ソーストレンチ46の底面48には、イオンがほぼ垂直に入射するため、イオンが非常に小さい傾斜角で入射するソーストレンチ46の側面47に比べて、イオンが深くまで注入されて、厚くソース耐圧保持層56が形成される。
 ソース耐圧保持層56は、ソース耐圧保持層56の他の部分に比べて高濃度、たとえば、ドーパント濃度が1.0×1018cm-3~2.0×1021cm-3であるp+型のコンタクト層57を含む。コンタクト層57は、たとえば、ソーストレンチ46の側面47から間隔を隔てて、ソーストレンチ46の底面48の幅方向中央に形成されている。
 ソーストレンチ46において側面47とソース電極58(後述)との間には、ソース耐圧保持層56とソース電極58との間の電位障壁よりも高い電位障壁を有する障壁形成層59が形成されている。障壁形成層59は、具体的には、ソーストレンチ46の底面48からソース耐圧保持層56が選択的に露出するように、ソーストレンチ46の側面47および底面48のエッジ部に選択的に形成されている。
 障壁形成層59が選択的に除去されたソーストレンチ46の底面48には、p+型のコンタクト層57が露出している。また、ソーストレンチ46の側面47は、底面48から開口端まで至る領域が障壁形成層59によって覆われている。
 障壁形成層59は、たとえば、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層であってもよい。また、障壁形成層59は、n型のポリシリコン層であってもよいし、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層であってもよい。
 ゲートトレンチ44には、ゲート絶縁膜60を介して、ゲート電極61が埋め込まれている。ゲート電極61は、たとえば、ポリシリコンからなる。
 SiCエピタキシャル層43の表面49には、ゲート電極61を被覆するように、絶縁材料からなる層間膜62が形成されている。
 層間膜62およびゲート絶縁膜60には、コンタクトホール63が形成されている。これにより、コンタクトホール63内には、各単位セル45のソーストレンチ46の全体およびSiCエピタキシャル層43におけるソーストレンチ46の周縁部が露出していて、SiCエピタキシャル層43の表面49とソーストレンチ46の底面48との高低差に応じた段差が形成されている。
 SiCエピタキシャル層43の表面49には、たとえば、Ti、Ni、Cu、Al、Ag、Au、TiN、Wまたはこれらいずれかの組み合わせの積層構造等の金属材料からなる、ソース電極58が形成されている。ソース電極58は、各コンタクトホール63を介して、すべての単位セル45のソーストレンチ46に一括して入り込んでいる。このソース電極58は、すべての単位セル45に対して共通の配線となっている。
 SiC基板42の裏面64には、その全域を覆うように、たとえば、Ti、Ni、Cu、Al、Ag、Au、TiN、Wまたはこれらいずれかの組み合わせの積層構造等の金属材料からなる、ドレイン電極65が形成されている。このドレイン電極65は、すべての単位セル45に対して共通の電極となっている。
 この半導体装置41によれば、ソース耐圧保持層56とドリフト層53とのpn接合部67に空乏層が発生している。このpn接合部67に逆方向バイアスが印加されると、空乏層は、たとえば、図4で示した破線のように広がる。このとき、障壁形成層59を有しない半導体装置の場合では、ソーストレンチ46の側面47および底面48のエッジ部に達した空乏層がそのままソース電極58にも達するため、パンチスルーが発生する。しかし、この半導体装置41によれば、たとえ、空乏層が広がってソーストレンチ46の側面47および底面48のエッジ部に達しても、障壁形成層59によってパンチスルーを抑制することができる。その結果、リーク電流の発生を抑制することができる。
 図5は、本発明の第5実施形態に係る半導体装置71の模式的な断面図である。図5において、図4に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第5実施形態に係る半導体装置71は、第4実施形態のソース電極58に代えて、ポリシリコン層72と、ポリシリコン層72上に積層された金属層73とを有するソース電極74を含む。
 ポリシリコン層72は、ソーストレンチ46に埋め込まれ、さらに、SiCエピタキシャル層43の表面49および層間膜62を覆うように、平坦に形成されている。
 この半導体装置71によれば、ポリシリコン層72がソーストレンチ46およびコンタクトホール63を埋め戻すように、SiCエピタキシャル層43の表面49に形成されていることから、見かけ上のSiCエピタキシャル層43の表面49の高低差を小さくすることができる。そのため、ソース電極74の表面を滑らかもしくは平坦にすることができる。
 図6は、本発明の第6実施形態に係る半導体装置81の模式的な断面図である。図6において、図5に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第6実施形態に係る半導体装置81では、第5実施形態から、コンタクト層57を含むソース耐圧保持層56における底面48下方の領域が選択的に除去された構造を含む。
 具体的には、ソーストレンチ46の底面48に選択的に配置されたソース耐圧保持層56は、ソーストレンチ46の底面48のエッジ部の周辺を覆うように環状に形成されている。これにより、ソース耐圧保持層56に囲まれるソーストレンチ46の底面48の中央部には、ドリフト層53が入り込み、ソース電極74を形成しているポリシリコン層72と、ドリフト層53とによりヘテロ接合部82が形成されている。
 このヘテロ接合部82には、チャネル層52とドリフト層53とのpn接合により形成されるボディダイオード83の拡散電位(たとえば、2.8eV~3.2eV)よりも接合障壁の小さいヘテロ接合ダイオード84(たとえば、接合障壁の高さが1eV~1.5eV)が形成されている。
 この半導体装置81では、逆方向バイアスがチャネル層52とドリフト層53とのpn接合部67に印加された場合、ヘテロ接合ダイオード84に優先的に電流が流れることから、SiCエピタキシャル層43におけるSiCの結晶欠陥の拡張を抑制することができる。その結果、オン抵抗の上昇を抑制することができ、半導体装置81の損失を低減することができる。
 図7は、本発明の第7実施形態に係る半導体装置91の模式的な断面図である。図7において、図4に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第7実施形態に係る半導体装置91は、図4の構成において、ソーストレンチ46の側面47からソース層51が露出するように障壁形成層59が配置されている構造を含む。
 具体的には、障壁形成層59は、ソーストレンチ46の側面47のチャネル層52よりも下方の部分を選択的に覆うように配置されている。これにより、ソース層51とチャネル層52が、ソーストレンチ46の側面47に露出している。
 この構成により、ソース電極74に対するソース層51のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 図8は、本発明の第8実施形態に係る半導体装置101の模式的な断面図である。図8において、図5に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第8実施形態に係る半導体装置101は、図5の構成において、ソーストレンチ46の側面47からソース層51が露出するように障壁形成層59が配置されている構造を含む。
 具体的には、障壁形成層59は、ソーストレンチ46の側面47のチャネル層52よりも下方の部分を選択的に覆うように配置されている。これにより、ソース層51とチャネル層52が、ソーストレンチ46の側面47に露出している。
 この構成により、ソース電極74に対するソース層51のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 図9は、本発明の第9実施形態に係る半導体装置111の模式的な断面図である。図9において、図6に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第9実施形態に係る半導体装置111は、図6の構成において、ソーストレンチ46の側面47からソース層51が露出するように障壁形成層59が配置されている構造を含む。
 具体的には、障壁形成層59は、ソーストレンチ46の側面47のチャネル層52よりも下方の部分を選択的に覆うように配置されている。これにより、ソース層51とチャネル層52が、ソーストレンチ46の側面47に露出している。
 この構成により、ソース電極74に対するソース層51のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 図10は、本発明の第10実施形態に係る半導体装置121の模式的な断面図である。図10において、図4に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第10実施形態に係る半導体装置121は、SiC基板42と、SiC基板42上に形成されたSiCエピタキシャル層43とが採用されたトレンチゲート型のMISFETを含む。この実施形態では、SiC基板42およびSiCエピタキシャル層43を、本発明の半導体層の一例として示している。
 SiCエピタキシャル層43には、ゲートトレンチ44が形成されている。ゲートトレンチ44は、たとえば、格子状、ストライプ状、または、ハニカム状等であってもよい。ゲートトレンチ44が形成されることにより、SiCエピタキシャル層43には、ゲートトレンチ44で取り囲まれた部分に、単位セル45が複数形成されている。
 各単位セル45の中央部にはテーパトレンチ122が形成されている。この実施形態では、テーパトレンチ122は、その側面123が底面124に対して鈍角(たとえば、テーパトレンチ122の側面123と底面124との狭角が20°~70°の角度θ)で傾斜している。
 各単位セル45には、SiCエピタキシャル層43の表面49側から裏面50側へ向かって順にソース層125、チャネル層126およびドリフト層127が形成され、これらの層は互いに接している。これらの層の導電型は、ソース層125およびドリフト層127が第1導電型としてのn型であり、チャネル層126は第2導電型としてのp型である。
 ソース層125は、ゲートトレンチ44の側面54の一部およびテーパトレンチ122の側面123の一部を形成している。チャネル層126も同様に、ゲートトレンチ44の側面54の一部およびテーパトレンチ122の側面123の一部を形成している。そして、ドリフト層127は、ゲートトレンチ44の側面54および底面55、ならびにテーパトレンチ122の側面123および底面124を形成している。
 ソース耐圧保持層128は、テーパトレンチ122の底面124からテーパトレンチ122の側面123に沿って、チャネル層126に連なるように形成されている。
 また、ソース耐圧保持層128のテーパトレンチの側面123に沿う部分は、テーパトレンチ122の側面123の傾斜に伴って横方向に厚くなるように形成されているため、異なる層厚差を有している。具体的には、ソース耐圧保持層128の当該部分は、テーパトレンチ122の開口幅が深さ方向に連続的に狭くなるにつれて、連続的に厚くなっている。
 ソース耐圧保持層128は、ソース耐圧保持層128の他の部分に比べて高濃度であるp+型のコンタクト層129を含む。コンタクト層129は、たとえば、テーパトレンチ122の側面123から間隔を隔てて、テーパトレンチ122の底面124の幅方向中央に形成されている。
 ゲートトレンチ44には、ゲート絶縁膜60を介して、ゲート電極61が埋め込まれている。ゲート電極61は、たとえば、ポリシリコンからなる。
 SiCエピタキシャル層43の表面49には、ゲート電極61を被覆するように、層間膜62が積層されている。
 層間膜62およびゲート絶縁膜60には、コンタクトホール63が形成されている。これにより、コンタクトホール63内には、各単位セル45のテーパトレンチ122の全体およびSiCエピタキシャル層43におけるテーパトレンチ122の周縁部が露出していて、SiCエピタキシャル層43の表面49とテーパトレンチ122の底面124との高低差に応じた段差が形成されている。
 SiCエピタキシャル層43の表面49には、たとえば、Ti、Ni、Cu、Al、Ag、Au、TiN、Wまたはこれらいずれかの組み合わせの積層構造等の金属材料からなる、ソース電極58が形成されている。ソース電極58は、各コンタクトホール63を介して、すべての単位セル45のテーパトレンチ122に一括して入り込んでいる。このソース電極58は、すべての単位セル45に対して共通の配線となっている。この実施形態では、ソース電極58は、第4実施形態とは異なり、障壁形成層を介さずにテーパトレンチ122の側面123に直接、接している。
 SiC基板42の裏面64には、その全域を覆うように、たとえば、Ti、Ni、Cu、Al、Ag、Au、TiN、Wまたはこれらいずれかの組み合わせの積層構造等の金属材料からなる、ドレイン電極65が形成されている。このドレイン電極65は、すべての単位セル45に対して共通の電極となっている。
 この半導体装置121によれば、ソース耐圧保持層128とドリフト層127のpn接合部131で空乏層が発生している。このpn接合部131に逆方向バイアスが印加されると、空乏層は、たとえば、図10で示した破線のように広がる。このとき、ソース耐圧保持層128がテーパトレンチ122の側面123および底面124に沿うように、一定幅で形成されている場合では、pn接合部131から広がる空乏層がテーパトレンチ122の側面123に達してソース電極58に接し、パンチスルーするおそれがある。
 しかし、この半導体装置121では、ソース耐圧保持層128が、テーパトレンチ122の側面123の傾斜に伴って横方向に厚くなるように形成されているため、一定厚さのソース耐圧保持層128が形成された前者の場合に比べて、テーパトレンチ122の側面123とpn接合部131との距離を広げることができる。これにより、当該pn接合部131から広がる空乏層がテーパトレンチ122の側面123に達し難くすることができる。その結果、パンチスルーを抑制でき、リーク電流の発生を抑制することができる。
 図11は、本発明の第11実施形態に係る半導体装置141の模式的な断面図である。図11において、図10に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第11実施形態に係る半導体装置141は、第10実施形態のソース電極58に代えて、ポリシリコン層72と、ポリシリコン層72上に積層された金属層73とを有するソース電極74を含む。
 ポリシリコン層72は、テーパトレンチ122に埋め込まれ、さらに、SiCエピタキシャル層43および層間膜62を覆うように、平坦に形成されている。
 この半導体装置141によれば、ポリシリコン層72がテーパトレンチ122およびコンタクトホール63を埋め戻すように、SiCエピタキシャル層43の表面49に形成されていることから、見かけ上のSiCエピタキシャル層43の表面49の高低差を小さくすることができる。そのため、ソース電極74の表面を滑らかもしくは平坦にすることができる。
 図12は、本発明の第12実施形態に係る半導体装置151の模式的な断面図である。図12において、図11に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第12実施形態に係る半導体装置151では、第11実施形態から、コンタクト層129を含むソース耐圧保持層128における底面124下方の領域が選択的に除去された構造を含む。
 具体的には、テーパトレンチ122の底面124に選択的に配置されたソース耐圧保持層128は、テーパトレンチ122の底面124のエッジ部の周辺を覆うように環状に形成されている。これにより、ソース耐圧保持層128に囲まれるテーパトレンチ122の底面124の中央部には、ドレイン層130が入り込み、ソース電極74を形成しているポリシリコン層72と、ドレイン層130とによりヘテロ接合部82が形成されている。
 このヘテロ接合部82には、チャネル層126とドレイン層130とのpn接合により形成されるボディダイオード83の拡散電位(たとえば、2.8eV~3.2eV)よりも接合障壁の小さいヘテロ接合ダイオード84(たとえば、接合障壁の高さが1eV~1.5eV)が形成されている。
 この半導体装置151では、逆方向バイアスがチャネル層126とドレイン層130とのpn接合部131に印加された場合、ヘテロ接合ダイオード84に優先的に電流が流れることから、SiCエピタキシャル層43におけるSiCの結晶欠陥の拡張を抑制することができる。その結果、オン抵抗の上昇を抑制することができ、半導体装置151の損失を低減することができる。
 図13は、本発明の第13実施形態に係る半導体装置161の模式的な断面図である。図13において、図10に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第13実施形態に係る半導体装置161は、第10実施形態の構成に加えて、さらに、テーパトレンチ122の側面123とソース電極74との間に、ソース耐圧保持層128とソース電極74との間の電位障壁よりも高い電位障壁を有する障壁形成層162を含む。
 障壁形成層162は、具体的には、テーパトレンチ122の底面124からソース耐圧保持層128が選択的に露出するように、テーパトレンチ122の側面123および底面124のエッジ部に選択的に形成されている。
 障壁形成層162は、たとえば、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層であってもよい。また、障壁形成層162は、n型のポリシリコン層であってもよいし、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層であってもよい。
 この半導体装置161によれば、ソース耐圧保持層128とドレイン層130とのpn接合部131に空乏層が発生している。このpn接合部131に逆方向バイアスが印加されると、pn接合部131に空乏層が広がる。このとき、障壁形成層162を有しない半導体装置の場合では、テーパトレンチ122の側面123に空乏層が達してしまうと、空乏層がそのままソース電極58にも達するため、パンチスルーが発生するおそれがある。
 しかし、この半導体装置151によれば、たとえ、空乏層が広がってテーパトレンチ122の側面123に達しても、障壁形成層162によってパンチスルーを抑制することができる。その結果、リーク電流の発生を抑制することができる。
 図14は、本発明の第14実施形態に係る半導体装置171の模式的な断面図である。図14において、図11に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第14実施形態に係る半導体装置171は、第11実施形態の構成に加えて、さらに、テーパトレンチ122の側面123とソース電極74との間に、ソース耐圧保持層128とソース電極58との間の電位障壁よりも高い電位障壁を有する障壁形成層162を含む。
 障壁形成層162は、具体的には、テーパトレンチ122の底面124からソース耐圧保持層128が選択的に露出するように、テーパトレンチ122の側面123および底面124のエッジ部に選択的に形成されている。
 障壁形成層162は、たとえば、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層であってもよい。また、障壁形成層162は、n型のポリシリコン層であってもよいし、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層であってもよい。
 この半導体装置161によれば、ソース耐圧保持層128とドレイン層とのpn接合部131に空乏層が発生している。このpn接合部131に逆方向バイアスが印加されると、pn接合部131に空乏層が広がる。このとき、障壁形成層162を有しない半導体装置の場合では、テーパトレンチ122の側面123に空乏層が達してしまうと、空乏層がそのままソース電極74にも達するため、パンチスルーが発生するおそれがある。
 しかし、この半導体装置171によれば、たとえ、空乏層が広がってテーパトレンチ122の側面123に達しても、障壁形成層162によってパンチスルーを抑制することができる。その結果、リーク電流の発生を抑制することができる。
 図15は、本発明の第15実施形態に係る半導体装置181の模式的な断面図である。図15において、図12に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第15実施形態に係る半導体装置181は、第12実施形態の構成に加えて、さらに、テーパトレンチ122の側面123とソース電極74との間に、ソース耐圧保持層128とソース電極74との間の電位障壁よりも高い電位障壁を有する障壁形成層162を含む。
 障壁形成層162は、具体的には、テーパトレンチ122の底面からソース耐圧保持層128が選択的に露出するように、テーパトレンチ122の側面123および底面124のエッジ部に選択的に形成されている。
 障壁形成層162は、たとえば、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層であってもよい。また、障壁形成層162は、n型のポリシリコン層であってもよいし、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層であってもよい。
 この半導体装置181によれば、ソース耐圧保持層128とドレイン層130とのpn接合部131に空乏層が発生している。このpn接合部131に逆方向バイアスが印加されると、pn接合部131に空乏層が広がる。このとき、障壁形成層162を有しない半導体装置の場合では、テーパトレンチ122の側面123に空乏層が達してしまうと、空乏層がそのままソース電極74にも達するため、パンチスルーが発生するおそれがある。
 しかし、この半導体装置181によれば、たとえ、空乏層が広がってテーパトレンチ122の側面123に達しても、障壁形成層162によってパンチスルーを抑制することができる。その結果、リーク電流の発生を抑制することができる。
 図16は、本発明の第16実施形態に係る半導体装置191の模式的な断面図である。図16において、図13に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第16実施形態に係る半導体装置191は、図13の構成において、テーパトレンチ122の側面123からソース層125が露出するように障壁形成層162が配置されている構造を含む。
 具体的には、障壁形成層162は、テーパトレンチ122の側面123のチャネル層126よりも下方の部分を選択的に覆うように配置されている。これにより、ソース層125とチャネル層126が、テーパトレンチ122の側面123に露出している。
 この構成により、ソース電極58に対するソース層125のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 図17は、本発明の第17実施形態に係る半導体装置201の模式的な断面図である。図17において、図14に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第17実施形態に係る半導体装置201は、図14の構成において、テーパトレンチ122の側面123からソース層125が露出するように障壁形成層162が配置されている構造を含む。
 具体的には、障壁形成層162は、テーパトレンチ122の側面123のチャネル層126よりも下方の部分を選択的に覆うように配置されている。これにより、ソース層125とチャネル層126が、テーパトレンチ122の側面123に露出している。
 この構成により、ソース電極74に対するソース層125のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 図18は、本発明の第18実施形態に係る半導体装置211の模式的な断面図である。図18において、図15に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第18実施形態に係る半導体装置211は、図15の構成において、テーパトレンチ122の側面123からソース層125が露出するように障壁形成層162が配置されている構造を含む。
 具体的には、障壁形成層162は、テーパトレンチ122の側面123のチャネル層126よりも下方の部分を選択的に覆うように配置されている。これにより、ソース層125とチャネル層126が、テーパトレンチ122の側面123に露出している。
 この構成により、ソース電極74に対するソース層125のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 図19は、本発明の第19実施形態に係る半導体装置221の模式的な断面図である。図19において、図4に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第19実施形態に係る半導体装置221は、第4実施形態に係る構成において、たとえば、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層222からなる障壁形成層を含む。
 また、半導体装置221は、ソース電極58に代えて、ポリシリコン層260と、金属層261とを有するソース電極262を含む。
 ポリシリコン層260は、その一方表面および他方表面が絶縁層222に沿うように、絶縁層222に積層されている。これにより、絶縁層222が選択的に除去された部分の上方領域(コンタクト層57の上方領域)は、ポリシリコン層260によって占有されていない空間となっている。
 金属層261は、ソーストレンチ46において絶縁層222およびポリシリコン層260の積層構造の内側の領域に埋め込まれ、さらに、SiCエピタキシャル層43の表面49および層間膜62を覆うように、平坦に形成されている。これにより、ソース電極262は、金属層261でコンタクト層57に接続されている。
 この半導体装置221によれば、実質的には、絶縁層222およびポリシリコン層260の積層構造が、ソース耐圧保持層56とソース電極262との間の電位障壁よりも高い電位障壁を有する障壁形成層として機能している。そのため、pn接合部67への逆方向バイアスの印加によって、図19で示した破線のように広がる空乏層がソーストレンチ46の側面47に達しても、まず絶縁層222によってパンチスルーを抑制することができる。たとえ空乏層が絶縁層222をも横切ってソース電極262に達しても、絶縁層222上にポリシリコン層260が設けられているため、それ以上の空乏層の広がりを抑制することができる。すなわち、パンチスルーを絶縁層222およびポリシリコン層260の2段階で抑制できるので、リーク電流の発生を良好に抑制することができる。
 また、ゲート電極61がポリシリコンであれば、ゲート電極61とポリシリコン層260とを同一工程で形成することができる。そのため、製造工程を簡略化することもできる。
 図20は、本発明の第20実施形態に係る半導体装置231の模式的な断面図である。図20において、図19に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 第20実施形態に係る半導体装置231は、図19構成において、ソーストレンチ46の側面47からソース層51が露出するように絶縁層222およびポリシリコン層260の積層構造(障壁形成層)が配置されている構造を含む。
 具体的には、絶縁層222が、ソーストレンチ46の側面47のチャネル層52よりも下方の部分を選択的に覆うように配置されており、当該絶縁層222にポリシリコン層260が積層されている。これにより、ソース層51とチャネル層52が、ソーストレンチ46の側面に露出している。
 この構成により、ソース電極58に対するソース層51のコンタクト面積を増やすことができるので、これらの間に良好な導電性を確保することができる。
 図21は、本発明の第21実施形態に係る半導体装置231の模式的な断面図である。図21において、図19に示す各部に相当する部分には、それらの各部に付した参照符号と同一の参照符号を付し、それらの部分については説明を省略する。
 前述の第4実施形態では、ソーストレンチ46は、その側面47に段差が形成されていない平面状のものであった。これに対し、この第21実施形態に係る半導体装置241は、SiCエピタキシャル層43の表面49からチャネル層52までの深さの上層トレンチ242と、上層トレンチ242よりも幅が狭く、チャネル層52からドリフト層53までの深さの下層トレンチ243とを含むソーストレンチ46を有している。
 これによりソーストレンチ46では、上層トレンチ242の側面244が下層トレンチ243の側面236よりも外側に一段広がった2段構造を有している。そして、上層トレンチ242と下層トレンチ243との段差部分には、チャネル層52が環状に露出しており、その露出した部分に、コンタクト層57が形成されている。
 また、半導体装置231は、前述の絶縁層222に代えて、下層トレンチ243の内面(底面および側面)全域を覆う絶縁層250を含む。具体的には、絶縁層250は、その一方表面および他方表面が下層トレンチ243の内面に沿うように形成されている。これにより、下層トレンチ243の内方領域は、絶縁層250によって占有されていない空間となっている。また、絶縁層250は、たとえば、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる。
 また、半導体装置241は、ソース電極58に代えて、ポリシリコン層251と、金属層252とを有するソース電極253を含む。
 ポリシリコン層251は、下層トレンチ243における絶縁層250の内方領域に埋め込まれ、上層トレンチ242の底面245と同一平面からなる上面を有している。
 金属層252は、ポリシリコン層251に積層されることによって、上層トレンチ242に埋め込まれ、さらに、SiCエピタキシャル層43の表面49および層間膜62を覆うように形成されている。これにより、ソース電極253は、金属層252でコンタクト層57に接続されている。
 この半導体装置241によれば、ポリシリコン層251を単にソーストレンチ46に埋め込めばよいので、ポリシリコン層251を簡単に形成することができる。また、ポリシリコン層251は、下層トレンチ243を埋め戻すように形成されているため、見かけ上のソーストレンチ46の底面(ポリシリコン層251の上面)とSiCエピタキシャル層43の表面49との高低差を小さくすることができる。そのため、ソース電極58の表面を滑らかもしくは平坦にすることができる。
 また、ゲート電極61がポリシリコンであれば、ゲート電極61とポリシリコン層251とを同一工程で形成することができる。そのため、製造工程を簡略化することもできる。
 以上、この発明の実施形態を説明したが、この発明は、他の形態で実施することもできる。
 たとえば、前述の各半導体装置の各半導体部分の導電型を反転した構成が採用されてもよい。たとえば、半導体装置1等において、p型の部分がn型であり、n型の部分がp型であってもよい。
 本発明の半導体装置は、たとえば、電気自動車(ハイブリッド車を含む)、電車、産業用ロボットなどの動力源として利用される電動モータを駆動するための駆動回路を構成するインバータ回路に用いられるパワーモジュールに組み込むことができる。また、太陽電池、風力発電機その他の発電装置(とくに自家発電装置)が発生する電力を商用電源の電力と整合するように変換するインバータ回路に用いられるパワーモジュールにも組み込むことができる。
 また、前述の実施形態の開示から把握される特徴は、異なる実施形態間でも互いに組み合わせることができる。また、各実施形態において表した構成要素は、この発明の範囲で組み合わせることができる。
 本発明の実施形態は、本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。
 本出願は、2012年8月20日に日本国特許庁に提出された特願2012-181897号に対応しており、本出願の全開示はここに引用により組み込まれるものとする。
 1 半導体装置
 2 SiC基板
 3 SiCエピタキシャル層
 4 表面
 5 側面
 6 底面
 7 トレンチ
 8 p型層
 9 裏面
 10 n-型層
 11 界面
 12 p+型コンタクト層
 13 裏面電極
 14 表面電極
 15 障壁形成層
 16 pn接合部
 21 半導体装置
 22 テーパトレンチ
 23 側面
 24 底面
 25 p型層
 26 p+型コンタクト層
 27 pn接合部
 28 障壁形成層
 31 半導体装置
 41 半導体装置
 42 SiC基板
 43 SiCエピタキシャル層
 44 ゲートトレンチ
 45 単位セル
 46 ソーストレンチ
 47 側面
 48 底面
 49 表面
 50 裏面
 51 ソース層
 52 チャネル層
 53 ドリフト層
 54 側面
 55 底面
 56 ソース耐圧保持層
 57 コンタクト層
 58 ソース電極
 59 障壁形成層
 60 ゲート絶縁膜
 61 ゲート電極
 62 層間膜
 63 コンタクトホール
 64 裏面
 65 ドレイン電極
 67 pn接合部
 71 半導体装置
 72 ポリシリコン層
 73 金属層
 74 ソース電極
 81 半導体装置
 82 ヘテロ接合部
 83 ボディダイオード
 84 ヘテロ接合ダイオード
 91 半導体装置
 101 半導体装置
 111 半導体装置
 121 半導体装置
 122 テーパトレンチ
 123 側面
 124 底面
 125 ソース層
 126 チャネル層
 127 ドリフト層
 128 ソース耐圧保持層
 129 コンタクト層
 130 ドレイン層
 131 pn接合部
 141 半導体装置
 151 半導体装置
 161 半導体装置
 162 障壁形成層
 171 半導体装置
 181 半導体装置
 191 半導体装置
 201 半導体装置
 211 半導体装置
 221 半導体装置
 222 絶縁層
 231 半導体装置
 236 側面
 241 半導体装置
 242 上層トレンチ
 243 下層トレンチ
 244 側面
 245 底面
 250 絶縁層
 251 ポリシリコン層
 252 金属層
 253 ソース電極
 260 ポリシリコン層
 261 金属層
 262 ソース電極

Claims (27)

  1.  側面および底面を有するトレンチが形成された半導体層と、
     前記トレンチの前記側面および前記底面の前記半導体層に形成された第2導電型層と、
     前記第2導電型層に接するように前記半導体層に形成された第1導電型層と、
     前記第1導電型層に電気的に接続された第1電極と、
     前記トレンチに埋め込まれ、前記第2導電型層に電気的に接続された第2電極と、
     前記トレンチの前記側面と前記第2電極との間に配置され、前記第2導電型層と前記第2電極との間の電位障壁よりも高い電位障壁を前記第2導電型層との間に形成する障壁形成層とを含む、半導体装置。
  2.  前記障壁形成層は、さらに前記トレンチの前記底面のエッジ部に配置されている、請求項1に記載の半導体装置。
  3.  前記障壁形成層は、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層を含む、請求項1または2に記載の半導体装置。
  4.  前記障壁形成層は、第1導電型のポリシリコン層を含む、請求項1~3のいずれか一項に記載の半導体装置。
  5.  前記障壁形成層は、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層を含む、請求項1~4のいずれか一項に記載の半導体装置。
  6.  側面および底面を有し、前記底面に対して前記側面が鈍角に傾斜したテーパトレンチが形成された半導体層と、
     前記テーパトレンチの前記側面および前記底面の前記半導体層に形成され、前記テーパトレンチの前記側面の傾斜に伴って当該側面から前記半導体層の表面に沿う横方向に厚くなる第2導電型層と、
     前記第2導電型層に接するように前記半導体層に形成された第1導電型層と、
     前記第1導電型層に電気的に接続された第1電極と、
     前記テーパトレンチに埋め込まれ、前記第2導電型層に電気的に接続された第2電極とを含む、半導体装置。
  7.  前記半導体装置は、前記テーパトレンチの前記側面と前記第2電極との間に配置され、前記第2導電型層と前記第2電極との間の電位障壁よりも高い電位障壁を前記第2導電型層との間に形成する障壁形成層をさらに含む、請求項6に記載の半導体装置。
  8.  前記障壁形成層は、さらに前記テーパトレンチの前記底面のエッジ部に配置されている、請求項7に記載の半導体装置。
  9.  前記障壁形成層は、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層を含む、請求項7または8に記載の半導体装置。
  10.  前記障壁形成層は、第1導電型のポリシリコン層を含む、請求項7~9のいずれか一項に記載の半導体装置。
  11.  前記障壁形成層は、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層を含む、請求項7~10のいずれか一項に記載の半導体装置。
  12.  側面および底面を有するゲートトレンチと、側面および底面を有するソーストレンチとが形成された半導体層と、
     前記半導体層の表面に露出するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面を形成する第1導電型のソース層と、
     前記ソース層に対して前記半導体層の裏面側に前記ソース層に接するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面の一部を形成する第2導電型のチャネル層と、
     前記チャネル層に対して前記半導体層の前記裏面側に前記チャネル層に接するように配置され、前記ゲートトレンチの前記底面および前記ソーストレンチの前記底面を形成する第1導電型のドレイン層と、
     前記ゲートトレンチに埋め込まれたゲート電極と、
     前記ゲートトレンチの前記側面および前記底面と、前記ゲート電極との間に配置されたゲート絶縁膜と、
     前記チャネル層に連なるように形成され、前記ソーストレンチの前記側面および前記底面に配置された第2導電型のソース耐圧保持層と、
     前記ドレイン層に電気的に接続されたドレイン電極と、
     前記ソーストレンチに埋め込まれ、前記ソース層および前記ソース耐圧保持層に電気的に接続されたソース電極と、
     前記ソーストレンチの前記側面と前記ソース電極との間に配置され、前記ソース耐圧保持層と前記ソース電極との間の電位障壁よりも高い電位障壁を有する障壁形成層とを含む、半導体装置。
  13.  前記障壁形成層は、さらに前記ソーストレンチの前記底面のエッジ部に配置されている、請求項12に記載の半導体装置。
  14.  前記障壁形成層は、前記ソーストレンチの前記側面から前記ソース層が露出するように配置されている、請求項12または13に記載の半導体装置。
  15.  前記障壁形成層は、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層を含む、請求項12~14のいずれか一項に記載の半導体装置。
  16.  前記障壁形成層は、第1導電型のポリシリコン層を含む、請求項12~15のいずれか一項に記載の半導体装置。
  17.  前記障壁形成層は、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層を含む、請求項12~16のいずれか一項に記載の半導体装置。
  18.  側面および底面を有するゲートトレンチと、側面および底面を有するソーストレンチとが形成され、前記ソーストレンチが前記底面に対して前記側面が鈍角に傾斜したテーパトレンチである半導体層と、
     前記半導体層の表面に露出するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面を形成する第1導電型のソース層と、
     前記ソース層に対して前記半導体層の裏面側に前記ソース層に接するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面の一部を形成する第2導電型のチャネル層と、
     前記チャネル層に対して前記半導体層の前記裏面側に前記チャネル層に接するように配置され、前記ゲートトレンチの前記底面および前記ソーストレンチの前記底面を形成する第1導電型のドレイン層と、
     前記ゲートトレンチに埋め込まれたゲート電極と、
     前記ゲートトレンチの前記側面および前記底面と、前記ゲート電極との間に配置されたゲート絶縁膜と、前記チャネル層に連なるように前記ソーストレンチの前記側面および前記底面に配置され、前記ソーストレンチの前記側面の傾斜に伴って当該側面から前記半導体層の前記表面に沿う横方向に厚くなる第2導電型のソース耐圧保持層と、
     前記ドレイン層に電気的に接続されたドレイン電極と、
     前記ソーストレンチに埋め込まれ、前記ソース層および前記ソース耐圧保持層に電気的に接続されたソース電極とを含む、半導体装置。
  19.  前記半導体装置は、前記ソーストレンチの前記側面と前記ソース電極との間に配置され、前記ソース耐圧保持層と前記ソース電極との間の電位障壁よりも高い電位障壁を前記ソース耐圧保持層との間に形成する障壁形成層をさらに含む、請求項18に記載の半導体装置。
  20.  前記障壁形成層は、さらに前記ソーストレンチの前記底面のエッジ部に配置されている、請求項19に記載の半導体装置。
  21.  前記障壁形成層は、前記ソーストレンチの前記側面から前記ソース層が露出するように配置されている、請求項19または20に記載の半導体装置。
  22.  前記障壁形成層は、タングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)およびモリブデン(Mo)のいずれか1種からなる金属層を含む、請求項19~21のいずれか一項に記載の半導体装置。
  23.  前記障壁形成層は、第1導電型のポリシリコン層を含む、請求項19~22のいずれか一項に記載の半導体装置。
  24.  前記障壁形成層は、ノンドープトポリシリコン、酸化シリコン(SiO2)、酸化アルミニウム(Al23)および酸窒化アルミニウム(AlON)のいずれか1種からなる絶縁層を含む、請求項19~23のいずれか一項に記載の半導体装置。
  25.  側面および底面を有するゲートトレンチと、側面および底面を有するソーストレンチとが形成された半導体層と、
     前記半導体層の表面に露出するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面を形成する第1導電型のソース層と、
     前記ソース層に対して前記半導体層の裏面側に前記ソース層に接するように配置され、前記ゲートトレンチの前記側面および前記ソーストレンチの前記側面の一部を形成する第2導電型のチャネル層と、
     前記チャネル層に対して前記半導体層の前記裏面側に前記チャネル層に接するように配置され、前記ゲートトレンチの前記底面および前記ソーストレンチの前記底面を形成する第1導電型のドレイン層と、
     前記ゲートトレンチに埋め込まれたポリシリコンからなるゲート電極と、
     前記ゲートトレンチの前記側面および前記底面と、前記ゲート電極との間に配置されたゲート絶縁膜と、
     前記チャネル層に連なるように形成され、前記ソーストレンチの前記側面および前記底面に配置された第2導電型のソース耐圧保持層と、
     前記ソーストレンチの前記側面および前記底面のエッジ部に配置された絶縁層と、
     前記ドレイン層に電気的に接続されたドレイン電極と、
     前記ソーストレンチに埋め込まれ、少なくとも前記絶縁層上にポリシリコン層を有しており、前記ソース層および前記ソース耐圧保持層に電気的に接続されたソース電極とを含む、半導体装置。
  26.  前記絶縁層は、前記ソーストレンチの前記側面から前記ソース層が露出するように配置されている、請求項25に記載の半導体装置。
  27.  前記ポリシリコン層は、前記ソーストレンチにおいて前記絶縁層の内側の領域に埋め込まれており、
     前記ソース電極は、前記埋め込まれたポリシリコン層に積層された金属層を含む、請求項25または26に記載の半導体装置。
PCT/JP2013/071936 2012-08-20 2013-08-14 半導体装置 WO2014030589A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/423,034 US9368616B2 (en) 2012-08-20 2013-08-14 Semiconductor device
US15/155,885 US9911844B2 (en) 2012-08-20 2016-05-16 Semiconductor device
US15/878,038 US10312320B2 (en) 2012-08-20 2018-01-23 Semiconductor device
US16/400,734 US10580852B2 (en) 2012-08-20 2019-05-01 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-181897 2012-08-20
JP2012181897A JP6061181B2 (ja) 2012-08-20 2012-08-20 半導体装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/423,034 A-371-Of-International US9368616B2 (en) 2012-08-20 2013-08-14 Semiconductor device
US15/155,885 Division US9911844B2 (en) 2012-08-20 2016-05-16 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2014030589A1 true WO2014030589A1 (ja) 2014-02-27

Family

ID=50149898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071936 WO2014030589A1 (ja) 2012-08-20 2013-08-14 半導体装置

Country Status (3)

Country Link
US (4) US9368616B2 (ja)
JP (1) JP6061181B2 (ja)
WO (1) WO2014030589A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107636804A (zh) * 2015-06-27 2018-01-26 英特尔公司 用以使用量化金属形成与半导体的欧姆接触的方法
DE212018000102U1 (de) 2017-05-17 2019-08-05 Rohm Co., Ltd. Halbleitervorrichtung
US11069771B2 (en) 2017-05-17 2021-07-20 Rohm Co., Ltd. Semiconductor device
US20210234040A1 (en) * 2015-03-27 2021-07-29 Rohm Co., Ltd. Semiconductor device

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061181B2 (ja) 2012-08-20 2017-01-18 ローム株式会社 半導体装置
JP5961563B2 (ja) * 2013-01-25 2016-08-02 株式会社豊田中央研究所 半導体装置の製造方法
JP6135364B2 (ja) * 2013-07-26 2017-05-31 住友電気工業株式会社 炭化珪素半導体装置およびその製造方法
US20150221764A1 (en) * 2014-02-04 2015-08-06 Infineon Technologies Ag Wafer based beol process for chip embedding
JP2015207588A (ja) 2014-04-17 2015-11-19 ローム株式会社 半導体装置
JP6264211B2 (ja) * 2014-07-10 2018-01-24 住友電気工業株式会社 半導体装置の製造方法および半導体装置
JP6324838B2 (ja) * 2014-08-04 2018-05-16 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
WO2016080322A1 (ja) 2014-11-18 2016-05-26 ローム株式会社 半導体装置および半導体装置の製造方法
JP2016171231A (ja) * 2015-03-13 2016-09-23 株式会社東芝 半導体装置および半導体パッケージ
JP2016184632A (ja) * 2015-03-26 2016-10-20 豊田合成株式会社 半導体装置の製造方法およびレジスト剥離装置
CN108140674B (zh) * 2015-10-16 2021-02-19 三菱电机株式会社 半导体装置
US10903163B2 (en) * 2015-10-19 2021-01-26 Vishay-Siliconix, LLC Trench MOSFET with self-aligned body contact with spacer
US10141415B2 (en) * 2016-01-12 2018-11-27 Infineon Technologies Americas Corp. Combined gate and source trench formation and related structure
JP2018006639A (ja) 2016-07-06 2018-01-11 株式会社東芝 半導体装置及びその製造方法
CN109478567B (zh) * 2016-07-15 2022-12-16 罗姆股份有限公司 半导体装置
JP6625938B2 (ja) 2016-07-22 2019-12-25 株式会社東芝 半導体装置、半導体装置の製造方法、インバータ回路、駆動装置、車両、及び、昇降機
MY183245A (en) * 2016-08-10 2021-02-18 Nissan Motor Semiconductor device
JP6639365B2 (ja) * 2016-09-16 2020-02-05 株式会社東芝 半導体装置
WO2018063394A1 (en) * 2016-09-30 2018-04-05 Intel Corporation Depletion mode gate in ultrathin finfet based architecture
JP6637012B2 (ja) * 2016-11-10 2020-01-29 ローム株式会社 半導体装置
KR102383221B1 (ko) * 2016-12-13 2022-04-05 현대자동차 주식회사 반도체 소자
JP6864288B2 (ja) * 2016-12-28 2021-04-28 富士電機株式会社 半導体装置および半導体装置の製造方法
JP6814965B2 (ja) * 2017-03-06 2021-01-20 パナソニックIpマネジメント株式会社 半導体エピタキシャルウェハ、半導体素子、および半導体素子の製造方法
CN109473482A (zh) * 2017-09-08 2019-03-15 创能动力科技有限公司 肖特基器件及其制造方法
JP7068916B2 (ja) * 2018-05-09 2022-05-17 三菱電機株式会社 炭化珪素半導体装置、電力変換装置、および炭化珪素半導体装置の製造方法
JP2019068096A (ja) * 2018-12-20 2019-04-25 ローム株式会社 半導体装置
JP7161043B2 (ja) * 2019-05-22 2022-10-25 ローム株式会社 SiC半導体装置
JP7370781B2 (ja) * 2019-09-24 2023-10-30 株式会社東芝 半導体装置
JP6876767B2 (ja) * 2019-10-07 2021-05-26 ローム株式会社 半導体装置
CN110828555A (zh) * 2019-11-18 2020-02-21 重庆大学 一种非对称异质结碳化硅槽型场氧功率mos器件
JP7337739B2 (ja) * 2020-03-19 2023-09-04 株式会社東芝 半導体装置
US11355630B2 (en) * 2020-09-11 2022-06-07 Wolfspeed, Inc. Trench bottom shielding methods and approaches for trenched semiconductor device structures
CN114512532A (zh) * 2020-11-16 2022-05-17 苏州东微半导体股份有限公司 半导体器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285913A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2010238738A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2012059873A (ja) * 2010-09-08 2012-03-22 Renesas Electronics Corp 半導体装置
JP2012119559A (ja) * 2010-12-02 2012-06-21 On Semiconductor Trading Ltd 半導体装置及びその製造方法
WO2012105611A1 (ja) * 2011-02-02 2012-08-09 ローム株式会社 半導体パワーデバイスおよびその製造方法
WO2012105613A1 (ja) * 2011-02-02 2012-08-09 ローム株式会社 半導体装置およびその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453119B2 (en) * 2005-02-11 2008-11-18 Alphs & Omega Semiconductor, Ltd. Shielded gate trench (SGT) MOSFET cells implemented with a schottky source contact
US7851349B2 (en) * 2005-09-26 2010-12-14 Infineon Technologies Austria Ag Method for producing a connection electrode for two semiconductor zones arranged one above another
JP5162869B2 (ja) * 2006-09-20 2013-03-13 富士通セミコンダクター株式会社 半導体装置およびその製造方法
JP5135885B2 (ja) 2007-05-24 2013-02-06 富士電機株式会社 炭化珪素半導体装置の製造方法
SG188086A1 (en) 2008-02-08 2013-03-28 Lam Res Corp Apparatus for substantially uniform fluid flow rates relative to a proximity head in processing of a wafer surface by a meniscus
EP2091083A3 (en) * 2008-02-13 2009-10-14 Denso Corporation Silicon carbide semiconductor device including a deep layer
US8193579B2 (en) * 2008-07-29 2012-06-05 Rohm Co., Ltd. Trench type semiconductor device and fabrication method for the same
US8022474B2 (en) * 2008-09-30 2011-09-20 Infineon Technologies Austria Ag Semiconductor device
JP5525940B2 (ja) * 2009-07-21 2014-06-18 ローム株式会社 半導体装置および半導体装置の製造方法
JP5216801B2 (ja) * 2010-03-24 2013-06-19 株式会社東芝 半導体装置
WO2011148427A1 (en) * 2010-05-27 2011-12-01 Fuji Electric Co., Ltd. Mos-driven semiconductor device and method for manufacturing mos-driven semiconductor device
US9048282B2 (en) * 2013-03-14 2015-06-02 Alpha And Omega Semiconductor Incorporated Dual-gate trench IGBT with buried floating P-type shield
US8580667B2 (en) * 2010-12-14 2013-11-12 Alpha And Omega Semiconductor Incorporated Self aligned trench MOSFET with integrated diode
JP2013115225A (ja) * 2011-11-29 2013-06-10 Toshiba Corp 電力用半導体装置およびその製造方法
JP5920970B2 (ja) * 2011-11-30 2016-05-24 ローム株式会社 半導体装置
JP6065303B2 (ja) * 2012-06-15 2017-01-25 ローム株式会社 スイッチングデバイス
JP6061181B2 (ja) * 2012-08-20 2017-01-18 ローム株式会社 半導体装置
JP6219140B2 (ja) * 2013-11-22 2017-10-25 ルネサスエレクトロニクス株式会社 半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285913A (ja) * 2004-03-29 2005-10-13 Sanyo Electric Co Ltd 半導体装置およびその製造方法
JP2010238738A (ja) * 2009-03-30 2010-10-21 Toshiba Corp 半導体装置および半導体装置の製造方法
JP2012059873A (ja) * 2010-09-08 2012-03-22 Renesas Electronics Corp 半導体装置
JP2012119559A (ja) * 2010-12-02 2012-06-21 On Semiconductor Trading Ltd 半導体装置及びその製造方法
WO2012105611A1 (ja) * 2011-02-02 2012-08-09 ローム株式会社 半導体パワーデバイスおよびその製造方法
WO2012105613A1 (ja) * 2011-02-02 2012-08-09 ローム株式会社 半導体装置およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210234040A1 (en) * 2015-03-27 2021-07-29 Rohm Co., Ltd. Semiconductor device
CN113299755A (zh) * 2015-03-27 2021-08-24 罗姆股份有限公司 半导体装置
US11888058B2 (en) * 2015-03-27 2024-01-30 Rohm Co., Ltd. Semiconductor device
CN113299755B (zh) * 2015-03-27 2024-04-16 罗姆股份有限公司 半导体装置
CN107636804A (zh) * 2015-06-27 2018-01-26 英特尔公司 用以使用量化金属形成与半导体的欧姆接触的方法
CN107636804B (zh) * 2015-06-27 2022-06-07 英特尔公司 用以使用量化金属形成与半导体的欧姆接触的方法
DE212018000102U1 (de) 2017-05-17 2019-08-05 Rohm Co., Ltd. Halbleitervorrichtung
US11069771B2 (en) 2017-05-17 2021-07-20 Rohm Co., Ltd. Semiconductor device
US11605707B2 (en) 2017-05-17 2023-03-14 Rohm Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
US20190259828A1 (en) 2019-08-22
US9911844B2 (en) 2018-03-06
US10580852B2 (en) 2020-03-03
US10312320B2 (en) 2019-06-04
US20180175139A1 (en) 2018-06-21
US20150214355A1 (en) 2015-07-30
JP6061181B2 (ja) 2017-01-18
US9368616B2 (en) 2016-06-14
JP2014038988A (ja) 2014-02-27
US20160260830A1 (en) 2016-09-08

Similar Documents

Publication Publication Date Title
US10580852B2 (en) Semiconductor device
JP6829695B2 (ja) 半導体装置
US8723253B2 (en) Semiconductor device and method for manufacturing same
JP5396953B2 (ja) 炭化珪素半導体装置およびその製造方法
US20220140095A1 (en) Semiconductor device and method for manuracturing the same
JP5995435B2 (ja) 半導体装置およびその製造方法
JP3751463B2 (ja) 高耐圧半導体素子
JP5406171B2 (ja) SiC半導体装置
US10804356B2 (en) Semiconductor device with voltage resistant structure
WO2015060441A1 (ja) 半導体装置および半導体パッケージ
WO2014104100A1 (ja) 半導体装置
JP6284565B2 (ja) 半導体装置およびその製造方法
JP6168370B2 (ja) SiC電界効果トランジスタ
JP2012124464A (ja) ダイオード
JP5735611B2 (ja) SiC半導体装置
JP2014041920A (ja) 半導体装置
JP4686580B2 (ja) 電力用半導体装置
JP5676017B2 (ja) オン抵抗が低減された半導体装置
WO2015004883A1 (ja) 半導体装置
JP2012182199A (ja) 半導体装置
JP2018098447A (ja) Mosfet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13830758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14423034

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 13830758

Country of ref document: EP

Kind code of ref document: A1