WO2021115244A1 - 一种锆或铝修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法 - Google Patents

一种锆或铝修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法 Download PDF

Info

Publication number
WO2021115244A1
WO2021115244A1 PCT/CN2020/134446 CN2020134446W WO2021115244A1 WO 2021115244 A1 WO2021115244 A1 WO 2021115244A1 CN 2020134446 W CN2020134446 W CN 2020134446W WO 2021115244 A1 WO2021115244 A1 WO 2021115244A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
aluminum
zirconium
cobalt
sio
Prior art date
Application number
PCT/CN2020/134446
Other languages
English (en)
French (fr)
Inventor
刘岳峰
蒋倩
朴宇昂
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911276617.5A external-priority patent/CN112973694A/zh
Priority claimed from CN202011391861.9A external-priority patent/CN112371128B/zh
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Publication of WO2021115244A1 publication Critical patent/WO2021115244A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • B01J35/60
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon

Definitions

  • the invention belongs to the field of catalysis, and specifically relates to a zirconium or aluminum modified amorphous mesoporous SiO 2 supported cobalt-based Fischer-Tropsch catalyst, its preparation and application in Fischer-Tropsch synthesis.
  • the Fischer-Tropsch synthesis reaction consists of carbon monoxide and hydrogen, the main components of synthesis gas, which are converted into long-chain hydrocarbons through a catalyst.
  • the reaction equation is: CO+H 2 ⁇ C n H 2n+2 +nH 2 O.
  • ASF Anderson-Schulz-Flory
  • the cobalt-based catalyst is a size-sensitive catalyst, and its product selectivity is affected by the particle size distribution. When the particle size is small, the product is mainly methane, and the larger particles are mainly C5+ products.
  • the dissociation of carbon monoxide is one of the important rate-determining steps in the reaction, and acidic sites can promote the dissociation process of CO. Therefore, introducing acidic sites into the carrier is also an important method to improve the reactivity.
  • obtaining a catalyst with high dispersion, high stability, certain particle size and acidity is the key to obtaining a stable, high activity, high C5+ selectivity cobalt-based Fischer-Tropsch synthesis catalyst.
  • CN102861583B reports a method for preparing a catalyst in which carbon nanofibers are loaded in situ on a silica gel carrier, and then metal additives and active components are loaded by an impregnation method.
  • the purpose of the present invention is to overcome the current low CO conversion rate of cobalt-based Fischer-Tropsch synthesis and low selectivity for long carbon chain alkanes by increasing the specific surface area of the carrier and introducing acidic sites, and to provide a cobalt-based Fischer-Tropsch synthesis Catalyst and its preparation method.
  • the cobalt-based Fischer-Tropsch catalyst of the present invention has higher C 5+ selectivity and yield, better hydrothermal stability and lower methane selectivity.
  • the present invention provides a method for synthesizing a cobalt-based Fischer-Tropsch catalyst.
  • the method includes: preparing a zirconium-doped amorphous mesoporous silica support by a one-pot method, followed by an equal volume impregnation and then reducing the preparation by a reducing atmosphere A Fischer-Tropsch synthesis catalyst loaded with metallic cobalt; or firstly prepare aluminum-modified amorphous mesoporous silica in situ, the aluminum element enters the framework structure of the silica, and then the active component Co is loaded by the impregnation method.
  • the method includes the following steps:
  • Step 1 In-situ synthesis of zirconium and/or aluminum modified amorphous mesoporous silica by a one-pot method
  • Step two loading metallic cobalt on the zirconium/or aluminum modified disordered mesoporous silica by an impregnation method, drying, calcining, and reducing to obtain the cobalt-based Fischer-Tropsch synthesis catalyst.
  • the step one includes the following steps:
  • the second step includes the following steps:
  • Co precursor solution After thoroughly mixing H 2 O and ethanol, dissolve 0.5-5 g of Co(NO 3 ) 2 ⁇ 6H 2 O to obtain a Co precursor solution.
  • the Co precursor solution is added dropwise to the Zr-SiO 2 to make The surface is fully wetted, then aged in an oven at 40°C for 4h, then the oven is heated to 80-120°C, dried for 8-15h, then transferred to a muffle furnace, baked at 300-400°C for 3h, heating rate 2°C/min , Get Co 3 O 4 /Zr-SiO 2 finished product;
  • the Co 3 O 4 /SiO 2 is placed in a tube furnace and reduced at 200-400° C. for 4-10 h in a reducing atmosphere, and the heating rate is 2-6° C./min to obtain the Co/Zr-SiO 2 .
  • the molar ratio of Si to Zr in the catalyst is 10-300.
  • the weight percentage of Zr is 0.5%-30%, and the weight percentage of Co is 5%-30%.
  • the content ratio of the carrier and the active component can be set in a conventional manner in the art.
  • the ratio of silicon to zirconium is 25 and the content of cobalt as the active component is 10wt%.
  • the zirconium source is zirconyl nitrate, zirconium isopropoxide or other common zirconium sources.
  • the silicon source is silica gel, water glass, sodium silicate, ethyl orthosilicate or other common silicon sources.
  • the template A is triethanolamine, tetramethylammonium hydroxide, tetrapropylamine, trimethylamine or other common templates, among which triethanolamine (TEA) is preferred.
  • TAA triethanolamine
  • the template B is tetrapropylamine, triethanolamine, tetramethylammonium hydroxide, trimethylamine or other common template agents, among which tetramethylammonium hydroxide (TEAOH) is preferred.
  • TEAOH tetramethylammonium hydroxide
  • the pore volume should be tested in advance to determine the amount of the precursor solvent.
  • the carrier is 1.5 g
  • the required mixed solvent volume is 2-10 ml.
  • the reducing atmosphere is 5-20% H 2
  • the carrier gas is He, Ar or other inert gas, among which 5% H 2 /He is preferred.
  • the aluminum-modified amorphous mesoporous silica is prepared in situ, and the aluminum element enters the framework structure of the silica, and then the active component Co is loaded by the impregnation method.
  • the aluminum-modified amorphous mesoporous silica is prepared by a one-pot method, and the preparation process is as follows.
  • the one-pot method for in-situ synthesis of aluminum-modified disordered mesoporous The specific steps of silica are as follows: first dissolve the Al precursor, then add the Si precursor, stir at 20-40°C for 20-40 minutes, then add the template, continue stirring for 20-40 minutes, then add the pore former, at 20-40 After stirring at -40°C for 48 hours, drying, hydrothermal treatment, and calcination, the aluminum-modified disordered mesoporous silica is obtained; the molar ratio of aluminum source: silicon source: template agent: pore former is 0.3% -4%:1:1:0.3.
  • the precursor of the Al salt includes aluminum sulfate, aluminum isopropoxide, aluminum nitrate, aluminum chlorate, and the like.
  • the Al precursor solution includes water, methanol, ethanol, propanol, and isopropanol, among which ethanol is preferred.
  • the Si precursor includes one of ethyl orthosilicate, sodium metasilicate, and silica sol.
  • the selection of the template agent includes one of triethanolamine (TEA), tetraethylene glycol (TEG), and diethanolamine.
  • the selection of the pore former includes one of tetraethylammonium hydroxide (TEAOH) and tetrapropylammonium hydroxide (TPAOH).
  • TEAOH tetraethylammonium hydroxide
  • TPAOH tetrapropylammonium hydroxide
  • the drying temperature of the carrier is 70-120°C, and the time is 2-24h; the hydrothermal treatment temperature is 120-180°C, and the time is 2-15h; the roasting temperature is 600-800°C, and the time is 4 -12h.
  • the drying temperature of the supported cobalt-based catalyst is 70-120°C, and the time is 4-48h; the calcination temperature is 300-450°C, and the time is 2-24h.
  • the cobalt-based Fischer-Tropsch catalyst has a specific surface area of 300-800 m 2 /g, a pore diameter of 3-10 nm, and a pore volume of 0.5-1.5 cm 3 /g.
  • the cobalt-based Fischer-Tropsch catalyst contains 0.01% to 5% of Al, 10% to 30% of active component Co, and the remainder is SiO 2 .
  • the present invention also provides a cobalt-based Fischer-Tropsch synthesis catalyst prepared by the above method.
  • the catalyst uses Co as an active component, Zr and/or Al as an auxiliary agent, and amorphous mesoporous silica as a carrier.
  • the specific surface area of the catalyst is 600-800 m 2 /g, the pore volume of the catalyst is 0.5-1.5 cm 3 /g; the pore diameter is 2-10 nm; the catalyst When Al is used as the auxiliary agent, the specific surface area of the cobalt-based Fischer-Tropsch catalyst is 300-800m 2 /g, the pore diameter is 3-10nm, and the pore volume is 0.5-1.5cm 3 /g; the particle size of the cobalt particles is 3-15nm .
  • the present invention also provides an application of the above cobalt-based Fischer-Tropsch synthesis catalyst.
  • H 2 /CO 2 (molar ratio)
  • the conversion rate of CO can reach 67.8% after 100 hours of reaction.
  • zirconium can improve the activity of the reaction and the selectivity to heavy alkanes by changing the degree of dispersion of the metal cobalt or changing the electronic distribution of the active metal in the Fischer-Tropsch synthesis, and it is also beneficial to enhance the stability of the catalytic reaction.
  • the present invention can make the promoter exist in the framework in a highly dispersed form by introducing the zirconium promoter into the framework, which can change the acidity and alkalinity of the carrier, thereby affecting The nature of the supported active metal makes the catalytic activity significantly improved.
  • the specific surface area of the carrier has a certain influence on the selectivity and activity of the catalyst. Increasing the specific surface area of the carrier will increase the activity of the catalyst.
  • the template is used to form the pores of the carrier during the preparation process of the carrier. Compared with the conventional SiO 2 catalyst, the specific surface area increased from 490m 2 /g to 708m 2 /g, the pore volume was 0.79cm 3 /g, and the pore size was 3.8nm, the reaction activity increased from about 23% to 53%. % Or so, and the output of C5+ product is as high as 1069g/kg cat ⁇ h, and the activity of the catalyst is not significantly reduced when the catalyst is reacted for 100h.
  • the modified amorphous mesoporous silica carrier prepared by the one-pot method has strong controllability.
  • the acidity of the carrier can be adjusted by changing the content of aluminum, and the specific surface area and pore diameter can be adjusted by the time and temperature of the hydrothermal treatment. .
  • the aluminum-modified amorphous mesoporous silica carrier prepared by the one-pot method has a simple preparation process and low cost.
  • the catalyst preparation is simple and the process is mature, which is beneficial to the industrial production of the catalyst.
  • the present invention prepares a Fischer-Tropsch synthesis catalyst with high activity and high stability without using noble metal promoters, which reduces the cost of the catalyst and facilitates the popularization and use of the catalyst.
  • Figure 1 is an XRD spectrum of the catalyst before reduction in Example 1-2;
  • Figure 2 is the NH 3 -TPD test result of the catalyst of Example 1-2;
  • Figure 3 is a scanning electron microscope test result of the catalyst before reduction in Example 1;
  • Example 4 is a transmission electron microscope test result of the catalyst before reduction in Example 1;
  • Fig. 5 is a statistical result of the particle size of Co 3 O 4 in the catalyst before reduction in Example 1;
  • Figure 6 shows the stability test results of the catalysts of Example 1-2 and Comparative Example 1;
  • Figure 7 is the (a) nitrogen adsorption isotherm and (b) the pore size distribution of the cobalt-based catalyst in Example 6;
  • Figure 8 is an XRD pattern of the catalysts in Examples 3-6 and Comparative Example 2;
  • Figure 9 is a transmission electron microscope and particle size distribution diagram of the catalyst in Example 5.
  • Example 10 is a transmission electron microscope and particle size distribution diagram of the catalyst in Example 6;
  • Example 11 is a transmission electron microscope and particle size distribution diagram of the catalyst in Example 7.
  • the gelled solid was transferred to a watch glass and dried in an oven at 60°C for 12 hours, and then transferred to a vacuum drying oven at 60°C for 12 hours.
  • the obtained solid was transferred to a polytetrafluoroethylene hydrothermal kettle, hydrothermally treated at 180°C for 3h, and then transferred to a quartz boat in an air atmosphere of 600°C, a heating rate of 2°C/min, and a temperature of 8h for roasting to obtain a finished Zr-SiO 2 product.
  • the second step is to prepare Co 3 O 4 /Zr-SiO 2
  • the third step is to prepare a supported metal cobalt catalyst
  • the supported metal Co/Zr-SiO 2 catalyst is denoted as SSL-1.
  • Adopt one-pot method weigh 0.23g of zirconyl nitrate and 21.2g of ethyl orthosilicate and fully dissolve them in a plastic beaker, where the molar ratio of Si to Zr is 100, stir for 20min to fully dissolve and mix uniformly, called mixed liquid A.
  • 21.8 g of tetramethyl ammonium hydroxide was added dropwise to the mixed solution C, and stirred well until the gel formed.
  • the gelled solid was transferred to a watch glass and dried in an oven at 80°C for 12h, and then transferred to a vacuum drying oven at 80°C for 12h.
  • the obtained solid was transferred to a polytetrafluoroethylene hydrothermal kettle, hydrothermally treated at 200°C for 2h, and then transferred to a quartz boat in an air atmosphere of 600°C, a heating rate of 2°C/min, and a temperature of 8h for roasting to obtain a Zr-SiO 2 finished product.
  • the second step is to prepare Co 3 O 4 /Zr-SiO 2
  • the third step is to prepare a supported metal cobalt catalyst
  • a one-pot method is used to prepare ordinary amorphous mesoporous silica gel: Mix 17.2g of trimethylamine and 13.2g of deionized water for 90 minutes to make it fully stirred evenly, which is called mixed liquid A. 21.2 g of ethyl orthosilicate was dropped into the mixed solution A dropwise, and stirred for 20 minutes to make it fully dissolved and mixed uniformly to obtain a mixed solution B. Finally, 21.8 g of tetramethyl ammonium hydroxide was added dropwise to the mixed solution B, and the mixture was stirred well until it became gelatinized. The gelled solid was transferred to a watch glass and dried in an oven at 80°C for 12 hours, and then transferred to a vacuum drying oven at 80°C for 12 hours.
  • the obtained solid was transferred to a polytetrafluoroethylene hydrothermal kettle and subjected to a hydrothermal treatment at 200°C for 2h, and then transferred to a quartz boat in an air atmosphere of 600°C, a heating rate of 2°C/min, heat preservation for 8h and roasting to obtain an amorphous SiO 2 finished product.
  • the second step is to prepare Co 3 O 4 /SiO 2
  • the third step is to prepare a supported metal cobalt catalyst
  • Example 1 and Example 2 The catalysts prepared in Example 1 and Example 2 and the metal cobalt supported ordinary amorphous mesoporous silica prepared by the equal volume impregnation method were respectively tested as follows.
  • the catalyst evaluation was carried out in a fixed bed reactor. Before evaluation, the catalyst needs to be reduced at 350°C for 8 hours in a hydrogen atmosphere, and after the reduction, the temperature is lowered to the condition that the Fischer-Tropsch synthesis reaction is proceeding for evaluation.
  • the calculation method of CO conversion rate is:
  • the calculation method of C5+ product is:
  • the finally obtained aluminum-modified amorphous mesoporous silica is sieved, and 1.5 g of particles of 160-400 ⁇ m are weighed.
  • cobalt content of 10% weigh 0.8235g of cobalt nitrate hexahydrate and dissolve it in a mixed solution of 1.5mL of water and 1.5mL of ethanol, and add the above easily to 1.5g of aluminum-modified amorphous mesoporous silica On top, drying at 110°C for 12 hours, and baking at 350°C for 2 hours in an air atmosphere.
  • the resulting catalyst is labeled CFT-1.
  • the catalyst evaluation experiment was carried out in a high-pressure gas-solid phase fixed bed reactor, and reduction was performed at 350°C for 6 hours in a pure hydrogen atmosphere at normal pressure. After cooling, it is cut into synthesis gas for reaction.
  • the introduction of synthesis gas should be carried out at low temperature (190-210°C), and after the reaction is stable Then slowly increase to the reaction temperature.
  • the reaction effluent is collected by a heat trap and a cold trap respectively.
  • the results of the C-1 catalyst Fischer-Tropsch synthesis reaction (after 100h) are shown in Table 3.
  • the finally obtained aluminum-modified amorphous mesoporous silica is sieved, and 1.5 g of particles of 160-400 ⁇ m are weighed.
  • cobalt content of 10% weigh 0.8235g of cobalt nitrate hexahydrate and dissolve it in a mixed solution of 1.5mL of water and 1.5mL of ethanol, and add the above easily to 1.5g of aluminum-modified amorphous mesoporous silica
  • the resulting catalyst is labeled CFT-2.
  • the catalyst activity evaluation experimental conditions are the same as in Example 3.
  • the results of the Fischer-Tropsch synthesis reaction on CFT-2 catalyst are shown in Table 3.
  • the finally obtained aluminum-modified amorphous mesoporous silica is sieved, and 1.5 g of particles of 160-400 ⁇ m are weighed.
  • cobalt content of 10% weigh 0.8235g of cobalt nitrate hexahydrate and dissolve it in a mixed solution of 1.5mL of water and 1.5mL of ethanol, and add the above easily to 1.5g of aluminum-modified amorphous mesoporous silica
  • the resulting catalyst is labeled CFT-3.
  • the catalyst activity evaluation experimental conditions are the same as in Example 3.
  • the results of the Fischer-Tropsch synthesis reaction with CFT-3 catalyst are shown in Table 3.
  • the finally obtained aluminum-modified amorphous mesoporous silica is sieved, and 1.5 g of particles of 160-400 ⁇ m are weighed.
  • cobalt content of 10% weigh 0.8235g of cobalt nitrate hexahydrate and dissolve it in a mixed solution of 1.5mL of water and 1.5mL of ethanol, and add the above easily to 1.5g of aluminum-modified amorphous mesoporous silica
  • the resulting catalyst is labeled CFT-4.
  • the N 2 adsorption isotherm and pore size distribution of the catalyst are shown in Fig. 7. It can be seen from the figure that the catalyst is mainly a mesoporous structure, and the pore size distribution is relatively narrow, about 4 nm.
  • TEA triethanolamine
  • water 11.5315 g
  • TEOS ethyl orthosilicate
  • TEAOH tetraethylammonium hydroxide
  • the finally obtained amorphous mesoporous silica is sieved, and 1.5 g of particles of 160-400 ⁇ m are weighed. According to the final catalyst cobalt content of 10%, weigh 0.8235g of cobalt nitrate hexahydrate and dissolve it in a mixed solution of 1.5mL of water and 1.5mL of ethanol, and add the above easily to 1.5g of amorphous mesoporous silica at 110°C Drying for 12h, baking at 350°C for 2h in air atmosphere. The resulting catalyst is labeled CFT-5.
  • the catalyst activity evaluation experimental conditions are the same as in Example 3. The results of the Fischer-Tropsch synthesis reaction on CFT-5 catalyst are shown in Table 3.

Abstract

一种负载型钴基费托催化剂及其制备方法,涉及包含钴的催化剂。该方法通过一锅法制备掺杂锆和/或铝的无定形介孔二氧化硅载体,随后将钴前驱体通过浸渍法负载至载体表面,经马弗炉焙烧后,在还原气氛中还原,最后制得锆和/或铝掺杂的负载型钴基费托催化剂,相比于现有的费托催化剂,载体具有较高的比表面积,成品催化剂和现有催化剂比较具有较高的CO转化率和的碳五及以上烃类产物的产率。

Description

一种锆或铝修饰无定型介孔SiO 2负载钴基费托催化剂及其制备方法 技术领域
本发明属于催化领域,具体涉及一种锆或铝修饰无定型介孔SiO 2负载钴基费托催化剂及其制备与在费托合成中的应用。
技术背景
费托合成反应为合成气主要成分一氧化碳和氢气,经过催化剂被转化为长链烃类的过程,其反应方程式为:CO+H 2→C nH 2n+2+nH 2O。普遍认为,费托合成反应的产物受到ASF(Anderson-Schulz-Flory)分布的制约,对于产物的种类,其选择性存在限制,常规催化剂难以打破ASF的分布。降低甲烷选择性,和提高重质烃类的选择性,特别是C5+产物的选择性,是目前费托合成催化剂设计的目标之一。
但是,在费托合成反应中除了烃类同时还有大量的水蒸汽生成,在高水热气氛围中,普通载体水热稳定性不理想。钴作为一种常用的费托合成催化剂的活性金属,在费托合成领域受到广泛的研究和关注。在费托合成反应中,钴基催化剂是尺寸敏感型催化剂,其产物选择性受到粒径分布的影响,在粒径较小时,产物主要是甲烷,在较大的粒子上主要得到C5+的产物。对于费托合成而言,一氧化碳解离是反应重要的决速步骤之一,酸性位点可以促进CO的解离过程。因此,在载体中引入酸性位点,也是一种重要的提高反应活性的方法。总的来说得到高分散、高稳定性、具有一定的粒径尺寸和酸性的催化剂,是得到稳定的、高活性、高C5+选择性的钴基费托合成催化剂的关键。
CN102861583B报道了一种在硅胶载体上通过原位负载纳米碳纤维,然后采用浸渍法负载金属助剂和活性组分的催化剂的制备方式,在高压连续搅拌釜式反应器中温度为180-250℃,2.5Nm 3/h/kg cat,2.0MPa,H 2/CO=2(摩尔比),CH 4选择性7.9%,CO转化率53.9%。由于其缺少过渡金属助剂的加入且载体比表面积较低,并未进一步引入酸性位点,使其CO转化率低于本专利所述催化剂活性。
发明内容
本发明的目的是通过提高载体的比表面积和引入酸性位点,从而克服目前钴基费托合成CO转化率低和对于长碳链烷烃选择性较低的不足,提供一种钴基费托合成催化剂及其制备方法。本发明的钴基费托催化剂具有较高的C 5+选择性与产率以及较好的水热稳定性和较低的甲烷选择性。
本发明技术方案如下:
本发明提供了一种钴基费托催化剂的合成方法,该方法包括:通过一锅法制备锆掺杂的无定形介孔二氧化硅载体,随后通过等体积浸渍后再通过还原性气氛还原制备负载金属钴的 费托合成催化剂;或首先原位制备铝改性的无定型介孔二氧化硅,铝元素进入二氧化硅的骨架结构中,然后采用浸渍法负载活性组分Co。所述方法包括以下步骤:
步骤一、通过一锅法原位合成锆和/或铝改性的无定形介孔二氧化硅;
步骤二、采用浸渍法在所述锆/或铝改性的无序介孔二氧化硅上负载金属钴,干燥、焙烧,还原,得到所述钴基费托合成催化剂。
(1)所述催化剂通过锆改性时,具体制备方法如下:
所述催化剂通过锆改性时,所述步骤一包括以下步骤:
将锆源与硅源加入塑料烧杯中,其中Si与Zr的摩尔比为10-300,搅拌使其充分溶解并混合均匀,得到混合液甲;
将模板剂A与去离子水混合,搅拌20-50min使其混合均匀,得到混合液乙;
将混合液乙逐滴加入混合液甲中,并搅拌20-50min及以上使其充分混合,得到混合液C;
将模板剂B逐滴加入混合液C中,充分搅拌直至成胶,成胶后于100-180℃水热处理2-8h保证其大比表面积,然后转移至蒸发皿中在50-100℃烘箱中干燥6-18h,之后转移到真空干燥箱中50-100℃干燥6-18h,得到前驱体;
将所得前驱体转移至聚四氟乙烯水热釜中,100-180℃水热处理2-8h,之后转移到石英舟中,空气气氛中500-700℃焙烧4-12h,升温速率2-10℃/min,得到所述锆改性的无定形介孔二氧化硅Zr-SiO 2
所述催化剂通过锆改性时,所述步骤二包括以下步骤:
a.等体积浸渍法制备Co 3O 4/Zr-SiO 2
将H 2O与乙醇充分混合后溶解0.5-5g的Co(NO 3) 2·6H 2O,得到Co前驱体溶液,将所述Co前驱体溶液逐滴加入所述Zr-SiO 2中,使其表面充分润湿,随后40℃烘箱中老化4h,之后将烘箱升温至80-120℃,干燥8-15h,然后转移至马弗炉中,300-400℃焙烧3h,升温速率2℃/min,得到Co 3O 4/Zr-SiO 2成品;
b.制备Co/Zr-SiO 2
将所述Co 3O 4/SiO 2置于管式炉中,还原性气氛下200-400℃还原4-10h,升温速率为2-6℃/min,得到所述Co/Zr-SiO 2
优选地,所述催化剂中Si与Zr的摩尔比为10-300。
优选地,所述的Zr质量百分含量为0.5%-30%,所述Co的重量百分含量为5%-30%。
根据本发明的钴基费托合成催化剂,载体和活性组分的含量比可以按照本领域常规的方式设置。为了具有更加优异的催化活性并且有效提高锆掺杂无定形介孔二氧化硅的比表面积、孔容和孔径,在优选的情况下,以硅锆比为25计,活性组分钴的含量为10wt%计。
优选地,所述锆源为硝酸氧锆、异丙醇锆或其他常见的锆源。
优选地,所述硅源为硅胶、水玻璃、硅酸钠、正硅酸乙酯或其它常见硅源。
优选地,所述模板剂A为三乙醇胺、四甲基氢氧化铵、四丙胺、三甲基胺或其它常见模板剂,其中优选三乙醇胺(TEA)。
优选地,所述模板剂B为四丙胺、三乙醇胺、四甲基氢氧化铵、三甲基胺或其它常见模板剂,其中,优选四甲基氢氧化铵(TEAOH)。
优选地,采用等体积浸渍制备Co 3O 4/SiO 2过程中要提前测试孔体积在确定前驱体溶剂的量,本载体在1.5g时所需混合溶剂的体积为2-10ml。
优选地,所述的还原性气氛为5-20%的H 2,载气为He、Ar或其它惰性气体,其中优选5%H 2/He。
(2)所述催化剂通过铝改性时,具体制备方法如下:
首先原位制备铝改性的无定型介孔二氧化硅,铝元素进入二氧化硅的骨架结构中,然后采用浸渍法负载活性组分Co。
基于以上技术方案,优选的,所述的铝改性的无定型介孔二氧化硅的制备采用一锅法,其制备过程如下,所述一锅法原位合成铝改性的无序介孔二氧化硅的具体步骤为:首先溶解Al的前驱体,然后加入Si的前驱体,20-40℃搅拌20-40分钟后加入模板剂,继续搅拌20-40分钟后加入造孔剂,于20-40℃下搅拌48h后,干燥,水热处理,焙烧,得到所述铝改性的无序介孔二氧化硅;所述铝源:硅源:模板剂:造孔剂的摩尔比为0.3%-4%:1:1:0.3。
基于以上技术方案,优选的,所述的Al盐的前驱体,包括硫酸铝,异丙醇铝,硝酸铝,氯酸铝等。
基于以上技术方案,优选的,Al的前驱体的溶液包括水、甲醇、乙醇、丙醇、异丙醇,其中优选乙醇。
基于以上技术方案,优选的,Si的前驱体包括正硅酸乙酯、偏硅酸钠、硅溶胶中的一种。
基于以上技术方案,优选的,模板剂的选择包括三乙醇胺(TEA),四乙二醇(TEG),二乙醇胺中的一种。
基于以上技术方案,优选的,造孔剂的选择包括四乙基氢氧化铵(TEAOH)和四丙基氢氧化铵(TPAOH)中的一种。
基于以上技术方案,优选的,载体的干燥温度为70-120℃,时间为2-24h;水热处理温度为120-180℃,时间为2-15h;焙烧温度为600-800℃,时间为4-12h。
基于以上技术方案,优选的,负载型钴基催化剂的干燥温度为70-120℃,时间为4-48h;焙烧温度为300-450℃,时间为2-24h。
基于以上技术方案,优选的,所述钴基费托催化剂比表面积为300-800m 2/g,孔径为3-10nm,孔容为0.5-1.5cm 3/g。
基于以上技术方案,优选的,所述钴基费托催化剂中,含有0.01%-5%的Al,10%-30%的活性组分Co,其余为SiO 2
本发明还提供了一种上述方法制备的钴基费托合成催化剂,所述催化剂以Co为活性组分,以Zr和/或Al作为助剂,以无定形介孔二氧化硅作为载体。
优选地,所述催化剂以Zr为助剂时,所述催化剂的比表面积为600-800m 2/g,所述催化剂孔容为0.5-1.5cm 3/g;孔径为2-10nm;所述催化剂以Al为助剂时,所述钴基费托催化剂比表面积为300-800m 2/g,孔径为3-10nm,孔容为0.5-1.5cm 3/g;钴粒子的颗粒尺寸为3-15nm。
本发明还提供一种上述钴基费托合成催化剂的应用,反应条件为220℃,12Nm 3/h/kg cat,2.0MPa,H 2/CO=2(摩尔比),当催化剂中,Al的含量为0.1-1.5wt%时,反应100h后CO的转化率可达67.8%。
有益效果
1、本发明研究发现,锆在费托合成中可以通过改变金属钴的分散程度或改变活性金属的电子分布提高反应的活性和对于重质烷烃的选择性,同时有利于增强催化反应的稳定性。区别于采用常规的浸渍方式在催化剂中引入过渡金属锆助剂,本发明通过在骨架中引入锆助剂可以使助剂在骨架中以高分散形式存在,可以改变载体的酸碱性,从而影响负载的活性金属的性质,使得催化活性显著提高。
2、本发明研究发现,载体的比表面积对催化剂的选择性和活性会有一定影响,增加载体的比表面积会使催化剂活性提高,本发明在载体制备过程中采用模板剂对其成孔,相对于常规的SiO 2催化剂,比表面积从490m 2/g增加到708m 2/g,孔容为0.79cm 3/g,孔径为3.8nm时,反应活性从CO的平均转化率23%左右提高到53%左右,而C5+产物的产量更是高达1069g/kg cat·h,在催化剂反应100h时活性没有明显降低。
3、一锅法制备的改性的无定型介孔二氧化硅载体,可调控性强,比如可通过改变铝的含量调控载体的酸性,通过水热处理的时间和温度来调控比表面积和孔径等。
4、一锅法制备的铝改性的无定型介孔二氧化硅载体,制备工艺简单,成本低。
5、催化剂制备简单,工艺成熟,有利于催化剂的工业生产。
6、本发明在不使用贵金属助剂的前提下制备出高活性高稳定性的费托合成催化剂,降低了催化剂的成本,有利于催化剂的推广使用。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细的说明。
附图说明
图1为实施例1-2还原前的催化剂的XRD谱图;
图2为实施例1-2的催化剂的NH 3-TPD测试结果;
图3为实施例1还原前的催化剂扫描电子显微镜测试结果;
图4为实施例1还原前的催化剂的透射电子显微镜测试结果;
图5为实施例1还原前催化剂中Co 3O 4的粒径统计结果;
图6为实施例1-2和对比例1的催化剂的稳定性测试结果;
图7是实施例6中钴基催化剂的(a)氮气吸附等温线和(b)孔径分布;
图8是实施例3-6及对比例2中催化剂的XRD图;
图9是实施例5中催化剂的透射电镜及粒径分布图;
图10是实施例6中催化剂的透射电镜及粒径分布图;
图11是实施例7中催化剂的透射电镜及粒径分布图。
具体实施方式
本发明具体实施方式的详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
采用一锅法:称量异丙醇锆1.8g与21.2g正硅酸乙酯充分溶解在塑料烧杯中,其中Si与Zr的摩尔比为25,搅拌20min使其充分溶解混合均匀,称为混合液甲。将15.3g三乙醇胺与11.5g去离子水混合搅拌30min使其充分搅拌均匀,称为混合液乙。将混合液乙逐滴加入混合液甲中,并搅拌20min以上使其充分混合。最后将21.8g四甲基氢氧化铵逐滴加入上步制得的混合液中,充分搅拌直至成胶。将成胶后的固体转移至表面皿中在60℃烘箱中干燥12h,再转移到60℃真空干燥箱中干燥12h。将所得固体转移至聚四氟乙烯水热釜中,180℃水热处理3h,之后转移到石英舟中空气气氛600℃,升温速率2℃/min,保温8h焙烧,制得Zr-SiO 2成品。
第二步,制备Co 3O 4/Zr-SiO 2
将1.25mlH 2O与1.25ml乙醇充分混合后溶解0.8gCo(NO 3) 2·6H 2O之后逐滴加入第一步制得的1.5gZr-SiO 2中使其表面充分润湿,随后在40℃烘箱中老化4h,之后将烘箱升温至110℃,干燥12h。之后转移至马弗炉中,升温速率2℃/min,350℃焙烧3h,制得Co 3O 4/Zr-SiO 2成品。
第三步,制备负载型金属钴催化剂
将第二步制得的Co 3O 4/Zr-SiO 2放入管式炉中,通入5%H 2/He气氛还原,升温速率为2℃/min,在350℃保温8h,制得负载型金属Co/Zr-SiO 2催化剂,记为SSL-1。
实施例2
采用一锅法:称量硝酸氧锆0.23g与21.2g正硅酸乙酯充分溶解在塑料烧杯中,其中Si与Zr的摩尔比为100,搅拌20min使其充分溶解混合均匀,称为混合液甲。将17.2g三甲基胺与13.2g去离子水混合搅拌90min使其充分搅拌均匀,称为混合液乙。将混合液乙逐滴加入混合液甲中,并搅拌20min以上使其充分混合,得到混合溶液丙。最后将21.8g四甲基氢氧化铵逐滴加入混合溶液丙中,充分搅拌直至成胶。将成胶后的固体转移至表面皿中在80℃烘箱中烘干12h,在转移到80℃真空干燥箱中干燥12h。将所得固体转移至聚四氟乙烯水热釜中,200℃水热处理2h,之后转移到石英舟中空气气氛600℃,升温速率2℃/min,保温8h焙烧,制得Zr-SiO 2成品。
第二步,制备Co 3O 4/Zr-SiO 2
将1.25mlH 2O与1.25ml乙醇充分混合后溶解0.86gCo(NO 3) 2·6H 2O之后逐滴加入第一步制得的1.5gZr-SiO 2中使其表面充分润湿,随后在40℃烘箱中老化4h,之后将烘箱升温至110℃,干燥12h。之后转移至马弗炉中,升温速率2℃/min,350℃焙烧3h,制得Co 3O 4/Zr-SiO 2成品。
第三步,制备负载型金属钴催化剂
将第二步制得的Co 3O 4/Zr-SiO 2放入管式炉中,通入还原性气氛还原,升温速率为2℃/min,在400℃保温4h,制得负载型金属Co/Zr-SiO 2催化剂,记为SSL-2。
对比例1
采用一锅法制备普通无定形介孔二氧化硅胶:将17.2g三甲基胺与13.2g去离子水混合搅拌90min使其充分搅拌均匀,称为混合液甲。将21.2g正硅酸乙酯逐滴滴入混合液甲中,搅拌20min使其充分溶解混合均匀,得到混合溶液乙。最后将21.8g四甲基氢氧化铵逐滴加入混合溶液乙中,充分搅拌直至成胶。将成胶后的固体转移至表面皿中在80℃烘箱中烘干12h,在转移到80℃真空干燥箱中干燥12h。将所得固体转移至聚四氟乙烯水热釜中,200℃水热处理2h,之后转移到石英舟中空气气氛600℃,升温速率2℃/min,保温8h焙烧,制得无定形SiO 2成品。
第二步,制备Co 3O 4/SiO 2
将1.2mlH 2O与1.2ml乙醇充分混合后溶解0.86gCo(NO 3) 2·6H 2O之后逐滴加入第一步制得的1.5g SiO 2中使其表面充分润湿,随后在40℃烘箱中陈化4h,之后将烘箱升温至110℃,干燥12h。之后转移至马弗炉中,升温速率2℃/min,350℃焙烧3h,制得Co 3O 4/SiO 2成品。
第三步,制备负载型金属钴催化剂
将第二步制得的Co 3O 4/SiO 2放入管式炉中,通入还原性气氛还原,升温速率为2℃/min,在400℃保温4h,制得负载型金属Co/SiO 2催化剂,记为DBL。
测试例1
将实施例1和实施例2所制得的催化剂和通过等体积浸渍方式制得的金属钴负载普通无定形介孔二氧化硅分别进行如下测试。
(1)XRD测试
取实施例1和2的催化剂和金属钴负载普通的无定形介孔二氧化硅催化剂分别进行XRD测试,测试仪器为荷兰帕纳科公司Empyrean-100,结果如图1所示:在XRD中二氧化锆没有明显的衍射峰,表明二氧化锆是以高分散的形式存在于二氧化硅中,是锆作为结构助剂的先决条件,后续的活性测试证明锆掺杂确实对提高反应的活性和选择性起到了至关重要的作用。
(2)比表面积、孔容和孔径
通过美国麦克公司ASAP2020物理吸附仪分别测试所得催化剂的比表面积、孔容孔径记录于表1中。
表1 催化剂的BET测试结果
Figure PCTCN2020134446-appb-000001
(3)催化剂酸性测试
取实施例1和2的催化剂和金属钴负载普通的无定形介孔二氧化硅催化剂分别进行NH 3-TPD检测,测试仪器为美国麦克公司AutoChem 2920,结果如图2所示:在TPD图谱中可以看到Zr的含量对于催化剂的酸性有着较大的影响,表明通过加入不同含量的Zr助剂可以对载体的酸性进行改性。
(4)催化剂微观形貌
对实施例1制备的还原前的SSL-1催化剂进行形貌表征,通过高分辨扫描电子显微镜成像后可以观察到SSL-1催化剂为多孔结构(图3)。通过对SSL-1进行透射电子显微镜成像后进行粒径统计,确认Co 3O 4颗粒的粒径为5.9±1.8nm(图4,图5)。
(5)催化剂评价
催化剂评价在固定床反应器中进行。评价前催化剂需要在氢气气氛中350℃还原8h,还原结束后降温至费托合成反应进行的条件下进行评价。具体的,催化剂评价的反应条件为:合成气组成为H 2/CO/N 2=64/32/4(体积比),温度设定为220℃,压力设定为2MPa,12Nm 3/h/kg cat,反应时合成气空速为18000h -1。将反应4h、40h、80h后的CO转化率(mol%)记录如下;
其中CO转化率的计算方式为:
Figure PCTCN2020134446-appb-000002
C5+产物的计算方式为:
Figure PCTCN2020134446-appb-000003
表2.催化剂一氧化碳转化率和C 5+选择性
Figure PCTCN2020134446-appb-000004
(6)稳定性测试
在催化剂评价环节增长反应时间至100h,在线色谱连续记录CO的转化率,其中CO转化率计算公式为
Figure PCTCN2020134446-appb-000005
测试结果如图6所示。
实施例3
称取异丙醇铝0.2063g,溶于乙醇中,待完全溶解后,加入正硅酸乙酯(TEOS,21.0443g),然后逐滴加入三乙醇胺(TEA,14.8982g)和水(11.4345g)的混合溶液。待加入完全后,搅拌20min左右,逐滴加入17.3707g四乙基氢氧化铵(TEAOH)。在室温下搅拌,直至形成透明的凝胶,然后110℃干燥24h,180℃水热处理3h,600℃空气气氛下焙烧8h,得到Al改性的无定型的介孔二氧化硅。
对最终得到的铝改性的无定型介孔二氧化硅进行筛分,称取160-400μm的颗粒1.5g。按最终催化剂钴含量10%,称取六水硝酸钴0.8235g溶于1.5mL水和1.5mL乙醇的混合溶液中,将上述容易滴加到1.5g的铝改性的无定型介孔二氧化硅上,110℃干燥12h,350℃空气气氛下焙烧2h。得到催化剂标记为CFT-1。
催化剂评价实验在高压气固相固定床反应装置中进行,常压下在纯氢气氛中350℃还原6小时。降温后切成合成气进行反应,鉴于该催化剂的高费托反应活性以及费托反应强放热的反应特性,合成气的通入要在低温下进行(190-210℃),待反应稳定后再缓慢升高到反应温度。反应流出物分别由热阱、冷阱收集。反应条件为220℃,12Nm 3/h/kg cat,2.0MPa,H 2/CO=2(摩尔比)。C-1催化剂费托合成反应(100h后)结果如表3所示。
实施例4
称取异丙醇铝0.0692g,溶于乙醇中,待完全溶解后,加入正硅酸乙酯(TEOS,21.1630g),然后逐滴加入三乙醇胺(TEA,14.9822g)和水(11.4989g)的混合溶液。待加入完全后,搅拌20min左右,逐滴加入17.4686g四乙基氢氧化铵(TEAOH)。在室温下搅拌,直至形成透明的凝胶,然后110℃干燥24h,180℃水热处理3h,600℃空气气氛下焙烧8h,得到Al改性 的无定型的介孔二氧化硅。
对最终得到的铝改性的无定型介孔二氧化硅进行筛分,称取160-400μm的颗粒1.5g。按最终催化剂钴含量10%,称取六水硝酸钴0.8235g溶于1.5mL水和1.5mL乙醇的混合溶液中,将上述容易滴加到1.5g的铝改性的无定型介孔二氧化硅上,110℃干燥12h,350℃空气气氛下焙烧2h。得到催化剂标记为CFT-2。催化剂活性评价实验条件同实例3。CFT-2催化剂费托合成反应结果如表3所示。
实施例5
称取异丙醇铝0.1036g,溶于乙醇中,待完全溶解后,加入正硅酸乙酯(TEOS,21.1332g),然后逐滴加入三乙醇胺(TEA,14.9611g)和水(11.4828g)的混合溶液。待加入完全后,搅拌20min左右,逐滴加入17.4440g四乙基氢氧化铵(TEAOH)。在室温下搅拌,直至形成透明的凝胶,然后110℃干燥24h,180℃水热处理3h,600℃空气气氛下焙烧8h,得到Al改性的无定型的介孔二氧化硅。
对最终得到的铝改性的无定型介孔二氧化硅进行筛分,称取160-400μm的颗粒1.5g。按最终催化剂钴含量10%,称取六水硝酸钴0.8235g溶于1.5mL水和1.5mL乙醇的混合溶液中,将上述容易滴加到1.5g的铝改性的无定型介孔二氧化硅上,110℃干燥12h,350℃空气气氛下焙烧2h。得到催化剂标记为CFT-3。催化剂活性评价实验条件同实例3。CFT-3催化剂费托合成反应结果如表3所示。
实施例6
称取异丙醇铝0.8050g,溶于乙醇中,待完全溶解后,加入正硅酸乙酯(TEOS,20.5263g),然后逐滴加入三乙醇胺(TEA,14.5315g)和水(11.1530g)的混合溶液。待加入完全后,搅拌20min左右,逐滴加入16.9431g四乙基氢氧化铵(TEAOH)。在室温下搅拌,直至形成透明的凝胶,然后110℃干燥24h,180℃水热处理3h,600℃空气气氛下焙烧8h,得到Al改性的无定型的介孔二氧化硅。
对最终得到的铝改性的无定型介孔二氧化硅进行筛分,称取160-400μm的颗粒1.5g。按最终催化剂钴含量10%,称取六水硝酸钴0.8235g溶于1.5mL水和1.5mL乙醇的混合溶液中,将上述容易滴加到1.5g的铝改性的无定型介孔二氧化硅上,110℃干燥12h,350℃空气气氛下焙烧2h。得到催化剂标记为CFT-4。该催化剂的N 2吸附等温线以及孔径分布如图7所示,从该图中可以看出,该催化剂主要是介孔结构,并且孔径分布较窄,为4nm左右。
催化剂活性评价实验条件同实例3。CFT-4催化剂费托合成反应结果如表3所示。
对比例2
将三乙醇胺(TEA,15.0246g)和水(11.5315g)的混合溶液逐滴加入到21.2228g正硅酸乙酯(TEOS)中。待加入完全后,搅拌20min左右,逐滴加入17.5180g四乙基氢氧化铵 (TEAOH)。在室温下搅拌,直至形成透明的凝胶,然后110℃干燥24h,180℃水热处理3h,600℃空气气氛下焙烧8h,得到无定型的介孔二氧化硅。
对最终得到的无定型介孔二氧化硅进行筛分,称取160-400μm的颗粒1.5g。按最终催化剂钴含量10%,称取六水硝酸钴0.8235g溶于1.5mL水和1.5mL乙醇的混合溶液中,将上述容易滴加到1.5g的无定型介孔二氧化硅上,110℃干燥12h,350℃空气气氛下焙烧2h。得到催化剂标记为CFT-5。催化剂活性评价实验条件同实例3。CFT-5催化剂费托合成反应结果如表3所示。
从图8的XRD图中可以看出活性组分钴分散良好,从图9-11中可以看出钴的颗粒尺寸为3-6nm。
表3 催化剂评价结果
Figure PCTCN2020134446-appb-000006

Claims (16)

  1. 一种钴基费托合成催化剂的制备方法,其特征在于,所述方法包括以下步骤:
    步骤一、通过一锅法原位合成锆和/或铝改性的无定形介孔二氧化硅;
    步骤二、采用浸渍法在所述锆和/或铝改性的无序介孔二氧化硅上负载金属钴,干燥、焙烧、还原,得到所述钴基费托合成催化剂。
  2. 根据权利要求1所述的制备方法,其特征在于,所述催化剂通过锆改性时,
    所述步骤一包括以下步骤:
    将锆源与硅源混合,搅拌使其充分溶解并混合均匀,得到混合液甲;
    将模板剂A与去离子水混合,搅拌20-50min使其混合均匀,得到混合液乙;
    将混合液乙逐滴加入混合液甲中,并搅拌20-50min及以上使其充分混合,得到混合液C;
    将模板剂B逐滴加入混合液C中,充分搅拌直至成胶,成胶后于100-180℃水热处理2-8h,然后在50-100℃烘干6-18h,之后转移到真空干燥箱中50-100℃干燥6-18h,得到前驱体;
    将所得前驱体于100-180℃水热处理2-8h,之后于空气气氛中,500-700℃焙烧4-12h,升温速率2-10℃/min,得到所述锆改性的无定形介孔二氧化硅Zr-SiO 2
  3. 根据权利要求1所述的制备方法,其特征在于,所述催化剂通过锆改性时,
    所述步骤二包括以下步骤:
    (1)等体积浸渍法制备Co 3O 4/Zr-SiO 2
    将H 2O与乙醇充分混合后溶解Co(NO 3) 2.6H 2O,得到Co前驱体溶液,将所述Co前驱体溶液逐滴加入所述Zr-SiO 2中,随后进行老化,之后80-120℃干燥8-15h,之后转移至马弗炉中,300-500℃焙烧2-5h,升温速率2-10℃/min,得到Co 3O 4/Zr-SiO 2成品;
    (2)制备Co/Zr-SiO 2
    将所述Co 3O 4/SiO 2在还原性气氛下200-400℃还原4-10h,升温速率为2-10℃/min,得到所述Co/Zr-SiO 2
  4. 根据权利要求2所述的制备方法,其特征在于:所述锆源为硝酸氧锆、异丙醇锆中的一种:所述硅源为硅胶、水玻璃、硅酸钠、正硅酸乙酯中的一种;所述模板剂A为三乙醇胺、四甲基氢氧化铵、四丙胺、三甲基胺中的一种;所述模板剂B为四丙胺、三乙醇胺、四甲基氢氧化铵、三甲基胺中的一种。
  5. 根据权利要求3所述的制备方法,其特征在于:所述步骤(1)进行前,测试Zr-SiO 2的孔体积以确定溶解硝酸钴所需的水与乙醇混合溶剂的体积,所述Zr-SiO 2为0.5-2g时,所述混合溶剂的体积为2-10mL。
  6. 根据权利要求2所述的制备方法,其特征在于:步骤(2)中,所述的还原性气氛为5%-100%的H 2,稀释气体为惰性气体。
  7. 按照权利要求1所述的方法,其特征在于,所述催化剂通过铝改性时,
    所述一锅法原位合成铝改性的无序介孔二氧化硅的具体步骤为:首先溶解Al的前驱体,然后加入Si的前驱体,20-40℃下搅拌20-40分钟后加入模板剂,继续搅拌20-40分钟后加入造孔剂,于20-40℃下搅拌48h后,干燥,水热处理,焙烧,得到所述铝改性的无序介孔二氧化硅;所述铝源:硅源:模板剂:造孔剂的摩尔比为0.3%-4%:1:1:0.3。
  8. 按照权利要求7所述的方法,其特征在于,所述的Al盐的前驱体为硫酸铝、异丙醇铝、硝酸铝、氯酸铝。
  9. 按照权利要求7所述的方法,其特征在于,所述的Si的前驱体为正硅酸乙酯、偏硅酸钠、硅溶胶。
  10. 按照权利要求7所述的方法,其特征在于,所述的模板剂为三乙醇胺(TEA)、四乙二醇(TEG)、二乙醇胺;所述造孔剂为四乙基氢氧化铵(TEAOH)和四丙基氢氧化铵(TPAOH)中的一种。
  11. 按照权利要求7所述的方法,其特征在于,干燥温度为70-120℃,时间为2-24h;水热处理温度为120-180℃,时间为2-15h;焙烧温度为600-800℃,时间为4-12h。
  12. 按照权利要求1所述的方法,其特征在于,所述催化剂通过铝改性时,
    步骤二所述的干燥温度为70-120℃,时间为4-48h;焙烧温度为300-450℃,时间为2-24h。
  13. 根据权利要求1所述的制备方法,其特征在于:所述催化剂通过锆改性时,所述催化剂中Si与Zr的摩尔比为10-300;所述催化剂中Zr含量为0.5-30wt%,所述Co含量为5-30wt%;所述催化剂通过铝改性时,所述催化剂中Al的含量为0.01-5wt%,Co的含量为10-30wt%。
  14. 一种权利要求1~13任一所述方法制备的钴基费托合成催化剂,其特征在于,所述催化剂以Co为活性组分,以Zr和/或Al元素作为助剂,以无定形介孔二氧化硅作为载体。
  15. 根据权利要求14所述的催化剂,其特征在于,所述催化剂以Zr为助剂时,所述催化剂的比表面积为600-800m 2/g,所述催化剂孔容为0.5-1.5cm 3/g;孔径为2-10nm;所述催化剂以Al为助剂时,所述钴基费托催化剂比表面积为300-800m 2/g,孔径为3-10nm,孔容为0.5-1.5cm 3/g;钴粒子的颗粒尺寸为3-15nm。
  16. 一种权利要求15所述的催化剂在费托合成反应中的应用。
PCT/CN2020/134446 2019-12-12 2020-12-08 一种锆或铝修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法 WO2021115244A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911276617.5A CN112973694A (zh) 2019-12-12 2019-12-12 一种铝元素促进的无序介孔二氧化硅负载的钴基催化剂及其制备与应用
CN201911276617.5 2019-12-12
CN202011391861.9A CN112371128B (zh) 2020-12-01 2020-12-01 一种锆修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法
CN202011391861.9 2020-12-01

Publications (1)

Publication Number Publication Date
WO2021115244A1 true WO2021115244A1 (zh) 2021-06-17

Family

ID=76329538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134446 WO2021115244A1 (zh) 2019-12-12 2020-12-08 一种锆或铝修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法

Country Status (1)

Country Link
WO (1) WO2021115244A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113499782A (zh) * 2021-07-30 2021-10-15 江苏大学 一种中空介孔二氧化硅溶解再生限域钼酸钴催化剂的制备及催化氧化柴油脱硫方法
CN114160094A (zh) * 2021-12-01 2022-03-11 武汉工程大学 一种锆-氨基功能化介孔二氧化硅及其制备方法与应用
CN114308092A (zh) * 2021-12-23 2022-04-12 北京中海前沿材料技术有限公司 一种费托合成催化剂及其制备方法与应用
CN114405542A (zh) * 2022-01-28 2022-04-29 万华化学集团股份有限公司 一种负载型磁性纳米金属催化剂及其制备方法和应用
CN114634418A (zh) * 2022-03-08 2022-06-17 安徽东至广信农化有限公司 一种高纯度邻苯二胺绿色高效的制备方法
CN115254167A (zh) * 2022-08-09 2022-11-01 安徽大学 一种N,S共掺杂介孔碳负载Co催化剂的制备方法及其在加氢中的应用
CN116571244A (zh) * 2023-03-27 2023-08-11 中国科学院兰州化学物理研究所 一种整体式VOCs催化燃烧催化剂及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375542A (zh) * 2001-03-21 2002-10-23 中国科学院山西煤炭化学研究所 一种用于合成气制取重质烃的催化剂及其制备方法和应用
CN101020137A (zh) * 2006-02-15 2007-08-22 中国石油天然气股份有限公司 一种合成气制重质烃催化剂及其制备方法
CN101269329A (zh) * 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 费托合成钴基催化剂及制备方法和应用
US20100160157A1 (en) * 2008-12-23 2010-06-24 National Taiwan University Preparation of organic-functionalized mesoporous silica with platelet morphology and short mesochannels
CN103230771A (zh) * 2013-03-25 2013-08-07 北京化工大学 一种锆掺杂的多孔异质介孔酸性材料及其制备方法
CN105776225A (zh) * 2014-12-17 2016-07-20 中国科学院大连化学物理研究所 一种金属掺杂的中空介孔氧化硅纳米球及其制备方法
CN109999775A (zh) * 2019-05-15 2019-07-12 贵州大学 一种金属掺杂介孔二氧化硅固体催化剂的制备及其在生物质转化中的应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1375542A (zh) * 2001-03-21 2002-10-23 中国科学院山西煤炭化学研究所 一种用于合成气制取重质烃的催化剂及其制备方法和应用
CN101020137A (zh) * 2006-02-15 2007-08-22 中国石油天然气股份有限公司 一种合成气制重质烃催化剂及其制备方法
CN101269329A (zh) * 2008-05-19 2008-09-24 中国科学院山西煤炭化学研究所 费托合成钴基催化剂及制备方法和应用
US20100160157A1 (en) * 2008-12-23 2010-06-24 National Taiwan University Preparation of organic-functionalized mesoporous silica with platelet morphology and short mesochannels
CN103230771A (zh) * 2013-03-25 2013-08-07 北京化工大学 一种锆掺杂的多孔异质介孔酸性材料及其制备方法
CN105776225A (zh) * 2014-12-17 2016-07-20 中国科学院大连化学物理研究所 一种金属掺杂的中空介孔氧化硅纳米球及其制备方法
CN109999775A (zh) * 2019-05-15 2019-07-12 贵州大学 一种金属掺杂介孔二氧化硅固体催化剂的制备及其在生物质转化中的应用

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113499782A (zh) * 2021-07-30 2021-10-15 江苏大学 一种中空介孔二氧化硅溶解再生限域钼酸钴催化剂的制备及催化氧化柴油脱硫方法
CN113499782B (zh) * 2021-07-30 2024-03-01 江苏大学 一种中空介孔二氧化硅溶解再生限域钼酸钴催化剂的制备及催化氧化柴油脱硫方法
CN114160094A (zh) * 2021-12-01 2022-03-11 武汉工程大学 一种锆-氨基功能化介孔二氧化硅及其制备方法与应用
CN114160094B (zh) * 2021-12-01 2023-07-18 武汉工程大学 一种锆-氨基功能化介孔二氧化硅及其制备方法与应用
CN114308092A (zh) * 2021-12-23 2022-04-12 北京中海前沿材料技术有限公司 一种费托合成催化剂及其制备方法与应用
CN114405542A (zh) * 2022-01-28 2022-04-29 万华化学集团股份有限公司 一种负载型磁性纳米金属催化剂及其制备方法和应用
CN114405542B (zh) * 2022-01-28 2024-02-27 万华化学集团股份有限公司 一种负载型磁性纳米金属催化剂及其制备方法和应用
CN114634418A (zh) * 2022-03-08 2022-06-17 安徽东至广信农化有限公司 一种高纯度邻苯二胺绿色高效的制备方法
CN115254167A (zh) * 2022-08-09 2022-11-01 安徽大学 一种N,S共掺杂介孔碳负载Co催化剂的制备方法及其在加氢中的应用
CN115254167B (zh) * 2022-08-09 2024-01-09 安徽大学 一种N,S共掺杂介孔碳负载Co催化剂的制备方法及其在加氢中的应用
CN116571244A (zh) * 2023-03-27 2023-08-11 中国科学院兰州化学物理研究所 一种整体式VOCs催化燃烧催化剂及其制备方法

Similar Documents

Publication Publication Date Title
WO2021115244A1 (zh) 一种锆或铝修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法
Wang et al. Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2: Effect of Cr adding time in sol-gel process
WO2018120576A1 (zh) 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法
CN111375415B (zh) 一种低碳烷烃脱氢制烯烃催化剂及其制备方法
KR101230625B1 (ko) 메조포러스 실리카 구조체를 이용한 피셔-트롭시 공정용 촉매
CN111437870A (zh) 一种金属@mfi的多级孔结构的封装催化剂及其封装方法和用途
CN107321351B (zh) 一种甲烷/二氧化碳重整反应的高效催化剂制备方法
WO2021147213A1 (zh) 一种用于合成气直接生产芳烃的核壳铁基催化剂及其制备方法和应用
CN113101964B (zh) 一种介孔氧化铈光催化剂及其制备方法和应用
WO2012151776A1 (zh) 一种改性的二氧化碳催化加氢制甲醇的催化剂及其制备方法
WO2012065326A1 (zh) 一种助剂改性的二氧化碳催化加氢制甲醇的催化剂及制备方法
CN106540674B (zh) 一种金属掺杂的氧化锆催化剂及其制备方法与在催化合成气催化转化中的应用
CN112108180A (zh) 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN105170156A (zh) 类气凝胶结构的镍基甲烷干重整催化剂的制备方法
CN102441388B (zh) 一种高稳定性钴基费托合成催化剂的制备方法
CN102441387B (zh) 一种高活性钴基费托合成催化剂的制备方法
CN114984946A (zh) 一种镓基低碳烷烃脱氢催化剂及其制备方法和应用
CN109908930B (zh) 一种费托合成催化剂及其制备方法
CN111375417B (zh) 一种co加氢制高碳醇催化剂及其制备方法
CN108568310B (zh) 嵌入式微孔-介孔复合分子筛甲烷化催化剂及应用
CN103769227A (zh) 一种改性硅胶载体及其制备方法和应用
KR101281228B1 (ko) 중형기공성 제어로젤 니켈-알루미나 촉매 및 그 제조방법과 상기 촉매를 이용한 메탄 제조방법
CN112973694A (zh) 一种铝元素促进的无序介孔二氧化硅负载的钴基催化剂及其制备与应用
CN112371128B (zh) 一种锆修饰无定型介孔SiO2负载钴基费托催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20899589

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20899589

Country of ref document: EP

Kind code of ref document: A1