WO2018120576A1 - 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法 - Google Patents

一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法 Download PDF

Info

Publication number
WO2018120576A1
WO2018120576A1 PCT/CN2017/083680 CN2017083680W WO2018120576A1 WO 2018120576 A1 WO2018120576 A1 WO 2018120576A1 CN 2017083680 W CN2017083680 W CN 2017083680W WO 2018120576 A1 WO2018120576 A1 WO 2018120576A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal oxide
molecular sieve
solution
carbon dioxide
Prior art date
Application number
PCT/CN2017/083680
Other languages
English (en)
French (fr)
Inventor
孙予罕
党闪闪
高鹏
卜宪昵
刘子玉
王慧
钟良枢
邱明煌
石志彪
Original Assignee
中国科学院上海高等研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院上海高等研究院 filed Critical 中国科学院上海高等研究院
Priority to US16/475,122 priority Critical patent/US11583839B2/en
Priority to EP17888274.2A priority patent/EP3593901A4/en
Publication of WO2018120576A1 publication Critical patent/WO2018120576A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/14Production of inert gas mixtures; Use of inert gases in general
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7007Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7015CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7092TON-type, e.g. Theta-1, ISI-1, KZ-2, NU-10 or ZSM-22
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/7215Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates (SAPO compounds)
    • B01J35/19
    • B01J35/23
    • B01J35/40
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0063Granulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/50Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon dioxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/38Base treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法。催化剂包括纳米金属氧化物和多级孔沸石分子筛,纳米金属氧化物占催化剂的质量分数为10%-90%,多级孔沸石分子筛占催化剂质量分数为10%-90%。催化剂具有优良的催化性能,反应稳定性好,目标产物选择性高,烃类产物中的C 2 =—C 4 =最高达80%、C 5+最高达85%、芳烃最高达65%。

Description

一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法 技术领域
本发明涉及催化剂技术领域,特别是涉及一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法。
背景技术
二氧化碳(CO2)作为一种自然界大量存在的“碳源”化合物,将其转化为有价值的化学品或燃料,不仅能解决过多CO2排放导致的环境问题,还能够缓解化石燃料过度依赖的问题。采用新能源制得的氢气对CO2进行加氢转化,可以将CO2转化为化学品(甲醇、甲酸和二甲醚等)、合成气、材料和液体燃料等产物。在众多产物中,由于经济价值和应用广泛性等原因,烃类化合物被认为是更具潜力的目标产物,如低碳烯烃(C2 ~C4 )、高碳烃类(C5+)或芳烃等。由于CO2的化学惰性,CO2加氢转化为甲烷、甲醇和一氧化碳等碳一分子相对容易,但是很难转化为含有两个以上碳原子的化合物。
CO2加氢生成烃类方面的研究主要分为两类:一种是不经过甲醇类似费托合成(FTS)的反应;另一种是经过甲醇中间物种的反应。目前,大部分的研究工作采用不经过甲醇的类FTS反应路径,CO2先通过反水煤气变换(RWGS)反应生成CO,然后CO加氢再发生FTS反应。CO2基FTS的催化组分通常与传统FTS类似,工业FTS合成催化剂主要有钴基和铁基催化剂两类,钴基催化剂在CO2加氢气氛下一般作为甲烷化催化剂而不是FTS催化剂,且钴基催化剂对RWGS反应没有活性,铁基催化剂对WGS和RWGS变化反应均具有活性,因此,CO2基FTS的研究集中在对铁基催化剂的改性,尤其是对合成烯烃类产物具有很高的活性。然而,铁基催化剂物相结构复杂、链增长能力较差、寿命短,且费托活性较低导致副产物CO的选择性较高,这些因素使得铁基催化剂在合成长链烃类方面不具有优势,另外,尽管铁基催化剂对CO2甲烷化的活性比钴基催化剂低很多,但是仍有不少副产物甲烷生成,甲烷选择性通常高于20%。对于经甲醇或相应中间物种一步转化生成烃类的过程,CO2与H2在铜锌基等金属催化剂上先生成甲醇或相应中间物种,继而再转化为其他烃类化合物。生成烃类化合物的反应是吸热反应,温度越高越有利,然而,生成甲醇或相应中间物种的反应是放热反应,温度越高越不利于甲醇的生成,因而如何突破热力学平衡,在保证较低甲烷选择性的前提下,高选择性的得到目标烃类化合物是关键。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法,该催化剂具有优良的催化性能,反应稳定性好,目标产物选择性高。
为实现上述目的及其他相关目的,本发明提供一种用于二氧化碳一步加氢制备烃类的催化剂,包括纳米金属氧化物和多级孔沸石分子筛,所述纳米金属氧化物占所述催化剂的质量分数为10%~90%,所述多级孔沸石分子筛占所述催化剂的质量分数为10%~90%。
优选地,所述纳米金属氧化物选用MgO、ZnO、Al2O3、Cr2O3、Y2O3、La2O3、Ga2O3、In2O3、Fe3O4、MnO2、TiO2、ZrO2、SnO2和CeO2中的任意一种或多种。与常规的金属氧化物相比,纳米金属氧化物颗粒尺寸小,粒径为10~30nm,比表面积大,比表面积为70~150m2/g,反应活性更高。
优选地,多级孔沸石分子筛是由微孔沸石分子筛进行碱处理后获得的具有微孔和介孔的双重孔结构沸石分子筛。通过碱处理引入介孔可极大地缩短分子在沸石微孔道中的扩散距离,有利于物质的传递,从而增强表观催化反应活性及提高催化剂的稳定性,微孔作为一种微反应器,不仅提供了反应活性中心或吸附位,还对分子的形状和大小具有选择性。
更优选地,所述微孔沸石分子筛选用Y、ZSM-5、ZSM-22、Beta、MCM-22和SAPO-34型沸石分子筛中的任意一种或多种。
更优选地,所述碱处理可采用现有技术中工艺进行。比如:(1)以0.15~0.25mol/L的NaOH为碱源,处理温度为60~75℃,处理时间为25~35min。(2)以0.15~0.30mol/L有机碱(四丙基氢氧化铵、四丁基氢氧化铵和四甲基氢氧化铵)作为碱源,处理温度为60~75℃,处理时间为25~50min。
优选地,所述多级孔沸石分子筛比表面积为100~1000m2/g。
优选地,所述多级孔沸石分子筛包括微孔和介孔,其中,介孔孔径为2~40nm,介孔孔容为0.1~0.9cm3/g。
本发明还公开一种制备如上述所述的催化剂的方法,包括以下步骤:
1)将金属盐溶解在溶液中配制成金属盐溶液;
2)将沉淀剂溶解在溶液中配制成沉淀剂溶液;
3)将步骤2)得到的所述沉淀剂溶液逐滴加到步骤1)得到的所述金属盐溶液中,经反应生成沉淀母液;
4)将所述沉淀母液老化、洗涤,然后干燥、焙烧,得到金属氧化物;
5)按照催化剂组成配比,将步骤4)得到的所述金属氧化物与所述多级孔分子筛混合,制备获得复合催化剂。
优选地,在步骤1)中,所述金属盐选用盐酸盐、硝酸盐、溴化盐、乙酸盐、草酸盐和铵盐中的任意一种或多种。
优选地,在步骤1)中,所述溶液选用水和醇中的一种或两种。
更优选地,在步骤1)中,所述溶液选用醇和水两者的组合,所述醇与所述水的体积比为(1~3):(1~4)。进一步优选地,所述醇选用甲醇、乙醇或丙醇。
优选地,在步骤1)中,所述金属盐溶液的浓度为0.1~1mol/L。
优选地,在步骤2)中,所述沉淀剂选用氨水、碳酸铵、碳酸钠、氢氧化钠和乙酸钠的任意一种或多种。
优选地,在步骤2)中,所述溶液选用水和醇中的一种或两种。
更优选地,在步骤2)中,所述溶液选用醇和水两者的组合,所述醇与所述水的体积比为(1~3):(1~4)。进一步优选地,所述醇选用甲醇、乙醇或丙醇。
优选地,在步骤2)中,所述沉淀剂溶液的浓度为0.1~2mol/L。
优选地,在步骤3)中,反应温度为10~40℃;在反应完成后,所述沉淀母液的pH为7~11。
优选地,在步骤4)中,沉淀母液在一定温度下老化,使得沉淀颗粒进一步变大。老化的条件为:老化温度为60~100℃,老化时间为0.1~10h。
优选地,在步骤4)中,干燥温度为60~120℃,干燥时间6~24h。
优选地,在步骤4)中,焙烧温度为250~600℃,焙烧时间1~8h。
优选地,在步骤5)中,混合的方式选用机械混合、研磨混合或球磨混合中的任意一种。
优选地,所述机械混合包括以下步骤:将所述金属氧化物与所述多级孔分子筛进行压片、过筛的得到20~80目的纳米颗粒,装入玻璃容器中,通过震动实现均匀混合。
优选地,所述研磨混合包括以下步骤:将所述金属氧化物与所述多级孔分子筛置于玛瑙研钵中研磨0.1~4h,然后压片、过筛,得到20~80目的纳米颗粒。
优选地,所述球磨混合包括以下步骤:将所述金属氧化物与所述多级孔分子筛置于球磨机中球磨0.1~24h,然后压片、过筛,得到20~80目的纳米颗粒。
本发明还公开一种如上述所述催化剂的用途,为使所述催化剂用于进行二氧化碳一步加氢制备烃类反应。
优选地,在将所述催化剂用于进行二氧化碳一步加氢制备烃类前先将所述催化剂进行 活化,活化条件为:在惰性气体Ar、N2或He氛围中,或者还原气H2氛围中,梯度升温至250~600℃,活化时间为1~10h。
优选地,所述二氧化碳一步加氢制备烃类反应的条件为:反应压力为0.3~5.0MPa,反应温度为300~450℃,体积空速为1000~12000h-1,H2/CO2摩尔比=1~5。
优选地,所述二氧化碳一步加氢制备烃类反应在固定床上进行。
如上所述,本发明提供的用于二氧化碳一步加氢制备烃类的催化剂及其制备方法,具有以下有益效果:
本发明将反应物金属盐和沉淀剂按比例充分混合,生成易分解的固相前驱物,经多次洗涤、煅烧、研磨得到纳米金属氧化物,将纳米金属氧化物与多级沸石分子筛进行复配制备成复合催化剂,纳米金属氧化物催化剂颗粒尺寸小、CO2活化能力高,且加氢能力适中;多级孔沸石分子筛催化剂具有的介孔有利于反应过程中中间物种的传质扩散,有助于反应平衡的拉动、获得较高的目标产物选择性,还有助于减少积碳,提升催化剂稳定性。
本发明获得的催化剂具有优良的催化性能,反应稳定性好,目标产物选择性高,烃类产物中的C2 ~C4 最高达80%、C5+最高达85%、芳烃最高达65%;副产物甲烷选择性低,CH4选择性低于5%。
本发明中催化剂的制备过程简单可控,提高生产效率,大大降低生产成本。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
将40.4g Fe(NO3)3·9H2O加入到1L去离子水中,配制成金属离子浓度为0.1mol/L混合金属盐溶液,将5.30g碳酸钠加入到0.25L去离子水与0.25L无水乙醇的混合溶液中配成0.1mol/L的沉淀剂溶液,在20℃温度下将沉淀剂溶液逐滴加入到金属盐溶液中,滴加过程需充分搅拌,最终pH值保持在9,沉淀反应结束后将所得产物在70℃搅拌条件下老化4h,随后将所得沉淀用去离子水洗涤数次,然后在80℃下干燥12h,再经350℃焙烧4h,得到金属氧化物,经表征得知其粒径为20nm、比表面积为75m2/g。将比表面积为500m2/g、介孔孔径为4.1nm、介孔孔容为0.41cm3/g的多级孔沸石分子筛h-ZSM-5。以催化剂总质 量计,金属氧化物的含量为10%,多级孔沸石分子筛含量为90%,按该比例将金属氧化物与多级孔分子筛一起在玛瑙研钵中研磨2h,然后压片、过筛,得到40~60目的复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行。反应前先将催化剂在惰性气体Ar氛围中梯度升温至350℃,活化4h,然后通入H2/CO2摩尔比=3:1的混合气进行反应,反应条件为:P=5.0MPa,T=300℃,GHSV=4000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
实施例2
分别将13.32g Cr(NO3)2·9H2O与28.62g Zr(NO3)4·5H2O加入到0.1L水与0.025L无水乙醇的混合溶液中,配制成金属离子浓度为0.8mol/L混合金属盐溶液,将3.3mL氨水加入到0.05L无水乙醇的混合溶液中配成1mol/L的沉淀剂溶液,在25℃温度下将沉淀剂溶液逐滴加入到金属盐溶液中,滴加过程需充分搅拌,最终pH值保持在10,沉淀反应结束后将所得产物在60℃搅拌条件下老化6h,随后将所得沉淀用去离子水洗涤数次,然后在60℃下干燥18h,再经300℃焙烧3h,得到金属氧化物,经表征得知其粒径为10nm、比表面积为136m2/g,压片过筛成20~40目。将比表面积为340m2/g、介孔孔径为28nm、介孔孔容为0.19cm3/g的多级孔沸石分子筛h-SAPO-34压片成40~60目。以催化剂总质量计,金属氧化物的含量为50%,多级孔沸石分子筛含量为50%,按该比例将金属氧化物与分子筛的颗粒装入玻璃容器中,通过震动实现均匀混合获得复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行,反应前先将催化剂在惰性气体Ar氛围中梯度升温至400℃,活化2h,然后通入H2/CO2摩尔比=2:1的混合气进行反应,反应条件为:P=3.0MPa,T=400℃,GHSV=9000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
实施例3
将41.79g Ga(NO3)3·xH2O加入到0.12L水与0.08L无水乙醇的混合溶液中,配制成金属离子浓度为0.5mol/L混合金属盐溶液,将3.3mL氨水加入到0.01L去离子水与0.02L无水乙醇的混合溶液中配成1.67mol/L的沉淀剂溶液,在15℃下将沉淀剂溶液逐滴加入到金属盐溶液中,滴加过程需充分搅拌,最终pH值保持在11,沉淀反应结束后将所得产物在100℃搅拌条件下老化1.5h,随后将所得沉淀用去离子水洗涤数次,然后在60℃下干燥24h,再经300℃焙烧7h,得到金属氧化物,经表征得知其粒径为23nm、比表面积为112m2/g。分子筛使用比表面积为445m2/g、介孔孔径为4.39nm、介孔孔容为0.49cm3/g多级孔沸石 分子筛h-ZSM-22。以催化剂总质量计,金属氧化物的含量为33.3%,多级孔沸石分子筛含量为66.7%,按该比例将金属氧化物与多级孔分子筛一起在球磨机中球磨24h,然后压片、过筛,得到60~80目的复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行,反应前先将催化剂在惰性气体N2氛围中梯度升温至350℃,活化5h,然后通入H2/CO2摩尔比=4:1的混合气进行反应,反应条件如下:P=0.5MPa,T=350℃,GHSV=2000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
实施例4
将38.3g Y(NO3)4·6H2O加入到0.125L去离子水和0.125L无水乙醇的混合溶液中,配制成金属离子浓度为0.4mol/L混合金属盐溶液,将7.86g碳酸铵加入到0.067L去离子水与0.033L无水乙醇的混合溶液中配成0.5mol/L的沉淀剂溶液,在30℃下将沉淀剂溶液逐滴加入到金属盐溶液中,滴加过程需充分搅拌,最终pH值保持在10,沉淀反应结束后将所得产物在80℃搅拌条件下老化5h,随后将所得沉淀用去离子水洗涤数次,然后在65℃下干燥16h,再经500℃焙烧5h得到金属氧化物,经表征得知其粒径为16nm、比表面积为98m2/g。分子筛使用比表面积为650m2/g、介孔孔径为13.5nm、介孔孔容为0.55cm3/g的多级孔沸石分子筛h-Beta。以催化剂总质量计,金属氧化物的含量为25%,多级孔沸石分子筛含量为75%,按该比例将金属氧化物与多级孔分子筛一起在球磨机中球磨11h,然后压片、过筛,得到20~40目的复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行,反应前先将催化剂在惰性气体N2氛围中梯度升温至600℃,活化3h,然后通入H2/CO2摩尔比=5:1的混合气进行反应,反应条件如下:P=2MPa,T=450℃,GHSV=12000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
实施例5
分别将9.91g Zn(NO3)2·6H2O与28.64g Zr(NO3)4·5H2O加入到0.025L去离子水与0.1L无水乙醇的混合溶液中,配制成金属离子浓度为0.8mol/L混合金属盐溶液,将5.30g碳酸钠加入到0.015L去离子水与0.01L无水乙醇的混合溶液中配成2mol/L的沉淀剂溶液,在40℃下将沉淀剂溶液逐滴加入到金属盐溶液中,滴加过程需充分搅拌,最终pH值保持在8,沉淀反应结束后将所得产物在100℃搅拌条件下老化2h,随后将所得沉淀用去离子水洗涤数次,然后在100℃下干燥10h,再经500℃焙烧2.5h得到金属氧化物,经表征得知其粒径为27nm、比表面积为70m2/g,压片过筛成40~60目。将比表面积为580m2/g、介孔孔 径为7nm、介孔孔容为0.85cm3/g的多级孔沸石分子筛h-Y压片过筛成40~60目。以催化剂总质量计,金属氧化物的含量为20%,多级孔沸石分子筛含量为80%,按该比例将金属氧化物与分子筛压片、过筛得到的40~60目颗粒装入玻璃容器中,通过震动实现均匀混合获得复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行,反应前先将催化剂在惰性气体N2氛围中梯度升温至600℃,活化1.5h,然后通入H2/CO2摩尔比=3:1的混合气进行反应,反应条件为:P=3MPa,T=450℃,GHSV=7000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
实施例6
分别将9.91g Zn(NO3)2·6H2O与28.64g Zr(NO3)4·5H2O加入到0.1L去离子水中,配制成金属离子浓度为1mol/L混合金属盐溶液,将5.30g碳酸钠加入到0.05L去离子水中配成1mol/L的沉淀剂溶液,在40℃下将沉淀剂溶液逐滴加入到金属盐溶液中,滴加过程需充分搅拌,最终pH值保持在7,沉淀反应结束后将所得产物在80℃搅拌条件下老化2h,随后将所得沉淀用去离子水洗涤数次,然后在100℃下干燥7h,再经350℃焙烧5h,得到金属氧化物,经表征得知其粒径为15nm、比表面积为131m2/g,压片过筛成40~60目。将比表面积为600m2/g、介孔孔径为15.3nm、介孔孔容为0.46cm3/g的多级孔沸石分子筛
h-ZSM-5压片过筛成40~60目。以催化剂总质量计,金属氧化物的含量为80%,多级孔沸石分子筛含量为20%,按该比例将金属氧化物与分子筛压片、过筛的得到40~60目颗粒装入玻璃容器中,通过震动实现均匀混合获得复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行,反应前先将催化剂在惰性气体N2氛围中梯度升温至500℃,活化1.5h,然后通入H2/CO2摩尔比=2:1的混合气进行反应,反应条件如下:P=3.0MPa,T=450℃,GHSV=9000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
实施例7
将38.18g In(NO3)3·4.5H2O加入到0.4L去离子水与1.6L无水乙醇的混合溶液中,配制成金属离子浓度为0.05mol/L混合金属盐溶液,将7.86g碳酸铵加入到0.1L去离子水与0.15L无水乙醇的混合溶液中配成0.2mol/L的沉淀剂溶液,在20℃下将沉淀剂溶液逐滴加入到金属盐溶液中,滴加过程需充分搅拌,最终pH值保持在8.5,沉淀反应结束后将所得产物在80℃搅拌条件下老化2.5h,随后将所得沉淀用去离子水洗涤数次,然后在90℃下干燥13h,再经400℃焙烧3h,得到金属氧化物,经表征得知其粒径为16nm、比表面积为131 m2/g。分子筛使用比表面积为700m2/g、介孔孔径为5.6nm、介孔孔容为0.57cm3/g的多级孔沸石分子筛h-ZSM-5。以催化剂总质量计,金属氧化物的含量为50%,多级孔沸石分子筛含量为50%,按该比例将金属氧化物与多级孔分子筛一起在玛瑙研钵中研磨0.2h,然后压片、过筛,得到20~40目的复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行,反应前先将催化剂在惰性气体H2氛围中梯度升温至450℃,活化2h,然后通入H2/CO2摩尔比=3:1的混合气进行反应,反应条件如下:P=4MPa,T=340℃,GHSV=3000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
实施例8
将38.18g In(NO3)3·4.5H2O加入到0.05L去离子水与0.05L无水乙醇的混合溶液中,配制成金属离子浓度为1mol/L混合金属盐溶液,将3.3mL氨水加入到0.025L去离子水与0.025L无水乙醇的混合溶液中配成1mol/L的沉淀剂溶液,在25℃温度下将沉淀剂溶液逐滴加入到金属盐溶液中,滴加过程需充分搅拌,最终pH值保持在11,沉淀反应结束后将所得产物在75℃搅拌条件下老化0.5h,随后将所得沉淀用去离子水洗涤数次,然后在100℃下干燥15h,再经250℃焙烧8h得到金属氧化物,经表征得知其粒径为13nm、比表面积为150m2/g。分子筛使用比表面积为340m2/g、介孔孔径为28nm、介孔孔容为0.18cm3/g的多级孔沸石分子筛h-SAPO-34。以催化剂总质量计,金属氧化物的含量为75%,多级孔沸石分子筛含量为25%,按该比例将金属氧化物与多级孔分子筛一起在球磨机中球磨0.2h,然后压片、过筛,得到60~80目的复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行,反应前先将催化剂在惰性气体Ar氛围中梯度升温至300℃,活化10h,然后通入H2/CO2摩尔比=1:1的混合气进行反应,反应条件如下:P=3MPa,T=380℃,GHSV=6000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
实施例9
将40.4g Fe(NO3)3·9H2O加入到0.14L去离子水与0.06L无水乙醇的混合溶液中,配制成金属离子浓度为0.5mol/L混合金属盐溶液,将5.30g碳酸钠加入到0.036L去离子水与0.009L无水乙醇的混合溶液中配成1.1mol/L的沉淀剂溶液,在18℃温度下将金属盐溶液逐滴加入到沉淀剂溶液中,滴加过程需充分搅拌,最终pH值保持在9,沉淀反应结束后将所得产物在70℃搅拌条件下老化10h,随后将所得沉淀用去离子水洗涤数次,然后在80℃下干燥12h,再经400℃焙烧5h得到金属氧化物,经表征得知其粒径为13nm、比表面积 为119m2/g。催化剂使用比表面积为650m2/g、介孔孔径为13.5nm、介孔孔容为0.55cm3/g的多级孔沸石分子筛h-Beta。以催化剂总质量计,金属氧化物的含量为10%,多级孔沸石分子筛含量为90%,按该比例将金属氧化物与多级孔分子筛一起在玛瑙研钵中研磨4h,然后压片、过筛,得到40~60目的复合催化剂。
二氧化碳加氢合成烃类反应在8mm内径的不锈钢反应器中进行,反应前先将催化剂在惰性气体H2氛围中梯度升温至500℃,活化3h,然后通入H2/CO2摩尔比=3:1的混合气进行反应,反应条件如下:P=4MPa,T=370℃,GHSV=10000h-1,以冰水浴收集液相产物,气相色谱分析产物组成,评价结果见表1。
表1实施例1至9获得的催化剂的反应结果
Figure PCTCN2017083680-appb-000001
由表1可以看出,采用本专利所述催化剂用于二氧化碳一步加氢反应中在适当的条件下可提高目标产物选择性,降低甲烷的选择性。具体地:实施例1至9获得的催化剂在P=0.3~5.0MPa、T=300~450℃、GHSV=1000~12000h-1和n(H2)/n(CO2)=1~5的条件下,目标产物选择性高,烃类产物中的C2 ~C4 最高达80.2%、C5+最高达84.7%、芳烃最高达64.7%;主要副产物甲烷选择性低,CH4选择性低于5%;催化剂的失活速率低,不高于2.2%。因此,实施例1至9获得催化剂反应活性高,主要副产物CH4选择性低,目标产物低碳烯烃、高碳烃类或芳烃化合物选择性高,失活速率低。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (11)

  1. 一种用于二氧化碳一步加氢制备烃类的催化剂,其特征在于,包括纳米金属氧化物和多级孔沸石分子筛,所述纳米金属氧化物占所述催化剂的质量分数为10%~90%,所述多级孔沸石分子筛占所述催化剂的质量分数为10%~90%。
  2. 如权利要求1所述的用于二氧化碳一步加氢制备烃类的催化剂,其特征在于,所述纳米金属氧化物选用MgO、ZnO、Al2O3、Cr2O3、Y2O3、La2O3、Ga2O3、In2O3、Fe3O4、MnO2、TiO2、ZrO2、SnO2和CeO2中的任意一种或多种;所述多级孔沸石分子筛选用Y、ZSM-5、ZSM-22、Beta、MCM-22和SAPO-34型分子筛中的任意一种或多种。
  3. 一种制备如权利要求1或2所述的催化剂的方法,其特征在于,包括以下步骤:
    1)将金属盐溶解在溶液中配制成金属盐溶液;
    2)将沉淀剂溶解在溶液中配制成沉淀剂溶液;
    3)将步骤2)得到的所述沉淀剂溶液逐滴加到步骤1)得到的所述金属盐溶液中,经反应生成沉淀母液;
    4)将所述沉淀母液老化、洗涤,然后干燥、焙烧,得到金属氧化物;
    5)按照催化剂组成配比,将步骤4)得到的所述金属氧化物与所述多级孔分子筛混合,制备获得复合催化剂。
  4. 如权利要求3所述的方法,其特征在于,还包括以下特征中任一项或多项:
    1)在步骤1)中,所述金属盐选用盐酸盐、硝酸盐、溴化盐、乙酸盐、草酸盐和铵盐中的任意一种或多种;
    2)在步骤1)中,所述溶液选用水和醇中的一种或两种;
    3)在步骤1)中,所述金属盐溶液的浓度为0.1~1mol/L;
    4)在步骤2)中,所述沉淀剂选用氨水、碳酸铵、碳酸钠、氢氧化钠和乙酸钠的任意一种或多种;
    5)在步骤2)中,所述溶液选用水和醇中的一种或两种;
    6)在步骤2)中,所述沉淀剂溶液的浓度为0.1~2mol/L;
    7)在步骤3)中,反应温度为10~40℃;在反应完成后,所述沉淀母液的pH为7~11;
    8)在步骤4)中,老化的条件为:老化温度为60~100℃,老化时间为0.1~10h;
    9)在步骤4)中,干燥温度为60~120℃,干燥时间6~24h;
    10)在步骤4)中,焙烧温度为250~600℃,焙烧时间1~8h。
  5. 如权利要求4所述的方法,其特征在于,在步骤5)中,混合的方式选用机械混合、研 磨混合或球磨混合中的任意一种。
  6. 如权利要求5所述的方法,其特征在于,所述机械混合包括以下步骤:将所述金属氧化物与所述多级孔分子筛进行压片、过筛的得到20~80目的纳米颗粒,装入玻璃容器中,通过震动实现均匀混合。
  7. 如权利要求5所述的方法,其特征在于,所述研磨混合包括以下步骤:将所述金属氧化物与所述多级孔分子筛置于玛瑙研钵中研磨0.1~4h,然后压片、过筛,得到20~80目的纳米颗粒。
  8. 如权利要求5所述的方法,其特征在于,所述球磨混合包括以下步骤:将所述金属氧化物与所述多级孔分子筛置于球磨机中球磨0.1~24h,然后压片、过筛,得到20~80目的纳米颗粒。
  9. 一种如权利要求1至2任一所述催化剂的用途,为使所述催化剂用于进行二氧化碳一步加氢制备烃类反应。
  10. 如权利要求9所述的用途,其特征在于,在将所述催化剂用于进行二氧化碳一步加氢制备烃类前先将所述催化剂进行活化,活化条件为:在惰性气体Ar、N2或He氛围中,或者还原气H2氛围中,梯度升温至250~600℃,活化时间为1~10h。
  11. 如权利要求9所述的用途,其特征在于,所述二氧化碳一步加氢制备烃类反应的条件为:反应压力为0.3~5.0MPa,反应温度为300~450℃,体积空速为1000~12000h-1,H2/CO2摩尔比=1~5。
PCT/CN2017/083680 2016-12-30 2017-05-10 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法 WO2018120576A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/475,122 US11583839B2 (en) 2016-12-30 2017-05-10 Catalyst for preparing hydrocarbons from carbon dioxide by one-step hydrogenation and method for preparing same
EP17888274.2A EP3593901A4 (en) 2016-12-30 2017-05-10 CATALYST FOR THE PREPARATION OF HYDROCARBONS FROM CARBON DIOXIDE BY ONE-STEP HYDROGENATION AND ITS PREPARATION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611252854.4A CN108262055B (zh) 2016-12-30 2016-12-30 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法
CN201611252854.4 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018120576A1 true WO2018120576A1 (zh) 2018-07-05

Family

ID=62706694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083680 WO2018120576A1 (zh) 2016-12-30 2017-05-10 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法

Country Status (4)

Country Link
US (1) US11583839B2 (zh)
EP (1) EP3593901A4 (zh)
CN (1) CN108262055B (zh)
WO (1) WO2018120576A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111766A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 二氧化碳的利用方法
CN111111762A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 二氧化碳加氢直接制低碳烯烃的催化剂组合物及其用途
CN111111760A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 二氧化碳加氢制取低碳烯烃的催化剂及其用途
WO2020139600A3 (en) * 2018-12-28 2020-08-06 Dow Global Technologies Llc Methods for producing c2 to c5 paraffins using a hybrid catalyst comprising gallium metal oxide
CN112916020A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 用于二氧化碳加氢制高碳烃的铁基催化剂及其制备和应用
JP2022512467A (ja) * 2018-12-21 2022-02-04 中国科学院大▲連▼化学物理研究所 触媒及び合成ガスの直接転化による低級アレーン液体燃料の製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108160104B (zh) * 2017-12-22 2021-02-12 中国科学院上海高等研究院 一种用于二氧化碳一步加氢制备芳烃的催化剂及其制备方法和应用
CN110314697A (zh) * 2018-03-28 2019-10-11 中国科学院大连化学物理研究所 一种复合催化剂、其制备方法和乙烯的制备方法
CN110314696B (zh) * 2018-03-28 2021-06-01 中国科学院大连化学物理研究所 一种复合催化剂、其制备方法和乙烯的制备方法
CN110496639B (zh) * 2018-05-17 2022-05-27 中国科学院大连化学物理研究所 一种芳烃合成用催化剂及其制备方法和应用
CN110743606B (zh) * 2018-07-23 2021-08-31 中国科学院大连化学物理研究所 一种二氧化碳加氢制芳烃的催化剂及芳烃的合成方法
CN109012743A (zh) * 2018-09-03 2018-12-18 中国科学院上海高等研究院 一种用于二氧化碳加氢直接制汽油的催化剂及其制备方法和应用
CN111111765B (zh) * 2018-10-30 2022-08-12 中国石油化工股份有限公司 制备低碳烃的催化剂及其用途方法
CN109985659B (zh) * 2019-04-22 2022-03-01 南京工程学院 一种co2定向转化制备芳烃的催化剂及其制备方法
CN110038590B (zh) 2019-05-14 2020-06-30 中国科学院山西煤炭化学研究所 一种多夹层复合催化剂及其制备方法和应用
CN110479235B (zh) * 2019-09-12 2022-07-08 中国科学院上海高等研究院 一种氧化铟催化剂及其制备方法和应用
CN111420701B (zh) * 2020-04-08 2023-05-26 中国科学院上海高等研究院 一种合成气制取芳烃的催化剂及其应用
CN112588315B (zh) * 2020-12-21 2022-03-04 中国科学院山西煤炭化学研究所 一种铬基金属氧化物-分子筛催化剂及其制备方法和应用
CN113289677B (zh) * 2021-04-26 2022-08-19 复旦大学 一种用于合成气制芳烃的复相金属催化剂及其制备方法
CN114950534B (zh) * 2022-06-01 2023-09-26 南京工业大学 双功能催化剂催化二氧化碳加氢制芳烃的工艺
CN114939435A (zh) * 2022-06-30 2022-08-26 山东能源集团有限公司 一种整体式双功能催化剂及其制备方法和应用
CN115155588A (zh) * 2022-08-25 2022-10-11 南京工业大学 一种用于二氧化碳直接加氢制备芳烃的串联催化剂及其制备方法和应用
CN117138783A (zh) * 2023-08-30 2023-12-01 安徽大学 一种β分子筛包裹双黄蛋型结构的催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190638A (ja) * 1988-01-26 1989-07-31 Nkk Corp 二酸化炭素の水素化による炭化水素の製造方法
CN1127240A (zh) * 1995-09-13 1996-07-24 中国科学院大连化学物理研究所 二氧化碳加氢反应制低碳烯烃新过程及催化剂
CN106311317A (zh) * 2015-07-02 2017-01-11 中国科学院大连化学物理研究所 一种催化剂及由合成气一步法直接制备低碳烯烃的方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100228748B1 (ko) * 1997-10-10 1999-11-01 김충섭 이산화탄소로부터 디메틸에테르와 메탄올의 동시 제조방법
CN1202061C (zh) * 2002-08-29 2005-05-18 华东理工大学 一种在组合床中催化合成二甲醚的方法
US7678955B2 (en) * 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
CN101391226B (zh) * 2008-10-30 2011-06-29 上海应用技术学院 一种用于二氧化碳一步法合成二甲醚的催化剂及其使用方法
CN103894224B (zh) * 2012-12-25 2015-11-25 广西大学 一种用于二氧化碳合成二甲醚的催化剂的制备及应用
DE102013022290A1 (de) * 2013-09-23 2015-03-26 I2 Gesellschaft Für Innovation Mbh Verfahren zur Umwandlung von CO2 zu Kohlenwasserstoffen
CN106140273B (zh) * 2015-04-21 2019-03-22 中国科学院青岛生物能源与过程研究所 一种用于费-托合成的包覆型钴基催化剂及其制备和应用
CN105289710B (zh) * 2015-11-16 2018-06-22 中国科学院山西煤炭化学研究所 一种co2加氢制异构烷烃的催化剂及其制备方法和应用
CN108144643B (zh) * 2016-12-05 2020-03-10 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制低碳烯烃的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190638A (ja) * 1988-01-26 1989-07-31 Nkk Corp 二酸化炭素の水素化による炭化水素の製造方法
CN1127240A (zh) * 1995-09-13 1996-07-24 中国科学院大连化学物理研究所 二氧化碳加氢反应制低碳烯烃新过程及催化剂
CN106311317A (zh) * 2015-07-02 2017-01-11 中国科学院大连化学物理研究所 一种催化剂及由合成气一步法直接制备低碳烯烃的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAI, C.Y ET AL.: "Facile One-step Synthesis of Hierarchical Porous Carbon Monoliths as Superior Supports of Fe-based Catalysts for C02 Hydrogenation", RSC ADVANCES, vol. 6, no. 13, 18 January 2016 (2016-01-18), XP055515792 *
JIAO, F. ET AL.: "Selective Conversion of Syngas to Light Olefins", SCIENCE, vol. 351, no. 6277, 4 March 2016 (2016-03-04), pages 1065 - 1068, XP055515785 *
See also references of EP3593901A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111111766A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 二氧化碳的利用方法
CN111111762A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 二氧化碳加氢直接制低碳烯烃的催化剂组合物及其用途
CN111111760A (zh) * 2018-10-30 2020-05-08 中国石油化工股份有限公司 二氧化碳加氢制取低碳烯烃的催化剂及其用途
CN111111760B (zh) * 2018-10-30 2022-10-11 中国石油化工股份有限公司 二氧化碳加氢制取低碳烯烃的催化剂及其用途
CN111111762B (zh) * 2018-10-30 2022-10-11 中国石油化工股份有限公司 二氧化碳加氢直接制低碳烯烃的催化剂组合物及其用途
JP2022512467A (ja) * 2018-12-21 2022-02-04 中国科学院大▲連▼化学物理研究所 触媒及び合成ガスの直接転化による低級アレーン液体燃料の製造方法
JP7205943B2 (ja) 2018-12-21 2023-01-17 中国科学院大▲連▼化学物理研究所 触媒及び合成ガスの直接転化による低級アレーン液体燃料の製造方法
WO2020139600A3 (en) * 2018-12-28 2020-08-06 Dow Global Technologies Llc Methods for producing c2 to c5 paraffins using a hybrid catalyst comprising gallium metal oxide
CN112916020A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 用于二氧化碳加氢制高碳烃的铁基催化剂及其制备和应用

Also Published As

Publication number Publication date
US20220118430A1 (en) 2022-04-21
EP3593901A1 (en) 2020-01-15
CN108262055B (zh) 2021-03-12
US11583839B2 (en) 2023-02-21
EP3593901A4 (en) 2020-11-04
CN108262055A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
WO2018120576A1 (zh) 一种用于二氧化碳一步加氢制备烃类的催化剂及其制备方法
US7612013B2 (en) Hydrocarbon-producing catalyst, process for producing the same, and process for producing hydrocarbons using the catalyst
CN108160104B (zh) 一种用于二氧化碳一步加氢制备芳烃的催化剂及其制备方法和应用
CN112169799B (zh) 采用铁基催化剂进行二氧化碳加氢合成低碳烯烃的方法
US20170087537A1 (en) Mixed metal oxide catalysts for ammonia decomposition
CN103007985A (zh) 一种将醇、醚转化为芳烃的催化剂及其制备、使用方法
WO2012040977A1 (zh) 一种二氧化碳催化加氢制甲醇的催化剂及制备方法
US8999876B2 (en) Carbon-supported catalysts for production of higher alcohols from syngas
KR102035714B1 (ko) 탄화수소 개질용 니켈 촉매
WO2020253712A1 (zh) 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
CN111036278B (zh) 由合成气制备低碳烯烃的方法
He et al. Dynamic trap of Ni at elevated temperature for yielding high-efficiency methane dry reforming catalyst
CN105435801B (zh) 负载型铁催化剂及其制备方法和应用
KR101988370B1 (ko) 이산화탄소 메탄화 촉매 및 이의 제조 방법
JP3837520B2 (ja) Coシフト反応用触媒
CN102441388B (zh) 一种高稳定性钴基费托合成催化剂的制备方法
JP4012965B2 (ja) 高温coシフト反応用触媒
US20140336041A1 (en) Rhodium catalysts for ethanol reforming
US20130289145A1 (en) Catalyst for fischer-tropsch synthesis, production method therefor, and production method using fischer-tropsch synthesis catalyst
CN111068741B (zh) 一步法合成低碳烯烃的催化剂及其应用
CN102441389B (zh) 一种用于费托合成的钴基催化剂制备方法
CN109651031B (zh) 合成气直接生产低碳烯烃的方法
JP4421913B2 (ja) 炭化水素類製造用触媒の製造方法およびその触媒を用いた炭化水素類の製造方法
CN109305871B (zh) 合成气一步法生产低碳烯烃的方法
KR101795477B1 (ko) 단일공정 졸-겔(Sol-gel)법으로 제조된 중형기공성 니켈-구리-알루미나-지르코니아 제로젤 촉매, 그 제조 방법 및 상기 촉매를 이용한 에탄올의 수증기 개질 반응에 의한 수소가스 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017888274

Country of ref document: EP

Effective date: 20190730