CN110828555A - 一种非对称异质结碳化硅槽型场氧功率mos器件 - Google Patents

一种非对称异质结碳化硅槽型场氧功率mos器件 Download PDF

Info

Publication number
CN110828555A
CN110828555A CN201911127582.9A CN201911127582A CN110828555A CN 110828555 A CN110828555 A CN 110828555A CN 201911127582 A CN201911127582 A CN 201911127582A CN 110828555 A CN110828555 A CN 110828555A
Authority
CN
China
Prior art keywords
type
source
groove
silicon carbide
power mos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911127582.9A
Other languages
English (en)
Inventor
胡盛东
安俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201911127582.9A priority Critical patent/CN110828555A/zh
Publication of CN110828555A publication Critical patent/CN110828555A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明属于半导体功率器件领域,涉及一种非对称异质结碳化硅槽型场氧功率MOS器件,包括依次线性布置的漏极金属、N型衬底层、N型漂移区、N型载流子扩散区、P型沟道层、源极金属;还包括与源极金属连通的槽型栅电极、槽型源电极以及N型源区;所述槽型源电极包括源极P型多晶硅;所述槽型栅电极和槽型源电极上设有P保护层;所述源极P型多晶硅与N型载流子扩散区采用异质结二极管结构。本发明在槽型栅电极和槽型源电极上分别使用P保护层的同时,在槽型源电极中布置源极P型多晶硅,能有效降低器件的导通压降、增加器件的击穿电压以及降低器件的开关损耗。

Description

一种非对称异质结碳化硅槽型场氧功率MOS器件
技术领域
本发明属于半导体功率器件领域,涉及一种非对称异质结碳化硅槽型场氧功率MOS器件。
背景技术
碳化硅功率器件由于其更高的功率密度、更高的开关频率和更低的开关损耗而成为研究和工程中的热点,已广泛应用于电源系统中,但是高芯片成本和可靠性问题仍然限制它们取代Si IGBT的地位。而碳化硅MOS器件中体二极管劣化所带来的器件稳定性问题引起了人们长期关注,并由此提出众多解决该问题的方案,其中在器件中嵌入异质结二极管被认为是能够有效解决该问题的结构之一。
典型的具有保护层的碳化硅槽型场氧功率MOS器件结构较传统槽型器件可大大降低沟槽底部拐角处的峰值电场,并且减少栅极电容,增加了器件开关速度。碳化硅槽型场氧功率MOS器件结构内部具有P型沟道区,漂移区和衬底形成一个寄生体二极管。在逆变电路运用时,可充分利用此寄生体二极管导电,从而省略外接快恢复二极管,达到系统小型化的目的。
然而,作为碳化硅基器件,与硅基器件相比,碳化硅二极管的内建电势较高,而且在大电流导电的情况下,体二极管会劣化,导致整个器件可靠性降低。因此,为了抑制体二极管的劣化,相关研究者提出了具有肖特基势垒二极管的碳化硅MOS器件结构。然而,这又会带来额外的光刻和其他复杂的工艺,最重要的是,肖特基金属的面密度极大地影响了碳化硅MOS器件的阈值电压和状态特性。
因此为了进一步降低具有肖特基二极管结构的碳化硅槽型场氧器件的工艺制造难度,缓解器件击穿电压与导通电阻之间的矛盾,解决由于体二极管劣化带来的可靠性问题,具有异质结二极管结构的碳化硅槽型场氧器件的进一步研究成为了碳化硅功率MOS器件的研究热点。
发明内容
有鉴于此,本发明的目的在于提供一种非对称异质结碳化硅槽型场氧功率MOS器件,在槽型栅电极和槽型源电极上分别使用P保护层的同时,在槽型源电极中布置源极P型多晶硅,能有效降低器件的导通压降、增加器件的击穿电压以及降低器件的开关损耗。
为达到上述目的,本发明提供如下技术方案:
一种非对称异质结碳化硅槽型场氧功率MOS器件,包括依次线性布置的漏极金属、N型衬底层、N型漂移区、N型载流子扩散区、P型沟道层、源极金属;还包括与源极金属连通的槽型栅电极、槽型源电极以及N型源区;所述槽型源电极包括源极P型多晶硅;所述槽型栅电极和槽型源电极上设有P保护层;所述源极P型多晶硅与N型载流子扩散区采用异质结二极管结构。
可选的,所述槽型栅电极包括栅氧层与栅极多晶硅。
可选的,所述栅极多晶硅为N型多晶硅或者栅极P型多晶硅。
可选的,所述栅极P型多晶硅和/或源极P型多晶硅的材料为镍、钛、金或者银中的一种金属或多种金属的组合。
可选的,所述槽型栅电极与所述源极金属、N型源区、P型沟道层相接触。
可选的,所述槽型栅电极与所述源极金属的下部、N型源区的侧面、P型沟道层的侧面接触。
可选的,所述源极P型多晶硅的上部与所述源极金属的下部接触,所述源极P型多晶硅的侧面与N型载流子扩散区的侧面接触,所述源极P型多晶硅的下部与源极一侧P保护层的上部接触。
可选的,所述N型源区的侧面与所述槽型栅电极的侧面接触,N型源区的底部与所述P型沟道层接触,所述N型源区的上部与所述源极金属的下部接触。
可选的,所述非对称异质结碳化硅槽型场氧功率MOS器件的材料为宽禁带半导体材料。
可选的,所述非对称异质结碳化硅槽型场氧功率MOS器件的材料为GaN。
本发明的有益效果在于:
本发明在在常规的槽型场氧器件基础上,在槽型栅电极和槽型源电极上分别使用P保护层的同时,在槽型源电极中布置源极P型多晶硅,能有效降低器件的导通压降、增加器件的击穿电压以及降低器件的开关损耗;并在槽型源电极中采用异质结肖特基二极管结构,即多晶硅与碳化硅直接接触,在降低器件制造工艺难度和成本的同时,一方面有效解决由于碳化硅器件中体二极管劣化以及肖特基金属退火温度差引起的可靠性问题,另一方面能够显著提高器件反向恢复特性。
本发明的其他优点、目标和特征在某种程度上将在随后的说明书中进行阐述,并且在某种程度上,基于对下文的考察研究对本领域技术人员而言将是显而易见的,或者可以从本发明的实践中得到教导。本发明的目标和其他优点可以通过下面的说明书来实现和获得。
附图说明
为了使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明作优选的详细描述,其中:
图1为本发明的结构示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本发明的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本发明的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
请参阅图1,附图中的元件标号分别表示:N型衬底层1、N型漂移区2、N型载流子扩散区3、P型沟道层4、N型源区5、栅氧层6、栅极多晶硅7、源极P型多晶硅8、P保护层9、源极金属10、漏极金属11。
本发明涉及一种非对称异质结碳化硅槽型场氧功率MOS器件,包括从下往上依次包括漏极金属11、N型衬底层1、N型漂移区2、N型载流子扩散区3、P型沟道层4、N型源区5、源极金属10,设置P保护层9、源极P型多晶硅8、槽型栅电极以及槽型源电极,所述P保护层9分别设置于槽型栅电极和槽型源电极下方,所述槽型栅电极和所述槽型源电极分别使用所述P保护层9,所述槽型源极采用异质结二极管结构。
本发明中上述槽型栅电极包括栅氧层6与栅极多晶硅7,其中所述栅极多晶硅7为N型或者栅极P型多晶硅。
本发明中上述槽型源电极包括部分或无侧墙场氧层和源极P型多晶硅8,其中所述源极P型多晶硅的材料为镍、钛、金或者银中的一种金属或多种金属混合物。
本发明的MOS器件结构中还具有如下位置关系:所述源极P型多晶硅8与所述源极金属10的下部、N型载流子扩散区3接触;所述槽型栅电极与所述源极金属10的下部、N型源区5的侧面、P型沟道层4的侧面接触;所述N型源区5的侧面与所述槽型栅电极的侧面接触,N型源区5的抵底部与另一侧面与所述P型沟道层4接触,所述N型源区5的上部与所述源极金属10的下部接触。
另外本发明的材料为宽禁带半导体材料,包括但不限于GaN。
本发明在具有P保护层和异质结二极管的对称碳化硅槽型场氧功率MOS器件基础上,在器件元胞一侧源极金属下增加了高掺杂源极P型多晶硅槽和P保护层9,形成多晶硅和碳化硅直接接触异质结及非对称元胞结构。所述结构一方面有效抑制了碳化硅MOSFET寄生体二极管的开启,优化了器件反向恢复特性,达到降低器件开关损耗的目的。另一方面降低了器件制造成本,消除了由于肖特基金属退火温度差引起的肖特基势垒不可控的可靠性问题。并且进一步缓解了MOS器件中击穿电压与导通电阻之间的矛盾。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,包括依次线性布置的漏极金属、N型衬底层、N型漂移区、N型载流子扩散区、P型沟道层、源极金属;还包括与源极金属连通的槽型栅电极、槽型源电极以及N型源区;所述槽型源电极包括源极P型多晶硅;所述槽型栅电极和槽型源电极上设有P保护层;所述源极P型多晶硅与N型载流子扩散区采用异质结二极管结构。
2.如权利要求1中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述槽型栅电极包括栅氧层与栅极多晶硅。
3.如权利要求2中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述栅极多晶硅为N型多晶硅或者栅极P型多晶硅。
4.如权利要求3中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述栅极P型多晶硅和/或源极P型多晶硅的材料为镍、钛、金或者银中的一种金属或多种金属的组合。
5.如权利要求1中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述槽型栅电极与所述源极金属、N型源区、P型沟道层相接触。
6.如权利要求5中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述槽型栅电极与所述源极金属的下部、N型源区的侧面、P型沟道层的侧面接触。
7.如权利要求1中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述源极P型多晶硅的上部与所述源极金属的下部接触,所述源极P型多晶硅的侧面与N型载流子扩散区的侧面接触,所述源极P型多晶硅的下部与源极一侧P保护层的上部接触。
8.如权利要求1中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述N型源区的侧面与所述槽型栅电极的侧面接触,N型源区的底部与所述P型沟道层接触,所述N型源区的上部与所述源极金属的下部接触。
9.如权利要求1中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述非对称异质结碳化硅槽型场氧功率MOS器件的材料为宽禁带半导体材料。
10.如权利要求9中所述的非对称异质结碳化硅槽型场氧功率MOS器件,其特征在于,所述非对称异质结碳化硅槽型场氧功率MOS器件的材料为GaN。
CN201911127582.9A 2019-11-18 2019-11-18 一种非对称异质结碳化硅槽型场氧功率mos器件 Pending CN110828555A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911127582.9A CN110828555A (zh) 2019-11-18 2019-11-18 一种非对称异质结碳化硅槽型场氧功率mos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911127582.9A CN110828555A (zh) 2019-11-18 2019-11-18 一种非对称异质结碳化硅槽型场氧功率mos器件

Publications (1)

Publication Number Publication Date
CN110828555A true CN110828555A (zh) 2020-02-21

Family

ID=69556313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911127582.9A Pending CN110828555A (zh) 2019-11-18 2019-11-18 一种非对称异质结碳化硅槽型场氧功率mos器件

Country Status (1)

Country Link
CN (1) CN110828555A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635564A (zh) * 2020-12-18 2021-04-09 西安电子科技大学 一种基于柔性衬底的soi基ldmos器件及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201439A (zh) * 2011-05-10 2011-09-28 电子科技大学 一种体内电导调制增强的沟槽型绝缘栅双极型晶体管
JP2012227324A (ja) * 2011-04-19 2012-11-15 Nissan Motor Co Ltd 半導体装置の製造方法
US20130313635A1 (en) * 2011-02-02 2013-11-28 Rohm Co., Ltd. Semiconductor device
JP2014038988A (ja) * 2012-08-20 2014-02-27 Rohm Co Ltd 半導体装置
JP2016046368A (ja) * 2014-08-22 2016-04-04 日産自動車株式会社 半導体装置及びその製造方法
CN109103186A (zh) * 2018-08-14 2018-12-28 电子科技大学 一种集成异质结续流二极管碳化硅槽栅mosfet
CN109545840A (zh) * 2018-11-14 2019-03-29 重庆大学 一种具有保护层和异质结二极管的碳化硅槽型场氧功率mos器件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130313635A1 (en) * 2011-02-02 2013-11-28 Rohm Co., Ltd. Semiconductor device
JP2012227324A (ja) * 2011-04-19 2012-11-15 Nissan Motor Co Ltd 半導体装置の製造方法
CN102201439A (zh) * 2011-05-10 2011-09-28 电子科技大学 一种体内电导调制增强的沟槽型绝缘栅双极型晶体管
JP2014038988A (ja) * 2012-08-20 2014-02-27 Rohm Co Ltd 半導体装置
JP2016046368A (ja) * 2014-08-22 2016-04-04 日産自動車株式会社 半導体装置及びその製造方法
CN109103186A (zh) * 2018-08-14 2018-12-28 电子科技大学 一种集成异质结续流二极管碳化硅槽栅mosfet
CN109545840A (zh) * 2018-11-14 2019-03-29 重庆大学 一种具有保护层和异质结二极管的碳化硅槽型场氧功率mos器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635564A (zh) * 2020-12-18 2021-04-09 西安电子科技大学 一种基于柔性衬底的soi基ldmos器件及其制作方法

Similar Documents

Publication Publication Date Title
CN100388509C (zh) 功率半导体器件
US8933506B2 (en) Diode structures with controlled injection efficiency for fast switching
CN109192779B (zh) 一种碳化硅mosfet器件及其制造方法
CN108807504B (zh) 碳化硅mosfet器件及其制造方法
US9685523B2 (en) Diode structures with controlled injection efficiency for fast switching
CN108807505B (zh) 一种碳化硅mosfet器件及其制造方法
US20150187877A1 (en) Power semiconductor device
CN106057798B (zh) 一种集成沟槽肖特基的mosfet
US10269951B2 (en) Semiconductor device layout and method for forming same
CN114664929B (zh) 一种集成异质结二极管的分离栅SiC MOSFET及其制作方法
Nakamura et al. Novel developments towards increased SiC power device and module efficiency
WO2018055318A1 (en) A Power MOSFET with an Integrated Schottky Diode
CN112420694A (zh) 集成反向肖特基续流二极管的可逆导碳化硅jfet功率器件
CN115881797A (zh) 一种碳化硅器件及其制备方法
WO2016101134A1 (zh) 一种双向mos型器件及其制造方法
CN109768090A (zh) 一种具有内嵌异质结二极管自保护的碳化硅槽型场氧功率mos器件
US10083956B2 (en) Semiconductor device
CN114784108A (zh) 一种集成结势垒肖特基二极管的平面栅SiC MOSFET及其制作方法
CN210805778U (zh) 一种SiC-MOS器件结构
CN117476774B (zh) 垂直型碳化硅晶体管的结构、制造方法及电子设备
CN117497601B (zh) 平面型碳化硅晶体管的结构、制造方法及电子设备
KR101422953B1 (ko) 전력 반도체 소자 및 그 제조 방법
CN117497600A (zh) 超结碳化硅晶体管的结构、制造方法及电子设备
CN110828555A (zh) 一种非对称异质结碳化硅槽型场氧功率mos器件
CN108735823B (zh) 一种二极管及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination