WO2011072246A2 - Tal effector-mediated dna modification - Google Patents

Tal effector-mediated dna modification Download PDF

Info

Publication number
WO2011072246A2
WO2011072246A2 PCT/US2010/059932 US2010059932W WO2011072246A2 WO 2011072246 A2 WO2011072246 A2 WO 2011072246A2 US 2010059932 W US2010059932 W US 2010059932W WO 2011072246 A2 WO2011072246 A2 WO 2011072246A2
Authority
WO
WIPO (PCT)
Prior art keywords
recognizing
recognition
dna
sequence
cell
Prior art date
Application number
PCT/US2010/059932
Other languages
English (en)
French (fr)
Other versions
WO2011072246A3 (en
Inventor
Daniel F. Voytas
Adam Bogdanove
Feng Zhang
Michelle Christian
Tomas Cermak
Clarice Lauer Schmidt
Erin Doyle
Li Wang
Original Assignee
Regents Of The University Of Minnesota
Iowa State University Research Foundation, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=43825298&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011072246(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to SG2012042479A priority Critical patent/SG181601A1/en
Priority to EP10799163.0A priority patent/EP2510096B2/en
Priority to CA2783351A priority patent/CA2783351C/en
Priority to CN201080063489.7A priority patent/CN102770539B/zh
Priority to NO10799163A priority patent/NO2510096T3/no
Priority to KR1020197002716A priority patent/KR102110725B1/ko
Priority to BR112012014080A priority patent/BR112012014080A2/pt
Priority to ES10799163.0T priority patent/ES2527997T5/es
Priority to PL10799163T priority patent/PL2510096T5/pl
Application filed by Regents Of The University Of Minnesota, Iowa State University Research Foundation, Inc. filed Critical Regents Of The University Of Minnesota
Priority to DK10799163.0T priority patent/DK2510096T4/en
Priority to AU2010327998A priority patent/AU2010327998B2/en
Priority to EP14183521.5A priority patent/EP2816112B1/en
Priority to JP2012543313A priority patent/JP2013513389A/ja
Priority to EP18183263.5A priority patent/EP3456826B1/en
Priority to KR1020127017754A priority patent/KR102110608B1/ko
Priority to PL14183521T priority patent/PL2816112T3/pl
Publication of WO2011072246A2 publication Critical patent/WO2011072246A2/en
Publication of WO2011072246A3 publication Critical patent/WO2011072246A3/en
Priority to IL220234A priority patent/IL220234B/en
Priority to IL267164A priority patent/IL267164A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1082Preparation or screening gene libraries by chromosomal integration of polynucleotide sequences, HR-, site-specific-recombination, transposons, viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/64General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8213Targeted insertion of genes into the plant genome by homologous recombination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • C12N15/902Stable introduction of foreign DNA into chromosome using homologous recombination
    • C12N15/907Stable introduction of foreign DNA into chromosome using homologous recombination in mammalian cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0022Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with oxygen as acceptor (1.4.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/21Endodeoxyribonucleases producing 5'-phosphomonoesters (3.1.21)
    • C12Y301/21004Type II site-specific deoxyribonuclease (3.1.21.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2810/00Vectors comprising a targeting moiety
    • C12N2810/50Vectors comprising as targeting moiety peptide derived from defined protein
    • C12N2810/80Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates
    • C12N2810/85Vectors comprising as targeting moiety peptide derived from defined protein from vertebrates mammalian

Definitions

  • the present invention relates to methods for gene targeting, and particularly to methods that include the use of transcription activator-like (TAL) effector sequences.
  • TAL transcription activator-like
  • gene targeting may help to discern the function of plant genes, opening up new possibilities for crop improvement.
  • gene targeting it is possible to carry out the genetic surgery required to reorchestrate metabolic pathways to create high value crops, including seed with altered oil or carbohydrate profiles, food with enhanced nutritional qualities, or plants with increased resistance to disease and stress.
  • animals e.g., mammals
  • gene targeting may be used for treatment of disease.
  • gene targeting may be used to engineer corrections in genes that are defective due to various types of mutations. Efficient methods for such gene targeting have been difficult to achieve.
  • TAL effectors of plant pathogenic bacteria in the genus Xanthomonas play important roles in disease, or trigger defense, by binding host DNA and activating effector-specific host genes ⁇ see, e.g., Gu et al. (2005) Nature 435: 1122; Yang et al. (2006) Proc. Natl. Acad. Sci. USA 103: 10503; Kay et al. (2007) Science 318:648; Sugio et al. (2007) Proc. Natl. Acad. Sci. USA 104: 10720; and Romer et al. (2007) Science 318 :645). Specificity depends on an effector- variable number of imperfect, typically 34 amino acid repeats (Schornack et al. (2006) J. Plant Physiol. 163:256). Polymorphisms are present primarily at repeat positions 12 and 13, which are referred to herein as the repeat variable-diresidue (RVD).
  • RVD repeat variable-diresidue
  • the present invention is based in part on the fact that the RVDs of TAL effectors correspond to the nucleotides in their target sites in a direct, linear fashion, one RVD to one nucleotide, with some degeneracy and no apparent context dependence.
  • This surprising finding represents a novel mechanism for protein-DNA recognition that enables target site prediction for new target specific TAL effector.
  • these proteins may be useful in research and biotechnology as targeted chimeric nucleases that can facilitate homologous recombination in genome engineering (e.g., to add or enhance traits useful for bio fuels or biorenewables in plants).
  • These proteins also may be useful as, for example, transcription factors, and especially for therapeutic applications requiring a very high level of specificity such as therapeutics against pathogens (e.g., viruses) as non limiting examples.
  • the present invention features a method for modifying the genetic material of a cell, comprising (a) providing a cell containing a target DNA sequence; and (b) introducing a transcription activator- like (TAL) effector -DNA modifying enzyme into the cell, the TAL effector-DNA modifying enzyme comprising (i) a DNA modifying enzyme domain that can modify double stranded DNA, and (ii) a TAL effector domain comprising a plurality of TAL effector repeat sequences that, in combination, bind to a specific nucleotide sequence in the target DNA sequence, such that the TAL effector- DNA modifying enzyme modifies the target DNA within or adjacent to the specific nucleotide sequence in the cell or progeny thereof.
  • TAL transcription activator-like
  • the method can further comprise providing to the cell a nucleic acid comprising a sequence homologous to at least a portion of the target DNA sequence, such that homologous recombination occurs between the target DNA sequence and the nucleic acid.
  • the cell can be a eukaryotic cell, a mammalian cell, a plant cell, or a prokaryotic cell.
  • the target DNA can be chromosomal DNA.
  • the introducing can comprise transfecting the cell with a vector encoding the TAL effector-DNA modifying enzyme, mechanically injecting the TAL effector-DNA modifying enzyme into the cell as a protein, delivering the TAL effector-DNA modifying enzyme into the cell as a protein by means of the bacterial type III secretion system, or introducing the TAL effector-DNA modifying enzyme into the cell as a protein by electroporation.
  • the DNA modifying enzyme can be an endonuclease (e.g., a type II restriction endonuclease, such as Fokl).
  • the TAL effector domain that binds to a specific nucleotide sequence within the target DNA can comprise 10 or more DNA binding repeats, and preferably 15 or more DNA binding repeats.
  • Each DNA binding repeat can include a repeat variable-diresidue (RVD) that determines recognition of a base pair in the target DNA sequence, wherein each DNA binding repeat is responsible for recognizing one base pair in the target DNA sequence, and wherein the RVD comprises one or more of: HD for recognizing C;NG for recognizing T; NI for recognizing A; NN for recognizing G or A; NS for recognizing A or C or G or T; N* for recognizing C or T, where * represents a gap in the second position of the RVD; HG for recognizing T; H* for recognizing T, where * represents a gap in the second position of the RVD; IG for recognizing T; NK for recognizing G; HA for recognizing C;ND for recognizing C; HI for recognizing C; HN for recognizing G; NA for recognizing
  • Each DNA binding repeat can comprise a RVD that determines recognition of a base pair in the target DNA sequence, wherein each DNA binding repeat is responsible for recognizing one base pair in the target DNA sequence, and wherein the RVD comprises one or more of: HA for recognizing C;ND for recognizing C; HI for recognizing C; HN for recognizing G; NA for recognizing G; SN for recognizing G or A; YG for recognizing T; and NK for recognizing G, and one or more of: HD for recognizing C; NG for
  • recognizing T NI for recognizing A; NN for recognizing G or A; NS for recognizing A or C or G or T; N* for recognizing C or T, wherein * represents a gap in the second position of the RVD; HG for recognizing T;H* for recognizing T, wherein * represents a gap in the second position of the RVD; and IG for recognizing T.
  • the present invention features a method for generating a nucleic acid encoding a TAL effector specific for a selected nucleotide sequence, comprising: (1) linearizing a starter plasmid with PspXl, the starter plasmid comprising a nucleotide sequence that encodes a first TAL effector DNA binding repeat domain having a repeat variable-diresidue (RVD) specific for the first nucleotide of the selected nucleotide sequence, wherein the first TAL effector DNA binding repeat domain has a unique PspXl site at its 3 ' end; (2) ligating into the starter plasmid PspXl site a DNA module encoding one or more TAL effector DNA binding repeat domains that have RVDs specific for the next nucleotide(s) of the selected nucleotide sequence, wherein the DNA module has Xhol sticky ends; and (3) repeating steps (1) and (2) until the nucleic acid encodes a TAL effector capable of binding
  • the present invention features a method for generating a nucleic acid encoding a transcription activator-like effector endonuclease (TALEN), comprising (a) identifying a first nucleotide sequence in the genome of a cell; and (b) synthesizing a nucleic acid encoding a TALEN that comprises (i) a plurality of DNA binding repeats that, in combination, bind to the first unique nucleotide sequence, and (ii) an TALEN transcription activator-like effector endonuclease (TALEN), comprising (a) identifying a first nucleotide sequence in the genome of a cell; and (b) synthesizing a nucleic acid encoding a TALEN that comprises (i) a plurality of DNA binding repeats that, in combination, bind to the first unique nucleotide sequence, and (ii) an TALEN .
  • TALEN transcription activator-like effector endonuclease
  • each DNA binding repeat comprises a RVD that determines recognition of a base pair in the target DNA, wherein each DNA binding repeat is responsible for recognizing one base pair in the target DNA, and wherein the TALEN comprises one or more of the following RVDs: HD for recognizing C; NG for recognizing T; NI for recognizing A; NN for recognizing G or A; NS for recognizing A or C or G or T; N* for recognizing C or T; HG for recognizing T; H* for recognizing T; IG for recognizing T; NK for recognizing G; HA for recognizing C; ND for recognizing C; HI for recognizing C; HN for recognizing G; NA for recognizing G; SN for recognizing G or A; and YG for recognizing T.
  • the TALEN can comprises one or more of the following RVDs: HA for recognizing C; ND for recognizing C; HI for recognizing C; HN for recognizing G; NA for recognizing G; SN for recognizing G or A; YG for recognizing T; and NK for recognizing G, and one or more of: HD for recognizing C; NG for recognizing T; NI for recognizing A; NN for recognizing G or A; NS for recognizing A or C or G or T; N* for recognizing C or T; HG for recognizing T; H* for recognizing T; and IG for recognizing T.
  • the first nucleotide sequence can meet at least one of the following criteria: i) is a minimum of 15 bases long and is oriented from 5' to 3' with a T immediately preceding the site at the 5 ' end; ii) does not have a T in the first (5 ') position or an A in the second position; iii) ends in T at the last (3') position and does not have a G at the next to last position; and iv) has a base composition of 0-63% A, 11-63% C, 0-25%> G, and 2-42% T.
  • the method can comprise identifying a first nucleotide sequence and a second nucleotide sequence in the genome of the cell, wherein the first and second nucleotide sequences meet at least one of the criteria set forth above and are separated by 15-18 bp.
  • the endonuclease can generate a double-stranded cut between the first and second nucleotide sequences.
  • the present invention features a TALEN comprising an endonuclease domain and a TAL effector DNA binding domain specific for a target DNA, wherein the DNA binding domain comprises a plurality of DNA binding repeats, each repeat comprising a RVD that determines recognition of a base pair in the target DNA, wherein each DNA binding repeat is responsible for recognizing one base pair in the target DNA, and wherein the TALEN comprises one or more of the following RVDs: HD for recognizing C; NG for recognizing T; NI for recognizing A; NN for recognizing G or A; NS for recognizing A or C or G or T; N* for recognizing C or T; HG for recognizing T; H* for recognizing T; IG for recognizing T; NK for recognizing G; HA for recognizing C; ND for recognizing C; HI for recognizing C; HN for recognizing G; NA for recognizing G; SN for recognizing G or A; and YG for recognizing T.
  • the TALEN can comprise one or more of the following RVDs: HA for recognizing C; ND for recognizing C; HI for recognizing C; HN for recognizing G; NA for recognizing G; SN for recognizing G or A; YG for recognizing T; and NK for recognizing G, and one or more of: HD for recognizing C; NG for recognizing T; NI for recognizing A; NN for recognizing G or A; NS for recognizing A or C or G or T; N* for recognizing C or T; HG for recognizing T; H* for recognizing T; and IG for recognizing T.
  • the endonuclease domain can be from a type II restriction endonuclease (e.g., Fokl).
  • the present invention features a TALEN comprising an endonuclease domain and a TAL effector domain, wherein the amino acid sequence of said TALEN is selected from the group consisting of SEQ ID NO:33 to SEQ ID NO:55, SEQ ID NO:72, and SEQ ID NO:73.
  • the present invention also features a method for generating an animal, comprising: providing a eukaryotic cell comprising a target DNA sequence into which it is desired to introduce a genetic modification; generating a double-stranded cut within the target DNA sequence with a TALEN comprising an endonuclease domain and a TAL effector domain that binds to the target DNA sequence; and generating an animal from the cell or progeny thereof in which a double-stranded cut has occurred.
  • the method can further comprise introducing into the cell an exogenous nucleic acid comprising a sequence homologous to at least a portion of the target DNA, wherein the introducing is under conditions that permit homologous recombination to occur between the exogenous nucleic acid and the target DNA sequence in the cell or progeny thereof; and generating an animal from the cell or progeny thereof in which homologous recombination has occurred.
  • the animal can be a mammal.
  • the genetic modification can comprise a substitution, an insertion, or a deletion.
  • the present invention features a method for generating a plant, comprising providing a plant cell comprising a target DNA sequence into which it is desired to introduce a preselected genetic modification; generating a double-stranded cut within the target DNA sequence with a TALEN comprising an endonuclease domain and a TAL effector domain that binds to the target DNA sequence; and generating a plant from the cell or progeny thereof in which a double-stranded cut has occurred.
  • the method can further comprise introducing into the plant cell an exogenous nucleic acid comprising a sequence homologous to at least a portion of the target DNA sequence, wherein the introducing is under conditions that permit homologous recombination to occur between the exogenous nucleic acid and the target DNA sequence in the cell or progeny thereof; and generating a plant from the cell or progeny thereof in which homologous recombination has occurred.
  • the present invention features a method for targeted genetic recombination in a cell, comprising introducing into the cell a nucleic acid encoding a TAL effector endonuclease targeted to a selected DNA target sequence; inducing expression of the TAL effector endonuclease within the cell; and identifying a cell in which the selected DNA target sequence exhibits a mutation.
  • the mutation can be selected from the group consisting of deletion of genetic material, insertion of genetic material, and both deletion and insertion of genetic material.
  • the method can further comprise introducing donor DNA into the cell.
  • the cell can be an insect cell, a plant cell, a fish cell, or a mammalian cell.
  • the present invention features a method for generating a TAL effector having enhanced targeting capacity for a target DNA, comprising generating a nucleic acid encoding a TAL effector that comprises DNA binding domain having a plurality of DNA binding repeats, wherein each repeat comprises a RVD that determines recognition of a base pair in the target DNA, wherein each DNA binding repeat is responsible for recognizing one base pair in the target DNA, wherein the generating comprises incorporating a nucleic acid encoding a variant 0th DNA binding repeat sequence with specificity for A, C, or G, thus eliminating the requirement for T at position -1 of the binding site.
  • the present invention features a method for generating a TAL effector having enhanced targeting capacity for a target DNA, comprising generating a nucleic acid encoding a TAL effector that comprises DNA binding domain having a plurality of DNA binding repeats, wherein each repeat comprises a RVD that determines recognition of a base pair in the target DNA, wherein each DNA binding repeat is responsible for recognizing one base pair in the target DNA, wherein the generating comprises incorporating one or more nucleic acids encoding TAL effector DNA binding domains that contain RVDs having enhanced specificity for G, and wherein said RVDs are selected from the group consisting of RN, R*, NG, NH, KN, K*, NA, NT, DN, D*, NL, NM, EN, E*, NV, NC, QN, Q*, NR, NP, HN, H*, NK, NY, SN, S*, ND, NW, TN, T*, NE, NF, YN,
  • the present invention also features a method for producing a polypeptide that selectively recognizes at least one base pair in a target DNA sequence, comprising synthesizing a polypeptide comprising a repeat domain, wherein the repeat domain comprises at least one repeat unit derived from a transcription activator-like (TAL) effector, wherein the repeat unit comprises a hypervariable region which determines recognition of a base pair in the target DNA sequence, wherein the repeat unit is responsible for the recognition of one base pair in the DNA sequence, and wherein the hypervariable region comprises a member selected from the group consisting of: (a) HD for recognition of C/G; (b) NI for recognition of A/T; (c) NG for recognition of T/A; (d) NS for recognition of C/G or A/T or T/A or G/C; (e) NN for recognition of G/C or A T; (f) IG for recognition of T/A; (g) N for recognition of C/G; (h) HG for recognition of C/G or T/
  • this invention features a polypeptide produced by the above method, and a DNA comprising a coding sequence for the polypeptide produced by the method. Also featured is an expression cassette comprising a promoter operably linked to the above-mentioned DNA, and a non-human host cell comprising the expression cassette. In another aspect, the present invention features a transformed, non-human organism comprising the expression cassette.
  • the present invention features a method for selectively recognizing a base pair in a DNA sequence by a polypeptide, comprising constructing a polypeptide comprising a repeat domain, wherein the repeat domain comprises at least one repeat unit derived from a TAL effector, wherein the repeat unit comprises a hypervariable region which determines recognition of a base pair in the DNA sequence, wherein the repeat unit is responsible for the recognition of one base pair in the DNA sequence, and wherein the hypervariable region comprises a member selected from the group consisting of (a) HD for recognition of C/G; (b) NI for recognition of A T; (c) NG for recognition of T/A; (d) NS for recognition of C/G or A T or T/A or G/C; (e) NN for recognition of G/C or A T; (f) IG for recognition of T/A; (g) N for recognition of C/G; (h) HG for recognition of C/G or T/A; (i) H for recognition of T/A
  • the present invention also features a method of modulating expression of a target gene in a cell, wherein cells are provided which contain a polypeptide wherein the polypeptide comprises a repeat domain, wherein the repeat domain comprises at least one repeat unit derived from a TAL effector, wherein the repeat unit comprises a
  • hypervariable region which determines recognition of a base pair in a DNA sequence, wherein the repeat unit is responsible for the recognition of one base pair in the DNA sequence, and wherein the hypervariable region comprises a member selected from the group consisting of (a) HD for recognition of C/G; (b) NI for recognition of A T; (c) NG for recognition of T/A; (d) NS for recognition of C/G or A T or T/A or G/C; (e) NN for recognition of G/C or A T; (f) IG for recognition of T/A; (g) N for recognition of C/G; (h) HG for recognition of C/G or T/A; (i) H for recognition of T/A; and (j) NK for recognition of G/C .
  • the present invention features a polypeptide comprising a repeat domain, wherein the repeat domain comprises at least one repeat unit derived from a TAL effector, wherein the repeat unit comprises a hypervariable region which determines recognition of a base pair in a DNA sequence, wherein the repeat unit is responsible for the recognition of one base pair in the DNA sequence, and wherein the hypervariable region comprises a member selected from the group consisting of (a) HD for recognition of C/G; (b) NI for recognition of A T; (c) NG for recognition of T/A; (d) NS for recognition of C/G or A T or T/A or G/C; (e) NN for recognition of G/C or A/T; (f) IG for recognition of T/A; (g) N for recognition of C/G; (h) HG for recognition of C/G or T/A; (i) H for recognition of T/A; and (j) NK for recognition of G/C.
  • the present invention also features a DNA comprising a DNA compris
  • the present invention features a DNA which is modified to include a base pair located in a target DNA sequence so that the base pair can be specifically recognized by a polypeptide comprising a repeat domain, wherein the repeat domain comprises at least one repeat unit derived from a TAL effector, wherein the repeat unit comprises a hypervariable region which determines recognition of a base pair in the DNA sequence, wherein the repeat unit is responsible for the recognition of one base pair in the DNA sequence, and wherein, to receive a selective and determined recognition by the hypervariable region, the base pair is selected from the group consisting of (a) C/G for recognition by HD; (b) A/T for recognition by NI; (c) T/A for recognition by NG; (d) CT or A/T or T/A or G/C for recognition by NS; (e) G/C or A/T for recognition by NN; (f) T/A for recognition by IG; (g) C/G or T/A for recognition by N; (h) T/A for recognition by IG; (
  • the present invention features a method for producing a DNA comprising a target DNA sequence that is selectively recognized by a polypeptide comprising a repeat domain, wherein the repeat domain comprises at least one repeat unit derived from a TAL effector, wherein the repeat unit comprises a hypervariable region which determines recognition of a base pair in the target DNA sequence, and wherein the repeat unit is responsible for the recognition of one base pair in the target DNA sequence, the method comprising synthesizing a DNA comprising a base pair that is capable of being recognized by the repeat unit, wherein the base pair is selected from the group consisting of (a) C/G for recognition by HD; (b) A/T for recognition by NI; (c) T/A for recognition by NG; (d) CT or A/T or T/A or G/C for recognition by NS; (e) G/C or A/T for recognition by NN; (f) T/A for recognition by IG; (g) C/G or T/A for recognition by N; (h)
  • the present invention features a method for modifying the genetic material of a plant cell.
  • the method can include (a) introducing into the plant cell (i) a first recombinant nucleic acid comprising a modified target nucleotide sequence, wherein the modified target nucleotide sequence comprises one or more modifications in nucleotide sequence with respect to a corresponding target nucleotide sequence present in the plant cell, and wherein the target nucleotide sequence further comprises a recognition site for a sequence-specific TAL effector endonuclease (TALEN); and (ii) a second recombinant nucleic acid comprising a nucleotide sequence encoding the sequence- specific transcription activator-like (TAL) effector endonuclease; (b) generating a plant containing the plant cell; (c) analyzing cells, seed, or tissue obtained from the plant, or progeny thereof, for recombination at the target nucleotide sequence.
  • TALEN sequence-
  • the method can further include introducing into the plant cell (iii) a third recombinant nucleic acid comprising a nucleotide sequence encoding a selectable marker; and determining if the plant or progeny thereof expresses the selectable marker.
  • the method can further include the step of screening the plant or progeny thereof for the absence of the selectable marker.
  • the nucleotide sequence encoding the selectable marker may or may not be flanked on one or both sides by a sequence that is similar or identical to a sequence that is endogenous to the plant cell (e.g., a sequence at the site of cleavage for a second sequence-specific nuclease).
  • the nucleotide sequence encoding the selectable marker may be flanked on both sides by recognition sites for a sequence-specific recombinase.
  • the method can further include the step of out-crossing the plant, with or without the step of screening progeny of the out-cross for the absence of the selectable marker.
  • the first and second recombinant nucleic acids can be simultaneously introduced into the plant cell.
  • One or both of the recombinant nucleic acids can be linearized prior to the introducing step.
  • the first and second recombinant nucleic acids may be present in the same construct.
  • the present invention features another method for modifying the genetic material of a cell.
  • the method can include providing a primary cell containing chromosomal target DNA sequence in which it is desired to have homologous
  • the method can further include providing a nucleic acid comprising a sequence homologous to at least a portion of the target DNA, such that homologous recombination occurs between the target DNA sequence and the nucleic acid.
  • the target DNA sequence can be endogenous to the cell.
  • the cell can be a plant cell, a mammalian cell, a fish cell, an insect cell or cell lines derived from these organisms for in vitro cultures or primary cells taken directly from living tissue and established for in vitro culture.
  • the contacting can include transfecting the cell with a vector comprising a TALEN coding sequence, and expressing the TALEN protein in the cell, mechanically injecting a TALEN protein into the cell, delivering a TAL effector endonuclease protein into the cell by means of the bacterial type III secretion system, or introducing a TALEN protein into the cell by electroporation.
  • the endonuclease domain can be from a type II restriction endonuclease (e.g., Fokl).
  • the TAL effector domain that binds to a specific nucleotide sequence within the target DNA can include 10 or more DNA binding repeats, more preferably 15 or more DNA binding repeats.
  • the cell can be from any prokaryotic or eukaryotic organism.
  • the present invention features a method for designing a sequence specific TALEN capable of cleaving DNA at a specific location.
  • the method can include identifying a first unique endogenous chromosomal nucleotide sequence adjacent to a second nucleotide sequence at which it is desired to introduce a double- stranded cut; and designing a sequence specific TALEN comprising (a) a plurality of DNA binding repeat domains that, in combination, bind to the first unique endogenous chromosomal nucleotide sequence, and (b) an endonuclease that generates a double- stranded cut at the second nucleotide sequence.
  • the present invention also features a TALEN comprising an endonuclease domain and a TAL effector DNA binding domain specific for a particular DNA sequence.
  • the TALEN can further include a purification tag.
  • the endonuclease domain can be from a type II restriction endonuclease (e.g., Fokl).
  • the present invention features a method for generating a genetically modified animal into which a desired nucleic acid has been introduced.
  • the method can include providing a primary cell comprising an endogenous chromosomal target DNA sequence into which it is desired to introduce the nucleic acid; generating a double-stranded cut within the endogenous chromosomal target DNA sequence with a TALEN comprising an endonuclease domain and a TAL effector domain that binds to the endogenous chromosomal target DNA sequence; introducing an exogenous nucleic acid comprising a sequence homologous to at least a portion of the endogenous chromosomal target DNA into the primary cell under conditions that permit homologous recombination to occur between the exogenous nucleic acid and the endogenous chromosomal target DNA; and generating an animal from the primary cell in which homologous recombination has occurred.
  • the animal can be a mammal.
  • the homologous sequence can be a nucleotide sequence selected from the group consisting of a nucleotide sequence that disrupts a gene after homologous recombination, a nucleotide sequence that replaces a gene after homologous recombination, a nucleotide sequence that introduces a point mutation into a gene after homologous recombination, and a nucleotide sequence that introduces a regulatory site after homologous recombination.
  • the present invention features a method for generating a genetically modified plant in which a desired nucleic acid has been introduced.
  • the method can include providing a plant cell comprising an endogenous target DNA sequence into which it is desired to introduce the nucleic acid; generating a double- stranded cut within the endogenous target DNA sequence with a TALEN comprising an endonuclease domain and a TAL effector domain that binds to the endogenous target nucleotide sequence; introducing an exogenous nucleic acid comprising a sequence homologous to at least a portion of the endogenous target DNA into the plant cell under conditions that permit homologous recombination to occur between the exogenous nucleic acid and the endogenous target DNA; and generating a plant from the plant cell in which homologous recombination has occurred.
  • the present invention features a method for targeted genetic recombination in a cell.
  • the method can include introducing into the cell a nucleic acid molecule encoding a TALEN targeted to a selected DNA target sequence; inducing expression of the TALEN within the cell; and identifying a cell in which the selected DNA target sequence exhibits a mutation.
  • the mutation can be selected from the group consisting of a deletion of genetic material, an insertion of genetic material, and both a deletion and an insertion of genetic material.
  • the method can further include introducing donor DNA into the cell.
  • the cell can be an insect cell, a plant cell, a fish cell, or a mammalian cell.
  • the present invention features a method for generating a nucleic acid encoding a sequence specific TALEN, comprising (1) selecting a starter plasmid comprising a nucleotide sequence that encodes a first TAL effector DNA binding repeat domain having a RVD specific for the first nucleotide of a selected nucleotide sequence, wherein the first TAL effector DNA binding repeat domain has a unique PspXl site at its 3' end; (2) linearizing the starter plasmid with PspXl; (3) ligating into the PspXl site a DNA module encoding one or more TAL effector DNA binding repeat domains that have RVDs specific for the next nucleotide(s) of the selected nucleotide sequence, wherein the DNA module has Xhol sticky ends; and (4) repeating steps (2) and (3) until the nucleic acid encodes a TALEN capable of binding to the selected nucleotide sequence.
  • the method can further include, after the lig
  • FIGS. 1A-1D depict the TAL effector-DNA recognition cipher.
  • FIG. 1A is a diagram of a generic TAL effector, showing the repeat region (open boxes) and a representative repeat sequence (SEQ ID NO: l) with the RVD underlined.
  • FIG. IB is a diagram showing best pattern matches (low entropy alignments) for various TAL effector RVDs and target gene promoter sequences (SEQ ID NOS:2-l 1). An asterisk indicates a deletion at residue 13.
  • FIG. 1C is a diagram showing RVD-nucleotide associations in the alignments in B, plus ten more alignments obtained by scanning all rice promoters with 40 additional X.
  • FIG. ID is a diagram showing flanking nucleotide frequencies for the 20 TAL effector target sites. Positions are relative to the 5' end of the target site; N, length of target site. logos were generated using WebLogo.
  • FIGS. 2A and 2B provide evidence that OsHenl is activated by Tallc of
  • FIG. 2A is a picture of semi quantitative RT-PCR results, showing relative transcript abundance of OsHenl, with an actin gene for reference, in rice leaves 24 hours after inoculation with BLS256 marker exchange mutant M51, M51 carrying the empty cosmid vector (ev), M51 carrying cosmid pIJF92, which contains talla, tallb, and tallc, and the wild type (WT) strain.
  • FIG. 2B is a schematic based on mapping of the single marker exchange mutation in M51 by rescue and end sequencing of a marker-containing Xrnal fragment. The genome region, the coordinates of the rescued fragment, and the coordinates of the BLS256 genomic fragment contained in cosmid pIJF92 are shown.
  • FIG. 3 is a reference AvrBs3 amino acid sequence (SEQ ID NO: 12).
  • FIG. 4 is a reference AvrBs3 nucleic acid sequence (SEQ ID NO: 13).
  • FIG. 5 is a map of a TAL nuclease expression vector.
  • FIG. 6 is a map of a target reporter plasmid.
  • FIG. 7 is a diagram of the schematic architecture of TAL nucleases.
  • the recognition sites of TAL DNA binding domain are represented as capital letters, while the spacer sequence is indicated in lowercase.
  • FIG. 8 is the amino acid sequence (SEQ ID NO: 16) of the 17 and a half tandem repeats of the AvrBs3 recognition domain. Hypervariable amino acids at positions 12 and 13 are boxed.
  • FIG. 9 is a diagram showing a scheme for a yeast assay to test TAL effectiveness.
  • FIG. 10 is a graph plotting yeast assay results of AvrBs3 TAL nuclease.
  • FIG. 11 is a diagram showing a schematic representation of single, double, or triple AsvBs3 repeat modules and a cloning vector.
  • FIGS. 12A and 12B depict a single representative TAL effector repeat (FIG. 12A), as well as a representative truncated repeat (FIG. 12B) that is present at the end of the repeat region in most TAL effectors.
  • Nucleotide and encoded amino acid sequences as shown.
  • Ns represent nucleotides encoding the RVDs, which are indicated as "XX.” Numbers are given for the amino acid positions. Sequences are taken from tallc.
  • FIG. 13 is a schematic depicting the tallc gene and the process by which the repeat region was reduced to a single, truncated repeat, resulting in pCS487, also shown.
  • M Mscl site
  • S Sphl site.
  • FIG. 14 is a schematic depicting introduction of a translationally silent mutation at the end of the original truncated repeat in pCS487 to create a PspXI and Xhol site, yielding pCS489. Sequences of codons 18-21 in the original repeat (SEQ ID NO:21) and the mutated repeat (SEQ ID NO:23) are shown. The encoded amino acid sequence (SEQ ID NO:22) was not changed by the mutation. The mutated nucleotides are italicized.
  • FIG. 15 is a map of pCS488, which is a kanamycin resistant plasmid encoding only the N- and C-terminal portions of tal 1 c, without the repeat region, in the Gateway entry vector pENTR-D (Invitrogen, Carlsbad, CA).
  • FIG. 16 is a map of the single repeat starter plasmid designated pCS493, which encodes a repeat having the RVD NI.
  • FIG. 17A depicts nucleotide and encoded amino acid sequences for a single repeat module with the RVD NI.
  • the 5' Xhol compatible cohesive end, the Mscl site, and the 3' PspX /XhoX compatible cohesive end are underlined.
  • the RVD and the nucleotides encoding it are in bold type.
  • Three other repeat modules were constructed that are identical to that shown except for the RVD encoding sequences, which encode HD, NI, and NG, respectively.
  • FIG. 17B is a map of the single repeat module plasmid designated pCS502, which contains the repeat encoding sequence shown in FIG. 17A. Plasmids designated pCS503, pCS504, and pCS505 also were generated, and are identical to pCS502 except for the RVDs they encode (given at right).
  • FIG. 18A depicts nucleotide and encoded amino acid sequences for a single repeat module with RVD NI, in which nucleotide substitutions (italicized) prevent reconstitution of the Xhol site at the 5' end following ligation into a PspXllXhol site and destroy the internal Mscl site.
  • the RVD and its encoding nucleotides are in bold type.
  • Three additional repeat modules were constructed that are identical to that shown except for the RVD encoding sequences, which encode HD, NI, and NG, respectively.
  • FIG. 18B is a schematic of a three repeat module assembled by sequentially ligating additional repeat modules into a single repeat module plasmid. The Mscl site in the first repeat and the PspXl site at the 3 ' end remain unique, and the entire module is flanked by two Xhol sites.
  • FIG. 19 is a list of the complete set of one-, two-, and three-repeat module plasmids.
  • FIG. 20 is a flow chart depicting the steps in a method that can be used to assemble any sequence of repeats into the tallc "backbone" to generate a custom TAL effector gene.
  • FIGS. 21A and 21B are schematics depicting assembly of repeat modules in construction of TAL endonucleases that will target the nucleotide sequences shown.
  • FIG. 21 A repeat modules from plasmids designated pCS519, pCS524, pCS537, pCS551, pCS583, and pCS529 are sequentially added to the sequence in the starter plasmid designated pCS493, resulting in plasmids designated pMAT55, pMAT56, pMAT57, pMAT58, pMAT59, and pMAT60.
  • FIG. 21 A repeat modules from plasmids designated pCS519, pCS524, pCS537, pCS551, pCS583, and pCS529 are sequentially added to the sequence in the starter plasmid designated pCS493, resulting in plasmids designated pMAT55, pMAT56, pMAT57, pMAT58, pMAT59, and p
  • repeat modules from plasmids designated pCS530, pCS533, pCS522, and pCS541 are sequentially added to the sequence in the plasmid designated pMATl, resulting in plasmids designated pMAT61 , pMAT62, pMAT63, and pMAT64.
  • FIG. 22 A is a schematic of a TAL effector protein. BamHl fragments (denoted by B's) were fused to the catalytic domain of the Fokl endonuc lease to create TALENs. N, N-terminus; NLS, nuclear localization signal; B, BamHl site, AD, acidic activation domain.
  • FIG. 22B is a graph plotting activity of TALENs constructed with TAL effectors AvrBs3 and PthXol .
  • Avr-Fokl, AvrBs3 TALEN; Pth-Fokl, PthXol TALEN, Avr-Fokl and Pth-Fokl, AvrBs3 and PthXol fusions to a catalytically inactive version of Fokl (Bitinaite et al. (1998) Proc. Natl. Acad. Sci. USA 95: 10570-10575); ZFN, zinc finger nuclease containing the Zif268 DNA binding domain (Porteus and Baltimore (2003) Science 300:763).
  • FIG. 23 is a reference PthXol amino acid sequence (SEQ ID NO:31).
  • FIG. 24 is a reference PthXol nucleic acid sequence (SEQ ID NO:32).
  • FIG. 25 is a diagram of the pFZ85 vector.
  • FIG. 26 shows the amino acid sequence of avrBs3_TALEN (SEQ ID NO:33).
  • FIG. 27 shows the amino acid sequence of pthXol TALEN (SEQ ID NO:34).
  • FIG. 28A is a graph plotting activity of AvrBs3 and PthXol TALENS on targets with different spacer lengths. ZFN, Zif268-derived zinc finger nuclease.
  • FIG. 28B is a graph plotting activity of a heterodimeric TALEN.
  • FIG. 29 A is a table showing the RVD sequences of individual custom TALENs and their respective DNA recognition sequences.
  • FIG. 29B is a graph plotting the activity of custom TALENs. (-), negative control with target site plasmids only; ZFN, zinc finger nuclease positive control.
  • FIG. 30 is a depiction of the nucleotide and RVD frequencies at the termini of 20 target and TAL effector pairs.
  • FIG. 31 is a schematic of the Golden Gate cloning system [Engler et al. (2008) PLoS One 3:e3647; and Engler et al. (2009) PLoS One 4:e5553].
  • FIGS. 32A and 32B depict a set of 58 plasmids for assembly and cloning of custom TAL effector repeat encoding arrays using the Golden Gate cloning approach as described herein.
  • Tet tetracycline resistance gene, a marker for plasmid selection
  • spec spectinomycin resistance gene, a marker for plasmid selection
  • amp ampicillin resistance gene, a marker for plasmid selection.
  • FIG. 33 is a schematic of a method for assembly and cloning of custom TAL effector repeat encoding arrays by the Golden Gate approach using the set of plasmids shown in FIG. 32.
  • assembly of an arbitrary repeat array is shown, spec, spectinomycin resistance gene, a marker for plasmid selection; amp, ampicillin resistance gene, a marker for plasmid selection.
  • FIGS. 34A-34U show the amino acid sequences of TALENs generated as described in Example 9 herein.
  • FIG. 34A telomerase-TALEN124;
  • FIG. 34B gridlock- TALEN 105;
  • FIG. 34C adhl-TALEN58;
  • FIG. 34D adhl-TALEN63;
  • FIG. 34E adhl- TALEN68;
  • FIG. 34F adhl-TALEN73;
  • FIG. 34G adhl-TALEN89;
  • FIG. 34H gridlock- TALE 106;
  • FIG. 34J adh 1 -TALEN69;
  • FIG. 34 adhl - TALEN74;
  • FIG. 34L tt4-TALEN90;
  • FIG. 34A telomerase-TALEN124
  • FIG. 34B gridlock- TALEN 105
  • FIG. 34C adhl-TALEN58
  • FIG. 34D adhl-TALEN63
  • FIG. 34E adhl-
  • FIG. 35 is a graph plotting TALEN activity as measured by the yeast assay using custom TALEN monomers of increasing length (9-, 10-, 12-, 13-, 15-, 16-, 17-, or 18 mers).
  • the TALENs were targeted to Arabidopsis and zebrafish genes, as indicated.
  • FIG. 36A is a diagram showing two different DNA target sequences from the Arabidopsis ADH1 gene that are targeted by two TALEN pairs.
  • FIG. 36B is a graph plotting yeast assay data for functional TALEN pairs that target the Arabidopsis ADH1 gene.
  • FIG. 37A is a schematic of a restriction endonuclease assay used to detect TALEN-induced mutations in Arabidopsis protoplasts.
  • FIG. 37B shows the sequences of nine clones from undigested DNA in the restriction endonuclease assay. Six of the clones have mutations introduced by non-homologous end-joining (NHEJ).
  • NHEJ non-homologous end-joining
  • FIG. 38A shows 0th repeat sequences of several phylogenetically distinct TAL effectors, AvrHahl from Xanthomonas gardneri, AvrBs3 from X. campestris pv.
  • FIG. 38B is a schematic showing the Oth and 1st repeats of PthXol .
  • the "0th" repeat immediately precedes the 1st repeat, shows 35% identity, and has a similar predicted secondary structure.
  • the RVD of the 1st repeat and the candidate analogous residues of the Oth repeat are underlined. *, gap; H, helix; E, extended. The structure was predicted using JPred (Cole et al. (2008) Nucl. Acids Res. 36:W197-W201).
  • FIG. 39 shows a western blot of total protein isolated from human embryonic kidney 293T cells transfected with plasmids encoding V5-tagged TAL effector proteins AvrBs3, PthXol, and Tallc, as indicated, following immunodetection using a mouse- antiV5 antibody. Immunolabeled actin is shown as a control for equivalent loading in each lane.
  • FIG. 40A shows the amino acid sequence of TALEN HPRT-3254-17
  • FIG. 40B shows the amino acid sequence of TALEN HPRT-3286-20r.
  • FIG. 41 A is a schematic showing the TALEN -targeted site in the human chromosomal HPRT gene. Binding sites for the HPRT-3254-17 and HPRT-3286-20r TALENs, the BpulOl site in the spacer between those sites, and the primer sites for amplification of the region are indicated. Coordinates at the bottom give distance in base pairs from the first nucleotide of the coding sequence.
  • FIG. 4 IB shows the results of BpulOl digestion of products of PCR amplification of the region shown in FIG. 41A using genomic DNA isolated from TALEN-treated and untreated cells as templates. Genomic DNA was digested with BpulOl prior to amplification. DNA fragments were separated by agarose gel electrophoresis and visualized using ethidium bromide.
  • the present patent application provides materials and methods related to sequence specific DNA recognition mediated by TAL effectors.
  • the primary amino acid sequences of TAL effectors dictate the nucleotide sequences to which they bind.
  • the inventors have found that relationships between TAL effector amino acid sequences and their DNA target sequences are direct, enabling target site prediction for TAL effectors, and also allowing for TAL effector customization to bind to particular nucleotide sequences. Such prediction and customization can be harnessed for a variety of purposes.
  • particular TAL effector sequences can be fused to endonuclease sequences, allowing for endonuclease targeting to specific DNA sequences, and subsequent cutting of the DNA at or near the targeted sequences.
  • Cuts i.e., double- stranded breaks
  • DNA constructs that carry sequences having a high degree of sequence similarity to a particular target DNA sequence
  • TALENs can be used to facilitate site directed mutagenesis in complex genomes, that is, to knock out or alter gene function, or to add genes or other sequences with great precision and high efficiency.
  • a cell e.g., a eukaryotic cell
  • a cell can be transformed with a first recombinant nucleic acid construct containing a donor nucleotide sequence that includes alterations relative to a corresponding target nucleotide sequence found within the cell, and a second recombinant nucleic acid construct encoding a TAL-nuclease.
  • the cell also can be transformed with a third recombinant nucleic acid construct encoding a selectable marker.
  • a nucleic acid sequence from the donor nucleic acid construct can become incorporated into the genome of the transformed cell as described herein.
  • plant cells produced using methods as described herein can be grown to produce plants having the altered donor nucleotide sequence
  • Seeds from such plants can be used to produce plants having a phenotype such as, for example, an altered growth characteristic (e.g., increased resistance or tolerance to various biotic and abiotic stresses), altered appearance (e.g., altered color or height), or altered composition (e.g., increased or decreased levels of carbon, nitrogen, oil, protein, carbohydrate (e.g., sugar or starch), amino acid, fatty acid, or secondary metabolites) with respect to unmodified plants.
  • an altered growth characteristic e.g., increased resistance or tolerance to various biotic and abiotic stresses
  • altered appearance e.g., altered color or height
  • altered composition e.g., increased or decreased levels of carbon, nitrogen, oil, protein, carbohydrate (e.g., sugar or starch), amino acid, fatty acid, or secondary metabolites
  • nucleic acid and polynucleotide are used interchangeably, and refer to both R A and DNA, including cDNA, genomic DNA, synthetic (e.g., chemically synthesized) DNA, and DNA (or RNA) containing nucleic acid analogs.
  • Polynucleotides can have any three- dimensional structure.
  • a nucleic acid can be double-stranded or single-stranded (i.e., a sense strand or an antisense single strand).
  • Non-limiting examples of polynucleotides include genes, gene fragments, exons, introns, messenger RNA (mRNA), transfer RNA, ribosomal RNA, ribozymes, cDNA, recombinant polynucleotides, branched
  • polynucleotides polynucleotides, plasmids, vectors, isolated DNA of any sequence, isolated RNA of any sequence, nucleic acid probes, and primers, as well as nucleic acid analogs.
  • polypeptides of the present invention can be introduced in a cell by using a vector encoding said polypeptides for example or as polypeptides per se by using delivery vectors associated or combined with any cellular permeabilization techniques such as
  • isolated when in reference to a nucleic acid, refers to a nucleic acid that is separated from other nucleic acids that are present in a genome, e.g., a plant genome, including nucleic acids that normally flank one or both sides of the nucleic acid in the genome.
  • isolated as used herein with respect to nucleic acids also includes any non-naturally-occurring sequence, since such non-naturally-occurring sequences are not found in nature and do not have immediately contiguous sequences in a naturally-occurring genome.
  • an isolated nucleic acid can be, for example, a DNA molecule, provided one of the nucleic acid sequences normally found immediately flanking that DNA molecule in a naturally-occurring genome is removed or absent.
  • an isolated nucleic acid includes, without limitation, a DNA molecule that exists as a separate molecule (e.g., a chemically synthesized nucleic acid, or a cDNA or genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences, as well as DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a pararetrovirus, a retrovirus, lentivirus, adenovirus, or herpes virus), or the genomic DNA of a prokaryote or eukaryote.
  • a virus e.g., a pararetrovirus, a retrovirus, lentivirus, adenovirus, or herpes virus
  • an isolated nucleic acid can include a recombinant nucleic acid such as a DNA molecule that is part of a hybrid or fusion nucleic acid.
  • a nucleic acid can be made by, for example, chemical synthesis or polymerase chain reaction (PCR).
  • PCR refers to a procedure or technique in which target nucleic acids are amplified. PCR can be used to amplify specific sequences from DNA as well as RNA, including sequences from total genomic DNA or total cellular RNA.
  • Various PCR methods are described, for example, in PCR Primer: A Laboratory Manual, Dieffenbach and Dveksler, eds., Cold Spring Harbor Laboratory Press, 1995.
  • sequence information from the ends of the region of interest or beyond is employed to design oligonucleotide primers that are identical or similar in sequence to opposite strands of the template to be amplified.
  • Various PCR strategies also are available by which site- specific nucleotide sequence modifications can be introduced into a template nucleic acid.
  • Isolated nucleic acids also can be obtained by mutagenesis.
  • a donor nucleic acid sequence can be mutated using standard techniques, including
  • polypeptide refers to a compound of two or more subunit amino acids regardless of post-translational modification (e.g., phosphorylation or glycosylation).
  • the subunits may be linked by peptide bonds or other bonds such as, for example, ester or ether bonds.
  • amino acid refers to either natural and/or unnatural or synthetic amino acids, including D/L optical isomers.
  • isolated or “purified” with respect to a polypeptide it is meant that the polypeptide is separated to some extent from the cellular components with which it is normally found in nature (e.g., other polypeptides, lipids, carbohydrates, and nucleic acids).
  • An purified polypeptide can yield a single major band on a non-reducing polyacrylamide gel.
  • a purified polypeptide can be at least about 75% pure (e.g., at least 80%, 85%, 90%, 95%, 97%, 98%, 99%, or 100% pure).
  • Purified polypeptides can be obtained by, for example, extraction from a natural source, by chemical synthesis, or by recombinant production in a host cell or transgenic plant, and can be purified using, for example, affinity chromatography, immunoprecipitation, size exclusion chromatography, and ion exchange chromatography. The extent of purification can be measured using any appropriate method, including, without limitation, column chromatography,
  • a "vector” is a replicon, such as a plasmid, phage, or cosmid, into which another DNA segment may be inserted so as to bring about the replication of the inserted segment.
  • a vector is capable of replication when associated with the proper control elements.
  • Suitable vector backbones include, for example, those routinely used in the art such as plasmids, viruses, artificial chromosomes, BACs, YACs, or PACs.
  • the term “vector” includes cloning and expression vectors, as well as viral vectors and integrating vectors.
  • An "expression vector” is a vector that includes one or more expression control sequences, and an "expression control sequence” is a DNA sequence that controls and regulates the transcription and/or translation of another DNA sequence.
  • Suitable expression vectors include, without limitation, plasmids and viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalovirus, retroviruses, vaccinia viruses, adenoviruses, and adeno-associated viruses.
  • viral vectors derived from, for example, bacteriophage, baculoviruses, tobacco mosaic virus, herpes viruses, cytomegalovirus, retroviruses, vaccinia viruses, adenoviruses, and adeno-associated viruses.
  • Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, WI), Clontech (Palo Alto, CA), Stratagene (La Jolla, CA), and
  • regulatory region refers to nucleotide sequences that influence transcription or translation initiation and rate, and stability and/or mobility of the transcript or polypeptide product. Regulatory regions include, without limitation, promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, promoter control elements, protein binding sequences, 5' and 3' untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, introns, and other regulatory regions that can reside within coding sequences, such as secretory signals, Nuclear Localization
  • operably linked means incorporated into a genetic construct so that expression control sequences effectively control expression of a coding sequence of interest.
  • a coding sequence is “operably linked” and “under the control” of expression control sequences in a cell when RNA polymerase is able to transcribe the coding sequence into RNA, which if an mRNA, then can be translated into the protein encoded by the coding sequence.
  • a regulatory region can modulate, e.g., regulate, facilitate or drive, transcription in the plant cell, plant, or plant tissue in which it is desired to express a modified target nucleic acid.
  • a promoter is an expression control sequence composed of a region of a DNA molecule, typically within 100 nucleotides upstream of the point at which transcription starts (generally near the initiation site for RNA polymerase II). Promoters are involved in recognition and binding of RNA polymerase and other proteins to initiate and modulate transcription. To bring a coding sequence under the control of a promoter, it typically is necessary to position the translation initiation site of the translational reading frame of the polypeptide between one and about fifty nucleotides downstream of the promoter. A promoter can, however, be positioned as much as about 5,000 nucleotides upstream of the translation start site, or about 2,000 nucleotides upstream of the transcription start site.
  • a promoter typically comprises at least a core (basal) promoter.
  • a promoter also may include at least one control element such as an upstream element.
  • Such elements include upstream activation regions (UARs) and, optionally, other DNA sequences that affect transcription of a polynucleotide such as a synthetic upstream element.
  • UARs upstream activation regions
  • promoters The choice of promoters to be included depends upon several factors, including, but not limited to, efficiency, selectability, inducibility, desired expression level, and cell or tissue specificity.
  • tissue-, organ- and cell-specific promoters that confer transcription only or predominantly in a particular tissue, organ, and cell type, respectively, can be used.
  • promoters specific to vegetative tissues such as the stem, parenchyma, ground meristem, vascular bundle, cambium, phloem, cortex, shoot apical meristem, lateral shoot meristem, root apical meristem, lateral root meristem, leaf primordium, leaf mesophyll, or leaf epidermis can be suitable regulatory regions.
  • promoters that are essentially specific to seeds (“seed- preferential promoters”) can be useful. Seed-specific promoters can promote
  • constitutive promoters can promote transcription of an operably linked nucleic acid in most or all tissues of a plant, throughout plant
  • promoters include, but are not limited to, inducible promoters, such as promoters that confer transcription in response to external stimuli such as chemical agents, developmental stimuli, or environmental stimuli.
  • Basal promoter is the minimal sequence necessary for assembly of a transcription complex required for transcription initiation.
  • Basal promoters frequently include a "TATA box” element that may be located between about 15 and about 35 nucleotides upstream from the site of transcription initiation.
  • Basal promoters also may include a "CCAAT box” element (typically the sequence CCAAT) and/or a GGGCG sequence, which can be located between about 40 and about 200 nucleotides, typically about 60 to about 120 nucleotides, upstream from the transcription start site.
  • Non-limiting examples of promoters that can be included in the nucleic acid constructs provided herein include the cauliflower mosaic virus (CaMV) 35S transcription initiation region, the 1 ' or 2' promoters derived from T-DNA of Agrobacterium
  • tumefaciens promoters from a maize leaf-specific gene described by Busk ((1997) Plant J. I I : 1285-1295), knl-related genes from maize and other species, and transcription initiation regions from various plant genes such as the maize ubiquitin-1 promoter.
  • a 5 ' untranslated region is transcribed, but is not translated, and lies between the start site of the transcript and the translation initiation codon and may include the +1 nucleotide.
  • a 3' UTR can be positioned between the translation termination codon and the end of the transcript. UTRs can have particular functions such as increasing mRNA message stability or translation attenuation. Examples of 3 ' UTRs include, but are not limited to polyadenylation signals and transcription termination sequences.
  • a polyadenylation region at the 3'-end of a coding region can also be operably linked to a coding sequence.
  • the polyadenylation region can be derived from the natural gene, from various other plant genes, or from an Agrobacterium T-DNA.
  • an expression vector can include, for example, origins of replication, and/or scaffold attachment regions (SARs).
  • an expression vector can include a tag sequence designed to facilitate manipulation or detection (e.g., purification or localization) of the expressed polypeptide.
  • Tag sequences such as green fluorescent protein (GFP), glutathione S-transferase (GST), polyhistidine, c-myc, hemagglutinin, or FlagTM tag (Kodak, New Haven, CT) sequences typically are expressed as a fusion with the encoded polypeptide.
  • GFP green fluorescent protein
  • GST glutathione S-transferase
  • polyhistidine polyhistidine
  • c-myc hemagglutinin
  • hemagglutinin or FlagTM tag (Kodak, New Haven, CT) sequences typically are expressed as a fusion with the encoded polypeptide.
  • FlagTM tag Kodak, New Haven, CT sequences typically are expressed as a fusion with the
  • delivery vector or “ delivery vectors” is intended any delivery vector which can be used in the present invention to put into cell contact or deliver inside cells or subcellular compartments agents/chemicals and molecules (proteins or nucleic acids) needed in the present invention. It includes, but is not limited to liposomal delivery vectors, viral delivery vectors, drug delivery vectors, chemical carriers, polymeric carriers, lipoplexes, polyplexes, dendrimers, microbubbles (ultrasound contrast agents), nanoparticles, emulsions or other appropriate transfer vectors. These delivery vectors allow delivery of molecules, chemicals, macromolecules (genes, proteins), or other vectors such as plasmids, peptides developed by Diatos. In these cases, delivery vectors are molecule carriers. By “delivery vector” or “delivery vectors” is also intended delivery methods to perform transfection.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • a “vector” in the present invention includes, but is not limited to, a viral vector, a plasmid, a R A vector or a linear or circular DNA or RNA molecule which may consists of a chromosomal, non chromosomal, semi-synthetic or synthetic nucleic acids.
  • Preferred vectors are those capable of autonomous replication (episomal vector) and/or expression of nucleic acids to which they are linked (expression vectors). Large numbers of suitable vectors are known to those of skill in the art and commercially available.
  • Viral vectors include retrovirus, adenovirus, parvovirus (e. g. adenoassociated viruses), coronavirus, negative strand RNA viruses such as orthomyxovirus (e. g., influenza virus), rhabdovirus (e. g., rabies and vesicular stomatitis virus), paramyxovirus (e. g. measles and Sendai), positive strand RNA viruses such as picornavirus and alphavirus, and double-stranded DNA viruses including adenovirus, herpesvirus (e. g., Herpes Simplex virus types 1 and 2, Epstein-Barr virus, cytomegalovirus), and poxvirus (e.
  • orthomyxovirus e. g., influenza virus
  • rhabdovirus e. g., rabies and vesicular stomatitis virus
  • paramyxovirus e. g. measles and Sendai
  • viruses include Norwalk virus, togavirus, flavivirus, reoviruses, papovavirus, hepadnavirus, and hepatitis virus, for example.
  • retroviruses examples include: avian leukosis-sarcoma, mammalian C-type, B-type viruses, D type viruses, HTLV-BLV group, lentivirus, spumavirus (Coffin, J. M., Retro viridae: The viruses and their replication, In Fundamental Virology, Third Edition, B. N. Fields, et al, Eds., Lippincott-Raven Publishers, Philadelphia, 1996).
  • lentiviral vector HIV-Based lentivirus vectors that are very promising for gene delivery because of their relatively large packaging capacity, reduced immunogenicity and their ability to stably transduce with high efficiency a large range of different cell types.
  • Lentiviral vectors are usually generated following transient transfection of three (packaging, envelope and transfer) or more plasmids into producer cells.
  • lentiviral vectors enter the target cell through the interaction of viral surface glycoproteins with receptors on the cell surface.
  • the viral RNA undergoes reverse transcription, which is mediated by the viral reverse transcriptase complex.
  • the product of reverse transcription is a double-stranded linear viral DNA, which is the substrate for viral integration in the DNA of infected cells.
  • Said lentiviral vectors can be "non-integrative" or "integrative”.
  • integrated lentiviral vectors or LV
  • integrated lentiviral vectors or LV
  • non integrative lentiviral vectors or NILV is meant efficient gene delivery vectors that do not integrate the genome of a target cell through the action of the virus integrase.
  • One type of preferred vector is an episome, i.e., a nucleic acid capable of extra- chromosomal replication.
  • Preferred vectors are those capable of autonomous replication and/or expression of nucleic acids to which they are linked.
  • Vectors capable of directing the expression of genes to which they are operatively linked are referred to herein as "expression vectors.
  • a vector according to the present invention comprises, but is not limited to, a YAC (yeast artificial chromosome), a BAC (bacterial artificial), a baculovirus vector, a phage, a phagemid, a cosmid, a viral vector, a plasmid, a RNA vector or a linear or circular DNA or RNA molecule which may consist of chromosomal, non chromosomal, semi-synthetic or synthetic DNA.
  • expression vectors of utility in recombinant DNA techniques are often in the form of "plasmids" which refer generally to circular double stranded DNA loops which, in their vector form are not bound to the chromosome. Large numbers of suitable vectors are known to those of skill in the art.
  • Vectors can comprise selectable markers, for example: neomycin
  • phosphotransferase histidinol dehydrogenase, dihydrofolate reductase, hygromycin phosphotransferase, herpes simplex virus thymidine kinase, adenosine deaminase, glutamine synthetase, and hypoxanthine-guanine phosphoribosyl transferase for eukaryotic cell culture; TR 1 for S. cerevisiae; tetracyclin, rifampicin or ampicillin resistance in E. coli.
  • said vectors are expression vectors, wherein a sequence encoding a polypeptide of interest is placed under control of appropriate transcriptional and translational control elements to permit production or synthesis of said polypeptide. Therefore, said polynucleotide is comprised in an expression cassette. More particularly, the vector comprises a replication origin, a promoter operatively linked to said encoding polynucleotide, a ribosome binding site, a R A-splicing site (when genomic DNA is used), a polyadenylation site and a transcription termination site. It also can comprise an enhancer or silencer elements. Selection of the promoter will depend upon the cell in which the polypeptide is expressed. Suitable promoters include tissue specific and/or inducible promoters.
  • inducible promoters examples include: eukaryotic metallothionine promoter which is induced by increased levels of heavy metals, prokaryotic lacZ promoter which is induced in response to isopropyl- -D-thiogalacto-pyranoside (IPTG) and eukaryotic heat shock promoter which is induced by increased temperature.
  • eukaryotic metallothionine promoter which is induced by increased levels of heavy metals
  • prokaryotic lacZ promoter which is induced in response to isopropyl- -D-thiogalacto-pyranoside (IPTG)
  • IPTG isopropyl- -D-thiogalacto-pyranoside
  • heat shock promoter which is induced by increased temperature.
  • tissue specific promoters are skeletal muscle creatine kinase, prostate- specific antigen (PSA), a-antitrypsin protease, human surfactant (SP) A and B proteins, ⁇ -casein and acidic whey protein genes.
  • Inducible promoters may be induced by pathogens or stress, more preferably by stress like cold, heat, UV light, or high ionic concentrations (reviewed in Potenza et al. (2004) In vitro Cell Dev Biol 40: 1-22). Inducible promoter may be induced by chemicals [reviewed in Moore et al. (2006); Padidam (2003); (Wang et al. (2003); and (Zuo and Chua (2000)].
  • Delivery vectors and vectors can be associated or combined with any cellular permeabilization techniques such as sonoporation or electroporation or derivatives of these techniques.
  • telomeres may be present in a recombinant polynucleotide, e.g., introns, enhancers, upstream activation regions, and inducible elements.
  • Recombinant nucleic acid constructs can include a polynucleotide sequence inserted into a vector suitable for transformation of cells (e.g., plant cells or animal cells).
  • Recombinant vectors can be made using, for example, standard recombinant DNA techniques ⁇ see, e.g., Sambrook et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY).
  • a recombinant nucleic acid sequence as described herein can integrate into the genome of a cell via illegitimate (i.e., random, non-homologous, non site-specific) recombination, or a recombinant nucleic acid sequence as described herein can be adapted to integrate into the genome of a cell via homologous recombination.
  • Nucleic acid sequences adapted for integration via homologous recombination are flanked on both sides with sequences that are similar or identical to endogenous target nucleotide sequences, which facilitates integration of the recombinant nucleic acid at the particular site(s) in the genome containing the endogenous target nucleotide sequences.
  • Nucleic acid sequences adapted for integration via homologous recombination also can include a recognition site for a sequence-specific nuclease.
  • the recognition site for a sequence-specific nuclease can be located in the genome of the cell to be transformed.
  • Donor nucleic acid sequences as described below typically are adapted for integration via homologous recombination.
  • a nucleic acid encoding a selectable marker also can be adapted to integrate via homologous recombination, and thus can be flanked on both sides with sequences that are similar or identical to endogenous sequences within the plant genome (e.g., endogenous sequences at the site of cleavage for a sequence-specific nuclease).
  • nucleic acid containing coding sequence for a selectable marker also can include a recognition site for a sequence-specific nuclease.
  • the recognition site for the sequence-specific nuclease can be the same as or different from that contained within the donor nucleic acid sequence (i.e., can be recognized by the same nuclease as the donor nucleic acid sequence, or recognized by a different nuclease than the donor nucleic acid sequence).
  • a recombinant nucleic acid sequence can be adapted to integrate into the genome of a cell via site-specific recombination.
  • site-specific recombination refers to recombination that occurs when a nucleic acid sequence is targeted to a particular site(s) within a genome not by homology between sequences in the recombinant nucleic acid and sequences in the genome, but rather by the action of recombinase enzymes that recognize specific nucleic acid sequences and catalyze the reciprocal exchange of DNA strands between these sites.
  • Site-specific recombination thus refers to the enzyme -mediated cleavage and ligation of two defined nucleotide sequences.
  • a nucleic acid encoding a recombinase enzyme may be introduced into a cell in addition to a donor nucleotide sequence and a nuclease-encoding sequence, and in some cases, a selectable marker sequence. See, e.g., U.S. Patent No. 4,959,317. Sequence-specific endonucleases
  • Sequence-specific nucleases and recombinant nucleic acids encoding the sequence-specific endonucleases are provided herein.
  • sequence-specific nucleases and recombinant nucleic acids encoding the sequence-specific endonucleases are provided herein.
  • endonucleases can include TAL effector DNA binding domains and endonuclease domains.
  • nucleic acids encoding such sequence-specific endonucleases can include a nucleotide sequence from a sequence-specific TAL effector linked to a nucleotide sequence from a nuclease.
  • TAL effectors are proteins of plant pathogenic bacteria that are injected by the pathogen into the plant cell, where they travel to the nucleus and function as transcription factors to turn on specific plant genes.
  • the primary amino acid sequence of a TAL effector dictates the nucleotide sequence to which it binds.
  • target sites can be predicted for TAL effectors, and TAL effectors also can be engineered and generated for the purpose of binding to particular nucleotide sequences, as described herein.
  • Fused to the TAL effector-encoding nucleic acid sequences are sequences encoding a nuclease or a portion of a nuclease, typically a nonspecific cleavage domain from a type II restriction endonuclease such as Fokl (Kim et al. (1996) Proc. Natl. Acad. Sci. USA 93: 1156-1160).
  • Other useful endonucleases may include, for example, Hhal, Hindlll, Notl, BbvCl, EcoRl, Bgl ⁇ , and ⁇ /wl. The fact that some endonucleases (e.g., Fokl) only function as dimers can be capitalized upon to enhance the target specificity of the TAL effector.
  • each Fokl monomer can be fused to a TAL effector sequence that recognizes a different DNA target sequence, and only when the two recognition sites are in close proximity do the inactive monomers come together to create a functional enzyme.
  • a highly site-specific restriction enzyme can be created.
  • a sequence-specific TALEN as provided herein can recognize a particular sequence within a preselected target nucleotide sequence present in a cell.
  • a target nucleotide sequence can be scanned for nuclease recognition sites, and a particular nuclease can be selected based on the target sequence.
  • a TALEN can be engineered to target a particular cellular sequence.
  • a nucleotide sequence encoding the desired TALEN can be inserted into any suitable expression vector, and can be linked to one or more expression control sequences.
  • a nuclease coding sequence can be operably linked to a promoter sequence that will lead to constitutive expression of the endonuclease in the species of plant to be transformed.
  • an endonuclease coding sequence can be operably linked to a promoter sequence that will lead to conditional expression (e.g., expression under certain nutritional conditions).
  • a cauliflower mosaic virus 35 S promoter can be used for constitutive expression.
  • Other constitutive promoters include, without limitation, the nopaline synthase promoter, the ubiquitin promoter, and the actin promoter.
  • an artificial estrogen-induced promoter for can be used conditional expression, and high levels of transcription can be achieved when a plant is exposed to estrogen.
  • conditional promoters include, for example, heat- inducible heat shock gene promoters, and light-regulated promoters such as that from the gene encoding the large subunit of ribulose bisphosphate carboxylase.
  • the TAL effector-DNA modifying enzyme of the present invention and a pharmaceutically acceptable excipient are administered in a
  • Such a combination is said to be administered in a "therapeutically effective amount” if the amount administered is physiologically significant.
  • An agent is physiologically significant if its presence results in a detectable change in the physiology of the recipient.
  • an agent is physiologically significant if its presence results in a detectable change in the physiology of the recipient. In the present context, an agent is
  • Vectors comprising targeting DNA and/or nucleic acid encoding a TAL effector-DNA modifying enzyme can be introduced into a cell by a variety of methods (e.g., injection, direct uptake, projectile bombardment, liposomes, electroporation).
  • TAL effector-DNA modifying enzymes can be stably or transiently expressed into cells using expression vectors. Techniques of expression in eukaryotic cells are well known to those in the art. (See Current Protocols in Human Genetics: Chapter 12 "Vectors For Gene Therapy” and Chapter 13 "Delivery Systems for Gene Therapy”).
  • the TAL effector-DNA modifying enzyme is substantially non-immunogenic, i.e., engender little or no adverse
  • the TAL effector-DNA modifying enzyme is substantially free of N-formyl methionine.
  • Another way to avoid unwanted immunological reactions is to conjugate TAL effector-DNA modifying enzyme to polyethylene glycol (“PEG”) or polypropylene glycol (“PPG”) (preferably of 500 to 20,000 daltons average molecular weight (MW)). Conjugation with PEG or PPG, as described by Davis et al. (US)
  • a donor nucleotide sequence can include a variant sequence having one or more modifications (i.e., substitutions, deletions, or insertions) with respect to a preselected target nucleotide sequence found endogenously within the genome of a cell to be transformed (also referred to herein as a "modified target nucleotide sequence").
  • the variant sequence within the donor nucleic acid typically is flanked on both sides with sequences that are similar or identical to the endogenous target nucleotide sequence within the cell.
  • flanking sequences can have any suitable length, and typically are at least 50 nucleotides in length (e.g., at least 50 nucleotides, at least 75 nucleotides, at least 100 nucleotides, at least 200 nucleotides, at least 250 nucleotides, at least 300
  • nucleotides at least 500 nucleotides, at least 750 nucleotides, at least 1000 nucleotides, from about 50 to about 5000 nucleotides, from about 100 to 2500 nucleotides, from about 100 to about 1000 nucleotides, from about 100 to 500 nucleotides, from about 200 to about 500 nucleotides, or from about 250 to 400 nucleotides).
  • homologous recombination can occur between the recombinant donor nucleic acid construct and the endogenous target on both sides of the variant sequence, such that the resulting cell's genome contains the variant sequence within the context of endogenous sequences from, for example, the same gene.
  • a donor nucleotide sequence can be generated to target any suitable sequence within a genome.
  • a donor nucleotide sequence can be targeted to a lipid biosynthetic gene, carbohydrate biosynthetic gene, seed storage protein gene, disease or pest resistance gene, stress tolerance gene, drought tolerance gene, or a gene that produces an anti-nutritional.
  • the donor nucleotide sequence contains a recognition site for a sequence-specific nuclease, as described herein.
  • nucleotide sequence encoding a polypeptide that results in a selectable trait can be incorporated into an expression vector containing one or more expression control sequences.
  • an expression vector can include sequence encoding a selectable marker operably linked to a promoter sequence that will lead to constitutive expression in the plant cell to be transformed.
  • Suitable selectable markers can include, without limitation, polypeptides conferring resistance to an antibiotic such as kanamycin, G418, bleomycin, ampicillin, or hygromycin, or an herbicide such as glufosinate, chlorosulfuron, or phosphinothricin.
  • an antibiotic such as kanamycin, G418, bleomycin, ampicillin, or hygromycin
  • an herbicide such as glufosinate, chlorosulfuron, or phosphinothricin.
  • a selectable marker can confer resistance to an herbicide that inhibits the growing point or meristem, such as an imidazolinone or a sulfonylurea.
  • an herbicide that inhibits the growing point or meristem
  • Exemplary polypeptides in this category code for mutant ALS and AHAS enzymes as described, for example, in U.S. Patent Nos.
  • U.S. Patent Nos. 4,761,373 and 5,013,659 are directed to plants resistant to various imidazolinone or sulfonamide herbicides.
  • U.S. Patent No. 4,975,374 relates to plant cells and plants containing a gene encoding a mutant glutamine synthetase (GS) resistant to inhibition by herbicides that are known to inhibit GS, e.g., phosphinothricin and methionine sulfoximine.
  • GS glutamine synthetase
  • U.S. Patent No. 5,162,602 discloses plants resistant to inhibition by cyclohexanedione and aryloxyphenoxypropanoic acid herbicides.
  • ACCase acetyl coenzyme A carboxylase
  • Polypeptides for resistance to glyphosate also are suitable for use in plants. See, for example, U.S. Patent Nos. 4,940,835 and 4,769,061.
  • U.S. Patent No. 5,554,798 discloses transgenic glyphosate resistant maize plants, in which resistance is conferred by an altered 5-enolpyruvyl-3-phosphoshikimate (EPSP) synthase.
  • ESP 5-enolpyruvyl-3-phosphoshikimate
  • Such polypeptides can confer resistance to glyphosate herbicidal compositions including, without limitation, glyphosate salts such as the
  • Polypeptides for resistance to phosphono compounds such as glufosinate ammonium or phosphinothricin, and pyridinoxy or phenoxy propionic acids and cyclohexones also are suitable. See, for example, European Publication No. 0 242 246, as well as U.S. Patent Nos. 5,879,903, 5,276,268, and 5,561,236.
  • herbicides include those that inhibit photosynthesis, such as triazine and benzonitrile (nitrilase). See, e.g., U.S. Patent No. 4,810,648.
  • Other herbicides include 2,2-dichloropropionic acid, sethoxydim, haloxyfop, imidazolinone herbicides, sulfonylurea herbicides, triazolopyrimidine herbicides, s-triazine herbicides and bromoxynil.
  • herbicides that confer resistance to a protox enzyme. See, e.g., U.S. Patent Publication No. 20010016956 and U.S. Patent No. 6,084,155.
  • a recombinant nucleic acid encoding a selectable marker can be adapted to integrate into the genome of a cell (e.g., a plant cell or an animal cell) by site-specific recombination.
  • a sequence encoding a selectable marker can be flanked by recognition sequences for a recombinase such as, e.g., Cre or FLP.
  • a recombinant nucleic acid encoding a selectable marker can be adapted for integration into a plant genome by homologous recombination.
  • the sequence encoding the selectable marker can be flanked by sequences that are similar or identical to endogenous nucleotide sequences found within the genome of the plant cell into which the recombinant nucleic acid is to be introduced. At least one of the endogenous sequences can be at the cleavage site for a sequence-specific nuclease.
  • the nucleic acid encoding the selectable marker also can contain a recognition site for a sequence-specific nuclease.
  • the nuclease can be the same sequence-specific nuclease as that which is targeted to the donor nucleotide sequence, or a sequence-specific nuclease that is different from that targeted to the donor nucleotide sequence.
  • a recombinant nucleic acid encoding a selectable marker can be adapted for integration into the genome of a plant cell by illegitimate recombination.
  • Such nucleic acids typically lack the flanking sequences and nuclease recognition sites that are contained within nucleic acids adapted for homologous or site-specific recombination as described herein.
  • One or more of the constructs provided herein can be used to transform cells and/or a DNA modifying enzyme can be introduced into cells, such that a genetically modified organism (e.g., a plant or an animal) is generated.
  • a genetically modified organism e.g., a plant or an animal
  • genetically modified organisms and cells containing the nucleic acids and/or polypeptdes described herein also are provided.
  • a transformed cell has a recombinant nucleic acid construct integrated into its genome, i.e., can be stably transformed.
  • Stably transformed cells typically retain the introduced nucleic acid sequence with each cell division.
  • a construct can integrate in a homologous manner, such that a nucleotide sequence endogenous to the transformed cell is replaced by the construct, where the construct contains a sequence that corresponds to the endogenous sequence, but that contains one or more modifications with respect to the endogenous sequence. It is noted that while a plant or animal containing such a modified endogenous sequence may be termed a "genetically modified organism" (GMO) herein, the modified endogenous sequence is not considered a transgene.
  • GMO networkically modified organism
  • a construct also can integrate in an illegitimate manner, such that it integrates randomly into the genome of the transformed cell.
  • a cell can be transiently transformed, such that the construct is not integrated into its genome.
  • a plasmid vector containing a TALEN coding sequence can be introduced into a cell, such that the TALEN coding sequence is expressed but the vector is not stably integrated in the genome.
  • Transiently transformed cells typically lose some or all of the introduced nucleic acid construct with each cell division, such that the introduced nucleic acid cannot be detected in daughter cells after sufficient number of cell divisions. Nevertheless, expression of the TALEN coding sequence is sufficient to achieve homologous recombination between a donor sequence and an endogenous target sequence. Both transiently transformed and stably transformed cells can be useful in the methods described herein.
  • cells used in the methods described herein can constitute part or all of a whole plant. Such plants can be grown in a manner suitable for the species under consideration, either in a growth chamber, a greenhouse, or in a field. Genetically modified plants can be bred as desired for a particular purpose, e.g., to introduce a recombinant nucleic acid into other lines, to transfer a recombinant nucleic acid to other species or for further selection of other desirable traits. Alternatively, genetically modified plants can be propagated vegetatively for those species amenable to such techniques. Progeny includes descendants of a particular plant or plant line.
  • Progeny of an instant plant include seeds formed on F ls F 2 , F 3 , F 4 , F 5 , F 6 and subsequent generation plants, or seeds formed on BCi, BC 2 , BC 3 , and subsequent generation plants, or seeds formed on FiBCi, FiBC 2 , FiBC 3 , and subsequent generation plants. Seeds produced by a genetically modified plant can be grown and then selfed (or outcrossed and selfed) to obtain seeds homozygous for the nucleic acid construct.
  • Genetically modified cells can be grown in suspension culture, or tissue or organ culture, if desired.
  • solid and/or liquid tissue culture techniques can be used.
  • solid medium cells can be placed directly onto the medium or can be placed onto a filter film that is then placed in contact with the medium.
  • cells can be placed onto a floatation device, e.g., a porous membrane that contacts the liquid medium.
  • Solid medium typically is made from liquid medium by adding agar.
  • a solid medium can be Murashige and Skoog (MS) medium containing agar and a suitable concentration of an auxin, e.g., 2,4-dichlorophenoxyacetic acid (2,4-D), and a suitable concentration of a cytokinin, e.g., kinetin.
  • an auxin e.g., 2,4-dichlorophenoxyacetic acid (2,4-D)
  • a cytokinin e.g., kinetin.
  • a cell can be transformed with one recombinant nucleic acid construct or with a plurality (e.g., 2, 3, 4, or 5) of recombinant nucleic acid constructs. If multiple constructs are utilized, they can be transformed simultaneously or sequentially.
  • Techniques for transforming a wide variety of species are known in the art.
  • the polynucleotides and/or recombinant vectors described herein can be introduced into the genome of a host using any of a number of known methods, including electroporation, microinjection, and biolistic methods.
  • polynucleotides or vectors can be combined with suitable T-DNA flanking regions and introduced into a conventional Agrobacterium tumefaciens host vector.
  • Such Agrobacterium tumefaciens-mediated transformation techniques are well known in the art.
  • Other gene transfer and transformation techniques include protoplast transformation through calcium or PEG, electroporation-mediated uptake of naked DNA, liposome- mediated transfection, electroporation, viral vector-mediated transformation, and microprojectile bombardment (see, e.g., U.S. Patents 5,538,880, 5,204,253, 5,591,616, and 6,329,571). If a plant cell or tissue culture is used as the recipient tissue for transformation, plants can be regenerated from transformed cultures using techniques known to those skilled in the art.
  • a DNA modifying enzyme e.g., a TALEN
  • a polypeptide can be introduced into a cell by mechanical injection, by delivery via a bacterial type III secretion system, by
  • Agrobacterium mediated transfer See, e.g., Vergunst et al. (2000) Science 290:979-982 for a discussion of the Agrobacterium VirB/D4 transport system, and its use to mediate transfer of a nucleoprotein T complex into plant cells.
  • polynucleotides, vectors and polypeptides described herein can be introduced into a number of monocotyledonous and
  • dicotyledonous plants and plant cell systems including dicots such as safflower, alfalfa, soybean, coffee, amaranth, rapeseed (high erucic acid and canola), peanut or sunflower, as well as monocots such as oil palm, sugarcane, banana, sudangrass, corn, wheat, rye, barley, oat, rice, millet, or sorghum. Also suitable are gymnosperms such as fir and pine.
  • dicotyledonous plants belonging, for example, to the orders Magniolales, Illiciales, Laurales, Piperales, Aristochiales, Nymphaeales, Ranunculales, Papeverales, Sarraceniaceae,
  • Trochodendrales Hamamelidales, Eucomiales, Leitneriales, Myricales, Fagales, Casuarinales, Caryophyllales, Batales, Polygonales, Plumb aginales, Dilleniales, Theales, Malvales, Urticales, Lecythidales, Violales, Salicales, Capparales, Ericales, Diapensales, Ebenales, Primulales, Rosales, Fabales, Podostemales, Haloragales, Myrtales, Cornales, Proteales, Santales, Rafflesiales, Celastrales, Euphorbiales, Rhamnales, Sapindales, Juglandales, Geraniales, Polygalales, Umbellales, Gentianales, Polemoniales, Lamiales, Plantaginales, Scrophulariales, Campanulales, Rubiales, Dipsacales, and Asterales.
  • the methods described herein also can be utilized with monocotyledonous plants such as those
  • Cyclanthales Pandanales, Arales, Lilliales, and Orchidales, or with plants belonging to Gymnospermae, e.g., Pinales, Ginkgoales, Cycadales and Gnetales.
  • the methods can be used over a broad range of plant species, including species from the dicot genera Atropa, Alseodaphne, Anacardium, Arachis, Beilschmiedia, Brassica, Carthamus, Cocculus, Croton, Cucumis, Citrus, Citrullus, Capsicum,
  • Catharanthus, Cocos, Coffea Cucurbita, Daucus, Duguetia, Eschscholzia, Ficus, Fragaria, Glaucium, Glycine, Gossypium, Helianthus, Hevea, Hyoscyamus, Lactuca, Landolphia, Linum, Litsea, Lycopersicon, Lupinus, Manihot, Major ana, Malus,
  • Medicago Nicotiana, Olea, Parthenium, Papaver, Persea, Phaseolus, Pistacia, Pisum, Pyrus, Prunus, Raphanus, Ricinus, Senecio, Sinomenium, Stephania, Sinapis, Solanum, Theobroma, Trifolium, Trigonella, Vicia, Vinca, Vitis, and Vigna; the monocot genera Allium, Andropogon, Aragrostis, Asparagus, Avena, Cynodon, Elaeis, Festuca,
  • Pannesetum Phleum, Poa, Secale, Sorghum, Triticum, and Zea; or the gymnosperm genera Abies, Cunninghamia, Picea, Pinus, and Pseudotsuga.
  • a transformed cell, callus, tissue, or plant can be identified and isolated by selecting or screening the engineered cells for particular traits or activities, e.g., those encoded by marker genes or antibiotic resistance genes. Such screening and selection methodologies are well known to those having ordinary skill in the art. In addition, physical and biochemical methods can be used to identify transformants.
  • Polynucleotides that are stably incorporated into plant cells can be introduced into other plants using, for example, standard breeding techniques.
  • eukaryotic cells refer to a fungal, yeast, plant or animal cell or a cell line derived from the organisms listed below and established for in vitro culture. More preferably, the fungus can be of the genus Aspergillus, Penicillium, Acremonium, Trichoderma, Chrysoporium, Mortierella, Kluyveromyces or Pichia.
  • the fungus can be of the species Aspergillus niger, Aspergillus nidulans, Aspergillus oryzae, Aspergillus terreus, Penicillium chrysogenum, Penicillium citrinum, Acremonium chrysogenum, Trichoderma reesei, Mortierella alpine,
  • the plant can be of the genus Arabidospis, Nicotiana,
  • Solanum Lactuca, Brassica, Oryza, Asparagus, Pisum, Medicago, Zea, Hordeum, Secale, Triticum, Capsicum, Cucumis, Cucurbita, Citrullis, Citrus, or Sorghum.
  • the plant can be of the species Arabidospis thaliana, Nicotiana tabaccum, Solanum lycopersicum, Solanum tuberosum, Solanum melongena, Solanum esculentum, Lactuca saliva, Brassica napus, Brassica oleracea, Brassica rapa, Oryza glaberrima, Oryza sativa, Asparagus officinalis, Pisum sativum, Medicago sativa, Zea mays, Hordeum vulgare, Secale cereal, Triticum aestivum, Triticum durum, Capsicum sativus, Cucurbita pepo, Citrullus lanatus, Cucumis melo, Citrus aurantifolia, Citrus maxima, Citrus medica, or Citrus reticulata.
  • the animal cell can be of the genus Homo, Rattus, Mus,
  • the animal cell can be of the species Homo sapiens, Rattus norvegicus, Mus musculus, Sus scrofa, Bos taurus, Danio rerio, Canis lupus, Felis catus, Equus caballus, Oncorhynchus mykiss, Gallus gallus, or Meleagris gallopavo; the animal cell can be a fish cell from Salmo salar, Teleost fish or zebrafish species as non- limiting examples.
  • the animal cell in the present invention can also be an insect cell from Drosophila melanogaster as a non-limiting example; the animal cell can also be a worm cell from Caenorhabditis elegans as a non-limiting example.
  • the cell can be a plant cell, a mammalian cell, a fish cell, an insect cell or cell lines derived from these organisms for in vitro cultures or primary cells taken directly from living tissue and established for in vitro culture.
  • cell lines can be selected from the group consisting of CHO-K1 cells; HEK293 cells; Caco2 cells; U2-OS cells; NIH 3T3 cells; NSO cells; SP2 cells; CHO-S cells;
  • DG44 cells K-562 cells, U-937 cells; MRC5 cells; IMR90 cells; Jurkat cells; HepG2 cells; HeLa cells; HT-1080 cells; HCT-116 cells; Hu-h7 cells; Huvec cells; Molt 4 cells.
  • All these cell lines can be modified by the method of the present invention to provide cell line models to produce, express, quantify, detect, study a gene or a protein of interest; these models can also be used to screen biologically active molecules of interest in research and production in various fields such as chemical, biofuels, therapeutics and agronomy as non-limiting examples.
  • the present invention also provides methods for harnessing the sequence-specific DNA binding domains within TAL effectors to, for example, alter the genetic material within cells, to modulate gene expression, and to target pathogenic sequences in, e.g., anti-viral therapies.
  • the present invention provides methods for modifying cellular genetic material.
  • the methods include introducing a polypeptide containing a TAL effector DNA binding domain, or a nucleic acid encoding such a polypeptide, into a cell.
  • the TAL effector DNA binding domain can be fused to all or a portion of a DNA modifying enzyme (e.g., an enzyme) modifier (e.g., an enzyme), e.
  • the methods include introducing two or more recombinant nucleic acids into a cell.
  • a first recombinant nucleic acid contains a donor nucleotide sequence that includes one or more modifications (i.e., substitutions, deletions, or insertions) with respect to a corresponding, preselected target nucleotide sequence found in the cell.
  • the donor nucleotide sequence can undergo homologous
  • the target nucleotide sequence typically includes a recognition site for a sequence- specific TALEN.
  • a target nucleotide sequence can include recognition sites for two or more distinct TALENs (e.g., two opposed target sequences that are distinct, such that TALENs having distinct DNA sequence binding specificity can be used). In such cases, the specificity of DNA cleavage can be increased as compared to cases in which only one target sequence (or multiple copies of the same target sequence) is used.
  • a second recombinant nucleic acid contains a nucleotide sequence encoding a sequence specific TALEN that binds to the recognition site in the target nucleotide sequence.
  • the donor nucleotide sequence and the nucleotide sequence encoding the sequence-specific nuclease can be contained in the same nucleic acid construct.
  • the donor nucleotide sequence and the TALEN coding sequence can be contained in separate constructs, or the TALEN polypeptide can be produced and introduced directly into a cell.
  • a third recombinant nucleic acid containing a nucleotide sequence encoding a selectable marker also may be used.
  • the second and third recombinant nucleic acids may undergo recombination with endogenous sequences and thus integrate into the genome of the cell. These recombination events can be illegitimate (i.e., random), or they can occur through homologous recombination or through site- specific recombination.
  • the recombinant nucleic acids can be simultaneously or sequentially transformed into the cell, and can be linearized prior to transformation.
  • the methods provided herein can further include steps such as generating a plant containing the transformed cell, generating progeny of the plant, selecting or screening for plants expressing the selectable marker (if included), generating progeny of the selected plants, and testing the plants (e.g., tissue, seed, precursor cells, or whole plants) or progeny of the plants for recombination at the target nucleotide sequence.
  • the methods can include out-crossing the selected plants to remove the selectable marker, and/or screening the selected or out-crossed plants for the absence of the sequence-specific nuclease.
  • the present invention provides methods for modifying the genetic material of a cell, e.g., a prokaryotic cell, an animal cell, or a plant cell.
  • the methods can include introducing into the cell a first recombinant nucleic acid containing a modified target nucleotide sequence that includes one or more modifications in nucleotide sequence with respect to a corresponding target nucleotide sequence present in the cell, as well as a recognition site for a sequence-specific TALEN, and a second recombinant nucleic acid containing a nucleotide sequence encoding the sequence- specific TALEN.
  • a plant containing the cell can be generated, and cells, seed, or tissue obtained from the plant (or progeny thereof) can be analyzed for recombination at the target nucleotide sequence.
  • the first and second recombinant nucleic acids can be simultaneously or serially transformed into the cell, and one or both may be linearized prior to transformation. In some cases, the first and second recombinant nucleic acids can be present in the same construct.
  • the method also can include introducing into the cell a third recombinant nucleic acid containing a nucleotide sequence encoding a selectable marker, and determining whether the cell, an organism generated from the cell, or progeny thereof expresses the selectable marker.
  • the method further can include screening the cell, the organism or progeny thereof for the absence of the selectable marker.
  • the nucleotide sequence encoding the selectable marker may or may not be flanked on both sides by nucleotide sequences that are similar or identical to nucleotide sequences endogenous to the cell at the site of cleavage for a second sequence-specific nuclease, or by recognition sites for a sequence-specific recombinase.
  • the method also can include the step of out-crossing the organism. Progeny of the out-cross can be screened for the absence of the selectable marker.
  • the present invention also provides methods for modifying the genetic material of a cell (e.g., a plant cell or an animal cell), comprising providing a cell containing a target DNA sequence, e.g., a chromosomal, mitochondrial, or chloroplast sequence, in which it is desired to have homologous recombination occur, providing a TALEN that contains a DNA modifying enzyme domain (e.g., an endonuclease domain) and a TAL effector domain having a plurality of TAL effector repeats that, in combination, bind to a specific nucleotide sequence within the target DNA sequence, providing a nucleic acid containing a sequence homologous to at least a portion of the target DNA, and contacting the target DNA sequence in the cell with the TAL endonuclease such that both strands of a nucleotide sequence within or adjacent to the target DNA sequence in the cell are cleaved.
  • a target DNA sequence e.g., a
  • Such cleavage can enhance the frequency of homologous recombination at the target DNA sequence.
  • the target DNA sequence can be endogenous to the cell.
  • the methods can include introducing into the cell a vector containing a cDNA encoding the TAL endonuclease, and expressing a TAL endonuclease protein in the cell.
  • the TAL endonuclease protein itself can be introduced into the cell, for example, by mechanical injection, by delivery via a bacterial type III secretion system, by
  • the methods described herein can be used in a variety of situations. In agriculture, for example, methods described herein are useful to facilitate homologous recombination at a target site can be used to remove a previously integrated transgene (e.g., a herbicide resistance transgene) from a plant line, variety, or hybrid.
  • the methods described herein also can be used to modify an endogenous gene such that the enzyme encoded by the gene confers herbicide resistance, e.g., modification of an endogenous 5- enolpyruvyl shikimate-3 -phosphate (EPSP) synthase gene such that the modified enzyme confers resistance to glyphosate herbicides.
  • EBP 5- enolpyruvyl shikimate-3 -phosphate
  • the methods described herein are useful to facilitate homologous recombination at regulatory regions for one or more endogenous genes in a plant or mammal metabolic pathway (e.g., fatty acid biosynthesis), such that expression of such genes is modified in a desired manner.
  • the methods described herein are useful to facilitate homologous recombination in an animal (e.g., a rat or a mouse) in one or more endogenous genes of interest involved in, as non- limiting examples, metabolic and internal signaling pathways such as those encoding cell-surface markers, genes identified as being linked to a particular disease, and any genes known to be responsible for a particular phenotype of an animal cell.
  • the present invention also provides methods for designing sequence-specific TAL effectors capable of interacting with particular DNA sequences (e.g., TALENs capable of cleaving DNA at specific locations).
  • the methods can include identifying a target nucleotide sequence (e.g., an endogenous chromosomal sequence, a mitochondrial DNA sequence, or a chloroplast DNA sequence) at which it is desired to have TAL effector binding (e.g., a sequence adjacent to a second nucleotide sequence at which it is desired to introduce a double-stranded cut), and designing a sequence specific TAL effector that contains a plurality of DNA binding repeats that, in combination, bind to the target sequence.
  • a target nucleotide sequence e.g., an endogenous chromosomal sequence, a mitochondrial DNA sequence, or a chloroplast DNA sequence
  • TAL effector binding e.g., a sequence adjacent to a second nucleotide sequence at which it is desired to introduce
  • TAL effectors include a number of imperfect repeats that determine the specificity with which they interact with DNA. Each repeat binds to a single base, depending on the particular di-amino acid sequence at residues 12 and 13 of the repeat. Thus, by engineering the repeats within a TAL effector (e.g., using standard techniques or the techniques described herein), particular DNA sites can be targeted.
  • Such engineered TAL effectors can be used, for example, as transcription factors targeted to particular DNA sequences.
  • a diagram of a generic TAL effector is shown in FIG. 1 A, with the repeat region indicated by open boxes, and the RVD in the representative repeat sequence (SEQ ID NO: l) underlined.
  • RVDs examples of RVDs and their corresponding target nucleotides are shown in Table lA (See, also, PCT Publication No. WO2010/079430).
  • ⁇ De denotes a gap in the repeat sequence corresponding to a lack of an amino acid residue at the second position of the RVD.
  • a sequence-specific TALEN can be designed to contain (a) a plurality of DNA binding repeat domains that, in combination, bind to the endogenous chromosomal nucleotide sequence, and (b) an endonuclease that generates a double-stranded cut at the second nucleotide sequence.
  • sequence-specific DNA cleavage can be useful to enhance homologous recombination, as described herein.
  • Other uses for TALENs include, for example, as therapeutics against viruses. TALENs can be engineered to target particular viral sequences, cleaving the viral DNA and reducing or abolishing virulence.
  • a gene may contain a plurality of sequences to which an engineered TAL effector could be targeted. As described herein, however, certain target sequences may be more effectively targeted. For example, as set forth in Example 9, sequences having particular characteristics may be more effectively targeted by TAL effectors.
  • the methods provided herein can include identifying target sequences that meet particular criteria.
  • sequences that: i) have a minimum length of 15 bases and an orientation from 5' to 3' with a T immediately preceding the site at the 5 ' end; ii) do not have a T in the first (5') position or an A in the second position; iii) end in T at the last (3') position and do not have a G at the next to last position; and iv) have a base composition of 0-63% A, 11-63% C, 0-25% G, and 2-42% T.
  • some embodiments of the methods provided herein can include identifying a first genomic nucleotide sequence and a second genomic nucleotide sequence in a cell, wherein the first and second nucleotide sequences meet at least one of the criteria set forth above and are separated by 15-18 bp.
  • one TALEN polypeptide can bind to each nucleotide sequences, and the endonuclease contained in the TALEN can cleave within the 15-18 bp spacer.
  • the present invention also provides methods for generating genetically modified animals into which a desired nucleic acid has been introduced.
  • Such methods can include obtaining a cell containing an endogenous chromosomal target DNA sequence into which it is desired to introduce the nucleic acid, introducing into the cell a TALEN to generate a double-stranded cut within the endogenous chromosomal target DNA sequence, introducing into the cell an exogenous nucleic acid containing a sequence homologous to at least a portion of the endogenous chromosomal target DNA, where the introduction is done under conditions that permit homologous recombination to occur between the exogenous nucleic acid and the endogenous chromosomal target DNA, and generating an animal from the primary cell in which homologous recombination has occurred.
  • the homologous nucleic acid can include, e.g., a nucleotide sequence that disrupts a gene after homologous recombination, a nucleotide sequence that replaces a gene after homologous recombination, a nucleotide sequence that introduces a point mutation into a gene after homologous recombination, or a nucleotide sequence that introduces a regulatory site after homologous recombination.
  • the methods provided herein also can be used to generate genetically modified plants in which a desired nucleic acid has been introduced.
  • Such methods can include obtaining a plant cell containing an endogenous target DNA sequence into which it is desired to introduce the nucleic acid, introducing a TALEN to generate a double-stranded cut within the endogenous target DNA sequence, introducing into the plant cell an exogenous nucleic acid containing a sequence homologous to at least a portion of the endogenous target DNA, where the introducing is under conditions that permit homologous recombination to occur between the exogenous nucleic acid and the endogenous target DNA, and generating a plant from the plant cell in which homologous recombination has occurred.
  • the DNA in cells generated by the TALEN-facilitated homologous recombination methods provided herein is modified, as compared to cells that have not undergone such methods, and cells containing the modified DNA are referred to as "genetically modified.” It is noted, however, that organisms containing such cells may not be considered GMO for regulatory purposes, since such a modification involves a homologous recombination and not random integration of a transgene. Thus, using the TALEN-facilitated methods described herein to generate genetic modifications may be advantageous in that, for example, standard regulatory procedures along with their associated time and cost may be avoided.
  • Other methods of targeted genetic recombination can include introducing into a cell (e.g., a plant cell, insect cell, teleost fish cell, or animal cell) a nucleic acid molecule encoding a TALEN targeted to a selected DNA target sequence, inducing expression of the TALEN within the cell, and identifying a recombinant cell in which the selected DNA target sequence exhibits a mutation (e.g., a deletion of genetic material, an insertion of genetic material, or both a deletion and an insertion of genetic material).
  • a donor DNA also can be introduced into the cell.
  • a monomeric TALEN can be used.
  • TALENs as described herein typically function as dimers across a bipartite recognition site with a spacer, such that two TAL effector domains are each fused to a catalytic domain of the Fokl restriction enzyme, the DNA recognition sites for each resulting TALEN are separated by a spacer sequence, and binding of each TALEN monomer to the recognition site allows Fokl to dimerize and create a double-strand break within the spacer (see, e.g., Moscou and Bogdanove (2009) Science 326: 1501).
  • Monomeric TALENs also can be constructed, however, such that single TAL effectors are fused to a nuclease that does not require dimerization to function.
  • nuclease for example, is a single-chain variant of Fokl in which the two monomers are expressed as a single polypeptide (Minczuk et al. (2008) Nucleic Acids Res. 36:3926-3938).
  • Other naturally occurring or engineered monomeric nucleases also can serve this role.
  • the DNA recognition domain used for a monomeric TALEN can be derived from a naturally occurring TAL effector.
  • the DNA recognition domain can be engineered to recognize a specific DNA target.
  • Engineered single-chain TALENs may be easier to construct and deploy, as they require only one engineered DNA recognition domain.
  • a dimeric DNA sequence-specific nuclease can be generated using two different DNA binding domains (e.g., one TAL effector binding domain and one binding domain from another type of molecule).
  • the TALENs described herein typically function as dimers across a bipartite recognition site with a spacer.
  • This nuclease architecture also can be used for target-specific nucleases generated from, for example, one TALEN monomer and one zinc finger nuclease monomer. In such cases, the DNA recognition sites for the TALEN and zinc finger nuclease monomers can be separated by a spacer of appropriate length.
  • Binding of the two monomers can allow Fokl to dimerize and create a double-strand break within the spacer sequence.
  • DNA binding domains other than zinc fingers such as homeodomains, myb repeats or leucine zippers, also can be fused to Fokl and serve as a partner with a TALEN monomer to create a functional nuclease.
  • a TAL effector can be used to target other protein domains (e.g., non-nuclease protein domains) to specific nucleotide sequences.
  • a TAL effector can be linked to a protein domain from, without limitation, a DNA interacting enzyme (e.g., a methylase, a topoisomerase, an integrase, a transposase, or a ligase), a transcription activators or repressor, or a protein that interacts with or modifies other proteins such as histones.
  • a DNA interacting enzyme e.g., a methylase, a topoisomerase, an integrase, a transposase, or a ligase
  • transcription activators or repressor e.g., a transcription activators or repressor
  • proteins such as histones.
  • the spacer of the target sequence can be selected or varied to modulate TALEN specificity and activity.
  • the results presented herein for TALENs that function as dimers across a bipartite recognition site with a spacer demonstrate that TALENs can function over a range of spacer lengths, and that the activity of TALENs varies with spacer length. See, e.g., Example 6 below.
  • the flexibility in spacer length indicates that spacer length can be chosen to target particular sequences (e.g., in a genome) with high specificity. Further, the variation in activity observed for different spacer lengths indicates that spacer length can be chosen to achieve a desired level of TALEN activity.
  • TALEN activity can be modulated by varying the number and composition of repeats within the DNA binding domain(s).
  • a PthXoI-based TALEN showed greater activity than an AvrBs3- based TALEN.
  • PthXoI differs from AvrBs3 both in the number and RVD composition of its repeats.
  • the naturally occurring DNA recognition sites for these proteins differ in their divergence from the respective recognition sequences predicted based on the TAL effector DNA cipher described by Moscou and Bogdanove ⁇ supra).
  • TALENs of the same length (12 RVDs) but with differing RVD composition differed in their activity, and a 13 RVD custom TALEN had higher activity than a 12 RVD custom TALEN.
  • the number of repeats can be varied to modulate activity
  • different binding sites can be selected to achieve different levels of activity
  • the composition of RVDs and their fit to the target site can be varied to modulate TALEN activity.
  • the RVDs can be found in equivalent number in each of the two TAL effector domains, or each domain can display different numbers of RVDs. For instance, if a total of 22 RVDs is used to bind DNA in a particular heterodimeric TALEN, 11 repeats can be found in each of the two TAL effector domains; alternatively, 10 repeats can be found in one of the two TAL effector domains and 12 in the other.
  • the present invention also encompasses TALEN with DNA modifying enzyme domain which functions as a monomer.
  • the number of RVDs must be equivalent to the total number of RVDs that would be found in an equivalent dimeric TALEN. For example, instead of having 10 repeats on two different TAL effector domains (as in the case for a dimeric TALEN), one would have 20 repeats in a single TAL effector domain (as in the case for a monomeric TALEN). In a further aspect of the invention, the total number of repeats within the dimeric or monomeric TALEN is at least 14.
  • the total number of repeats within the dimeric or monomeric TALEN is at least 20. In another further aspect of the invention, the total number of repeats within the dimeric or monomeric TALEN is at least 24. In another further aspect of the invention, the total number of repeats within the dimeric or monomeric TALEN is at least 30.
  • This patent application also provides methods for generating TAL effector proteins having enhanced targeting capacity for a target DNA.
  • the methods can include, for example, generating a nucleic acid encoding a TAL effector that has a DNA binding domain with a plurality of DNA binding repeats, each repeat containing a RVD that determines recognition of a base pair in the target DNA, where each DNA binding repeat is responsible for recognizing one base pair in the target DNA.
  • relaxing the requirement for T at position -1 of the binding site may enhance the targeting capacity for engineered TAL effector proteins.
  • generating a TAL effector encoding nucleic acid can include incorporating a nucleic acid encoding a variant 0th DNA binding repeat sequence with specificity for A, C, or G, thus eliminating the requirement for T at position -1 of the binding site.
  • methods are provided herein for generating TAL effectors having enhanced targeting capacity for a target DNA.
  • Such methods can include generating a nucleic acid encoding a TAL effector that comprises DNA binding domain having a plurality of DNA binding repeats, each repeat containing a RVD that determines recognition of a base pair in the target DNA.
  • the specificity of NN the most common RVD that recognizes G
  • methods provided herein can include using alternate RVDs that may have more robust specificity for G.
  • one or more RVDs selected from the group consisting of RN, R*, NG, NH, KN, K*, NA, NT, DN, D*, NL, NM, EN, E*, NV, NC, QN, Q*, NR, NP, HN, H*, NK, NY, SN, S*, ND, NW, TN, T*, NE, NF, YN, Y*, and NQ can be used, where the asterisk indicates a gap at the second position of the RVD.
  • the present invention also provides articles of manufacture containing, for example, nucleic acid molecules encoding TALENs, TALEN polypeptides, compositions containing such nucleic acid molecules or polypeptides, or TAL endonuclease engineered cell lines. Such items can be used, for example, as research tools, or therapeutically.
  • an article of manufacture can include seeds from plants generated using methods provided herein.
  • the seeds can be conditioned using means known in the art and packaged using packaging material well known in the art to prepare an article of manufacture.
  • a package of seed can have a label e.g., a tag or label secured to the packaging material, a label printed on the packaging material or a label inserted within the package.
  • the label can indicate that the seeds contained within the package can produce a crop of genetically modified plants, and can described the traits that are altered by the genetic modification, relative to unmodified plants.
  • - Amino acid substitution means the replacement of one amino acid residue with another, for instance the replacement of an Arginine residue with a Glutamine residue in a peptide sequence is an amino acid substitution.
  • nucleosides are designated as follows: one-letter code is used for designating the base of a nucleoside: a is adenine, t is thymine, c is cytosine, and g is guanine.
  • r represents g or a (purine nucleotides)
  • k represents g or t
  • s represents g or c
  • w represents a or t
  • m represents a or c
  • y represents t or c (pyrimidine nucleotides)
  • d represents g, a or t
  • v represents g, a or c
  • b represents g, t or c
  • h represents a, t or c
  • n represents g, a, t or c.
  • DNA modifying enzyme refers to any protein which is capable of modifying the genetic material of a cell, whatever the level of DNA modification (cleavage, covalent interaction, water-mediated interaction).
  • DNA-interacting proteins e.g., a methylase, a topoisomerase, an integrase, a transposase, or a ligase
  • transcription activators or repressor other proteins such as histones
  • nucleases are intended to be included in the meaning of "DNA modifying enzyme”.
  • DNA modifying enzyme is refered as the DNA modifying enzyme domain.
  • nuclease is intended to include exonucleases and endonucleases.
  • endonucleases refers to any wild-type or variant enzyme capable of catalyzing the hydrolysis (cleavage) of bonds between nucleic acids within a DNA or RNA molecule, preferably a DNA molecule.
  • endonucleases include type II restriction endonucleases such as Fokl, Hhal, Hindlll, Notl, BbvCl, EcoRl, Bgl ⁇ , and Alwl.
  • Endonucleases comprise also rare-cutting endonucleases when having typically a polynucleotide recognition site of about 12-45 base pairs (bp) in length, more preferably of 14-45 bp.
  • Rare-cutting endonucleases can for example be a homing endonuclease (Paques and Duchateau 2007), a chimeric Zinc-Finger nuclease (ZFN) resulting from the fusion of engineered zinc-finger domains with the catalytic domain of a restriction enzyme such as Fokl (Porteus and Carroll 2005) or a chemical endonuclease (Eisenschmidt, Lanio et al. 2005 ; Arimondo, Thomas et al. 2006; Simon, Cannata et al. 2008).
  • a restriction enzyme such as Fokl (Porteus and Carroll 2005) or a chemical endonuclease (Eisenschmidt, Lanio et al. 2005 ; Arimondo, Thomas et al. 2006; Simon, Cannata et al. 2008).
  • a chemical or peptidic cleaver is conjugated either to a polymer of nucleic acids or to another DNA recognizing a specific target sequence, thereby targeting the cleavage activity to a specific sequence.
  • Chemical endonucleases also encompass synthetic nucleases like conjugates of orthophenanthroline, a DNA cleaving molecule, and triplex-forming oligonucleotides (TFOs), known to bind specific DNA sequences (Kalish and Glazer 2005). Such chemical endonucleases are comprised in the term "endonuclease" according to the present invention.
  • endonuclease examples include I-Sce I, I-Chu I, I-Cre I, I-Csm I, Pl-Sce I, PI-Tli I, PI-Mtu I, I-Ceu I, I-Sce II, I- Sce III, HO, Pi-Civ I, Pl-Ctr I, PI-Aae I, PI-Bsu I, PI-Dha I, PI-Dra I, PI-Mav I, PI-Mch I, PI-Mfu I, PI-Mfl I, PI-Mga I, PI-Mgo I, PI-Min I, PI-Mka I, PI-Mle I, PI-Mma I, PI- Msh I, PI-Msm I, PI-Mth I, PI-Mtu I, PI-Mxe I, PI-Npu I, PI-Pfu I, PI-P
  • TAL Transcription Activator-Like effector endonuclease
  • TALEN Transcription Activator-like (TAL) effector binding domain and an endonuclease domain, the fusion of both domains resulting in a "monomeric TALEN".
  • Some monomeric TALEN can be functional per se and others require dimerization with another monomeric TALEN. The dimerization can result in a homodimeric TALEN when both monomeric TALEN are identical or can result in a heterodimeric TALEN when monomeric TALEN are different.
  • Two monomeric TALEN are different when, for example, their RVDs numbers are different, and / or when the content (i.e amino acid sequence) of at least one RVD is different.By
  • TAL effector-DNA modifying enzyme is intended a protein comprising a Transcription Activator-Like effector binding domain and a DNA-modifying enzyme domain.
  • variant is intended a “variant” protein, i.e. an protein that does not naturally exist in nature and that is obtained by genetic engineering or by random mutagenesis, i.e. an engineered protein.
  • This variant protein can for example be obtained by substitution of at least one residue in the amino acid sequence of a wild-type, naturally-occurring, protein with a different amino acid. Said substitution(s) can for example be introduced by site-directed mutagenesis and/or by random mutagenesis.
  • cell or “cells” is intended any prokaryotic or eukaryotic living cells, cell lines derived from these organisms for in vitro cultures, primary cells from animal or plant origin.
  • primary cell or “primary cells” are intended cells taken directly from living tissue (i.e. biopsy material) and established for growth in vitro, that have undergone very few population doublings and are therefore more representative of the main functional components and characteristics of tissues from which they are derived from, in comparison to continuous tumorigenic or artificially immortalized cell lines. These cells thus represent a more valuable model to the in vivo state to which they refer.
  • homologous is intended a sequence with enough identity to another one to lead to homologous recombination between sequences, more particularly having at least 95 % identity, preferably 97 % identity and more preferably 99 %.
  • Identity refers to sequence identity between two nucleic acid molecules or polypeptides. Identity can be determined by comparing a position in each sequence which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base, then the molecules are identical at that position. A degree of similarity or identity between nucleic acid or amino acid sequences is a function of the number of identical or matching nucleotides at positions shared by the nucleic acid sequences.
  • Various alignment algorithms and/or programs may be used to calculate the identity between two sequences, including FASTA, or BLAST which are available as a part of the GCG sequence analysis package (University of Wisconsin, Madison, WI), and can be used with, e.g., default setting.
  • mutant is intended the substitution, deletion, insertion of one or more nucleotides/amino acids in a polynucleotide (cDNA, gene) or a polypeptide sequence.
  • Said mutation can affect the coding sequence of a gene or its regulatory sequence. It may also affect the structure of the genomic sequence or the structure/stability of the encoded mRNA.
  • gene is meant the basic unit of heredity, consisting of a segment of DNA arranged in a linear manner along a chromosome, which codes for a specific protein or segment of protein.
  • a gene typically includes a promoter, a 5' untranslated region, one or more coding sequences (exons), optionally introns, a 3' untranslated region.
  • the gene may further comprise a terminator, enhancers and/or silencers.
  • gene of interest refers to any nucleotide sequence encoding a known or putative gene product.
  • locus is the specific physical location of a DNA sequence (e.g. of a gene) on a chromosome.
  • locus usually refers to the specific physical location of a target sequence on a chromosome.
  • fusion protein is intended the result of a well-known process in the art consisting in the joining of two or more genes which originally encode for separate proteins, the translation of said "fusion gene” resulting in a single polypeptide with functional properties derived from each of the original proteins.
  • catalytic domain is intended the protein domain or module of an enzyme containing the active site of said enzyme; by active site is intended the part of said enzyme at which catalysis of the substrate occurs.
  • Enzymes, but also their catalytic domains, are classified and named according to the reaction they catalyze.
  • the Enzyme Commission number (EC number) is a numerical classification scheme for enzymes, based on the chemical reactions they catalyze (World Wide Web at
  • any catalytic domain can be used as a partner and be fused to a TAL effector domain to generate a chimeric fusion protein resulting in a TAL effector-DNA modifying enzyme.
  • Non- limiting examples of such catalytic domains can be those of Mmel, EsaSSII, CstMI, NucA, EndA Escherichia coli, NucM, EndA Streptococcus pneumonia, SNase
  • Staphylococcus aureus SNase Staphylococcus hyicus, SNase shigella flexneri, Bacillus subtilis yncB, Endodeoxyribonucleasel Enterobacteria phage T7, EndoG bovine, ttSmr DNA mismatch repair protein mutS, cleavage domain of Metnase.
  • Example 1 A cipher governs TAL effector-DNA recognition
  • the predicted promoter region i.e., the 1,000 bp immediately preceding the annotated translational start site
  • the predicted promoter region i.e., the 1,000 bp immediately preceding the annotated translational start site
  • D is the set of four nucleotides (A, C, G, T)
  • flj represents the observed frequency with which the ith RVD associates with the jth nucleotide:
  • a weight matrix was first generated based on the frequencies of all RVD-nucleotide associations observed across the ten minimal entropy TAL effector-target site alignments (FIG. IB). The weight matrix was then used to scan the promoter region, the 1,000 bp preceding the translational start, of each nonredundant gene model in rice, Oryza sativa spp. japonica cv.
  • AvrXa27 The known target of the fifth effector, AvrXa27, is the disease resistance gene Xa27 (Gu et al., supra).
  • the poorer rank for this match (5,368) may reflect a calibrated, or recent and sub-optimal host adaptation. Better scoring sites likely comprise genes targeted by AvrXa27 for pathogenesis.
  • the RVD-nucleotide frequencies in the expanded set of 20 TAL effector nucleotide alignments were used to generate a new weight matrix, and a computational script was written in Python v2.5 (www.python.org).
  • Python v2.5 www.python.org
  • the script can be used to scan any collection of DNA sequences for matches to a particular TAL effector, with a user- definable weight factor for observed vs. unobserved RVD-nucleotide associations. See Moscou and Bogdanove ⁇ supra).
  • TAL effector targets in a genome and construction of targets de novo are now possible.
  • the ability to predict sites will expedite identification of host genes important in disease.
  • the ability to construct targets holds promise for designing durable resistance genes that are responsive to conserved or multiple TAL effectors.
  • Customizing TAL effectors for arbitrary gene activation or targeting of fused proteins for DNA modification also is possible, as described herein.
  • RVDs repeat-variable diresidues
  • TcS annotated transcriptional start site
  • TIS transcriptase
  • translational start site Locations are relative to the 5' end of the target site.
  • Xanthomonas oryzae TAL effector candidate targets in rice activated during infection are listed in Table 1 below.
  • RVDs repeat-variable diresidues
  • r rank out of 58,918 gene models scanned, based on the RVD weight matrix score
  • TcS annotated transcriptional start site
  • n.p. not present
  • TIS translational start site. Locations are relative to the 5' end of the target site, q values are for a comparison to mock across five time points up to 96 hours after inoculation, replicated four times; fold change given is at 96 hours (PLEXdb, accession OS3).
  • Example 2 - TALENs can function in yeast
  • Plasmid construction The protein coding sequence of the TAL effector, AvrBs3, was obtained by digestion from a plasmid with BamHl. A DNA fragment encoding principally the repeat domain was excised with Sphl. The amino acid sequence of AvrBs3 can be found under GENBANK Accession No. P14727 and SEQ ID NO: 12 (FIG. 3), and the nucleic acid sequence under Accession No. X16130 and SEQ ID NO: 13 (FIG. 4). In FIG. 4, the BamHl and Sphl sites are in bold and underlined. The AvrBs3 BamHl and Sphl fragments were cloned into the nuclease expression vector
  • pDW1789_TAL adjacent to sequences encoding the Fokl nuclease domain.
  • AvrBs3 target site into the target reporter plasmid, two complementary DNA oligos, containing two AvrBs3 recognition sites arranged in an inverted orientation with an 18 bp spacer sequence in between, were synthesized with BglR and Spel overhangs at the 5' and 3' ends, respectively.
  • Other reporter plasmids were made that had recognition sites with spacer lengths of 6, 9, 12 and 15 bp.
  • the annealed DNA oligos were cloned into the reporter plasmid, pCP5 (FIG.
  • Yeast assay The target reporter plasmids were transformed into the yeast strain YPH499 (a MAT a strain), and transformants were selected on synthetic complete medium lacking tryptophan (SC-W). The TALEN expression plasmids were transformed into YPH500 (a MAT strain); and transformants were plated on SC medium lacking histidine (SC-H). Yeast colonies carrying the target reporter plasmid and colonies carrying the TALEN expression plasmid were cultured overnight at 30°C in liquid SC-W and SC-H media, respectively. The cultures were adjusted to the same OD 6 oo, and 200 ⁇ of each were mixed into 200 ⁇ YPD medium.
  • the mixture was incubated at 30°C for 4 hours to allow the two types of yeast strain to mate.
  • the mixed culture was spun down and resuspended in 5 ml SC-W-H media at 30C overnight or until the OD 60 o reaches a range of 0.5-1.
  • the cells were harvested and quantitative ⁇ -galactosidase assays were performed as described (Townsend et al. (2009) Nature 459:442-445).
  • the TAL-Fokl fusion is a site-specific nuclease consisting of the TAL DNA recognition domain and the non-specific Fokl DNA cleavage domain.
  • the TAL DNA recognition domain can be engineered to bind different DNA sequences.
  • the DNA recognition specificity for TAL effectors a novel class of DNA binding domain, has been deciphered.
  • the DNA binding domain of TAL effectors contain a various number of tandem, 34-ammo acid repeats, which can recognize and bind to specific DNA sequences. Amino acid sequences of the repeats are conserved except for two adjacent highly variable residues at positions 12 and 13 of the repeats.
  • T he TALENs function as dimers, with each monomer composed of engineered TAL DNA recognition repeats fused to a non-specific cleavage domain from the Fokl endonuclease.
  • the DNA recognition repeats can be engineered to bind target DNA sequences within a genome of interest.
  • TAL nuclease monomers bind to one of two DNA half-sites that are separated by a spacer sequence. This spacing allows the Fokl monomers to dimerize and create a double-strand DNA break (DSB) in the spacer sequence between the half-sites.
  • DSB double-strand DNA break
  • the yeast-based assay was carried out by using a TAL nuclease expression construct and a target reporter construct.
  • the backbone of the nuclease expression construct contains a Fokl nuclease domain and an N-terminal nuclear localization signal (NLS) under control of the yeast TEF1 promoter.
  • NLS nuclear localization signal
  • the target reporter construct has a disrupted lacZ reporter gene with a 125 bp duplication of coding sequence as shown in FIG. 6.
  • the duplication flanks a URA3 gene and a target sequence (composed of two half sites and a spacer sequence) recognized by TAL DNA binding domains. If the TALEN binds and generates DNA double-strand breaks (DSBs) at the target site, such breaks, in yeast, are repaired predominantly by homologous
  • Example 3 Modular assembly of TAL effector repeats for customized TALENs
  • Complementary oligonucleotides corresponding to the 102 basepairs of each of four individual TAL effector repeats, each specifying a different nucleotide are synthesized, annealed and cloned into a high copy bacterial cloning vector, individually and in combinations of 2 and 3 repeats in all permutations to yield 4 single, 16 double, and 64 triple repeat modules using standard restriction digestion and ligation techniques (e.g., as illustrated in FIG. 11).
  • the desired TAL effector coding sequence is assembled by introducing the appropriate modules sequentially into a Gateway-ready high copy bacterial cloning vector containing a truncated form of the tallc gene that lacks the central repeat region except for the characteristic final half repeat.
  • a Gateway-ready high copy bacterial cloning vector containing a truncated form of the tallc gene that lacks the central repeat region except for the characteristic final half repeat.
  • an 18 repeat TAL effector coding sequence can be assembled by sequentially introducing 5 triple modules and 1 double module into the truncated tallc vector.
  • Example 4 A system for modular assembly of TAL effector repeats Plasmids and methods were developed for generating custom TAL effector- encoding genes.
  • the functional specificity of TAL effectors is determined by the RVDs in the repeats, as described herein; other polymorphisms in the repeats and elsewhere in the proteins are rare and inconsequential with regard to functional specificity.
  • custom TAL effector genes were generated by replacing the repeat region of an arbitrary TAL effector gene with repeats containing the desired RVDs. The repeat sequences outside the RVDs matched a consensus sequence (see below).
  • DNA fragments encoding TAL effector repeats were sequentially assembled into modules encoding one, two, or three repeats, and the modules were cloned into a TAL effector gene from which the original repeats were removed.
  • Each encoded repeat with the exception of the last (half) repeat, had the sequence LTPDQVVAIASXXGGKQALETVQRLLPVLCQDHG (SEQ ID NO: 18; FIG. 12A).
  • the last (half) repeat had the sequence
  • LTPDQVVAIASXXGGKQALES SEQ ID NO:20; FIG. 12B.
  • XX indicates the location of the RVD.
  • the RVDs used in the modular repeats were NI, HD, NN, and NG, which specify binding to A, C, G, and T, respectively.
  • the method described herein included five components: (1) generation of single repeat starter plasmids; (2) generation of single repeat module plasmids; (3) generation of multiple repeat modules; (4) generation of a complete set of one-, two-, and three-repeat module plasmids; and (5) assembly of custom TAL effector coding sequences.
  • the tallc gene was digested with Mscl and religated to remove the entire repeat region except for the first part of the first repeat and the last part of the last, truncated repeat, resulting in the plasmid designated pCS487 (FIG. 13).
  • a translationally silent mutation was introduced into pCS487 to create a unique PspXl site, which encompasses a unique Xhol site centered on codons 19 and 20.
  • the mutation is depicted in FIG. 14, which shows the original and altered nucleotide sequences for codons 18-21 (SEQ ID NO:21 and SEQ ID NO:23, respectively), both of which encode the amino acid sequence ALES (SEQ ID NO:22).
  • the resulting plasmid was designated pCS489.
  • PspXl/Xhol site in the truncated repeat remained unique in these plasmids.
  • the TAL effector gene in pCS488 and each of its derivatives was preceded by Shine-Dalgarno and Kozak sequences for efficient translation in prokaryotes and eukaryotes, respectively.
  • Single repeat module plasmids were then constructed.
  • One plasmid was generated for each of the four chosen RVDs (NI, HD, NN, and NG). Each plasmid had a 5' compatible cohesive end that reconstituted a Xhol but not a PspXl site when ligated into a PspXl site, and a 3' compatible cohesive end that reconstituted both a Xhol and a PspXl site.
  • the plasmids were generated by cloning annealed synthetic, complementary oligonucleotides with overhangs (FIG. 17A) into the PspXl/Xhol site of pBluescript SK-, resulting in plasmids designated pCS502 (FIG.
  • Each plasmid allowed for introduction of additional repeats at the 3' end of the single repeat module at the unique reconstituted PspXl site, or for excision of the repeat module using the reconstituted Xhol sites.
  • Additional single repeat modules one each for NI, HD, N, and NG, were generated. Each had a 5' compatible cohesive end that did not reconstitute a PspXl or Xhol site when ligated into a PspXl site, a 3' compatible cohesive end that reconstituted both the Xhol and a PspXl site, and a translationally silent nucleotide substitution that destroyed the internal Mscl site (FIG. 18 A). These modules were generated by annealing synthetic, complementary oligonucleotides with overhangs.
  • Additional single repeat modules were cloned iteratively into the single repeat module plasmids to generate, along with the single repeat module plasmids, a complete set of all possible one-, two-, and three-repeat modules, for a total of 84 plasmids designated pCS502 through pCS585 (FIG. 19).
  • Modules containing more than three repeats e.g., four, five, six, seven, eight, nine, ten, or more than ten repeats) are generated in the same manner.
  • a method was then devised to assemble any sequence of repeats into the tallc "backbone" to generate a custom TAL effector gene.
  • the method included the following steps, which also are depicted in FIG. 20: (1) Choose a single repeat starter plasmid with the first desired repeat (pCS493, pCS494, pCS495, or pCS495, encoding RVD NI, HD, N, or NG, respectively);
  • Example 5 Library of plasmids for modular assembly of TALENs
  • Assembly of TALEN repeats as described herein results in numerous intermediate plasmids containing increasing numbers of repeats.
  • Each of these plasmids is stored such that a library of plasmids for modular assembly of TALENs (pMATs) is generated.
  • FIGS. 21 A and 2 IB depict the assembly of repeat modules in construction of TAL endonucleases that will target the nucleotide sequences shown.
  • FIG. 21 A and 2 IB depict the assembly of repeat modules in construction of TAL endonucleases that will target the nucleotide sequences shown.
  • repeat modules from plasmids designated pCS519, pCS524, pCS537, pCS551, pCS583, and pCS529 are sequentially added to the sequence in the starter plasmid designated pCS493, resulting in plasmids designated pMAT55, pMAT56, pMAT57, pMAT58, pMAT59, and pMAT60.
  • FIG. 21B repeat modules from plasmids designated pCS530, pCS533, pCS522, and pCS541 are sequentially added to the sequence in the plasmid designated pMATl, resulting in plasmids designated pMAT61, pMAT62, pMAT63, and pMAT64.
  • the TAL DNA recognition domain was used to create TALENs that recognize and cleave particular DNA targets (FIG. 22 A), using the system described in Examples 4 and 5.
  • a yeast assay was adapted in which LacZ activity serves as an indicator of DNA cleavage (Townsend et al, supra).
  • a target plasmid and a TALEN expression plasmid are brought together in the same cell by mating.
  • the target plasmid has a lacZ reporter gene with a 125-bp duplication of coding sequence. The duplication flanks a target site recognized by a given TALEN.
  • AvrBs3 Two well characterized TAL effectors were used - AvrBs3 from the pepper pathogen Xanthomonas campestris pv. vesicatoria and PthXol from the rice pathogen X. oryzae pv. oryzae (Bonas et al. (1989) Mol. Gen. Genet. 218: 127-136; and Yang et al. (2006) Proc. Natl. Acad. Sci. USA 103: 10503-10508).
  • the amino acid sequence of AvrBs3 can be found under GENBANK Accession No. P14727 and SEQ ID NO: 12 (FIG. 3), and the nucleic acid sequence under Accession No.
  • the amino acid sequence of PthXol can be found under GENBANK Accession No. ACD58243 and SEQ ID NO:31 (FIG. 23), and the nucleic acid sequence under Accession No. CP000967, gene ID 6305128, and SEQ ID NO:32 (FIG. 24).
  • the amino acid sequence of PthXol under GENBANK Accession No. ACD58243 is truncated at the N-terminus due to a misannotation of the start codon. The complete sequence is presented in FIG. 23.
  • the repeat domains of both AvrBs3 and PthXol are encoded entirely within a conserved Sphl fragment (FIGS. 4 and 24).
  • Both TAL effector-encoding genes also have a BamHl restriction fragment that encompasses the coding sequence for the repeat domain and 287 amino acids prior and 231 amino acids after (FIGS. 4 and 24; see, also, FIG. 22A). Absent from the BamHl fragment is the TAL effector transcriptional activation domain.
  • Both the Sphl fragments and the BamHl fragments were fused to a DNA fragment encoding Fokl that is present in the nuclease expression vector pFZ85 (FIG. 25).
  • the fusion proteins between Fokl nuclease and the BamHl fragments encoded by AvrBs3 and PthXol are given in FIGS. 26 and 27; SEQ ID NOS:33 and 34.
  • Fokl monomers must dimerize in order to cleave, but the appropriate spacer length between the two DNA recognition sites was unclear.
  • ZFNs in which the zinc finger array is separated from Fokl by a 4-7 amino acid linker, the typical spacer between the two recognition sites is 5-7 bp (Handel et al. (2009) Mol. Ther. 17: 104-111). Since, for example, 235 amino acids separate the repeat domain from Fokl in the BamHl TALEN constructs used herein, a variety of spacer lengths for both the BamHl and Sphl constructs (6, 9, 12, 15, and 18 bp) were used.
  • TAL effector domains were fused to a catalytically inactive Fokl variant or tested against non-cognate DNA targets.
  • Haploid cell types containing either TALEN expression or target plasmid in 200 ⁇ of overnight culture were mated in YPD medium at 30°C. After 4 hours, the YPD medium was replaced with 5 ml of selective medium and incubated overnight at 30°C. Mated cultures were lysed, ONPG substrate added, and absorbance read at 415 nm using a 96-well plate reader (Townsend et al, supra), ⁇ -galactosidase levels were calculated as a function of substrate cleavage velocity.
  • the results obtained with target reporter constructs that had a 15 bp spacer separating the two recognition sites are shown in FIG. 22B.
  • TAL effector repeat domains were constructed to recognize these targets, using the most abundant RVDs from native TAL effectors (NI for A, HD for C, NN for G, and NG for T). To construct custom TALENs, repeats with these RVDs were synthesized individually and assembled into modules of one, two, or three repeats as described in Examples 4 and 5.
  • the resulting custom TALENs were tested in the yeast assay as homodimeric TALENs (that is, the identical DNA binding site was duplicated in inverse orientation on either side of a 16-18 bp spacer), although it is noted that heterodimeric TALENs would need to be constructed to direct cleavage at naturally occurring DNA targets.
  • Spacer lengths were chosen based on the distance closest to 15 bp from the 3' end of the next neighboring (and opposing) candidate site. Sixteen bp spacers were used for ADH1 -360- 12, ⁇ DHi-408-12r, and 18 bp spacers for ADHl-92%- ⁇ 2, ADHl-915- ⁇ 2x, and gridlock- 2356- 13r.
  • the yeast assay was performed as described above.
  • Example 7 Naturally occurring target and TAL effector pairs show overall and positional bias in nucleotide and RVD composition
  • Example 8 Method and reagents for rapid assembly and cloning of custom TAL effector repeat arrays
  • Type IIS restriction endonucleases e.g. Bsal
  • Bsal Type IIS restriction endonucleases
  • a method and reagents for assembling custom TAL effector repeat encoding arrays were developed based on the Golden Gate system. When Bsal sites are positioned on either side of a TAL effector repeat coding sequence, cleavage releases a repeat fragment flanked by 4-bp overhangs. Because the cleavage site is not sequence-specific, by staggering, repeat clones can be released with ordered, complementary overhangs (sticky ends), enabling the ordered assembly of multi-repeat arrays.
  • a library of 58 plasmids (FIGS. 32A and 32B) was generated to allow the simultaneous assembly of up to 10 repeat units into "subarrays,” followed by
  • the overhang at the 3' end of a fragment for repeat module 1 is complementary only to the overhang at the 5' end of the fragment for repeat module 2
  • the overhang at the 3 ' end of repeat module 2 is complementary only to the overhang at the 5 ' end of repeat module 3, and so on.
  • the fragments in the last repeat plasmids are flanked by sites for a different Type IIS restriction endonuclease, Esp3l.
  • Fourteen additional plasmids, described following, were constructed as destination vectors to receive assembled subarrays.
  • the first destination vector, plasmid pFUS A was constructed to receive the first subarray of 10 repeats to be assembled into a final array of 21 or fewer repeats (counting the final, truncated repeat).
  • pFUS A was constructed such that cleavage by Bsal creates an overhang on one side complementary to the overhang at the 5 ' end of the first repeat module and an overhang at the other side complementary to the overhang at the 3 ' end of the 10th repeat module.
  • destination vector plasmids pFUS Bl, pFUS_B2, pFUS_B3, pFUS_B4, pFUS_B5, pFUS_B6, pFUS_B7, pFUS_B8, pFUS_B9, and pFUS BlO were constructed that when cleaved by Bsal have overhangs respectively complementary to the overhang at the 5' end of the first repeat module and the 3' end of the repeat module for the corresponding numbered position (e.g., the pFUS_B6 overhang for the 3 ' end of the subarray matches the overhang of the four repeat module fragments for position 6).
  • Arrays cloned in pFUS A and the pFUS B series of plasmids are flanked by Esp31 sites in the vector and when released by digestion with Esp31 the arrays have unique complementary overhangs that allow for them to be ligated in order along with a final truncated repeat fragment into destination vector pTAL, which encodes a TALEN missing the repeat region.
  • pTAL was constructed so that cleavage with Esp31 allows insertion of the repeat array at the correct location and in the correct orientation by virtue of an overhang at one end that is complementary to the overhang at the 5 ' end of the first ten repeat subarray and an overhang at the other end complementary to the overhang at the 3' end of the final truncated repeat fragment (FIG. 33).
  • the final two destination vector plasmids, pFUS_A30A and pFUS_A30B were constructed to receive the first and second ten repeat subarrays to be assembled into a final array of 22-31 repeats .
  • pFUS_A30A and pFUS_A30B were constructed such that digestion with Esp31 releases the arrays with the appropriate complementary overhangs such that the arrays can be ligated in order along with a third array from a pFUS B vector and a final truncated repeat fragment from a last repeat plasmid, released similarly by digestion with Esp31, into pTAL (FIG. 32).
  • All destination vectors have the LacZ gene cloned in between the Type IIS restriction endonuclease sites, allowing for blue-white screening for recombinants. Except for pTAL, which carries a gene for ampicillin resistance, all the destination vectors carry a gene for spectinomycin resistance.
  • the following method was established.
  • the appropriate individual RVD module plasmids for the necessary subarrays of ten or fewer repeats are mixed together with the appropriate destination vector in one tube.
  • reaction mixture is then treated with the PLASMID-SAFETM nuclease to hydro lyze all linear dsDNA fragments in order to prevent cloning of shorter, incomplete arrays by in vivo recombination, and then the mixture is used to transform chemically competent E. coli cells.
  • the resulting recombinant plasmids are isolated and the correct constructs confirmed.
  • the confirmed plasmids from the first step are mixed together with the appropriate last repeat plasmid and pTAL, and the digestion and ligation reaction cycle carried out as in the first step. Finally, the reaction products are introduced into E. coli, and the full length, final array construct is isolated and confirmed.
  • the protocol can be completed by one person within a week's time.
  • Example 6 describes experiments conducted to engineer the TALEN DNA binding domain so that it can recognize unique DNA sequences. As described, these custom TALENs recognized sites in the Arabidopsis ADH1 and zebrafish gridlock genes. Additional custom TAL effector DNA binding domains were engineered to recognize not only sites in these genes, but also in the TT4 gene from Arabidopsis, and telomerase from zebrafish (Foley et al, supra; and Zhang et al, supra). These custom TALENs were made using the methods described in Examples 3, 4 and 8.
  • the observed compositional and positional biases were adopted as design principles or "rules.”
  • a search was conducted for sequences in the coding regions that were preceded by a 5' T and at least 15 bp in length, and that had a nucleotide composition consistent with the averages noted above. Specifically, only those sites with 0-63% A, 11-63% C, 0-25% G, and 2-42% T were selected. Such sites occurred on average every 7-9 bp. Sites were then selected that conformed to the observed positional biases described above.
  • Some of the intermediate, partial length TALENs correspond to targets that break the rules for nucleotide composition and terminal T.
  • Table 4 A shows length, conformity to these two rules, and activity relative to that of ZFN268 for each TALEN.
  • the results reveal a general trend that increasing the length of the RVD array increases activity of the resulting TALEN. This suggests that there is a minimal number of RVDs that are needed before a DNA target can be recognized in vivo. Further, conformity to the rules appears to be important. Of the six TALENs showing no detectable activity, two violated the target composition rule, two did not end in NG, and another broke both rules (one obeyed both rules).
  • TAL effector binding sites are designed to be a minimum of 15 bases long and oriented from 5' to 3' with a T immediately preceding the site at the 5' end.
  • a site may not have a T in the first (5') position or an A in the second position.
  • a site must end in T (3'), and may not have a G at the next to last position.
  • the base composition of the site must fall within specified ranges (average ⁇ two standard deviations): A 0-63%, C 11-63%, G 0-25%, and T 2-42%.
  • Target sequences tested consist of inverted repeats of the corresponding nucleotide sequence, where HD, NG, NI, and NN correspond to C, T, A, and G, respectively, separated by a spacer sequence of 16-18 bp.
  • Example 10 Heterodimeric TALEN pairs cleave their intended naturally occurring target sequences in the yeast assay
  • the data in Examples 2, 6 and 9 demonstrate that custom TALENs can be engineered to recognize novel target DNA sequences.
  • the yeast activity data for the custom TALENs was gathered using individual TALEN monomers that recognized a homodimeric target site. That is, the target sequence of the TALEN was duplicated in inverse orientation on either side of a 15-18 bp spacer. Cleavage of endogenous chromosomal sequences, however, generally would require that two different custom TALENs recognize two different sequences on either side of a spacer. As described in Example 6, this ability was demonstrated for the AvrBs3 and PthXol TALENS together using a corresponding chimeric target site in the yeast assay.
  • TALENs are shown in FIG. 36A.
  • the amino acid sequences of the TALENs are provided in FIG. 34.
  • the beta-galactosidase activity obtained in the yeast assay is plotted in the graph shown in FIG. 36B.
  • the activity of the TALENs on their naturally occurring target sequence was significantly above the negative controls, indicating that TALENs can be engineered to recognize and cleave endogenous target DNA sequences.
  • Example 11 - TALENs cleave native genes in Arabidopsis and introduce mutations by imprecise non-homologous end-joining
  • genomic DNA was isolated and digested with Tthl 111.
  • a Tthl 111 cleavage site is located in the spacer sequence between the two TALEN recognition sites (FIG. 37A). Cleavage of the chromosomal DNA by the TALEN would be expected to introduce mutations by imprecise non-homologous end-joining (NHEJ), which would result in failure to cleave by Tthl 111.
  • NHEJ non-homologous end-joining
  • a 375 bp fragment encompassing the TALEN recognition site was then PCR amplified. The PCR product was digested again with Tthl 111 to remove most of the remaining genomic DNA that was not modified by TALEN-mediated NHEJ. The digestion products were then run on an agarose gel.
  • the four most common RVDs each have apparent one-to-one specificity for the four nucleotides, based on association frequencies. This is markedly so for HD, NG, and NI, but less so for NN (FIG. 1C).
  • NN associates most frequently with G, but almost as commonly with A, and sometimes with C or T.
  • Novel and rare RVDs for robust specificity for G The modules disclosed above (see, e.g., Example 4) used four particular RVDs (NI, HD, NN, and NG) to specify binding to the four nucleotide bases (A, C, G, and T, respectively). Repeats containing other RVDs also may be useful, and may have increased specificity and/or affinity for the four bases as compared to NI, HD, NN, and NG. Toward improving specificity for G, several repeats encoding novel and rare RVDs were constructed. The rare RVDs NK, HN, and NA associated with G, suggesting that N may be important as one or the other of the residues (FIG. 1C).
  • RVDs having a polar amino acid R, K, D, E, Q, H, S, T, or Y
  • the right columns list combinations of N in the first position with any of 17 other amino acids (G, L, V, R, K, D, E, Q, H, T, M, C, P, Y, W, or F) in the second position of the RVD.
  • Novel artificial RVDs are tested for function in a quantitative reporter gene based assay for transcriptional activation activity of TAL effectors, such as a GUS or dual luciferase reporter based, Agrobacterium-mediated transient expression assay in
  • Nicotiana benthamiana or in the lacZ reporter based TALEN assay in Saccharomyces cerevisiae, described above (see, e.g., Example 2)
  • Repeat modules containing RVDs to be tested are incorporated into a TAL effector or TALEN with measurable and sub- saturation levels of activity, and the resulting proteins are tested for differences in activity on a set of DNA targets with integrated permutations of all four nucleotides at corresponding positions.
  • TALENs containing each of the novel and rare repeats are tested in vivo against targets with G at each of the corresponding positions. For any that show increased activity, the assays are repeated with targets permutated to the other nucleotides at those positions, to ascertain specificity.
  • aN*, NG, and NS nt association frequencies are known.
  • An asterisk represents a gap corresponding to the 2 nd position in the RVD (i.e., the 13 th position of the consensus repeat sequence).
  • RVD substitutions for the RVD-analogous position of the 0 th repeat to relax specificity of Tat position -I Secondary structure predictions and alignment of the 0 th repeat and repeat consensus sequences suggested that positions occupied by KR* (asterisk denotes a gap) in the 0 th repeat were analogous to the RVD and were therefore the residues that specify the T at -1. Variants of PthXol with substitutions of HD, NG, NI, and NN for KR and separately for R* were constructed in the Tallc "backbone" construct described above.
  • Activities of these variants are compared to the wild type effector in the in planta and yeast assays using targets with corresponding nucleotides at position -1, namely, C, T, A, and G, respectively.
  • Additional variants of PthXol are constructed that have S, the residue at position 11 of the consensus repeat sequence, substituted for the K at position 11 of the 0 th repeat.
  • other variants are constructed that have this substitution combined with a substitution of K, the residue at position 16 of the consensus repeat sequence, for the V at position 15 of the 0 th repeat (Table 6).
  • a proximal TATA box for TAL effector activity may be included.
  • PthXol is useful for this experiment because unlike AvrBs3, for which the T at -1 appears to be part of a TATA box, the TATA box closest to the PthXol binding site is 46 bp downstream and would not be perturbed by modifications at -1.
  • RVDs are bold. Other substitutions or modifications are underlined. Asterisks denote a gap relative to the consensus repeat sequence.
  • Example 13 Novel predicted nucleotide specific RVDs It was observed that when the RVDs listed in Tables 1 A and IB were grouped by the second amino acid residue in the RVD (i.e., the 13 th in the overall repeat), there was a near perfect correlation of that amino acid with the nucleotide(s) specified by the RVD, irrespective of the amino acid at the first position of the RVD (Table 7). Thus, RVDs ending in a gap (denoted by an asterisk) specify C or T, or T; RVDs ending in D specify C; RVDs ending in G specify T; and RVDs ending in N specify G or A, or G.
  • RVD specificity is determined by the residue in the second position, independent of whether the residue at the first position is H, I, N, S, or Y.
  • RVDs grouped and ordered by their second residue
  • Example 14 Custom TALENs cleave endogenous targets in animal cells and introduce mutations by imprecise non-homologous end-joining
  • TALENs could be used for targeted mutagenesis in animal cells.
  • expression of TAL effectors AvrBs3, PthXol, and Tallc was tested in human embryonic kidney (HEK) 293T cells.
  • the stop codon was removed from the AvrBs3, PthXol, and Tallc encoding genes and the genes were subcloned into mammalian expression vector pcDNA3.2/V5-DEST (Invitrogen, Carlsbad, CA) in frame with the downstream sequence in that vector that encodes the V5 epitope for protein
  • pcDNA3.2/V5-DEST places the TAL effector gene under the control of the constitutive human cytomegalovirus (CMV) promoter.
  • CMV human cytomegalovirus
  • HEK 293T cells were transfected using Lipofectamine 2000 (Invitrogen) with the resulting plasmids individually, and after 24 hours, total proteins were isolated from each transfected batch of cells and subjected to polyacrylamide gel electrophoresis, western blotting and immunolabeling using a mouse anti-V5 antibody.
  • the labeled proteins were detected with a goat anti-mouse antibody-horse radish peroxidase conjugate using the SuperSignal Weat Pico Chemiluminescent kit (ThermoScientific, Inc.). Equivalent loading was confirmed by immunolabeling and detection of actin.
  • Each TAL effector protein was detectably expressed with no apparent degradation (FIG. 39).
  • TALENs were designed as described in Example 9 to target a sequence in the endogenous human HPRT gene, and named HPRT-3254-17 and HPRT- 3286-20r (FIG. 40A and FIG. 40B).
  • Plasmids pTALEN141 encoding HPRT-3254-17 and plasmid pTALEN142 encoding HPRT-3286-20r were constructed using the Golden Gate cloning-based method and reagents described in Example 8.
  • TALEN genes were then subcloned into the mammalian expression vector pCDNA3.1(-) (Invitrogen, Inc.), which places them under control of the constitutive CMV promoter, yielding plasmids pTALEN141M and pTALEN 142M.
  • HEK 293T cells were then transfected with both pTALEN141M and pTALEN142M together and separately with pCDNA3.
  • l(-) as a negative control.
  • genomic DNA was isolated and digested with restriction endonuclease BpulOl.
  • a BpulOl site exists within the spacer that separates the HPRT-3254-17 and HPRT-3286-20r binding sites in HPRT (FIG 41 A).
  • PCR was used to amplify a 244 bp fragment spanning the TALEN- targeted site from both the TALEN-treated and the control samples.
  • the expected fragment was amplified from both samples, indicating that BpulOl digestion of the genomic DNA had been incomplete.
  • Subsequent digestion of the PCR products with BpulOl resulted in complete cleavage of the product amplified from the control sample, but incomplete cleavage of the product from the TALEN treated sample (FIG. 4 IB).
  • TALENs can be used for targeted mutagenesis in mammalian cells.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Communicable Diseases (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Mycology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
PCT/US2010/059932 2009-12-10 2010-12-10 Tal effector-mediated dna modification WO2011072246A2 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
PL14183521T PL2816112T3 (pl) 2009-12-10 2010-12-10 Modyfikacja DNA za pośrednictwem efektorów TAL
AU2010327998A AU2010327998B2 (en) 2009-12-10 2010-12-10 TAL effector-mediated DNA modification
DK10799163.0T DK2510096T4 (en) 2009-12-10 2010-12-10 NUMBER EFFECTOR-MEDIATED DNA MODIFICATION
EP14183521.5A EP2816112B1 (en) 2009-12-10 2010-12-10 Tal effector-mediated DNA modification
EP10799163.0A EP2510096B2 (en) 2009-12-10 2010-12-10 Tal effector-mediated dna modification
KR1020197002716A KR102110725B1 (ko) 2009-12-10 2010-12-10 Tal 이펙터-매개된 dna 변형
BR112012014080A BR112012014080A2 (pt) 2009-12-10 2010-12-10 método para modificação do material genético, método para geração de um ácido nucleico, monômero de endonuclease efetora tal, método para geração de um aninal, método para geração de uma planta, método para recombinação genética direcionada, ácido nucleico, cassete de expressão e célula hospedeira
ES10799163.0T ES2527997T5 (es) 2009-12-10 2010-12-10 Modificación del ADN inducida por el efector TAL
PL10799163T PL2510096T5 (pl) 2009-12-10 2010-12-10 Modyfikacja DNA zależna od efektora TAL
SG2012042479A SG181601A1 (en) 2009-12-10 2010-12-10 Tal effector-mediated dna modification
CA2783351A CA2783351C (en) 2009-12-10 2010-12-10 Tal effector-mediated dna modification
NO10799163A NO2510096T3 (pt) 2009-12-10 2010-12-10
CN201080063489.7A CN102770539B (zh) 2009-12-10 2010-12-10 Tal效应子介导的dna修饰
JP2012543313A JP2013513389A (ja) 2009-12-10 2010-12-10 Talエフェクターに媒介されるdna修飾
EP18183263.5A EP3456826B1 (en) 2009-12-10 2010-12-10 Tal effector-mediated dna modification
KR1020127017754A KR102110608B1 (ko) 2009-12-10 2010-12-10 Tal 이펙터-매개된 dna 변형
IL220234A IL220234B (en) 2009-12-10 2012-06-07 DNA modification mediates effector tal
IL267164A IL267164A (en) 2009-12-10 2019-06-06 DNA modification mediates effector tal

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US28532409P 2009-12-10 2009-12-10
US61/285,324 2009-12-10
US35210810P 2010-06-07 2010-06-07
US61/352,108 2010-06-07
US36668510P 2010-07-22 2010-07-22
US61/366,685 2010-07-22

Publications (2)

Publication Number Publication Date
WO2011072246A2 true WO2011072246A2 (en) 2011-06-16
WO2011072246A3 WO2011072246A3 (en) 2012-02-02

Family

ID=43825298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/059932 WO2011072246A2 (en) 2009-12-10 2010-12-10 Tal effector-mediated dna modification

Country Status (19)

Country Link
US (10) US8586363B2 (pt)
EP (3) EP2510096B2 (pt)
JP (3) JP2013513389A (pt)
KR (2) KR102110608B1 (pt)
CN (2) CN106834320B (pt)
AU (2) AU2010327998B2 (pt)
BR (1) BR112012014080A2 (pt)
CA (1) CA2783351C (pt)
DK (2) DK2816112T3 (pt)
ES (2) ES2527997T5 (pt)
HK (1) HK1205527A1 (pt)
HU (1) HUE041436T2 (pt)
IL (2) IL220234B (pt)
NO (1) NO2510096T3 (pt)
PL (2) PL2510096T5 (pt)
PT (2) PT2816112T (pt)
SG (1) SG181601A1 (pt)
TR (1) TR201815882T4 (pt)
WO (1) WO2011072246A2 (pt)

Cited By (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628037A (zh) * 2012-03-31 2012-08-08 西南大学 家蚕油蚕基因BmBlos2遗传改造系统及其制备方法和应用
WO2012104729A1 (en) * 2011-02-02 2012-08-09 Ulla Bonas Modular dna-binding domains and methods of use
CN102787125A (zh) * 2011-08-05 2012-11-21 北京大学 一种构建tale重复序列的方法
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
WO2012116274A3 (en) * 2011-02-25 2012-12-27 Recombinetics, Inc. Genetically modified animals and methods for making the same
WO2013012674A1 (en) * 2011-07-15 2013-01-24 The General Hospital Corporation Methods of transcription activator like effector assembly
WO2013017950A1 (en) * 2011-07-29 2013-02-07 Cellectis High throughput method for assembly and cloning polynucleotides comprising highly similar polynucleotidic modules
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
EP2571512A1 (en) 2010-05-17 2013-03-27 Sangamo BioSciences, Inc. Novel dna-binding proteins and uses thereof
CN103013954A (zh) * 2012-12-17 2013-04-03 中国科学院遗传与发育生物学研究所 水稻基因badh2的定点敲除系统及其应用
WO2013050318A1 (en) 2011-10-07 2013-04-11 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013050611A1 (en) 2011-10-07 2013-04-11 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013050593A1 (en) 2011-10-07 2013-04-11 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
US8420782B2 (en) 2009-01-12 2013-04-16 Ulla Bonas Modular DNA-binding domains and methods of use
WO2013053730A1 (en) 2011-10-12 2013-04-18 Bayer Cropscience Ag Plants with decreased activity of a starch dephosphorylating enzyme
WO2013053711A1 (en) 2011-10-10 2013-04-18 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013053686A1 (en) 2011-10-10 2013-04-18 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013053729A1 (en) 2011-10-12 2013-04-18 Bayer Cropscience Ag Plants with decreased activity of a starch dephosphorylating enzyme
WO2013058404A1 (ja) 2011-10-21 2013-04-25 国立大学法人九州大学 Pprモチーフを利用したrna結合性蛋白質の設計方法及びその利用
US8440431B2 (en) 2009-12-10 2013-05-14 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US20130137161A1 (en) * 2011-11-30 2013-05-30 Massachusetts Institute Of Technology Nucleotide-Specific Recognition Sequences For Designer TAL Effectors
US20130137173A1 (en) * 2011-11-30 2013-05-30 Feng Zhang Nucleotide-specific recognition sequences for designer tal effectors
WO2013091612A2 (de) 2011-12-23 2013-06-27 Kws Saat Ag Neue aus pflanzen stammende cis-regulatorische elemente für die entwicklung pathogen-responsiver chimärer promotoren
EP2612918A1 (en) 2012-01-06 2013-07-10 BASF Plant Science Company GmbH In planta recombination
JP2013529915A (ja) * 2010-06-07 2013-07-25 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー) Talエフェクタータンパク質のDNA結合ドメインおよび制限ヌクレアーゼの非特異的切断ドメインを含む融合タンパク質ならびにその使用
JP2013534417A (ja) * 2010-06-14 2013-09-05 アイオワ ステート ユニバーシティ リサーチ ファウンデーション,インコーポレーティッド Talエフェクターとfokiの融合タンパク質のヌクレアーゼ活性
WO2013140250A1 (en) 2012-03-23 2013-09-26 Cellectis Method to overcome dna chemical modifications sensitivity of engineered tale dna binding domains
WO2013152220A2 (en) * 2012-04-04 2013-10-10 Life Technologies Corporation Tal-effector assembly platform, customized services, kits and assays
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
WO2013169398A2 (en) 2012-05-09 2013-11-14 Georgia Tech Research Corporation Systems and methods for improving nuclease specificity and activity
WO2013182910A2 (en) 2012-06-05 2013-12-12 Cellectis New transcription activator-like effector (tale) fusion protein
WO2013188522A2 (en) 2012-06-12 2013-12-19 Genentech, Inc. Methods and compositions for generating conditional knock-out alleles
WO2013191769A1 (en) * 2012-06-22 2013-12-27 Mayo Foundation For Medical Education And Research Genome editing
EP2687605A1 (en) 2012-07-19 2014-01-22 Biogemma Method for performing homologous recombination
WO2014018601A2 (en) 2012-07-24 2014-01-30 Cellectis New modular base-specific nucleic acid binding domains from burkholderia rhizoxinica proteins
WO2014071039A1 (en) 2012-11-01 2014-05-08 Cellectis Sa Plants for production of therapeutic proteins
WO2014071006A1 (en) 2012-10-31 2014-05-08 Cellectis Coupling herbicide resistance with targeted insertion of transgenes in plants
WO2014096972A2 (en) 2012-12-21 2014-06-26 Cellectis Potatoes with reduced cold-induced sweetening
WO2014100525A2 (en) 2012-12-21 2014-06-26 Pioneer Hi-Bred International, Inc. Compositions and methods for auxin-analog conjugation
CN103917644A (zh) * 2011-09-21 2014-07-09 桑格摩生物科学股份有限公司 调控转基因表达的方法和组合物
WO2014128659A1 (en) 2013-02-21 2014-08-28 Cellectis Method to counter-select cells or organisms by linking loci to nuclease components
US20140271602A1 (en) * 2011-11-30 2014-09-18 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer tal effectors
WO2014141147A1 (en) 2013-03-15 2014-09-18 Cellectis Modifying soybean oil composition through targeted knockout of the fad2-1a/1b genes
WO2014153234A1 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International, Inc. Compositions having dicamba decarboxylase activity and methods of use
WO2014153242A1 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International, Inc. Compositions having dicamba decarboxylase activity and methods of use
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
WO2014164828A2 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions employing a sulfonylurea-dependent stabilization domain
WO2014169810A1 (zh) * 2013-04-16 2014-10-23 深圳华大基因科技服务有限公司 分离的寡核苷酸及其用途
EP2796558A1 (en) 2013-04-23 2014-10-29 Rheinische Friedrich-Wilhelms-Universität Bonn Improved gene targeting and nucleic acid carrier molecule, in particular for use in plants
WO2014175284A1 (ja) 2013-04-22 2014-10-30 国立大学法人九州大学 Pprモチーフを利用したdna結合性タンパク質およびその利用
JP2014532410A (ja) * 2011-10-27 2014-12-08 サンガモ バイオサイエンシーズ, インコーポレイテッド Hprt遺伝子座を修飾するための方法および組成物
WO2014199358A1 (en) 2013-06-14 2014-12-18 Cellectis Methods for non-transgenic genome editing in plants
EP2818867A1 (en) 2013-06-27 2014-12-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies conjugated to at least one nucleic acid molecule and their use in multiplex immuno-detection assays
JP2015500648A (ja) * 2011-12-16 2015-01-08 ターゲットジーン バイオテクノロジーズ リミテッド 所定の標的核酸配列を修飾するための組成物及び方法
JP2015501637A (ja) * 2011-11-16 2015-01-19 サンガモ バイオサイエンシーズ, インコーポレイテッド 修飾されたdna結合タンパク質およびその使用
DE102013014637A1 (de) 2013-09-04 2015-03-05 Kws Saat Ag HELMlNTHOSPORlUM TURClCUM-RESlSTENTE PFLANZE
WO2015068785A1 (ja) 2013-11-06 2015-05-14 国立大学法人広島大学 核酸挿入用ベクター
EP2878667A1 (en) 2013-11-29 2015-06-03 Institut Pasteur TAL effector means useful for partial or full deletion of DNA tandem repeats
JP2015516162A (ja) * 2012-05-07 2015-06-11 サンガモ バイオサイエンシーズ, インコーポレイテッド 導入遺伝子のヌクレアーゼ媒介標的化組み込みのための方法および組成物
KR20150070120A (ko) * 2012-09-04 2015-06-24 더 스크립스 리서치 인스티튜트 표적화된 바인딩 특이도를 갖는 키메라 폴리펩타이드들
WO2015092460A1 (en) 2013-12-18 2015-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) New gene mutations for the diagnosis of arthrogryposis multiplex congenita and congenital peripheral neuropathies disease
JP2015527889A (ja) * 2012-07-25 2015-09-24 ザ ブロード インスティテュート, インコーポレイテッド 誘導可能なdna結合タンパク質およびゲノム撹乱ツール、ならびにそれらの適用
WO2015168125A1 (en) 2014-04-28 2015-11-05 Recombinetics, Inc. Multiplex gene editing in swine
DE102014106327A1 (de) 2014-05-07 2015-11-12 Universitätsklinikum Hamburg-Eppendorf (UKE) TAL-Effektornuklease zum gezielten Knockout des HIV-Korezeptors CCR5
JP2015534834A (ja) * 2012-11-20 2015-12-07 ジェイ.アール.シンプロット カンパニー Talにより媒介されるトランファーdna挿入
WO2015188870A1 (en) 2014-06-12 2015-12-17 Sesvanderhave N.V. Use of selectable marker gene in sugar beet protoplasts transformation method and system
WO2015189409A1 (en) 2014-06-12 2015-12-17 Sesvanderhave N.V. Transformation method of sugar beet protoplasts by talen platform technology
WO2015193858A1 (en) 2014-06-20 2015-12-23 Cellectis Potatoes with reduced granule-bound starch synthase
CN105367631A (zh) * 2014-08-25 2016-03-02 深圳华大基因科技有限公司 一种转录激活子样效应因子核酸酶及其编码基因和应用
CN105367628A (zh) * 2014-08-19 2016-03-02 深圳华大基因科技有限公司 一对高效编辑水稻waxy基因的talen其识别打靶位点及其应用
JP2016512048A (ja) * 2013-03-15 2016-04-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ CRISPR/Casシステムを使用した植物ゲノム操作
WO2016066671A1 (en) 2014-10-29 2016-05-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for treating resistant cancers using progastrin inhibitors
DE102014016667A1 (de) 2014-11-12 2016-05-12 Kws Saat Se Haploideninduktoren
WO2016077429A1 (en) 2014-11-12 2016-05-19 Recombinetics, Inc. Heterozygous modifications of tumor suppressor genes and swine model of neurofibromatosis type 1
WO2016125078A1 (en) 2015-02-02 2016-08-11 Cellectis Agrobacterium-mediated genome modification without t-dna integration
WO2016128523A1 (en) 2015-02-12 2016-08-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the responsiveness of a patient affected with malignant hematological disease to chemotherapy treatment and methods of treatment of such disease
WO2016142427A1 (en) 2015-03-10 2016-09-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Method ank kit for reprogramming somatic cells
EP2954042A4 (en) * 2013-02-07 2016-10-12 Gen Hospital Corp TALE-transcriptional activators
WO2016176690A2 (en) 2015-04-30 2016-11-03 The Trustees Of Columbia University In The City Of New York Gene therapy for autosomal dominant diseases
US9522936B2 (en) 2014-04-24 2016-12-20 Sangamo Biosciences, Inc. Engineered transcription activator like effector (TALE) proteins
ES2594486A1 (es) * 2015-06-19 2016-12-20 Biopraxis Research Aie Molécula de ácido nucleico, proteína de fusión y método para modificar el material genético de una célula
US9528124B2 (en) 2013-08-27 2016-12-27 Recombinetics, Inc. Efficient non-meiotic allele introgression
WO2017046772A1 (en) 2015-09-17 2017-03-23 Cellectis Modifying messenger rna stability in plant transformations
AU2012249390B2 (en) * 2011-04-27 2017-03-30 Amyris, Inc. Methods for genomic modification
JPWO2015133554A1 (ja) * 2014-03-05 2017-04-06 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
EP2800811B1 (en) * 2012-05-25 2017-05-10 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
EP3173485A1 (de) 2015-11-27 2017-05-31 Kws Saat Se Kühletolerante pflanze
DE102015017161A1 (de) 2015-12-21 2017-06-22 Kws Saat Se Restorer-Pflanze
DE102015016445A1 (de) 2015-12-21 2017-06-22 Kws Saat Se Restorer-Pflanze
WO2017134601A1 (en) 2016-02-02 2017-08-10 Cellectis Modifying soybean oil composition through targeted knockout of the fad3a/b/c genes
WO2017143042A2 (en) 2016-02-16 2017-08-24 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
WO2017143061A1 (en) 2016-02-16 2017-08-24 Yale University Compositions and methods for treatment of cystic fibrosis
WO2017144630A1 (en) 2016-02-26 2017-08-31 Cellectis Micelle based system nuclease encapsulation for in-vivo gene editing
WO2017165167A1 (en) 2016-03-23 2017-09-28 The Regents Of The University Of California Methods of treating mitochondrial disorders
WO2017173453A1 (en) 2016-04-01 2017-10-05 The Brigham And Women's Hospital, Inc. Stimuli-responsive nanoparticles for biomedical applications
WO2017178585A1 (en) 2016-04-15 2017-10-19 Cellectis A method of engineering drug-specific hypersensitive t-cells for immunotherapy by gene inactivation
US9833513B2 (en) 2013-09-11 2017-12-05 Eagle Biologics, Inc. Liquid protein formulations for injection comprising 1-butyl-3-methylimidazolium methanesulfonate and uses thereof
WO2018005589A1 (en) 2016-06-28 2018-01-04 Cellectis Altering expression of gene products in plants through targeted insertion of nucleic acid sequences
WO2018007263A1 (en) 2016-07-06 2018-01-11 Cellectis Sequential gene editing in primary immune cells
JP2018011603A (ja) * 2012-05-25 2018-01-25 セレクティスCellectis Tcrアルファ欠損t細胞を増殖させるためのプレtアルファまたはその機能性変種の使用
US9890364B2 (en) 2012-05-29 2018-02-13 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
WO2018035456A1 (en) 2016-08-18 2018-02-22 Cellectis Black-spot resistant potatoes with reduced tuber-specific polyphenol oxidase activity
WO2018042346A2 (en) 2016-09-01 2018-03-08 Cellectis Methods for altering amino acid content in plants
WO2018044920A1 (en) 2016-08-29 2018-03-08 The Regents Of The University Of California Topical formulations based on ionic species for skin treatment
WO2018054911A1 (en) 2016-09-23 2018-03-29 Bayer Cropscience Nv Targeted genome optimization in plants
WO2018057790A1 (en) 2016-09-21 2018-03-29 Recombinetics, Inc. Animal models for cardiomyopathy
WO2018069343A1 (en) 2016-10-10 2018-04-19 Limagrain Europe Nucleic acid encoding sm1 resistance to orange wheat blossom midge and method of use
WO2018069232A1 (en) 2016-10-10 2018-04-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the risk of having cardiac hypertrophy
WO2018073393A2 (en) 2016-10-19 2018-04-26 Cellectis Tal-effector nuclease (talen) -modified allogenic cells suitable for therapy
WO2018073391A1 (en) 2016-10-19 2018-04-26 Cellectis Targeted gene insertion for improved immune cells therapy
WO2018092072A1 (en) 2016-11-16 2018-05-24 Cellectis Methods for altering amino acid content in plants through frameshift mutations
WO2018112470A1 (en) 2016-12-16 2018-06-21 The Brigham And Women's Hospital, Inc. Co-delivery of nucleic acids for simultaneous suppression and expression of target genes
US10006011B2 (en) 2013-08-09 2018-06-26 Hiroshima University Polypeptide containing DNA-binding domain
US10030235B2 (en) 2013-08-09 2018-07-24 Hiroshima University Polypeptide containing DNA-binding domain
US10058078B2 (en) 2012-07-31 2018-08-28 Recombinetics, Inc. Production of FMDV-resistant livestock by allele substitution
EP3366778A1 (de) 2017-02-28 2018-08-29 Kws Saat Se Haploidisierung in sorghum
WO2018172570A1 (en) 2017-03-24 2018-09-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Gfi1 inhibitors for the treatment of hyperglycemia
WO2018181863A1 (ja) 2017-03-30 2018-10-04 国立大学法人東京大学 異なる複数の目的遺伝子の評価方法
WO2018187493A1 (en) 2017-04-04 2018-10-11 Yale University Compositions and methods for in utero delivery
EP3392339A1 (en) 2017-04-18 2018-10-24 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen Improved genome editing in plant cells
US10113162B2 (en) 2013-03-15 2018-10-30 Cellectis Modifying soybean oil composition through targeted knockout of the FAD2-1A/1B genes
WO2018198049A1 (en) 2017-04-25 2018-11-01 Cellectis Alfalfa with reduced lignin composition
US10137206B2 (en) 2016-08-17 2018-11-27 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
WO2018234239A1 (en) 2017-06-19 2018-12-27 Cellectis ANTI-HBV POLYTHERAPIES INVOLVING SPECIFIC ENDONUCLEASES
WO2018237107A1 (en) 2017-06-23 2018-12-27 University Of Kentucky Research Foundation PROCESS
WO2019033053A1 (en) 2017-08-11 2019-02-14 Recombinetics, Inc. INDUCIBLE DISEASE MODELS, METHODS OF MAKING AND USING THEM IN TISSUE COMPLEMENTATION
WO2019038326A1 (en) 2017-08-22 2019-02-28 Kws Saat Se GENE CONFERRING RESISTANCE TO A FUNGAL PATHOGEN
JP2019047794A (ja) * 2012-10-30 2019-03-28 リコンビネティクス・インコーポレイテッドRecombinetics,Inc. 動物における性成熟の制御
US10253316B2 (en) 2017-06-30 2019-04-09 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
AU2013277214B2 (en) * 2012-06-21 2019-04-18 Recombinetics, Inc. Genetically edited animals and methods for making the same
WO2019076486A1 (en) 2017-10-19 2019-04-25 Cellectis TARGETED GENE INTEGRATION OF NK INHIBITOR GENES FOR ENHANCED IMMUNE CELL THERAPY
WO2019086510A1 (en) 2017-10-31 2019-05-09 Vilmorin & Cie Wheat comprising male fertility restorer alleles
WO2019100053A1 (en) 2017-11-20 2019-05-23 University Of Georgia Research Foundation, Inc. Compositions and methods for modulating hif-2α to improve muscle generation and repair
WO2019106163A1 (en) 2017-12-01 2019-06-06 Cellectis Reprogramming of genetically engineered primary immune cells
US10314297B2 (en) 2014-08-14 2019-06-11 Biocytogen Boston Corp DNA knock-in system
US10323258B2 (en) 2017-09-30 2019-06-18 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems comprising flow-through electroporation devices
US10328182B2 (en) 2013-05-14 2019-06-25 University Of Georgia Research Foundation, Inc. Compositions and methods for reducing neointima formation
EP3501268A1 (en) 2017-12-22 2019-06-26 Kws Saat Se Regeneration of plants in the presence of histone deacetylase inhibitors
EP3508581A1 (en) 2018-01-03 2019-07-10 Kws Saat Se Regeneration of genetically modified plants
WO2019138083A1 (en) 2018-01-12 2019-07-18 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
US10376889B1 (en) 2018-04-13 2019-08-13 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
EP3545756A1 (en) 2018-03-28 2019-10-02 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2
WO2019185920A1 (en) 2018-03-29 2019-10-03 Cellectis Tale-nucleases for allele-specific codon modification
US10435662B1 (en) 2018-03-29 2019-10-08 Inscripta, Inc. Automated control of cell growth rates for induction and transformation
WO2019197408A1 (en) 2018-04-09 2019-10-17 John Innes Centre Genes associated with resistance to wheat yellow rust
WO2019211796A1 (en) 2018-05-02 2019-11-07 Cellectis Engineering wheat with increased dietary fiber
EP3567111A1 (en) 2018-05-09 2019-11-13 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
US10501738B2 (en) 2018-04-24 2019-12-10 Inscripta, Inc. Automated instrumentation for production of peptide libraries
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
WO2019238908A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for enhancing genome engineering efficiency
WO2019238909A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant
WO2019238911A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant ii
WO2019238832A1 (en) 2018-06-15 2019-12-19 Nunhems B.V. Seedless watermelon plants comprising modifications in an abc transporter gene
US10526598B2 (en) 2018-04-24 2020-01-07 Inscripta, Inc. Methods for identifying T-cell receptor antigens
US10533152B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10532324B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
RU2711249C2 (ru) * 2012-11-01 2020-01-15 Фэктор Байосайенс Инк. Способы и продукты для экспрессии белков в клетках
WO2020012365A1 (en) 2018-07-09 2020-01-16 Cellectis Canola with high oleic acid
WO2020025963A2 (en) 2018-08-02 2020-02-06 British American Tobacco (Investments) Limited Method
WO2020047353A1 (en) 2018-08-31 2020-03-05 Yale University Compositions and methods for enhancing triplex and nuclease-based gene editing
EP3623379A1 (en) 2018-09-11 2020-03-18 KWS SAAT SE & Co. KGaA Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene
US10604746B1 (en) 2018-10-22 2020-03-31 Inscripta, Inc. Engineered enzymes
WO2020089645A1 (en) 2018-11-02 2020-05-07 British American Tobacco (Investments) Limited Method of modulating the alkaloid content of a plant
WO2020099875A1 (en) 2018-11-16 2020-05-22 British American Tobacco (Investments) Limited Methods and means for modifying the alkaloid content of plants
US10660316B2 (en) 2016-11-04 2020-05-26 Akeagen, Inc. Genetically modified non-human animals and methods for producing heavy chain-only antibodies
WO2020112195A1 (en) 2018-11-30 2020-06-04 Yale University Compositions, technologies and methods of using plerixafor to enhance gene editing
US10689669B1 (en) 2020-01-11 2020-06-23 Inscripta, Inc. Automated multi-module cell processing methods, instruments, and systems
EP3673732A2 (en) 2015-10-27 2020-07-01 Recombinetics, Inc. Engineering of humanized car t-cells and platelets by genetic complementation
US10704033B1 (en) 2019-12-13 2020-07-07 Inscripta, Inc. Nucleic acid-guided nucleases
WO2020152466A1 (en) 2019-01-23 2020-07-30 British American Tobacco (Investments) Limited Method for decreasing the alkaloid content of a tobacco plant
US10731181B2 (en) 2012-12-06 2020-08-04 Sigma, Aldrich Co. LLC CRISPR-based genome modification and regulation
WO2020157573A1 (en) 2019-01-29 2020-08-06 The University Of Warwick Methods for enhancing genome engineering efficiency
US10738327B2 (en) 2017-08-28 2020-08-11 Inscripta, Inc. Electroporation cuvettes for automation
WO2020161261A1 (en) 2019-02-06 2020-08-13 Vilmorin & Cie New gene responsible for cytoplasmic male sterility
US10767173B2 (en) 2015-09-09 2020-09-08 National University Corporation Kobe University Method for converting genome sequence of gram-positive bacterium by specifically converting nucleic acid base of targeted DNA sequence, and molecular complex used in same
WO2020178193A1 (en) 2019-03-01 2020-09-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Method of treatment of sarcoidosis
EP3708651A1 (en) 2019-03-12 2020-09-16 KWS SAAT SE & Co. KGaA Improving plant regeneration
US10779518B2 (en) 2013-10-25 2020-09-22 Livestock Improvement Corporation Limited Genetic markers and uses therefor
WO2020204159A1 (ja) 2019-04-05 2020-10-08 国立大学法人大阪大学 ノックイン細胞の作製方法
US10815467B2 (en) 2019-03-25 2020-10-27 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US10837021B1 (en) 2019-06-06 2020-11-17 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
WO2020229830A1 (en) 2019-05-14 2020-11-19 British American Tobacco (Investments) Limited Method
US10858761B2 (en) 2018-04-24 2020-12-08 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
EP3757219A1 (en) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
US10883095B1 (en) 2019-12-10 2021-01-05 Inscripta, Inc. Mad nucleases
WO2021001658A1 (en) 2019-07-03 2021-01-07 British American Tobacco (Investments) Limited Method for modulating the alkaloid content of a tobacco plant
WO2021001659A1 (en) 2019-07-03 2021-01-07 British American Tobacco (Investments) Limited Method for modifying alkaloid content in plants
WO2021004938A1 (en) 2019-07-05 2021-01-14 Biogemma Method for increasing yield in plants
US10893667B2 (en) 2011-02-25 2021-01-19 Recombinetics, Inc. Non-meiotic allele introgression
US10897862B2 (en) 2013-09-04 2021-01-26 KWS SAAT SE & Co. KGaA Plant resistant to Helminthosporium turcicum
WO2021014010A1 (fr) 2019-07-24 2021-01-28 Soltis Tournesol à teneur élevée en acide oléique et procédé d'obtention
US10920189B2 (en) 2019-06-21 2021-02-16 Inscripta, Inc. Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli
US10927385B2 (en) 2019-06-25 2021-02-23 Inscripta, Inc. Increased nucleic-acid guided cell editing in yeast
WO2021042060A1 (en) 2019-08-30 2021-03-04 Yale University Compositions and methods for delivery of nucleic acids to cells
US10973930B2 (en) 2016-02-18 2021-04-13 The Penn State Research Foundation Generating GABAergic neurons in brains
KR20210040985A (ko) 2018-08-07 2021-04-14 가부시키가이샤 모달리스 신규 전사 액티베이터
EP3808170A1 (en) 2019-10-17 2021-04-21 Bejo Zaden B.V. Lactuca sativa resistance to bremia lactucae
US11001831B2 (en) 2019-03-25 2021-05-11 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
WO2021088923A1 (zh) 2019-11-06 2021-05-14 青岛清原化合物有限公司 在生物体内创制新基因的方法及应用
US11008557B1 (en) 2019-12-18 2021-05-18 Inscripta, Inc. Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells
WO2021093943A1 (en) 2019-11-12 2021-05-20 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
WO2021108248A1 (en) 2019-11-27 2021-06-03 Calyxt, Inc. Tal-effector nucleases for gene editing
US11033584B2 (en) 2017-10-27 2021-06-15 The Regents Of The University Of California Targeted replacement of endogenous T cell receptors
EP3835420A1 (en) * 2011-12-05 2021-06-16 Factor Bioscience Inc. Methods and products for transfecting cells
EP3835309A1 (en) 2019-12-13 2021-06-16 KWS SAAT SE & Co. KGaA Method for increasing cold or frost tolerance in a plant
WO2021156329A1 (en) 2020-02-05 2021-08-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of treatment of cancer disease by targeting an epigenetic factor
US11130970B2 (en) 2017-06-23 2021-09-28 Inscripta, Inc. Nucleic acid-guided nucleases
WO2021205000A2 (en) 2020-04-09 2021-10-14 R.J. Reynolds Tobacco Company Method
WO2021224395A1 (en) 2020-05-06 2021-11-11 Cellectis S.A. Methods for targeted insertion of exogenous sequences in cellular genomes
US11174493B2 (en) 2016-05-26 2021-11-16 Nunhems B.V. Seedless fruit producing plants
US11193131B2 (en) 2015-06-30 2021-12-07 Regents Of The University Of Minnesota Haploid inducer line for accelerated genome editing
US11203762B2 (en) 2019-11-19 2021-12-21 Inscripta, Inc. Methods for increasing observed editing in bacteria
WO2021260139A1 (en) 2020-06-25 2021-12-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of treatment and diagnostic of pathological conditions associated with intense stress
US11214781B2 (en) 2018-10-22 2022-01-04 Inscripta, Inc. Engineered enzyme
US11220693B2 (en) 2015-11-27 2022-01-11 National University Corporation Kobe University Method for converting monocot plant genome sequence in which nucleic acid base in targeted DNA sequence is specifically converted, and molecular complex used therein
GB202117314D0 (en) 2021-11-30 2022-01-12 Clarke David John Cyclic nucleic acid fragmentation
WO2022013268A1 (en) 2020-07-14 2022-01-20 KWS SAAT SE & Co. KGaA Methods for identifying and selecting maize plants with resistance to northern corn leaf blight
US11241505B2 (en) 2015-02-13 2022-02-08 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
WO2022047424A1 (en) 2020-08-31 2022-03-03 Yale University Compositions and methods for delivery of nucleic acids to cells
US11268061B2 (en) 2018-08-14 2022-03-08 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
US11268088B2 (en) 2020-04-24 2022-03-08 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells via viral delivery
WO2022050413A1 (ja) 2020-09-04 2022-03-10 国立大学法人神戸大学 小型化シチジンデアミナーゼを含む二本鎖dnaの改変用複合体
WO2022049273A1 (en) 2020-09-07 2022-03-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of treatment of inflammatory bowel diseases
EP3971295A1 (en) 2020-09-16 2022-03-23 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Methods for the production of genome edited plants
US11293021B1 (en) 2016-06-23 2022-04-05 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
US11299731B1 (en) 2020-09-15 2022-04-12 Inscripta, Inc. CRISPR editing to embed nucleic acid landing pads into genomes of live cells
US11306298B1 (en) 2021-01-04 2022-04-19 Inscripta, Inc. Mad nucleases
WO2022096633A1 (en) 2020-11-06 2022-05-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosis and treating polycystic ovary syndrome (pcos)
WO2022097663A1 (ja) 2020-11-06 2022-05-12 エディットフォース株式会社 FokIヌクレアーゼドメインの変異体
US11332742B1 (en) 2021-01-07 2022-05-17 Inscripta, Inc. Mad nucleases
WO2022112596A1 (en) 2020-11-30 2022-06-02 Cellectis Sa Use of aminoquinoline compounds for higher gene integration
WO2022112469A1 (en) 2020-11-27 2022-06-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosis and monitoring of toxic epidermal necrolysis
EP4019639A1 (en) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
EP4019638A1 (en) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
US11384360B2 (en) 2012-06-19 2022-07-12 Regents Of The University Of Minnesota Gene targeting in plants using DNA viruses
WO2022155265A2 (en) 2021-01-12 2022-07-21 Mitolab Inc. Context-dependent, double-stranded dna-specific deaminases and uses thereof
US11408012B2 (en) 2017-06-23 2022-08-09 Inscripta, Inc. Nucleic acid-guided nucleases
WO2022198085A2 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Plant cell matrices and methods thereof
WO2022198093A1 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Producing albumin using plant cell matrices
WO2022198106A1 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Producing betalains using plant cell matrices
WO2022198094A1 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Producing albumin in cannabaceae plant parts
WO2022198107A1 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Producing betalain in cannabaceae plant parts
US11471479B2 (en) 2014-10-01 2022-10-18 Eagle Biologics, Inc. Polysaccharide and nucleic acid formulations containing viscosity-lowering agents
WO2022218998A1 (en) 2021-04-13 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for treating hepatitis b and d virus infection
WO2022229412A1 (en) 2021-04-30 2022-11-03 Cellectis S.A. New anti-muc1 cars and gene edited immune cells for solid tumors cancer immunotherapy
US11492630B2 (en) 2015-05-19 2022-11-08 KWS SAAT SE & Co. KGaA Methods and hybrids for targeted nucleic acid editing in plants using CRISPR/Cas systems
US11512297B2 (en) 2020-11-09 2022-11-29 Inscripta, Inc. Affinity tag for recombination protein recruitment
WO2023043511A1 (en) 2021-09-17 2023-03-23 Calyxt, Inc. Transforming cannabaceae cells
WO2023070043A1 (en) 2021-10-20 2023-04-27 Yale University Compositions and methods for targeted editing and evolution of repetitive genetic elements
EP4186921A1 (en) 2018-03-23 2023-05-31 The Trustees of Columbia University in the City of New York Gene editing for autosomal dominant diseases
WO2023094435A1 (en) 2021-11-23 2023-06-01 Cellectis Sa New tale protein scaffolds with improved on-target/off-target activity ratios
US11667932B2 (en) 2020-01-27 2023-06-06 Inscripta, Inc. Electroporation modules and instrumentation
EP4219731A2 (en) 2016-05-18 2023-08-02 Amyris, Inc. Compositions and methods for genomic integration of nucleic acids into exogenous landing pads
WO2023148475A1 (en) 2022-02-04 2023-08-10 Nicoventures Trading Limited Method of modulating alkaloid content in tobacco plants
WO2023148478A1 (en) 2022-02-03 2023-08-10 Nicoventures Trading Limited Method of modulating alkaloid content in tobacco plants
WO2023148476A1 (en) 2022-02-03 2023-08-10 Nicoventures Trading Limited Method of modulating alkaloid content in tobacco plants
WO2023194746A1 (en) 2022-04-07 2023-10-12 Nicoventures Trading Limited Method for modulating the alkaloid content of tobacco
WO2023194747A1 (en) 2022-04-07 2023-10-12 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
US11786597B2 (en) 2013-11-03 2023-10-17 The Regents Of The University Of California Ionic liquids for transdermal drug delivery
US11787841B2 (en) 2020-05-19 2023-10-17 Inscripta, Inc. Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
WO2023199064A1 (en) 2022-04-14 2023-10-19 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
WO2023199065A1 (en) 2022-04-14 2023-10-19 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
WO2023209373A1 (en) 2022-04-27 2023-11-02 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
WO2023209372A1 (en) 2022-04-27 2023-11-02 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
US11814624B2 (en) 2017-06-15 2023-11-14 The Regents Of The University Of California Targeted non-viral DNA insertions
US11840693B2 (en) 2015-12-21 2023-12-12 KWS SAAT SE & Co. KGaA Restorer plants
WO2024020597A1 (en) 2022-07-22 2024-01-25 The Johns Hopkins University Dendrimer-enabled targeted intracellular crispr/cas system delivery and gene editing
US11884924B2 (en) 2021-02-16 2024-01-30 Inscripta, Inc. Dual strand nucleic acid-guided nickase editing
US11891631B2 (en) 2012-10-12 2024-02-06 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (LSD1) fusion proteins
US11896686B2 (en) 2014-05-09 2024-02-13 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
US11939593B2 (en) 2018-08-01 2024-03-26 University Of Georgia Research Foundation, Inc. Compositions and methods for improving embryo development
WO2024081736A2 (en) 2022-10-11 2024-04-18 Yale University Compositions and methods of using cell-penetrating antibodies
US11965154B2 (en) 2018-08-30 2024-04-23 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
WO2024084025A1 (en) 2022-10-21 2024-04-25 Keygene N.V. Rna transfection in plant cells with modified rna
US12005121B2 (en) 2022-08-30 2024-06-11 Yale University Compositions and methods for delivery of nucleic acids to cells

Families Citing this family (449)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120196370A1 (en) 2010-12-03 2012-08-02 Fyodor Urnov Methods and compositions for targeted genomic deletion
JP5798116B2 (ja) 2009-06-30 2015-10-21 サンガモ バイオサイエンシーズ, インコーポレイテッド 生物活性のあるヌクレアーゼの迅速なスクリーニングおよびヌクレアーゼ修飾細胞の単離
WO2011100058A1 (en) * 2010-02-09 2011-08-18 Sangamo Biosciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
SG185367A1 (en) * 2010-04-26 2012-12-28 Sangamo Biosciences Inc Genome editing of a rosa locus using zinc-finger nucleases
MY180803A (en) 2010-06-02 2020-12-09 Evolva Inc Recombinant production of steviol glycosides
JP6050230B2 (ja) 2010-07-21 2016-12-21 サンガモ バイオサイエンシーズ, インコーポレイテッド Hla遺伝子座の修飾のための方法及び組成物
EP3320910A1 (en) * 2011-04-05 2018-05-16 Cellectis Method for the generation of compact tale-nucleases and uses thereof
US9161995B2 (en) 2011-07-25 2015-10-20 Sangamo Biosciences, Inc. Methods and compositions for alteration of a cystic fibrosis transmembrane conductance regulator (CFTR) gene
US9370551B2 (en) 2011-07-27 2016-06-21 The Broad Institute, Inc. Compositions and methods of treating head and neck cancer
WO2013019745A1 (en) * 2011-07-29 2013-02-07 Georgia Health Sciences University Methods and compositions for genetically modifiying cells
WO2013022989A2 (en) 2011-08-08 2013-02-14 Evolva Sa Recombinant production of steviol glycosides
WO2013066805A1 (en) 2011-10-31 2013-05-10 Pioneer Hi-Bred International, Inc. Improving plant drought tolerance, nitrogen use efficiency and yield
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
WO2013101877A2 (en) 2011-12-29 2013-07-04 Iowa State University Research Foundation, Inc. Genetically modified plants with resistance to xanthomonas and other bacterial plant pathogens
GB201122458D0 (en) 2011-12-30 2012-02-08 Univ Wageningen Modified cascade ribonucleoproteins and uses thereof
CN104302773A (zh) 2012-03-13 2015-01-21 圭尔夫大学 增加植物对热胁迫的耐受性及氨基酸含量的方法
US20150203864A1 (en) 2012-03-13 2015-07-23 University Of Guelph Myb55 promoter and use thereof
US11778993B2 (en) 2012-03-15 2023-10-10 Cellectis, S.A. Repeat variable diresidues for targeting nucleotides
EP3839050A3 (en) 2012-04-18 2021-09-29 The Board of Trustees of the Leland Stanford Junior University Non-disruptive gene targeting
EP2847335B1 (en) 2012-04-25 2018-06-27 Regeneron Pharmaceuticals, Inc. Nuclease-mediated targeting with large targeting vectors
WO2013163628A2 (en) 2012-04-27 2013-10-31 Duke University Genetic correction of mutated genes
US9523098B2 (en) 2012-05-02 2016-12-20 Dow Agrosciences Llc Targeted modification of malate dehydrogenase
WO2013177376A2 (en) 2012-05-25 2013-11-28 Evolutionary Genomics, Inc. Dirigent gene eg261 and its orthologs and paralogs and their uses for pathogen resistance in plants
US9605274B2 (en) 2012-05-25 2017-03-28 Evolutionary Genomics, Inc. Dirigent gene EG261 and its orthologs and paralogs and their uses for pathogen resistance in plants
AU2013272283B2 (en) 2012-06-07 2018-02-15 The Children's Hospital Of Philadelphia Controlled gene expression methods
WO2013188291A2 (en) 2012-06-15 2013-12-19 E. I. Du Pont De Nemours And Company Methods and compositions involving als variants with native substrate preference
EP2871237A4 (en) 2012-07-06 2016-03-02 Nat Inst Of Agrobio Sciences WHEAT WITH INCREASED NUTS AND MANUFACTURING METHOD AND CHEMICAL SUBSTANCE FOR INCREASING THE NUTS OF WHEAT
AU2013289206B2 (en) 2012-07-11 2018-08-09 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of lysosomal storage diseases
US20140072961A1 (en) * 2012-07-11 2014-03-13 University of Nevada, Las Vegas Method of Genome Surgery with Paired, Permeant Endonuclease Excision
WO2014011901A2 (en) 2012-07-11 2014-01-16 Sangamo Biosciences, Inc. Methods and compositions for delivery of biologics
MX367081B (es) 2012-08-29 2019-08-05 Sangamo Biosciences Inc Modificación genética mediada por nucleasas para usarse en el tratamiento de una condición genética.
WO2014033556A2 (en) * 2012-09-03 2014-03-06 Cellectis Methods for modulating tal specificity
UA118090C2 (uk) 2012-09-07 2018-11-26 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб інтегрування послідовності нуклеїнової кислоти, що представляє інтерес, у ген fad2 у клітині сої та специфічний для локусу fad2 білок, що зв'язується, здатний індукувати спрямований розрив
CN105264067B (zh) 2012-09-07 2020-11-10 美国陶氏益农公司 Fad3性能基因座及相应的能够诱导靶向断裂的靶位点特异性结合蛋白
UA119135C2 (uk) 2012-09-07 2019-05-10 ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі Спосіб отримання трансгенної рослини
WO2014043143A1 (en) 2012-09-11 2014-03-20 Life Technologies Corporation Nucleic acid amplification
EP2895620B1 (en) 2012-09-11 2017-08-02 Life Technologies Corporation Nucleic acid amplification
EP2929017A4 (en) 2012-12-05 2016-09-28 Sangamo Biosciences Inc METHODS AND COMPOSITIONS FOR REGULATION OF METABOLIC DISORDERS
US9708589B2 (en) 2012-12-18 2017-07-18 Monsanto Technology Llc Compositions and methods for custom site-specific DNA recombinases
AU2014214004B2 (en) 2013-02-06 2018-05-24 Evolva Sa Methods for improved production of Rebaudioside D and Rebaudioside M
MY184253A (en) 2013-02-11 2021-03-29 Evolva Sa Efficient production of steviol glycosides in recombinant hosts
CN103319574A (zh) * 2013-02-16 2013-09-25 清华大学 分离的多肽及其应用
ES2904803T3 (es) 2013-02-20 2022-04-06 Regeneron Pharma Modificación genética de ratas
WO2014130955A1 (en) 2013-02-25 2014-08-28 Sangamo Biosciences, Inc. Methods and compositions for enhancing nuclease-mediated gene disruption
WO2014134412A1 (en) * 2013-03-01 2014-09-04 Regents Of The University Of Minnesota Talen-based gene correction
ES2901396T3 (es) 2013-03-14 2022-03-22 Caribou Biosciences Inc Composiciones y métodos de ácidos nucleicos dirigidos a ácido nucleico
US20140363561A1 (en) * 2013-03-15 2014-12-11 J.R. Simplot Company Tal-mediated transfer dna insertion
US10793867B2 (en) 2013-03-15 2020-10-06 Monsanto Technology, Llc Methods for targeted transgene-integration using custom site-specific DNA recombinases
US11039586B2 (en) 2013-03-15 2021-06-22 Monsanto Technology Llc Creation and transmission of megaloci
KR102192599B1 (ko) 2013-04-05 2020-12-18 다우 아그로사이언시즈 엘엘씨 식물의 게놈 내의 외인성 서열의 통합을 위한 방법 및 조성물
PT3456831T (pt) 2013-04-16 2021-09-10 Regeneron Pharma Modificação alvejada do genoma de rato
CN103233004B (zh) * 2013-04-28 2015-04-29 新疆农垦科学院 一种人工dna分子及检测目标基因表达的方法
KR20160034901A (ko) * 2013-06-17 2016-03-30 더 브로드 인스티튜트, 인코퍼레이티드 서열 조작에 최적화된 crispr-cas 이중 닉카아제 시스템, 방법 및 조성물
US20160369268A1 (en) * 2013-07-01 2016-12-22 The Board Of Regents Of The University Of Texas System Transcription activator-like effector (tale) libraries and methods of synthesis and use
US11306328B2 (en) 2013-07-26 2022-04-19 President And Fellows Of Harvard College Genome engineering
WO2015017866A1 (en) * 2013-08-02 2015-02-05 Enevolv, Inc. Processes and host cells for genome, pathway, and biomolecular engineering
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9340800B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College Extended DNA-sensing GRNAS
US10526616B2 (en) * 2013-09-23 2020-01-07 Rensselaer Polytechnic Institute Nanoparticle-mediated gene delivery, genomic editing and ligand-targeted modification in various cell populations
CA2927180A1 (en) 2013-10-18 2015-04-23 Pioneer Hi-Bred International, Inc. Glyphosate-n-acetyltransferase (glyat) sequences and methods of use
BR102014027466B1 (pt) 2013-11-04 2022-09-27 Dow Agrosciences Llc Molécula de ácido nucleico recombinante, método para produzir uma célula vegetal transgênica e usos de uma planta de soja, parte de planta de soja ou célula de planta de soja transgênica
US10233465B2 (en) 2013-11-04 2019-03-19 Dow Agrosciences Llc Optimal soybean loci
MX364662B (es) 2013-11-04 2019-05-03 Dow Agrosciences Llc Óptimos loci de maíz.
AU2014341927B2 (en) 2013-11-04 2017-12-14 Corteva Agriscience Llc Optimal maize loci
US11326209B2 (en) * 2013-11-07 2022-05-10 Massachusetts Institute Of Technology Cell-based genomic recorded accumulative memory
CN103710360A (zh) * 2013-12-03 2014-04-09 南方医科大学珠江医院 提高HepGL肝癌细胞氨基甲酰磷酸合成酶表达的方法
CN105980568B (zh) 2013-12-11 2019-12-03 瑞泽恩制药公司 用于靶向修饰基因组的方法和组合物
SI3080279T1 (sl) 2013-12-11 2019-01-31 Regeneron Pharmaceuticals, Inc. Postopki in sestavki za ciljano spremembo genoma
JP6625055B2 (ja) 2013-12-12 2020-01-08 ザ・ブロード・インスティテュート・インコーポレイテッド 組成物、及びヌクレオチドリピート障害におけるcrispr−cas系の使用方法
DK3079725T3 (da) 2013-12-12 2020-01-20 Broad Inst Inc Administration, brug og terapeutiske anvendelser af crispr-cas-systemerne og sammensætninger til genomredigering
WO2015089486A2 (en) 2013-12-12 2015-06-18 The Broad Institute Inc. Systems, methods and compositions for sequence manipulation with optimized functional crispr-cas systems
JP2017505756A (ja) 2013-12-13 2017-02-23 ザ ジェネラル ホスピタル コーポレイション 可溶性高分子量(hmw)タウ種およびその用途
MX2016007797A (es) 2013-12-19 2016-09-07 Amyris Inc Metodos para integracion genomica.
US10233456B2 (en) * 2014-01-30 2019-03-19 The Board Of Trustees Of The University Of Arkansas Method, vectors, cells, seeds and kits for stacking genes into a single genomic site
US9770489B2 (en) 2014-01-31 2017-09-26 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
RS60514B1 (sr) 2014-02-03 2020-08-31 Sangamo Therapeutics Inc Postupci i sastavi za tretman beta talasemije
CN104844696A (zh) * 2014-02-19 2015-08-19 北京大学 一种转录激活子样效应因子功能蛋白设计、合成及其应用
TW201538518A (zh) 2014-02-28 2015-10-16 Dow Agrosciences Llc 藉由嵌合基因調控元件所賦予之根部特異性表現
US10612041B2 (en) 2014-03-21 2020-04-07 The Board Of Trustees Of The Leland Stanford Junior University Genome editing without nucleases
JP6815986B2 (ja) 2014-03-26 2021-01-20 ユニバーシティ オブ メリーランド, カレッジ パーク 大型家畜の接合体における標的化ゲノム編集
WO2015153889A2 (en) * 2014-04-02 2015-10-08 University Of Florida Research Foundation, Incorporated Materials and methods for the treatment of latent viral infection
EP3156493B1 (en) 2014-04-30 2020-05-06 Tsinghua University Use of tale transcriptional repressor for modular construction of synthetic gene line in mammalian cell
WO2015165276A1 (zh) * 2014-04-30 2015-11-05 清华大学 利用tale转录抑制子在哺乳动物细胞中模块化构建合成基因线路的试剂盒
CN104611365B (zh) * 2014-07-17 2017-06-16 清华大学 利用tale转录抑制子在哺乳动物细胞中模块化构建合成基因线路
WO2015175642A2 (en) 2014-05-13 2015-11-19 Sangamo Biosciences, Inc. Methods and compositions for prevention or treatment of a disease
LT3152312T (lt) 2014-06-06 2020-04-27 Regeneron Pharmaceuticals, Inc. Tikslinio lokuso modifikavimo būdai ir kompozicijos
PT3155099T (pt) 2014-06-23 2018-04-20 Regeneron Pharma Montagem de dna mediada por nuclease
RU2771532C2 (ru) 2014-06-26 2022-05-05 Регенерон Фармасьютикалз, Инк. Способы и композиции для нацеленных генетических модификаций и способы их применения
WO2016000237A1 (en) 2014-07-03 2016-01-07 Pioneer Overseas Corporation Plants having enhanced tolerance to insect pests and related constructs and methods involving insect tolerance genes
WO2016022363A2 (en) 2014-07-30 2016-02-11 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
SG10201901007PA (en) 2014-08-11 2019-03-28 Evolva Sa Production of steviol glycosides in recombinant hosts
CN107073091A (zh) 2014-09-07 2017-08-18 西莱克塔生物科技公司 用于减弱外显子跳读抗病毒转移载体免疫应答的方法和组合物
AU2015314251A1 (en) 2014-09-09 2017-03-16 Evolva Sa Production of steviol glycosides in recombinant hosts
KR101528812B1 (ko) * 2014-09-18 2015-06-15 강원대학교산학협력단 SETDB1 HMTase 발현 저해방법
CN105440111B (zh) * 2014-09-30 2019-08-13 深圳华大基因研究院 一对转录激活子样效应因子核酸酶及其编码序列与应用
CN104357440B (zh) * 2014-10-09 2017-06-13 中山大学 一对靶向斑马鱼Forkhead box n1基因的Talen识别序列及其mRNA制备方法
US20180250424A1 (en) 2014-10-10 2018-09-06 Editas Medicine, Inc. Compositions and methods for promoting homology directed repair
SG11201702309RA (en) 2014-10-15 2017-04-27 Regeneron Pharma Methods and compositions for generating or maintaining pluripotent cells
WO2016072399A1 (ja) 2014-11-04 2016-05-12 国立大学法人神戸大学 脱塩基反応により標的化したdna配列に特異的に変異を導入する、ゲノム配列の改変方法、並びにそれに用いる分子複合体
US20170369848A1 (en) * 2014-11-11 2017-12-28 Q Therapeutics, Inc. Engineering mesenchymal stem cells using homologous recombination
US20160138040A1 (en) * 2014-11-13 2016-05-19 Cellectis Brassica engineered to confer herbicide tolerance
WO2016094867A1 (en) 2014-12-12 2016-06-16 The Broad Institute Inc. Protected guide rnas (pgrnas)
WO2016100333A1 (en) 2014-12-15 2016-06-23 Syngenta Participations Ag Pesticidal microrna carriers and use thereof
BR112017013104A2 (pt) 2014-12-19 2018-05-15 Regeneron Pharma métodos para modificar um locus genômico alvo em uma célula, para intensificar a recombinação homóloga em um locus genômico alvo em uma célula e para produzir uma geração f0 de um animal não humano.
ES2785329T3 (es) 2014-12-23 2020-10-06 Syngenta Participations Ag Métodos y composiciones para identificar y enriquecer células que comprenden modificaciones genómicas específicas para el sitio
US10752905B2 (en) 2015-01-20 2020-08-25 Mayo Foundation For Medical Education And Research Methods and materials for assembling nucleic acid constructs
AU2016211671B2 (en) 2015-01-26 2022-05-26 Fate Therapeutics, Inc. Methods and compositions for inducing hematopoietic cell differentiation
US10364450B2 (en) 2015-01-30 2019-07-30 Evolva Sa Production of steviol glycoside in recombinant hosts
WO2016124920A1 (en) 2015-02-03 2016-08-11 The Institute Of Genetics And Developmental Biology Rice plants with altered seed phenotype and quality
WO2016124918A1 (en) 2015-02-03 2016-08-11 The Institute Of Genetics And Developmental Biology Plants with increased seed size
US10676726B2 (en) 2015-02-09 2020-06-09 Duke University Compositions and methods for epigenome editing
JP6590333B2 (ja) * 2015-02-26 2019-10-16 学校法人東京理科大学 Dna結合ドメイン組込み用ベクターおよびそのセット、融合タンパク質コーディングベクターおよびそのセットならびにその製造方法、デスティネーションベクター、植物細胞用発現ベクターおよびその製造方法、植物細胞用発現ベクター作製用キット、形質転換方法、ならびにゲノム編集方法
WO2016138574A1 (en) 2015-03-02 2016-09-09 Sinai Health System Homologous recombination factors
US10604743B2 (en) 2015-03-16 2020-03-31 Dsm Ip Assets B.V. UDP-glycosyltransferases
WO2016153305A1 (ko) * 2015-03-26 2016-09-29 한국생명공학연구원 표적 유전자 특이적 핵산 프로브 및 Fok Ι 제한효소 이량체를 이용하여 세포 내에서 표적 유전자를 특이적으로 편집하기 위한 조성물 및 이의 용도
CA2981509A1 (en) * 2015-03-30 2016-10-06 The Board Of Regents Of The Nevada System Of Higher Educ. On Behalf Of The University Of Nevada, La Compositions comprising talens and methods of treating hiv
EP4335918A3 (en) 2015-04-03 2024-04-17 Dana-Farber Cancer Institute, Inc. Composition and methods of genome editing of b-cells
US11845928B2 (en) 2015-05-04 2023-12-19 Tsinghua University Methods and kits for fragmenting DNA
WO2016205759A1 (en) 2015-06-18 2016-12-22 The Broad Institute Inc. Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation
AU2016295291A1 (en) 2015-07-17 2018-02-08 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Wheat plants resistant to powdery mildew
US20190024073A1 (en) * 2015-07-23 2019-01-24 Mayo Foundation For Medical Education And Research Editing mitochondrial dna
EP3332018B1 (en) 2015-08-07 2022-07-27 Evolva SA Production of steviol glycosides in recombinant hosts
EP3337908A4 (en) 2015-08-18 2019-01-23 The Broad Institute, Inc. METHOD AND COMPOSITIONS FOR CHANGING THE FUNCTION AND STRUCTURE OF CHROMATIN GRINDING AND / OR DOMAINS
CA2995582A1 (en) 2015-08-19 2017-02-23 Children's Research Institute, Children's National Medical Center Compositions and methods for treating graft versus host disease
EP4089175A1 (en) 2015-10-13 2022-11-16 Duke University Genome engineering with type i crispr systems in eukaryotic cells
US11207393B2 (en) 2015-10-16 2021-12-28 President And Fellows Of Harvard College Regulatory T cell PD-1 modulation for regulating T cell effector immune responses
IL258821B (en) 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
WO2017075329A2 (en) 2015-10-29 2017-05-04 Dana-Farber Cancer Institute, Inc. Methods for identification, assessment, prevention, and treatment of metabolic disorders using pm20d1 and n-lipidated amino acids
CN108473961B (zh) 2015-11-04 2022-11-29 菲特治疗公司 用于诱导造血细胞分化的方法和组合物
WO2017079428A1 (en) 2015-11-04 2017-05-11 President And Fellows Of Harvard College Site specific germline modification
CA3003150A1 (en) 2015-11-04 2017-05-11 Fate Therapeutics, Inc. Genomic engineering of pluripotent cells
WO2017087708A1 (en) 2015-11-19 2017-05-26 The Brigham And Women's Hospital, Inc. Lymphocyte antigen cd5-like (cd5l)-interleukin 12b (p40) heterodimers in immunity
IL297018A (en) 2015-12-18 2022-12-01 Sangamo Therapeutics Inc Directed cleavage of cell mhc receptor
WO2017106528A2 (en) 2015-12-18 2017-06-22 Sangamo Biosciences, Inc. Targeted disruption of the t cell receptor
IL260532B2 (en) 2016-01-11 2023-12-01 Univ Leland Stanford Junior Systems containing chaperone proteins and their uses for controlling gene expression
SG10202112024PA (en) 2016-01-11 2021-12-30 Univ Leland Stanford Junior Chimeric proteins and methods of immunotherapy
EP3417061B1 (en) 2016-02-18 2022-10-26 The Regents of the University of California Methods and compositions for gene editing in stem cells
JP2019515654A (ja) 2016-03-16 2019-06-13 ザ ジェイ. デヴィッド グラッドストーン インスティテューツ 肥満及び/又は糖尿病を処置するための方法及び組成物、並びに候補処置薬剤を識別するための方法及び組成物
CA3018332A1 (en) 2016-03-21 2017-09-28 Dana-Farber Cancer Institute, Inc. T-cell exhaustion state-specific gene expression regulators and uses thereof
MY198001A (en) 2016-04-13 2023-07-25 Evolva Sa Production of steviol glycoside in recombinant hosts
EP3443088A1 (en) 2016-04-13 2019-02-20 Editas Medicine, Inc. Grna fusion molecules, gene editing systems, and methods of use thereof
KR102542533B1 (ko) * 2016-04-14 2023-06-13 프레드 허친슨 캔서 센터 표적화 핵산 나노수송체를 이용하여 치료 세포를 프로그램화하기 위한 조성물 및 방법
US10188749B2 (en) 2016-04-14 2019-01-29 Fred Hutchinson Cancer Research Center Compositions and methods to program therapeutic cells using targeted nucleic acid nanocarriers
CN107312788B (zh) * 2016-04-26 2020-07-28 中国科学院动物研究所 一种tale重复序列载体的构建方法
WO2017192573A1 (en) 2016-05-02 2017-11-09 Massachusetts Institute Of Technology Nanoparticle conjugates of highly potent toxins and intraperitoneal administration of nanoparticles for treating or imaging cancer
WO2017198682A1 (en) 2016-05-16 2017-11-23 Evolva Sa Production of steviol glycosides in recombinant hosts
CN105950623B (zh) * 2016-05-19 2018-11-30 电子科技大学 一种用于talen高效构建的双rvd单元模块库及talen构建方法
US11471462B2 (en) 2016-06-27 2022-10-18 The Broad Institute, Inc. Compositions and methods for detecting and treating diabetes
CN105949293B (zh) * 2016-06-28 2019-08-13 福建农林大学 植物源高效转录激活功能域sac3及应用
US11674158B2 (en) 2016-07-15 2023-06-13 Salk Institute For Biological Studies Methods and compositions for genome editing in non-dividing cells
WO2018023014A1 (en) 2016-07-29 2018-02-01 Regeneron Pharmaceuticals, Inc. Mice comprising mutations resulting in expression of c-truncated fibrillin-1
SG11201900907YA (en) 2016-08-03 2019-02-27 Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
WO2018031920A1 (en) 2016-08-11 2018-02-15 The Jackson Laboratory Methods and compositions relating to improved human red blood cell survival in genetically modified immunodeficient non-human animals
KR102607893B1 (ko) 2016-08-17 2023-12-01 몬산토 테크놀로지 엘엘씨 지베렐린 대사의 조작을 통해 저신장 식물의 수확량을 증가시키기 위한 방법 및 조성물
SG11201901364VA (en) 2016-08-24 2019-03-28 Sangamo Therapeutics Inc Engineered target specific nucleases
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
AU2017324462B2 (en) 2016-09-07 2024-03-21 Sangamo Therapeutics, Inc. Modulation of liver genes
EP3515559A4 (en) 2016-09-20 2020-07-15 Dana-Farber Cancer Institute, Inc. COMPOSITIONS AND METHODS FOR THE IDENTIFICATION, ASSESSMENT, PREVENTION AND TREATMENT OF AML USING USP10 BIOMARKERS AND MODULATORS
CA3039014A1 (en) 2016-10-04 2018-04-12 Precision Biosciences, Inc. Co-stimulatory domains for use in genetically-modified cells
GB2573062A (en) 2016-10-14 2019-10-23 Harvard College AAV delivery of nucleobase editors
GB201617559D0 (en) 2016-10-17 2016-11-30 University Court Of The University Of Edinburgh The Swine comprising modified cd163 and associated methods
WO2018081081A1 (en) 2016-10-24 2018-05-03 Javier Gil Humanes Multiplex gene targeting in plants
WO2018076335A1 (en) 2016-10-31 2018-05-03 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences Compositions and methods for enhancing abiotic stress tolerance
WO2018083338A1 (en) 2016-11-07 2018-05-11 Evolva Sa Production of steviol glycosides in recombinant hosts
US20200029538A1 (en) 2016-11-28 2020-01-30 Osaka University Genome editing method
CN110582302A (zh) 2016-12-14 2019-12-17 利甘达尔股份有限公司 用于核酸和/或蛋白有效负载递送的组合物和方法
WO2018119359A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Editing of ccr5 receptor gene to protect against hiv infection
WO2018123938A1 (ja) * 2016-12-27 2018-07-05 国立研究開発法人農業・食品産業技術総合研究機構 ゲノム編集植物の作出方法
US11566061B2 (en) 2017-01-05 2023-01-31 Fred Hutchinson Cancer Center Systems and methods to improve vaccine efficacy
GB201700380D0 (en) 2017-01-10 2017-02-22 Plant Bioscience Ltd Methods of increasing seed yield
WO2018136702A1 (en) 2017-01-23 2018-07-26 Regeneron Pharmaceuticals, Inc. Hydroxysteroid 17-beta dehydrogenase 13 (hsd17b13) variants and uses thereof
CN110573623A (zh) 2017-02-09 2019-12-13 福建农林大学 用于提高植物产量的磷酸盐转运蛋白的表达
CN110662838B (zh) 2017-02-22 2024-05-28 克里斯珀医疗股份公司 用于基因编辑的组合物和方法
WO2018160485A1 (en) 2017-03-03 2018-09-07 Pioneer Hi-Bred International, Inc. Non-destructive assay for soybean seeds using near infrared analysis
EP3592853A1 (en) 2017-03-09 2020-01-15 President and Fellows of Harvard College Suppression of pain by gene editing
WO2018165629A1 (en) 2017-03-10 2018-09-13 President And Fellows Of Harvard College Cytosine to guanine base editor
CN110891417B (zh) 2017-03-21 2023-05-23 杰克逊实验室 表达人APOE4和小鼠Trem2 p.R47H的遗传修饰小鼠及其使用方法
KR102280546B1 (ko) 2017-03-22 2021-07-22 고쿠리츠다이가쿠호진 고베다이가쿠 세포 내재성 dna 변형 효소를 사용하여 표적화된 dna의 핵산 염기를 특이적으로 변환시키는, 세포의 핵산 서열의 변환 방법 및 이에 사용하는 분자 복합체
CA3057192A1 (en) 2017-03-23 2018-09-27 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable dna binding proteins
BR112019019977A2 (pt) 2017-03-24 2020-04-28 Inst Genetics & Developmental Biology Cas métodos para aumentar o rendimento de grãos
WO2018183908A1 (en) 2017-03-31 2018-10-04 Dana-Farber Cancer Institute, Inc. Compositions and methods for treating ovarian tumors
WO2018191553A1 (en) 2017-04-12 2018-10-18 Massachusetts Eye And Ear Infirmary Tumor signature for metastasis, compositions of matter methods of use thereof
WO2018191520A1 (en) 2017-04-12 2018-10-18 The Broad Institute, Inc. Respiratory and sweat gland ionocytes
WO2018195486A1 (en) 2017-04-21 2018-10-25 The Broad Institute, Inc. Targeted delivery to beta cells
AU2018256877B2 (en) 2017-04-28 2022-06-02 Acuitas Therapeutics, Inc. Novel carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids
CA3059793A1 (en) 2017-05-03 2018-11-08 Sangamo Therapeutics, Inc. Methods and compositions for modification of a cystic fibrosis transmembrane conductance regulator (cftr) gene
US11591601B2 (en) 2017-05-05 2023-02-28 The Broad Institute, Inc. Methods for identification and modification of lncRNA associated with target genotypes and phenotypes
CA3062698A1 (en) 2017-05-08 2018-11-15 Precision Biosciences, Inc. Nucleic acid molecules encoding an engineered antigen receptor and an inhibitory nucleic acid molecule and methods of use thereof
SG10202112528QA (en) 2017-05-12 2021-12-30 Jackson Lab Nsg mice lacking mhc class i and class ii
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2018211032A1 (en) 2017-05-17 2018-11-22 Evolva Sa Production of steviol glycosides in recombinant hosts
US11725214B2 (en) 2017-05-25 2023-08-15 Institute Of Genetics And Developmental Biology Chinese Academy Of Sciences Methods for increasing grain productivity
EP3409104A1 (en) 2017-05-31 2018-12-05 Vilmorin et Cie Tomato plant resistant to tomato yellow leaf curl virus, powdery mildew, and nematodes
WO2020249996A1 (en) 2019-06-14 2020-12-17 Vilmorin & Cie Resistance in plants of solanum lycopersicum to the tobamovirus tomato brown rugose fruit virus
EP3409106A1 (en) 2017-06-01 2018-12-05 Vilmorin et Cie Tolerance in plants of solanum lycopersicum to the tobamovirus tomato brown rugose fruit virus (tbrfv)
MX2019014661A (es) 2017-06-05 2020-07-29 Regeneron Pharma Variantes de b4galt1 y usos de estas.
WO2018224508A1 (en) 2017-06-05 2018-12-13 Consejo Superior De Investigaciones Científicas (Csic) -Delegación Andalucía Targeting of gluten by genome editing
EP3634496A4 (en) 2017-06-06 2021-09-08 Dana-Farber Cancer Institute, Inc. METHOD FOR RISING AWARENESS IN CANCER CELLS AGAINST T-CELL-MEDIATED KILLING BY MODULATING MOLECULAR SIGNAL PATHS
WO2018231999A1 (en) 2017-06-13 2018-12-20 Regents Of The University Of Minnesota Materials and methods for increasing gene editing frequency
EP3638218A4 (en) 2017-06-14 2021-06-09 The Broad Institute, Inc. COMPOSITIONS AND METHOD OF TARGETING COMPLEMENTING COMPONENT 3 FOR INHIBITION OF TUMOR GROWTH
US11512287B2 (en) 2017-06-16 2022-11-29 Sangamo Therapeutics, Inc. Targeted disruption of T cell and/or HLA receptors
DK3538645T3 (da) 2017-06-20 2021-04-19 Inst Curie Immunceller der mangler suv39h1
WO2019005884A1 (en) 2017-06-26 2019-01-03 The Broad Institute, Inc. CRISPR / CAS-ADENINE DEAMINASE COMPOSITIONS, SYSTEMS AND METHODS FOR TARGETED NUCLEIC ACID EDITION
WO2019005957A1 (en) 2017-06-30 2019-01-03 Precision Biosciences, Inc. GENETICALLY MODIFIED T CELLS COMPRISING A MODIFIED INTRON IN THE ALPHA T CELL RECEPTOR GENE
US20200208146A1 (en) * 2017-07-12 2020-07-02 Mayo Foundation For Medical Education And Research Materials and methods for efficient targeted knock in or gene replacement
JP2020534795A (ja) 2017-07-28 2020-12-03 プレジデント アンド フェローズ オブ ハーバード カレッジ ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物
EP3663310A4 (en) 2017-08-04 2021-08-11 Peking University TALE-RVD WITH SPECIFIC DETECTION OF A DNA BASE MODIFIED BY METHYLATION AND APPLICATION OF IT
CN111263810A (zh) 2017-08-22 2020-06-09 纳匹基因公司 使用多核苷酸指导的核酸内切酶的细胞器基因组修饰
WO2019038417A1 (en) 2017-08-25 2019-02-28 Institute Of Genetics And Developmental Biology, Chinese Academy Of Sciences METHODS FOR INCREASING GRAIN YIELD
US11697822B2 (en) 2017-08-29 2023-07-11 KWS SAAT SE & Co. KGaA Blue aleurone and other segregation systems
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
WO2019055495A1 (en) 2017-09-18 2019-03-21 Amyris, Inc. METHODS FOR GENETICALLY MODIFYING KLUYVEROMYCES HOST CELLS
EP3684927B1 (en) 2017-09-18 2024-05-29 Amyris, Inc. Methods for genomic integration for kluyveromyces host cells
CA3076249A1 (en) 2017-09-21 2019-03-28 Dana-Farber Cancer Institute, Inc. Isolation, preservation, compositions and uses of extracts from justicia plants
CN111163633B (zh) 2017-09-29 2022-09-09 瑞泽恩制药公司 包含人源化ttr基因座的非人类动物及其使用方法
EP4269560A3 (en) 2017-10-03 2024-01-17 Precision Biosciences, Inc. Modified epidermal growth factor receptor peptides for use in genetically-modified cells
WO2019071054A1 (en) 2017-10-04 2019-04-11 The Broad Institute, Inc. METHODS AND COMPOSITIONS FOR MODIFYING THE FUNCTION AND STRUCTURE OF BUCKLES AND / OR CHROMATIN DOMAINS
JP7427584B2 (ja) 2017-10-13 2024-02-05 セレクタ バイオサイエンシーズ インコーポレーテッド 抗ウイルス導入ベクターigm応答を減弱化するための方法および組成物
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US20200299658A1 (en) 2017-11-01 2020-09-24 Precision Biosciences, Inc. Engineered nucleases that target human and canine factor viii genes as a treatment for hemophilia a
WO2019094983A1 (en) 2017-11-13 2019-05-16 The Broad Institute, Inc. Methods and compositions for treating cancer by targeting the clec2d-klrb1 pathway
CN112119085A (zh) 2017-12-15 2020-12-22 丹娜-法伯癌症研究院有限公司 稳定肽-介导的靶向蛋白降解
EP3728563A4 (en) 2017-12-22 2021-11-10 Fate Therapeutics, Inc. ENHANCED IMMUNE EFFECTIVE CELLS AND THEIR USE
CN107868123B (zh) 2017-12-25 2020-05-12 中国农业科学院作物科学研究所 一种同时提高植物产量和抗性的基因及其应用
US11994512B2 (en) 2018-01-04 2024-05-28 Massachusetts Institute Of Technology Single-cell genomic methods to generate ex vivo cell systems that recapitulate in vivo biology with improved fidelity
EP3751990A1 (en) 2018-02-14 2020-12-23 Institute Of Genetics And Developmental Biology Chinese Academy of Sciences Methods of increasing nutrient use efficiency
MX2020008560A (es) 2018-02-15 2020-10-12 Monsanto Technology Llc Composiciones y metodos para mejorar los rendimientos de cultivos mediante el apilamiento de rasgos.
JP2021515037A (ja) 2018-02-26 2021-06-17 アントルクス,インコーポレーテッド 寛容原性リポソーム及びその使用方法
BR112020019301A2 (pt) 2018-03-26 2021-01-05 National University Corporation Kobe University Método para modificar um sítio alvo de um dna de fita dupla de uma célula.
MX2020009896A (es) 2018-03-29 2020-10-12 Fate Therapeutics Inc Celulas efectoras inmunitarias modificadas y usos de las mismas.
AU2019247490A1 (en) 2018-04-06 2020-10-22 Children's Medical Center Corporation Compositions and methods for somatic cell reprogramming and modulating imprinting
EP3781677A4 (en) 2018-04-16 2022-01-19 University of Massachusetts COMPOSITIONS AND METHODS FOR IMPROVED GENE EDITTING
EP3560330B1 (en) 2018-04-24 2022-06-15 KWS SAAT SE & Co. KGaA Plants with improved digestibility and marker haplotypes
TWI686477B (zh) * 2018-04-25 2020-03-01 國立成功大學 特異性造成植物葉綠體基因變異的轉殖載體、套組、方法及利用其產生之轉殖植物細胞與農桿菌
US11957695B2 (en) 2018-04-26 2024-04-16 The Broad Institute, Inc. Methods and compositions targeting glucocorticoid signaling for modulating immune responses
WO2019210268A2 (en) 2018-04-27 2019-10-31 The Broad Institute, Inc. Sequencing-based proteomics
US20210386829A1 (en) 2018-05-04 2021-12-16 The Broad Institute, Inc. Compositions and methods for modulating cgrp signaling to regulate innate lymphoid cell inflammatory responses
EP3790629A1 (en) 2018-05-11 2021-03-17 CRISPR Therapeutics AG Methods and compositions for treating cancer
GB201808424D0 (en) 2018-05-23 2018-07-11 Lucite Int Uk Ltd Methods for producing BMA and MMA using genetically modified microorganisms
WO2019232542A2 (en) 2018-06-01 2019-12-05 Massachusetts Institute Of Technology Methods and compositions for detecting and modulating microenvironment gene signatures from the csf of metastasis patients
GB201809273D0 (en) 2018-06-06 2018-07-25 Vib Vzw Novel mutant plant cinnamoyl-coa reductase proteins
EP3802839A1 (en) 2018-06-07 2021-04-14 The State of Israel, Ministry of Agriculture & Rural Development, Agricultural Research Organization (ARO) (Volcani Center) Nucleic acid constructs and methods of using same
US20210222125A1 (en) 2018-06-07 2021-07-22 The Brigham And Women`S Hospital, Inc. Methods for generating hematopoietic stem cells
EP3800998A1 (en) 2018-06-07 2021-04-14 The State of Israel, Ministry of Agriculture & Rural Development, Agricultural Research Organization (ARO) (Volcani Center) Methods of regenerating and transforming cannabis
WO2019246483A1 (en) 2018-06-21 2019-12-26 The Jackson Laboratory Genetically modified mouse models of alzheimer's disease
WO2020006112A1 (en) * 2018-06-26 2020-01-02 Regents Of The University Of Minnesota Delivery of developmental regulators to plants for the induction of meristematic tissue with genetic alterations
WO2020005667A1 (en) 2018-06-29 2020-01-02 Pioneer Hi-Bred International, Inc. Compositions and methods for editing an endogenous nac gene in plants
JP7367974B2 (ja) 2018-07-31 2023-10-24 国立大学法人 東京大学 膜タンパク質活性測定法
EP3607819A1 (en) 2018-08-10 2020-02-12 Vilmorin et Cie Resistance to xanthomonas campestris pv. campestris (xcc) in cauliflower
US20210317429A1 (en) 2018-08-20 2021-10-14 The Broad Institute, Inc. Methods and compositions for optochemical control of crispr-cas9
IL280951B1 (en) 2018-08-23 2024-04-01 Sangamo Therapeutics Inc Engineered target-specific base editors
CN113195715A (zh) 2018-08-29 2021-07-30 阿迈瑞斯公司 基于选择的测定法的细胞和方法
CN109706155B (zh) * 2018-08-30 2022-04-19 南京农业大学 pOsHEN1::OsSPL14基因表达盒及其构建方法和应用
EP4268831A3 (en) 2018-09-12 2024-05-22 Fred Hutchinson Cancer Center Reducing cd33 expression to selectively protect therapeutic cells
WO2020061161A1 (en) 2018-09-18 2020-03-26 Sangamo Therapeutics, Inc. Programmed cell death 1 (pd1) specific nucleases
CN113164623A (zh) 2018-09-18 2021-07-23 维恩维纽克公司 基于arc的衣壳及其用途
BR112021005115A2 (pt) * 2018-09-20 2021-06-15 Sanofi métodos e composições de clonagem universal baseada em íntron
GB201815672D0 (en) 2018-09-26 2018-11-07 Innes John Centre Methods for altering starch granule size profile
JP7288915B2 (ja) 2018-10-04 2023-06-08 株式会社カネカ 植物のゲノム編集に用いられるdna構築物
US20220411783A1 (en) 2018-10-12 2022-12-29 The Broad Institute, Inc. Method for extracting nuclei or whole cells from formalin-fixed paraffin-embedded tissues
CN113348247A (zh) 2018-10-15 2021-09-03 泰莱托恩基金会 基因组编辑方法与构建体
EP3866583A1 (en) 2018-10-16 2021-08-25 Pioneer Hi-Bred International, Inc. Genome edited fine mapping and causal gene identification
US20210379057A1 (en) 2018-10-16 2021-12-09 Massachusetts Institute Of Technology Nutlin-3a for use in treating a mycobacterium tuberculosis infection
EP3870695A1 (en) 2018-10-22 2021-09-01 University of Rochester Genome editing by directed non-homologous dna insertion using a retroviral integrase-cas9 fusion protein
AU2019370485A1 (en) 2018-11-02 2021-05-13 Annexon, Inc. Compositions and methods for treating brain injury
CA3118816A1 (en) 2018-11-07 2020-05-14 Crispr Therapeutics Ag Anti-cd33 immune cell cancer therapy
MX2021005400A (es) 2018-11-07 2021-07-06 Crispr Therapeutics Ag Terapia del cancer con celulas inmunitarias anti-ptk7.
US20210292429A1 (en) 2018-11-07 2021-09-23 Crispr Therapeutics Ag Anti-liv1 immune cell cancer therapy
WO2020112647A1 (en) 2018-11-27 2020-06-04 Khona Scientific Llc Bidirectional multi-enzymatic scaffolds for biosynthesizing cannabinoids
AU2019391114A1 (en) 2018-12-05 2021-06-24 Vertex Pharmaceuticals Incorporated Gene-editing systems for editing a cystic fibrosis transmembrane regulator (CFTR) gene
KR20200071198A (ko) 2018-12-10 2020-06-19 네오이뮨텍, 인코퍼레이티드 Nrf2 발현 조절 기반 T 세포 항암면역치료법
GB201820109D0 (en) 2018-12-11 2019-01-23 Vib Vzw Plants with a lignin trait and udp-glycosyltransferase mutation
EP3898958A1 (en) 2018-12-17 2021-10-27 The Broad Institute, Inc. Crispr-associated transposase systems and methods of use thereof
JP7449291B2 (ja) 2018-12-20 2024-03-13 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ヌクレアーゼ媒介リピート伸長
EP3898661A1 (en) 2018-12-21 2021-10-27 Precision BioSciences, Inc. Genetic modification of the hydroxyacid oxidase 1 gene for treatment of primary hyperoxaluria
US11739156B2 (en) 2019-01-06 2023-08-29 The Broad Institute, Inc. Massachusetts Institute of Technology Methods and compositions for overcoming immunosuppression
WO2020146805A1 (en) 2019-01-11 2020-07-16 Acuitas Therapeutics, Inc. Lipids for lipid nanoparticle delivery of active agents
CA3145881A1 (en) 2019-01-15 2020-07-23 Seminis Vegetable Seeds, Inc. Green bean plants with improved resistance to sclerotinia sclerotiorum and genetic markers therefor
US20230053540A1 (en) 2019-02-19 2023-02-23 Massachusetts Institute Of Technology Treatment of liver injury
US10947534B2 (en) 2019-03-07 2021-03-16 The Trustees Of Columbia University In The City Of New York RNA-guided DNA integration using Tn7-like transposons
WO2020186237A1 (en) 2019-03-13 2020-09-17 The Broad Institute, Inc. Microglial progenitors for regeneration of functional microglia in the central nervous system and therapeutics uses thereof
WO2020191153A2 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
EP4332115A3 (en) 2019-04-03 2024-05-29 Precision Biosciences, Inc. Genetically-modified immune cells comprising a microrna-adapted shrna (shrnamir)
MX2021011956A (es) 2019-04-03 2021-12-15 Regeneron Pharma Metodos y composiciones para la insercion de secuencias codificantes de anticuerpos en un locus de puerto seguro.
WO2020206139A1 (en) 2019-04-04 2020-10-08 Regeneron Pharmaceuticals, Inc. Non-human animals comprising a humanized coagulation factor 12 locus
KR102487901B1 (ko) 2019-04-04 2023-01-12 리제너론 파마슈티칼스 인코포레이티드 표적화된 변형의 표적화 벡터로의 무흔적 도입을 위한 방법
CA3136265A1 (en) 2019-04-05 2020-10-08 Precision Biosciences, Inc. Methods of preparing populations of genetically-modified immune cells
UY38693A (es) 2019-05-13 2020-12-31 Kws Saat Se & Co Kgaa Tolerancia a la sequía en maíz
CN113924367A (zh) 2019-05-23 2022-01-11 南京农业大学 提高水稻籽粒产量的方法
AR118995A1 (es) 2019-05-25 2021-11-17 Kws Saat Se & Co Kgaa Mejorador de la inducción de haploides
BR112021023594A2 (pt) 2019-05-28 2022-02-08 Selecta Biosciences Inc Métodos e composições para resposta imune de vetor de transferência antiviral atenuada
WO2020243371A1 (en) 2019-05-28 2020-12-03 Massachusetts Institute Of Technology Methods and compositions for modulating immune responses
US20220243178A1 (en) 2019-05-31 2022-08-04 The Broad Institute, Inc. Methods for treating metabolic disorders by targeting adcy5
JP2022534867A (ja) 2019-06-04 2022-08-04 リジェネロン・ファーマシューティカルズ・インコーポレイテッド ベータスリップ変異を有するヒト化ttr遺伝子座を含む非ヒト動物と使用方法
WO2020244759A1 (en) 2019-06-05 2020-12-10 Klemm & Sohn Gmbh & Co. Kg New plants having a white foliage phenotype
BR112021022722A2 (pt) 2019-06-07 2022-01-04 Regeneron Pharma Animal não humano, célula de animal não humana, genoma de animal não humano, gene de albumina animal não humana humanizada, vetor de alvejamento, método de avaliação da atividade de um reagente, e, método de otimização da atividade de um reagente
EP3813522A1 (en) 2019-06-14 2021-05-05 Regeneron Pharmaceuticals, Inc. Models of tauopathy
EP3987024A4 (en) 2019-06-20 2023-11-01 University Of Massachusetts COMPOSITIONS AND METHODS FOR IMPROVED GENE EDITING
WO2020254850A1 (en) 2019-06-21 2020-12-24 Vilmorin & Cie Improvement of quality and permanence of green color of peppers at maturity and over-maturity
CA3144871A1 (en) 2019-06-27 2020-12-30 Crispr Therapeutics Ag Use of chimeric antigen receptor t cells and nk cell inhibitors for treating cancer
AU2020310877B2 (en) 2019-07-11 2024-05-23 Consejo Nacional De Investigaciones Científicas Y Técnicas Methods for improved regeneration of transgenic plants using Growth-Regulating Factor (GRF), GRF-Interacting Factor (GIF), or chimeric GRF-GIF genes and proteins
CA3146895A1 (en) 2019-07-23 2021-01-28 Mnemo Therapeutics Immune cells defective for suv39h1
WO2021016608A1 (en) 2019-07-25 2021-01-28 Precision Biosciences, Inc. Compositions and methods for sequential stacking of nucleic acid sequences into a genomic locus
WO2021019272A1 (en) 2019-07-31 2021-02-04 Vilmorin & Cie Tolerance to tolcndv in cucumber
EP3772542A1 (en) 2019-08-07 2021-02-10 KWS SAAT SE & Co. KGaA Modifying genetic variation in crops by modulating the pachytene checkpoint protein 2
US20220273720A1 (en) 2019-08-20 2022-09-01 Precision Biosciences, Inc. Lymphodepletion dosing regimens for cellular immunotherapies
WO2021035170A1 (en) 2019-08-21 2021-02-25 Precision Biosciences, Inc. Compositions and methods for tcr reprogramming using fusion proteins
US20220298501A1 (en) 2019-08-30 2022-09-22 The Broad Institute, Inc. Crispr-associated mu transposase systems
CA3150151A1 (en) 2019-09-06 2021-03-11 Jonathan Alexander Terrett GENETICALLY MODIFIED T LYMPHOCYTES WITH IMPROVED PERSISTENCE IN CULTURE
JP2022548399A (ja) 2019-09-23 2022-11-18 オメガ セラピューティクス, インコーポレイテッド 肝細胞核因子4-アルファ(HNF4α)遺伝子発現をモジュレートするための組成物および方法
EP4048807A1 (en) 2019-09-23 2022-08-31 Omega Therapeutics, Inc. Compositions and methods for modulating apolipoprotein b (apob) gene expression
US11542513B2 (en) 2019-09-26 2023-01-03 Seminis Vegetable Seeds, Inc. Lettuce plants having resistance to Nasonovia ribisnigri biotype Nr:1
GB201914137D0 (en) 2019-10-01 2019-11-13 Univ Leeds Innovations Ltd Modified Plants
US11981922B2 (en) 2019-10-03 2024-05-14 Dana-Farber Cancer Institute, Inc. Methods and compositions for the modulation of cell interactions and signaling in the tumor microenvironment
US20230357788A1 (en) 2019-10-17 2023-11-09 KWS SAAT SE & Co. KGaA Enhanced disease resistance of crops by downregulation of repressor genes
US20220411479A1 (en) 2019-10-30 2022-12-29 Precision Biosciences, Inc. Cd20 chimeric antigen receptors and methods of use for immunotherapy
EP4054651A1 (en) 2019-11-08 2022-09-14 Regeneron Pharmaceuticals, Inc. Crispr and aav strategies for x-linked juvenile retinoschisis therapy
TW202124718A (zh) 2019-11-14 2021-07-01 國立大學法人廣島大學 使用環狀dna將抗原特異性受體基因導入t細胞基因組之方法
EP4057802A1 (en) 2019-11-14 2022-09-21 Vilmorin & Cie Resistance to acidovorax valerianellae in corn salad
JP7448120B2 (ja) 2019-11-14 2024-03-12 国立研究開発法人農業・食品産業技術総合研究機構 プラズマを用いてゲノム編集酵素を植物細胞内に導入する方法
WO2021108363A1 (en) 2019-11-25 2021-06-03 Regeneron Pharmaceuticals, Inc. Crispr/cas-mediated upregulation of humanized ttr allele
EP4069285A1 (en) 2019-12-06 2022-10-12 Precision BioSciences, Inc. Methods for cancer immunotherapy, using lymphodepletion regimens and cd19, cd20 or bcma allogeneic car t cells
CN114787362A (zh) 2019-12-13 2022-07-22 中外制药株式会社 检测细胞外嘌呤受体配体的系统和导入该系统的非人动物
CN113061626B (zh) * 2019-12-16 2024-01-19 中国科学院脑科学与智能技术卓越创新中心 一种组织特异性敲除斑马鱼基因的方法及应用
GB201918902D0 (en) 2019-12-19 2020-02-05 Genome Res Ltd Cell differentiation
JP2023519087A (ja) 2020-01-31 2023-05-10 カリックス インコーポレイテッド ダイズにおける飽和脂肪の増加
WO2021158915A1 (en) 2020-02-06 2021-08-12 Precision Biosciences, Inc. Recombinant adeno-associated virus compositions and methods for producing and using the same
MX2022010624A (es) 2020-02-28 2022-10-10 Pioneer Hi Bred Int Sistema de producción de haploides doble de sorgo.
WO2021178556A1 (en) 2020-03-04 2021-09-10 Regeneron Pharmaceuticals, Inc. Methods and compositions for sensitization of tumor cells to immune therapy
WO2021183636A1 (en) 2020-03-10 2021-09-16 Calyxt, Inc. Transformation and regeneration of cannabaceae
WO2021183720A1 (en) 2020-03-11 2021-09-16 Omega Therapeutics, Inc. Compositions and methods for modulating forkhead box p3 (foxp3) gene expression
US20240099210A1 (en) 2020-03-26 2024-03-28 National Agriculture And Food Research Organization Method for producing temperature-sensitive male sterile plant
CN115697044A (zh) 2020-03-31 2023-02-03 艾洛生物系统有限公司 西瓜和其他葫芦科中内源罗汉果苷途径基因的调控
WO2021202648A1 (en) 2020-03-31 2021-10-07 Calyxt, Inc. Agrobacterium-mediated infiltration of cannabaceae
NL2025344B1 (en) 2020-04-14 2021-10-26 Academisch Ziekenhuis Leiden Methods for induction of endogenous tandem duplication events
EP4135511A1 (en) 2020-04-14 2023-02-22 Academisch Ziekenhuis Leiden (h.o.d.n. LUMC) Methods for induction of endogenous tandem duplication events
EP4146797A1 (en) 2020-05-06 2023-03-15 Orchard Therapeutics (Europe) Limited Treatment for neurodegenerative diseases
US20230279440A1 (en) 2020-05-06 2023-09-07 Cellectis S.A. Methods to genetically modify cells for delivery of therapeutic proteins
KR20230019843A (ko) 2020-05-08 2023-02-09 더 브로드 인스티튜트, 인코퍼레이티드 표적 이중 가닥 뉴클레오티드 서열의 두 가닥의 동시 편집을 위한 방법 및 조성물
WO2021231259A1 (en) 2020-05-11 2021-11-18 Precision Biosciences, Inc. Self-limiting viral vectors encoding nucleases
PE20230080A1 (es) 2020-05-29 2023-01-11 Kws Saat Se And Co Kgaa Induccion de haploides en plantas
WO2021245435A1 (en) 2020-06-03 2021-12-09 Vilmorin & Cie Melon plants resistant to scab disease, aphids and powdery mildew
WO2021248052A1 (en) 2020-06-05 2021-12-09 The Broad Institute, Inc. Compositions and methods for treating neoplasia
CA3186284A1 (en) 2020-06-05 2021-12-09 Vilmorin & Cie Resistance in plants of solanum lycopersicum to the tobrfv
AU2021204717A1 (en) 2020-07-15 2022-02-03 Seminis Vegetable Seeds, Inc. Green Bean Plants with Improved Disease Resistance
EP4182297A1 (en) 2020-07-16 2023-05-24 Acuitas Therapeutics, Inc. Cationic lipids for use in lipid nanoparticles
CN116096864A (zh) 2020-07-30 2023-05-09 居里研究所 Socs1缺陷的免疫细胞
EP4192875A1 (en) 2020-08-10 2023-06-14 Precision BioSciences, Inc. Antibodies and fragments specific for b-cell maturation antigen and uses thereof
WO2022046760A2 (en) 2020-08-25 2022-03-03 Kite Pharma, Inc. T cells with improved functionality
MX2023003365A (es) 2020-09-23 2023-03-29 Crispr Therapeutics Ag Linfocitos t modificados por ingenieria genetica con disrupcion de regnasa-1 y/o tgfbrii tienen una funcionalidad y una persistencia mejoradas.
WO2022067130A2 (en) 2020-09-24 2022-03-31 The Broad Institute, Inc. Prime editing guide rnas, compositions thereof, and methods of using the same
US20230363337A1 (en) 2020-10-02 2023-11-16 Vilmorin & Cie Melon with extended shelf life
US20230365995A1 (en) 2020-10-07 2023-11-16 Precision Biosciences, Inc. Lipid nanoparticle compositions
MX2023004761A (es) 2020-10-23 2023-07-17 Elo Life Systems Inc Metodos para producir plantas de vainilla con mejor sabor y produccion agronomica.
US20230407350A1 (en) 2020-11-10 2023-12-21 Industrial Microbes, Inc. Microorganisms capable of producing poly(hiba) from feedstock
WO2022109316A1 (en) 2020-11-20 2022-05-27 Revivicor, Inc. Multi-transgenic pigs with growth hormone receptor knockout for xenotransplantation
IL303269A (en) 2020-12-03 2023-07-01 Century Therapeutics Inc Genetically modified cells and their uses
US11661459B2 (en) 2020-12-03 2023-05-30 Century Therapeutics, Inc. Artificial cell death polypeptide for chimeric antigen receptor and uses thereof
EP4255172A1 (en) 2020-12-03 2023-10-11 Vilmorin & Cie Tomato plants resistant to tobrfv, tmv, tomv and tommv and corresponding resistance genes
WO2022137181A1 (en) 2020-12-23 2022-06-30 Crispr Therapeutics Ag Co-use of lenalidomide with car-t cells
EP4267740A1 (en) 2020-12-28 2023-11-01 Arcturus Therapeutics, Inc. Transcription activator-like effector nucleases (talens) targeting hbv
WO2022150790A2 (en) 2021-01-11 2022-07-14 The Broad Institute, Inc. Prime editor variants, constructs, and methods for enhancing prime editing efficiency and precision
EP4284823A1 (en) 2021-01-28 2023-12-06 Precision BioSciences, Inc. Modulation of tgf beta signaling in genetically-modified eukaryotic cells
WO2022189967A1 (en) 2021-03-09 2022-09-15 Crispr Therapeutics Ag Genetically engineered t cells with ptpn2 knockout have improved functionality and anti-tumor activity
CA3212351A1 (en) 2021-03-12 2022-09-15 Mendus B.V. Methods of vaccination and use of cd47 blockade
WO2022208489A1 (en) 2021-04-02 2022-10-06 Vilmorin & Cie Semi-determinate or determinate growth habit trait in cucurbita
CA3214045A1 (en) 2021-04-07 2022-10-13 Century Therapeutics, Inc. Compositions and methods for generating gamma-delta t cells from induced pluripotent stem cells
US20220333074A1 (en) 2021-04-07 2022-10-20 Century Therapeutics, Inc. Compositions and Methods for Generating Alpha-Beta T Cells from Induced Pluripotent Stem Cells
AU2022253223A1 (en) 2021-04-07 2023-09-28 Century Therapeutics, Inc. Combined artificial cell death/reporter system polypeptide for chimeric antigen receptor cell and uses thereof
US20240141311A1 (en) 2021-04-22 2024-05-02 North Carolina State University Compositions and methods for generating male sterile plants
CA3216146A1 (en) 2021-04-23 2022-10-27 Douglas Anderson Genome editing by directed non-homologous dna insertion using a retroviral integrase-cas fusion protein and methods of treatment
CA3218511A1 (en) 2021-05-10 2022-11-17 Sqz Biotechnologies Company Methods for delivering genome editing molecules to the nucleus or cytosol of a cell and uses thereof
WO2022251644A1 (en) 2021-05-28 2022-12-01 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
EP4347826A1 (en) 2021-06-02 2024-04-10 Lyell Immunopharma, Inc. Nr4a3-deficient immune cells and uses thereof
WO2022271548A2 (en) 2021-06-23 2022-12-29 Massachusetts Institute Of Technology Compositions, methods and systems for the delivery of gene editing material to cells
EP4367242A2 (en) 2021-07-07 2024-05-15 Omega Therapeutics, Inc. Compositions and methods for modulating secreted frizzled receptor protein 1 (sfrp1) gene expression
CA3225278A1 (en) 2021-07-07 2023-01-12 Robert W. Williams Transcription activator-like effectors fused to inteins
CA3221517A1 (en) 2021-07-30 2023-02-02 Monika KLOIBER-MAITZ Plants with improved digestibility and marker haplotypes
WO2023012325A1 (en) 2021-08-06 2023-02-09 Vilmorin & Cie Resistance to leveillula taurica in pepper
JP7125727B1 (ja) 2021-09-07 2022-08-25 国立大学法人千葉大学 核酸配列改変用組成物および核酸配列の標的部位を改変する方法
WO2023042079A1 (en) 2021-09-14 2023-03-23 Crispr Therapeutics Ag Genetically engineered immune cells having a disrupted cd83 gene
CA3232376A1 (en) 2021-09-20 2023-03-23 Maria KOKKINAKI Multitransgenic pigs comprising ten genetic modifications for xenotransplantation
GB202113933D0 (en) 2021-09-29 2021-11-10 Genome Res Ltd Methods for gene editing
US20230141563A1 (en) 2021-10-12 2023-05-11 Selecta Biosciences, Inc. Methods and compositions for attenuating anti-viral transfer vector igm responses
WO2023064924A1 (en) 2021-10-14 2023-04-20 Codiak Biosciences, Inc. Modified producer cells for extracellular vesicle production
WO2023064872A1 (en) 2021-10-14 2023-04-20 Precision Biosciences, Inc. Combinations of anti-bcma car t cells and gamma secretase inhibitors
AU2022371430A1 (en) 2021-10-19 2024-05-30 Precision Biosciences, Inc. Gene editing methods for treating alpha-1 antitrypsin (aat) deficiency
CA3234404A1 (en) 2021-10-20 2023-04-27 Steven A. Goldman Treatment with genetically modified cells, and genetically modified cells per se, with increased competitive advantage and/or decreased competitive disadvantage
US20230190961A1 (en) 2021-10-20 2023-06-22 University Of Rochester Compositions and methods for treating myelin deficiency by rejuvenating glial progenitor cells
IL311786A (en) 2021-10-21 2024-05-01 Vertex Pharma hypoimmune cells
WO2023081923A1 (en) 2021-11-08 2023-05-11 Frequency Therapeutics, Inc. Platelet-derived growth factor receptor (pdgfr) alpha inhibitors and uses thereof
US11753677B2 (en) 2021-11-10 2023-09-12 Encodia, Inc. Methods for barcoding macromolecules in individual cells
WO2023091910A1 (en) 2021-11-16 2023-05-25 Precision Biosciences, Inc. Methods for cancer immunotherapy
WO2023093862A1 (en) 2021-11-26 2023-06-01 Epigenic Therapeutics Inc. Method of modulating pcsk9 and uses thereof
WO2023102393A1 (en) 2021-11-30 2023-06-08 Pioneer Hi-Bred International, Inc. High efficiency large scale chromosomal genome manipulation
AU2022400961A1 (en) 2021-12-03 2024-05-30 President And Fellows Of Harvard College Self-assembling virus-like particles for delivery of nucleic acid programmable fusion proteins and methods of making and using same
WO2023102550A2 (en) 2021-12-03 2023-06-08 The Broad Institute, Inc. Compositions and methods for efficient in vivo delivery
US20230193310A1 (en) 2021-12-10 2023-06-22 Seminis Vegetabe Seeds, Inc. Lettuce plants having resistance to downy mildew
GB202118058D0 (en) 2021-12-14 2022-01-26 Univ Warwick Methods to increase yields in crops
WO2023111913A1 (en) 2021-12-15 2023-06-22 Crispr Therapeutics Ag Engineered anti-liv1 cell with regnase-1 and/or tgfbrii disruption
WO2023114935A1 (en) * 2021-12-17 2023-06-22 Altius Institute For Biomedical Sciences Nucleic acid sequences encoding repeated sequences resistant to recombination in viruses
WO2023119201A2 (en) 2021-12-22 2023-06-29 Crispr Therapeutics Ag Genetically engineered t cells with disrupted casitas b-lineage lymphoma proto-oncogene-b (cblb) and uses thereof
WO2023126458A1 (en) 2021-12-28 2023-07-06 Mnemo Therapeutics Immune cells with inactivated suv39h1 and modified tcr
WO2023129974A1 (en) 2021-12-29 2023-07-06 Bristol-Myers Squibb Company Generation of landing pad cell lines
WO2023129937A1 (en) 2021-12-29 2023-07-06 Century Therapeutics, Inc. Genetically engineered cells having anti-cd19 / anti-cd22 chimeric antigen receptors, and uses thereof
WO2023150553A1 (en) 2022-02-01 2023-08-10 University Of Rochester Gpr17 promoter-based targeting and transduction of glial progenitor cells
WO2023150557A1 (en) 2022-02-01 2023-08-10 University Of Rochester Methods of generating a population of neurons from human glial progenitor cells and genetic constructs for carrying out such methods
WO2023158732A1 (en) 2022-02-16 2023-08-24 Dana-Farber Cancer Institute, Inc. Methods for decreasing pathologic alpha-synuclein using agents that modulate fndc5 or biologically active fragments thereof
US20230279376A1 (en) 2022-03-01 2023-09-07 Crispr Therapeutics Ag Methods and compositions for treating angiopoietin-like 3 (angptl3) related conditions
US20230357437A1 (en) 2022-03-09 2023-11-09 Selecta Biosciences, Inc. Immunosuppressants in combination with anti-igm agents and related dosing
WO2023180904A1 (en) 2022-03-21 2023-09-28 Crispr Therapeutics Ag Methods and compositions for treating lipoprotein-related diseases
TW202346575A (zh) 2022-03-23 2023-12-01 瑞士商Crispr治療公司 具有regnase-1及/或tgfbrii破壞的抗cd83 car-t細胞
US20230303713A1 (en) 2022-03-23 2023-09-28 Crispr Therapeutics Ag Anti-cd19 car-t cells with multiple gene edits and therapeutic uses thereof
EP4256950A1 (en) 2022-04-06 2023-10-11 Vilmorin et Cie Tolerance to cgmmv in cucumber
WO2023213831A1 (en) 2022-05-02 2023-11-09 Fondazione Telethon Ets Homology independent targeted integration for gene editing
WO2023220603A1 (en) 2022-05-09 2023-11-16 Regeneron Pharmaceuticals, Inc. Vectors and methods for in vivo antibody production
WO2023225665A1 (en) 2022-05-19 2023-11-23 Lyell Immunopharma, Inc. Polynucleotides targeting nr4a3 and uses thereof
EP4279085A1 (en) 2022-05-20 2023-11-22 Mnemo Therapeutics Compositions and methods for treating a refractory or relapsed cancer or a chronic infectious disease
EP4278891A1 (en) 2022-05-20 2023-11-22 KWS SAAT SE & Co. KGaA Clubroot resistance and markers in brassica
GB202207774D0 (en) 2022-05-26 2022-07-13 Cambridge Entpr Ltd Modified plants
WO2023240147A1 (en) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Genetically engineered cells expressing cd16 variants and nkg2d and uses thereof
WO2023240169A1 (en) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Immunoeffector cells derived from induced pluripotent stem cells genetically engineered with membrane bound il12 and uses thereof
WO2023240212A2 (en) 2022-06-08 2023-12-14 Century Therapeutics, Inc. Genetically engineered cells having anti-cd133 / anti-egfr chimeric antigen receptors, and uses thereof
US20240041757A1 (en) 2022-06-17 2024-02-08 Crispr Therapeutics Ag LIPID NANOPARTICLES (LNPs)-BASED OCULAR DELIVERY
WO2023248145A1 (en) 2022-06-21 2023-12-28 Crispr Therapeutics Ag Compositions and methods for treating human immunodeficiency virus
US20230404003A1 (en) 2022-06-21 2023-12-21 Seminis Vegetable Seeds, Inc. Novel qtls conferring resistance to cucumber mosaic virus
WO2023248147A1 (en) 2022-06-21 2023-12-28 Crispr Therapeutics Ag Methods and compositions for in vivo editing of stem cells
WO2024003786A1 (en) 2022-06-29 2024-01-04 Crispr Therapeutics Ag Chimeric antigen receptor targeting gpc-3 and immune cells expressing such for therapeutic uses
GB2621813A (en) 2022-06-30 2024-02-28 Univ Newcastle Preventing disease recurrence in Mitochondrial replacement therapy
WO2024020360A1 (en) 2022-07-18 2024-01-25 Pairwise Plants Services, Inc. Mustard green plants named 'pwrg-1', 'pwrg-2,' and 'pwsgc'
WO2024023802A2 (en) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Genetically engineered immune cells having disrupted transporter associated with antigen processing-2 (tap-2) gene
WO2024026474A1 (en) 2022-07-29 2024-02-01 Regeneron Pharmaceuticals, Inc. Compositions and methods for transferrin receptor (tfr)-mediated delivery to the brain and muscle
WO2024023804A2 (en) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Genetically engineered immune cells having disrupted transporter associated with antigen processing binding protein (tapbp) gene
WO2024023801A2 (en) 2022-07-29 2024-02-01 Crispr Therapeutics Ag Genetically engineered immune cells having disrupted transporter associated with antigen processing-1 (tap-1) gene
LU502613B1 (en) 2022-08-01 2024-02-01 Plant Bioscience Ltd Methods of altering the starch granule profile in plants
WO2024031053A1 (en) 2022-08-05 2024-02-08 Regeneron Pharmaceuticals, Inc. Aggregation-resistant variants of tdp-43
WO2024042199A1 (en) 2022-08-26 2024-02-29 KWS SAAT SE & Co. KGaA Use of paired genes in hybrid breeding
WO2024062388A2 (en) 2022-09-20 2024-03-28 Crispr Therapeutics Ag Genetically engineered immune cells expressing chimeric antigen receptor targeting cd20
WO2024062138A1 (en) 2022-09-23 2024-03-28 Mnemo Therapeutics Immune cells comprising a modified suv39h1 gene
WO2024064958A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
WO2024064952A1 (en) 2022-09-23 2024-03-28 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells overexpressing c-jun
GB202214410D0 (en) 2022-09-30 2022-11-16 Ivy Farm Tech Limited genetically modified cells
WO2024077174A1 (en) 2022-10-05 2024-04-11 Lyell Immunopharma, Inc. Methods for culturing nr4a-deficient cells
WO2024079157A1 (en) 2022-10-11 2024-04-18 KWS SAAT SE & Co. KGaA Virus and insect resistance and markers in barley
WO2024102838A1 (en) 2022-11-09 2024-05-16 Century Therapeutics, Inc. Engineered interleukin-7 receptors and uses thereof
WO2024103017A2 (en) 2022-11-10 2024-05-16 Century Therapeutics, Inc. Genetically engineered cells having anti-nectin4 chimeric antigen receptors, and uses thereof
WO2024107765A2 (en) 2022-11-14 2024-05-23 Regeneron Pharmaceuticals, Inc. Compositions and methods for fibroblast growth factor receptor 3-mediated delivery to astrocytes
WO2024108092A1 (en) 2022-11-17 2024-05-23 The Broad Institute, Inc. Prime editor delivery by aav

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
EP0242246A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
US4769061A (en) 1983-01-05 1988-09-06 Calgene Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
US4959317A (en) 1985-10-07 1990-09-25 E. I. Du Pont De Nemours And Company Site-specific recombination of DNA in eukaryotic cells
US4975374A (en) 1986-03-18 1990-12-04 The General Hospital Corporation Expression of wild type and mutant glutamine synthetase in foreign hosts
US5006333A (en) 1987-08-03 1991-04-09 Ddi Pharmaceuticals, Inc. Conjugates of superoxide dismutase coupled to high molecular weight polyalkylene glycols
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5162602A (en) 1988-11-10 1992-11-10 Regents Of The University Of Minnesota Corn plants tolerant to sethoxydim and haloxyfop herbicides
US5204253A (en) 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US5276268A (en) 1986-08-23 1994-01-04 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5538880A (en) 1990-01-22 1996-07-23 Dekalb Genetics Corporation Method for preparing fertile transgenic corn plants
US5591616A (en) 1992-07-07 1997-01-07 Japan Tobacco, Inc. Method for transforming monocotyledons
US5767366A (en) 1991-02-19 1998-06-16 Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College Mutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants
US5879903A (en) 1986-08-23 1999-03-09 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5928937A (en) 1995-04-20 1999-07-27 American Cyanamid Company Structure-based designed herbicide resistant products
US6084155A (en) 1995-06-06 2000-07-04 Novartis Ag Herbicide-tolerant protoporphyrinogen oxidase ("protox") genes
US20010016956A1 (en) 1994-06-16 2001-08-23 Ward Eric R. Herbicide-tolerant protox genes produced by DNA shuffling
US6329571B1 (en) 1996-10-22 2001-12-11 Japan Tobacco, Inc. Method for transforming indica rice
US6451735B1 (en) 1998-09-10 2002-09-17 Syngenta Limited Glyphosate formulation
US6451732B1 (en) 1999-06-04 2002-09-17 Syngenta, Limited Herbicidal compositions of glyphosate trimesium
WO2010079430A1 (en) 2009-01-12 2010-07-15 Ulla Bonas Modular dna-binding domains and methods of use

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5501967A (en) * 1989-07-26 1996-03-26 Mogen International, N.V./Rijksuniversiteit Te Leiden Process for the site-directed integration of DNA into the genome of plants
US5356802A (en) * 1992-04-03 1994-10-18 The Johns Hopkins University Functional domains in flavobacterium okeanokoites (FokI) restriction endonuclease
US5487994A (en) * 1992-04-03 1996-01-30 The Johns Hopkins University Insertion and deletion mutants of FokI restriction endonuclease
US5436150A (en) 1992-04-03 1995-07-25 The Johns Hopkins University Functional domains in flavobacterium okeanokoities (foki) restriction endonuclease
US5792640A (en) * 1992-04-03 1998-08-11 The Johns Hopkins University General method to clone hybrid restriction endonucleases using lig gene
JPH08510375A (ja) 1993-02-12 1996-11-05 ザ・ジョンズ−ホプキンス・ユニバーシティー フラボバクテリウム・オケアノコイテス(foki)制限エンドヌクレアーゼの機能ドメイン
US7285416B2 (en) * 2000-01-24 2007-10-23 Gendaq Limited Regulated gene expression in plants
US6326166B1 (en) * 1995-12-29 2001-12-04 Massachusetts Institute Of Technology Chimeric DNA-binding proteins
US5824497A (en) 1995-02-10 1998-10-20 Mcmaster University High efficiency translation of mRNA molecules
US6197928B1 (en) 1997-03-14 2001-03-06 The Regents Of The University Of California Fluorescent protein sensors for detection of analytes
US7013219B2 (en) * 1999-01-12 2006-03-14 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US6534261B1 (en) * 1999-01-12 2003-03-18 Sangamo Biosciences, Inc. Regulation of endogenous gene expression in cells using zinc finger proteins
US7070934B2 (en) * 1999-01-12 2006-07-04 Sangamo Biosciences, Inc. Ligand-controlled regulation of endogenous gene expression
WO2000046386A2 (en) * 1999-02-03 2000-08-10 The Children's Medical Center Corporation Gene repair involving the induction of double-stranded dna cleavage at a chromosomal target site
AU5391401A (en) * 2000-04-28 2001-11-12 Sangamo Biosciences Inc Targeted modification of chromatin structure
US6368227B1 (en) 2000-11-17 2002-04-09 Steven Olson Method of swinging on a swing
AU2002241946B2 (en) * 2001-01-22 2007-04-26 Sangamo Therapeutics, Inc. Modified zinc finger binding proteins
US7262054B2 (en) * 2002-01-22 2007-08-28 Sangamo Biosciences, Inc. Zinc finger proteins for DNA binding and gene regulation in plants
WO2009095742A1 (en) 2008-01-31 2009-08-06 Cellectis New i-crei derived single-chain meganuclease and uses thereof
EP2368982A3 (en) * 2002-03-21 2011-10-12 Sangamo BioSciences, Inc. Methods and compositions for using zinc finger endonucleases to enhance homologous recombination
US7361635B2 (en) * 2002-08-29 2008-04-22 Sangamo Biosciences, Inc. Simultaneous modulation of multiple genes
EP3202899B1 (en) * 2003-01-28 2020-10-21 Cellectis Custom-made meganuclease and use thereof
US7888121B2 (en) * 2003-08-08 2011-02-15 Sangamo Biosciences, Inc. Methods and compositions for targeted cleavage and recombination
US7189691B2 (en) * 2004-04-01 2007-03-13 The Administrators Of The Tulane Educational Fund Methods and compositions for treating leukemia
US7833769B2 (en) 2004-05-03 2010-11-16 New England Biolabs, Inc. McrA variants and uses thereof
WO2006042145A2 (en) * 2004-10-07 2006-04-20 Cornell Research Foundation, Inc. THE RICE BACTERIAL BLIGHT DISEASE RESISTANCE GENE xa5
WO2007060495A1 (en) 2005-10-25 2007-05-31 Cellectis I-crei homing endonuclease variants having novel cleavage specificity and use thereof
US8318155B2 (en) 2006-03-08 2012-11-27 Kyoto University Nucleic acid cleaving agent
WO2008010009A1 (en) * 2006-07-18 2008-01-24 Cellectis Meganuclease variants cleaving a dna target sequence from a rag gene and uses thereof
US8563314B2 (en) * 2007-09-27 2013-10-22 Sangamo Biosciences, Inc. Methods and compositions for modulating PD1
CN101815722B (zh) 2007-09-28 2015-11-25 双刃基金会 Bs3抗性基因和使用方法
AR075356A1 (es) * 2008-11-10 2011-03-30 Two Blades Foundation Promotores inducibles por patogenos y su uso en el mejoramiento de la resistencia a las enfermedades en plantas
EP2206726A1 (en) * 2009-01-08 2010-07-14 Universite Joseph Fourier Non-invasive tools for detecting vulnerable atherosclerotic plaques
US20110239315A1 (en) * 2009-01-12 2011-09-29 Ulla Bonas Modular dna-binding domains and methods of use
US8772008B2 (en) * 2009-05-18 2014-07-08 Sangamo Biosciences, Inc. Methods and compositions for increasing nuclease activity
US20120178647A1 (en) 2009-08-03 2012-07-12 The General Hospital Corporation Engineering of zinc finger arrays by context-dependent assembly
CA2770312A1 (en) * 2009-08-11 2011-02-17 Sangamo Biosciences, Inc. Organisms homozygous for targeted modification
EP2722392B1 (en) * 2009-10-22 2017-11-22 Dow AgroSciences LLC Engineered zinc finger proteins targeting plant genes involved in fatty acid biosynthesis
US8956828B2 (en) * 2009-11-10 2015-02-17 Sangamo Biosciences, Inc. Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
BR112012012747A2 (pt) * 2009-11-27 2015-09-29 Basf Plant Science Co Gmbh "endonuclease quimérica, polinucleotídeo isolado, cassete de expressão, vetor célula hospedeira ou organismo não humano, método para fornecer a endonuclease quimérica, método para a recombinação homóloga dos polinucleotídeos e método para mutação direcionada de polinucleotídeos"
CA2781835A1 (en) * 2009-11-27 2011-06-03 Basf Plant Science Company Gmbh Chimeric endonucleases and uses thereof
CA2782014C (en) * 2009-11-27 2021-08-31 Basf Plant Science Company Gmbh Optimized endonucleases and uses thereof
EP2510096B2 (en) * 2009-12-10 2018-02-07 Regents of the University of Minnesota Tal effector-mediated dna modification
US20110203012A1 (en) * 2010-01-21 2011-08-18 Dotson Stanton B Methods and compositions for use of directed recombination in plant breeding
JP6137596B2 (ja) 2010-02-08 2017-05-31 サンガモ セラピューティクス, インコーポレイテッド 遺伝子操作された切断ハーフドメイン
WO2011100058A1 (en) 2010-02-09 2011-08-18 Sangamo Biosciences, Inc. Targeted genomic modification with partially single-stranded donor molecules
SG185367A1 (en) * 2010-04-26 2012-12-28 Sangamo Biosciences Inc Genome editing of a rosa locus using zinc-finger nucleases
CA2798988C (en) * 2010-05-17 2020-03-10 Sangamo Biosciences, Inc. Tal-effector (tale) dna-binding polypeptides and uses thereof
EP2392208B1 (en) 2010-06-07 2016-05-04 Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) Fusion proteins comprising a DNA-binding domain of a Tal effector protein and a non-specific cleavage domain of a restriction nuclease and their use
JP2013534417A (ja) * 2010-06-14 2013-09-05 アイオワ ステート ユニバーシティ リサーチ ファウンデーション,インコーポレーティッド Talエフェクターとfokiの融合タンパク質のヌクレアーゼ活性
AU2018251150B2 (en) * 2017-04-13 2024-05-09 Albert-Ludwigs-Universität Freiburg New sequence specific reagents targeting CCR5 in primary hematopoietic cells

Patent Citations (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
US4769061A (en) 1983-01-05 1988-09-06 Calgene Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthase, production and use
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
US4959317A (en) 1985-10-07 1990-09-25 E. I. Du Pont De Nemours And Company Site-specific recombination of DNA in eukaryotic cells
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4683195B1 (pt) 1986-01-30 1990-11-27 Cetus Corp
EP0242246A1 (en) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
US5561236A (en) 1986-03-11 1996-10-01 Plant Genetic Systems Genetically engineered plant cells and plants exhibiting resistance to glutamine synthetase inhibitors, DNA fragments and recombinants for use in the production of said cells and plants
US4975374A (en) 1986-03-18 1990-12-04 The General Hospital Corporation Expression of wild type and mutant glutamine synthetase in foreign hosts
US5276268A (en) 1986-08-23 1994-01-04 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5879903A (en) 1986-08-23 1999-03-09 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5006333A (en) 1987-08-03 1991-04-09 Ddi Pharmaceuticals, Inc. Conjugates of superoxide dismutase coupled to high molecular weight polyalkylene glycols
US5162602A (en) 1988-11-10 1992-11-10 Regents Of The University Of Minnesota Corn plants tolerant to sethoxydim and haloxyfop herbicides
US5554798A (en) 1990-01-22 1996-09-10 Dekalb Genetics Corporation Fertile glyphosate-resistant transgenic corn plants
US5538880A (en) 1990-01-22 1996-07-23 Dekalb Genetics Corporation Method for preparing fertile transgenic corn plants
US5204253A (en) 1990-05-29 1993-04-20 E. I. Du Pont De Nemours And Company Method and apparatus for introducing biological substances into living cells
US5767366A (en) 1991-02-19 1998-06-16 Louisiana State University Board Of Supervisors, A Governing Body Of Louisiana State University Agricultural And Mechanical College Mutant acetolactate synthase gene from Ararbidopsis thaliana for conferring imidazolinone resistance to crop plants
US5591616A (en) 1992-07-07 1997-01-07 Japan Tobacco, Inc. Method for transforming monocotyledons
US20010016956A1 (en) 1994-06-16 2001-08-23 Ward Eric R. Herbicide-tolerant protox genes produced by DNA shuffling
US5928937A (en) 1995-04-20 1999-07-27 American Cyanamid Company Structure-based designed herbicide resistant products
US6084155A (en) 1995-06-06 2000-07-04 Novartis Ag Herbicide-tolerant protoporphyrinogen oxidase ("protox") genes
US6329571B1 (en) 1996-10-22 2001-12-11 Japan Tobacco, Inc. Method for transforming indica rice
US6451735B1 (en) 1998-09-10 2002-09-17 Syngenta Limited Glyphosate formulation
US6451732B1 (en) 1999-06-04 2002-09-17 Syngenta, Limited Herbicidal compositions of glyphosate trimesium
WO2010079430A1 (en) 2009-01-12 2010-07-15 Ulla Bonas Modular dna-binding domains and methods of use

Non-Patent Citations (48)

* Cited by examiner, † Cited by third party
Title
"A Laboratory Manual", 1995, COLD SPRING HARBOR LABORATORY PRESS
"Culture of Animal Cells", 1987, ALAN R. LISS, INC.
"Gene Expression Technology", vol. 185
"Gene Transfer Vectors For Mammalian Cells", 1987, COLD SPRING HARBOR LABORATORY
"Handbook of Experimental Immunology", vol. I-IV, 1986
"Immobilized Cells and Enzymes", 1986, IRL PRESS
"Immunochemical Methods in Cell and Molecular Biology", 1987, ACADEMIC PRESS
"Manipulating the Mouse Embryo", 1986, COLD SPRING HARBOR LABORATORY PRESS
"Methods in Enzymology", vol. 154, 155, ACADEMIC PRESS, INC.
"Nucleic Acid Hybridization", 1984
"Oligonucleotide Synthesis", 1984
"Short Protocols in Molecular Biology", 1992, GREEN PUBLISHING ASSOCIATES AND JOHN WILEY & SONS
"Transcription and Translation", 1984
AUSUBEL: "Current Protocols in Molecular Biology", 2000, WILEY AND SON INC
BITINAITE ET AL., PROC. NATL. ACAD. SCI. USA, vol. 95, 1998, pages 10570 - 10575
BOCH ET AL., SCIENCE, vol. 326, 2009, pages 1509 - 1512
BODGANOVE ET AL., CURR. OPIN. PLANT BIOL., vol. 13, 2010, pages 394 - 401
BONAS ET AL., MOL. GEN. GENET., vol. 218, 1989, pages 127 - 136
BUSK, PLANT J., vol. 11, 1997, pages 1285 - 1295
COFFIN, J. M. ET AL.: "Fundamental Virology", 1996, LIPPINCOTT-RAVEN PUBLISHERS, article "Retroviridae: The viruses and their replication"
COLE ET AL., NUCL. ACIDS RES., vol. 36, 2008, pages WI97 - W201
ENGLER ET AL., PLOS ONE, vol. 3, 2008, pages 3647
ENGLER ET AL., PLOS ONE, vol. 4, 2009, pages 5553
FOLEY ET AL., PLOS ONE, vol. 4, 2009, pages 4348
GU ET AL., NATURE, vol. 435, 2005, pages 1122
HABER, BIOESSAYS, vol. 17, 1995, pages 609
HANDEL ET AL., MOL. THER., vol. 17, 2009, pages 104 - 111
KAY ET AL., SCIENCE, vol. 318, 2007, pages 648
KIM ET AL., PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 1156 - 1160
MINCZUK ET AL., NUCLEIC ACIDS RES., vol. 36, 2008, pages 3926 - 3938
MOSCOU; BOGDANOVE, SCIENCE, vol. 326, 2009, pages 1501
PERBAL: "A Practical Guide to Molecular Cloning", 1984
PORTEUS; BALTIMORE, SCIENCE, vol. 300, 2003, pages 763
POTENZA ET AL., IN VITRO CELL DEV BIOL, vol. 40, 2004, pages 1 - 22
ROMER ET AL., NEW PHYTOL., vol. 187, 2010, pages 1048 - 1057
ROMER ET AL., PLANT PHYSIOL., vol. 150, 2009, pages 1697 - 1712
ROMER ET AL., SCIENCE, vol. 318, 2007, pages 645
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", 2001, COLD SPRING HARBOR LABORATORY PRESS
SCHOMACK ET AL., J. PLANT PHYSIOL., vol. 163, 2006, pages 256
SCHOMACK ET AL., NEW PHYTOL., vol. 179, 2008, pages 546 - 556
See also references of EP2510096A2
SUGIO ET AL., PROC. NATL. ACAD. SCI. USA, vol. 104, 2007, pages 10720
TOWNSEND ET AL., NATURE, vol. 459, 2009, pages 442 - 445
VERGUNST ET AL., SCIENCE, vol. 290, 2000, pages 979 - 982
YANG ET AL., PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 10503
YANG ET AL., PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 10503 - 10508
ZHANG ET AL., PROC. NATL. ACAD. SCI. USA, vol. 107, 2010, pages 12028 - 12033

Cited By (596)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11827676B2 (en) 2009-01-12 2023-11-28 Ulla Bonas Modular DNA-binding domains and methods of use
US9353378B2 (en) 2009-01-12 2016-05-31 Ulla Bonas Modular DNA-binding domains and methods of use
US10590175B2 (en) 2009-01-12 2020-03-17 Ulla Bonas Modular DNA-binding domains and methods of use
US9453054B2 (en) 2009-01-12 2016-09-27 Ulla Bonas Modular DNA-binding domains and methods of use
US8470973B2 (en) 2009-01-12 2013-06-25 Ulla Bonas Modular DNA-binding domains and methods of use
US9809628B2 (en) 2009-01-12 2017-11-07 Ulla Bonas Modular DNA-binding domains and methods of use
US8420782B2 (en) 2009-01-12 2013-04-16 Ulla Bonas Modular DNA-binding domains and methods of use
US9017967B2 (en) 2009-01-12 2015-04-28 Ulla Bonas Modular DNA-binding domains and methods of use
US8440432B2 (en) 2009-12-10 2013-05-14 Regents Of The University Of Minnesota Tal effector-mediated DNA modification
US8586363B2 (en) 2009-12-10 2013-11-19 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US10619153B2 (en) 2009-12-10 2020-04-14 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US11274294B2 (en) 2009-12-10 2022-03-15 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US8450471B2 (en) 2009-12-10 2013-05-28 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US8440431B2 (en) 2009-12-10 2013-05-14 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US8697853B2 (en) 2009-12-10 2014-04-15 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US9758775B2 (en) 2009-12-10 2017-09-12 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US10400225B2 (en) 2009-12-10 2019-09-03 Regents Of The University Of Minnesota TAL effector-mediated DNA modification
US11661612B2 (en) 2010-05-17 2023-05-30 Sangamo Therapeutics, Inc. DNA-binding proteins and uses thereof
US20140134723A1 (en) * 2010-05-17 2014-05-15 Sangamo Biosciences, Inc. Novel dna-binding proteins and uses thereof
US9322005B2 (en) 2010-05-17 2016-04-26 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
EP2571512A4 (en) * 2010-05-17 2013-11-20 Sangamo Biosciences Inc NEW PROTEINS BINDING TO DNA AND USES THEREOF
KR101953237B1 (ko) 2010-05-17 2019-02-28 상가모 테라퓨틱스, 인코포레이티드 신규 dna 결합 단백질 및 이의 용도
US9783827B2 (en) 2010-05-17 2017-10-10 Sangamo Therapeutics, Inc. DNA-binding proteins and uses thereof
JP2016182143A (ja) * 2010-05-17 2016-10-20 サンガモ バイオサイエンシーズ, インコーポレイテッド 新規のdna結合タンパク質及びその使用
KR20130111219A (ko) * 2010-05-17 2013-10-10 상가모 바이오사이언스 인코포레이티드 신규 dna 결합 단백질 및 이의 용도
US8912138B2 (en) 2010-05-17 2014-12-16 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
EP2571512A1 (en) 2010-05-17 2013-03-27 Sangamo BioSciences, Inc. Novel dna-binding proteins and uses thereof
US9493750B2 (en) * 2010-05-17 2016-11-15 Sangamo Biosciences, Inc. DNA-binding proteins and uses thereof
US10253333B2 (en) 2010-05-17 2019-04-09 Sangamo Therapeutics, Inc. DNA-binding proteins and uses thereof
JP2013529083A (ja) * 2010-05-17 2013-07-18 サンガモ バイオサイエンシーズ, インコーポレイテッド 新規のdna結合タンパク質及びその使用
JP2013529915A (ja) * 2010-06-07 2013-07-25 ヘルムホルツ・ツェントルム・ミュンヒェン・ドイチェス・フォルシュンクスツェントルム・フューア・ゲズントハイト・ウント・ウムベルト(ゲーエムベーハー) Talエフェクタータンパク質のDNA結合ドメインおよび制限ヌクレアーゼの非特異的切断ドメインを含む融合タンパク質ならびにその使用
JP2013534417A (ja) * 2010-06-14 2013-09-05 アイオワ ステート ユニバーシティ リサーチ ファウンデーション,インコーポレーティッド Talエフェクターとfokiの融合タンパク質のヌクレアーゼ活性
WO2012104729A1 (en) * 2011-02-02 2012-08-09 Ulla Bonas Modular dna-binding domains and methods of use
US10893667B2 (en) 2011-02-25 2021-01-19 Recombinetics, Inc. Non-meiotic allele introgression
AU2012222144B2 (en) * 2011-02-25 2017-04-27 Recombinetics, Inc. Genetically modified animals and methods for making the same
WO2012116274A3 (en) * 2011-02-25 2012-12-27 Recombinetics, Inc. Genetically modified animals and methods for making the same
US10959415B2 (en) 2011-02-25 2021-03-30 Recombinetics, Inc. Non-meiotic allele introgression
EP3461898A1 (en) 2011-02-25 2019-04-03 The University Court Of The University of Edinburgh Genetically modified animals and methods for making the same
US10920242B2 (en) 2011-02-25 2021-02-16 Recombinetics, Inc. Non-meiotic allele introgression
EP3450563A1 (en) 2011-02-25 2019-03-06 Recombinetics, Inc. Genetically modified animals and methods for making the same
AU2012249390B2 (en) * 2011-04-27 2017-03-30 Amyris, Inc. Methods for genomic modification
AU2017204456B2 (en) * 2011-04-27 2019-08-15 Amyris, Inc. Methods for genomic modification
WO2012168124A1 (en) 2011-06-06 2012-12-13 Bayer Cropscience Nv Methods and means to modify a plant genome at a preselected site
US11472849B2 (en) 2011-07-15 2022-10-18 The General Hospital Corporation Methods of transcription activator like effector assembly
EP3461896A3 (en) * 2011-07-15 2019-06-26 The General Hospital Corporation Methods of transcription activator like effector assembly
JP2014521317A (ja) * 2011-07-15 2014-08-28 ザ ジェネラル ホスピタル コーポレイション 転写活性化因子様エフェクターの組立て方法
AU2012284365B2 (en) * 2011-07-15 2017-04-20 The General Hospital Corporation Methods of transcription activator like effector assembly
US10273271B2 (en) 2011-07-15 2019-04-30 The General Hospital Corporation Methods of transcription activator like effector assembly
WO2013012674A1 (en) * 2011-07-15 2013-01-24 The General Hospital Corporation Methods of transcription activator like effector assembly
WO2013017950A1 (en) * 2011-07-29 2013-02-07 Cellectis High throughput method for assembly and cloning polynucleotides comprising highly similar polynucleotidic modules
CN102787125A (zh) * 2011-08-05 2012-11-21 北京大学 一种构建tale重复序列的方法
CN102787125B (zh) * 2011-08-05 2013-12-04 北京大学 一种构建tale重复序列的方法
US10538774B2 (en) 2011-08-22 2020-01-21 Basf Agricultural Solutions Seed, Us Llc Methods and means to modify a plant genome
WO2013026740A2 (en) 2011-08-22 2013-02-28 Bayer Cropscience Nv Methods and means to modify a plant genome
US9670496B2 (en) 2011-08-22 2017-06-06 Bayer Cropscience N.V. Methods and means to modify a plant genome
CN103917644A (zh) * 2011-09-21 2014-07-09 桑格摩生物科学股份有限公司 调控转基因表达的方法和组合物
US11639504B2 (en) 2011-09-21 2023-05-02 Sangamo Therapeutics, Inc. Methods and compositions for regulation of transgene expression
US11859190B2 (en) 2011-09-21 2024-01-02 Sangamo Therapeutics, Inc. Methods and compositions for regulation of transgene expression
WO2013050318A1 (en) 2011-10-07 2013-04-11 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013050611A1 (en) 2011-10-07 2013-04-11 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013050593A1 (en) 2011-10-07 2013-04-11 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013053686A1 (en) 2011-10-10 2013-04-18 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013053711A1 (en) 2011-10-10 2013-04-18 Basf Plant Science Company Gmbh Method of producing plants having increased resistance to pathogens
WO2013053730A1 (en) 2011-10-12 2013-04-18 Bayer Cropscience Ag Plants with decreased activity of a starch dephosphorylating enzyme
WO2013053729A1 (en) 2011-10-12 2013-04-18 Bayer Cropscience Ag Plants with decreased activity of a starch dephosphorylating enzyme
EP3611261A1 (en) 2011-10-21 2020-02-19 Kyushu University, National University Corporation Method for designing rna binding protein uitilizing ppr motif, and use thereof
US10679731B2 (en) 2011-10-21 2020-06-09 Kyushu University, National University Corporation Method for designing RNA binding protein utilizing PPR motif, and use thereof
US9984202B2 (en) 2011-10-21 2018-05-29 Kyushu University, National University Corporation Method for designing RNA binding protein utilizing PPR motif, and use thereof
US10340028B2 (en) 2011-10-21 2019-07-02 Kyushu University, Nat'l University Corporation Method for designing RNA binding protein utilizing PPR motif, and use thereof
US10943671B2 (en) 2011-10-21 2021-03-09 Kyushu University, National University Corporation Method for designing RNA-binding protein utilizing PPR motif, and use thereof
WO2013058404A1 (ja) 2011-10-21 2013-04-25 国立大学法人九州大学 Pprモチーフを利用したrna結合性蛋白質の設計方法及びその利用
US11742056B2 (en) 2011-10-21 2023-08-29 Kyushu University, National University Corporation Method for designing RNA-binding protein utilizing PPR motif, and use thereof
US9513283B2 (en) 2011-10-21 2016-12-06 Kyushu University, National University Corporation Method for designing RNA binding protein utilizing PPR motif, and use thereof
JP2014532410A (ja) * 2011-10-27 2014-12-08 サンガモ バイオサイエンシーズ, インコーポレイテッド Hprt遺伝子座を修飾するための方法および組成物
US9458205B2 (en) 2011-11-16 2016-10-04 Sangamo Biosciences, Inc. Modified DNA-binding proteins and uses thereof
EP2780460A4 (en) * 2011-11-16 2015-08-26 Sangamo Biosciences Inc MODIFIED DNA BINDING PROTEINS AND USES THEREOF
JP2015501637A (ja) * 2011-11-16 2015-01-19 サンガモ バイオサイエンシーズ, インコーポレイテッド 修飾されたdna結合タンパク質およびその使用
AU2012340213B2 (en) * 2011-11-16 2017-12-07 Sangamo Therapeutics, Inc. Modified DNA-binding proteins and uses thereof
US20140271602A1 (en) * 2011-11-30 2014-09-18 The Broad Institute Inc. Nucleotide-specific recognition sequences for designer tal effectors
US20130137173A1 (en) * 2011-11-30 2013-05-30 Feng Zhang Nucleotide-specific recognition sequences for designer tal effectors
US20130137161A1 (en) * 2011-11-30 2013-05-30 Massachusetts Institute Of Technology Nucleotide-Specific Recognition Sequences For Designer TAL Effectors
US10801017B2 (en) * 2011-11-30 2020-10-13 The Broad Institute, Inc. Nucleotide-specific recognition sequences for designer TAL effectors
US11312937B2 (en) 2011-11-30 2022-04-26 The Broad Institute, Inc. Nucleotide-specific recognition sequences for designer TAL effectors
US11708586B2 (en) 2011-12-05 2023-07-25 Factor Bioscience Inc. Methods and products for transfecting cells
US11692203B2 (en) 2011-12-05 2023-07-04 Factor Bioscience Inc. Methods and products for transfecting cells
EP3835420A1 (en) * 2011-12-05 2021-06-16 Factor Bioscience Inc. Methods and products for transfecting cells
JP2015500648A (ja) * 2011-12-16 2015-01-08 ターゲットジーン バイオテクノロジーズ リミテッド 所定の標的核酸配列を修飾するための組成物及び方法
US10220052B2 (en) 2011-12-16 2019-03-05 Targetgene Biotechnologies Ltd Compositions and methods for modifying a predetermined target nucleic acid sequence
US11690866B2 (en) 2011-12-16 2023-07-04 Targetgene Biotechnologies Ltd. Compositions and methods for modifying a predetermined target nucleic acid sequence
US11278560B2 (en) 2011-12-16 2022-03-22 Targetgene Biotechnologies Ltd. Compositions and methods for modifying a predetermined target nucleic acid sequence
US11458157B2 (en) 2011-12-16 2022-10-04 Targetgene Biotechnologies Ltd. Compositions and methods for modifying a predetermined target nucleic acid sequence
US10385358B2 (en) 2011-12-23 2019-08-20 Kws Saat Se Plant-derived cis-regulatory elements for the development of pathogen-responsive chimeric promotors
EP3321365A1 (de) 2011-12-23 2018-05-16 Kws Saat Se Neue aus pflanzen stammende cis-regulatorische elemente für die entwicklung pathogen-responsiver chimärer promotoren
WO2013091612A2 (de) 2011-12-23 2013-06-27 Kws Saat Ag Neue aus pflanzen stammende cis-regulatorische elemente für die entwicklung pathogen-responsiver chimärer promotoren
DE102011122267A1 (de) 2011-12-23 2013-06-27 Kws Saat Ag Neue aus Pflanzen stammende cis-regulatorische Elemente für die Entwicklung Pathogen-responsiver chimärer Promotoren
WO2013102875A1 (en) 2012-01-06 2013-07-11 Basf Plant Science Company Gmbh In planta recombination
EP2612918A1 (en) 2012-01-06 2013-07-10 BASF Plant Science Company GmbH In planta recombination
WO2013140250A1 (en) 2012-03-23 2013-09-26 Cellectis Method to overcome dna chemical modifications sensitivity of engineered tale dna binding domains
CN102628037A (zh) * 2012-03-31 2012-08-08 西南大学 家蚕油蚕基因BmBlos2遗传改造系统及其制备方法和应用
WO2013152220A3 (en) * 2012-04-04 2014-03-20 Life Technologies Corporation Tal-effector assembly platform, customized services, kits and assays
US10745695B2 (en) 2012-04-04 2020-08-18 Life Technologies Corporation TAL-effector assembly platform, customized services, kits and assays
WO2013152220A2 (en) * 2012-04-04 2013-10-10 Life Technologies Corporation Tal-effector assembly platform, customized services, kits and assays
US11518997B2 (en) 2012-04-23 2022-12-06 BASF Agricultural Solutions Seed US LLC Targeted genome engineering in plants
WO2013160230A1 (en) 2012-04-23 2013-10-31 Bayer Cropscience Nv Targeted genome engineering in plants
JP2015516162A (ja) * 2012-05-07 2015-06-11 サンガモ バイオサイエンシーズ, インコーポレイテッド 導入遺伝子のヌクレアーゼ媒介標的化組み込みのための方法および組成物
WO2013169398A2 (en) 2012-05-09 2013-11-14 Georgia Tech Research Corporation Systems and methods for improving nuclease specificity and activity
US11293034B2 (en) 2012-05-25 2022-04-05 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10612045B2 (en) 2012-05-25 2020-04-07 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10793878B1 (en) 2012-05-25 2020-10-06 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10385360B2 (en) 2012-05-25 2019-08-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10774344B1 (en) 2012-05-25 2020-09-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10400253B2 (en) 2012-05-25 2019-09-03 The Regents Of The University Of California Methods and compositions or RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10407697B2 (en) 2012-05-25 2019-09-10 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10752920B2 (en) 2012-05-25 2020-08-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10415061B2 (en) 2012-05-25 2019-09-17 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10358658B2 (en) 2012-05-25 2019-07-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP3401400B1 (en) 2012-05-25 2019-04-03 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US10227611B2 (en) 2012-05-25 2019-03-12 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10358659B2 (en) 2012-05-25 2019-07-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP2800811B1 (en) * 2012-05-25 2017-05-10 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US10900054B2 (en) 2012-05-25 2021-01-26 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11549127B2 (en) 2012-05-25 2023-01-10 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10351878B2 (en) 2012-05-25 2019-07-16 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
JP2019058189A (ja) * 2012-05-25 2019-04-18 セレクティスCellectis 免疫療法のための同種および免疫抑制耐性t細胞を操作するための方法
US10266850B2 (en) 2012-05-25 2019-04-23 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11814645B2 (en) 2012-05-25 2023-11-14 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11479794B2 (en) 2012-05-25 2022-10-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10513712B2 (en) 2012-05-25 2019-12-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10676759B2 (en) 2012-05-25 2020-06-09 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10337029B2 (en) 2012-05-25 2019-07-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10982231B2 (en) 2012-05-25 2021-04-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10669560B2 (en) 2012-05-25 2020-06-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10519467B2 (en) 2012-05-25 2019-12-31 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10982230B2 (en) 2012-05-25 2021-04-20 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10988782B2 (en) 2012-05-25 2021-04-27 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP3241902A1 (en) * 2012-05-25 2017-11-08 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US10988780B2 (en) 2012-05-25 2021-04-27 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11001863B2 (en) 2012-05-25 2021-05-11 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11008590B2 (en) 2012-05-25 2021-05-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11008589B2 (en) 2012-05-25 2021-05-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
JP2018011603A (ja) * 2012-05-25 2018-01-25 セレクティスCellectis Tcrアルファ欠損t細胞を増殖させるためのプレtアルファまたはその機能性変種の使用
US10640791B2 (en) 2012-05-25 2020-05-05 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10526619B2 (en) 2012-05-25 2020-01-07 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11028412B2 (en) 2012-05-25 2021-06-08 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10487341B2 (en) 2012-05-25 2019-11-26 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10626419B2 (en) 2012-05-25 2020-04-21 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11634730B2 (en) 2012-05-25 2023-04-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11332761B2 (en) 2012-05-25 2022-05-17 The Regenis of Wie University of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10597680B2 (en) 2012-05-25 2020-03-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10421980B2 (en) 2012-05-25 2019-09-24 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10428352B2 (en) 2012-05-25 2019-10-01 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11970711B2 (en) 2012-05-25 2024-04-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP4289948A3 (en) * 2012-05-25 2024-04-17 The Regents of the University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US11473108B2 (en) 2012-05-25 2022-10-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11186849B2 (en) 2012-05-25 2021-11-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10577631B2 (en) 2012-05-25 2020-03-03 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10570419B2 (en) 2012-05-25 2020-02-25 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10000772B2 (en) 2012-05-25 2018-06-19 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11674159B2 (en) 2012-05-25 2023-06-13 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10563227B2 (en) 2012-05-25 2020-02-18 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP4043564A1 (en) * 2012-05-25 2022-08-17 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US10443076B2 (en) 2012-05-25 2019-10-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11274318B2 (en) 2012-05-25 2022-03-15 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10550407B2 (en) 2012-05-25 2020-02-04 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP3597749A1 (en) * 2012-05-25 2020-01-22 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US10308961B2 (en) 2012-05-25 2019-06-04 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11401532B2 (en) 2012-05-25 2022-08-02 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US11242543B2 (en) 2012-05-25 2022-02-08 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10301651B2 (en) 2012-05-25 2019-05-28 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US10533190B2 (en) 2012-05-25 2020-01-14 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
EP3401400A1 (en) * 2012-05-25 2018-11-14 The Regents of The University of California Methods and compositions for rna-directed target dna modification and for rna-directed modulation of transcription
US10113167B2 (en) 2012-05-25 2018-10-30 The Regents Of The University Of California Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
US9890364B2 (en) 2012-05-29 2018-02-13 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
US10894950B2 (en) 2012-05-29 2021-01-19 The General Hospital Corporation TAL-Tet1 fusion proteins and methods of use thereof
WO2013182910A2 (en) 2012-06-05 2013-12-12 Cellectis New transcription activator-like effector (tale) fusion protein
WO2013188522A2 (en) 2012-06-12 2013-12-19 Genentech, Inc. Methods and compositions for generating conditional knock-out alleles
US11384360B2 (en) 2012-06-19 2022-07-12 Regents Of The University Of Minnesota Gene targeting in plants using DNA viruses
AU2013277214C1 (en) * 2012-06-21 2019-08-29 Recombinetics, Inc. Genetically edited animals and methods for making the same
AU2013277214B2 (en) * 2012-06-21 2019-04-18 Recombinetics, Inc. Genetically edited animals and methods for making the same
WO2013191769A1 (en) * 2012-06-22 2013-12-27 Mayo Foundation For Medical Education And Research Genome editing
US20150291951A1 (en) * 2012-06-22 2015-10-15 Mayo Foundation For Medical Education And Research Genome editing
WO2014013056A1 (en) 2012-07-19 2014-01-23 Biogemma Method for performing homologous recombination
EP2687605A1 (en) 2012-07-19 2014-01-22 Biogemma Method for performing homologous recombination
WO2014018601A2 (en) 2012-07-24 2014-01-30 Cellectis New modular base-specific nucleic acid binding domains from burkholderia rhizoxinica proteins
JP2015527889A (ja) * 2012-07-25 2015-09-24 ザ ブロード インスティテュート, インコーポレイテッド 誘導可能なdna結合タンパク質およびゲノム撹乱ツール、ならびにそれらの適用
EP3540050A1 (en) 2012-07-31 2019-09-18 Recombinetics, Inc. Production of fmdv-resistant livestock by allele substitution
US10058078B2 (en) 2012-07-31 2018-08-28 Recombinetics, Inc. Production of FMDV-resistant livestock by allele substitution
JP7100681B2 (ja) 2012-09-04 2022-07-13 ザ スクリプス リサーチ インスティテュート 標的結合特異性を有するキメラポリペプチド
KR20210008437A (ko) * 2012-09-04 2021-01-21 더 스크립스 리서치 인스티튜트 표적화된 바인딩 특이도를 갖는 키메라 폴리펩타이드들
KR102357105B1 (ko) 2012-09-04 2022-02-08 더 스크립스 리서치 인스티튜트 표적화된 바인딩 특이도를 갖는 키메라 폴리펩타이드들
JP2020178703A (ja) * 2012-09-04 2020-11-05 ザ スクリプス リサーチ インスティテュート 標的結合特異性を有するキメラポリペプチド
KR20150070120A (ko) * 2012-09-04 2015-06-24 더 스크립스 리서치 인스티튜트 표적화된 바인딩 특이도를 갖는 키메라 폴리펩타이드들
KR102201867B1 (ko) 2012-09-04 2021-01-12 더 스크립스 리서치 인스티튜트 표적화된 바인딩 특이도를 갖는 키메라 폴리펩타이드들
US11891631B2 (en) 2012-10-12 2024-02-06 The General Hospital Corporation Transcription activator-like effector (tale) - lysine-specific demethylase 1 (LSD1) fusion proteins
JP2019047794A (ja) * 2012-10-30 2019-03-28 リコンビネティクス・インコーポレイテッドRecombinetics,Inc. 動物における性成熟の制御
WO2014071006A1 (en) 2012-10-31 2014-05-08 Cellectis Coupling herbicide resistance with targeted insertion of transgenes in plants
US11576317B2 (en) 2012-11-01 2023-02-14 Cellectis Sa Mutant Nicotiana benthamiana plant or cell with reduced XylT and FucT
EP3695713A1 (en) 2012-11-01 2020-08-19 Cellectis Plants for production of therapeutic proteins
US11555198B2 (en) 2012-11-01 2023-01-17 Cellectis Sa Method for making nicotiana plants with mutations in XylT and FucT alleles using rare-cutting endonucleases
RU2711249C2 (ru) * 2012-11-01 2020-01-15 Фэктор Байосайенс Инк. Способы и продукты для экспрессии белков в клетках
WO2014071039A1 (en) 2012-11-01 2014-05-08 Cellectis Sa Plants for production of therapeutic proteins
JP2015534834A (ja) * 2012-11-20 2015-12-07 ジェイ.アール.シンプロット カンパニー Talにより媒介されるトランファーdna挿入
US10745716B2 (en) 2012-12-06 2020-08-18 Sigma-Aldrich Co. Llc CRISPR-based genome modification and regulation
US10731181B2 (en) 2012-12-06 2020-08-04 Sigma, Aldrich Co. LLC CRISPR-based genome modification and regulation
CN103013954A (zh) * 2012-12-17 2013-04-03 中国科学院遗传与发育生物学研究所 水稻基因badh2的定点敲除系统及其应用
WO2014100525A2 (en) 2012-12-21 2014-06-26 Pioneer Hi-Bred International, Inc. Compositions and methods for auxin-analog conjugation
WO2014096972A2 (en) 2012-12-21 2014-06-26 Cellectis Potatoes with reduced cold-induced sweetening
WO2014096972A3 (en) * 2012-12-21 2014-11-13 Cellectis Potatoes with reduced cold-induced sweetening
US10513698B2 (en) 2012-12-21 2019-12-24 Cellectis Potatoes with reduced cold-induced sweetening
US10676749B2 (en) 2013-02-07 2020-06-09 The General Hospital Corporation Tale transcriptional activators
US10731167B2 (en) 2013-02-07 2020-08-04 The General Hospital Corporation Tale transcriptional activators
EP2954042A4 (en) * 2013-02-07 2016-10-12 Gen Hospital Corp TALE-transcriptional activators
EP3623463A1 (en) * 2013-02-07 2020-03-18 The General Hospital Corporation Tale transcriptional activators
AU2020203131B2 (en) * 2013-02-07 2021-08-26 The General Hospital Corporation Tale transcriptional activators
EP3345991A1 (en) * 2013-02-07 2018-07-11 The General Hospital Corporation Tale transcriptional activators
WO2014128659A1 (en) 2013-02-21 2014-08-28 Cellectis Method to counter-select cells or organisms by linking loci to nuclease components
WO2014164828A2 (en) 2013-03-11 2014-10-09 Pioneer Hi-Bred International, Inc. Methods and compositions employing a sulfonylurea-dependent stabilization domain
WO2014153234A1 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International, Inc. Compositions having dicamba decarboxylase activity and methods of use
WO2014153242A1 (en) 2013-03-14 2014-09-25 Pioneer Hi-Bred International, Inc. Compositions having dicamba decarboxylase activity and methods of use
US10113162B2 (en) 2013-03-15 2018-10-30 Cellectis Modifying soybean oil composition through targeted knockout of the FAD2-1A/1B genes
JP2016512048A (ja) * 2013-03-15 2016-04-25 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ CRISPR/Casシステムを使用した植物ゲノム操作
JP2019205470A (ja) * 2013-03-15 2019-12-05 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ CRISPR/Casシステムを使用した植物ゲノム操作
WO2014141147A1 (en) 2013-03-15 2014-09-18 Cellectis Modifying soybean oil composition through targeted knockout of the fad2-1a/1b genes
JP2016509865A (ja) * 2013-03-15 2016-04-04 セレクティス Fad2−1a/1b遺伝子の標的化ノックアウトを介した、大豆油組成物の改変
WO2014161821A1 (en) 2013-04-02 2014-10-09 Bayer Cropscience Nv Targeted genome engineering in eukaryotes
CN105008536A (zh) * 2013-04-16 2015-10-28 深圳华大基因科技服务有限公司 分离的寡核苷酸及其用途
WO2014169810A1 (zh) * 2013-04-16 2014-10-23 深圳华大基因科技服务有限公司 分离的寡核苷酸及其用途
WO2014175284A1 (ja) 2013-04-22 2014-10-30 国立大学法人九州大学 Pprモチーフを利用したdna結合性タンパク質およびその利用
KR20210066947A (ko) 2013-04-22 2021-06-07 고쿠리쓰다이가쿠호진 규슈다이가쿠 피피알 모티프를 가지는 디앤에이 결합성 단백질을 포함하는 융합 단백질
KR20220076478A (ko) 2013-04-22 2022-06-08 고쿠리쓰다이가쿠호진 규슈다이가쿠 피피알 단백질을 이용하여 dna 염기 또는 특정 염기서열을 가지는 dna를 동정, 인식 또는 표적화하는 방법
EP3696186A1 (en) 2013-04-22 2020-08-19 Kyushu University, National University Corporation Dna-binding protein using ppr motif, and use thereof
KR20230164213A (ko) 2013-04-22 2023-12-01 고쿠리쓰다이가쿠호진 규슈다이가쿠 피피알 단백질을 이용하는 dna 결합성 단백질 및 그의 이용
KR20160007541A (ko) 2013-04-22 2016-01-20 고쿠리쓰다이가쿠호진 규슈다이가쿠 피피알 모티프를 이용한 디앤에이 결합성 단백질 및 그의 이용
KR20210037757A (ko) 2013-04-22 2021-04-06 고쿠리쓰다이가쿠호진 규슈다이가쿠 피피알 모티프를 가지는 디앤에이 결합 단백질을 포함하는 융합 단백질의 설계방법
US10189879B2 (en) 2013-04-22 2019-01-29 Kyushu University, Nat'l University Corporation DNA-binding protein using PPR motif, and use thereof
EP2796558A1 (en) 2013-04-23 2014-10-29 Rheinische Friedrich-Wilhelms-Universität Bonn Improved gene targeting and nucleic acid carrier molecule, in particular for use in plants
US10328182B2 (en) 2013-05-14 2019-06-25 University Of Georgia Research Foundation, Inc. Compositions and methods for reducing neointima formation
US11246965B2 (en) 2013-05-14 2022-02-15 University Of Georgia Research Foundation, Inc. Compositions and methods for reducing neointima formation
WO2014199358A1 (en) 2013-06-14 2014-12-18 Cellectis Methods for non-transgenic genome editing in plants
EP2818867A1 (en) 2013-06-27 2014-12-31 INSERM (Institut National de la Santé et de la Recherche Médicale) Antibodies conjugated to at least one nucleic acid molecule and their use in multiplex immuno-detection assays
US10006011B2 (en) 2013-08-09 2018-06-26 Hiroshima University Polypeptide containing DNA-binding domain
US10030235B2 (en) 2013-08-09 2018-07-24 Hiroshima University Polypeptide containing DNA-binding domain
US11359186B2 (en) 2013-08-09 2022-06-14 Hiroshima University Polypeptide containing DNA-binding domain
US10959414B2 (en) 2013-08-27 2021-03-30 Recombinetics, Inc. Efficient non-meiotic allele introgression
US11477969B2 (en) 2013-08-27 2022-10-25 Recombinetics, Inc. Efficient non-meiotic allele introgression in livestock
US9528124B2 (en) 2013-08-27 2016-12-27 Recombinetics, Inc. Efficient non-meiotic allele introgression
DE102013014637A1 (de) 2013-09-04 2015-03-05 Kws Saat Ag HELMlNTHOSPORlUM TURClCUM-RESlSTENTE PFLANZE
EP4353078A2 (de) 2013-09-04 2024-04-17 KWS SAAT SE & Co. KGaA Helminthosporium turcicum-resistente pflanze
US11845947B2 (en) 2013-09-04 2023-12-19 KWS SAAT SE & Co. KGaA Plant resistant to Helminthosporium turcicum
US10897862B2 (en) 2013-09-04 2021-01-26 KWS SAAT SE & Co. KGaA Plant resistant to Helminthosporium turcicum
US11986526B2 (en) 2013-09-11 2024-05-21 Eagle Biologics, Inc. Liquid protein formulations containing 4-ethyl-4-methylmorpholinium methylcarbonate (EMMC)
US10821184B2 (en) 2013-09-11 2020-11-03 Eagle Biologics, Inc. Liquid protein formulations containing thiamine pyrophosphate (TPP)
US9833513B2 (en) 2013-09-11 2017-12-05 Eagle Biologics, Inc. Liquid protein formulations for injection comprising 1-butyl-3-methylimidazolium methanesulfonate and uses thereof
US10646571B2 (en) 2013-09-11 2020-05-12 Eagle Biologics, Inc. Liquid protein formulations containing cimetidine
US10821183B2 (en) 2013-09-11 2020-11-03 Eagle Biologics, Inc. Liquid protein formulations containing 4-(3-butyl-1-imidazolio)-1-butane sulfonate (BIM)
US11819550B2 (en) 2013-09-11 2023-11-21 Eagle Biologics, Inc. Liquid protein formulations containing cyclic adenosine monophosphate (cAMP) or adenosine triphosphate (ATP)
US9925263B2 (en) 2013-09-11 2018-03-27 Eagle Biologics, Inc. Liquid pharmaceutical formulations for injection comprising procaine and uses thereof
US9913905B2 (en) 2013-09-11 2018-03-13 Eagle Biologics, Inc. Liquid pharmaceutical formulations for injection comprising thiamine pyrophosphate 1-(3-aminopropyl)-2-methyl-1H-imidazole and uses thereof
US10849977B2 (en) 2013-09-11 2020-12-01 Eagle Biologics, Inc. Liquid Protein Formulations Containing Thiamine
US10179172B2 (en) 2013-09-11 2019-01-15 Eagle Biologics, Inc. Liquid pharmaceutical formulations for injection comprising yellow 5 or orange G and uses thereof
US10779518B2 (en) 2013-10-25 2020-09-22 Livestock Improvement Corporation Limited Genetic markers and uses therefor
US11786597B2 (en) 2013-11-03 2023-10-17 The Regents Of The University Of California Ionic liquids for transdermal drug delivery
WO2015068785A1 (ja) 2013-11-06 2015-05-14 国立大学法人広島大学 核酸挿入用ベクター
EP3865575A1 (en) 2013-11-06 2021-08-18 Hiroshima University Vector for nucleic acid insertion
WO2015078935A1 (en) 2013-11-29 2015-06-04 Institut Pasteur Tal effector means useful for partial or full deletion of dna tandem repeats
EP2878667A1 (en) 2013-11-29 2015-06-03 Institut Pasteur TAL effector means useful for partial or full deletion of DNA tandem repeats
WO2015092460A1 (en) 2013-12-18 2015-06-25 INSERM (Institut National de la Santé et de la Recherche Médicale) New gene mutations for the diagnosis of arthrogryposis multiplex congenita and congenital peripheral neuropathies disease
US10655123B2 (en) 2014-03-05 2020-05-19 National University Corporation Kobe University Genomic sequence modification method for specifically converting nucleic acid bases of targeted DNA sequence, and molecular complex for use in same
US11718846B2 (en) 2014-03-05 2023-08-08 National University Corporation Kobe University Genomic sequence modification method for specifically converting nucleic acid bases of targeted DNA sequence, and molecular complex for use in same
JP2018019705A (ja) * 2014-03-05 2018-02-08 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
JPWO2015133554A1 (ja) * 2014-03-05 2017-04-06 国立大学法人神戸大学 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体
US9522936B2 (en) 2014-04-24 2016-12-20 Sangamo Biosciences, Inc. Engineered transcription activator like effector (TALE) proteins
WO2015168125A1 (en) 2014-04-28 2015-11-05 Recombinetics, Inc. Multiplex gene editing in swine
DE102014106327A1 (de) 2014-05-07 2015-11-12 Universitätsklinikum Hamburg-Eppendorf (UKE) TAL-Effektornuklease zum gezielten Knockout des HIV-Korezeptors CCR5
WO2015169314A1 (de) 2014-05-07 2015-11-12 Universitätsklinikum Hamburg-Eppendorf (UKE) Tal-effektornuklease zum gezielten knockout des hiv-korezeptors ccr5
US11918695B2 (en) 2014-05-09 2024-03-05 Yale University Topical formulation of hyperbranched polymer-coated particles
US11896686B2 (en) 2014-05-09 2024-02-13 Yale University Hyperbranched polyglycerol-coated particles and methods of making and using thereof
WO2015188870A1 (en) 2014-06-12 2015-12-17 Sesvanderhave N.V. Use of selectable marker gene in sugar beet protoplasts transformation method and system
WO2015189409A1 (en) 2014-06-12 2015-12-17 Sesvanderhave N.V. Transformation method of sugar beet protoplasts by talen platform technology
US10301637B2 (en) 2014-06-20 2019-05-28 Cellectis Potatoes with reduced granule-bound starch synthase
WO2015193858A1 (en) 2014-06-20 2015-12-23 Cellectis Potatoes with reduced granule-bound starch synthase
US10314297B2 (en) 2014-08-14 2019-06-11 Biocytogen Boston Corp DNA knock-in system
US11071289B2 (en) 2014-08-14 2021-07-27 Biocytogen Boston Corp DNA knock-in system
CN105367628A (zh) * 2014-08-19 2016-03-02 深圳华大基因科技有限公司 一对高效编辑水稻waxy基因的talen其识别打靶位点及其应用
CN105367628B (zh) * 2014-08-19 2019-07-26 深圳华大基因农业控股有限公司 一对高效编辑水稻waxy基因的talen其识别打靶位点及其应用
CN105367631A (zh) * 2014-08-25 2016-03-02 深圳华大基因科技有限公司 一种转录激活子样效应因子核酸酶及其编码基因和应用
CN105367631B (zh) * 2014-08-25 2019-05-14 深圳华大基因科技有限公司 一种转录激活子样效应因子核酸酶及其编码基因和应用
US11471479B2 (en) 2014-10-01 2022-10-18 Eagle Biologics, Inc. Polysaccharide and nucleic acid formulations containing viscosity-lowering agents
WO2016066671A1 (en) 2014-10-29 2016-05-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Method for treating resistant cancers using progastrin inhibitors
WO2016077429A1 (en) 2014-11-12 2016-05-19 Recombinetics, Inc. Heterozygous modifications of tumor suppressor genes and swine model of neurofibromatosis type 1
US10631482B2 (en) 2014-11-12 2020-04-28 KWS SAAT SE & Co. KGaA Haploid inducers
DE102014016667B4 (de) 2014-11-12 2024-03-07 Kws Saat Se Haploideninduktoren
DE102014016667A1 (de) 2014-11-12 2016-05-12 Kws Saat Se Haploideninduktoren
WO2016125078A1 (en) 2015-02-02 2016-08-11 Cellectis Agrobacterium-mediated genome modification without t-dna integration
WO2016128523A1 (en) 2015-02-12 2016-08-18 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the responsiveness of a patient affected with malignant hematological disease to chemotherapy treatment and methods of treatment of such disease
US11241505B2 (en) 2015-02-13 2022-02-08 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
WO2016142427A1 (en) 2015-03-10 2016-09-15 INSERM (Institut National de la Santé et de la Recherche Médicale) Method ank kit for reprogramming somatic cells
EP4008780A1 (en) 2015-04-30 2022-06-08 The Trustees of Columbia University in the City of New York Gene therapy for autosomal dominant diseases
WO2016176690A2 (en) 2015-04-30 2016-11-03 The Trustees Of Columbia University In The City Of New York Gene therapy for autosomal dominant diseases
US11492630B2 (en) 2015-05-19 2022-11-08 KWS SAAT SE & Co. KGaA Methods and hybrids for targeted nucleic acid editing in plants using CRISPR/Cas systems
ES2594486A1 (es) * 2015-06-19 2016-12-20 Biopraxis Research Aie Molécula de ácido nucleico, proteína de fusión y método para modificar el material genético de una célula
US11193131B2 (en) 2015-06-30 2021-12-07 Regents Of The University Of Minnesota Haploid inducer line for accelerated genome editing
US11845943B2 (en) 2015-06-30 2023-12-19 Regents Of The University Of Minnesota Haploid inducer line for accelerated genome editing
US10767173B2 (en) 2015-09-09 2020-09-08 National University Corporation Kobe University Method for converting genome sequence of gram-positive bacterium by specifically converting nucleic acid base of targeted DNA sequence, and molecular complex used in same
US10837024B2 (en) 2015-09-17 2020-11-17 Cellectis Modifying messenger RNA stability in plant transformations
WO2017046772A1 (en) 2015-09-17 2017-03-23 Cellectis Modifying messenger rna stability in plant transformations
EP3673732A2 (en) 2015-10-27 2020-07-01 Recombinetics, Inc. Engineering of humanized car t-cells and platelets by genetic complementation
EP3173485A1 (de) 2015-11-27 2017-05-31 Kws Saat Se Kühletolerante pflanze
US11220693B2 (en) 2015-11-27 2022-01-11 National University Corporation Kobe University Method for converting monocot plant genome sequence in which nucleic acid base in targeted DNA sequence is specifically converted, and molecular complex used therein
WO2017089601A2 (de) 2015-11-27 2017-06-01 Kws Saat Se Kühletolerante pflanze
US11345923B2 (en) 2015-11-27 2022-05-31 KWS SAAT SE & Co. KGaA Cold-tolerant plant
DE102015017161A1 (de) 2015-12-21 2017-06-22 Kws Saat Se Restorer-Pflanze
US11840693B2 (en) 2015-12-21 2023-12-12 KWS SAAT SE & Co. KGaA Restorer plants
US11312967B2 (en) 2015-12-21 2022-04-26 KWS SAAT SE & Co. KGaA Restorer plants
DE102015016445A1 (de) 2015-12-21 2017-06-22 Kws Saat Se Restorer-Pflanze
EP4008176A1 (de) 2015-12-21 2022-06-08 KWS SAAT SE & Co. KGaA Restorer-pflanze
WO2017134601A1 (en) 2016-02-02 2017-08-10 Cellectis Modifying soybean oil composition through targeted knockout of the fad3a/b/c genes
US10550402B2 (en) 2016-02-02 2020-02-04 Cellectis Modifying soybean oil composition through targeted knockout of the FAD3A/B/C genes
WO2017143042A2 (en) 2016-02-16 2017-08-24 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
US11136597B2 (en) 2016-02-16 2021-10-05 Yale University Compositions for enhancing targeted gene editing and methods of use thereof
WO2017143061A1 (en) 2016-02-16 2017-08-24 Yale University Compositions and methods for treatment of cystic fibrosis
US10973930B2 (en) 2016-02-18 2021-04-13 The Penn State Research Foundation Generating GABAergic neurons in brains
WO2017144630A1 (en) 2016-02-26 2017-08-31 Cellectis Micelle based system nuclease encapsulation for in-vivo gene editing
WO2017165167A1 (en) 2016-03-23 2017-09-28 The Regents Of The University Of California Methods of treating mitochondrial disorders
WO2017173453A1 (en) 2016-04-01 2017-10-05 The Brigham And Women's Hospital, Inc. Stimuli-responsive nanoparticles for biomedical applications
WO2017178585A1 (en) 2016-04-15 2017-10-19 Cellectis A method of engineering drug-specific hypersensitive t-cells for immunotherapy by gene inactivation
EP4219731A2 (en) 2016-05-18 2023-08-02 Amyris, Inc. Compositions and methods for genomic integration of nucleic acids into exogenous landing pads
US11174493B2 (en) 2016-05-26 2021-11-16 Nunhems B.V. Seedless fruit producing plants
US11761018B2 (en) 2016-05-26 2023-09-19 Nunhems B.V. Seedless fruit producing plants
US11293021B1 (en) 2016-06-23 2022-04-05 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
WO2018005589A1 (en) 2016-06-28 2018-01-04 Cellectis Altering expression of gene products in plants through targeted insertion of nucleic acid sequences
WO2018007263A1 (en) 2016-07-06 2018-01-11 Cellectis Sequential gene editing in primary immune cells
US10576167B2 (en) 2016-08-17 2020-03-03 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10369233B2 (en) 2016-08-17 2019-08-06 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10363321B2 (en) 2016-08-17 2019-07-30 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10888627B2 (en) 2016-08-17 2021-01-12 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US11904023B2 (en) 2016-08-17 2024-02-20 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10894092B2 (en) 2016-08-17 2021-01-19 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10350304B2 (en) 2016-08-17 2019-07-16 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10137206B2 (en) 2016-08-17 2018-11-27 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
WO2018035456A1 (en) 2016-08-18 2018-02-22 Cellectis Black-spot resistant potatoes with reduced tuber-specific polyphenol oxidase activity
US10912834B2 (en) 2016-08-29 2021-02-09 The Regents Of The University Of California Topical formulations based on ionic species for skin treatment
WO2018044920A1 (en) 2016-08-29 2018-03-08 The Regents Of The University Of California Topical formulations based on ionic species for skin treatment
WO2018042346A2 (en) 2016-09-01 2018-03-08 Cellectis Methods for altering amino acid content in plants
WO2018057790A1 (en) 2016-09-21 2018-03-29 Recombinetics, Inc. Animal models for cardiomyopathy
WO2018054911A1 (en) 2016-09-23 2018-03-29 Bayer Cropscience Nv Targeted genome optimization in plants
WO2018069343A1 (en) 2016-10-10 2018-04-19 Limagrain Europe Nucleic acid encoding sm1 resistance to orange wheat blossom midge and method of use
WO2018069232A1 (en) 2016-10-10 2018-04-19 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the risk of having cardiac hypertrophy
WO2018073393A2 (en) 2016-10-19 2018-04-26 Cellectis Tal-effector nuclease (talen) -modified allogenic cells suitable for therapy
WO2018073391A1 (en) 2016-10-19 2018-04-26 Cellectis Targeted gene insertion for improved immune cells therapy
US11832598B2 (en) 2016-11-04 2023-12-05 Akeagen, Inc. Genetically modified non-human animals and methods for producing heavy chain-only antibodies
US10660316B2 (en) 2016-11-04 2020-05-26 Akeagen, Inc. Genetically modified non-human animals and methods for producing heavy chain-only antibodies
WO2018092072A1 (en) 2016-11-16 2018-05-24 Cellectis Methods for altering amino acid content in plants through frameshift mutations
US11312972B2 (en) 2016-11-16 2022-04-26 Cellectis Methods for altering amino acid content in plants through frameshift mutations
WO2018112470A1 (en) 2016-12-16 2018-06-21 The Brigham And Women's Hospital, Inc. Co-delivery of nucleic acids for simultaneous suppression and expression of target genes
US11661607B2 (en) 2017-02-28 2023-05-30 KWS SAAT SE & Co. KGaA Haploidization in sorghum
EP3366778A1 (de) 2017-02-28 2018-08-29 Kws Saat Se Haploidisierung in sorghum
WO2018158301A1 (de) 2017-02-28 2018-09-07 Kws Saat Se Haploidisierung in sorghum
WO2018172570A1 (en) 2017-03-24 2018-09-27 INSERM (Institut National de la Santé et de la Recherche Médicale) Gfi1 inhibitors for the treatment of hyperglycemia
WO2018181863A1 (ja) 2017-03-30 2018-10-04 国立大学法人東京大学 異なる複数の目的遺伝子の評価方法
WO2018187493A1 (en) 2017-04-04 2018-10-11 Yale University Compositions and methods for in utero delivery
WO2018192961A1 (en) 2017-04-18 2018-10-25 Markus Sack Improved genome editing in differentiated cells
EP3392339A1 (en) 2017-04-18 2018-10-24 Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen Improved genome editing in plant cells
WO2018198049A1 (en) 2017-04-25 2018-11-01 Cellectis Alfalfa with reduced lignin composition
US11479782B2 (en) 2017-04-25 2022-10-25 Cellectis Alfalfa with reduced lignin composition
US11814624B2 (en) 2017-06-15 2023-11-14 The Regents Of The University Of California Targeted non-viral DNA insertions
WO2018234239A1 (en) 2017-06-19 2018-12-27 Cellectis ANTI-HBV POLYTHERAPIES INVOLVING SPECIFIC ENDONUCLEASES
US11697826B2 (en) 2017-06-23 2023-07-11 Inscripta, Inc. Nucleic acid-guided nucleases
WO2018237107A1 (en) 2017-06-23 2018-12-27 University Of Kentucky Research Foundation PROCESS
US11306327B1 (en) 2017-06-23 2022-04-19 Inscripta, Inc. Nucleic acid-guided nucleases
US11220697B2 (en) 2017-06-23 2022-01-11 Inscripta, Inc. Nucleic acid-guided nucleases
US11130970B2 (en) 2017-06-23 2021-09-28 Inscripta, Inc. Nucleic acid-guided nucleases
US11408012B2 (en) 2017-06-23 2022-08-09 Inscripta, Inc. Nucleic acid-guided nucleases
US10329559B1 (en) 2017-06-30 2019-06-25 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
US10253316B2 (en) 2017-06-30 2019-04-09 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
EP3848459A1 (en) 2017-06-30 2021-07-14 Inscripta, Inc. Automated cell processing methods, modules, instruments and systems
US10323242B1 (en) 2017-06-30 2019-06-18 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
EP4270012A2 (en) 2017-06-30 2023-11-01 Inscripta, Inc. Automated cell processing methods, modules, instruments and systems
US11597921B2 (en) 2017-06-30 2023-03-07 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
US10465185B1 (en) 2017-06-30 2019-11-05 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
US10421959B1 (en) 2017-06-30 2019-09-24 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
US10947532B2 (en) 2017-06-30 2021-03-16 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems
WO2019033053A1 (en) 2017-08-11 2019-02-14 Recombinetics, Inc. INDUCIBLE DISEASE MODELS, METHODS OF MAKING AND USING THEM IN TISSUE COMPLEMENTATION
WO2019038326A1 (en) 2017-08-22 2019-02-28 Kws Saat Se GENE CONFERRING RESISTANCE TO A FUNGAL PATHOGEN
US10738327B2 (en) 2017-08-28 2020-08-11 Inscripta, Inc. Electroporation cuvettes for automation
US10435713B2 (en) 2017-09-30 2019-10-08 Inscripta, Inc. Flow through electroporation instrumentation
US10907178B2 (en) 2017-09-30 2021-02-02 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems comprising flow-through electroporation devices
US10415058B2 (en) 2017-09-30 2019-09-17 Inscripta, Inc. Automated nucleic acid assembly and introduction of nucleic acids into cells
US10323258B2 (en) 2017-09-30 2019-06-18 Inscripta, Inc. Automated cell processing methods, modules, instruments, and systems comprising flow-through electroporation devices
US10443074B2 (en) 2017-09-30 2019-10-15 Inscripta, Inc. Modification of cells by introduction of exogenous material
WO2019076489A1 (en) 2017-10-19 2019-04-25 Cellectis TARGETED GENE INTEGRATION OF CRS INHIBITORY GENES FOR ENHANCED CELL IMMUNOTHERAPY
WO2019076486A1 (en) 2017-10-19 2019-04-25 Cellectis TARGETED GENE INTEGRATION OF NK INHIBITOR GENES FOR ENHANCED IMMUNE CELL THERAPY
US11033584B2 (en) 2017-10-27 2021-06-15 The Regents Of The University Of California Targeted replacement of endogenous T cell receptors
US11590171B2 (en) 2017-10-27 2023-02-28 The Regents Of The University Of California Targeted replacement of endogenous T cell receptors
US11083753B1 (en) 2017-10-27 2021-08-10 The Regents Of The University Of California Targeted replacement of endogenous T cell receptors
US11331346B2 (en) 2017-10-27 2022-05-17 The Regents Of The University Of California Targeted replacement of endogenous T cell receptors
WO2019086510A1 (en) 2017-10-31 2019-05-09 Vilmorin & Cie Wheat comprising male fertility restorer alleles
WO2019100053A1 (en) 2017-11-20 2019-05-23 University Of Georgia Research Foundation, Inc. Compositions and methods for modulating hif-2α to improve muscle generation and repair
US10953036B2 (en) 2017-11-20 2021-03-23 University Of Georgia Research Foundation, Inc. Compositions and methods of modulating HIF-2A to improve muscle generation and repair
WO2019106163A1 (en) 2017-12-01 2019-06-06 Cellectis Reprogramming of genetically engineered primary immune cells
EP3501268A1 (en) 2017-12-22 2019-06-26 Kws Saat Se Regeneration of plants in the presence of histone deacetylase inhibitors
US11700805B2 (en) 2017-12-22 2023-07-18 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of histone deacetylase inhibitors
WO2019122360A1 (en) 2017-12-22 2019-06-27 Kws Saat Se Regeneration of plants in the presence of histone deacetylase inhibitors
EP3508581A1 (en) 2018-01-03 2019-07-10 Kws Saat Se Regeneration of genetically modified plants
WO2019134884A1 (en) 2018-01-03 2019-07-11 Kws Saat Se Regeneration of genetically modified plants
EP4234701A2 (en) 2018-01-03 2023-08-30 Basf Se Regeneration of genetically modified plants
WO2019138083A1 (en) 2018-01-12 2019-07-18 Basf Se Gene underlying the number of spikelets per spike qtl in wheat on chromosome 7a
EP4186921A1 (en) 2018-03-23 2023-05-31 The Trustees of Columbia University in the City of New York Gene editing for autosomal dominant diseases
WO2019185849A1 (en) 2018-03-28 2019-10-03 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2
EP3545756A1 (en) 2018-03-28 2019-10-02 KWS SAAT SE & Co. KGaA Regeneration of plants in the presence of inhibitors of the histone methyltransferase ezh2
US10435662B1 (en) 2018-03-29 2019-10-08 Inscripta, Inc. Automated control of cell growth rates for induction and transformation
WO2019185920A1 (en) 2018-03-29 2019-10-03 Cellectis Tale-nucleases for allele-specific codon modification
US10443031B1 (en) 2018-03-29 2019-10-15 Inscripta, Inc. Methods for controlling the growth of prokaryotic and eukaryotic cells
WO2019197408A1 (en) 2018-04-09 2019-10-17 John Innes Centre Genes associated with resistance to wheat yellow rust
US10478822B1 (en) 2018-04-13 2019-11-19 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10639637B1 (en) 2018-04-13 2020-05-05 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10376889B1 (en) 2018-04-13 2019-08-13 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10406525B1 (en) 2018-04-13 2019-09-10 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10737271B1 (en) 2018-04-13 2020-08-11 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10576474B2 (en) 2018-04-13 2020-03-03 Inscripta, Inc. Automated cell processing instruments comprising reagent cartridges
US10526598B2 (en) 2018-04-24 2020-01-07 Inscripta, Inc. Methods for identifying T-cell receptor antigens
US11085131B1 (en) 2018-04-24 2021-08-10 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US10774324B2 (en) 2018-04-24 2020-09-15 Inscripta, Inc. Automated instrumentation for production of peptide libraries
US10508273B2 (en) 2018-04-24 2019-12-17 Inscripta, Inc. Methods for identifying selective binding pairs
US11555184B2 (en) 2018-04-24 2023-01-17 Inscripta, Inc. Methods for identifying selective binding pairs
US10774446B1 (en) 2018-04-24 2020-09-15 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
US10858761B2 (en) 2018-04-24 2020-12-08 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US11293117B2 (en) 2018-04-24 2022-04-05 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
US11236441B2 (en) 2018-04-24 2022-02-01 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US11332850B2 (en) 2018-04-24 2022-05-17 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US11542633B2 (en) 2018-04-24 2023-01-03 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US10711374B1 (en) 2018-04-24 2020-07-14 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
US10995424B2 (en) 2018-04-24 2021-05-04 Inscripta, Inc. Nucleic acid-guided editing of exogenous polynucleotides in heterologous cells
US10676842B2 (en) 2018-04-24 2020-06-09 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
US11396718B2 (en) 2018-04-24 2022-07-26 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
US10557216B2 (en) 2018-04-24 2020-02-11 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
US11473214B2 (en) 2018-04-24 2022-10-18 Inscripta, Inc. Automated instrumentation for production of T-cell receptor peptide libraries
US10501738B2 (en) 2018-04-24 2019-12-10 Inscripta, Inc. Automated instrumentation for production of peptide libraries
WO2019211796A1 (en) 2018-05-02 2019-11-07 Cellectis Engineering wheat with increased dietary fiber
EP3567111A1 (en) 2018-05-09 2019-11-13 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
WO2019238832A1 (en) 2018-06-15 2019-12-19 Nunhems B.V. Seedless watermelon plants comprising modifications in an abc transporter gene
WO2019238911A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant ii
WO2019238909A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for improving genome engineering and regeneration in plant
WO2019238908A1 (en) 2018-06-15 2019-12-19 KWS SAAT SE & Co. KGaA Methods for enhancing genome engineering efficiency
US11624072B2 (en) 2018-07-09 2023-04-11 Cellectis Canola with high oleic acid
WO2020012365A1 (en) 2018-07-09 2020-01-16 Cellectis Canola with high oleic acid
US11939593B2 (en) 2018-08-01 2024-03-26 University Of Georgia Research Foundation, Inc. Compositions and methods for improving embryo development
WO2020025963A2 (en) 2018-08-02 2020-02-06 British American Tobacco (Investments) Limited Method
KR20210040985A (ko) 2018-08-07 2021-04-14 가부시키가이샤 모달리스 신규 전사 액티베이터
US11046928B2 (en) 2018-08-14 2021-06-29 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US11739290B2 (en) 2018-08-14 2023-08-29 Inscripta, Inc Instruments, modules, and methods for improved detection of edited sequences in live cells
US10633627B2 (en) 2018-08-14 2020-04-28 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10633626B2 (en) 2018-08-14 2020-04-28 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10760043B2 (en) 2018-08-14 2020-09-01 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10532324B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10533152B1 (en) 2018-08-14 2020-01-14 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10844344B2 (en) 2018-08-14 2020-11-24 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10723995B1 (en) 2018-08-14 2020-07-28 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10801008B1 (en) 2018-08-14 2020-10-13 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US10550363B1 (en) 2018-08-14 2020-02-04 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US11268061B2 (en) 2018-08-14 2022-03-08 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
US10647958B2 (en) 2018-08-14 2020-05-12 Inscripta, Inc. Instruments, modules, and methods for improved detection of edited sequences in live cells
US11965154B2 (en) 2018-08-30 2024-04-23 Inscripta, Inc. Detection of nuclease edited sequences in automated modules and instruments
WO2020047353A1 (en) 2018-08-31 2020-03-05 Yale University Compositions and methods for enhancing triplex and nuclease-based gene editing
EP3623379A1 (en) 2018-09-11 2020-03-18 KWS SAAT SE & Co. KGaA Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene
WO2020053313A1 (en) 2018-09-11 2020-03-19 KWS SAAT SE & Co. KGaA Beet necrotic yellow vein virus (bnyvv)-resistance modifying gene
US10876102B2 (en) 2018-10-22 2020-12-29 Inscripta, Inc. Engineered enzymes
US10604746B1 (en) 2018-10-22 2020-03-31 Inscripta, Inc. Engineered enzymes
US10655114B1 (en) 2018-10-22 2020-05-19 Inscripta, Inc. Engineered enzymes
US10640754B1 (en) 2018-10-22 2020-05-05 Inscripta, Inc. Engineered enzymes
US11214781B2 (en) 2018-10-22 2022-01-04 Inscripta, Inc. Engineered enzyme
US11345903B2 (en) 2018-10-22 2022-05-31 Inscripta, Inc. Engineered enzymes
WO2020089645A1 (en) 2018-11-02 2020-05-07 British American Tobacco (Investments) Limited Method of modulating the alkaloid content of a plant
WO2020099875A1 (en) 2018-11-16 2020-05-22 British American Tobacco (Investments) Limited Methods and means for modifying the alkaloid content of plants
WO2020112195A1 (en) 2018-11-30 2020-06-04 Yale University Compositions, technologies and methods of using plerixafor to enhance gene editing
WO2020152466A1 (en) 2019-01-23 2020-07-30 British American Tobacco (Investments) Limited Method for decreasing the alkaloid content of a tobacco plant
WO2020157573A1 (en) 2019-01-29 2020-08-06 The University Of Warwick Methods for enhancing genome engineering efficiency
WO2020161261A1 (en) 2019-02-06 2020-08-13 Vilmorin & Cie New gene responsible for cytoplasmic male sterility
WO2020178193A1 (en) 2019-03-01 2020-09-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Method of treatment of sarcoidosis
WO2020182971A1 (en) 2019-03-12 2020-09-17 KWS SAAT SE & Co. KGaA Improving plant regeneration
EP3708651A1 (en) 2019-03-12 2020-09-16 KWS SAAT SE & Co. KGaA Improving plant regeneration
US11149260B2 (en) 2019-03-25 2021-10-19 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US11306299B2 (en) 2019-03-25 2022-04-19 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US10815467B2 (en) 2019-03-25 2020-10-27 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US11001831B2 (en) 2019-03-25 2021-05-11 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US11279919B2 (en) 2019-03-25 2022-03-22 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US11034945B2 (en) 2019-03-25 2021-06-15 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US11746347B2 (en) 2019-03-25 2023-09-05 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US11274296B2 (en) 2019-03-25 2022-03-15 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
US11136572B2 (en) 2019-03-25 2021-10-05 Inscripta, Inc. Simultaneous multiplex genome editing in yeast
WO2020204159A1 (ja) 2019-04-05 2020-10-08 国立大学法人大阪大学 ノックイン細胞の作製方法
WO2020229830A1 (en) 2019-05-14 2020-11-19 British American Tobacco (Investments) Limited Method
US11254942B2 (en) 2019-06-06 2022-02-22 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
US11634719B2 (en) 2019-06-06 2023-04-25 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
US11053507B2 (en) 2019-06-06 2021-07-06 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
US10837021B1 (en) 2019-06-06 2020-11-17 Inscripta, Inc. Curing for recursive nucleic acid-guided cell editing
US11078458B2 (en) 2019-06-21 2021-08-03 Inscripta, Inc. Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli
US10920189B2 (en) 2019-06-21 2021-02-16 Inscripta, Inc. Genome-wide rationally-designed mutations leading to enhanced lysine production in E. coli
US10927385B2 (en) 2019-06-25 2021-02-23 Inscripta, Inc. Increased nucleic-acid guided cell editing in yeast
US11066675B2 (en) 2019-06-25 2021-07-20 Inscripta, Inc. Increased nucleic-acid guided cell editing in yeast
WO2020260682A1 (en) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
EP3757219A1 (en) 2019-06-28 2020-12-30 KWS SAAT SE & Co. KGaA Enhanced plant regeneration and transformation by using grf1 booster gene
WO2021001659A1 (en) 2019-07-03 2021-01-07 British American Tobacco (Investments) Limited Method for modifying alkaloid content in plants
WO2021001658A1 (en) 2019-07-03 2021-01-07 British American Tobacco (Investments) Limited Method for modulating the alkaloid content of a tobacco plant
WO2021004938A1 (en) 2019-07-05 2021-01-14 Biogemma Method for increasing yield in plants
WO2021014010A1 (fr) 2019-07-24 2021-01-28 Soltis Tournesol à teneur élevée en acide oléique et procédé d'obtention
FR3099178A1 (fr) 2019-07-24 2021-01-29 Soltis Tournesol à teneur élevée en acide oléique et procédé d’obtention
US10556855B1 (en) 2019-07-30 2020-02-11 Factor Bioscience Inc. Cationic lipids and transfection methods
US10752576B1 (en) 2019-07-30 2020-08-25 Factor Bioscience Inc. Cationic lipids and transfection methods
US11814333B2 (en) 2019-07-30 2023-11-14 Factor Bioscience Inc. Cationic lipids and transfection methods
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
US11242311B2 (en) 2019-07-30 2022-02-08 Factor Bioscience Inc. Cationic lipids and transfection methods
US10611722B1 (en) 2019-07-30 2020-04-07 Factor Bioscience Inc. Cationic lipids and transfection methods
US11872286B2 (en) 2019-08-30 2024-01-16 Yale University Compositions and methods for delivery of nucleic acids to cells
WO2021042060A1 (en) 2019-08-30 2021-03-04 Yale University Compositions and methods for delivery of nucleic acids to cells
US11850284B2 (en) 2019-08-30 2023-12-26 Yale University Compositions and methods for delivery of nucleic acids to cells
EP3808170A1 (en) 2019-10-17 2021-04-21 Bejo Zaden B.V. Lactuca sativa resistance to bremia lactucae
WO2021088923A1 (zh) 2019-11-06 2021-05-14 青岛清原化合物有限公司 在生物体内创制新基因的方法及应用
WO2021093943A1 (en) 2019-11-12 2021-05-20 KWS SAAT SE & Co. KGaA Gene for resistance to a pathogen of the genus heterodera
US11319542B2 (en) 2019-11-19 2022-05-03 Inscripta, Inc. Methods for increasing observed editing in bacteria
US11203762B2 (en) 2019-11-19 2021-12-21 Inscripta, Inc. Methods for increasing observed editing in bacteria
US11891609B2 (en) 2019-11-19 2024-02-06 Inscripta, Inc. Methods for increasing observed editing in bacteria
WO2021108248A1 (en) 2019-11-27 2021-06-03 Calyxt, Inc. Tal-effector nucleases for gene editing
US11053485B2 (en) 2019-12-10 2021-07-06 Inscripta, Inc. MAD nucleases
US11193115B2 (en) 2019-12-10 2021-12-07 Inscripta, Inc. Mad nucleases
US10883095B1 (en) 2019-12-10 2021-01-05 Inscripta, Inc. Mad nucleases
US11174471B2 (en) 2019-12-10 2021-11-16 Inscripta, Inc. Mad nucleases
US11085030B2 (en) 2019-12-10 2021-08-10 Inscripta, Inc. MAD nucleases
EP3835309A1 (en) 2019-12-13 2021-06-16 KWS SAAT SE & Co. KGaA Method for increasing cold or frost tolerance in a plant
US10745678B1 (en) 2019-12-13 2020-08-18 Inscripta, Inc. Nucleic acid-guided nucleases
WO2021116448A1 (en) 2019-12-13 2021-06-17 KWS SAAT SE & Co. KGaA Method for increasing cold or frost tolerance in a plant
US10704033B1 (en) 2019-12-13 2020-07-07 Inscripta, Inc. Nucleic acid-guided nucleases
US10724021B1 (en) 2019-12-13 2020-07-28 Inscripta, Inc. Nucleic acid-guided nucleases
US11286471B1 (en) 2019-12-18 2022-03-29 Inscripta, Inc. Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells
US11008557B1 (en) 2019-12-18 2021-05-18 Inscripta, Inc. Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells
US11104890B1 (en) 2019-12-18 2021-08-31 Inscripta, Inc. Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells
US11359187B1 (en) 2019-12-18 2022-06-14 Inscripta, Inc. Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells
US11198857B2 (en) 2019-12-18 2021-12-14 Inscripta, Inc. Cascade/dCas3 complementation assays for in vivo detection of nucleic acid-guided nuclease edited cells
US10689669B1 (en) 2020-01-11 2020-06-23 Inscripta, Inc. Automated multi-module cell processing methods, instruments, and systems
US11667932B2 (en) 2020-01-27 2023-06-06 Inscripta, Inc. Electroporation modules and instrumentation
WO2021156329A1 (en) 2020-02-05 2021-08-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of treatment of cancer disease by targeting an epigenetic factor
WO2021205000A2 (en) 2020-04-09 2021-10-14 R.J. Reynolds Tobacco Company Method
US11407994B2 (en) 2020-04-24 2022-08-09 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells via viral delivery
US11845932B2 (en) 2020-04-24 2023-12-19 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells via viral delivery
US11268088B2 (en) 2020-04-24 2022-03-08 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells via viral delivery
US11591592B2 (en) 2020-04-24 2023-02-28 Inscripta, Inc. Compositions, methods, modules and instruments for automated nucleic acid-guided nuclease editing in mammalian cells using microcarriers
WO2021224395A1 (en) 2020-05-06 2021-11-11 Cellectis S.A. Methods for targeted insertion of exogenous sequences in cellular genomes
US11787841B2 (en) 2020-05-19 2023-10-17 Inscripta, Inc. Rationally-designed mutations to the thrA gene for enhanced lysine production in E. coli
WO2021260139A1 (en) 2020-06-25 2021-12-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of treatment and diagnostic of pathological conditions associated with intense stress
WO2022013268A1 (en) 2020-07-14 2022-01-20 KWS SAAT SE & Co. KGaA Methods for identifying and selecting maize plants with resistance to northern corn leaf blight
WO2022047424A1 (en) 2020-08-31 2022-03-03 Yale University Compositions and methods for delivery of nucleic acids to cells
WO2022050413A1 (ja) 2020-09-04 2022-03-10 国立大学法人神戸大学 小型化シチジンデアミナーゼを含む二本鎖dnaの改変用複合体
KR20230061474A (ko) 2020-09-04 2023-05-08 고쿠리츠다이가쿠호진 고베다이가쿠 소형화 시티딘 데아미나아제를 포함하는 이중쇄 dna의 개변용 복합체
WO2022049273A1 (en) 2020-09-07 2022-03-10 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods of treatment of inflammatory bowel diseases
US11299731B1 (en) 2020-09-15 2022-04-12 Inscripta, Inc. CRISPR editing to embed nucleic acid landing pads into genomes of live cells
US11597923B2 (en) 2020-09-15 2023-03-07 Inscripta, Inc. CRISPR editing to embed nucleic acid landing pads into genomes of live cells
WO2022058388A1 (en) 2020-09-16 2022-03-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V.. Methods for the production of genome edited plants
EP3971295A1 (en) 2020-09-16 2022-03-23 FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. Methods for the production of genome edited plants
WO2022096633A1 (en) 2020-11-06 2022-05-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosis and treating polycystic ovary syndrome (pcos)
WO2022097663A1 (ja) 2020-11-06 2022-05-12 エディットフォース株式会社 FokIヌクレアーゼドメインの変異体
US11512297B2 (en) 2020-11-09 2022-11-29 Inscripta, Inc. Affinity tag for recombination protein recruitment
WO2022112469A1 (en) 2020-11-27 2022-06-02 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for diagnosis and monitoring of toxic epidermal necrolysis
WO2022112596A1 (en) 2020-11-30 2022-06-02 Cellectis Sa Use of aminoquinoline compounds for higher gene integration
EP4019639A1 (en) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
EP4019638A1 (en) 2020-12-22 2022-06-29 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
WO2022136535A1 (en) 2020-12-22 2022-06-30 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in beta vulgaris
WO2022136557A1 (en) 2020-12-22 2022-06-30 KWS SAAT SE & Co. KGaA Promoting regeneration and transformation in plants
US11965186B2 (en) 2021-01-04 2024-04-23 Inscripta, Inc. Nucleic acid-guided nickases
US11306298B1 (en) 2021-01-04 2022-04-19 Inscripta, Inc. Mad nucleases
US11332742B1 (en) 2021-01-07 2022-05-17 Inscripta, Inc. Mad nucleases
WO2022155265A2 (en) 2021-01-12 2022-07-21 Mitolab Inc. Context-dependent, double-stranded dna-specific deaminases and uses thereof
US11884924B2 (en) 2021-02-16 2024-01-30 Inscripta, Inc. Dual strand nucleic acid-guided nickase editing
WO2022198093A1 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Producing albumin using plant cell matrices
WO2022198106A1 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Producing betalains using plant cell matrices
WO2022198094A1 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Producing albumin in cannabaceae plant parts
WO2022198107A1 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Producing betalain in cannabaceae plant parts
WO2022198085A2 (en) 2021-03-18 2022-09-22 Calyxt, Inc. Plant cell matrices and methods thereof
WO2022218998A1 (en) 2021-04-13 2022-10-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for treating hepatitis b and d virus infection
WO2022229412A1 (en) 2021-04-30 2022-11-03 Cellectis S.A. New anti-muc1 cars and gene edited immune cells for solid tumors cancer immunotherapy
WO2023043511A1 (en) 2021-09-17 2023-03-23 Calyxt, Inc. Transforming cannabaceae cells
WO2023070043A1 (en) 2021-10-20 2023-04-27 Yale University Compositions and methods for targeted editing and evolution of repetitive genetic elements
WO2023094435A1 (en) 2021-11-23 2023-06-01 Cellectis Sa New tale protein scaffolds with improved on-target/off-target activity ratios
GB202117314D0 (en) 2021-11-30 2022-01-12 Clarke David John Cyclic nucleic acid fragmentation
WO2023148476A1 (en) 2022-02-03 2023-08-10 Nicoventures Trading Limited Method of modulating alkaloid content in tobacco plants
WO2023148478A1 (en) 2022-02-03 2023-08-10 Nicoventures Trading Limited Method of modulating alkaloid content in tobacco plants
WO2023148475A1 (en) 2022-02-04 2023-08-10 Nicoventures Trading Limited Method of modulating alkaloid content in tobacco plants
WO2023194747A1 (en) 2022-04-07 2023-10-12 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
WO2023194746A1 (en) 2022-04-07 2023-10-12 Nicoventures Trading Limited Method for modulating the alkaloid content of tobacco
WO2023199065A1 (en) 2022-04-14 2023-10-19 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
WO2023199064A1 (en) 2022-04-14 2023-10-19 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
WO2023209372A1 (en) 2022-04-27 2023-11-02 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
WO2023209373A1 (en) 2022-04-27 2023-11-02 Nicoventures Trading Limited Method of modulating the alkaloid content of tobacco
WO2024020597A1 (en) 2022-07-22 2024-01-25 The Johns Hopkins University Dendrimer-enabled targeted intracellular crispr/cas system delivery and gene editing
US12005121B2 (en) 2022-08-30 2024-06-11 Yale University Compositions and methods for delivery of nucleic acids to cells
WO2024081736A2 (en) 2022-10-11 2024-04-18 Yale University Compositions and methods of using cell-penetrating antibodies
WO2024084025A1 (en) 2022-10-21 2024-04-25 Keygene N.V. Rna transfection in plant cells with modified rna

Also Published As

Publication number Publication date
EP2816112B1 (en) 2018-08-15
PL2816112T3 (pl) 2019-03-29
EP2510096B2 (en) 2018-02-07
JP6964621B2 (ja) 2021-11-10
PL2510096T3 (pl) 2015-07-31
PT2816112T (pt) 2018-11-20
HK1205527A1 (en) 2015-12-18
US20140335592A1 (en) 2014-11-13
CN106834320B (zh) 2021-05-25
US11274294B2 (en) 2022-03-15
WO2011072246A3 (en) 2012-02-02
NO2510096T3 (pt) 2015-03-21
ES2527997T5 (es) 2018-05-17
US20120178169A1 (en) 2012-07-12
JP6526612B2 (ja) 2019-06-05
IL220234A0 (en) 2012-07-31
AU2015246062A1 (en) 2015-11-05
TR201815882T4 (tr) 2018-11-21
AU2010327998B2 (en) 2015-11-12
US20110145940A1 (en) 2011-06-16
BR112012014080A2 (pt) 2015-10-27
AU2010327998A1 (en) 2012-07-26
US20140335618A1 (en) 2014-11-13
IL220234B (en) 2020-09-30
JP2013513389A (ja) 2013-04-22
CN102770539B (zh) 2016-08-03
AU2010327998A2 (en) 2012-11-29
EP3456826B1 (en) 2023-06-28
US10619153B2 (en) 2020-04-14
KR20120101532A (ko) 2012-09-13
US8440432B2 (en) 2013-05-14
ES2527997T3 (es) 2015-02-03
US10400225B2 (en) 2019-09-03
DK2510096T3 (en) 2015-01-12
KR102110725B1 (ko) 2020-05-13
JP2017070287A (ja) 2017-04-13
US8450471B2 (en) 2013-05-28
CN102770539A (zh) 2012-11-07
US9758775B2 (en) 2017-09-12
US20120214228A1 (en) 2012-08-23
EP2510096A2 (en) 2012-10-17
KR102110608B1 (ko) 2020-05-14
US20180051266A1 (en) 2018-02-22
US20200102550A1 (en) 2020-04-02
DK2816112T3 (en) 2018-11-19
PT2510096E (pt) 2015-02-04
IL267164A (en) 2019-08-29
PL2510096T5 (pl) 2018-06-29
JP2019146582A (ja) 2019-09-05
HUE041436T2 (hu) 2019-05-28
CA2783351A1 (en) 2011-06-16
AU2015246062B2 (en) 2017-01-19
SG181601A1 (en) 2012-07-30
US8697853B2 (en) 2014-04-15
US8586363B2 (en) 2013-11-19
US20120178131A1 (en) 2012-07-12
CN106834320A (zh) 2017-06-13
EP2816112A1 (en) 2014-12-24
ES2696825T3 (es) 2019-01-18
KR20190012274A (ko) 2019-02-08
DK2510096T4 (en) 2018-05-14
US20180051267A1 (en) 2018-02-22
US8440431B2 (en) 2013-05-14
US20130122581A1 (en) 2013-05-16
EP3456826A1 (en) 2019-03-20
CA2783351C (en) 2021-09-07
EP2510096B1 (en) 2014-10-22

Similar Documents

Publication Publication Date Title
US11274294B2 (en) TAL effector-mediated DNA modification

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063489.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2783351

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012543313

Country of ref document: JP

Ref document number: 220234

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010327998

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20127017754

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 6010/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010799163

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2010327998

Country of ref document: AU

Date of ref document: 20101210

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012014080

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012014080

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120611