WO2012079496A1 - 一种用醋酸酯加氢制备乙醇的方法、催化剂及其制备方法 - Google Patents

一种用醋酸酯加氢制备乙醇的方法、催化剂及其制备方法 Download PDF

Info

Publication number
WO2012079496A1
WO2012079496A1 PCT/CN2011/083863 CN2011083863W WO2012079496A1 WO 2012079496 A1 WO2012079496 A1 WO 2012079496A1 CN 2011083863 W CN2011083863 W CN 2011083863W WO 2012079496 A1 WO2012079496 A1 WO 2012079496A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
carrier
hours
copper
acetate
Prior art date
Application number
PCT/CN2011/083863
Other languages
English (en)
French (fr)
Inventor
王科
陈鹏
胡玉容
李扬
范鑫
Original Assignee
西南化工研究设计院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西南化工研究设计院 filed Critical 西南化工研究设计院
Publication of WO2012079496A1 publication Critical patent/WO2012079496A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/885Molybdenum and copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g

Definitions

  • the invention relates to a method for preparing ethanol, in particular to a method for preparing ethanol by hydrogenation of acetate, a catalyst and a preparation method thereof.
  • Ethanol commonly known as alcohol, has a structural formula of CH 3 CH 2 OH. Ethanol is widely used to make acetic acid, beverages, flavors, dyes, fuels, and the like. Medically, a volume fraction of 70%-75% ethanol is also commonly used as a disinfectant. Ethanol is a good solvent, which can dissolve many inorganic substances and dissolve many organic substances. Therefore, ethanol is commonly used to dissolve plant pigments or medicinal components thereof. Ethanol is also commonly used as a solvent for the reaction, and the organic substances participating in the reaction are The inorganic substances can dissolve, increase the contact area, and increase the reaction rate.
  • the main methods currently used are a food fermentation method, an ethylene hydration method, and a method for preparing an alcohol by hydrogenation of a carboxylic acid ester.
  • the preparation of alcohols by hydrogenation of carboxylic acid esters has been described previously, for example, in CN1230458A, CN86105765A, DE-A-3401896, DE-A-3443277, EP-A-95408, Described in DE-A-3,217,492, USP 4,346,240, BE 892,958, EP-A-36,939 and USP 4,405,819.
  • CN1230458A discloses a method for synthesizing ethanol from syngas, that is, a method for preparing ethanol from carbon monoxide, which relates to a method for preparing ethanol from gas phase hydrogenation from acetaldehyde, ethyl acetate, acetic acid or a mixture thereof, wherein hydrogen is derived from synthesis Gas, the main component of the catalyst used is CuO, the support is Al 2 O 3 , the auxiliary is an alkali metal oxide such as CaO, MgO, BaO or a transition metal oxide such as FeO, CoO, WO, MoO, ZnO, or the above oxidation a combination of things.
  • the main component of the catalyst used is CuO
  • the support is Al 2 O 3
  • the auxiliary is an alkali metal oxide such as CaO, MgO, BaO or a transition metal oxide such as FeO, CoO, WO, MoO, ZnO, or the above oxidation a combination of things.
  • Catalyst chemical composition main component CuO: 10-70W%, support Al2O3: 1-50W%, auxiliary: 1-55W%. This requires that the active component Cu content should be above 40% to have better activity.
  • the catalyst is prepared by a dipping method or a coprecipitation method, the catalyst drying temperature is 10-200 ° C, the calcination temperature is 300-600 ° C, and the calcination time is 1-10 hours.
  • CN86105765A discloses a process for the preparation of an alcohol by hydrogenation of a carboxylic acid ester, in the presence of a catalyst comprising copper and at least one of magnesium, a lanthanide metal or a lanthanide metal, at a high temperature, a normal pressure or a high pressure to hydrogenate the carboxylic acid ester to prepare
  • the space-time yield of the alcohol was 1.54 g / (g catalyst ⁇ h -1 ).
  • lanthanide or lanthanide metals are expensive and costly, which is not conducive to industrial production.
  • DE-A-3443277 discloses the hydrogenolysis of aliphatic esters with carbon dioxide to increase the activity of the reduced copper oxide and zinc oxide catalysts.
  • DE 892 958 discloses the production of alcohol by hydrogenolysis of a carboxylic acid ester by a temperature of from 75 to 300 ° C and a temperature of 0.1 ⁇ A gaseous ester/hydrogen mixture is contacted with a catalyst comprising a reduced copper oxide/zinc oxide mixture at a pressure of 100 kg/cm2.
  • USP4405819 A carboxylic acid ester hydrogenation catalyst is disclosed. They are metals and oxides of transitional elements and are supported on bentonite, fossil, activated carbon, alumina, etc. as needed.
  • non-copper catalysts such as ruthenium (DE3401896A), a support, ruthenium and tin, bismuth and/or lead. (EP-A-95408), bismuth and a noble metal (DE3217429), a Group VIII metal containing an alkali metal component (US4346240) and VIII Group metals, alkali metals and radical anions (EP-A-36939) placed on a carbon support.
  • ruthenium DE3401896A
  • ruthenium and tin bismuth and/or lead.
  • EP-A-95408 bismuth and a noble metal
  • a Group VIII metal containing an alkali metal component US4346240
  • VIII Group metals alkali metals and radical anions
  • the object of the present invention is to provide a method for preparing ethanol by hydrogenation of acetate, that is, in the presence of reduction
  • the acetate is hydrogenated to ethanol at a certain reaction temperature and reaction pressure.
  • the ethyl acetate hydrogenation reaction equation is: CH 3 COOC 2 H 5 +2H 2 ⁇ 2CH 3 CH 2 OH
  • the methyl acetate hydrogenation reaction equation is: CH 3 COOCH 3 +2H 2 ⁇ CH 3 CH 2 OH+CH 3 OH
  • the technical scheme adopted by the present invention is as follows: a method for preparing ethanol by hydrogenation of acetate, which is in the presence of a copper-based catalyst having a reduction activation at 180 ⁇ Hydrogenation of the acetate to ethanol is carried out at a reaction temperature of 300 ° C and a reaction pressure of 1.0 to 5.0 MPa.
  • the acetate is ethyl acetate or / and methyl acetate.
  • the first type of catalyst used in the present invention is as follows: a copper-based catalyst has Cu as an active component, SiO 2 as a carrier, and at least one of a transition metal or/and an alkali metal as an auxiliary agent; The chemical composition is used in an amount of from 5 to 50% by weight of the carrier and from 1% to 10% by weight of the carrier.
  • the transition metal in the catalyst is at least one of Zn, Mn, Mo, and Co
  • the alkali metal is At least one of Mg and Ba
  • the carrier is derived from at least one of a silicate, a silica sol, and a silicate.
  • the above preparation method of the copper-based catalyst comprises the following steps:
  • the metal copper salt and the auxiliary metal salt are formulated into an aqueous solution, and a 28% by mass aqueous ammonia solution is added to adjust the pH of the solution to 7 to 14 ;
  • step (1) adding silicate or silica sol or silicate to the aqueous solution of step (1), stirring and mixing for 2 to 8 hours;
  • the filter cake is baked in an air or nitrogen atmosphere at a temperature of 300 to 500 ° C for 2 to 6 hours;
  • the filter cake is reduced in hydrogen or a mixed atmosphere of hydrogen and nitrogen for 3 to 6 hours, and the reduction temperature is 250 to 350 °C.
  • the gas flow rate is 80 ⁇ 150ml / min.
  • the second type of catalyst employed in the present invention is as follows:
  • the copper-based catalyst is mainly composed of metal copper or copper oxide or a mixture of the two, and silver is used as a promoter, and the carrier is alumina or silica sol.
  • the metal copper content is 5% to 50% by weight of the carrier; the metal silver content is 0.1% to 15% by weight of the carrier; the carrier specific surface area is 10 to 300 m 2 /g, and most preferably 120 to 240 m 2 / g; metal copper content is 15% ⁇ 45% of the weight of the carrier; metal silver content is 1% ⁇ 8% by weight of the carrier.
  • the catalyst carrier has a specific surface area of 120 to 240 m 2 /g.
  • the preparation method of the above copper-based catalyst catalyst comprises the following steps:
  • the alumina or silica sol carrier is treated with 25-28 wt% ammonia water for 0.5 to 3 hours, and then at 1100 °C. Roasting for 2 to 5 hours to prepare a modified alumina or silica sol carrier;
  • the above-mentioned catalyst has a reaction pressure of 0.1-8 MPa when the acetate is hydrogenated to produce ethanol, a reaction temperature of 170-260 ° C, and an hourly space velocity of the acetate solution of 0.2 h -1 to 2.0 h -1 .
  • the acetate is an alkyl acetate having an alkyl carbon number of from 1 to 15.
  • the invention Compared with the prior art, the invention has the advantages that the method for preparing ethanol by hydrogenation of acetate has high space-time yield and high ethanol selectivity, and the ethanol selection method under the optimal process conditions The property is up to 97%, and the space time yield is 1.55 g / (g catalyst ⁇ h -1 ).
  • the copper-based catalyst of the invention has good stability, high activity and low requirement on the content of the active component, and only the active component Cu content is above 15%.
  • the method of the invention is simple in manufacture, low in cost, environmentally friendly, and is advantageous for industrial production.
  • the catalysts employed in Examples 1-7 were the first type of catalyst.
  • the above catalyst is used in the reaction of hydrogenation of ethyl acetate to ethanol, and the device adopts a fixed bed reactor, and the reaction tube has an inner diameter of 20 mm and a length of 50 cm.
  • the stainless steel tube is filled with 5 ml of catalyst in the middle of the reaction tube, and a stainless steel ring or glass ball with a diameter of 3 mm is used at the upper and lower ends.
  • the reaction tube is heated by a tube furnace, and a thermocouple is built in the reaction tube.
  • the feed gas acetate is preheated and vaporized, and then passed through the catalyst bed from top to bottom, and is contacted with the catalyst at a temperature of 180 ° C and a pressure of 1.5 MPa.
  • the product ethanol is taken out from the bottom of the reactor, collected by condensation, and analyzed offline. Ethanol selectivity 90%, space time yield 1.32g / (g catalyst ⁇ h -1 ).
  • the catalyst was dried at 80 ° C for 24 hours and then calcined at 300 ° C for 6 hours; tableting was placed in a reaction tube, and reduced with 350 ml/min of pure hydrogen at 350 for 3 hours to obtain a catalyst.
  • the catalyst B of the present example was used in the hydrogenation of ethyl acetate to ethanol, and the reaction apparatus and the process and analysis method were the same as in the first example. The difference is the reaction temperature of 250 ° C and the reaction pressure of 2.5 MPa. Ethanol selectivity 96%, space time yield 1.52g / (g catalyst ⁇ h -1 ).
  • the catalyst is selected from the above catalyst B, and B is applied to the reaction of hydrogenating methyl acetate to ethanol, and the hydrogenation reaction device and the process are treated with ethyl acetate.
  • the reaction temperature was 250 ° C and the reaction pressure was 2.5 MPa.
  • the catalyst C of the present example was used in the hydrogenation of ethyl acetate to ethanol, and the reaction apparatus and the process and analysis method were the same as in the first example. The difference is the reaction temperature of 300 ° C and the reaction pressure of 5.0 MPa. The ethanol selectivity was 97%, and the space time yield was 1.55 g / (g catalyst ⁇ h -1 ).
  • the catalyst D of the present example is used in the hydrogenation of ethyl acetate to ethanol, and the reaction apparatus and the process and analysis method are the same as the example 1 .
  • the reaction temperature was 280 ° C and the reaction pressure was 4.0 Mpa.
  • the catalyst E of the present example was used in the hydrogenation of ethyl acetate to ethanol, and the reaction apparatus and the process and analysis method were the same as in the first example. The difference is that the reaction temperature is 240 ° C and the reaction pressure is 3.0 MPa. Ethanol selectivity 95%, space time yield 1.48g / (g catalyst ⁇ h -1 ).
  • the catalyst was dried at 100 ° C for 12 hours and then calcined at 400 ° C for 3 hours; tableting was placed in a reaction tube, and reduced with 120 ml/min of pure hydrogen at 300 ° C for 3 hours to obtain a catalyst F.
  • the catalyst F of the present example was used in the hydrogenation of ethyl acetate to ethanol, and the reaction apparatus and the process and analysis method were the same as in the first example.
  • the reaction temperature was 260 ° C and the reaction pressure was 2.5 MPa.
  • a modified alumina or silica sol support is prepared. Dissolving metal copper and silver halides, acetates, sulfates or nitrates into aqueous solutions of corresponding concentrations at 20 ⁇ 60 °C The mixed solution is prepared by stirring, and the obtained modified alumina or silica sol carrier is immersed in the mixed solution for 10 to 24 hours, and then dried in a vacuum for 3 to 8 hours to obtain a solid matter. Then at 200 ⁇ 400°C Solidification was carried out after calcination at a temperature for 2 to 6 hours.
  • the catalyst is disposed in the %Ag/SiO 2 content.
  • the steps are as follows: copper nitrate and silver nitrate are selected, and the impregnation liquid is prepared according to the Cu and Ag loading, and the hydroxide or oxide precipitate is prevented from being hydrolyzed by metal ions, and is added to the impregnation liquid. A small amount of nitric acid is used to make the pH of the immersion liquid about 5-6.
  • the prepared SiO 2 support is immersed in the solution for 24 hours, dried in vacuum for 6 hours, and calcined at 650 ° C for 6 hours, and then flow rate of 400 mL / Min A mixture of nitrogen and hydrogen containing 20% hydrogen was reduced at 450 °C for 6 hours to form a Cu-Ag/SiO 2 catalyst.
  • They are denoted as Cu-Ag/SiO 2 (C) and Cu-Ag/SiO 2 (W), respectively.
  • the procedure is as follows: copper chloride, silver nitrate is selected, and the impregnation liquid is prepared according to the Cu and Ag loading. In order to prevent metal ion hydrolysis to produce hydroxide or oxide precipitation, a small amount of nitric acid is added to the impregnation solution to make the pH of the impregnation solution about 6.5, and then the prepared modified SiO 2 carrier is immersed in the solution for 10 hours.
  • a Cu-Ag/SiO 2 catalyst was prepared. They are denoted as Cu-Ag/SiO 2 (H) and Cu-Ag/SiO 2 (M), respectively.
  • alumina 100g, one part modified (denoted as Al 2 O 3 ( J )), one unmodified (denoted as Al 2 O 3 ( L )), 15wt% Cu
  • the catalyst is disposed at a content of +5% wt% Ag/Al 2 O 3 , and the steps are as follows: copper nitrate, silver nitrate is selected, and an impregnation liquid is prepared according to Cu and Ag loading to prevent precipitation of hydroxide or oxide by metal ion hydrolysis.
  • nitric acid Adding a small amount of nitric acid to the impregnation solution so that the pH of the impregnation solution is about 5-6, and then the prepared modified Al 2 O 3 carrier is immersed in the solution for 24 hours, and then dried under vacuum for 4 hours at a temperature of 650 ° C.
  • the calcination was carried out for 4 hours, and then a Cu-Ag/Al 2 O 3 catalyst was prepared by reducing the mixture of nitrogen and hydrogen containing 20% of hydrogen at a flow rate of 300 mL/min at 450 ° C for 6 hours. They are denoted as Cu-Ag/Al 2 O 3 ( J ) and Cu-Ag/ Al 2 O 3 (L), respectively.
  • the solid was dried at 120 °C for 6 hours, calcined at 500 °C for 6 hours, and then subjected to a flow rate of 200 mL/min of hydrogen containing 20% of nitrogen and The hydrogen gas mixture was reduced at 600 ° C for 2 hours to form a Cu-Ag/Al 2 O 3 catalyst.
  • They are denoted as Cu-Ag/Al 2 O 3 (G) and Cu-Ag/Al 2 O 3 (Q), respectively.
  • the prepared catalyst was charged into a 30 mm tubular reactor with a catalyst loading of 10 mL.
  • the raw material gas passes through the catalyst bed from top to bottom, and the product ethanol is taken out from the bottom of the reactor, and ethyl acetate is used as a raw material.
  • the reaction results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Description

一种用醋酸酯加氢制备乙醇的方法、催化剂及其制备方法
技术领域
本发明涉及一种制备乙醇的方法,特别涉及一种用醋酸酯加氢制备乙醇的方法、催化剂及其制备方法。
背景技术
乙醇,俗称酒精,其结构简式为 CH3CH2OH 。乙醇的用途很广,可用乙醇来制造醋酸、饮料、香精、染料、燃料等。医疗上也常用体积分数为 70 %-- 75 %的乙醇作消毒剂。乙醇是一种很好的溶剂,既能溶解许多无机物,又能溶解许多有机物,所以常用乙醇来溶解植物色素或其中的药用成分,也常用乙醇作为反应的溶剂,使参加反应的有机物和无机物均能溶解,增大接触面积,提高反应速率。
关于乙醇的制备技术,目前主要采用的方法有食物发酵法,乙烯水化法以及羧酸酯加氢制备醇的方法。通过羧酸酯加氢制备醇以前曾有过描述,例如,在 CN1230458A , CN86105765A , DE-A-3401896 , DE-A-3443277 , EP-A-95408 , DE-A-3217492 , USP4346240 , BE892958 , EP-A-36939 及 USP4405819 中都有叙述。
CN1230458A 公开了一种用合成气合成乙醇的方法,即用一氧化碳制备乙醇的方法,它涉及一种从乙醛、乙酸乙酯、乙酸或其混合物气相加氢制备乙醇的方法,其氢气来源于合成气,所用催化剂主要成分是 CuO ,担体是 Al2O3 ,助剂是一种碱金属氧化物如 CaO 、 MgO 、 BaO 或者过渡金属氧化物如 FeO 、 CoO 、 WO 、 MoO 、 ZnO ,或者上述氧化物的组合。催化剂化学组成,主要组分 CuO : 10-70W %,担体 Al2O3 : 1-50W %,助剂: 1-55W %。这就要求活性组分 Cu 含量要在 40 %以上才能具有较好的活性。催化剂采用浸渍法或共沉淀法制备,催化剂干燥温度 10-200℃,焙烧温度300-600℃,焙烧时间1-10 小时。
CN86105765A 公开了通过羧酸酯加氢制醇的方法,在含有铜和至少一种镁、镧系金属或锕系金属的催化剂存在下于高温、常压或高压下使羧酸酯加氢以制备醇,该种方法的时空收率为 1.54g /(g 催化剂· h-1) 。但是镧系或锕系金属价格昂贵,成本较高,不利于工业化生产。
DE-A-3443277 公开了在以二氧化碳来提高还原态氧化铜和氧化锌催化剂活性的情况下脂族酯的氢解。
DE892958 公开了通过羧酸酯的氢解制醇,其方法是在 75 ~ 300 ℃ 的温度及 0.1 ~ 100 千克 / 平方厘米的绝压下使气态的酯 / 氢混合物与包括还原态的氧化铜 / 氧化锌混合物的催化剂相接触。
USP4405819 公开了羧酸酯加氢催化剂。他们是过渡元素的金属和氧化物,并根据需要负载在膨润土、佛拉土、活性炭、氧化铝等之上。
其它的文献公开了非铜催化剂,如铑 (DE3401896A) ,一种载体,铑与锡,锗和 / 或铅 (EP-A-95408) ,铑和一种贵金属 (DE3217429) ,置于载体上的含碱金属组分的 VIII 族金属 (US4346240) 以及 VIII 族金属,置于炭载体上的碱金属和自由基阴离子 (EP-A-36939) 。
发明内容
本发明的目的就在于提供一种用醋酸酯加氢制备乙醇的方法,即在有还原 活化的铜基催化剂存在下,在一定的反应温度和反应压力下使醋酸酯加氢生成乙醇。
醋酸乙酯加氢反应方程式为: CH3COOC2H5+2H2 → 2CH3CH2OH
醋酸甲酯加氢反应方程式为: CH3COOCH3+2H2 → CH3CH2OH+CH3OH
为了实现上述目的,本发明采用的技术方案是这样的:一种用醋酸酯加氢制备乙醇的方法,该方法是在有还原活化的铜基催化剂存在下,在 180 ~ 300 ℃ 的反应温度和 1.0 ~ 5.0MPa 的反应压力下使醋酸酯加氢生成乙醇。
作为优选,所述的醋酸酯为醋酸乙酯或 / 和醋酸甲酯。
本发明采用的第一类催化剂是如下的:铜基催化剂以 Cu 为活性组分,以 SiO2 为载体,以过渡金属或 / 和碱金属中的至少一种为助剂;所述催化剂中各化学组成的用量比例为:活性组分含量为载体重量的 5 ~ 50 %,助剂含量为载体重量的 1 %~ 10 %。
作为优选,上述催化剂中所述的过渡金属为 Zn 、 Mn 、 Mo 、 Co 中的至少一种,所述的碱金属为 Mg 、 Ba 中的至少一种,所述的载体来源于硅酸盐、硅溶胶、硅酸酯中的至少一种。
上述的铜基催化剂的制备方法包括以下步骤:
(1) 将金属铜盐和助剂金属盐配制成水溶液,加入质量分数 28%的氨水溶液,调节溶液 pH值为7 ~14 ;
(2) 将硅酸盐或硅溶胶或硅酸酯加入步骤 (1) 所述水溶液中,搅拌混合 2 ~ 8 小时;
(3) 将溶液加热至 40 ~ 80 ℃ ,控制溶液终点 pH 值为 5 ~ 7 ;
(4) 将加热后的溶液过滤,收集滤饼,用去离子水洗涤;
(5) 将洗涤后的滤饼在 80 ~ 120 ℃ 温度下干燥 10 ~ 48 小时;
(6) 干燥后滤饼在空气或氮气气氛中于 300 ~ 500 ℃ 温度下焙烧 2 ~ 6 小时;
(7) 焙烧后滤饼在氢气或氢气与氮气的混合气氛中还原 3 ~ 6 小时,还原温度 250 ~ 350 ℃ ,气体流速 80 ~ 150ml/min 。
本发明采用的第二类催化剂是如下的: 所述的铜基催化剂以金属铜或铜的氧化物或两者的混合物为主活性组分,以银为助催化剂,载体为氧化铝或硅溶胶。
作为优选, 金属铜含量为载体重量的 5 % ~50%, ;金属银含量为载体重量的 0.1 % ~15% ;载体比表面积为 10~300m2/g, 最佳为 120~240 m2/g ; 金属铜含量为载体重量的 15 % ~45% ; 金属银含量为载体重量 1 % ~8 %。
进一步的,上述催化剂载体比表面积为 120~240 m2/g 。
上述铜基催化剂 催化剂的制备方法包括以下步骤:
( 1 )将氧化铝或硅溶胶载体经 25-28wt% 的氨水处理 0.5~3 小时,然后经 1100 ℃ 焙烧 2~5 小时,制备改性的氧化铝或硅溶胶载体;
( 2 )将金属铜的卤化物、醋酸盐、硫酸盐或硝酸盐溶解配制成水溶液,溶液的摩尔浓度为0.002~2.00 M;
( 3 ) 将金属银的卤化物、醋酸盐、硫酸盐或硝酸盐溶解配制成水溶液,溶液的摩尔浓度为0.001~1.50M;
( 4 )在 20~60 ℃ 温度下边搅拌步骤( 2 )配得的溶液边将步骤( 3 )配得的溶液加入;
( 5 )将步骤( 1 )制得的改性氧化铝或硅溶胶载体在步骤( 4 )制得的混合溶液中浸渍 10-24 小时,然后真空干燥 3-9 小时得固体物。再在 200~400 ℃ 温度下焙烧 2~6 小时后得固体物;
( 6 )用空速为 20~60 h-1,含氢质量分数为 20 %的氮气和氢的混合气体或含 CO 质量分数为 25 %的 CO 和氮气的混合气体在 200~650 ℃ 还原 2~10 小时。
上述 所述的催化剂在醋酸酯加氢生产乙醇中的应用 时的反应压力为 0.1~8MPa ,反应温度为170~260 ℃,醋酸酯液时空速为0.2 h-1 ~2.0h -1。 所述 醋酸酯为醋酸烷酯,其烷基碳数为1-15。
与现有技术相比,本发明的优点在于:本发明一种用醋酸酯加氢制备乙醇的方法具有高的时空收率和高的乙醇选择性,在最佳工艺条件下,该方法乙醇选择性可达 97 %,时空收率为 1.55g /(g 催化剂· h-1) 。本发明所述的铜基催化剂稳定性好,活性高,对活性组分的含量要求低,只需活性组分 Cu 含量在 15 %以上即可。同时本发明方法制作简单,成本低廉,对环境友好,利于工业化生产。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,本发明进一步用以下具体实施例进行说明,但本发明绝非限于这些例子。
实施例1-7采用的催化剂是第一类催化剂。
实施例 1
称取 24.1g Cu(NO3)2 和 1.0g Mn(NO3)2 加入去离子水配制成浓度为 0.2M 的混合盐溶液,滴加 28 %的氨水,搅拌混合均匀,控制 pH 值为 11 ,将 70.5g JA-25 型硅溶胶滴入到盐溶液中,搅拌 2h ;加热上述溶液至 70 ℃ ,恒温反应 5h ,直至溶液 pH 值为 7.0 ;将料液趁热过滤,再用去离子水洗涤三次,抽滤;催化剂经 80 ℃ 干燥 10 小时后,在 500 ℃ 下焙烧 2 小时;压片成型置于反应管中,用 100ml/min 的纯氢气,在 250 ℃ 下还原 5 小时,得催化剂 A 。
将上述催化剂用于醋酸乙酯加氢制乙醇的反应中,装置采用固定床反应器,反应管为内径 20mm ,长 50cm 的的不锈钢管,在反应管中部装填 5ml 催化剂,上下端则采用直径 3mm 的不锈钢环或玻璃小球。反应管采用管式炉加热,反应管内置热电偶。
原料气醋酸酯经预热汽化后,自上而下通过催化剂床层,在温度 180 ℃ ,压力 1.5Mpa 条件下与催化剂接触,产物乙醇由反应器底部引出,经冷凝后收集,离线分析。乙醇选择性 90 %,时空收率 1.32g /(g 催化剂· h-1) 。
实施例 2
称取 12.0g Cu(NO3)2 和 2.0g Zn(NO3)2 加入去离子水配制成浓度为 0.2M 的混合盐溶液,滴加 28 %的氨水,搅拌混合均匀,控制 pH 值为 14 ,将 81.0g JA-25 型硅溶胶滴入到盐溶液中,搅拌 8h ;加热上述溶液至 80 ℃ ,恒温反应 5h ,直至溶液 pH 值为 6.0 ;将料液趁热过滤,再用去离子水洗涤三次,抽滤;催化剂经 80 ℃ 干燥 24 小时后,在 300 ℃ 下焙烧 6 小时;压片成型置于反应管中,用 150ml/min 的纯氢气,在 350 下还原 3 小时,催化剂得催化剂 B 。
将本实例催化剂 B 用于醋酸乙酯加氢制乙醇反应中,反应装置及工艺处理与分析方法同实例 1 。不同的是反应温度 250 ℃ ,反应压力为 2.5Mpa 。乙醇选择性 96 %,时空收率 1.52g /(g 催化剂· h-1) 。
实施例 3
催化剂选用上述催化剂 B ,将 B 应用于醋酸甲酯加氢制乙醇的反应中,加氢反应装置与工艺处理同醋酸乙酯。反应温度 250 ℃ ,反应压力为 2.5Mpa 。乙醇选择性 57 %,时空收率 0.70g /(g 催化剂· h-1) 。
实施例 4
称取 24.1g Cu(NO3)2 和 2.0g Co(NO3)2 加入去离子水配制成浓度为 2.0M 的混合盐溶液,搅拌混合均匀,加热至 40 ℃ ,滴加硅酸钠的水溶液到盐溶液中,直至溶液 pH 值为 7.0 ;将料液趁热过滤,再用去离子水洗涤三次,抽滤;催化剂经 120 ℃ 干燥 10 小时后,在 400 ℃ 下焙烧 4 小时;压片成型置于反应管中, 用 80ml/min 的纯氢气,在 300 ℃ 下还原 3 小时,得催化剂 C 。
将本实例催化剂 C 用于醋酸乙酯加氢制乙醇反应中,反应装置及工艺处理与分析方法同实例 1 。不同的是反应温度 300 ℃ ,反应压力为 5.0Mpa 。乙醇选择性 97 %,时空收率 1.55g /(g 催化剂· h-1) 。
实施例 5
称取 3.85g Cu(NO3)2 和 0.72g 二钼酸铵 [(NH4)2Mo2O7.4H 2O] 加入去离子水配制成浓度为 5.0M 的混合盐溶液,滴加 28 %的氨水,搅拌混合均匀,控制 pH 值为 13 ,将 60g 硅酸乙酯加入到盐溶液中,搅拌 5h ;加热上述溶液至 90 ℃ ,恒温反应 5h 直至溶液 pH 值为 5.0 ;将料液趁热过滤,再用去离子水洗涤三次,抽滤;催化剂经 100 ℃ 干燥 48 小时后,在 400 ℃ 下焙烧 3 小时;压片成型置于反应管中,用 120ml/min 的纯氢气,在 300 ℃ 下还原 3 小时,得催化剂 D 。
将本实例催化剂 D 用于醋酸乙酯加氢制乙醇反应中,反应装置及工艺处理与分析方法同实例 1 。不同的是反应温度 280 ℃ ,反应压力为 4.0Mpa 。乙醇选择性 94 %,时空收率 1.44g /(g 催化剂· h-1) 。
实施例 6
称取 12g Cu(NO3)2 和 1.6g 氯化钡 BaCl2 加入去离子水配制成浓度为 2.0M 的混合盐溶液,滴加 28 %的氨水,搅拌混合均匀,控制 pH 值为 12 ,将 50g 正硅酸钠加入到盐溶液中,搅拌 5h ;加热上述溶液至 70 ℃ ,恒温反应 5h 直至溶液 pH 值为 6.5 ;将料液趁热过滤,再用去离子水洗涤三次,抽滤;催化剂经 100 ℃ 干燥 12 小时后,在 400 ℃ 下焙烧 3 小时;压片成型置于反应管中,用 120ml/min 的纯氢气,在 300 ℃ 下还原 3 小时,得催化剂 E 。
将本实例催化剂 E 用于醋酸乙酯加氢制乙醇反应中,反应装置及工艺处理 与分析方法同实例 1 。不同的是反应温度 240 ℃ ,反应压力为 3.0Mpa 。乙醇选择性 95 %,时空收率 1.48g /(g 催化剂· h-1) 。
实施例 7
称取 24.1g Cu(NO3)2 和 9.5g 硝酸镁 Mg(NO3)2 加入去离子水配制成浓度为 2.0M 的混合盐溶液,滴加 28 %的氨水,搅拌混合均匀,控制 pH 值为 13 ,将 36.6g 硅酸乙酯加入到盐溶液中,搅拌 5h ;加热上述溶液至 70 ℃ ,恒温反应 5h 直至溶液 pH 值为 6.0 ;将料液趁热过滤,再用去离子水洗涤三次,抽滤;催化剂经 100 ℃ 干燥 12 小时后,在 400 ℃ 下焙烧 3 小时;压片成型置于反应管中,用 120ml/min 的纯氢气,在 300 ℃ 下还原 3 小时,得催化剂 F 。
将本实例催化剂F用于醋酸乙酯加氢制乙醇反应中,反应装置及工艺处理与分析方法同实例1。反应温度260 ℃ ,反应压力为2.5Mpa。乙醇选择性95%,时空收率1.51 g/(g 催化剂 · h-1) 。
其中实施例8-11采用的是第二类催化剂。
将氧化铝或硅溶胶经氨水处理 0.5~3 小时,然后经 1100 ℃ 焙烧 2~5 小时,制备改性的氧化铝或硅溶胶载体。将金属铜和银的卤化物、醋酸盐、硫酸盐或硝酸盐溶解分别配制成相应浓度的水溶液在 20~60℃ 下搅拌制得混合溶液,将制得的改性氧化铝或硅溶胶载体在该混合溶液中浸渍 10~24 小时,然后,真空干燥 3~8 小时得固体物。再在 200~400℃ 温度下焙烧 2~6 小时后得固体物。用流量为 20~60ml/min.g.cat ,含氢为 20 %的氮气和氢的混合气体或含 CO 为 25 %的 CO 和氮气的混合气体在 200~650℃还原2~10 小时,获得本发明所述的第二类 催化剂。
实施例 8
称取硅溶胶 100g 载体 2 份,一份经改性处理(记为 SiO2 ( C )),一份未经改性处理(记为 SiO2(W) ),按 15wt%Cu+5%wt%Ag/SiO2 含量配置催化剂,其步骤如下:选取硝酸铜,硝酸银,根据 Cu 和 Ag 负载量配制成浸渍液,为防止金属离子水解生产氢氧化物或氧化物沉淀,在浸渍液中加入少量硝酸,使浸渍液的 pH 值约为 5~6 ,然后将制得的 SiO2 载体在该溶液中浸渍 24 小时后,真空干燥 6 小时, 650 ℃ 温度下焙烧 6 小时,然后用流量 400mL/min 含氢为 20% 的氮气和氢气混合气,在 450 ℃ 还原 6 小时,便制成 Cu-Ag/SiO2 催化剂。分别记为 Cu-Ag/SiO2 ( C )和 Cu-Ag/SiO2 ( W )。
实施例9
称取改性硅溶胶 100g 载体 2 份,按 20wt%Cu+6%wt%Ag/SiO2 含量配置催化剂,其步骤如下:选取氯化铜,硝酸银,根据 Cu 和 Ag 负载量配制成浸渍液,为防止金属离子水解生产氢氧化物或氧化物沉淀,在浸渍液中加入少量硝酸,使浸渍液的 pH 值约为 6.5 ,然后将制得的改性 SiO2 载体在该溶液中浸渍 10 小时后,经充分吸收后在水浴中干燥成固体,再将固体在 120 ℃ 下干燥 6 小时, 500 ℃ 温度下焙烧 6 小时,然后用流量 200mL/min 含氢为 20% 的氮气和氢气混合气,在 600 ℃ 还原 2 小时,便制成 Cu-Ag/SiO2 催化剂。分别记为 Cu-Ag/SiO2 ( H )和 Cu-Ag/SiO2 ( M )。
实施例10
称取氧化铝 100g 载体 2 份,一份经改性处理(记为 Al2O3 ( J )),一份未经改性处理(记为 Al2O3 ( L )),按 15wt%Cu+5%wt%Ag/ Al2O3 含量配置催化剂,其步骤如下:选取硝酸铜,硝酸银,根据 Cu 和 Ag 负载量配制成浸渍液,为防止金属离子水解生产氢氧化物或氧化物沉淀,在浸渍液中加入少量硝酸,使浸渍液的 pH 值约为 5~6 ,然后将制得的改性 Al2O3 载体在该溶液中浸渍 24 小时后,真空干燥 4 小时, 650 ℃ 温度下焙烧 4 小时,然后用流量 300mL/min 含氢为 20% 的氮气和氢气混合气,在 450 ℃ 还原 6 小时,便制成 Cu-Ag/ Al2O3 催化剂。分别记为 Cu-Ag/ Al2O3 ( J )和 Cu-Ag/ Al2O3 ( L )。
实施例11
称取改性氧化铝 100g 载体 2 份,按 20wt%Cu+6%wt%Ag/Al2O3 含量配置催化剂,其步骤如下:选取氯化铜,硝酸银,根据 Cu 和 Ag 负载量配制成浸渍液,为防止金属离子水解生产氢氧化物或氧化物沉淀,在浸渍液中加入少量硝酸,使浸渍液的 pH 值约为 6.5 ,然后将制得的改性 Al2O3 载体在该溶液中浸渍 10 小时后,经充分吸收后在水浴中干燥成固体,再将固体在 120 ℃ 下干燥 6 小时, 500 ℃ 温度下焙烧 6 小时,然后用流量 200mL/min 含氢为 20% 的氮气和氢气混合气,在 600 ℃ 还原 2 小时,便制成 Cu-Ag/ Al2O3 催化剂。分别记为 Cu-Ag/ Al2O3 ( G )和 Cu-Ag/ Al2O3 ( Q )。
实施例8-11催化剂性能测试:
将制得的催化剂装入为 30mm 的管式反应器中,催化剂装填量为 10mL, 原料气自上而下通过催化剂床层,产物乙醇有反应器底部引出,以醋酸乙酯为原料,其反应结果见表 1 。
表1
实施例 催化剂 反应压力
/MPa
反应温度
/ ℃
液时空速
/h-1
氢酯比 醋酸乙酯
转化率 /%
乙醇选择性 /%
8 Cu-Ag/SiO2 ( C ) 0.5 180 0.2 80:1 92 99
8 Cu-Ag/SiO2 ( W ) 0.3 170 0.2 80:1 90 99
9 Cu-Ag/SiO2 ( H ) 3.0 200 1.5 100:1 96 98
9 Cu-Ag/SiO2 ( M ) 1.0 200 1.5 100:1 97 99
10 Cu-Ag/ Al2O3 ( J ) 5.0 220 0.8 70:1 94 97
10 Cu-Ag/ Al2O3 ( L ) 8.0 260 0.5 80:1 92 97
11 Cu-Ag/ Al2O3 ( G ) 3.0 190 0.3 70:1 90 96
11 Cu-Ag/ Al2O3 ( Q ) 7.0 200 0.4 80:1 91 98

Claims (18)

  1. 一种用醋酸酯加氢制备乙醇的方法,该方法是在有还原活化的铜基催化剂存在下,在一定的反应温度和反应压力下使醋酸酯加氢生成乙醇,其特征在于:所述的铜基催化剂以 Cu 为活性组分,以 SiO2 为载体,以过渡金属或 / 和碱金属中的至少一种为助剂。
  2. 根据权利要求 1 所述的一种用醋酸酯加氢制备乙醇的方法,其特征在于:所述的醋酸酯为醋酸乙酯或 / 和醋酸甲酯。
  3. 根据权利要求 1 所述的一种用醋酸酯加氢制备乙醇的方法,其特征在于:所述的过渡金属为 Zn 、 Mn 、 Mo 、 Co 中的至少一种,所述的碱金属为 Mg 、 Ba 中的至少一种,所述的载体来源于硅酸盐、硅溶胶、硅酸酯中的至少一种。
  4. 根据权利要求 1 所述的一种用醋酸酯加氢制备乙醇的方法,其特征在于:所述的反应温度为 180 ~ 300 ℃ ,反应压力为 1.0 ~ 5.0MPa 。
  5. 根据权利要求 1 所述的一种用醋酸酯加氢制备乙醇的方法,其特征在于:活性组分含量为载体重量的 5 ~ 50 %,助剂含量为载体重量的 1 %~ 10 %。
  6. 根据权利要求 1 所述的一种用醋酸酯加氢制备乙醇的方法,其特征在于 :所述的铜基催化剂的制备方法包括以下步骤:
    (1) 将金属铜盐和助剂金属盐配制成水溶液,加入质量分数 28 %的氨水溶液,调节溶液 pH 值为 7 ~ 14 ;
    (2) 将硅酸盐或硅溶胶或硅酸酯加入步骤 (1) 所述水溶液中,搅拌混合 2 ~ 8 小时;
    (3) 将溶液加热至 40 ~ 80 ℃ ,控制溶液终点 pH 值为 5 ~ 7 ;
    (4) 将加热后的溶液过滤,收集滤饼,用去离子水洗涤;
    (5) 将洗涤后的滤饼在 80 ~ 120 ℃ 温度下干燥 10 ~ 48 小时;
    (6) 干燥后滤饼在空气或氮气气氛中于 300 ~ 500 ℃ 温度下焙烧 2 ~ 6 小时;
    (7) 焙烧后滤饼在氢气或氢气与氮气的混合气氛中还原 3 ~ 6 小时,还原温度 250 ~ 350 ℃, 气体流速80~150ml/min。
  7. 一种铜基催化剂,其特征在于:以 Cu 为活性组分,以 SiO2 为载体,以过渡金属或 / 和碱金属中的至少一种为助剂。
  8. 根据权利要求 7所述的铜基催化剂,其特征在于所述过渡金属为 Zn 、 Mn 、 Mo 、 Co 中的至少一种,所述的碱金属为 Mg 、 Ba 中的至少一种,所述的载体来源于硅酸盐、硅溶胶、硅酸酯中的至少一种。
  9. 权利要求 7或8所述的铜基催化剂,其特征在于所述活性组分含量为载体重量的 5 ~ 50 %,助剂含量为载体重量的 1 %~ 10 %。
  10. 一种如权利要求 7-9 任一项所述的铜基催化剂的制备方法,包括以下步骤:
    (1) 将金属铜盐和助剂金属盐配制成水溶液,加入质量分数 28 %的氨水溶液,调节溶液 pH 值为 7 ~ 14 ;
    (2) 将硅酸盐或硅溶胶或硅酸酯加入步骤 (1) 所述水溶液中,搅拌混合 2 ~ 8 小时;
    (3) 将溶液加热至 40 ~ 80 ℃ ,控制溶液终点 pH 值为 5 ~ 7 ;
    (4) 将加热后的溶液过滤,收集滤饼,用去离子水洗涤;
    (5) 将洗涤后的滤饼在 80 ~ 120 ℃ 温度下干燥 10 ~ 48 小时;
    (6) 干燥后滤饼在空气或氮气气氛中于 300 ~ 500 ℃ 温度下焙烧 2 ~ 6 小时;
    (7) 焙烧后滤饼在氢气或氢气与氮气的混合气氛中还原 3 ~ 6 小时,还原温度 250 ~ 350 ℃ ,气体流速 80 ~ 150ml/min 。
  11. 根据权利要求10 所述的制备方法,其特征在于步骤 1 中所述的金属铜盐为 Cu(NO3)2 ,助剂金属盐为 Mn(NO3)2 、 Zn(NO3)2 、 Co(NO3)2 、 [(NH4)2Mo2O7.4H2O] 、 BaCl2 或 Mg(NO3)2
  12. 一种铜基催化剂,其特征在于: 所述催化剂以金属铜或铜的氧化物或两者的混合物为主活性组分,以银为助催化剂,载体为氧化铝或硅溶胶。
  13. 根据权利要求 12所述的催化剂,其特征在于:金属铜含量为载体重量的 5 % ~50%;金属银含量为载体重量的 0.1 % ~15% ;载体比表面积为 10~300m2/g, 最佳为 120~240 m2/g 。
  14. 根据权利要求13 所述的催化剂,其特征在于:金属铜含量为载体重量的 15 % ~45% 。
  15. 根据权利要求 12 或 13 所述的催化剂,其特征在于:金属银含量为载体重量 1 % ~8%。
  16. 一种 如权利要求12-15中的任一项所述的铜基 催化剂的制备方法,包括如下步骤:
    ( 1 )将氧化铝或硅溶胶载体经 25-28wt% 的氨水处理 0.5~3 小时,然后经 1100 ℃ 焙烧 2~5 小时,制备改性的氧化铝或硅溶胶载体;
    ( 2 )将金属铜的卤化物、醋酸盐、硫酸盐或硝酸盐溶解配制成水溶液,溶液的摩尔浓度为 0.002~2.00M ;
    ( 3 )将金属银的卤化物、醋酸盐、硫酸盐或硝酸盐溶解配制成水溶液,溶液的摩尔浓度为 0.001~1.50M ;
    ( 4 )在 20~60℃ 温度下边搅拌步骤( 2 )配得的溶液边将步骤( 3 )配得的溶液加入;
    ( 5 )将步骤( 1 )制得的改性氧化铝或硅溶胶载体在步骤( 4 )制得的混合溶液中浸渍 10-24 小时,然后真空干燥 3-9 小时得固体物。再在 200~400℃ 温度下焙烧 2~6 小时后得固体物;
    ( 6 )用空速为 20~60 h-1 ,含氢质量分数为 20 %的氮气和氢的混合气体或含 CO 质量分数为 25 %的 CO 和氮气的混合气体在 200~650℃还原2~10 小时。
  17. 根据权利要求12-15任一项所述的催化剂在醋酸酯加氢生产乙醇中的应用,其特征在于:反应压力为 0.1~8MPa ,反应温度为170~260 ℃,醋酸酯液时空速为0.2 h-1 ~2.0h -1
  18. 根据权利要求17所述的应用,其特征在于: 醋酸酯为醋酸烷酯,其烷基碳数为1-15。
PCT/CN2011/083863 2010-12-13 2011-12-13 一种用醋酸酯加氢制备乙醇的方法、催化剂及其制备方法 WO2012079496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010584928.0 2010-12-13
CN201010584928.0A CN102093162B (zh) 2010-12-13 2010-12-13 一种用醋酸酯加氢制备乙醇的方法

Publications (1)

Publication Number Publication Date
WO2012079496A1 true WO2012079496A1 (zh) 2012-06-21

Family

ID=44126455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083863 WO2012079496A1 (zh) 2010-12-13 2011-12-13 一种用醋酸酯加氢制备乙醇的方法、催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN102093162B (zh)
WO (1) WO2012079496A1 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548510A (zh) * 2019-08-26 2019-12-10 冷水江三A新材料科技有限公司 一种流化床酯加氢Cu/SiO2微球催化剂及其制备方法、应用
CN111054344A (zh) * 2020-01-17 2020-04-24 沈阳化工大学 一种用于2-mf气相加氢制备2-mthf催化剂的方法
CN111229315A (zh) * 2020-01-21 2020-06-05 浙江师范大学 一种用于3-(3,5-二叔丁基-4-羟基苯基)丙醇合成的催化剂及其制备和应用
CN111604056A (zh) * 2020-06-03 2020-09-01 中国科学院山西煤炭化学研究所 一种负载型金属氧化物催化剂及其制备方法和应用
CN111659405A (zh) * 2020-07-08 2020-09-15 朱丽英 一种喷雾干燥制备铜基催化剂的方法
CN111659375A (zh) * 2020-05-21 2020-09-15 上海中溶科技有限公司 一种己二酸二甲酯加氢制备1,6-己二醇用催化剂及其制备方法和应用
CN112742410A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 一种复合载体无机膜催化剂及其制备方法和应用
CN115364859A (zh) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 合成乙醛酸酯催化剂、制备方法及其应用
CN115364857A (zh) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 羟基乙酸酯合成乙醛酸酯催化剂、制备方法及其应用
CN115364858A (zh) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 一种乙醇酸酯氧化制乙醛酸酯催化剂及其制备方法和应用
CN115591551A (zh) * 2022-09-29 2023-01-13 浙江师范大学(Cn) 一种N-(β-氰基乙基)-ε-己内酰胺连续流加氢过程中的催化剂及其制备方法和应用
CN115814794A (zh) * 2022-12-01 2023-03-21 西安凯立新材料股份有限公司 铜/氧化硅催化剂及其制备方法和应用
CN116328776A (zh) * 2023-01-06 2023-06-27 武汉科林化工集团有限公司 一种醋酸甲酯加氢制备乙醇的催化剂
CN116393141A (zh) * 2023-03-30 2023-07-07 西安凯立新材料股份有限公司 一种醋酸甲酯加氢制乙醇和甲醇催化剂及方法
CN116459846A (zh) * 2023-05-09 2023-07-21 中国科学院兰州化学物理研究所 一种羟基酯加氢纳米Cu基催化剂及其制备方法与应用
CN115814794B (zh) * 2022-12-01 2024-06-04 西安凯立新材料股份有限公司 铜/氧化硅催化剂及其制备方法和应用

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093162B (zh) * 2010-12-13 2012-04-18 西南化工研究设计院 一种用醋酸酯加氢制备乙醇的方法
CN102557931B (zh) * 2011-09-28 2014-05-07 唐山市冀东溶剂有限公司 醋酸间接加氢法单产或联产乙醇和醋酸乙酯的工艺
US8748673B2 (en) * 2011-11-18 2014-06-10 Celanese International Corporation Process of recovery of ethanol from hydrogenolysis process
CN102399130B (zh) * 2011-12-13 2014-07-02 西南化工研究设计院 一种醋酸加氢制乙醇精馏工艺简化的方法
CN103159588B (zh) * 2011-12-15 2015-06-24 西南化工研究设计院有限公司 一种酯加氢制乙醇的优化分离工艺
CN103159591B (zh) * 2011-12-19 2015-03-25 西南化工研究设计院 一种醋酸合成乙醇的工艺
CN102659513B (zh) * 2012-04-28 2014-08-27 上海戊正工程技术有限公司 一种醋酸酯生产乙醇并选择性联产2-丁醇的工艺及其配套工艺系统
CN103570492B (zh) * 2012-07-26 2015-09-09 亚申科技研发中心(上海)有限公司 一种聚乙烯醇生产过程中副产的醋酸甲酯粗产品加氢制乙醇的工艺和系统
CN102775299B (zh) * 2012-08-03 2015-09-02 兖矿国泰化工有限公司 一种醋酸加氢间接制备醋酸乙酯的方法
CN103586025A (zh) * 2012-08-17 2014-02-19 亚申科技研发中心(上海)有限公司 一种醋酸酯加氢制乙醇的催化剂及其制备方法和应用
CN102872869A (zh) * 2012-09-11 2013-01-16 常州大学 用于制备甲酸甲酯的甲醇脱氢催化剂及其制备和用途
CN102924229B (zh) * 2012-11-01 2014-11-12 中科合成油技术有限公司 一种通过醋酸乙烯制备燃料乙醇的方法
CN102941097B (zh) * 2012-11-23 2014-11-26 上海戊正工程技术有限公司 一种乙酸酯加氢制乙醇的工业催化剂及其制备方法与应用
CN103012062B (zh) * 2012-12-20 2015-04-22 上海戊正工程技术有限公司 一种合成气间接生产乙醇的工艺及其应用
CN103880591A (zh) * 2012-12-24 2014-06-25 中国科学院大连化学物理研究所 一种以丙烯和醋酸为原料制备异丙醇和乙醇的方法
CN103896732B (zh) * 2012-12-25 2016-04-20 中国科学院大连化学物理研究所 一种低碳酯加氢制备乙醇的方法
CN103896733B (zh) * 2012-12-25 2016-04-20 中国科学院大连化学物理研究所 一种低碳酯加氢制备乙醇的方法
CN103265402B (zh) * 2013-05-21 2015-08-26 江苏金聚合金材料有限公司 一种降低醋酸酯加氢制乙醇工艺过程能耗的方法
CN103288594B (zh) * 2013-06-04 2015-08-19 临海市联盛化学有限公司 一种醋酸甲酯加氢制备甲醇和乙醇的方法
CN103387481A (zh) * 2013-08-06 2013-11-13 上海华谊(集团)公司 醋酸酯化-加氢生产乙醇的方法
CN103480374A (zh) * 2013-09-25 2014-01-01 神华集团有限责任公司 一种醋酸酯加氢催化剂的制备方法
CN103588618B (zh) * 2013-11-20 2015-07-29 天津大学 醋酸甲酯加氢生产乙醇的反应精馏方法及装置
CN103816908A (zh) * 2014-03-20 2014-05-28 神华集团有限责任公司 一种用于醋酸酯加氢制乙醇的催化剂及其制备方法
CN104193583A (zh) * 2014-08-05 2014-12-10 河北美邦工程科技有限公司 一种环己醇联产无水乙醇的方法
CN107771100A (zh) * 2015-06-09 2018-03-06 国际壳牌研究有限公司 含铜氢化催化剂的制备和用途
CN105820034A (zh) * 2016-04-14 2016-08-03 江苏大学 一种乙酸乙酯加氢制备乙醇的方法
CN107245026A (zh) * 2017-06-22 2017-10-13 江苏飞翔化工股份有限公司 无溶剂由内酯制备二醇的方法
CN108404918A (zh) * 2018-03-14 2018-08-17 天津大学 醋酸甲酯加氢生产乙醇的铜锌二氧化硅催化剂及其制备方法
CN109364923A (zh) * 2018-11-07 2019-02-22 江苏索普(集团)有限公司 铜基耐水催化剂M-Cu/SiO2制备方法及使用方法
CN111151261B (zh) * 2020-01-03 2022-11-22 新地能源工程技术有限公司 一种醋酸酯加氢制乙醇的催化剂及其应用
CN112973695B (zh) * 2021-02-23 2023-04-07 北京弗莱明科技有限公司 一种醋酸酯加氢催化剂及其制备方法和应用
CN112973689B (zh) * 2021-02-23 2023-04-07 北京弗莱明科技有限公司 一种醋酸酯加氢催化剂及其制备方法和应用
CN117339598B (zh) * 2023-12-04 2024-03-08 北京弗莱明科技有限公司 一种醋酸乙酯加氢催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934228A (zh) * 2010-09-30 2011-01-05 江苏丹化煤制化学品工程技术有限公司 一种醋酸酯加氢制乙醇的催化剂及其制备方法和应用
CN102093162A (zh) * 2010-12-13 2011-06-15 西南化工研究设计院 一种用醋酸酯加氢制备乙醇的方法
CN102146019A (zh) * 2011-02-22 2011-08-10 湖南长岭石化科技开发有限公司 一种由烯烃制备醇的方法
CN102327774A (zh) * 2011-07-06 2012-01-25 山东华鲁恒升化工股份有限公司 醋酸酯加氢制备乙醇的催化剂及其制备和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY129140A (en) * 1994-11-07 2007-03-30 Shell Int Research Process and a catalyst for the direct hydrogenation of carboxylic esters
CN1122567C (zh) * 1998-03-26 2003-10-01 中国科学院大连化学物理研究所 合成气合成乙醇的方法
DE10207443A1 (de) * 2002-02-22 2003-09-04 Bayer Ag Verfahren und Katalysator zur Herstellung von Alkoholen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934228A (zh) * 2010-09-30 2011-01-05 江苏丹化煤制化学品工程技术有限公司 一种醋酸酯加氢制乙醇的催化剂及其制备方法和应用
CN102093162A (zh) * 2010-12-13 2011-06-15 西南化工研究设计院 一种用醋酸酯加氢制备乙醇的方法
CN102146019A (zh) * 2011-02-22 2011-08-10 湖南长岭石化科技开发有限公司 一种由烯烃制备醇的方法
CN102327774A (zh) * 2011-07-06 2012-01-25 山东华鲁恒升化工股份有限公司 醋酸酯加氢制备乙醇的催化剂及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRANK TH. VAN DE SCHEUR ET AL.: "Activity-enhanced copper-zinc based catalysts for the hydrogenolysis of esters", APPLIED CATALYSIS A: GENERAL, vol. 116, 1994, pages 237 - 257 *
FRANK TH. VAN DE SCHEUR ET AL.: "Effects of zinc addition to silica supported copper catalysts for the hydrogenolysis of esters", APPLIED CATALYSIS A: GENERAL, vol. 108, 1994, pages 63 - 83 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548510A (zh) * 2019-08-26 2019-12-10 冷水江三A新材料科技有限公司 一种流化床酯加氢Cu/SiO2微球催化剂及其制备方法、应用
CN112742410B (zh) * 2019-10-31 2022-08-12 中国石油化工股份有限公司 一种复合载体无机膜催化剂及其制备方法和应用
CN112742410A (zh) * 2019-10-31 2021-05-04 中国石油化工股份有限公司 一种复合载体无机膜催化剂及其制备方法和应用
CN111054344A (zh) * 2020-01-17 2020-04-24 沈阳化工大学 一种用于2-mf气相加氢制备2-mthf催化剂的方法
CN111229315A (zh) * 2020-01-21 2020-06-05 浙江师范大学 一种用于3-(3,5-二叔丁基-4-羟基苯基)丙醇合成的催化剂及其制备和应用
CN111229315B (zh) * 2020-01-21 2022-12-27 浙江师范大学 一种用于3-(3,5-二叔丁基-4-羟基苯基)丙醇合成的催化剂及其制备和应用
CN111659375A (zh) * 2020-05-21 2020-09-15 上海中溶科技有限公司 一种己二酸二甲酯加氢制备1,6-己二醇用催化剂及其制备方法和应用
CN111604056A (zh) * 2020-06-03 2020-09-01 中国科学院山西煤炭化学研究所 一种负载型金属氧化物催化剂及其制备方法和应用
CN111659405A (zh) * 2020-07-08 2020-09-15 朱丽英 一种喷雾干燥制备铜基催化剂的方法
CN115364859A (zh) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 合成乙醛酸酯催化剂、制备方法及其应用
CN115364857A (zh) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 羟基乙酸酯合成乙醛酸酯催化剂、制备方法及其应用
CN115364858A (zh) * 2021-05-18 2022-11-22 中国石油化工股份有限公司 一种乙醇酸酯氧化制乙醛酸酯催化剂及其制备方法和应用
CN115364858B (zh) * 2021-05-18 2024-03-26 中国石油化工股份有限公司 一种乙醇酸酯氧化制乙醛酸酯催化剂及其制备方法和应用
CN115364859B (zh) * 2021-05-18 2024-05-28 中国石油化工股份有限公司 合成乙醛酸酯催化剂、制备方法及其应用
CN115364857B (zh) * 2021-05-18 2024-05-28 中国石油化工股份有限公司 羟基乙酸酯合成乙醛酸酯催化剂、制备方法及其应用
CN115591551A (zh) * 2022-09-29 2023-01-13 浙江师范大学(Cn) 一种N-(β-氰基乙基)-ε-己内酰胺连续流加氢过程中的催化剂及其制备方法和应用
CN115591551B (zh) * 2022-09-29 2023-10-03 浙江师范大学 一种N-(β-氰基乙基)-ε-己内酰胺连续流加氢过程中的催化剂及其制备方法和应用
CN115814794A (zh) * 2022-12-01 2023-03-21 西安凯立新材料股份有限公司 铜/氧化硅催化剂及其制备方法和应用
CN115814794B (zh) * 2022-12-01 2024-06-04 西安凯立新材料股份有限公司 铜/氧化硅催化剂及其制备方法和应用
CN116328776B (zh) * 2023-01-06 2024-03-19 武汉科林化工集团有限公司 一种醋酸甲酯加氢制备乙醇的催化剂
CN116328776A (zh) * 2023-01-06 2023-06-27 武汉科林化工集团有限公司 一种醋酸甲酯加氢制备乙醇的催化剂
CN116393141A (zh) * 2023-03-30 2023-07-07 西安凯立新材料股份有限公司 一种醋酸甲酯加氢制乙醇和甲醇催化剂及方法
CN116459846A (zh) * 2023-05-09 2023-07-21 中国科学院兰州化学物理研究所 一种羟基酯加氢纳米Cu基催化剂及其制备方法与应用
CN116459846B (zh) * 2023-05-09 2024-03-26 中国科学院兰州化学物理研究所 一种羟基酯加氢纳米Cu基催化剂及其制备方法与应用

Also Published As

Publication number Publication date
CN102093162A (zh) 2011-06-15
CN102093162B (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2012079496A1 (zh) 一种用醋酸酯加氢制备乙醇的方法、催化剂及其制备方法
JP5642670B2 (ja) ダビガトランの合成の中間体の製造方法
JPH05293377A (ja) 有機化合物の水素化のためのクロムを含有しない触媒
CN109420498B (zh) 草酸烷基酯加氢合成乙二醇用高导热性催化剂及其制备方法
JPH03128334A (ja) アルコールの製造方法
JP2017534619A (ja) グリセリン酸カーボネートの製造方法
WO2020009493A1 (ko) 1,2-펜탄디올 제조용 촉매 및 이를 이용한 1,2-펜탄디올의 제조방법
JPS5926336B2 (ja) 部分的水素化のための触媒
KR20010015877A (ko) 카르복실산 또는 그의 무수물 또는 에스테르의 알콜로의수소화 방법
JP2007007520A (ja) アルデヒド製造用触媒及びアルデヒドの製造方法
CN113426457A (zh) 一种酮加氢制备醇的催化剂及其制备方法和应用
CN112062671A (zh) 一种r-(+)-2-(4-羟基苯氧基)丙酸的制备方法
JPS6165840A (ja) ジグリコ−ル酸塩の製造方法
WO2018233497A1 (zh) 铜基催化剂及其制备方法和使用该催化剂制备醚化级乙二醇的方法
CN107353245A (zh) 一种喹啉类化合物的合成方法
JP3244816B2 (ja) 4−ヒドロキシメチル−テトラヒドロピランの製法
TW202304931A (zh) 生物素之製造方法,以及生物素之l-離胺酸鹽及其製造方法
CN103920502A (zh) 一种温和条件下乙酸乙酯气相加氢制乙醇的催化剂及其制备方法和应用
CA2444765C (en) Single-step method for producing toluene derivatives
JP5151253B2 (ja) シス−アミノシクロヘキサンカルボン酸の製造方法
JP2012180338A (ja) シクロプロピルアルキルケトンの製造方法
JP4943140B2 (ja) モノ不飽和脂肪酸の製造方法
TWI665180B (zh) 將酸氫化成醇之製法
TWI718818B (zh) 氫化不飽和多元酸的觸媒與方法
JP4556381B2 (ja) 脂肪族モノカルボン酸スズ塩の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11848248

Country of ref document: EP

Kind code of ref document: A1