CN109103186A - 一种集成异质结续流二极管碳化硅槽栅mosfet - Google Patents

一种集成异质结续流二极管碳化硅槽栅mosfet Download PDF

Info

Publication number
CN109103186A
CN109103186A CN201810920890.6A CN201810920890A CN109103186A CN 109103186 A CN109103186 A CN 109103186A CN 201810920890 A CN201810920890 A CN 201810920890A CN 109103186 A CN109103186 A CN 109103186A
Authority
CN
China
Prior art keywords
integrated
type
silicon carbide
area
gate mosfet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810920890.6A
Other languages
English (en)
Other versions
CN109103186B (zh
Inventor
易波
张丙可
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810920890.6A priority Critical patent/CN109103186B/zh
Publication of CN109103186A publication Critical patent/CN109103186A/zh
Application granted granted Critical
Publication of CN109103186B publication Critical patent/CN109103186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及功率半导体领域,提供一种集成异质结续流二极管碳化硅槽栅MOSFET,用以克服现有的集成了续流二极管的碳化硅槽栅MOSFET元胞面积大、集成度低的缺点;本发明提供碳化硅槽栅MOSFET的元胞结构中,通过在异质结二极管阳极区正下方设置P+型电场屏蔽区,在集成异质结二极管的同时实现了其所需的电场屏蔽效果;其中异质结二极管阳极区可采用不同掺杂类型和浓度的多晶硅来调节异质结二极管导通压降;本发明不仅在碳化硅槽栅MOSFET上集成了续流二极管,且具有低导通损耗和低开关损耗,同时具有高集成度和降低面积成本的优点。

Description

一种集成异质结续流二极管碳化硅槽栅MOSFET
技术领域
本发明涉及功率半导体领域,具体提供一种具有低导通压降、集成单极异质结二极管的、高度集成的碳化硅槽栅MOSFET。
背景技术
碳化硅MOSFET被认为在电力元器件节能方面具有很大优势,与相同耐压的硅基IGBT相比,碳化硅MOSFET在减小导通损耗和开关损耗方面具有很大优势;然而,碳化硅MOSFET中集成的体续流二极管存在很大的PN结导通压降。为了降低SiC体二极管的导通压降,文献“W.Ni,K.Emori,T.Marui,et al.“SiC Trench MOSFET with an Integrated Low VonUnipolar Heterojunction Diode,”Materials Science Forum,2014,778-780:923-926.”中提出一种SiC槽栅MOSFET,其结构如图1所示,该器件采用SiC与多晶硅构成的异质结二极管作为续流二极管集成在SiC槽栅MOSFET中;由于该异质结二极管导通压降很低,可以显著地减小碳化硅MOSFET反向续流时的导通压降;但是由于该结构的场屏蔽层P+制作在器件表面,使单个MOSFET元胞的面积极大地增加,降低了集成度和沟道密度。
发明内容
本发明的目的在于针对现有的集成了续流二极管的碳化硅槽栅MOSFET元胞面积大、集成度低的缺点,提供一种集成异质结续流二极管碳化硅槽栅MOSFET,该碳化硅槽栅MOSF ET具有高集成度,在集成异质结二极管的同时,将单个元胞的面积进一步缩小,极大地提高了集成度和沟道密度。
为实现上述目的,本发明采用的技术方案为:
一种集成异质结续流二极管碳化硅槽栅MOSFET,其元胞包括:
N+型衬底8,
位于N+型衬底下的漏电极10,
位于N+型衬底上的N-型漂移区1,
分别位于N-型漂移区上左右两侧的P型基区2,P型基区之间设置的栅电极4,所述栅电极与P型基区之间及栅电极与N-型漂移区之间设置的栅氧化层5,
位于P型基区2内的N+源区3,所述N+源区位于P型基区顶部且紧邻栅电极一侧,
深入一侧P型基区2、且与N-型漂移区1直接接触的续流异质结二极管阳极多晶硅区6,
以及覆盖所述P型基区2、N+源区3与续流异质结二极管阳极区6的源电极9;
其特征在于,所述元胞还包括一个P+型电场屏蔽区7,所述P+型电场屏蔽区位于续流异质结二极管阳极区6正下方。
本发明的有益效果在于:
本发明提供一种集成异质结续流二极管碳化硅槽栅MOSFET,其中,集成异质结二极管设置在SiC表面深槽刻蚀后淀积的多晶硅与漂移区接触的两侧,并且P+型电场屏蔽区设置于异质结所在的深槽的正下方,实现对异质结的保护;由于将异质结和P+电场屏蔽区设置在同一深槽处,本发明极大地降低了MOSFET元胞的面积;进而实现提高碳化硅槽栅MOSFET的集成度和沟道密度的目的,进而降低MOSFET和集成异质结二极管的导通损耗。
附图说明
图1为现有集成了单极异质结二极管的SiC槽栅MOSFET结构图。
图2为本发明集成异质结续流二极管碳化硅槽栅MOSFET元胞结构示意图。
具体实施方式
下面结合附图和实施例对本发明做进一步详细说明。
本实施例提供一种集成异质结续流二极管碳化硅槽栅MOSFET,其元胞结构如图2所示,包括:
N+型衬底8(N型重掺杂SiC区),
位于N+型衬底下的漏电极10(MOSFET漏极),
位于N+型衬底上的N-型漂移区1(N型轻掺杂SiC区),
分别位于N-型漂移区上左右两侧的P型基区2(P型掺杂SiC区),P型基区之间设置的栅电极4(多晶硅区),所述栅电极与P型基区之间及栅电极与N-型漂移区之间设置的栅氧化层5,
位于P型基区2内的N+源区3(N型重掺杂SiC区),所述N+源区位于P型基区顶部且紧邻栅电极一侧,
深入右侧P型基区2、且与N-型漂移区1直接接触的续流异质结二极管阳极多晶硅区6,
覆盖所述P型基区2、N+源区3与续流异质结二极管阳极区6的源电极9(MOSFET源极);
以及一个P+型电场屏蔽区7(P型重掺杂SiC区),所述P+型电场屏蔽区位于续流异质结二极管阳极区6正下方。
下面结合如图1所示的现有集成异质结续流二极管碳化硅槽栅MOSFET的工作原理对本发明的工作原理做进一步说明:
现有的集成续流异质结二极管的碳化硅槽栅MOSFET元胞结构如图1所示,其工作原理简单介绍如下:当器件处于正向耐压时,该结构需要两个深扩散的电场屏蔽区P+来吸收漂移区电离杂质产生的电力线,从而防止异质结二极管结面产生强电场而导致器件击穿电压急剧下降;当图1所示的器件反向续流时,即异质结二极管正向导通时,其电流可以从多晶硅底部的三个方向流向二极管的阴极(底部的N+区),如图1中箭头所示;由于电场屏蔽区P+采用深扩散形成,其横向扩散往往占据了很大的芯片面积,不利于高集成度;并且,对于SiC MOSFET,其沟道电阻往往占据总电阻较大比例;而图1所示结构降低了SiC器件的沟道密度,使得比导通电阻增加。
本发明如图2所示,通过将电场屏蔽层7置于异质结二极管阳极区6的正下方,省去了两个深P+的面积,极大地节省了芯片面积,提高了集成度,同时增加了沟道密度以及异质结二极管的有效密度,使得正向和反向的导通电阻均得以降低;当图2所示的器件正向耐压时,P区7虽然没有直接和零电位相连,但是随着漂移区的逐渐耗尽,P区2(零电位)和P区7发生穿通,P区7的电位开始被P区2钳位,漂移区进一步产生的电力线将被P区7吸收,从而防止异质结二极管两侧(如图2箭头所示的两侧)产生高电场,所以P区7可以起到很好的电场屏蔽作用,防止器件击穿电压下降;当器件开始反向续流,即异质结二极管正向导通时,其电流线如图2箭头所示,由异质结二极管两侧流入漂移区;从而,本发明在集成异质结二极管的同时实现了其所需的电场屏蔽效果;其中异质结二极管阳极区6可视情况采用不同掺杂类型和浓度的多晶硅来调节异质结二极管导通压降;本发明不仅在SiC MOSFET上集成了续流二极管,且具有低导通损耗和低开关损耗,同时具有高集成度和降低面积成本的优点。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (1)

1.一种集成续流异质结二极管碳化硅槽栅MOSFET,其元胞包括:
N+型衬底(8),
位于N+型衬底下的漏电极(10),
位于N+型衬底上的N-型漂移区(1),
分别位于N-型漂移区上左右两侧的P型基区(2),P型基区之间设置的栅电极(4),所述栅电极与P型基区之间及栅电极与N-型漂移区之间设置的栅氧化层(5),
位于P型基区内的N+源区(3),所述N+源区位于P型基区顶部且紧邻栅电极一侧,
深入一侧P型基区(2)、且与N-型漂移区(1)直接接触的续流异质结二极管阳极多晶硅区(6),
以及覆盖所述P型基区(2)、N+源区(3)与续流异质结二极管阳极区(6)的源电极(9);
其特征在于,所述元胞还包括一个P+型电场屏蔽区(7),所述P+型电场屏蔽区位于续流异质结二极管阳极区(6)正下方。
CN201810920890.6A 2018-08-14 2018-08-14 一种集成异质结续流二极管碳化硅槽栅mosfet Active CN109103186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810920890.6A CN109103186B (zh) 2018-08-14 2018-08-14 一种集成异质结续流二极管碳化硅槽栅mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810920890.6A CN109103186B (zh) 2018-08-14 2018-08-14 一种集成异质结续流二极管碳化硅槽栅mosfet

Publications (2)

Publication Number Publication Date
CN109103186A true CN109103186A (zh) 2018-12-28
CN109103186B CN109103186B (zh) 2022-10-11

Family

ID=64849533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810920890.6A Active CN109103186B (zh) 2018-08-14 2018-08-14 一种集成异质结续流二极管碳化硅槽栅mosfet

Country Status (1)

Country Link
CN (1) CN109103186B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888007A (zh) * 2019-04-19 2019-06-14 电子科技大学 具有二极管钳位载流子存储层的soi ligbt器件
CN110739219A (zh) * 2019-10-30 2020-01-31 北京工业大学 一种内嵌沟道二极管的SiC MOSFET制备方法
CN110828555A (zh) * 2019-11-18 2020-02-21 重庆大学 一种非对称异质结碳化硅槽型场氧功率mos器件
CN113972261A (zh) * 2021-10-11 2022-01-25 松山湖材料实验室 碳化硅半导体器件及制备方法
CN114975602A (zh) * 2022-07-29 2022-08-30 深圳芯能半导体技术有限公司 一种高可靠性的igbt芯片及其制作方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167695A1 (en) * 2004-02-02 2005-08-04 Hamza Yilmaz Semiconductor device containing dielectrically isolated pn junction for enhanced breakdown characteristics
US20080211016A1 (en) * 2007-03-01 2008-09-04 Boden Milton J Trench mosgated device with deep trench between gate trenches
US20090032821A1 (en) * 2007-07-30 2009-02-05 Hitachi, Ltd. Semiconductor device and electrical circuit device using thereof
US20090206913A1 (en) * 2008-02-14 2009-08-20 Maxpower Semiconductor Inc. Edge Termination with Improved Breakdown Voltage
CN102347356A (zh) * 2010-07-27 2012-02-08 株式会社电装 具有开关元件和续流二极管的半导体装置及其控制方法
CN103681866A (zh) * 2012-09-04 2014-03-26 英飞凌科技奥地利有限公司 场效应半导体器件及其制造方法
US20140252463A1 (en) * 2008-02-14 2014-09-11 Maxpower Semiconductor, Inc. Schottky and mosfet+schottky structures, devices, and methods
CN104718604A (zh) * 2012-10-23 2015-06-17 富士电机株式会社 半导体装置的制造方法
CN105742346A (zh) * 2016-04-26 2016-07-06 电子科技大学 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
CN106876485A (zh) * 2017-03-06 2017-06-20 北京世纪金光半导体有限公司 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法
US20180138293A1 (en) * 2012-02-13 2018-05-17 Maxpower Semiconductor Inc. Trench transistors and methods with low-voltage-drop shunt to body diode
CN108321196A (zh) * 2018-02-05 2018-07-24 电子科技大学 一种沟槽栅电荷存储型igbt及其制作方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050167695A1 (en) * 2004-02-02 2005-08-04 Hamza Yilmaz Semiconductor device containing dielectrically isolated pn junction for enhanced breakdown characteristics
US20080211016A1 (en) * 2007-03-01 2008-09-04 Boden Milton J Trench mosgated device with deep trench between gate trenches
US20090032821A1 (en) * 2007-07-30 2009-02-05 Hitachi, Ltd. Semiconductor device and electrical circuit device using thereof
US20090206913A1 (en) * 2008-02-14 2009-08-20 Maxpower Semiconductor Inc. Edge Termination with Improved Breakdown Voltage
US20140252463A1 (en) * 2008-02-14 2014-09-11 Maxpower Semiconductor, Inc. Schottky and mosfet+schottky structures, devices, and methods
CN102347356A (zh) * 2010-07-27 2012-02-08 株式会社电装 具有开关元件和续流二极管的半导体装置及其控制方法
US20180138293A1 (en) * 2012-02-13 2018-05-17 Maxpower Semiconductor Inc. Trench transistors and methods with low-voltage-drop shunt to body diode
CN103681866A (zh) * 2012-09-04 2014-03-26 英飞凌科技奥地利有限公司 场效应半导体器件及其制造方法
CN104718604A (zh) * 2012-10-23 2015-06-17 富士电机株式会社 半导体装置的制造方法
CN105742346A (zh) * 2016-04-26 2016-07-06 电子科技大学 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
CN106876485A (zh) * 2017-03-06 2017-06-20 北京世纪金光半导体有限公司 一种集成肖特基二极管的SiC双沟槽型MOSFET器件及其制备方法
CN108321196A (zh) * 2018-02-05 2018-07-24 电子科技大学 一种沟槽栅电荷存储型igbt及其制作方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888007A (zh) * 2019-04-19 2019-06-14 电子科技大学 具有二极管钳位载流子存储层的soi ligbt器件
CN109888007B (zh) * 2019-04-19 2020-08-18 电子科技大学 具有二极管钳位载流子存储层的soi ligbt器件
CN110739219A (zh) * 2019-10-30 2020-01-31 北京工业大学 一种内嵌沟道二极管的SiC MOSFET制备方法
CN110739219B (zh) * 2019-10-30 2023-03-21 北京工业大学 一种内嵌沟道二极管的SiC MOSFET制备方法
CN110828555A (zh) * 2019-11-18 2020-02-21 重庆大学 一种非对称异质结碳化硅槽型场氧功率mos器件
CN113972261A (zh) * 2021-10-11 2022-01-25 松山湖材料实验室 碳化硅半导体器件及制备方法
CN114975602A (zh) * 2022-07-29 2022-08-30 深圳芯能半导体技术有限公司 一种高可靠性的igbt芯片及其制作方法
CN114975602B (zh) * 2022-07-29 2022-11-08 深圳芯能半导体技术有限公司 一种高可靠性的igbt芯片及其制作方法

Also Published As

Publication number Publication date
CN109103186B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
CN109103186A (zh) 一种集成异质结续流二极管碳化硅槽栅mosfet
CN104221152B (zh) 半导体装置以及半导体装置的制造方法
CN101853878B (zh) 一种pnp-沟槽复合隔离RC-GCT器件及制备方法
CN104538446B (zh) 一种双向mos型器件及其制造方法
CN1311560C (zh) 横向低侧高压器件及高侧高压器件
CN103258847B (zh) 一种双面场截止带埋层的rb-igbt器件
CN109119419A (zh) 一种集成肖特基续流二极管碳化硅槽栅mosfet
JP2014056942A (ja) 電力用半導体装置
CN106128946A (zh) 半导体装置及半导体装置的制造方法
CN105206656A (zh) 一种逆导型igbt器件
CN102723363B (zh) 一种vdmos器件及其制作方法
CN108899370A (zh) 集成电阻区的vdmos器件
CN102683402A (zh) 一种平面栅电荷存储型igbt
CN104332495B (zh) 一种绝缘栅双极晶体管及其制造方法
CN115881797A (zh) 一种碳化硅器件及其制备方法
US9263560B2 (en) Power semiconductor device having reduced gate-collector capacitance
CN101859703B (zh) 低开启电压二极管的制备方法
CN107170801B (zh) 一种提高雪崩耐量的屏蔽栅vdmos器件
CN105993076A (zh) 一种双向mos型器件及其制造方法
CN101000911A (zh) 具有igbt和二极管的半导体器件
CN102779839A (zh) 一种具有深能级杂质注入的绝缘栅双极性晶体管
US20140061672A1 (en) Semiconductor device
CN108447905A (zh) 一种具有沟槽隔离栅极结构的超结igbt
CN110137250A (zh) 一种具有超低导通压降的高速igbt器件
CN107393954A (zh) 一种GaN异质结纵向场效应管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20181228

Assignee: Zhuhai Gree Electronic Components Co.,Ltd.

Assignor: University of Electronic Science and Technology of China

Contract record no.: X2023980039874

Denomination of invention: An integrated heterojunction freewheeling diode silicon carbide slot gate MOSFET

Granted publication date: 20221011

License type: Common License

Record date: 20230816