WO2018233497A1 - 铜基催化剂及其制备方法和使用该催化剂制备醚化级乙二醇的方法 - Google Patents

铜基催化剂及其制备方法和使用该催化剂制备醚化级乙二醇的方法 Download PDF

Info

Publication number
WO2018233497A1
WO2018233497A1 PCT/CN2018/090436 CN2018090436W WO2018233497A1 WO 2018233497 A1 WO2018233497 A1 WO 2018233497A1 CN 2018090436 W CN2018090436 W CN 2018090436W WO 2018233497 A1 WO2018233497 A1 WO 2018233497A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
catalyst
hours
lithium
oxalate
Prior art date
Application number
PCT/CN2018/090436
Other languages
English (en)
French (fr)
Inventor
袁兴东
汪婧妍
柴剑宇
高潮
Original Assignee
高化学技术株式会社
袁兴东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高化学技术株式会社, 袁兴东 filed Critical 高化学技术株式会社
Publication of WO2018233497A1 publication Critical patent/WO2018233497A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a process for preparing a copper-based catalyst, a copper-based catalyst obtained thereby, and a process for producing etherified-grade ethylene glycol from an oxalate using the catalyst.
  • the glycol ether mainly includes ethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, and a glycol ether containing other alkoxy groups.
  • the glycol ether molecule contains both an ether and an optional alcohol structure, and has good solubility in alcohol and ether, and is therefore an excellent solvent.
  • Glycol ethers are widely used in applications such as ethylene glycol methyl ether as a good surface coating solvent, mainly used in the coatings industry, and the use of glycol ethers currently exceeds 28,000 tons.
  • glycol ethers are mainly synthesized from ethylene oxide, ethylene or ethylene glycol.
  • Ethylene oxide is used as raw material, and the selectivity of glycol ether is low, and ethylene glycol or carbon dioxide is formed in the product; the process is complicated, energy consumption is large, and it is not suitable for industrial production.
  • Ethylene is used as a raw material, and hydrogen peroxide is required as an oxidizing agent and some toxic solvents are used, and hydrogen peroxide is easily decomposed, and there is a high price defect in the industry.
  • Chinese patent application CN2015079691 discloses a method for synthesizing glycol ether on a modified ⁇ molecular sieve catalyst from ethylene glycol as a raw material, and the conversion rate of ethylene glycol is up to 86.1%, B.
  • the selectivity of the glycol ether was 99.6% and the stability of the catalyst exceeded 2000 hours.
  • the method has the advantages of wide source of raw materials, low price, high conversion rate of ethylene glycol, high selectivity of glycol ether, use of solid catalyst, in order to maintain good stability of the catalyst, the raw materials used are chemically pure.
  • Ethylene glycol, a crude ethylene glycol obtained by hydrogenation of oxalate requires a multi-step refining process to remove impurities to be used in the etherification reaction.
  • ethylene glycol is the best raw material.
  • coal-based ethylene glycol has been successfully industrialized, providing a wide range of raw materials for the preparation of glycol ethers.
  • a disadvantage of this technical route is that the reaction hydrogen ester is relatively high and the applicable liquid hourly space velocity is low (about 0.036 g/g catalyst ⁇ h).
  • a copper-based catalyst prepared by a copper ammonia silica gel method is disclosed in U.S. Patent No. 4,585,890 and U.S. Patent No. 4,440,873, the disclosure of which is incorporated herein to The space velocity is 0.024g/g catalyst ⁇ h, the hydrogen ester ratio is 300, the conversion of diethyl oxalate is 100%, and the selectivity of ethylene glycol is 99.5%.
  • the reaction temperature is changed under the same conditions of other reaction conditions.
  • Koichi Hirai reported a Cu/NH 3 -Si catalyst without Cr added at a temperature of 220 ° C, 2 MPa, a liquid hourly space velocity of 0.92 g/mL ⁇ h, and a hydrogen ester ratio of 90.
  • the conversion of dimethyl oxalate was 99.9%, and the selectivity of ethylene glycol was 90.4%.
  • the reaction temperature is high, the copper crystal grains tend to grow, and the side reaction of hydrogenation and the like is liable to occur.
  • CN105771989 discloses a copper-based catalyst comprising a silica support and a copper oxide active component supported on the support, wherein the catalyst preparation step comprises: (1) adding a silicon source to the deionized water And then adjusting the pH to 6.5-12 with ammonia water to obtain a sol mixture; (2) mixing the sol mixture obtained in the step (1) with the copper ammonia complex solution, and then steaming the ammonia to obtain a viscous material; (3) the step (2) The obtained viscous material is subjected to first drying, washing, second drying, and baking in sequence.
  • the combination of the two steps of adjusting the pH value to 6.5-12 with ammonia water and the first drying in step (3) in step (1) after adding the silicon source to the deionized water can make: Compared with the existing copper-based catalysts, in the process of preparing ethylene glycol from hydrogenation of oxalate, the selectivity and conversion of the catalyst are significantly improved, and the reaction temperature is low, and the hydrogen ester ratio is obtained during the reaction. Low, liquid hourly space velocity is large, and the purity of the obtained product ethylene glycol is as high as 98%.
  • coal-based ethylene glycol technology generally has low ethylene glycol selectivity, high selectivity of by-products, can not be directly used for etherification reaction, or has few by-products, but because of the strong toxicity of the catalyst, it cannot be industrialized.
  • the etherified grade ethylene glycol raw material is different from the polyester grade ethylene glycol raw material: the polyester grade ethylene glycol needs to be refined by the existing coal ethylene glycol crude product to meet the requirements, and the etherified grade ethylene glycol
  • the raw material also has certain requirements for impurities, and although it is not as strict as the polyester raw material, it is generally required that the total mass of the impurities is not more than 1% by weight, and the amount of 1,2-butanediol is not more than 0.5% by weight.
  • the current coal-to-ethylene glycol process can meet the requirements for crude ethylene glycol refining, it will result in a significant increase in costs. If the ethylene glycol having a low impurity content is directly obtained by changing the DMO hydrogenation catalyst itself, it can be directly used for etherification without refining, saving the steps and reducing the cost.
  • the inventors of the present invention conducted extensive and intensive research on the preparation of etherified grade ethylene glycol, in order to find a copper-based catalyst suitable for hydrogenation of oxalate by ethylene glycol.
  • the copper-based catalyst is prepared by a specific method, and when the catalyst is used to catalyze the hydrogenation of oxalate to produce ethylene glycol, high oxalate conversion and ethylene glycol selectivity can be obtained, and the obtained ethylene glycol product
  • the impurity content is low, the glycolic acid ester is less than 0.2% by weight, the 1,2-butanediol is less than 0.3% by weight, and the other impurity by-products are not more than 0.5% by weight.
  • the copper-based catalyst prepared by the method can obtain high oxalate conversion and ethylene glycol selectivity when used for catalyzing hydrogenation of oxalate to prepare ethylene glycol, and the obtained ethylene glycol product has low impurity content, glycolic acid
  • the ester is less than 0.2% by weight, the 1,2-butanediol is less than 0.3% by weight, and the other impurity by-products are not more than 0.5% by weight.
  • Another object of the present invention is to provide a copper-based catalyst obtained by the process for producing a copper-based catalyst of the present invention.
  • the copper-based catalyst is used to catalyze the hydrogenation of oxalate to produce ethylene glycol, high oxalate conversion and ethylene glycol selectivity can be obtained, and the resulting ethylene glycol product has low impurity content and lower glycolate. 0.2% by weight, 1,2-butanediol is less than 0.3% by weight, and other impurity by-products are not more than 0.5%.
  • a final object of the present invention is to provide a process for the preparation of ethylene glycol from the hydrogenation of oxalates using the copper-based catalyst of the present invention.
  • the use of the catalyst can obtain high oxalate conversion and ethylene glycol selectivity, and the obtained ethylene glycol product has low impurity content, glycolic acid ester of less than 0.2% by weight, and 1,2-butanediol is lower than 0.3% by weight, other impurity by-products do not exceed 0.5% by weight, and thus the obtained ethylene glycol can reach the standard of etherified grade ethylene glycol.
  • a method of preparing a copper-based catalyst comprising a silica support and copper oxide and lithium oxide supported on a silica support, the method comprising the steps of:
  • step (3) quickly adding the material obtained in step (2) to deionized water at 95-105 ° C, and naturally cooling;
  • the viscous material obtained in the step (4) is sequentially subjected to first drying, washing, second drying, and baking;
  • the silicon source is one or more of silicate, silica and silica sol, preferably silica; and/or the copper salt is a water-soluble copper salt
  • it is copper nitrate, copper sulfate, copper acetate, copper oxalate and/or copper halide, more preferably copper nitrate and/or copper acetate; and/or the lithium salt is a water-soluble lithium salt, preferably lithium nitrate, One or more of lithium sulfate, lithium acetate, lithium oxalate and lithium halide, more preferably lithium nitrate and/or lithium chloride.
  • step (3) the material obtained in step (2) is rapidly added to deionized water at 95-105 ° C; and/or, step (2) The resulting material is added to the deionized water for no more than 10 minutes, preferably no more than 5 minutes, more preferably no more than 1 minute.
  • the ammonia is carried out at 50 to 130 ° C for 0.5 to 50 hours, preferably at 60 to 120 ° C for 2 to 48 hours. More preferably, it is carried out at 90 to 120 ° C for 2 to 12 hours.
  • step (5) the first drying is carried out at 50 to 160 ° C for 3 to 24 hours, preferably at 60 to 150 ° C for 6 to 20 hours. More preferably, it is carried out at 100-150 ° C for 6-12 hours; and/or, in step (5), the second drying is carried out at 60-150 ° C for 2-24 hours, preferably at 60-120 ° C. -12 hours, more preferably 6-12 hours at 80-120 ° C; in step (5), calcination is carried out at 250-1000 ° C for 1-12 hours, preferably at 300-800 ° C for 2-10 hours More preferably, it is carried out at 400 to 700 ° C for 4 to 6 hours.
  • step (3) The material obtained in the step (3) is added to the ammonia water, and the resulting mixture is subjected to steaming for 2 to 48 hours at a temperature of 50 to 130 ° C and a stirring speed of 300 to 600 rpm to form a viscous material;
  • the powder obtained by the calcination in the step (8) is tablet-formed, subjected to tableting, crushed and sieved to obtain a particulate catalyst having a particle diameter of 20 to 40 mesh.
  • the content of the copper active component in terms of copper oxide is 5.9 to 68% by weight based on the total weight of the catalyst, and the lithium content in terms of lithium oxide is 0.1- 2% by weight, and the content of the carrier is 30 to 94% by weight; more preferably, the content of the copper active component in terms of copper oxide is 21.8 to 49% by weight, and the lithium content in terms of lithium oxide is 0.2 to 1.0% by weight.
  • the content of %, and the carrier is 50 to 78% by weight.
  • the catalyst has a specific surface area of from 50 to 600 m 2 /g, preferably from 250 to 450 m 2 /g, more preferably from 280 to 360 m 2 /g; Further, the catalyst has a pore volume of from 0.1 to 2.0 cm 3 /g, preferably from 0.3 to 1.0 cm 3 /g, more preferably from 0.5 to 0.9 cm 3 /g.
  • a process for the preparation of etherified grade ethylene glycol which comprises hydrogenating an oxalate with hydrogen in the presence of a copper-based catalyst according to item 10 under hydrogenation conditions to obtain ethylene alcohol.
  • a liquid hourly space velocity of the oxalate is 0.01 to 10 g/g of the catalyst, the temperature of the hydrogenation reaction is 100 to 300 ° C, and the pressure of the hydrogenation reaction is 0.1-15MPa, the molar ratio of hydrogen to oxalate is 10:1-250:1; preferably, the hydrogenation reaction conditions are as follows: the liquid hourly space velocity of the oxalate is 0.5-8 g / g catalyst.
  • the temperature of the hydrogenation reaction is 160-240 ° C, the pressure of the hydrogenation reaction is 1.5-8 MPa, and the molar ratio of hydrogen to oxalate is 60:1 to 200:1.
  • the present invention provides a process for preparing a copper-based catalyst comprising a silica support and copper oxide and lithium oxide supported on a silica support, the method comprising the steps of:
  • step (3) quickly adding the material obtained in step (2) to deionized water at 95-105 ° C, and naturally cooling;
  • the viscous material obtained in the step (4) is sequentially subjected to first drying, washing, second drying, and baking;
  • the copper-based catalyst prepared according to the process of the present invention is referred to as the catalyst of the present invention, and when used for catalyzing the hydrogenation of oxalate to produce ethylene glycol, high oxalate conversion and ethylene glycol selectivity can be obtained, and the resulting B
  • the diol product has a low impurity content, less than 0.2% by weight of glycolate, less than 0.3% by weight of 1,2-butanediol, and no more than 0.5% by weight of other by-products of impurities.
  • step (1) is to add a silicon source to deionized water and then adjust the pH to 6.5-12 with aqueous ammonia to obtain a sol mixture.
  • various sources of silicon used in the field of catalysts can be used in the present invention.
  • the inventors of the present invention have found that when the silicon source is one or more selected from the group consisting of silicates, silicas and silica sols, the performance of the resulting catalyst is significantly better and is used in the conversion of oxalates.
  • the reaction of preparing ethylene glycol is carried out, the by-products in the obtained ethylene glycol are remarkably reduced.
  • the silicon source be one or more of silicate, silica and silica sol, and it is especially preferred that the source of silicon is silica.
  • the silicate may be various silicates, for example, methyl orthosilicate, ethyl orthosilicate, n-propyl orthosilicate, isopropyl orthosilicate, orthosilicate Butyl ester, isobutyl orthosilicate, methyl metasilicate, ethyl metasilicate, n-propyl metasilicate, isopropyl metasilicate, n-butyl metasilicate and isobutyl metasilicate
  • the silicate is ethyl orthosilicate.
  • the invention has no special requirement for the model selection of white carbon black.
  • Various white carbon blacks in the prior art can be used in the invention, and the model of white carbon black is preferably a gas phase black carbon black A380 (for example, purchased from EVONIK-degussa, Germany). (Evonik-Degussa)), fumed silica A200 (for example from EVONIK-degussa, Germany) and/or silica R972 (for example from Cabot).
  • the manner in which the silicon source is added to the deionized water is well known to those skilled in the art, for example, the source of silicon may be from about 5 to about 45 ° C (preferably room temperature or ambient temperature (about 25 ° C). )) is added to deionized water under agitation to hydrolyze and/or swell the silicon source to form a gelatinous substance.
  • the present invention has no particular requirement for the amount of deionized water used in the step (1) for hydrolyzing and/or swelling the silicon source to form a gelatinous substance.
  • the amount of deionized water is 100 based on the weight of the silicon source. - 2000% by weight, preferably 150-1500% by weight.
  • step (1) after the silicon source is added to the deionized water, pH adjustment with ammonia water is one of the keys to achieving the object of the present invention.
  • the general idea of synthesizing a catalyst is that the silicon source is hydrolyzed and/or swollen in deionized water to form a gelatinous substance without pH adjustment, the thus prepared catalyst has better catalytic performance, but the inventors are in the process of research. It has been found that when preparing the copper-based catalyst of the present invention, the sol mixture obtained by adjusting the pH to 6.5-12 by adding ammonia water after hydrolysis and/or swelling of the silicon source in deionized water can obtain better stability. The properties thus make the performance of the resulting catalyst better. In order to obtain better catalyst performance, it is further preferred to add ammonia water to adjust the pH to 7-12, more preferably 7-10.
  • the timing of the present invention for adding a silicon source to deionized water and then adding ammonia water is not particularly limited. That is, the addition of the ammonia water may be carried out after the silicon source is added to the deionized water to completely form a gel-like substance, or may be performed when the silicon source is added to the deionized water to partially form a gel-like substance.
  • the present invention is not particularly limited in the concentration of the aqueous ammonia used for pH adjustment after hydrolyzing and/or swelling the silicon source in deionized water to partially or completely form a gel-like substance, for example, the concentration of ammonia water. It may be 10 to 30% by weight, preferably 14 to 28% by weight.
  • the addition of all the materials in the step (1) is carried out under stirring such as mechanical stirring to ensure a stable and uniform charge distribution.
  • stirring such as mechanical stirring
  • the reaction mixture is further stirred for 5 to 120 minutes at a stirring speed of 50 to 600 rpm to sufficiently stabilize the resulting sol mixture.
  • step (2) is a step of mixing the sol mixture obtained in step (1) with a copper salt solution.
  • the copper salt solution can be prepared by any method of formulating a copper salt solution.
  • Copper salts are usually water-soluble copper salts.
  • the water-soluble copper salt may be various water-soluble copper salts, and may be, for example, copper nitrate, copper sulfate, copper acetate, copper oxalate and/or copper halide, wherein the copper halide may be selected from copper chloride and copper bromide, preferably
  • the water-soluble copper salt is copper nitrate and/or copper acetate.
  • the solvent used to formulate the copper salt solution is typically water, preferably deionized water.
  • the concentration of the copper salt solution is not particularly limited.
  • the amount of the copper salt solution used in the step (2) can be appropriately selected depending on the intended catalyst composition.
  • the ratio between the added sol mixture and the copper salt solution is such that the active component is present in an amount of from 5.9 to 68% by weight, preferably from 21.8 to 49% by weight, based on the total weight of the catalyst.
  • the method for mixing the sol mixture obtained in the step (1) with the copper salt solution in the step (2) is not particularly limited, and may include a method of one-time feeding, that is, a conventional one-time addition of one material to another material.
  • the manner of mixing in the middle may also be carried out by means of dropping, and the dropping method includes positive addition, reverse addition and parallel addition.
  • the mixing of the sol mixture and the copper salt solution can be carried out under stirring such as mechanical stirring, and the stirring speed can be 50-600 rpm, and the stirring time can be, for example, 15-240 minutes.
  • step (3) is that the material obtained in step (2) is quickly added to deionized water at 95-105 ° C and naturally cooled.
  • the temperature of the deionized water is preferably 95 to 100 °C.
  • the addition time of the material obtained in the step (2) to the deionized water is usually not too long, and it is added quickly, and the addition time is usually not more than 10 minutes, preferably not more than 5 minutes, more preferably not more than 1 minute. Natural cooling here usually means cooling to room temperature.
  • the rapid addition of the material obtained in step (2) to deionized water at 95-105 ° C is another key to achieving the object of the present invention.
  • the inventors of the present invention have found that the material obtained in the step (2) can be quickly added to deionized water at 95-105 ° C and then naturally cooled to obtain a translucent mixed sol-like material, and the catalyst thus obtained has better catalyst.
  • the catalytic properties, ie higher oxalate conversion and ethylene glycol selectivity, and the resulting ethylene glycol product have a low impurity content.
  • the step (4) is that the material obtained in the step (3) is added to the ammonia water, and after stirring, the ammonia is distilled off to obtain a viscous material.
  • the manner in which the material obtained in the step (3) is added to the ammonia water is not particularly limited.
  • the amount of ammonia water is usually such that the molar ratio of ammonia to copper element is from 4 to 24, preferably from 6 to 12. After stirring to remove ammonia, a viscous material was obtained.
  • the conditions of the ammonia distillation in the step (4) of the present invention are not particularly limited.
  • the conditions for the ammonia distillation include a temperature of 50 to 130 ° C and a time of 0.5 to 50 hours.
  • the temperature is from 60 to 120 ° C; and the time is from 2 to 48 hours. It is particularly preferred that the temperature is from 90 to 120 ° C; the time is from 2 to 12 hours.
  • the ammonia distillation can be carried out under stirring such as mechanical stirring, and the stirring speed can be 300-600 rpm.
  • the step (5) is that the viscous material obtained in the step (4) is sequentially subjected to first drying, washing, second drying, and baking.
  • the first drying in step (5) is another key to achieving the object of the present invention.
  • the general idea of synthesizing a copper-based catalyst is to carry out heating and evaporation after mixing the sol mixture and the copper-ammonium complex solution, then filtering, washing, and drying and calcining the solid obtained after filtration and washing.
  • the inventors of the present invention have found that the viscous material obtained in the step (4) is directly subjected to the first drying and then subjected to deionized water washing, second drying and calcination without filtration and without washing, and is thus prepared.
  • the catalyst has better catalytic properties, namely higher oxalate conversion and ethylene glycol selectivity, and the resulting ethylene glycol product has a lower impurity content.
  • the first drying condition in the step (5) of the present invention is not particularly limited, and it is preferred that the first drying conditions include a drying temperature of 50 to 160 ° C and a drying time of 3 to 24 hours. It is further preferred that the drying time is from 60 to 150 ° C; the drying time is from 6 to 20 hours. It is particularly preferred that the drying temperature is from 100 to 150 ° C; the drying time is from 6 to 12 hours.
  • the method of the first drying in the step (5) of the present invention is not particularly limited, and for example, ordinary heat drying, microwave drying and/or spray drying, preferably spray drying, may be employed.
  • the washing, the second drying, and the calcination of the step (5) can be carried out by various washing, drying, and calcining methods in the prior art.
  • the washing of step (5) is usually washed one or more times with deionized water until the washing liquid is neutral.
  • the second drying temperature may be 60-150 ° C, and the drying time may be 2-24 hours.
  • the second drying temperature is preferably from 60 to 120 ° C, and the drying time is preferably from 6 to 12 hours.
  • the second drying temperature is more preferably 80 to 120 ° C, and the drying time is more preferably 6 to 12 hours.
  • the calcination temperature of the step (5) may be from 250 to 1000 ° C, the calcination time may be from 1 to 12 hours; the calcination temperature is preferably from 300 to 800 ° C, and the calcination time is from 2 to 10 hours; further preferably, the calcination temperature is The calcination time is 4-6 hours at 400-700 °C.
  • the material obtained by the second drying may be molded in a conventional manner.
  • the molding method can be, for example, tablet molding, ball molding or extrusion molding.
  • the step (6) is that the calcined material obtained in the step (5) is brought into contact with an aqueous lithium salt solution to support lithium.
  • the contact here may be, for example, mixing the calcined material obtained in the step (5) with an aqueous lithium salt solution, and immersing, spraying or coating the calcined material obtained in the step (5) with an aqueous lithium salt solution.
  • the material contact of step (6) is another key to achieving the object of the present invention.
  • the inventors of the present invention have found that the material of the step (5) is contacted with an aqueous lithium salt solution to support lithium, and the catalyst thus prepared can reduce the selectivity of by-products in the product by additionally containing lithium.
  • Lithium is a modifying element of the catalyst of the invention.
  • various water-soluble lithium salts such as lithium nitrate, lithium sulfate, lithium acetate, lithium oxalate and/or lithium halide may be used, wherein the lithium halide may be selected from lithium chloride or lithium bromide, preferably the water-soluble lithium.
  • the salt is lithium nitrate and/or lithium chloride.
  • the solvent used to prepare the aqueous lithium salt solution is preferably deionized water.
  • the concentration of the aqueous lithium salt solution is not particularly limited.
  • the lithium salt aqueous solution is used in an amount such that lithium is contained in an amount of from 0.1 to 2.0% by weight, based on the total weight of the catalyst, preferably from 0.2 to 1.0% by weight.
  • the step (7) is that the material obtained in the step (6) is sequentially dried and calcined.
  • the drying and calcination of the step (7) can be carried out by various drying and calcining methods in the prior art.
  • the drying temperature may be 50-160 ° C, and the drying time may be 2-24 hours.
  • the drying temperature is preferably from 80 to 120 ° C, and the drying time is preferably from 6 to 12 hours.
  • the calcination temperature may be from 250 to 1000 ° C, and the calcination may be from 1 to 12 hours.
  • the calcination temperature is from 300 to 800 ° C and the calcination time is from 2 to 10 hours. It is further preferred that the calcination temperature is from 400 to 700 ° C and the calcination time is from 4 to 6 hours.
  • the content of the copper active component in terms of copper oxide is generally from 5.9 to 68% by weight, based on the total weight of the catalyst, and the lithium content in terms of lithium oxide is from 0.1 to 2 weight.
  • the content of %, and the carrier is 30 to 94% by weight. More preferably, the content of the copper active component in terms of copper oxide is from 21.8 to 49% by weight, the lithium content in terms of lithium oxide is from 0.2 to 1.0% by weight, and the content of the carrier is 50-based on the total weight of the catalyst. 78% by weight.
  • the total weight of the catalyst refers to the total weight of the active component oxide, other metal oxides and the carrier.
  • the catalyst obtained by the process of the invention may have a specific surface area of from 50 to 600 m 2 /g, preferably from 250 to 450 m 2 /g, further preferably from 280 to 360 m 2 /g.
  • the catalyst may have a pore volume of from 0.1 to 2.0 cm 3 /g, preferably from 0.3 to 1.0 cm 3 /g, further preferably from 0.5 to 0.9 cm 3 /g.
  • the method of the invention for preparing a copper-based catalyst may comprise the steps of:
  • step (3) The material obtained in the step (3) is added to the ammonia water, and the resulting mixture is subjected to steaming for 2 to 48 hours at a temperature of 50 to 130 ° C and a stirring speed of 300 to 600 rpm to form a viscous material;
  • the powder obtained by the calcination in the step (8) is tablet-formed, subjected to tableting, crushed and sieved to obtain a particulate catalyst having a particle diameter of 20 to 40 mesh.
  • a copper-based catalyst obtained by the process for producing a copper-based catalyst of the present invention, which comprises a silica support and copper oxide and lithium oxide supported on a silica support.
  • the content of the copper active component in terms of copper oxide is from 5.9 to 68% by weight
  • the lithium content in terms of lithium oxide is from 0.1 to 2% by weight, based on the total weight of the catalyst, and the carrier The content is from 30 to 94% by weight.
  • the content of the copper active component in terms of copper oxide is from 21.8 to 49% by weight
  • the lithium content in terms of lithium oxide is from 0.2 to 1.0% by weight
  • the content of the carrier is 50-based on the total weight of the catalyst. 78% by weight.
  • the total weight of the catalyst refers to the total weight of the active component oxide, other metal oxides and the carrier.
  • the catalyst has a specific surface area of from 50 to 600 m 2 /g, preferably from 250 to 450 m 2 /g, further preferably from 280 to 360 m 2 /g; the pore volume of the catalyst is 0.1 to 2.0 cm 3 /g, preferably 0.3 to 1.0 cm 3 /g, further preferably 0.5 to 0.9 cm 3 /g.
  • the catalyst of the invention When the catalyst of the invention is used for catalyzing the hydrogenation of oxalate to prepare ethylene glycol, high oxalate conversion and ethylene glycol selectivity can be obtained, and the obtained ethylene glycol product has low impurity content and glycolic acid ester is less than 0.2.
  • the wt%, 1,2-butanediol is less than 0.3% by weight, and other impurity by-products are less than 0.5% by weight.
  • a process for the preparation of an etherified grade ethylene glycol which comprises hydrogenating an oxalate with hydrogen in the presence of a copper-based catalyst under hydrogenation conditions.
  • the reaction wherein the copper-based catalyst is a copper-based catalyst obtained by the process for producing a copper-based catalyst of the present invention or the copper-based catalyst of the present invention.
  • the hydrogenation reaction conditions may include: the liquid hourly space velocity of the oxalate is 0.01 to 10 g/g of the catalyst, the temperature of the hydrogenation reaction is 100 to 300 ° C, and the pressure of the hydrogenation reaction is 0.1 - 15MPa, the molar ratio of hydrogen to oxalate is 10:1-250:1; preferably, the hydrogenation reaction conditions include: the liquid hourly space velocity of the oxalate is 0.5-8 g / g catalyst. h, hydrogenation reaction The temperature is 160-240 ° C, the hydrogenation pressure is 1.5-8 MPa, and the molar ratio of hydrogen to oxalate is 60:1 to 200:1.
  • the oxalate used in the present invention is preferably an oxalic acid diester having the following structure,
  • R 1 and R 2 are the same or different and each independently is a C 1 -C 10 alkyl group, preferably a C 1 -C 6 alkyl group, and particularly preferably a C 1 -C 4 alkyl group.
  • the oxalic acid diester may, for example, be methyl ethyl oxalate, dimethyl oxalate, diethyl oxalate, dipropyl oxalate, dibutyl oxalate, diamyl oxalate, dihexyl oxalate, ethyl propyl oxalate or ethyl butyl oxalate.
  • the oxalate of the invention is dimethyl oxalate and/or diethyl oxalate.
  • the oxalate hydrogenation synthesis of ethylene glycol of the present invention can be carried out in any reactor capable of achieving the above reaction conditions, for example, in a fixed bed reactor, a fluidized bed reactor or a slurry bed reactor, preferably It is carried out in a fixed bed reactor.
  • Elemental analysis (X-ray fluorescence analysis) was performed on an Axios-Advanced fluorescence analyzer from PANalytical B V, the Netherlands.
  • UV transmittance and aldehyde content measurements were performed on a TU-1900 dual-beam UV-Vis spectrophotometer from Beijing General Instrument Co., Ltd.
  • the method for determining the aldehyde content is based on the determination of the aldehyde content in the ethylene glycol for industrial use GB/T 14571.3-2008 _ spectroscopic brightness method.
  • the specific surface area and pore volume of the catalyst were determined by AMD 2020M+C physicochemical adsorption meter from American Micron.
  • step (3) The mixture obtained in the step (3) is added to 100 mL of 100 ° C boiling deionized water in 1 minute, and then the material is naturally cooled to normal temperature (25 ° C);
  • step (4) The mixture obtained in the step (4) is all added to 165 mL of ammonia water (concentration: 25% by weight), and then stirred at a temperature of 95 ° C and a stirring speed of 350 rpm for 6 hours to form a viscous material;
  • the viscous material obtained in the step (5) is subjected to a first drying at a temperature of 120 ° C for 12 hours to obtain a dried material;
  • the powder obtained by calcining in the step (9) is tablet-formed, subjected to tableting, crushed and sieved to obtain a particulate catalyst having a particle diameter of 20 to 40, thereby obtaining a catalyst Li/Cu/SiO 2 (A).
  • the obtained catalyst has a specific surface area of 304 m 2 /g, a pore volume of 0.53 cm 3 /g, a copper content of copper oxide of 46.7 wt% based on the total amount of the catalyst, and a lithium content of lithium oxide as a total amount of the catalyst. 1.0% by weight.
  • the specific properties of the obtained catalyst are shown in Table 1.
  • step (1) It is basically the same as the method of Preparation Example 1, except that the step of adjusting the pH to 9.0 with ammonia water (concentration of ammonia water of 25% by weight) in step (1) and omitting the first drying of step (6) are omitted.
  • the deionized water was washed until the washing liquid was neutral to obtain a catalyst.
  • the specific properties of the obtained catalyst are shown in Table 1.
  • the obtained catalyst was determined to have a specific surface area of 302 m 2 /g, a pore volume of 0.51 cm 3 /g, a copper content of copper oxide of 23% by weight based on the total amount of the catalyst, and a lithium content of lithium oxide as a total amount of the catalyst. 2.0% by weight.
  • the specific properties of the obtained catalyst are shown in Table 1.
  • step (3) The mixture obtained in the step (3) is added to 100 mL of 90 ° C deionized water in 1 minute, and then the material is naturally cooled to normal temperature (25 ° C);
  • step (4) The mixture obtained in the step (4) is all added to 430 mL of ammonia water (concentration: 25% by weight), the molar ratio of ammonia to copper element in the solution is 4, and then stirred at a temperature of 120 ° C and a stirring speed of 350 rpm. Distilling ammonia to form a viscous material;
  • the viscous material obtained in the step (5) is subjected to a first drying at a temperature of 150 ° C for 3 hours to obtain a dried material;
  • the powder after calcination in the step (9) is tablet-formed, subjected to tableting, crushed and sieved to obtain a particulate catalyst having a particle diameter of 20 to 40, thereby obtaining a catalyst Li/Cu/SiO 2 (C).
  • the obtained catalyst was determined to have a specific surface area of 410 m 2 /g, a pore volume of 0.71 cm 3 /g, a copper content in terms of copper oxide of 62% by weight based on the total amount of the catalyst, and a lithium content in terms of lithium oxide as a total amount of the catalyst. 0.5% by weight.
  • the specific properties of the obtained catalyst are shown in Table 1.
  • step (4) The mixture obtained in the step (4) is all added to 110 mL of ammonia water (concentration: 25% by weight), the molar ratio of ammonia to copper element in the solution is 12, and then stirred at a temperature of 120 ° C and a stirring speed of 500 rpm. Distilling ammonia to form a viscous material;
  • the viscous material obtained in the step (5) is subjected to a first drying at a temperature of 120 ° C for 6 hours to obtain a dried material;
  • the powder obtained by the calcination in the step (9) is tablet-formed, subjected to tableting, crushed and sieved to obtain a particulate catalyst having a particle diameter of 20 to 40, thereby obtaining a catalyst Li/Cu/SiO 2 (D).
  • the obtained catalyst has a specific surface area of 360 m 2 /g, a pore volume of 0.82 cm 3 /g, a copper content of copper oxide of 11% by weight based on the total amount of the catalyst, and a lithium content of lithium oxide as a total amount of the catalyst. 0.1% by weight.
  • the specific properties of the obtained catalyst are shown in Table 1.
  • step (4) The mixture obtained in the step (4) is all added to 165 mL of ammonia water (concentration: 25% by weight), the molar ratio of ammonia to copper element in the solution is 12, and then stirred at a temperature of 100 ° C and a stirring speed of 300 rpm. Distilling ammonia to form a viscous material;
  • the viscous material obtained in the step (5) is subjected to a first drying at a temperature of 120 ° C for 10 hours to obtain a dried material;
  • the powder obtained by the calcination in the step (9) is tableted, subjected to tableting, crushed and sieved to obtain a particulate catalyst having a particle diameter of 20 to 40, thereby obtaining a catalyst Cu/Li/SiO 2 (E).
  • the obtained catalyst was determined to have a specific surface area of 284 m 2 /g, a pore volume of 0.85 cm 3 /g, a copper content of copper oxide of 23% by weight based on the total amount of the catalyst, and a lithium content of lithium oxide as a total amount of the catalyst. 1.0% by weight.
  • the specific properties of the obtained catalyst are shown in Table 1.
  • the obtained catalyst was determined to have a specific surface area of 350 m 2 /g, a pore volume of 0.76 cm 3 /g, a copper content of copper oxide of 38% by weight based on the total amount of the catalyst, and a lithium content of lithium oxide as a total amount of the catalyst. 0.7% by weight.
  • the specific properties of the obtained catalyst are shown in Table 1.
  • the obtained catalyst has a specific surface area of 382 m 2 /g, a pore volume of 0.67 cm 3 /g, a copper content of copper oxide of 37% by weight based on the total amount of the catalyst, and a lithium content of lithium oxide as a total amount of the catalyst. 0.2% by weight.
  • the specific properties of the obtained catalyst are shown in Table 1.
  • the pellet catalysts obtained in Preparation Examples 1-7 and Preparation Examples 1-5 were each placed in a micro fixed bed continuous flow reactor with an inner diameter of 10 mm, a thermowell inside the reactor, and a catalyst loading amount of 2 g. The gas was passed through the catalyst bed from top to bottom and reduced by pure hydrogen at 220 ° C for 6 hours to activate the catalyst.
  • reaction temperature 170 ° C reaction temperature 170 ° C
  • reaction pressure 2.8 MPa catalyst loading (liquid hourly space velocity of reaction raw material dimethyl oxalate) 2.1 g / g catalyst.
  • catalyst loading liquid hourly space velocity of reaction raw material dimethyl oxalate
  • the reaction results are shown in Table 2.
  • reaction temperature 240 ° C reaction temperature 1.5 MPa
  • catalyst loading liquid hourly space velocity of reaction raw material dimethyl oxalate
  • the reaction results are shown in Table 2.
  • reaction temperature 200 ° C reaction temperature 200 ° C
  • reaction pressure 2.8 MPa catalyst loading (liquid hourly space velocity of reaction raw material dimethyl oxalate) 2.1 g / g catalyst.
  • catalyst loading liquid hourly space velocity of reaction raw material dimethyl oxalate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

铜基催化剂的制法,该催化剂含二氧化硅和负载其上的氧化铜和氧化锂,该法包括(1)将硅源加入去离子水中,用氨水调至pH6.5-12;(2)将所得溶胶料与铜盐溶液混合;(3)将所得混合物快速加入95-105℃去离子水中,自然冷却;(4)将所得物料加入氨水中,蒸氨;(5)将所得粘稠料进行第一干燥、洗涤、第二干燥、焙烧;(6)将所得物料与锂盐溶液接触以负载锂;及(7)将所得物料干燥、焙烧。该法所得催化剂当用于草酸酯氢化制乙二醇时可获得高转化率和高乙二醇选择性,副产物乙醇酸酯低于0.2%,1,2-丁二醇低于0.3%,其他杂质不超0.5重量%。还涉及通过本方法制得的催化剂及其应用。

Description

铜基催化剂及其制备方法和使用该催化剂制备醚化级乙二醇的方法 技术领域
本发明涉及一种铜基催化剂的制备方法,由此得到的铜基催化剂和使用该催化剂由草酸酯制备醚化级乙二醇的方法。
背景技术
乙二醇醚主要包括乙二醇单甲醚、乙二醇二甲醚、二乙二醇单甲醚、二乙二醇二甲醚以及含有其它烷氧基的乙二醇醚。乙二醇醚分子中同时含有醚和任选的醇结构,具有醇、醚的良好溶解性能,因而是一种极佳的溶剂。乙二醇醚的应用领域非常广泛,例如乙二醇甲醚是良好的表面涂料溶剂,主要应用于涂料行业,乙二醇醚的使用量目前超过2.8万吨。
目前,乙二醇醚主要从环氧乙烷、乙烯或乙二醇为原料出发来合成。以环氧乙烷为原料,存在乙二醇醚选择性低,产物中有乙二醇或二氧化碳生成;其工艺过程较为复杂,能耗大,不太适合工业生产。
以乙烯为原料,需要用双氧水作为氧化剂以及使用一些有毒的溶剂,而双氧水容易分解,在工业上存在价格高等缺陷。
以乙二醇为原料,中国专利申请CN2015079691中披露了一种由乙二醇为原料,在改性β分子筛催化剂上合成乙二醇醚的方法,乙二醇的转化率最高达到86.1%,乙二醇醚的选择性为99.6%,催化剂的稳定性超过2000小时。该方法的优点是:原料来源广泛,价格便宜,而且乙二醇的转化率高,乙二醇醚的选择性高,使用固体催化剂,为了保持催化剂的稳定性好,使用的原料为化学纯的乙二醇,从草酸酯加氢所得到的乙二醇粗品需要多步精制,除去杂质才能用于醚化反应。
从合成乙二醇醚的原料看,以乙二醇为原料效果最好。目前煤制乙二醇已经成功工业化,为制备乙二醇醚,提供了广泛的原料。
现有乙二醇生产工艺大部分采用石油路线,即先用直接氧化法生产环氧乙烷,再经液相催化或非催化水合制得乙二醇。中国专利申请CN  02112038.2、美国专利US5874653、日本专利JP82106631均对该反应路线进行了公开。这些方法存在生产工艺长、所需设备多、能耗高等缺点,从而造成乙二醇的生产成本高。
上世纪70年代末,L.R.Jehner等人在日本专利JP5323011、JP5542971中首先提出草酸酯气相加氢制备乙二醇的技术路线;1985年Haruhiko Miyazaki等人在美国专利US4551565中公开了CuMo kBa pO x催化剂,该催化剂在0.1MPa、177℃、氢酯比为200和液时空速约0.036g/g催化剂·h的反应条件下可将草酸二乙酯全部转化,乙二醇选择性为97.7%。该技术路线的缺点是反应氢酯比较高,可适用的液时空速较低(约0.036g/g催化剂·h)。1984年在美国专利US4585890和US4440873中公开了使用铜氨硅胶法制备的铜基催化剂,在草酸二乙酯加氢制备乙二醇反应中,在反应温度为188℃、反应压力为0.05MPa、液时空速为0.024g/g催化剂·h,氢酯比300时,草酸二乙酯转化率为100%,乙二醇选择性为99.5%;在其他反应条件不变的情况下,将反应温度改变为215℃和氢酯比改变为50时草酸二乙酯的转化率为98%,乙二醇选择性降为87%。可见该反应为了达到合适的乙二醇选择性,适用的液时空速(0.024g/g催化剂·h)太低,氢酯比高。
草酸酯加氢制备乙二醇过程中将产生多碳醇副产物。由于多碳醇的分子半径比较大,容易堵塞醚化催化剂的孔道,即使含量很低(在产物中占1.0重量%)也会影响醚化反应催化剂的稳定性。虽然通过精制可以提高乙二醇的纯度,但是精制过程的能耗高,提高了乙二醇的成本;而且有些杂质如1,2-丁二醇与乙二醇形成共沸物,不容易除去。因此,降低草酸酯加氢过程中副产物的选择性,是改善醚化级乙二醇原料的重要方法。欧洲专利EP0060787中报道了一种催化剂,在精确控制反应条件的情况下该多碳醇副产物在产物中的质量分数为1%左右。但该技术的缺点是,所用催化剂中需要添加剧毒的Cr元素且反应条件苛刻,难以工业化。
1985年Koichi Hirai在美国专利US4614728中报道了一种不添加Cr元素的Cu/NH 3-Si催化剂,其在220℃、2MPa、液时空速0.92g/mL·h、氢酯比90的条件下,草酸二甲酯的转化率为99.9%,乙二醇选择性为90.4%。但该反应存在反应温度高,铜晶粒易长大,易发生过加氢等副反应的缺点。
1986年美国ARCO公司采用Cu-Cr催化剂,在催化剂装填量为100mL、在220℃、3.0MPa、液时空速0.92g/mL·h、氢酯比100的反应条件下将草酸二乙酯转化为乙二醇,反应中草酸二乙酯的转化率99.9%,乙二醇收率为95%,催化剂最长运转466h。中科院福建物质结构研究所于九十年代初完成草酸二乙酯加氢制乙二醇的200mL模试研究工作,其中使用Ec-13铜铬催化剂,在0.6-3.0MPa、205-240℃、液时空速0.327g/g催化剂·h、氢酯比100的反应条件下,运转1134h,时空收率142g/l·h,草酸二乙酯的转化率为99.9%,乙二醇收率为95%。但这些反应均存在反应温度高,且反应中所得产物中的杂质含量高的缺点。
CN105771989公开了一种铜基催化剂,该催化剂含有二氧化硅载体和负载在所述载体上的氧化铜活性组分,其中所述催化剂的制备步骤包括:(1)将硅源加入到去离子水中,然后用氨水调节pH值至6.5-12,得到溶胶混合物;(2)将步骤(1)得到的溶胶混合物与铜氨络合物溶液混合后蒸氨,得到粘稠物料;(3)将步骤(2)得到的粘稠物料依次进行第一干燥、洗涤、第二干燥、焙烧。当中明确述及,在步骤(1)中在硅源加入到去离子水中后用氨水调节pH值至6.5-12并且在步骤(3)中进行第一干燥这两步操作的结合可以使得:与现有的铜基催化剂相比,在由草酸酯加氢制备乙二醇过程中,催化剂的选择性和转化率得到了显着的提高,且在反应过程中使得反应温度低、氢酯比低、液时空速大,并且所得产物乙二醇的纯度高达98%。
目前,煤制乙二醇技术中普遍存在乙二醇选择性低,副产物选择性高,不能直接用于醚化反应,或者副产物少,但是因为催化剂的毒性强,不能工业化的缺陷。基于现有技术的现状,亟需找到一种在由草酸酯转化制备醚化级乙二醇的反应过程中,能够兼具高的草酸酯转化率和乙二醇选择性,同时反应获得的杂质副产物含量低于1重量%的乙二醇制备方法。
醚化级乙二醇原料不同于聚酯级乙二醇原料:聚酯级乙二醇需要将现有的煤制乙二醇粗品经过多次精制,才能满足要求,而醚化级乙二醇原料对于杂质也有一定要求,尽管没有聚酯原料那么严格,但是一般要求杂质量总和不能过于1重量%,并且1,2-丁二醇的量不超过0.5重量%。尽管 现在的煤制乙二醇工艺通过对乙二醇粗品精制是能够达到要求,但这会造成成本大大上升。如果通过改变DMO加氢催化剂本身,直接得到杂质含量低的乙二醇,这样就不需要再精制,就可以直接用于醚化,节省了步骤降低了成本。
发明内容
针对上述现有技术状况,本发明的发明人在醚化级乙二醇的制备方面进行了广泛而又深入的研究,以期发现一种适于由草酸酯氢化制备乙二醇的铜基催化剂,该铜基催化剂通过特定的方法制备,当该催化剂用于催化草酸酯氢化制备乙二醇时,可以获得高的草酸酯转化率和乙二醇选择性,而且所得乙二醇产物的杂质含量低,乙醇酸酯低于0.2重量%,1,2-丁二醇低于0.3重量%,其他杂质副产物不超过0.5重量%。
因此,本发明的一个目的是提供一种制备铜基催化剂的方法。该方法制备的铜基催化剂当用于催化草酸酯氢化制备乙二醇时,可以获得高的草酸酯转化率和乙二醇选择性,而且所得乙二醇产物的杂质含量低,乙醇酸酯低于0.2重量%,1,2-丁二醇低于0.3重量%,其他杂质副产物不超过0.5重量%。
本发明的另一个目的是提供通过本发明的制备铜基催化剂的方法获得的铜基催化剂。当该铜基催化剂用于催化草酸酯氢化制备乙二醇时,可以获得高的草酸酯转化率和乙二醇选择性,而且所得乙二醇产物的杂质含量低,乙醇酸酯低于0.2重量%,1,2-丁二醇低于0.3重量%,其他杂质副产物不超过0.5%。
本发明的最后一个目的是提供一种由草酸酯氢化制备乙二醇的方法,该方法使用本发明的铜基催化剂。该催化剂的使用,可以获得高的草酸酯转化率和乙二醇选择性,而且所得乙二醇产物的杂质含量低,乙醇酸酯低于0.2重量%,1,2-丁二醇低于0.3重量%,其他杂质副产物不超过0.5重量%,因此所得乙二醇能够达到醚化级乙二醇的标准。
实现本发明上述目的的技术方案可以概括如下:
1.一种制备铜基催化剂的方法,所述催化剂含有二氧化硅载体和负载在二氧化硅载体上的氧化铜和氧化锂,该方法包括如下步骤:
(1)将硅源加入到去离子水中,然后用氨水调节pH值至6.5-12,得到溶胶混合物;
(2)将步骤(1)得到的溶胶混合物与铜盐溶液混合;
(3)将步骤(2)得到的物料快速加入到95-105℃的去离子水中,自然冷却;
(4)将步骤(3)得到的物料加入到氨水中,搅拌后蒸去氨,得到粘稠物料;
(5)将步骤(4)得到的粘稠物料依次进行第一干燥、洗涤、第二干燥、焙烧;
(6)将步骤(5)得到的物料与锂盐水溶液进行接触以负载上锂;以及
(7)将步骤(6)得到的物料再依次进行干燥、焙烧。
2.根据第1项的方法,其中硅源为硅酸酯、白炭黑和硅溶胶中的一种或多种,优选为白炭黑;和/或,所述铜盐为水溶性铜盐,优选为硝酸铜、硫酸铜、醋酸铜、草酸铜和/或卤化铜,更优选为硝酸铜和/或醋酸铜;和/或,所述锂盐为水溶性锂盐,优选为硝酸锂、硫酸锂、醋酸锂、草酸锂和卤化锂中的一种或多种,更优选为硝酸锂和/或氯化锂。
3.根据第1或2项的方法,其中在步骤(1)中用氨水调节pH值至7-12,优选至7-10。
4.根据第1-3项中任一项的方法,其中在步骤(3)中,将步骤(2)得到的物料快速加入到95-105℃的去离子水中;和/或,步骤(2)得到的物料添加到去离子水中的时间不超过10分钟,优选不超过5分钟,更优选不超过1分钟。
5.根据第1-4项中任一项的方法,其中在步骤(4)中,蒸氨在50-130℃下进行0.5-50小时,优选在60-120℃下进行2-48小时,更优选在90-120℃下进行2-12小时。
6.根据第1-5项中任一项的方法,其中在步骤(5)中,第一干燥在50-160℃下进行3-24小时,优选在60-150℃下进行6-20小时,更优选在100-150℃ 下进行6-12小时;和/或,在步骤(5)中,第二干燥在60-150℃下进行2-24小时,优选在60-120℃下进行6-12小时,更优选在80-120℃下进行6-12小时;在步骤(5)中,焙烧在250-1000℃下进行1-12小时,优选在300-800℃下进行2-10小时,更优选在400-700℃下进行4-6小时。
7.根据第1-6项中任一项的方法,包括如下步骤:
(a1)在常温(约25℃)和搅拌下将硅源加入去离子水中以形成凝胶状物质,用氨水调节pH值至6.5-12,然后以50-600rpm的搅拌速率继续搅拌5-120分钟,得到溶胶混合物;
(a2)在常温(约25℃)和搅拌下将步骤(1)得到的溶胶混合物与铜盐溶液混合,之后在50-600rpm的搅拌速度下继续搅拌15-240分钟,得到混合溶液;
(a3)将步骤(2)得到的混合溶液在不超过5分钟的时间内加入到95-100℃的去离子水中,然后自然冷却到常温(约25℃);
(a4)将步骤(3)得到的物料加入到氨水中,将所得混合液在温度50-130℃和搅拌速度300-600rpm下进行蒸氨2-48小时,形成粘稠物料;
(a5)将步骤(4)得到的粘稠物料在温度为50-160℃下第一干燥3-24小时,得到干燥物料;
(a6)将步骤(5)得到的干燥物料依次用去离子水洗涤,在温度为60-150℃下第二干燥2-24小时,在250-1000℃下焙烧1-12小时;
(a7)将步骤(6)得到的焙烧物料与锂盐水溶液进行混合;
(a8)将步骤(7)得到的混合物料在温度为50-160℃下干燥2-24小时,得到干燥物料,然后在250-1000℃下焙烧1-12小时;以及
(a9)将步骤(8)焙烧后的粉末压片成型,经过压片,破碎和筛分,得到粒径为20-40目的颗粒催化剂。
8.根据第1-7项中任一项的方法,其中基于催化剂的总重量,以氧化铜计的铜活性组分的含量为5.9-68重量%,以氧化锂计的锂含量为0.1-2重量%,和载体的含量为30-94重量%;更优选的是,以氧化铜计的铜活性组分的含量为21.8-49重量%,以氧化锂计的锂含量为0.2-1.0重量%,和载体的含量为50-78重量%。
9.根据第1-8项中任一项的方法,其中所述催化剂的比表面积为50-600m 2/g,优选为250-450m 2/g,更优选为280-360m 2/g;和/或,所述催化剂的孔容为0.1-2.0cm 3/g,优选为0.3-1.0cm 3/g,更优选为0.5-0.9cm 3/g。
10.通过根据第1-9项中任一项的方法获得的催化剂。
11.一种醚化级乙二醇的制备方法,该方法包括在根据第10项的铜基催化剂存在下,在加氢反应条件下,将草酸酯与氢气接触进行氢化反应以得到乙二醇。
12.根据第11项的方法,其中所述加氢反应条件如下:草酸酯的液时空速为0.01-10g/g催化剂.h、氢化反应的温度为100-300℃、氢化反应的压力为0.1-15MPa、氢气与草酸酯的摩尔比为10:1-250:1;优选的是,所述加氢反应条件如下:草酸酯的液时空速为0.5-8g/g催化剂.h、氢化反应的温度为160-240℃、氢化反应的压力为1.5-8MPa,氢气与草酸酯的摩尔比为60:1-200:1。
本发明的这些和其它目的、特征和优点在结合下文考虑本发明后,将易于为普通技术人员所明白。
具体实施方式
本发明提供了一种制备铜基催化剂的方法,所述催化剂含有二氧化硅载体和负载在二氧化硅载体上的氧化铜和氧化锂,该方法包括如下步骤:
(1)将硅源加入到去离子水中,然后用氨水调节pH值至6.5-12,得到溶胶混合物;
(2)将步骤(1)得到的溶胶混合物与铜盐溶液混合;
(3)将步骤(2)得到的物料快速加入到95-105℃的去离子水中,自然冷却;
(4)将步骤(3)得到的物料加入到氨水中,搅拌后蒸去氨,得到粘稠物料;
(5)将步骤(4)得到的粘稠物料依次进行第一干燥、洗涤、第二干燥、焙烧;
(6)将步骤(5)得到的物料与锂盐水溶液进行接触以负载锂;以及
(7)将步骤(6)得到的物料再依次进行干燥、焙烧。
根据本发明方法制备的铜基催化剂称作本发明催化剂,该催化剂当用于催化草酸酯氢化制备乙二醇时,可以获得高的草酸酯转化率和乙二醇选择性,而且所得乙二醇产物的杂质含量低,乙醇酸酯低于0.2重量%,1,2-丁二醇低于0.3重量%,其他杂质副产物不超过0.5重量%。
根据本发明,步骤(1)是将硅源加入到去离子水中,然后用氨水调节pH值至6.5-12,得到溶胶混合物。对此,催化剂领域使用的各种硅源均可以用于本发明。然而,本发明的发明人发现,当硅源为选自硅酸酯、白炭黑和硅溶胶中的一种或多种时,所得催化剂的性能明显更好,并且在用于草酸酯转化制备乙二醇的反应时,得到的乙二醇中副产物明显减少。因此,本发明优选硅源为硅酸酯、白炭黑和硅溶胶中的一种或多种,尤其优选所述硅源为白炭黑。本发明中,所述硅酸酯可以为各种硅酸酯,例如可以为正硅酸甲酯、正硅酸乙酯、正硅酸正丙酯、正硅酸异丙酯、正硅酸正丁酯、正硅酸异丁酯、偏硅酸甲酯、偏硅酸乙酯、偏硅酸正丙酯、偏硅酸异丙酯、偏硅酸正丁酯和偏硅酸异丁酯中的一种或多种,优选硅酸酯为正硅酸乙酯。本发明对于白炭黑的型号选择没有特别要求,现有技术中各种白炭黑均可以用于本发明,优选白炭黑的型号为气相法制白炭黑A380(例如购自德国EVONIK-degussa(赢创-德固赛))、气相法制白炭黑A200(例如购自德国EVONIK-degussa)和/或白炭黑R972(例如购自卡博特公司)。
根据本发明,在步骤(1)中,将硅源加入到去离子水中的方式为本领域技术人员所公知,例如可以将硅源在约5-约45℃(优选室温或常温(约25℃))和搅拌条件下加入到去离子水中,以使硅源水解和/或溶胀而形成凝胶状物质。本发明对步骤(1)中用于将硅源水解和/或溶胀以形成凝胶状物质的去离子水的用量没有特别要求,优选以硅源的重量为基准,去离子水的用量为100-2000重量%,优选为150-1500重量%。
在步骤(1)中,硅源加入到去离子水中之后,用氨水进行pH值调节是实现本发明目的的关键之一。尽管合成催化剂的一般思路是硅源在去离子水中水解和/或溶胀以形成凝胶状物质后无需进行pH值调节,如此制备出来的催化剂具有更好的催化性能,但是本发明人在研究过程中发现:制备本发明的铜基催化剂时,在硅源在去离子水中水解和/或溶胀形成凝胶状物 质后通过加入氨水调节pH值至6.5-12获得的溶胶混合物可以获得更好的稳定性从而使得所得催化剂的性能更佳。为了获得更佳的催化剂性能,进一步优选加入氨水调节pH值至7-12,更优选为7-10。
在步骤(1)中,本发明对于将硅源加入到去离子水中,然后加入氨水的时机没有特别限定。即,氨水的加入可以在硅源加入到去离子水中完全形成凝胶状物质后进行,也可以在硅源加入到去离子水中部分形成凝胶状物质的时候进行。
在步骤(1)中,本发明对于将硅源在去离子水中水解和/或溶胀以部分或完全形成凝胶状物质之后,进行pH值调节所用的氨水的浓度没有特别限制,例如氨水的浓度可以为10-30重量%,优选为14-28重量%。
为了使氨水调节后的溶胶混合物的电荷分布更加稳定和均匀,优选步骤(1)中所有物料的加入均在搅拌如机械搅拌下进行,以确保电荷分布稳定和均匀。通常而言,在用氨水调节pH之后,将反应混合物继续搅拌5-120分钟,搅拌转速为50-600rpm,以使得到的溶胶混合物充分稳定。
根据本发明,步骤(2)是将步骤(1)得到的溶胶混合物与铜盐溶液混合。对此,铜盐溶液可以采用任何配制铜盐溶液的方法配制得到。铜盐通常采用水溶性铜盐。所述水溶性铜盐可以为各种水溶性铜盐,例如可以为硝酸铜、硫酸铜、醋酸铜、草酸铜和/或卤化铜,其中卤化铜可以选自氯化铜、溴化铜,优选水溶性铜盐为硝酸铜和/或醋酸铜。配制铜盐溶液采用的溶剂通常为水,优选是去离子水。铜盐溶液的浓度没有特别的限制。
根据本发明,步骤(2)中铜盐溶液的用量可以根据预期的催化剂组成进行适当的选择。有利的是,加入的溶胶混合物与铜盐溶液之间的用量比使得基于催化剂的总重量,以氧化铜计的活性组分的含量为5.9-68重量%,优选为21.8-49重量%。本发明对于在步骤(2)中将步骤(1)所得溶胶混合物与铜盐溶液混合的方式没有特别的限制,可以包括一次投料的方式,即常规的将一种物料一次性加入另一种物料中然后进行混合的方式,也可以采用滴加的方式,滴加方式包括正加、反加和并流加入。溶胶混合物与铜盐溶液的混合可以在搅拌如机械搅拌下进行,搅拌的速度可以为50-600rpm,搅拌的时间例如可以为15-240分钟。
根据本发明,步骤(3)是将步骤(2)得到的物料快速加入到95-105℃的去离子水中,自然冷却。这里,去离子水的温度优选为95-100℃。步骤(2)得到的物料加入到去离子水中的加料时间通常不能太长,要快速地加入,添加时间一般不超过10分钟,优选不超过5分钟,更优选不超过1分钟。这里的自然冷却,通常指的是冷却到常温。在步骤(3)中,将步骤(2)得到的物料快速加入到95-105℃的去离子水中是实现本发明目的的另一关键。本发明的发明人发现,将步骤(2)得到的物料快速加入到95-105℃的去离子水中再进行自然冷却,会得到半透明的混合溶胶态物料,如此处理制得的催化剂具有更好的催化性能,即更高的草酸酯转化率和乙二醇选择性,而且所得乙二醇产物的杂质含量低。
根据本发明,步骤(4)是将步骤(3)得到的物料加入到氨水中,搅拌后蒸去氨,得到粘稠物料。对此,将步骤(3)得到的物料加入到氨水中的方式没有特别限定。氨水的用量通常应使得氨与铜元素的摩尔比为4-24,优选为6-12。搅拌蒸去氨后,得到粘稠物料。
本发明对于步骤(4)中的蒸氨的条件没有特别限制,优选所述蒸氨的条件包括:温度为50-130℃;时间为0.5-50小时。进一步优选温度为60-120℃;时间为2-48小时。特别优选温度为90-120℃;时间为2-12小时。蒸氨可以在搅拌如机械搅拌下进行,搅拌的速度可以为300-600rpm。
根据本发明,步骤(5)是将步骤(4)得到的粘稠物料依次进行第一干燥、洗涤、第二干燥、焙烧。步骤(5)中的第一干燥是实现本发明目的的另一关键。合成铜基催化剂的一般思路是在溶胶混合物和铜氨络合物溶液混合后需要进行加热蒸发,然后过滤,洗涤,并将过滤和洗涤后所得固体进行干燥、焙烧。然而,本发明的发明人发现,将步骤(4)得到的粘稠物料不经过过滤和不经过洗涤,直接进行第一干燥后再进行去离子水洗涤、第二干燥和焙烧,如此处理制备出来的催化剂具有更好的催化性能,即更高的草酸酯转化率和乙二醇选择性,而且所得乙二醇产物的杂质含量低。
本发明对于步骤(5)中的第一干燥条件没有特别限制,优选所述第一干燥条件包括:干燥的温度为50-160℃;干燥的时间为3-24小时。进一步优选干燥的时间为60-150℃;干燥的时间为6-20小时。特别优选干燥的温度 为100-150℃;干燥的时间为6-12小时。
本发明对于步骤(5)中的第一干燥的方法没有特别限制,例如可以采用普通加热干燥、微波干燥和/或喷雾干燥,优选为喷雾干燥。
步骤(5)的洗涤、第二干燥、焙烧可以采用现有技术中的各种洗涤、干燥、焙烧的方法进行。例如,步骤(5)的洗涤通常采用去离子水洗涤一次或多次,直到洗液呈中性。第二干燥的温度可以为60-150℃、干燥的时间可以为2-24小时。第二干燥的温度优选为60-120℃、干燥的时间优选为6-12小时。第二干燥的温度更优选为80-120℃、干燥的时间更优选为6-12小时。
步骤(5)的焙烧的温度可以为250-1000℃,焙烧的时间可以为1-12小时;优选焙烧的温度为300-800℃,焙烧的时间为2-10小时;进一步优选焙烧的温度为400-700℃,焙烧的时间为4-6小时。
本发明中,在步骤(5)的焙烧之前,任选地,可将通过第二干燥得到的物料按照常规的方法进行成型。成型的方法例如可以为压片成型、滚球成型或挤出成型。
根据本发明,步骤(6)是将步骤(5)得到的焙烧物料与锂盐水溶液进行接触以负载锂。这里的接触例如可以是将步骤(5)得到的焙烧物料与锂盐水溶液混合在一起,将步骤(5)得到的焙烧物料用锂盐水溶液浸渍、喷雾或涂布等。步骤(6)的物料接触是实现本发明目的的另一关键。本发明的发明人发现,将步骤(5)的物料与锂盐水溶液进行接触以负载锂,如此处理所制备出来的催化剂因额外含有锂可以降低产物中副产物的选择性。锂为本发明催化剂的改性元素。作为这里的锂盐,可以使用各种水溶性锂盐,例如硝酸锂、硫酸锂、醋酸锂、草酸锂和/或卤化锂,其中卤化锂可以选自氯化锂、溴化锂,优选该水溶性锂盐为硝酸锂和/或氯化锂。配制锂盐水溶液采用的溶剂优选是去离子水。锂盐水溶液的浓度没有特别的限制。锂盐水溶液的用量应使得基于催化剂的总重量,锂以氧化锂计的含量为0.1-2.0重量%,优选为0.2-1.0重量%。
根据本发明,步骤(7)是将步骤(6)得到的物料再依次进行干燥、焙烧。步骤(7)的干燥、焙烧可以采用现有技术中的各种干燥、焙烧的方法进行,例如,干燥的温度可以为50-160℃、干燥的时间可以为2-24小时。干燥的 温度优选为80-120℃、干燥的时间优选为6-12小时。焙烧的温度可以为250-1000℃,焙烧的时间可以为1-12小时。优选的是,焙烧的温度为300-800℃,焙烧的时间为2-10小时。进一步优选焙烧的温度为400-700℃,焙烧的时间为4-6小时。
在通过本发明方法制备的催化剂中,基于催化剂的总重量,通常而言,以氧化铜计的铜活性组分的含量为5.9-68重量%,以氧化锂计的锂含量为0.1-2重量%,和载体的含量为30-94重量%。更优选的是,基于催化剂的总重量,以氧化铜计的铜活性组分的含量为21.8-49重量%,以氧化锂计的锂含量为0.2-1.0重量%,和载体的含量为50-78重量%。本发明中,催化剂总重量是指活性组分氧化物、其他金属氧化物与载体的总重量。
通过本发明方法制得的催化剂的比表面积可以为50-600m 2/g,优选为250-450m 2/g,进一步优选为280-360m 2/g。所述催化剂的孔容可以为0.1-2.0cm 3/g,优选为0.3-1.0cm 3/g,进一步优选为0.5-0.9cm 3/g。
在本发明的一个优选实施方案中,本发明制备铜基催化剂的方法可以包括如下步骤:
(a1)在常温(约25℃)和搅拌下将硅源加入去离子水中以形成凝胶状物质,用氨水调节pH值至6.5-12,然后以50-600rpm的搅拌速率继续搅拌5-120分钟,得到溶胶混合物;
(a2)在常温(约25℃)和搅拌下将步骤(1)得到的溶胶混合物与铜盐溶液混合,之后在50-600rpm的搅拌速度下继续搅拌15-240分钟,得到混合溶液;
(a3)将步骤(2)得到的混合溶液在不超过5分钟的时间内加入到95-100℃的去离子水中,然后自然冷却到常温(约25℃);
(a4)将步骤(3)得到的物料加入到氨水中,将所得混合液在温度50-130℃和搅拌速度300-600rpm下进行蒸氨2-48小时,形成粘稠物料;
(a5)将步骤(4)得到的粘稠物料在温度为50-160℃下第一干燥3-24小时,得到干燥物料;
(a6)将步骤(5)得到的干燥物料依次用去离子水洗涤,在温度为60-150℃下第二干燥2-24小时,在250-1000℃下焙烧1-12小时;
(a7)将步骤(6)得到的焙烧物料与锂盐水溶液进行混合;
(a8)将步骤(7)得到的混合物料在温度为50-160℃下干燥2-24小时,得到干燥物料,然后在250-1000℃下焙烧1-12小时;以及
(a9)将步骤(8)焙烧后的粉末压片成型,经过压片,破碎和筛分,得到粒径为20-40目的颗粒催化剂。
根据本发明的另一个方面,提供了一种通过本发明制备铜基催化剂的方法得到的铜基催化剂,该催化剂包含二氧化硅载体和负载在二氧化硅载体上的氧化铜和氧化锂。在本发明催化剂一个实施方案中,基于催化剂的总重量,以氧化铜计的铜活性组分的含量为5.9-68重量%,以氧化锂计的锂含量为0.1-2重量%,和载体的含量为30-94重量%。更优选的是,基于催化剂的总重量,以氧化铜计的铜活性组分的含量为21.8-49重量%,以氧化锂计的锂含量为0.2-1.0重量%,和载体的含量为50-78重量%。本发明中,催化剂总重量是指活性组分氧化物、其他金属氧化物与载体的总重量。
在本发明催化剂的另一个实施方案中,该催化剂的比表面积为50-600m 2/g,优选为250-450m 2/g,进一步优选为280-360m 2/g;所述催化剂的孔容为0.1-2.0cm 3/g,优选为0.3-1.0cm 3/g,进一步优选为0.5-0.9cm 3/g。
本发明催化剂当用于催化草酸酯氢化制备乙二醇时,可以获得高的草酸酯转化率和乙二醇选择性,而且所得乙二醇产物的杂质含量低,乙醇酸酯低于0.2重量%,1,2-丁二醇低于0.3重量%,其他杂质副产物低于0.5重量%。
根据本发明的最后一个方面,提供明提供了一种醚化级乙二醇的制备方法,该方法包括在铜基催化剂存在下,在加氢反应条件下,将草酸酯与氢气接触进行氢化反应,其中所述铜基催化剂为通过本发明制备铜基催化剂的方法得到的铜基催化剂或本发明铜基催化剂。
根据本发明的制备方法,所述加氢反应条件可以包括:草酸酯的液时空速为0.01-10g/g催化剂.h、氢化反应的温度为100-300℃、氢化反应的压力为0.1-15MPa、氢气与草酸酯的摩尔比为10:1-250:1;优选的是,所述加氢反应条件包括:草酸酯的液时空速为0.5-8g/g催化剂.h、氢化反应 的温度为160-240℃、氢化反应的压力为1.5-8MPa,氢气与草酸酯的摩尔比为60:1-200:1。
根据本发明,本发明使用的草酸酯优选为具有如下结构的草酸二酯,
Figure PCTCN2018090436-appb-000001
其中,R 1和R 2相同或不同,且各自独立地为C 1-C 10烷基,优选为C 1-C 6烷基,尤其优选为C 1-C 4烷基。草酸二酯例如可以为草酸甲乙酯、草酸二甲酯、草酸二乙酯、草酸二丙酯、草酸二丁酯、草酸二戊酯、草酸二己酯、草酸乙丙酯、草酸乙丁酯、草酸丙丁酯、草酸戊己酯和草酸甲丙酯中的一种或多种。优选情况下,本发明的草酸酯为草酸二甲酯和/或草酸二乙酯。
本发明的草酸酯加氢合成乙二醇可以在任何能够实现上述反应条件的反应器中进行,例如可以在固定床反应器、流化床反应器或浆态床反应器中进行,优选在固定床反应器中进行。
实施例
下面用实施例对本发明作更为详细的描述。这些实施例均是仅仅对本发明最优实施方案的描述,并不构成对本发明范围的任何限制。
元素分析(X射线荧光分析)在荷兰PANalytical B V公司的Axios-Advanced荧光分析仪上进行。
紫外透光率和醛含量测量在北京普析通用仪器公司的TU-1900双光束紫外可见分光亮度计上进行。醛含量的测定方法参照国标GB/T 14571.3-2008工业用乙二醇中醛含量的测定_分光亮度法。
采用美国麦克公司的ASAP2020M+C物理化学吸附仪测定催化剂的比表面积和孔容。
制备实施例1
(1)常温(25℃)和搅拌速度为350rpm下,将50g正硅酸乙酯加入到400mL去离子水中进行水解,然后加入氨水(浓度为25重量%)调节pH 值到9.0,之后再搅拌30分钟,得到溶胶混合物;
(2)常温(25℃)下将硝酸铜44g(Cu(NO 3) 2·3H 2O,下文同)溶解到去离子水中配制铜盐水溶液150mL;
(3)常温(25℃)和搅拌(350rpm)下将步骤(1)得到的溶胶混合物和步骤(2)得到的铜盐水溶液混合,之后再搅拌120分钟。
(4)将步骤(3)得到的混合物料在1分钟内全部加入100mL的100℃沸腾去离子水中,然后将物料自然冷却至常温(25℃);
(5)将步骤(4)得到的混合物料全部加入到165mL氨水(浓度为25重量%)中,然后在温度95℃、搅拌速度350rpm下搅拌6小时进行蒸氨,形成粘稠物料;
(6)将步骤(5)得到的粘稠物料在温度120℃下进行第一干燥12小时,得到干燥物料;
(7)将步骤(6)得到的干燥物料经过去离子水洗涤至洗液呈中性,在120℃下进行第二干燥12小时,在500℃下焙烧6小时,得到粉体;
(8)将步骤(7)得到的粉体31g与1.5g硝酸锂所配制的水溶液(浓度为1.5重量%)混合;
(9)将步骤(8)得到的混合物料在温度120℃下进行干燥12小时,得到干燥物料,然后在500℃下焙烧6小时;以及
(10)将步骤(9)焙烧后的粉末压片成型,经过压片,破碎和筛分,得到粒径为20-40目的颗粒催化剂,即得到催化剂Li/Cu/SiO 2(A)。
经测定,所得催化剂的比表面积为304m 2/g,孔容为0.53cm 3/g,以氧化铜计的铜含量占催化剂总量的46.7重量%,以氧化锂计的锂含量占催化剂总量的1.0重量%。所得催化剂具体性质见表1。
制备对比例1
与制备实施例1的方法基本相同,不同的是将步骤(1)中用氨水(氨水的浓度为25重量%)调节pH值到9.0的步骤省略,得到催化剂。所得催化剂具体性质见表1。
制备对比例2
与制备实施例1的方法基本相同,不同的是省略步骤(6)的第一干燥,直接用去离子水洗涤至洗液呈中性,得到催化剂。所得催化剂具体性质见表1。
制备对比例3
与制备实施例1的方法基本相同,不同的是省略步骤(1)中用氨水(氨水的浓度为25重量%)调节pH值到9.0的步骤以及省略步骤(6)的第一干燥,直接用去离子水洗涤至洗液呈中性,得到催化剂。所得催化剂具体性质见表1。
制备对比例4
与制备实施例1的方法基本相同,不同的是省略步骤(8)和(9),得到不含Li 2O的催化剂。所得催化剂具体性质见表1。
制备对比例5
与制备实施例1的方法基本相同,不同的是在(4)中,将步骤(3)得到的混合物料在60分钟内全部加入到100℃去离子水中。所得催化剂具体性质见表1。
制备实施例2
与制备实施例1的方法基本相同,不同的是在步骤(8)中用3g硝酸锂所配制的水溶液(浓度为3重量%)替代1.5g硝酸锂所配制的水溶液(浓度为1.5重量%),得到催化剂Li/Cu/SiO 2(B)。所得催化剂具体性质见表1。
经测定,所得催化剂的比表面积为302m 2/g,孔容为0.51cm 3/g,以氧化铜计的铜含量占催化剂总量的23重量%,以氧化锂计的锂含量占催化剂总量的2.0重量%。所得催化剂具体性质见表1。
制备实施例3
(1)常温(25℃)和搅拌速度为50rpm下,将50g白炭黑(卡博特R972)加入到600mL去离子水中,用氨水(氨水的浓度为25重量%)调节pH值到7.0,之后再搅拌120分钟,得到溶胶混合物;
(2)常温(25℃)下将硝酸铜254g(Cu(NO 3) 2·3H 2O,下文同)溶解到去离子水中配制铜盐水溶液300mL;
(3)常温(25℃)和搅拌速度为50rpm下将步骤(1)得到的溶胶混合物和步骤(2)得到的铜盐水溶液混合,之后再搅拌120分钟;
(4)将步骤(3)得到的混合物料在1分钟内全部加入100mL的90℃去离子水中,然后将物料自然冷却至常温(25℃);
(5)将步骤(4)得到的混合物料全部加入到430mL氨水(浓度为25重量%)中,溶液中氨与铜元素的摩尔比为4,然后在温度120℃、搅拌速度350rpm下搅拌12小时进行蒸氨,形成粘稠物料;
(6)将步骤(5)得到的粘稠物料在温度150℃下进行第一干燥3小时,得到干燥物料;
(7)将步骤(6)得到的干燥物料经过去离子水洗涤至洗液呈中性,在90℃下进行第二干燥4小时,在400℃下焙烧4小时,得到粉体;
(8)将步骤(7)得到的粉体124g与3g硝酸锂所配制的水溶液(浓度为3重量%)混合;
(9)将步骤(8)得到的混合物料在温度120℃下进行干燥12小时,得到干燥物料,然后在400℃下焙烧6小时;以及
(10)将步骤(9)焙烧后的粉末压片成型,经过压片,破碎和筛分,得到粒径为20-40目的颗粒催化剂,即得到催化剂Li/Cu/SiO 2(C)。
经测定,所得催化剂的比表面积为410m 2/g,孔容为0.71cm 3/g,以氧化铜计的铜含量占催化剂总量的62重量%,以氧化锂计的锂含量占催化剂总量的0.5重量%。所得催化剂具体性质见表1。
制备实施例4
(1)常温(25℃)和搅拌速度为350rpm下,将50g气相法制白炭黑(购自德国EVONIK-degussa,型号为A380)加入到200mL去离子水中进行水解, 用氨水(氨水的浓度为18重量%)调节pH值到10.0,之后再搅拌60分钟,得到溶胶混合物;
(2)常温(25℃)下将醋酸铜16.3g溶解到去离子水中配制铜盐水溶液150mL;
(3)常温(25℃)和搅拌速度为150rpm下将步骤(1)得到的溶胶混合物和步骤(2)得到的铜盐水溶液混合,之后再搅拌30分钟;
(4)将步骤(3)得到的混合物料在1分钟内全部加入50mL的105℃去离子水中,然后将物料自然冷却至常温(25℃);
(5)将步骤(4)得到的混合物料全部加入到110mL氨水(浓度为25重量%)中,溶液中氨与铜元素的摩尔比为12,然后在温度120℃、搅拌速度500rpm下搅拌1小时进行蒸氨,形成粘稠物料;
(6)将步骤(5)得到的粘稠物料在温度120℃下进行第一干燥6小时,得到干燥物料;
(7)将步骤(6)得到的干燥物料经过去离子水洗涤至洗液呈中性,在90℃下进行第二干燥6小时,在700℃下焙烧4小时,得到粉体;
(8)将步骤(7)得到的粉体62g与0.3g硝酸锂所配制的水溶液(浓度为0.3重量%)混合;
(9)将步骤(8)得到的混合物料在温度120℃下进行干燥6小时,得到干燥物料,然后在700℃下焙烧6小时;以及
(10)将步骤(9)焙烧后的粉末压片成型,经过压片,破碎和筛分,得到粒径为20-40目的颗粒催化剂,即得到催化剂Li/Cu/SiO 2(D)。
经测定,所得催化剂的比表面积为360m 2/g,孔容为0.82cm 3/g,以氧化铜计的铜含量占催化剂总量的11重量%,以氧化锂计的锂含量占催化剂总量的0.1重量%。所得催化剂具体性质见表1。
制备实施例5
(1)常温(25℃)和搅拌速度为350rpm下,将50g气相法制白炭黑(购自德国EVONIK-degussa;型号为A200)加入到400mL去离子水中进行水解,用氨水(氨水的浓度为25重量%)调节pH值到10.0,之后再搅拌5分 钟,得到溶胶混合物;
(2)常温(25℃)下将硝酸铜44g(Cu(NO 3) 2·3H 2O,下文同)溶解到去离子水中配制铜盐水溶液100mL;
(3)常温(25℃)和搅拌(300rpm)下将步骤(1)得到的溶胶混合物和步骤(2)得到的铜盐水溶液混合,之后再搅拌5分钟;
(4)将步骤(3)得到的混合物料在1分钟内全部加入到100mL的100℃去离子水中,然后将物料自然冷却至常温(25℃);
(5)将步骤(4)得到的混合物料全部加入到165mL氨水(浓度为25重量%)中,溶液中氨与铜元素的摩尔比为12,然后在温度100℃、搅拌速度300rpm下搅拌2小时进行蒸氨,形成粘稠物料;
(6)将步骤(5)得到的粘稠物料在温度120℃下进行第一干燥10小时,得到干燥物料;
(7)将步骤(6)得到的干燥物料经过去离子水洗涤至洗液呈中性,在120℃下进行第二干燥10小时,在750℃下焙烧6小时,得到粉体;
(8)将步骤(7)得到的粉体62g与3g硝酸锂所配制的水溶液(浓度为3重量%)混合;
(9)将步骤(8)得到的混合物料在温度120℃下进行干燥10小时,得到干燥物料,然后在750℃下焙烧6小时;以及
(10)将步骤(9)焙烧后的粉末压片成型,经过压片,破碎和筛分,得到粒径为20-40目的颗粒催化剂,即得到催化剂Cu/Li/SiO 2(E)。
经测定,所得催化剂的比表面积为284m 2/g,孔容为0.85cm 3/g,以氧化铜计的铜含量占催化剂总量的23重量%,以氧化锂计的锂含量占催化剂总量的1.0重量%。所得催化剂具体性质见表1。
制备实施例6
与制备实施例4的方法基本相同,不同的是在步骤(8)中用2.1g硝酸锂所配制的水溶液(浓度为2.1重量%)替代0.3g硝酸锂所配制的水溶液(浓度为0.3重量%),得到催化剂Li/Cu/SiO 2。所得催化剂具体性质见表1。
经测定,所得催化剂的比表面积为350m 2/g,孔容为0.76cm 3/g,以氧 化铜计的铜含量占催化剂总量的38重量%,以氧化锂计的锂含量占催化剂总量的0.7重量%。所得催化剂具体性质见表1。
制备实施例7
与制备实施例4的方法基本相同,不同的是在步骤(8)中用0.6g硝酸锂所配制的水溶液(浓度为0.6重量%)替代0.3g硝酸锂所配制的水溶液(浓度为0.3重量%),得到催化剂Li/Cu/SiO 2。所得催化剂具体性质见表1。
经测定,所得催化剂的比表面积为382m 2/g,孔容为0.67cm 3/g,以氧化铜计的铜含量占催化剂总量的37重量%,以氧化锂计的锂含量占催化剂总量的0.2重量%。所得催化剂具体性质见表1。
表1 催化剂表征测试结果
Figure PCTCN2018090436-appb-000002
催化剂性能测试
将制备实施例1-7和制备对比例1-5所得颗粒催化剂各自置于微型固定床连续流动反应器中,反应器内径10mm,反应器内部装热电偶套管, 催化剂装填量为2g,原料气自上而下经过催化剂床层,经220℃纯氢气还原6小时,以活化催化剂。
应用实施例1-7
将经如上活化处理后的制备实施例1-7的催化剂,调整至反应工艺条件进行反应。
草酸二甲酯加氢制乙二醇的反应的操作条件如下:反应温度170℃,反应压力2.8MPa,催化剂负荷(反应原料草酸二甲酯的液时空速)2.1g/g催化剂.h,氢气/草酸二甲酯=60(摩尔比)。反应结果如表2所示。
应用实施例8-14
重复应用实施例1-7,不同的是将草酸二甲酯更换为草酸二乙酯。反应结果如表2所示。
应用实施例15-21
将经如上活化处理后的制备实施例1-7的催化剂,调整至如下反应条件进行反应。
草酸二甲酯加氢制乙二醇的反应条件如下:反应温度160℃,反应压力8.0MPa,催化剂负荷(反应原料草酸二甲酯的液时空速)0.5g/g催化剂.h,氢气/草酸二甲酯=200(摩尔比)。反应结果如表2所示。
应用实施例22-28
将经如上活化处理后的制备实施例1-7的催化剂,调整至反应条件进行反应。
草酸二甲酯加氢制乙二醇的反应的操作条件如下:反应温度240℃,反应压力1.5MPa,催化剂负荷(反应原料草酸二甲酯的液时空速)8g/g催化剂.h,氢气/草酸二甲酯=150(摩尔比)。反应结果如表2所示。
应用实施例29-35
将经如上活化处理后的制备实施例1-7的催化剂,调整至反应条件进行反应。
草酸二甲酯加氢制乙二醇的反应的操作条件如下:反应温度200℃,反应压力2.8MPa,催化剂负荷(反应原料草酸二甲酯的液时空速)2.1g/g催化剂.h,氢气/草酸二甲酯=100(摩尔比)。反应结果如表2所示。
应用对比例1-5
重复应用实施例29-35,但是将催化剂分别替换为制备对比例1-5各自得到的催化剂。反应结果如表2所示。
应用对比例6-10
重复应用实施例15-21,但是将催化剂分别替换为制备对比例1-5各自得到的催化剂。反应结果如表2所示。
应用对比例11-15
重复应用实施例22-28,但是将催化剂分别替换为制备对比例1-5各自得到的催化剂。反应结果如表2所示。
表2 不同催化剂制备乙二醇的反应结果
Figure PCTCN2018090436-appb-000003
Figure PCTCN2018090436-appb-000004
Figure PCTCN2018090436-appb-000005
由表2可看出,本发明的由草酸酯制备乙二醇的反应中,制备实施例1-7制得的各催化剂上草酸酯转化率高于99%,产物中乙二醇选择性高于99%,乙醇酸酯的选择性低于0.2%,1,2-丁二醇的选择性低于0.3%,其他杂质副产物不超过0.5重量%,该产物无需精制即可以直接用于乙二醇的醚化反应。

Claims (12)

  1. 一种制备铜基催化剂的方法,所述催化剂含有二氧化硅载体和负载在二氧化硅载体上的氧化铜和氧化锂,该方法包括如下步骤:
    (1)将硅源加入到去离子水中,然后用氨水调节pH值至6.5-12,得到溶胶混合物;
    (2)将步骤(1)得到的溶胶混合物与铜盐溶液混合;
    (3)将步骤(2)得到的物料快速加入到95-105℃的去离子水中,自然冷却;
    (4)将步骤(3)得到的物料加入到氨水中,搅拌后蒸去氨,得到粘稠物料;
    (5)将步骤(4)得到的粘稠物料依次进行第一干燥、洗涤、第二干燥、焙烧;
    (6)将步骤(5)得到的物料与锂盐水溶液进行接触以负载上锂;以及
    (7)将步骤(6)得到的物料再依次进行干燥、焙烧。
  2. 根据权利要求1的方法,其中硅源为硅酸酯、白炭黑和硅溶胶中的一种或多种,优选为白炭黑;和/或,所述铜盐为水溶性铜盐,优选为硝酸铜、硫酸铜、醋酸铜、草酸铜和/或卤化铜,更优选为硝酸铜和/或醋酸铜;和/或,所述锂盐为水溶性锂盐,优选为硝酸锂、硫酸锂、醋酸锂、草酸锂和卤化锂中的一种或多种,更优选为硝酸锂和/或氯化锂。
  3. 根据权利要求1或2的方法,其中在步骤(1)中用氨水调节pH值至7-12,优选至7-10。
  4. 根据权利要求1-3中任一项的方法,其中在步骤(3)中,将步骤(2)得到的物料快速加入到95-105℃的去离子水中;和/或,步骤(2)得到的物料添加到去离子水中的时间不超过10分钟,优选不超过5分钟,更优选不超过1分钟。
  5. 根据权利要求1-4中任一项的方法,其中在步骤(4)中,蒸氨在50-130℃下进行0.5-50小时,优选在60-120℃下进行2-48小时,更优选在90-120℃下进行2-12小时。
  6. 根据权利要求1-5中任一项的方法,其中在步骤(5)中,第一干燥在50-160℃下进行3-24小时,优选在60-150℃下进行6-20小时,更优选在100-150℃下进行6-12小时;和/或,在步骤(5)中,第二干燥在60-150℃下进行2-24小时,优选在60-120℃下进行6-12小时,更优选在80-120℃下进行6-12小时;在步骤(5)中,焙烧在250-1000℃下进行1-12小时,优选在300-800℃下进行2-10小时,更优选在400-700℃下进行4-6小时。
  7. 根据权利要求1-6中任一项的方法,包括如下步骤:
    (a1)在常温(约25℃)和搅拌下将硅源加入去离子水中以形成凝胶状物质,用氨水调节pH值至6.5-12,然后以50-600rpm的搅拌速率继续搅拌5-120分钟,得到溶胶混合物;
    (a2)在常温(约25℃)和搅拌下将步骤(1)得到的溶胶混合物与铜盐溶液混合,之后在50-600rpm的搅拌速度下继续搅拌15-240分钟,得到混合溶液;
    (a3)将步骤(2)得到的混合溶液在不超过5分钟的时间内加入到95-100℃的去离子水中,然后自然冷却到常温(约25℃);
    (a4)将步骤(3)得到的物料加入到氨水中,将所得混合液在温度50-130℃和搅拌速度300-600rpm下进行蒸氨2-48小时,形成粘稠物料;
    (a5)将步骤(4)得到的粘稠物料在温度为50-160℃下第一干燥3-24小时,得到干燥物料;
    (a6)将步骤(5)得到的干燥物料依次用去离子水洗涤,在温度为60-150℃下第二干燥2-24小时,在250-1000℃下焙烧1-12小时;
    (a7)将步骤(6)得到的焙烧物料与锂盐水溶液进行混合;
    (a8)将步骤(7)得到的混合物料在温度为50-160℃下干燥2-24小时,得到干燥物料,然后在250-1000℃下焙烧1-12小时;以及
    (a9)将步骤(8)焙烧后的粉末压片成型,经过压片,破碎和筛分,得到粒径为20-40目的颗粒催化剂。
  8. 根据权利要求1-7中任一项的方法,其中基于催化剂的总重量,以氧化铜计的铜活性组分的含量为5.9-68重量%,以氧化锂计的锂含量为
    0.1-2重量%,和载体的含量为30-94重量%;更优选的是,以氧化铜计的 铜活性组分的含量为21.8-49重量%,以氧化锂计的锂含量为0.2-1.0重量%,和载体的含量为50-78重量%。
  9. 根据权利要求1-8中任一项的方法,其中所述催化剂的比表面积为50-600m 2/g,优选为250-450m 2/g,更优选为280-360m 2/g;和/或,所述催化剂的孔容为0.1-2.0cm 3/g,优选为0.3-1.0cm 3/g,更优选为0.5-0.9cm 3/g。
  10. 通过根据权利要求1-9中任一项的方法获得的催化剂。
  11. 一种醚化级乙二醇的制备方法,该方法包括在根据权利要求10的铜基催化剂存在下,在加氢反应条件下,将草酸酯与氢气接触进行氢化反应以得到乙二醇。
  12. 根据权利要求11的方法,其中所述加氢反应条件如下:草酸酯的液时空速为0.01-10g/g催化剂.h、氢化反应的温度为100-300℃、氢化反应的压力为0.1-15MPa、氢气与草酸酯的摩尔比为10:1-250:1;优选的是,所述加氢反应条件如下:草酸酯的液时空速为0.5-8g/g催化剂.h、氢化反应的温度为160-240℃、氢化反应的压力为1.5-8MPa,氢气与草酸酯的摩尔比为60:1-200:1。
PCT/CN2018/090436 2017-06-20 2018-06-08 铜基催化剂及其制备方法和使用该催化剂制备醚化级乙二醇的方法 WO2018233497A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710468624.X 2017-06-20
CN201710468624.XA CN109092310B (zh) 2017-06-20 2017-06-20 铜基催化剂及其制备方法和使用该催化剂制备醚化级乙二醇的方法

Publications (1)

Publication Number Publication Date
WO2018233497A1 true WO2018233497A1 (zh) 2018-12-27

Family

ID=64736845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090436 WO2018233497A1 (zh) 2017-06-20 2018-06-08 铜基催化剂及其制备方法和使用该催化剂制备醚化级乙二醇的方法

Country Status (2)

Country Link
CN (1) CN109092310B (zh)
WO (1) WO2018233497A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115814823A (zh) * 2022-11-18 2023-03-21 中国科学院长春应用化学研究所 一种铜基多功能纳米催化剂及其应用、一种基于烯醛液相法连续化合成异戊二烯的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113926458B (zh) * 2020-07-13 2023-05-30 万华化学集团股份有限公司 一种铜系加氢催化剂的制备方法、由其制备的催化剂及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972949A (en) * 1974-07-16 1976-08-03 Hoechst Aktiengesellschaft Process for preparing glycol dimethyl ethers
CN101879448A (zh) * 2010-06-24 2010-11-10 天津大学 用于草酸酯加氢制乙二醇的规整结构催化剂及其制备方法
CN101992127A (zh) * 2009-08-31 2011-03-30 中国石油化工股份有限公司 催化剂还原的方法
CN102814184A (zh) * 2012-09-12 2012-12-12 西北化工研究院 一种草酸酯加氢制乙二醇的催化剂及制备方法
CN104043455A (zh) * 2013-03-13 2014-09-17 中国石油化工股份有限公司 草酸酯加氢制乙二醇催化剂的制备方法
CN105126798A (zh) * 2015-07-29 2015-12-09 上海华谊(集团)公司 乙酸仲丁酯加氢联产仲丁醇和乙醇的催化剂及其制备方法和应用
CN105727956A (zh) * 2014-12-09 2016-07-06 上海华谊能源化工有限公司 一种草酸二甲酯气相加氢制取乙二醇催化剂及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4677234A (en) * 1985-02-04 1987-06-30 Union Carbide Corporation Process for the preparation of ethylene glycol
CN102677029B (zh) * 2012-05-23 2013-12-04 北京化工大学 一种铜基三元水滑石薄膜及其制备方法
CN105771989B (zh) * 2014-12-24 2018-07-20 高化学技术株式会社 铜基催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972949A (en) * 1974-07-16 1976-08-03 Hoechst Aktiengesellschaft Process for preparing glycol dimethyl ethers
CN101992127A (zh) * 2009-08-31 2011-03-30 中国石油化工股份有限公司 催化剂还原的方法
CN101879448A (zh) * 2010-06-24 2010-11-10 天津大学 用于草酸酯加氢制乙二醇的规整结构催化剂及其制备方法
CN102814184A (zh) * 2012-09-12 2012-12-12 西北化工研究院 一种草酸酯加氢制乙二醇的催化剂及制备方法
CN104043455A (zh) * 2013-03-13 2014-09-17 中国石油化工股份有限公司 草酸酯加氢制乙二醇催化剂的制备方法
CN105727956A (zh) * 2014-12-09 2016-07-06 上海华谊能源化工有限公司 一种草酸二甲酯气相加氢制取乙二醇催化剂及其制备方法与应用
CN105126798A (zh) * 2015-07-29 2015-12-09 上海华谊(集团)公司 乙酸仲丁酯加氢联产仲丁醇和乙醇的催化剂及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115814823A (zh) * 2022-11-18 2023-03-21 中国科学院长春应用化学研究所 一种铜基多功能纳米催化剂及其应用、一种基于烯醛液相法连续化合成异戊二烯的方法

Also Published As

Publication number Publication date
CN109092310A (zh) 2018-12-28
CN109092310B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2016101822A1 (zh) 铜基催化剂及其制备方法
CN108236955B (zh) 一种草酸二甲酯加氢合成乙醇用催化剂的制备方法以及由此得到的催化剂和其应用
WO2020107539A1 (zh) 一种生产甲基丙烯酸甲酯的催化剂的制备方法及其应用
WO2021115244A1 (zh) 一种锆或铝修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法
CN110368933B (zh) 一种以Ce-Ti复合氧化物为载体的钌基氨合成催化剂及其制备方法
CN109420498B (zh) 草酸烷基酯加氢合成乙二醇用高导热性催化剂及其制备方法
CN113101964B (zh) 一种介孔氧化铈光催化剂及其制备方法和应用
CN103420424A (zh) 棒状纳米三氧化钨的制备及其催化合成己二酸的技术
WO2018233497A1 (zh) 铜基催化剂及其制备方法和使用该催化剂制备醚化级乙二醇的方法
CN101439882B (zh) 一种用尿素作为沉淀剂合成介孔钼酸镍铵的方法
CN105776134B (zh) 甲醇水蒸气重整制氢的方法
CN102614935B (zh) 氧化铝载体的表面改性方法
CN107497461B (zh) 一种介孔铬基氟化催化剂及其制备方法
CN105688877B (zh) 一种费托合成铁基催化剂及其制备方法
CN110422871A (zh) 氧化铈纳米管的制备方法
CN107915710B (zh) 用于生产碳酸乙烯酯的方法
CN107321357B (zh) 一种醋酸加氢催化剂的制备方法及其应用
CN111375417B (zh) 一种co加氢制高碳醇催化剂及其制备方法
CN107349947B (zh) 一种醋酸加氢催化剂及其应用
CN103120961A (zh) 醋酸烯丙酯催化剂及其制备方法
CN107185566B (zh) 一种丙酮加氢液相法合成甲基异丁基酮的催化剂及应用
WO2020098162A1 (zh) 催化氧化糠醛制备马来酸的催化剂及其制备方法和应用
CN110981688B (zh) 一种气相催化合成3,4,4-三氟环丁烯的方法
JPS62258335A (ja) メチルイソブチルケトンの製造法
CN111039746B (zh) 一种气相催化合成4,4-二氟环丁烯的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820504

Country of ref document: EP

Kind code of ref document: A1