WO2011093153A1 - 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法 - Google Patents

化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法 Download PDF

Info

Publication number
WO2011093153A1
WO2011093153A1 PCT/JP2011/050624 JP2011050624W WO2011093153A1 WO 2011093153 A1 WO2011093153 A1 WO 2011093153A1 JP 2011050624 W JP2011050624 W JP 2011050624W WO 2011093153 A1 WO2011093153 A1 WO 2011093153A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical mechanical
mechanical polishing
aqueous dispersion
polishing
silicon nitride
Prior art date
Application number
PCT/JP2011/050624
Other languages
English (en)
French (fr)
Inventor
彰浩 竹村
浩平 吉尾
達也 山中
金野 智久
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2011551802A priority Critical patent/JP5915843B2/ja
Priority to SG2012056248A priority patent/SG182790A1/en
Priority to KR1020127020151A priority patent/KR20120134105A/ko
Priority to US13/576,418 priority patent/US20130005219A1/en
Priority to CN201180007853.2A priority patent/CN102741985B/zh
Priority to EP11736868.8A priority patent/EP2533274B1/en
Publication of WO2011093153A1 publication Critical patent/WO2011093153A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/015Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor of television picture tube viewing panels, headlight reflectors or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B29/00Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents
    • B24B29/02Machines or devices for polishing surfaces on work by means of tools made of soft or flexible material with or without the application of solid or liquid polishing agents designed for particular workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Definitions

  • the present invention relates to a chemical mechanical polishing aqueous dispersion and a chemical mechanical polishing method using the same.
  • an aqueous dispersion for chemical mechanical polishing capable of achieving a practical polishing rate in chemical mechanical polishing (hereinafter, also referred to as “CMP”) of a silicon oxide film or a polysilicon film is common.
  • CMP chemical mechanical polishing
  • a method for removing the silicon nitride film As a method for removing the silicon nitride film, a method of etching with hot phosphoric acid has been conventionally used. However, in this method, since the etching process is controlled by time, a residual silicon nitride film may be generated or a lower layer of the silicon nitride film may be damaged. Therefore, a method of removing the silicon nitride film by CMP has been desired.
  • the polishing rate ratio (hereinafter also referred to as “selection ratio”) of the silicon nitride film to the silicon oxide film must be sufficiently increased.
  • selection ratio chemical mechanical polishing aqueous dispersions having such characteristics have been proposed as shown below.
  • JP-A-11-176773 discloses a method of selectively polishing a silicon nitride film using a polishing liquid containing phosphoric acid or a phosphoric acid derivative and silica having a particle size of 10 nm or less.
  • Japanese Patent Application Laid-Open No. 2004-214667 discloses a method of polishing a silicon nitride film using a polishing liquid containing phosphoric acid, nitric acid, and hydrofluoric acid and having a pH adjusted to 1-5.
  • Japanese Patent Laid-Open No. 2006-120728 discloses a polishing liquid that contains an acidic additive that suppresses the etching action and can selectively polish a silicon nitride film.
  • the chemical mechanical polishing aqueous dispersion described in JP-A-2006-120728 described above requires a high polishing pressure of about 5 psi in order to achieve a practical polishing rate in CMP of a silicon nitride film.
  • the storage stability of the polishing liquid is poor, which causes problems such as pot life and scratches due to agglomerated abrasive grains.
  • some aspects according to the present invention can sufficiently increase the polishing rate ratio of the silicon nitride film to the silicon oxide film without requiring a high polishing pressure by solving the above-described problems, An aqueous dispersion for chemical mechanical polishing having good storage stability and a chemical mechanical polishing method using the same are provided.
  • the present invention has been made to solve at least a part of the above-described problems, and can be realized as the following aspects or application examples.
  • One aspect of the chemical mechanical polishing aqueous dispersion according to the present invention is: (A) silica particles having at least one functional group selected from the group consisting of sulfo groups and salts thereof; (B) an acidic compound; It is characterized by containing.
  • the (B) acidic compound may be an organic acid.
  • the pH can be 1 or more and 6 or less.
  • the zeta potential of the (A) silica particles in the chemical mechanical polishing aqueous dispersion may be ⁇ 20 mV or less.
  • the positively charged substrate may be a silicon nitride film.
  • One aspect of the chemical mechanical polishing method according to the present invention is: Using the chemical mechanical polishing aqueous dispersion described in any one of Application Examples 1 to 7, Among a plurality of substrates constituting a semiconductor device, a substrate having a positive charge is polished during chemical mechanical polishing.
  • the surface of silicon nitride is positively charged during chemical mechanical polishing, and the surface of silicon oxide is negatively charged during chemical mechanical polishing. ing. Therefore, according to the chemical mechanical polishing aqueous dispersion according to the present invention, (A) the surface of the silica particles having at least one functional group selected from a sulfo group and a salt thereof is negatively charged.
  • a positively charged substrate for example, silicon nitride film
  • the polishing rate ratio of the silicon nitride film to the silicon oxide film can be further increased by the synergistic effect with the acidic compound (B).
  • the chemical mechanical polishing aqueous dispersion according to the present invention polishes and removes the silicon nitride film in a semiconductor device in which the silicon nitride film is dished with respect to the silicon nitride film by CMP using the silicon nitride film as a stopper.
  • the effect can be exhibited in the usage.
  • FIG. 1 is a cross-sectional view schematically showing a target object suitable for use in the chemical mechanical polishing method according to the present embodiment.
  • FIG. 2 is a cross-sectional view schematically showing the object to be processed at the end of the first polishing process.
  • FIG. 3 is a cross-sectional view schematically showing the object to be processed at the end of the second polishing step.
  • FIG. 4 is a perspective view schematically showing a chemical mechanical polishing apparatus.
  • FIG. 5 is a cross-sectional view schematically showing the target object used in the experimental example.
  • FIG. 6 is a cross-sectional view schematically showing the object to be processed at the end of preliminary polishing.
  • FIG. 7 is a cross-sectional view schematically showing the object to be processed at the end of the main polishing.
  • Chemical mechanical polishing aqueous dispersion includes (A) silica particles having at least one functional group selected from the group consisting of a sulfo group and a salt thereof. (Hereinafter also referred to simply as “(A) silica particles”) and (B) an acidic compound.
  • silica particles having at least one functional group selected from the group consisting of a sulfo group and a salt thereof.
  • (B) an acidic compound As hereinafter, each component contained in the chemical mechanical polishing aqueous dispersion according to the present embodiment will be described in detail.
  • the chemical mechanical polishing aqueous dispersion according to this embodiment contains (A) silica particles having at least one functional group selected from the group consisting of a sulfo group and a salt thereof as abrasive grains.
  • the silica particles used in the present embodiment are silica particles in which at least one functional group selected from the group consisting of a sulfo group and a salt thereof is fixed on the surface via a covalent bond.
  • it does not include those in which a compound having at least one functional group selected from the group consisting of a sulfo group and a salt thereof is physically or ionically adsorbed on the surface.
  • sulfo group salt refers to a functional group in which a hydrogen ion contained in a sulfo group (—SO 3 H) is substituted with a cation such as a metal ion or an ammonium ion.
  • the silica particles used in the present embodiment can be manufactured as follows.
  • silica particles examples include fumed silica and colloidal silica. Colloidal silica is preferable from the viewpoint of reducing polishing defects such as scratches.
  • colloidal silica for example, those produced by a known method as described in JP-A No. 2003-109921 can be used.
  • silica particles having at least one functional group selected from the group consisting of (A) a sulfo group and a salt thereof usable in the present embodiment are produced. Can do.
  • a method for modifying the surface of the silica particles will be exemplified, but the present invention is not limited to these specific examples.
  • the modification of the surface of the silica particles is disclosed in JP 2010-269985A and Ind. Eng. Chem. , Vol. 12, no. 6, (2006) 911-917 and the like can be applied.
  • it can be achieved by covalently bonding the mercapto group-containing silane coupling agent to the surface of the silica particles by sufficiently stirring the silica particles and the mercapto group-containing silane coupling agent in an acidic medium.
  • the mercapto group-containing silane coupling agent include 3-mercaptopropylmethyldimethoxysilane and 3-mercaptopropyltrimethoxysilane.
  • silica particles having at least one functional group selected from the group consisting of a sulfo group and a salt thereof can be obtained.
  • the average particle diameter of the silica particles can be obtained by measuring the chemical mechanical polishing aqueous dispersion according to the present embodiment by a dynamic light scattering method.
  • the average particle diameter of (A) silica particles is preferably 15 nm or more and 100 nm or less, and more preferably 30 nm or more and 70 nm or less.
  • a practical polishing rate may be achieved. Furthermore, there is a tendency that the polishing rate of the silicon oxide film can be suppressed.
  • the particle size measurement apparatus using the dynamic light scattering method examples include a nanoparticle analyzer “Delsa Nano S” manufactured by Beckman Coulter, “Zetasizer nano zs” manufactured by Malvern, and the like.
  • the average particle diameter measured using the dynamic light scattering method represents the average particle diameter of secondary particles formed by aggregating a plurality of primary particles.
  • the zeta potential of the silica particles is a negative potential in the chemical mechanical polishing aqueous dispersion when the pH of the chemical mechanical polishing aqueous dispersion is 1 or more and 6 or less, and the negative potential is ⁇ 20 mV or less. It is preferable. When the negative potential is ⁇ 20 mV or less, the electrostatic repulsion between the particles can effectively prevent the particles from aggregating and can selectively polish a positively charged substrate during chemical mechanical polishing. Examples of the zeta potential measuring device include “ELSZ-1” manufactured by Otsuka Electronics Co., Ltd., “Zetasizer nano zs” manufactured by Malvern, and the like.
  • the zeta potential of the silica particles can be appropriately adjusted by increasing or decreasing the amount of the mercapto group-containing silane coupling agent described above.
  • the content of (A) silica particles is preferably 1% by mass or more and 10% by mass or less, more preferably 2% by mass or more and 8% by mass or less, and particularly preferably based on the total mass of the chemical mechanical polishing aqueous dispersion. It is 3 mass% or more and 6 mass% or less.
  • the chemical mechanical polishing aqueous dispersion according to this embodiment contains (B) an acidic compound.
  • an acidic compound an organic acid and an inorganic acid are mentioned. Therefore, the chemical mechanical polishing aqueous dispersion according to the present embodiment can use at least one selected from organic acids and inorganic acids.
  • the acidic compound has the effect of increasing the polishing rate of the silicon nitride film in particular due to the synergistic effect with (A) silica particles.
  • the organic acid is not particularly limited, and examples thereof include malonic acid, maleic acid, citric acid, malic acid, tartaric acid, oxalic acid, lactic acid, and the like, and salts thereof.
  • the inorganic acid is not particularly limited, and examples thereof include salts and derivatives thereof such as phosphoric acid, sulfuric acid, hydrochloric acid, and nitric acid.
  • the (B) acidic compounds exemplified above may be used singly or in combination of two or more.
  • the acidic compound is preferably an organic acid, more preferably tartaric acid, malic acid, or citric acid, and particularly preferably tartaric acid, for use in polishing a silicon nitride film.
  • the tartaric acid, malic acid and citric acid exemplified above have two or more carboxyl groups and one or more hydroxyl groups in the molecule. Since this hydroxyl group can form a hydrogen bond with a nitrogen atom existing in the silicon nitride film, a large amount of the organic acids exemplified above are present on the surface of the silicon nitride film. Thereby, the polishing rate of the silicon nitride film can be increased by the etching action of the carboxyl group in the organic acid exemplified above.
  • the polishing rate for the silicon nitride film can be increased.
  • the content of the (B) acidic compound is preferably 0.1% by mass or more and 5% by mass or less, more preferably 0.2% by mass or more and 1% by mass with respect to the total mass of the chemical mechanical polishing aqueous dispersion. % Or less, particularly preferably 0.2% by mass or more and 0.5% by mass or less.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment contains a dispersion medium.
  • the dispersion medium include water, a mixed medium of water and alcohol, a mixed medium containing water and an organic solvent having compatibility with water, and the like. Among these, water, a mixed medium of water and alcohol are preferably used, and water is more preferably used.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment may further contain additives such as a surfactant, a water-soluble polymer, a corrosion inhibitor, and a pH adjuster as necessary.
  • additives such as a surfactant, a water-soluble polymer, a corrosion inhibitor, and a pH adjuster as necessary.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment may further contain a surfactant as necessary.
  • the surfactant has an effect of imparting an appropriate viscosity to the chemical mechanical polishing aqueous dispersion.
  • the viscosity of the chemical mechanical polishing aqueous dispersion is preferably adjusted to be 0.5 mPa ⁇ s or more and less than 10 mPa ⁇ s at 25 ° C.
  • the surfactant is not particularly limited, and examples thereof include anionic surfactants, cationic surfactants, and nonionic surfactants.
  • anionic surfactants include carboxylates such as fatty acid soaps and alkyl ether carboxylates; sulfonates such as alkylbenzene sulfonates, alkylnaphthalene sulfonates, and ⁇ -olefin sulfonates; higher alcohol sulfates Examples thereof include sulfates such as ester salts, alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates; phosphate ester salts such as alkyl phosphates; and fluorine-containing surfactants such as perfluoroalkyl compounds.
  • carboxylates such as fatty acid soaps and alkyl ether carboxylates
  • sulfonates such as alkylbenzene sulfonates, alkylnaphthalene sulfonates, and ⁇ -olefin sulfonates
  • higher alcohol sulfates examples thereof include
  • Examples of the cationic surfactant include aliphatic amine salts and aliphatic ammonium salts.
  • nonionic surfactant examples include a nonionic surfactant having a triple bond such as acetylene glycol, acetylene glycol ethylene oxide adduct, and acetylene alcohol; a polyethylene glycol type surfactant.
  • a nonionic surfactant having a triple bond such as acetylene glycol, acetylene glycol ethylene oxide adduct, and acetylene alcohol
  • polyethylene glycol type surfactant examples include Polyvinyl alcohol, cyclodextrin, polyvinyl methyl ether, hydroxyethyl cellulose and the like can also be used.
  • alkylbenzene sulfonates are preferable, and potassium dodecylbenzenesulfonate and ammonium dodecylbenzenesulfonate are more preferable.
  • surfactants may be used singly or in combination of two or more.
  • the content of the surfactant is preferably 0.001% by mass or more and 5% by mass or less, more preferably 0.01% by mass or more and 0.5% by mass or less, with respect to the total mass of the chemical mechanical polishing aqueous dispersion. Especially preferably, it is 0.05 mass% or more and 0.2 mass% or less.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment may further contain a water-soluble polymer, if necessary.
  • the water-soluble polymer has the effect of adsorbing to the surface of the silicon nitride film and reducing polishing friction. Due to this effect, the occurrence of dishing of the silicon nitride film can be reduced.
  • water-soluble polymers examples include polyacrylamide, polyacrylic acid, polyvinyl alcohol, polyvinyl pyrrolidone, and hydroxyethyl cellulose.
  • the content of the water-soluble polymer can be adjusted so that the viscosity of the chemical mechanical polishing aqueous dispersion is less than 10 mPa ⁇ s.
  • the chemical mechanical polishing aqueous dispersion according to this embodiment may further contain an anticorrosive agent as necessary.
  • the corrosion inhibitor include benzotriazole and derivatives thereof.
  • the benzotriazole derivative means one obtained by substituting one or more hydrogen atoms of benzotriazole with, for example, a carboxyl group, a methyl group, an amino group, a hydroxyl group or the like.
  • the benzotriazole derivatives include 4-carboxylbenzotriazole and its salt, 7-carboxybenzotriazole and its salt, benzotriazole butyl ester, 1-hydroxymethylbenzotriazole, 1-hydroxybenzotriazole and the like.
  • the addition amount of the anticorrosive is preferably 1% by mass or less, more preferably 0.001% by mass or more and 0.1% by mass or less, with respect to the total mass of the chemical mechanical polishing aqueous dispersion.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment may further contain a pH adjuster as necessary.
  • the pH adjuster include basic compounds such as potassium hydroxide, ethylenediamine, TMAH (tetramethylammonium hydroxide), and ammonia. Since the chemical mechanical polishing aqueous dispersion according to this embodiment contains the acidic compound (B) as described above, the pH can be adjusted using the basic compound exemplified above.
  • the pH of the chemical mechanical polishing aqueous dispersion according to the present embodiment is not particularly limited, but is preferably 1 or more and 6 or less, more preferably 2 or more and 4 or less.
  • the pH is within the above range, the polishing rate of the silicon nitride film can be increased, while the polishing rate of the silicon oxide film can be further decreased. As a result, the silicon nitride film can be selectively polished.
  • the pH is 2 or more and 4 or less because the storage stability of the chemical mechanical polishing aqueous dispersion is improved.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment is mainly used as a polishing material for polishing a positively charged substrate during chemical mechanical polishing among a plurality of substrates constituting a semiconductor device. Can do. Typical substrates that are positively charged during chemical mechanical polishing include silicon nitride films, doped polysilicon, and the like. The chemical mechanical polishing aqueous dispersion according to the present embodiment is particularly suitable for use in polishing a silicon nitride film among these.
  • the polishing rate ratio of the silicon nitride film to the silicon oxide film of the chemical mechanical polishing aqueous dispersion according to the present embodiment is such that when each of the silicon oxide film and the silicon nitride film is polished under the same polishing conditions,
  • the value of “silicon nitride film polishing rate / silicon oxide film polishing rate” is preferably 3 or more, and more preferably 4 or more.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment can be prepared by dissolving or dispersing each component described above in a dispersion medium such as water.
  • the method for dissolving or dispersing is not particularly limited, and any method may be applied as long as it can be uniformly dissolved or dispersed. Further, the mixing order and mixing method of the components described above are not particularly limited.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment can be prepared as a concentrated stock solution and diluted with a dispersion medium such as water when used.
  • the chemical mechanical polishing method according to the present embodiment uses the chemical mechanical polishing aqueous dispersion according to the present invention described above, and performs chemical mechanical polishing among a plurality of substrates constituting a semiconductor device.
  • a substrate having a positive charge for example, a silicon nitride film
  • is polished for example, a specific example of the chemical mechanical polishing method according to the present embodiment will be described in detail with reference to the drawings.
  • FIG. 1 is a cross-sectional view schematically showing a target object suitable for use in the chemical mechanical polishing method according to the present embodiment.
  • the target object 100 is formed through the following steps (1) to (4).
  • a silicon substrate 10 is prepared.
  • a functional device such as a transistor (not shown) may be formed on the silicon substrate 10.
  • a first silicon oxide film 12 is formed on the silicon substrate 10 by using a CVD method or a thermal oxidation method. Further, a silicon nitride film 14 is formed on the first silicon oxide film 12 by using the CVD method.
  • the silicon nitride film 14 is patterned.
  • the trench 20 is formed by applying a lithography method or an etching method.
  • FIG. 2 is a cross-sectional view schematically showing the object to be processed at the end of the first polishing process.
  • the silicon nitride film 14 serves as a stopper, and polishing can be stopped on the surface of the silicon nitride film 14. At this time, dishing occurs in the trench 20 filled with silicon oxide.
  • the silicon nitride film 14 remains, but a polishing residue of the second silicon oxide film 16 often remains on the silicon nitride film 14. This polishing residue may affect the subsequent polishing of the silicon nitride film 14.
  • FIG. 3 is a cross-sectional view schematically showing the object to be processed at the end of the second polishing step.
  • the chemical mechanical polishing aqueous dispersion according to this embodiment has a sufficiently high polishing rate ratio of the silicon nitride film to the silicon oxide film, and the polishing rate of the silicon oxide film is not extremely low.
  • the silicon nitride film 14 can be smoothly polished and removed without being affected by the residue. In this way, a semiconductor device in which silicon oxide is embedded in the trench 20 as shown in FIG. 3 can be obtained.
  • the chemical mechanical polishing method according to the present embodiment can be applied to, for example, trench isolation (STI).
  • STI trench isolation
  • FIG. 4 is a perspective view schematically showing the chemical mechanical polishing apparatus 200.
  • Each polishing step supplies a slurry (chemical mechanical polishing aqueous dispersion) 44 from a slurry supply nozzle 42 and rotates a turntable 48 to which a polishing cloth 46 is attached while holding a semiconductor substrate 50. This is done by bringing 52 into contact.
  • the water supply nozzle 54 and the dresser 56 are also shown.
  • the pressing pressure of the carrier head 52 can be selected within a range of 10 to 1,000 hPa, and preferably 30 to 500 hPa. Further, the rotational speeds of the turntable 48 and the carrier head 52 can be appropriately selected within the range of 10 to 400 rpm, and preferably 30 to 150 rpm.
  • the flow rate of the slurry (chemical mechanical polishing aqueous dispersion) 44 supplied from the slurry supply nozzle 42 can be selected within the range of 10 to 1,000 mL / min, and preferably 50 to 400 mL / min.
  • polishing apparatus for example, manufactured by Ebara Manufacturing Co., Ltd., types “EPO-112”, “EPO-222”; manufactured by Lapmaster SFT, model “LGP-510”, “LGP-552”; , “Mirra”, “Reflexion” and the like.
  • aqueous dispersion having a solid content concentration of 15%. did.
  • a dynamic light scattering particle size measuring device manufactured by Horiba, Ltd., type “LB550”
  • the arithmetic average diameter is the average particle size. It was 35 nm when measured.
  • colloidal silica aqueous dispersions with other average particle sizes (10 nm, 50 nm, 70 nm, 130 nm) were prepared by appropriately adjusting the amount of tetraethoxysilane added and the stirring time in the same manner as described above.
  • sica type B an aqueous dispersion containing normal colloidal silica obtained as described above is referred to as “silica type B”.
  • colloidal silica having at least one functional group selected from the group consisting of a sulfo group and a salt thereof.
  • a dynamic light scattering particle size measuring device manufactured by Horiba, Ltd., type “LB550” for a sample obtained by extracting a part of this aqueous dispersion and diluting with ion-exchanged water, the arithmetic average diameter is the average particle size. It was 35 nm when measured.
  • colloidal silica aqueous dispersions having other average particle sizes (10 nm, 50 nm, 70 nm, and 130 nm)
  • the surface of colloidal silica could be modified with sulfo groups in the same manner as described above.
  • the average particle size of the sulfo group-modified colloidal silica aqueous dispersion other than the above was also measured in the same manner as described above, no increase or decrease in the average particle size could be confirmed.
  • the aqueous dispersion containing the sulfo group-modified colloidal silica obtained as described above is referred to as “silica type A”.
  • aqueous dispersion for chemical mechanical polishing A predetermined amount of the aqueous dispersion prepared in “3.2. Preparation of aqueous dispersion containing sulfo group-modified colloidal silica” was put into a polyethylene bottle having a capacity of 1000 cm 3 , The acidic substances listed in the table were added thereto so as to have the contents described in the table, and stirred sufficiently. Thereafter, ion-exchanged water was added while stirring to adjust to a predetermined silica concentration, and then ammonia was used to obtain a predetermined pH described in the table. Thereafter, the mixture was filtered with a filter having a pore diameter of 5 ⁇ m, and chemical mechanical polishing aqueous dispersions of Examples 1 to 10 and Comparative Examples 1 to 5 were obtained.
  • the zeta potential of the sulfo group-modified colloidal silica was measured using a zeta potential measuring device (manufactured by Otsuka Electronics Co., Ltd., type “ELSZ-1”). The results are also shown in Table 1 and Table 2.
  • the film thickness before polishing is an optical interference type film thickness meter “NanoSpec 6100” manufactured by Nanometrics Japan Co., Ltd. Was measured in advance and polished for 1 minute under the above conditions.
  • the film thickness of the polished object after polishing was similarly measured using an optical interference film thickness meter, and the difference between the film thickness before and after polishing, that is, the film thickness decreased by chemical mechanical polishing was determined. Then, the polishing rate was calculated from the film thickness decreased by chemical mechanical polishing and the polishing time. The results are also shown in Tables 1 and 2.
  • Comparative Example 1 is an example in which sulfo group-modified colloidal silica is used but does not contain an acidic substance. In this case, the polishing rate ratio is insufficient and cannot be applied.
  • Comparative Examples 2 to 4 are examples in which normal colloidal silica was used and the type of acidic substance was changed.
  • the polishing rate ratio of the silicon nitride film to the silicon oxide film is small and the storage stability is poor, so that it cannot be applied.
  • Comparative Example 5 is an example using ordinary colloidal silica having a small average particle diameter. Although the polishing rate ratio is increased, it cannot be applied because the polishing rate is too low and the storage stability is poor.
  • Experimental Example Chemical mechanical polishing was performed using a test wafer embedded with a silicon nitride film in advance. Specifically, as the object to be processed 300, 864 CMP (a test wafer manufactured by Advanced Materials Technology, Inc. having a cross-sectional structure as shown in FIG. 5, the first silicon oxide film 112 on the bare silicon 110. Then, after sequentially depositing the silicon nitride film 114, a groove process is performed by lithography, and a second silicon oxide film 116 is further deposited by a high-density plasma CVD method).
  • the test wafer was preliminarily polished using CMS4301 and CMS4302 made by JSR Corporation until the upper surface of the silicon nitride film 114 was exposed under the following polishing condition 2.
  • the exposure of the silicon nitride film 114 was confirmed by detecting a change in the table torque current of the polishing machine with an end point detector.
  • ⁇ Polishing condition 2> ⁇ Polishing device: Ebara Manufacturing Co., Ltd., model “EPO-112” ⁇ Polishing pad: “IC1000 / K-Groove” manufactured by Rodel Nitta Co., Ltd. ⁇ Chemical mechanical polishing aqueous dispersion supply speed: 200 mL / min ⁇ Surface plate rotation speed: 100 rpm -Carrier head rotation speed: 110 rpm -Carrier pressing pressure: 210 hPa
  • FIG. 6 is a cross-sectional view schematically showing the state of the object to be processed (864 CMP) after preliminary polishing.
  • the second silicon oxide film 116 formed on the silicon nitride film 114 was completely removed from the surface to be polished after the chemical mechanical polishing.
  • the thickness of the silicon nitride film 114 in a 100 ⁇ m pitch with a pattern density of 50% was measured by an optical interference type film thickness meter “NanoSpec 6100”, the thickness of the silicon nitride film 114 was about 150 nm.
  • the depth of dishing of the second silicon oxide film 116 with respect to the silicon nitride film 114 was measured by a stylus type step difference measuring device “HRP240”, the depth of dishing was about 40 nm.
  • FIG. 7 is a cross-sectional view schematically showing the state of the object to be processed (864 CMP) after the main polishing.
  • the thickness of the silicon nitride film 114 in the polished surface after the main polishing was almost 0 nm.
  • the depth of dishing within a 100 ⁇ m pitch with a pattern density of 50% is about 20 nm, which proves suitable for expecting element isolation performance.
  • the chemical mechanical polishing aqueous dispersion according to the present embodiment has a sufficiently high polishing rate ratio of the silicon nitride film to the silicon oxide film, the semiconductor device in which the silicon oxide film and the silicon nitride film coexist It was found that the silicon nitride film can be selectively polished.
  • 10 ⁇ 110 silicon substrate (bare silicon), 12 ⁇ 112 ... first silicon oxide film, 14 ⁇ 114 ... silicon nitride film, 16 ⁇ 116 ... second silicon oxide film, 20 ... trench, 42 ... slurry supply nozzle, 44 ... Slurry, 46 ... Polish cloth, 48 ... Turntable, 50 ... Semiconductor substrate, 52 ... Carrier head, 54 ... Water supply nozzle, 56 ... Dresser, 100/200 ... Subject, 300 ... Chemical mechanical polishing apparatus

Abstract

 本発明に係る化学機械研磨用水系分散体は、(A)スルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有するシリカ粒子と、(B)酸性化合物と、を含有することを特徴とする。

Description

化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
 本発明は、化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法に関する。
 従来、シリコン酸化膜やポリシリコン膜の化学機械研磨(以下、「CMP」ともいう)において実用的な研磨速度を達成できる化学機械研磨用水系分散体はありふれていたが、その一方で、シリコン窒化膜のCMPにおいて実用的な研磨速度を達成できる化学機械研磨用水系分散体は、ほとんど存在しないという実態があった。このような実態から、シリコン窒化膜をストッパーとし、該シリコン窒化膜の上に形成されたシリコン酸化膜をCMPにより除去する方法が利用されている。そして、最終的には、ストッパーであるシリコン窒化膜についても除去する必要がある。
 シリコン窒化膜を除去する方法としては、従来から熱リン酸でエッチング処理する方法が用いられている。しかしながら、この方法は、エッチング処理を時間で制御するため、シリコン窒化膜の残膜が発生したり、シリコン窒化膜の下層にダメージを与えてしまうことがあった。そこで、シリコン窒化膜についてもCMPにより除去する方法が望まれていた。
 シリコン窒化膜をCMPにより選択的に除去するためには、シリコン酸化膜に対するシリコン窒化膜の研磨速度比(以下、「選択比」ともいう)を十分に大きくしなければならない。このような特性を備えた化学機械研磨用水系分散体は、以下に示すようにいくつか提案されている。
 例えば、特開平11-176773号公報には、リン酸またはリン酸誘導体と、粒径が10nm以下のシリカと、を含有する研磨液を用いて、シリコン窒化膜を選択的に研磨する方法が開示されている。特開2004-214667号公報には、リン酸、硝酸、フッ酸を含有し、pHを1~5に調整した研磨液を用いてシリコン窒化膜を研磨する方法が開示されている。特開2006-120728号公報には、エッチング作用を抑制させた酸性添加剤を含有し、シリコン窒化膜を選択的に研磨し得る研磨液が開示されている。
 しかしながら、前述した特開平11-176773号公報および特開2004-214667号公報に記載の化学機械研磨用水系分散体では、選択比は満足できるレベルではあるが、貯蔵安定性が不良であるため、産業上利用することが困難であった。
 一方、前述した特開2006-120728号公報に記載の化学機械研磨用水系分散体では、シリコン窒化膜のCMPにおいて実用的な研磨速度を達成するためには5psi程度の高研磨圧を要するという点や、高選択比が示されているpH領域では研磨液の貯蔵安定性が悪いためポットライフの問題や凝集した砥粒によるスクラッチ等の問題があった。
 そこで、本発明に係る幾つかの態様は、前記課題を解決することで、高研磨圧を要せずに、シリコン酸化膜に対するシリコン窒化膜の研磨速度比を十分に大きくすることができると共に、貯蔵安定性が良好な化学機械研磨用水系分散体、およびそれを用いた化学機械研磨方法を提供するものである。
 本発明は前述の課題の少なくとも一部を解決するためになされたものであり、以下の態様または適用例として実現することができる。
 [適用例1]
 本発明に係る化学機械研磨用水系分散体の一態様は、
 (A)スルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有するシリカ粒子と、
 (B)酸性化合物と、
を含有することを特徴とする。
 [適用例2]
 適用例1において、
 前記(B)酸性化合物は、有機酸であることができる。
 [適用例3]
 適用例1または適用例2において、
 pHが、1以上6以下であることができる。
 [適用例4]
 適用例3において、
 化学機械研磨用水系分散体中における前記(A)シリカ粒子のゼータ電位が、-20mV以下であることができる。
 [適用例5]
 適用例1ないし適用例4のいずれか一例において、
 前記(A)シリカ粒子の平均粒子径が、動的光散乱法を用いて測定した場合において、15nm以上100nm以下であることができる。
 [適用例6]
 適用例1ないし適用例5のいずれか一例に記載の化学機械研磨用水系分散体は、
 半導体装置を構成する複数の基板のうち、化学機械研磨の際に正電荷を帯びる基板を研磨するために用いることができる。
 [適用例7]
 適用例6において、
 前記正電荷を帯びる基板が、シリコン窒化膜であることができる。
 [適用例8]
 本発明に係る化学機械研磨方法の一態様は、
 適用例1ないし適用例7のいずれか一例に記載の化学機械研磨用水系分散体を用いて、
 半導体装置を構成する複数の基板のうち、化学機械研磨の際に正電荷を帯びる基板を研磨することを特徴とする。
 半導体装置を構成する基板の中でも、シリコン窒化物の表面は化学機械研磨の際に正電荷を帯びており、シリコン酸化物の表面は化学機械研磨の際に負電荷を帯びていることが知られている。したがって、本発明に係る化学機械研磨用水系分散体によれば、(A)スルホ基およびその塩から選択される少なくとも1種の官能基を有するシリカ粒子の表面が負の電荷を帯びているため、化学機械研磨の際に正電荷を帯びる基板(例えば、シリコン窒化膜)を選択的に研磨することができる。さらに、(B)酸性化合物との相乗効果により、特にシリコン酸化膜に対するシリコン窒化膜の研磨速度比をより大きくすることができる。
 また、本発明に係る化学機械研磨用水系分散体は、シリコン窒化膜をストッパーとし、CMPによりシリコン窒化膜に対してシリコン酸化膜がディッシングしているような半導体装置において、シリコン窒化膜を研磨除去する用途で特に効果を発揮することができる。
図1は、本実施の形態に係る化学機械研磨方法の使用に適した被処理体を模式的に示した断面図である。 図2は、第1研磨工程終了時の被処理体を模式的に示した断面図である。 図3は、第2研磨工程終了時の被処理体を模式的に示した断面図である。 図4は、化学機械研磨装置を模式的に示した斜視図である。 図5は、実験例で使用した被処理体を模式的に示した断面図である。 図6は、予備研磨終了時の被処理体を模式的に示した断面図である。 図7は、本研磨終了時の被処理体を模式的に示した断面図である。
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、下記の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変型例も含む。
 1.化学機械研磨用水系分散体
 本発明の一実施の形態に係る化学機械研磨用水系分散体は、(A)スルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有するシリカ粒子(以下、単に「(A)シリカ粒子」ともいう)と、(B)酸性化合物と、を含有することを特徴とする。以下、本実施の形態に係る化学機械研磨用水系分散体に含まれる各成分について、詳細に説明する。
 1.1.(A)シリカ粒子
 本実施の形態に係る化学機械研磨用水系分散体は、砥粒として(A)スルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有するシリカ粒子を含有する。すなわち、本実施の形態において使用されるシリカ粒子は、その表面にスルホ基およびその塩からなる群から選択される少なくとも1種の官能基が共有結合を介して表面に固定されたシリカ粒子であり、その表面にスルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有する化合物が物理的あるいはイオン的に吸着したようなものは含まれない。また、本発明において、「スルホ基の塩」とは、スルホ基(-SOH)に含まれている水素イオンを金属イオンやアンモニウムイオン等の陽イオンで置換した官能基のことをいう。
 本実施の形態において使用されるシリカ粒子は、以下のようにして製造することができる。
 まず、シリカ粒子を用意する。シリカ粒子としては、例えば、ヒュームドシリカ、コロイダルシリカ等が挙げられるが、スクラッチ等の研磨欠陥を低減する観点から、コロイダルシリカが好ましい。コロイダルシリカは、例えば、特開2003-109921号公報等に記載されているような公知の方法で製造されたものを使用することができる。このようなシリカ粒子の表面を修飾することにより、本実施の形態で使用可能な(A)スルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有するシリカ粒子を製造することができる。以下にシリカ粒子の表面を修飾する方法を例示するが、本発明はこの具体例により何ら限定されるものではない。
 シリカ粒子の表面の修飾は、特開2010-269985号公報や、J.Ind.Eng.Chem.,Vol.12,No.6,(2006)911-917等に記載されているような公知の方法を適用することが可能である。例えば前記シリカ粒子とメルカプト基含有シランカップリング剤を酸性媒体中で十分に撹拌することにより、前記シリカ粒子の表面にメルカプト基含有シランカップリング剤を共有結合させることで達成できる。メルカプト基含有シランカップリング剤としては、例えば、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン等が挙げられる。
 次に、さらに過酸化水素を適量添加して十分に放置することにより、スルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有するシリカ粒子を得ることができる。
 (A)シリカ粒子の平均粒子径は、本実施の形態に係る化学機械研磨用水系分散体を動的光散乱法で測定することによって得られる。かかる場合、(A)シリカ粒子の平均粒子径は、15nm以上100nm以下であることが好ましく、30nm以上70nm以下であることがより好ましい。(A)シリカ粒子の平均粒子径が前記範囲であると、実用的な研磨速度を達成することができる場合がある。さらに、シリコン酸化膜の研磨速度が抑制できる傾向がある。動的光散乱法による粒子径測定装置としては、ベックマン・コールター社製のナノ粒子アナライザー「DelsaNano S」、Malvern社製の「Zetasizer nano zs」等が挙げられる。なお、動的光散乱法を用いて測定した平均粒子径は、一次粒子が複数個凝集して形成された二次粒子の平均粒子径を表している。
 (A)シリカ粒子のゼータ電位は、化学機械研磨用水系分散体のpHが1以上6以下の場合、化学機械研磨用水系分散体中において負電位であり、その負電位は-20mV以下であることが好ましい。負電位が-20mV以下であると、粒子間の静電反発力によって効果的に粒子同士の凝集を防ぐと共に、化学機械研磨の際に正電荷を帯びる基板を選択的に研磨できる場合がある。なお、ゼータ電位測定装置としては、大塚電子株式会社製の「ELSZ-1」、Malvern社製の「Zetasizer nano zs」等が挙げられる。(A)シリカ粒子のゼータ電位は、前述したメルカプト基含有シランカップリング剤の添加量を増減することにより適宜調整することができる。
 (A)シリカ粒子の含有量は、化学機械研磨用水系分散体の全質量に対して、好ましくは1質量%以上10質量%以下、より好ましくは2質量%以上8質量%以下、特に好ましくは3質量%以上6質量%以下である。
 1.2.(B)酸性化合物
 本実施の形態に係る化学機械研磨用水系分散体は、(B)酸性化合物を含有する。(B)酸性化合物としては、有機酸および無機酸が挙げられる。したがって、本実施の形態に係る化学機械研磨用水系分散体は、有機酸および無機酸から選択される少なくとも1種を使用することができる。(B)酸性化合物は、(A)シリカ粒子との相乗効果により、特にシリコン窒化膜の研磨速度を大きくする作用効果を奏する。
 有機酸としては、特に制限されないが、例えば、マロン酸、マレイン酸、クエン酸、リンゴ酸、酒石酸、シュウ酸、乳酸等、およびこれらの塩が挙げられる。
 無機酸としては、特に制限されないが、例えば、リン酸、硫酸、塩酸、硝酸等、これらの塩および誘導体が挙げられる。
 前記例示した(B)酸性化合物は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (B)酸性化合物としては、シリコン窒化膜を研磨する用途においては、有機酸が好ましく、酒石酸、リンゴ酸、クエン酸がより好ましく、酒石酸が特に好ましい。前記例示した酒石酸、リンゴ酸およびクエン酸は、分子内に2以上のカルボキシル基および1以上のヒドロキシル基を有している。このヒドロキシル基は、シリコン窒化膜中に存在する窒素原子と水素結合することができるので、シリコン窒化膜の表面に前記例示した有機酸が多く存在するようになる。これにより、前記例示した有機酸中のカルボキシル基がエッチング作用することで、シリコン窒化膜の研磨速度を大きくすることができる。
 以上のように、(B)酸性化合物として前記例示した酒石酸、リンゴ酸、クエン酸を使用することで、シリコン窒化膜に対する研磨速度をより大きくすることができる。
 (B)酸性化合物の含有量は、化学機械研磨用水系分散体の全質量に対して、好ましくは0.1質量%以上5質量%以下であり、より好ましくは0.2質量%以上1質量%以下であり、特に好ましくは0.2質量%以上0.5質量%以下である。
 1.3.分散媒
 本実施の形態に係る化学機械研磨用水系分散体は、分散媒を含有する。分散媒としては、水、水およびアルコールの混合媒体、水および水との相溶性を有する有機溶媒を含む混合媒体等が挙げられる。これらの中でも、水、水およびアルコールの混合媒体を用いることが好ましく、水を用いることがより好ましい。
 1.4.その他の添加剤
 本実施の形態に係る化学機械研磨用水系分散体は、さらに必要に応じて界面活性剤、水溶性高分子、防蝕剤、pH調整剤等の添加剤を添加してもよい。以下、各添加剤について説明する。
 1.4.1.界面活性剤
 本実施の形態に係る化学機械研磨用水系分散体は、さらに必要に応じて界面活性剤を添加してもよい。界面活性剤には、化学機械研磨用水系分散体に適度な粘性を付与する効果がある。化学機械研磨用水系分散体の粘度は、25℃において0.5mPa・s以上10mPa・s未満となるように調製することが好ましい。
 界面活性剤としては、特に制限されず、アニオン性界面活性剤、カチオン性界面活性剤、非イオン性界面活性剤等が挙げられる。
 アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩;アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、α-オレフィンスルホン酸塩等のスルホン酸塩;高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩等の硫酸塩;アルキルリン酸エステル等のリン酸エステル塩;パーフルオロアルキル化合物等の含フッ素系界面活性剤等が挙げられる。
 カチオン性界面活性剤としては、例えば、脂肪族アミン塩、脂肪族アンモニウム塩等が挙げられる。
 非イオン性界面活性剤としては、例えば、アセチレングリコール、アセチレングリコールエチレンオキサイド付加物、アセチレンアルコール等の三重結合を有する非イオン性界面活性剤;ポリエチレングリコール型界面活性剤等が挙げられる。また、ポリビニルアルコール、シクロデキストリン、ポリビニルメチルエーテル、ヒドロキシエチルセルロース等を用いることもできる。
 前記例示した界面活性剤の中でも、アルキルベンゼンスルホン酸塩が好ましく、ドデシルベンゼンスルホン酸カリウム、ドデシルベンゼンスルホン酸アンモニウムがより好ましい。
 これらの界面活性剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 界面活性剤の含有量は、化学機械研磨用水系分散体の全質量に対して、好ましくは0.001質量%以上5質量%以下、より好ましくは0.01質量%以上0.5質量%以下、特に好ましくは0.05質量%以上0.2質量%以下である。
 1.4.2.水溶性高分子
 本実施の形態に係る化学機械研磨用水系分散体は、さらに必要に応じて水溶性高分子を添加してもよい。水溶性高分子には、シリコン窒化膜の表面に吸着し研磨摩擦を低減させる効果がある。この効果により、シリコン窒化膜のディッシングの発生を低減することができる。
 水溶性高分子としては、ポリアクリルアミド、ポリアクリル酸、ポリビニルアルコール、ポリビニルピロリドン、ヒドロキシエチルセルロース等が挙げられる。
 水溶性高分子の含有量は、化学機械研磨用水系分散体の粘度が10mPa・s未満となるように調整することができる。
 1.4.3.防蝕剤
 本実施の形態に係る化学機械研磨用水系分散体は、さらに必要に応じて防蝕剤を添加してもよい。防蝕剤としては、例えば、ベンゾトリアゾールおよびその誘導体が挙げられる。ここで、ベンゾトリアゾール誘導体とは、ベンゾトリアゾールの有する1個または2個以上の水素原子を、例えば、カルボキシル基、メチル基、アミノ基、ヒドロキシル基等で置換したものをいう。ベンゾトリアゾール誘導体としては、4-カルボキシルベンゾトリアゾールおよびその塩、7-カルボキシベンゾトリアゾールおよびその塩、ベンゾトリアゾールブチルエステル、1-ヒドロキシメチルベンゾトリアゾールまたは1-ヒドロキシベンゾトリアゾール等が挙げられる。
 防蝕剤の添加量は、化学機械研磨用水系分散体の全質量に対して、好ましくは1質量%以下であり、より好ましくは0.001質量%以上0.1質量%以下である。
 1.4.4.pH調整剤
 本実施の形態に係る化学機械研磨用水系分散体は、さらに必要に応じてpH調整剤を添加してもよい。pH調整剤としては、例えば、水酸化カリウム、エチレンジアミン、TMAH(テトラメチルアンモニウムハイドロオキサイド)、アンモニア等の塩基性化合物が挙げられる。本実施の形態に係る化学機械研磨用水系分散体は、前述したように(B)酸性化合物を含有しているので、通常前記例示した塩基性化合物を用いてpHの調整を行うことができる。
 1.5.pH
 本実施の形態に係る化学機械研磨用水系分散体のpHは、特に制限されないが、好ましくは1以上6以下、より好ましくは2以上4以下である。pHが前記範囲にあると、シリコン窒化膜の研磨速度をより大きくすることができる一方で、シリコン酸化膜の研磨速度をより小さくすることができる。その結果、シリコン窒化膜を選択的に研磨することができる。さらに、pHが2以上4以下であると、化学機械研磨用水系分散体の貯蔵安定性が良好となるためより好ましい。
 1.6.用途
 本実施の形態に係る化学機械研磨用水系分散体は、主として半導体装置を構成する複数の基板のうち、化学機械研磨の際に正電荷を帯びる基板を研磨するための研磨材として使用することができる。化学機械研磨の際に正電荷を帯びる代表的な基板としては、シリコン窒化膜、ドープされたポリシリコン等が挙げられる。本実施の形態に係る化学機械研磨用水系分散体は、これらの中でもシリコン窒化膜を研磨する用途に特に適している。
 なお、本実施の形態に係る化学機械研磨用水系分散体のシリコン酸化膜に対するシリコン窒化膜の研磨速度比は、シリコン酸化膜、シリコン窒化膜のそれぞれを同一の研磨条件で研磨した際に、[シリコン窒化膜の研磨速度/シリコン酸化膜の研磨速度]の値が3以上であることが好ましく、4以上であることがより好ましいといえる。
 1.7.化学機械研磨用水系分散体の調製方法
 本実施の形態に係る化学機械研磨用水系分散体は、水等の分散媒に前述した各成分を溶解または分散させることにより調製することができる。溶解または分散させる方法は、特に制限されず、均一に溶解または分散できればどのような方法を適用してもよい。また、前述した各成分の混合順序や混合方法についても特に制限されない。
 また、本実施の形態に係る化学機械研磨用水系分散体は、濃縮タイプの原液として調製し、使用時に水等の分散媒で希釈して使用することもできる。
 2.化学機械研磨方法
 本実施の形態に係る化学機械研磨方法は、前述した本発明に係る化学機械研磨用水系分散体を用いて、半導体装置を構成する複数の基板のうち、化学機械研磨の際に正電荷を帯びる基板(例えば、シリコン窒化膜)を研磨することを特徴とする。以下、本実施の形態に係る化学機械研磨方法の一具体例について、図面を用いて詳細に説明する。
 2.1.被処理体
 図1は、本実施の形態に係る化学機械研磨方法の使用に適した被処理体を模式的に示した断面図である。被処理体100は、以下の工程(1)ないし(4)を経ることにより形成される。
 (1)まず、シリコン基板10を用意する。シリコン基板10には、(図示しない)トランジスタ等の機能デバイスが形成されていてもよい。
 (2)次に、シリコン基板10の上に、CVD法または熱酸化法を用いて第1酸化シリコン膜12を形成する。さらに、第1シリコン酸化膜12の上に、CVD法を用いてシリコン窒化膜14を形成する。
 (3)次に、シリコン窒化膜14をパターニングする。それをマスクとして、リソグラフィー法またはエッチング法を適用してトレンチ20を形成する。
 (4)次に、トレンチ20を充填するように、第2シリコン酸化膜16を高密度プラズマCVD法により堆積させると、被処理体100が得られる。
 2.2.化学機械研磨方法
 2.2.1.第1研磨工程
 まず、図1に示すような被処理体100のシリコン窒化膜14上に堆積した第2シリコン酸化膜16を除去するために、シリコン酸化膜の選択比が大きい化学機械研磨用水系分散体を用いて第1研磨工程を行う。図2は、第1研磨工程終了時の被処理体を模式的に示した断面図である。第1研磨工程では、シリコン窒化膜14がストッパーとなり、シリコン窒化膜14の表面で研磨を停止することができる。このとき、酸化シリコンが充填されたトレンチ20では、ディッシングが発生する。これにより、図2に示すように、シリコン窒化膜14が残るが、シリコン窒化膜14上には第2シリコン酸化膜16の研磨残渣がしばしば残存する。この研磨残渣は、その後のシリコン窒化膜14の研磨に影響を及ぼす場合がある。
 2.2.2.第2研磨工程
 次に、図2に示すシリコン窒化膜14を除去するために、前述した本実施の形態に係る化学機械研磨用水系分散体を用いて、第2研磨工程を行う。図3は、第2研磨工程終了時の被処理体を模式的に示した断面図である。本実施形態に係る化学機械研磨用水系分散体は、シリコン酸化膜に対するシリコン窒化膜の研磨速度比が十分に大きく、シリコン酸化膜の研磨速度が極端に低すぎないために、シリコン酸化膜の研磨残渣の影響を受けることなく、シリコン窒化膜14を円滑に研磨除去することができる。このようにして、図3に示すようなトレンチ20に酸化シリコンが埋め込まれた半導体装置を得ることができる。本実施の形態に係る化学機械研磨方法は、例えば、トレンチ分離(STI)等に適用することができる。
 2.3.化学機械研磨装置
 前述した第1研磨工程および第2研磨工程には、例えば、図4に示すような化学機械研磨装置200を用いることができる。図4は、化学機械研磨装置200を模式的に示した斜視図である。各研磨工程は、スラリー供給ノズル42からスラリー(化学機械研磨用水系分散体)44を供給し、かつ、研磨布46が貼付されたターンテーブル48を回転させながら、半導体基板50を保持したキャリアーヘッド52を当接させることにより行う。なお、図4には、水供給ノズル54およびドレッサー56も併せて示してある。
 キャリアーヘッド52の押し付け圧は、10~1,000hPaの範囲内で選択することができ、好ましくは30~500hPaである。また、ターンテーブル48およびキャリアーヘッド52の回転数は10~400rpmの範囲内で適宜選択することができ、好ましくは30~150rpmである。スラリー供給ノズル42から供給されるスラリー(化学機械研磨用水系分散体)44の流量は、10~1,000mL/分の範囲内で選択することができ、好ましくは50~400mL/分である。
 市販の研磨装置として、例えば、株式会社荏原製作所製、形式「EPO-112」、「EPO-222」;ラップマスターSFT社製、型式「LGP-510」、「LGP-552」;アプライドマテリアル社製、型式「Mirra」、「Reflexion」等が挙げられる。
 3.実施例
 以下、本発明を実施例により説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 3.1.コロイダルシリカを含む水分散体の調製
 容量2000cmのフラスコに、25質量%濃度のアンモニア水70g、イオン交換水40g、エタノール175gおよびテトラエトキシシラン21gを投入し、180rpmで撹拌しながら60℃に昇温した。60℃のまま1時間撹拌した後冷却し、コロイダルシリカ/アルコール分散体を得た。次いで、エバポレータにより、80℃でこの分散体にイオン交換水を添加しながらアルコール分を除去する操作を数回繰り返すことにより分散体中のアルコールを除き、固形分濃度15%の水分散体を調製した。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、動的光散乱式粒子径測定装置(株式会社堀場製作所製、形式「LB550」)を用い、算術平均径を平均粒子径として測定したところ、35nmであった。
 他の平均粒子径(10nm、50nm、70nm、130nm)のコロイダルシリカ水分散体は、上記の方法と同様の方法でテトラエトキシシランの添加量および撹拌時間を適宜調整することにより作製した。
 なお、表中において、上記のようにして得られた通常のコロイダルシリカを含む水分散体を「シリカタイプB」と称する。
 3.2.スルホ基修飾コロイダルシリカを含む水分散体の調製
 イオン交換水50gに酢酸5gを投入し、撹拌しながらさらにメルカプト基含有シランカップリング剤(信越化学工業株式会社製、商品名「KBE803」)5gを徐々に滴下した。30分後、「3.1.コロイダルシリカを含む水分散体の調製」において調製された水分散体を1000g添加し、さらに1時間撹拌を継続した。その後、31%過酸化水素水を200g投入し、48時間室温にて放置することにより、スルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有するコロイダルシリカを得た。この水分散体の一部を取り出しイオン交換水で希釈したサンプルについて、動的光散乱式粒子径測定装置(株式会社堀場製作所製、形式「LB550」)を用い、算術平均径を平均粒子径として測定したところ35nmであった。
 他の平均粒子径(10nm、50nm、70nm、130nm)のコロイダルシリカ水分散体についても、上記の方法と同様にしてコロイダルシリカの表面をスルホ基にて修飾することができた。上記以外のスルホ基修飾コロイダルシリカ水分散体の平均粒子径についても上記の方法と同様にして測定したところ、平均粒子径の増減は確認できなかった。
 なお、表中において、上記のようにして得られたスルホ基修飾コロイダルシリカを含む水分散体を「シリカタイプA」と称する。
 3.3.化学機械研磨用水系分散体の調製
 「3.2.スルホ基修飾コロイダルシリカを含む水分散体の調製」において調製された水分散体の所定量を容量1000cmのポリエチレン製の瓶に投入し、これに表記載の酸性物質を表記載の含有量となるようにそれぞれ添加し十分に撹拌した。その後、撹拌しながらイオン交換水を加え、所定のシリカ濃度となるように調節した後、さらにアンモニアを使用して表に記載の所定のpHとした。その後、孔径5μmのフィルタで濾過し、実施例1~10及び比較例1~5の化学機械研磨用水系分散体を得た。
 得られた化学機械研磨用水系分散体について、ゼータ電位測定装置(大塚電子株式会社製、形式「ELSZ-1」)を用いてスルホ基修飾コロイダルシリカのゼータ電位を測定した。その結果を表1および表2に併せて示す。
 3.4.化学機械研磨試験
 「3.3.化学機械研磨用水系分散体の調製」において調製した化学機械研磨用水系分散体を用いて、直径8インチのシリコン窒化膜またはシリコン酸化膜付きシリコン基板を被研磨体として、下記の研磨条件1でそれぞれの膜について化学機械研磨を行った。
<研磨条件1>
・研磨装置:株式会社荏原製作所製、形式「EPO-112」
・研磨パッド:ロデール・ニッタ株式会社製、「IC1000/K-Groove」
・化学機械研磨用水系分散体供給速度:200mL/分
・定盤回転数:90rpm
・研磨ヘッド回転数:90rpm
・研磨ヘッド押し付け圧:140hPa
 3.4.1.研磨速度の算出
 被研磨体である直径8インチのシリコン窒化膜またはシリコン酸化膜付き基板のそれぞれについて、研磨前の膜厚をナノメトリクス・ジャパン株式会社製の光干渉式膜厚計「NanoSpec 6100」を用いて予め測定しておき、上記の条件で1分間研磨を行った。研磨後の被研磨体の膜厚を、同様に光干渉式膜厚計を用いて測定し、研磨前と研磨後の膜厚の差、すなわち化学機械研磨により減少した膜厚を求めた。そして、化学機械研磨により減少した膜厚および研磨時間から研磨速度を算出した。この結果を表1~2に併せて示す。
 3.4.2.貯蔵安定性の評価
 「3.3.化学機械研磨用水系分散体の調製」の項で作製した化学機械研磨用水系分散体を、500ccのポリ瓶に500cc入れ、25℃の環境下で2週間貯蔵した。貯蔵前後の平均粒子径の変化について、動的光散乱式粒子径測定装置(株式会社堀場製作所製、形式「LB550」)を用い、算術平均径を平均粒子径として測定した。貯蔵前の粒子径に対し、貯蔵後の平均粒子径が5%未満の増大である場合には貯蔵安定性が非常に良好と判断し「◎」、5%以上10%未満の増大である場合は良好と判断し「○」、10%以上の増大である場合は不良と判断し「×」と表に記載した。
 3.4.3.評価結果
 実施例1~10では、シリコン酸化膜に対するシリコン窒化膜の研磨速度比が3以上に高められている。
 比較例1は、スルホ基修飾コロイダルシリカを用いているが、酸性物質を含まない例である。この場合には、研磨速度比が不十分であり適用できない。
 比較例2~4は、通常のコロイダルシリカを用い、酸性物質の種類を変更した例である。いずれの比較例においても、シリコン酸化膜に対するシリコン窒化膜の研磨速度比が小さく、貯蔵安定性が不良であるため適用できない。
 比較例5は、平均粒子径の小さい通常のコロイダルシリカを用いた例である。研磨速度比は高められているが、研磨速度が小さすぎ、貯蔵安定性が不良であるため適用できない。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 3.5.実験例
 あらかじめシリコン窒化膜が埋め込まれたテスト用ウエハを用いて、化学機械研磨を行った。具体的には、被処理体300として、864CMP(アドバンスマテリアルズテクノロジー社製のテスト用ウエハであり、図5に示すような断面構造を有するもので、ベアシリコン110上に第1シリコン酸化膜112、シリコン窒化膜114を順次堆積させた後、リソグラフィー加工により溝加工を行い、さらに第2シリコン酸化膜116を高密度プラズマCVD法により堆積させたもの)を用いた。
 前記テスト用ウエハは、あらかじめJSR株式会社製のCMS4301およびCMS4302を使用して、下記の研磨条件2でシリコン窒化膜114の上面が露出するまで予備研磨を行った。シリコン窒化膜114の露出は、研磨機のテーブルトルク電流の変化を終点検出器により検知することで確認した。
<研磨条件2>
・研磨装置:株式会社荏原製作所製、形式「EPO-112」
・研磨パッド:ロデール・ニッタ株式会社製、「IC1000/K-Groove」
・化学機械研磨用水系分散体供給速度:200mL/分
・定盤回転数:100rpm
・キャリアーヘッド回転数:110rpm
・キャリアー押し付け圧:210hPa
 図6は、予備研磨後の被処理体(864CMP)の状態を模式的に示す断面図である。化学機械研磨後の被研磨面は、図6に示すように、シリコン窒化膜114上に形成された第2シリコン酸化膜116が完全に除去されていた。光干渉式膜厚計「NanoSpec 6100」によりパターン密度50%の100μmピッチ内におけるシリコン窒化膜114の厚さを測定したところ、シリコン窒化膜114の厚さは約150nmであった。
 また、シリコン窒化膜114に対する第2シリコン酸化膜116のディッシングの深さを触針式段差測定装置「HRP240」により測定したところ、ディッシングの深さは約40nmであった。
 最後に、実施例1で使用した化学機械研磨用水系分散体を使用して、前記研磨条件1で150秒間本研磨を行った。図7は、本研磨後の被処理体(864CMP)の状態を模式的に示す断面図である。
 図7に示すように、本研磨後の被研磨面内におけるシリコン窒化膜114の厚さは、ほぼ0nmであった。パターン密度50%の100μmピッチ内におけるディッシングの深さは、約20nmであり、素子分離性能を期待する上で好適であることが分かった。
 以上のことから、本実施の形態に係る化学機械研磨用水系分散体は、シリコン酸化膜に対するシリコン窒化膜の研磨速度比が十分に大きいため、シリコン酸化膜とシリコン窒化膜とが共存する半導体装置においてシリコン窒化膜を選択的に研磨できることが分かった。
10・110…シリコン基板(ベアシリコン)、12・112…第1シリコン酸化膜、14・114…シリコン窒化膜、16・116…第2シリコン酸化膜、20…トレンチ、42…スラリー供給ノズル、44…スラリー、46…研磨布、48…ターンテーブル、50…半導体基板、52…キャリアーヘッド、54…水供給ノズル、56…ドレッサー、100・200…被処理体、300…化学機械研磨装置

Claims (8)

  1.  (A)スルホ基およびその塩からなる群から選択される少なくとも1種の官能基を有するシリカ粒子と、
     (B)酸性化合物と、
    を含有する、化学機械研磨用水系分散体。
  2.  請求項1において、
     前記(B)酸性化合物は、有機酸である、化学機械研磨用水系分散体。
  3.  請求項1または請求項2において、
     pHが、1以上6以下である、化学機械研磨用水系分散体。
  4.  請求項3において、
     化学機械研磨用水系分散体中における前記(A)シリカ粒子のゼータ電位が、-20mV以下である、化学機械研磨用水系分散体。
  5.  請求項1ないし請求項4のいずれか一項において、
     前記(A)シリカ粒子の平均粒子径が、動的光散乱法を用いて測定した場合において、15nm以上100nm以下である、化学機械研磨用水系分散体。
  6.  請求項1ないし請求項5のいずれか一項において、
     半導体装置を構成する複数の基板のうち、化学機械研磨の際に正電荷を帯びる基板を研磨するために用いられる、化学機械研磨用水系分散体。
  7.  請求項6において、
     前記正電荷を帯びる基板が、シリコン窒化膜である、化学機械研磨用水系分散体。
  8.  請求項1ないし請求項7のいずれか一項に記載の化学機械研磨用水系分散体を用いて、
     半導体装置を構成する複数の基板のうち、化学機械研磨の際に正電荷を帯びる基板を研磨することを特徴とする、化学機械研磨方法。
PCT/JP2011/050624 2010-02-01 2011-01-17 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法 WO2011093153A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011551802A JP5915843B2 (ja) 2010-02-01 2011-01-17 化学機械研磨用水系分散体の製造方法
SG2012056248A SG182790A1 (en) 2010-02-01 2011-01-17 Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method using same
KR1020127020151A KR20120134105A (ko) 2010-02-01 2011-01-17 화학 기계 연마용 수계 분산체 및 이를 이용한 화학 기계 연마 방법
US13/576,418 US20130005219A1 (en) 2010-02-01 2011-01-17 Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method using same
CN201180007853.2A CN102741985B (zh) 2010-02-01 2011-01-17 化学机械研磨用水系分散体及利用其的化学机械研磨方法
EP11736868.8A EP2533274B1 (en) 2010-02-01 2011-01-17 Aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-020109 2010-02-01
JP2010020109 2010-02-01

Publications (1)

Publication Number Publication Date
WO2011093153A1 true WO2011093153A1 (ja) 2011-08-04

Family

ID=44319145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/050624 WO2011093153A1 (ja) 2010-02-01 2011-01-17 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法

Country Status (8)

Country Link
US (1) US20130005219A1 (ja)
EP (1) EP2533274B1 (ja)
JP (1) JP5915843B2 (ja)
KR (1) KR20120134105A (ja)
CN (1) CN102741985B (ja)
SG (1) SG182790A1 (ja)
TW (1) TWI499663B (ja)
WO (1) WO2011093153A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013041992A (ja) * 2011-08-16 2013-02-28 Jsr Corp 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP2013043893A (ja) * 2011-08-22 2013-03-04 Jsr Corp 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP2013138053A (ja) * 2011-12-28 2013-07-11 Fujimi Inc 研磨用組成物
WO2013172111A1 (ja) * 2012-05-18 2013-11-21 株式会社 フジミインコーポレーテッド 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
WO2014103494A1 (ja) * 2012-12-28 2014-07-03 株式会社フジミインコーポレーテッド 研磨用組成物
US20140220779A1 (en) * 2013-02-01 2014-08-07 Fujimi Incorporated Surface selective polishing compositions
WO2014184708A3 (en) * 2013-05-15 2015-06-25 Basf Se Use of chemical-mechanical polishing (cmp) composition for polishing substance or layer containing at least one iii-v material
JP2017163148A (ja) * 2017-04-17 2017-09-14 株式会社フジミインコーポレーテッド スクラッチ低減剤及びスクラッチ低減方法
JP2019116627A (ja) * 2014-03-20 2019-07-18 株式会社フジミインコーポレーテッド 研磨用組成物、研磨方法および基板の製造方法
WO2019181399A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 研磨液および化学的機械的研磨方法
WO2019181437A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 研磨液および化学的機械的研磨方法
US10508222B2 (en) 2010-08-23 2019-12-17 Fujimi Incorporated Polishing composition and polishing method using same
JP2020025005A (ja) * 2018-08-07 2020-02-13 Jsr株式会社 化学機械研磨用水系分散体
WO2021111863A1 (ja) * 2019-12-03 2021-06-10 Jsr株式会社 化学機械研磨用組成物及び化学機械研磨方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054149B2 (ja) * 2012-11-15 2016-12-27 株式会社フジミインコーポレーテッド 研磨用組成物
WO2014175393A1 (ja) * 2013-04-25 2014-10-30 日立化成株式会社 Cmp用研磨液及びこれを用いた研磨方法
RU2015153455A (ru) 2013-05-15 2017-06-20 Басф Се Композиции для химико-механической полировки, содержащие полиэтиленимин
WO2014184709A2 (en) 2013-05-15 2014-11-20 Basf Se Chemical-mechanical polishing compositions comprising n,n,n',n'-tetrakis-(2-hydroxypropyl)-ethylenediamine or methanesulfonic acid
WO2014184702A2 (en) 2013-05-15 2014-11-20 Basf Se Chemical-mechanical polishing compositions comprising one or more polymers selected from the group consisting of n-vinyl-homopolymers and n-vinyl copolymers
KR101470977B1 (ko) * 2013-08-06 2014-12-09 주식회사 케이씨텍 슬러리 조성물
CN104371551B (zh) * 2013-08-14 2018-01-12 安集微电子(上海)有限公司 一种碱性阻挡层化学机械抛光液
JPWO2015146468A1 (ja) * 2014-03-28 2017-04-13 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
US9583359B2 (en) * 2014-04-04 2017-02-28 Fujifilm Planar Solutions, LLC Polishing compositions and methods for selectively polishing silicon nitride over silicon oxide films
KR101693237B1 (ko) * 2015-08-10 2017-01-05 주식회사 케이씨텍 텅스텐 연마용 슬러리 조성물
US10077381B2 (en) 2015-07-20 2018-09-18 Kctech Co., Ltd. Polishing slurry composition
JP6377656B2 (ja) 2016-02-29 2018-08-22 株式会社フジミインコーポレーテッド シリコン基板の研磨方法および研磨用組成物セット
US10515820B2 (en) 2016-03-30 2019-12-24 Tokyo Electron Limited Process and apparatus for processing a nitride structure without silica deposition
US10325779B2 (en) * 2016-03-30 2019-06-18 Tokyo Electron Limited Colloidal silica growth inhibitor and associated method and system
US10294399B2 (en) 2017-01-05 2019-05-21 Cabot Microelectronics Corporation Composition and method for polishing silicon carbide
US10647887B2 (en) 2018-01-08 2020-05-12 Cabot Microelectronics Corporation Tungsten buff polishing compositions with improved topography
JP2019167405A (ja) * 2018-03-22 2019-10-03 Jsr株式会社 化学機械研磨用組成物及び回路基板の製造方法
JP2019167404A (ja) * 2018-03-22 2019-10-03 Jsr株式会社 化学機械研磨用組成物及び回路基板の製造方法
JP7028120B2 (ja) * 2018-09-20 2022-03-02 Jsr株式会社 化学機械研磨用水系分散体及びその製造方法、並びに化学機械研磨方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176773A (ja) 1997-12-12 1999-07-02 Toshiba Corp 研磨方法
JP2003109921A (ja) 2001-10-01 2003-04-11 Catalysts & Chem Ind Co Ltd 研磨用シリカ粒子分散液、その製造方法および研磨材
JP2004214667A (ja) 2002-12-30 2004-07-29 Hynix Semiconductor Inc ナイトライド用cmpスラリー及びこれを利用したcmp方法
JP2006120728A (ja) 2004-10-19 2006-05-11 Fujimi Inc 窒化シリコン膜選択的研磨用組成物およびそれを用いる研磨方法
JP2006524918A (ja) * 2003-04-21 2006-11-02 キャボット マイクロエレクトロニクス コーポレイション Cmp用被覆金属酸化物粒子
JP2007234784A (ja) * 2006-02-28 2007-09-13 Fujimi Inc 研磨用組成物
JP2007527471A (ja) * 2003-07-04 2007-09-27 バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング マイクロ粒子として変性されたシリカゾルを用いた製紙
JP2008519466A (ja) * 2004-11-05 2008-06-05 キャボット マイクロエレクトロニクス コーポレイション 窒化ケイ素の除去速度が酸化ケイ素と比べて高い研磨組成物及び方法
US20100009538A1 (en) * 2008-07-11 2010-01-14 Fujifilm Corporation Silicon nitride polishing liquid and polishing method
JP2010269985A (ja) 2009-05-22 2010-12-02 Fuso Chemical Co Ltd スルホン酸修飾水性アニオンシリカゾル及びその製造方法
JP2011020208A (ja) * 2009-07-15 2011-02-03 Hitachi Chem Co Ltd Cmp研磨液及びこのcmp研磨液を用いた研磨方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5820978A (en) * 1995-11-09 1998-10-13 Minnesota Mining And Manufacturing Company Durability improved colloidal silica coating
US20040162011A1 (en) * 2002-08-02 2004-08-19 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and production process of semiconductor device
JP2004074330A (ja) * 2002-08-13 2004-03-11 Ebara Corp 固定砥粒研磨工具およびその製造方法
DE602004007718T2 (de) * 2003-05-12 2008-04-30 Jsr Corp. Chemisch-mechanisches Poliermittel-Kit und chemisch-mechanisches Polierverfahren unter Verwendung desselben
US7141622B2 (en) * 2003-07-30 2006-11-28 The Goodyear Tire & Rubber Company Process for preparing a silica/rubber blend which includes dispersing silica, asilica coupling agent, and a low molecular weight end-group functionalized diene rubber throughout a cement of a conventional rubbery polymer, and subsequently recovering the silica/rubber blend from an organic solvent
US20070107317A1 (en) * 2003-10-22 2007-05-17 Japan Science And Technology Agency Liquid composition, manufacturing method thereof, low dielectric constant films, abrasive materials, and electronic components
EP1586614B1 (en) * 2004-04-12 2010-09-15 JSR Corporation Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
CN101180379B (zh) * 2005-03-25 2013-07-24 气体产品与化学公司 用于含有金属离子氧化剂的化学机械抛光组合物中的二羟基烯醇化合物
JP4868840B2 (ja) * 2005-11-30 2012-02-01 Jsr株式会社 半導体装置の製造方法
CN101410956B (zh) * 2006-04-03 2010-09-08 Jsr株式会社 化学机械研磨用水系分散体和化学机械研磨方法
KR101406487B1 (ko) * 2006-10-06 2014-06-12 제이에스알 가부시끼가이샤 화학 기계 연마용 수계 분산체 및 반도체 장치의 화학 기계연마 방법
WO2009031389A1 (ja) * 2007-09-03 2009-03-12 Jsr Corporation 化学機械研磨用水系分散体およびその調製方法、化学機械研磨用水系分散体を調製するためのキット、ならびに半導体装置の化学機械研磨方法
JP5403924B2 (ja) * 2008-02-29 2014-01-29 富士フイルム株式会社 金属用研磨液、および化学的機械的研磨方法
JP5441345B2 (ja) * 2008-03-27 2014-03-12 富士フイルム株式会社 研磨液、及び研磨方法
JP5472585B2 (ja) * 2008-05-22 2014-04-16 Jsr株式会社 化学機械研磨用水系分散体および化学機械研磨方法
JP5361306B2 (ja) * 2008-09-19 2013-12-04 Jsr株式会社 化学機械研磨用水系分散体および化学機械研磨方法
JP5695367B2 (ja) * 2010-08-23 2015-04-01 株式会社フジミインコーポレーテッド 研磨用組成物及びそれを用いた研磨方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176773A (ja) 1997-12-12 1999-07-02 Toshiba Corp 研磨方法
JP2003109921A (ja) 2001-10-01 2003-04-11 Catalysts & Chem Ind Co Ltd 研磨用シリカ粒子分散液、その製造方法および研磨材
JP2004214667A (ja) 2002-12-30 2004-07-29 Hynix Semiconductor Inc ナイトライド用cmpスラリー及びこれを利用したcmp方法
JP2006524918A (ja) * 2003-04-21 2006-11-02 キャボット マイクロエレクトロニクス コーポレイション Cmp用被覆金属酸化物粒子
JP2007527471A (ja) * 2003-07-04 2007-09-27 バイエル・ベタイリグングスフェアヴァルトゥング・ゴスラー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング マイクロ粒子として変性されたシリカゾルを用いた製紙
JP2006120728A (ja) 2004-10-19 2006-05-11 Fujimi Inc 窒化シリコン膜選択的研磨用組成物およびそれを用いる研磨方法
JP2008519466A (ja) * 2004-11-05 2008-06-05 キャボット マイクロエレクトロニクス コーポレイション 窒化ケイ素の除去速度が酸化ケイ素と比べて高い研磨組成物及び方法
JP2007234784A (ja) * 2006-02-28 2007-09-13 Fujimi Inc 研磨用組成物
US20100009538A1 (en) * 2008-07-11 2010-01-14 Fujifilm Corporation Silicon nitride polishing liquid and polishing method
JP2010269985A (ja) 2009-05-22 2010-12-02 Fuso Chemical Co Ltd スルホン酸修飾水性アニオンシリカゾル及びその製造方法
JP2011020208A (ja) * 2009-07-15 2011-02-03 Hitachi Chem Co Ltd Cmp研磨液及びこのcmp研磨液を用いた研磨方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. IND. ENG. CHEM., vol. 12, no. 6, 2006, pages 911 - 917
See also references of EP2533274A4

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508222B2 (en) 2010-08-23 2019-12-17 Fujimi Incorporated Polishing composition and polishing method using same
JP2013041992A (ja) * 2011-08-16 2013-02-28 Jsr Corp 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP2013043893A (ja) * 2011-08-22 2013-03-04 Jsr Corp 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP2013138053A (ja) * 2011-12-28 2013-07-11 Fujimi Inc 研磨用組成物
US9422454B2 (en) 2012-05-18 2016-08-23 Fujimi Incorporated Polishing composition, polishing method using same, and method for producing substrate
WO2013172111A1 (ja) * 2012-05-18 2013-11-21 株式会社 フジミインコーポレーテッド 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
JP2013243208A (ja) * 2012-05-18 2013-12-05 Fujimi Inc 研磨用組成物並びにそれを用いた研磨方法及び基板の製造方法
CN104285284A (zh) * 2012-05-18 2015-01-14 福吉米株式会社 研磨用组合物以及使用其的研磨方法和基板的制造方法
WO2014103494A1 (ja) * 2012-12-28 2014-07-03 株式会社フジミインコーポレーテッド 研磨用組成物
JP2014130944A (ja) * 2012-12-28 2014-07-10 Fujimi Inc 研磨用組成物
US20140220779A1 (en) * 2013-02-01 2014-08-07 Fujimi Incorporated Surface selective polishing compositions
US9765239B2 (en) 2013-05-15 2017-09-19 Basf Se Use of a chemical-mechanical polishing (CMP) composition for polishing a substrate or layer containing at least one III-V material
WO2014184708A3 (en) * 2013-05-15 2015-06-25 Basf Se Use of chemical-mechanical polishing (cmp) composition for polishing substance or layer containing at least one iii-v material
CN105209563A (zh) * 2013-05-15 2015-12-30 巴斯夫欧洲公司 化学机械抛光(cmp)组合物在抛光含有至少一种iii-v 族材料的基材或层中的用途
JP2016524325A (ja) * 2013-05-15 2016-08-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 少なくとも1種のiii−v族材料を含有する基板または層を研磨するための化学機械研磨(cmp)組成物を使用する方法
JP2019116627A (ja) * 2014-03-20 2019-07-18 株式会社フジミインコーポレーテッド 研磨用組成物、研磨方法および基板の製造方法
JP2017163148A (ja) * 2017-04-17 2017-09-14 株式会社フジミインコーポレーテッド スクラッチ低減剤及びスクラッチ低減方法
JPWO2019181399A1 (ja) * 2018-03-23 2021-02-04 富士フイルム株式会社 研磨液および化学的機械的研磨方法
WO2019181437A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 研磨液および化学的機械的研磨方法
WO2019181399A1 (ja) * 2018-03-23 2019-09-26 富士フイルム株式会社 研磨液および化学的機械的研磨方法
JPWO2019181437A1 (ja) * 2018-03-23 2021-03-18 富士フイルム株式会社 研磨液および化学的機械的研磨方法
JP7002635B2 (ja) 2018-03-23 2022-01-20 富士フイルム株式会社 研磨液および化学的機械的研磨方法
US11267988B2 (en) 2018-03-23 2022-03-08 Fujifilm Corporation Polishing liquid and chemical mechanical polishing method
US11267989B2 (en) 2018-03-23 2022-03-08 Fujifilm Corporation Polishing liquid and chemical mechanical polishing method
JP2022091814A (ja) * 2018-03-23 2022-06-21 富士フイルム株式会社 研磨液および化学的機械的研磨方法
JP7300030B2 (ja) 2018-03-23 2023-06-28 富士フイルム株式会社 研磨液および化学的機械的研磨方法
JP2020025005A (ja) * 2018-08-07 2020-02-13 Jsr株式会社 化学機械研磨用水系分散体
JP7073975B2 (ja) 2018-08-07 2022-05-24 Jsr株式会社 化学機械研磨用水系分散体
WO2021111863A1 (ja) * 2019-12-03 2021-06-10 Jsr株式会社 化学機械研磨用組成物及び化学機械研磨方法

Also Published As

Publication number Publication date
TW201139634A (en) 2011-11-16
TWI499663B (zh) 2015-09-11
SG182790A1 (en) 2012-09-27
EP2533274B1 (en) 2014-07-30
CN102741985A (zh) 2012-10-17
KR20120134105A (ko) 2012-12-11
JPWO2011093153A1 (ja) 2013-05-30
EP2533274A1 (en) 2012-12-12
CN102741985B (zh) 2015-12-16
EP2533274A4 (en) 2013-06-26
JP5915843B2 (ja) 2016-05-11
US20130005219A1 (en) 2013-01-03

Similar Documents

Publication Publication Date Title
JP5915843B2 (ja) 化学機械研磨用水系分散体の製造方法
JP5927806B2 (ja) 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP6762390B2 (ja) 研磨用組成物、研磨方法および基板の製造方法
TWI435381B (zh) Chemical mechanical grinding of water dispersions and semiconductor devices of chemical mechanical grinding method
TWI745421B (zh) 化學機械研磨用組成物及化學機械研磨方法
WO2014103725A1 (ja) 化学機械研磨用水系分散体および化学機械研磨方法
JP5333744B2 (ja) 化学機械研磨用水系分散体、化学機械研磨方法および化学機械研磨用水系分散体の製造方法
JP5907333B2 (ja) 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
TWI754376B (zh) 選擇性化學機械拋光鈷、氧化鋯、多晶矽及二氧化矽膜之方法
JP7356932B2 (ja) 研磨用組成物及び研磨方法
JP6015931B2 (ja) 化学機械研磨用水系分散体および化学機械研磨方法
JP6892035B1 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP7120846B2 (ja) 研磨用組成物及びその製造方法並びに研磨方法並びに基板の製造方法
TW202038325A (zh) 化學機械研磨用水系分散體以及化學機械研磨方法
JP5413571B2 (ja) 化学機械研磨用水系分散体およびその製造方法、ならびに化学機械研磨方法
JP7375483B2 (ja) 化学機械研磨用組成物及び化学機械研磨方法
JP2010258418A (ja) 化学機械研磨用水系分散体調製用キットおよび化学機械研磨用水系分散体の調製方法
TWI743989B (zh) 化學機械研磨用組成物以及化學機械研磨方法
TWI744696B (zh) 於淺溝槽隔離(sti)化學機械平坦化研磨(cmp)的氧化物相對氮化物的高選擇性、低及均一的氧化物溝槽淺盤效應
TW202325806A (zh) 化學機械研磨用組成物及研磨方法
TW202122518A (zh) 化學機械研磨用組成物及化學機械研磨方法
TW202122517A (zh) 化學機械研磨用組成物及化學機械研磨方法
TW202128943A (zh) 化學機械研磨用組成物、化學機械研磨方法及化學機械研磨用粒子的製造方法
TW202120637A (zh) 化學機械研磨用組成物以及化學機械研磨方法
TW202124661A (zh) 化學機械研磨用組成物、化學機械研磨方法及化學機械研磨用粒子的製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007853.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11736868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551802

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011736868

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127020151

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13576418

Country of ref document: US