WO2011046176A1 - 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール - Google Patents

導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール Download PDF

Info

Publication number
WO2011046176A1
WO2011046176A1 PCT/JP2010/068061 JP2010068061W WO2011046176A1 WO 2011046176 A1 WO2011046176 A1 WO 2011046176A1 JP 2010068061 W JP2010068061 W JP 2010068061W WO 2011046176 A1 WO2011046176 A1 WO 2011046176A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring member
electrode
conductive adhesive
surface side
light receiving
Prior art date
Application number
PCT/JP2010/068061
Other languages
English (en)
French (fr)
Inventor
林 宏樹
加藤木 茂樹
振一郎 須方
名取 美智子
彩 桃崎
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to EP10823444A priority Critical patent/EP2490265A1/en
Priority to US13/501,981 priority patent/US8962986B2/en
Priority to KR1020127011972A priority patent/KR101420547B1/ko
Priority to JP2011536172A priority patent/JP5875867B2/ja
Priority to CN2010800465367A priority patent/CN102576766A/zh
Publication of WO2011046176A1 publication Critical patent/WO2011046176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive adhesive, a solar cell, a manufacturing method thereof, and a solar cell module.
  • Patent Documents 3 to 6 are compositions in which metal particles represented by silver particles are dispersed in a thermosetting resin. Mainly, the metal particles are in physical contact with the electrodes and wiring members of solar cells. By doing so, an electrical connection is developed.
  • JP 2002-263880 A JP 2004-204256 A JP-A-8-330615 JP 2003-133570 A JP 2005-243935 A JP 2007-265635 A
  • a solar cell manufactured using a conventional conductive adhesive containing metal particles is not necessarily sufficient in terms of reliability. Specifically, when a solar cell is exposed to a high temperature and high humidity environment, there has been a problem that its characteristics are remarkably deteriorated.
  • the present invention can be connected at a temperature lower than that of Sn—Ag—Cu solder, and can be used for bonding a wiring member to an electrode of a solar cell.
  • the main object is to provide a conductive adhesive in which the characteristics of a solar cell are sufficiently maintained even after a high temperature and high humidity test.
  • an object of this invention is to provide the solar cell and solar cell module which can maintain a sufficient characteristic after a high temperature, high humidity test.
  • the present invention relates to a conductive adhesive containing conductive particles containing a metal, a thermosetting resin, and a flux activator.
  • the melting point of the conductive particles is 220 ° C. or less.
  • the conductive adhesive according to the present invention is used for electrically connecting and bonding the electrode and the wiring member connected to the solar battery cell to the electrode.
  • the conductive adhesive according to the present invention is used for bonding a wiring member to an electrode of a solar cell while being able to be connected at a lower temperature than Sn-Ag-Cu solder, the solar cell These characteristics are sufficiently maintained even after the high temperature and high humidity test.
  • the present invention also relates to a conductive adhesive containing conductive particles containing a metal, a thermosetting resin, a flux activator, and a rheology control agent.
  • This conductive adhesive has a viscosity of 100 to 500 Pa ⁇ s measured with a rotational viscometer at a measurement temperature of 25 ° C. and a rotational speed of 0.5 rpm.
  • the conductive adhesive heats the conductive adhesive to a temperature at which the conductive particles melt with the conductive adhesive interposed between the electrode connected to the solar battery cell and the wiring member. It is used for electrically connecting and bonding the wiring member to the electrode by a method including steps.
  • the conductive adhesive according to the present invention may contain conductive particles, a thermosetting resin, a flux activator, and inorganic fine particles or organic fine particles.
  • the conductive adhesive of the present invention when used to bond a wiring member to an electrode of a solar cell, it can be connected at a lower temperature than Sn—Ag—Cu solder.
  • the characteristics of the battery are sufficiently maintained even after the high temperature and high humidity test.
  • a rheology control agent, or inorganic fine particles or organic fine particles excellent storage stability of the conductive adhesive is exhibited while ensuring sufficient electrical conductivity.
  • the melting point of the conductive particles is preferably 220 ° C. or lower. Thereby, adhesion
  • the ratio of the viscosity measured after standing for 24 hours at 25 ° C. to the viscosity measured before standing is preferably 0.7 to 1.5. This viscosity is measured with a rotational viscometer at a measurement temperature of 25 ° C. and a rotational speed of 0.5 rpm.
  • the conductive particles preferably contain at least one metal selected from the group consisting of bismuth, indium, tin and zinc. Thereby, melting
  • thermosetting resin preferably contains at least one of an epoxy resin and a (meth) acrylic resin.
  • the flux activator is preferably a compound having a hydroxyl group and a carboxyl group.
  • the present invention relates to a solar cell.
  • the solar cell according to the present invention includes a solar cell, electrodes connected to the light receiving surface and the back surface of the solar cell, a first wiring member disposed opposite to the electrode on the light receiving surface side, and an electrode on the back surface side.
  • the conductive bonding according to the present invention which is interposed between the second wiring member arranged oppositely, the electrode on the light receiving surface side and the first wiring member, and between the electrode on the back surface side and the second wiring member.
  • the first wiring member and the second wiring member are electrically connected to and bonded to the electrodes, respectively.
  • the characteristics of the solar cell according to the present invention are sufficiently maintained even after the high temperature and high humidity test.
  • the present invention relates to a method for manufacturing a solar cell.
  • the manufacturing method according to the present invention includes a step of applying the conductive adhesive according to the present invention to the electrodes connected to the light receiving surface and the back surface of the solar battery cell, and the applied conductive adhesive interposed therebetween.
  • the manufacturing method according to the present invention it is possible to efficiently manufacture a solar cell that maintains its characteristics sufficiently even after a high-temperature and high-humidity test.
  • the present invention relates to a solar cell module.
  • the solar cell module according to the present invention includes a plurality of solar cells, electrodes connected to the light receiving surfaces and the back surfaces of the plurality of solar cells, a first wiring member disposed opposite to the electrodes on the light receiving surface side, and The present invention, wherein the present invention is interposed between the second wiring member disposed opposite to the electrode on the back surface side, the electrode on the light receiving surface side and the first wiring member, and between the electrode on the back surface side and the second wiring member.
  • a conductive adhesive The first wiring member and the second wiring member are electrically connected to and bonded to the electrodes, respectively.
  • the plurality of solar cells are electrically connected by connecting the wiring members.
  • the characteristics of the solar cell module according to the present invention are sufficiently maintained even after the high temperature and high humidity test.
  • the first wiring member and the second wiring member are disposed between the light receiving surface side electrode and the first wiring member and between the back surface side electrode and the second wiring member. It is preferable that each of the electrodes is electrically connected to and bonded to the electrodes by a method including a step of heating the conductive adhesive to a temperature at which the conductive particles melt with the conductive adhesive interposed. .
  • the conductive particles melt and agglomerate to form a metal bond path between the electrode and the wiring member, and the thermosetting resin hardens around the metal bond to form a metal bond.
  • the path is reinforced. As a result, it is considered that the characteristics of the solar cell are sufficiently maintained even after the high temperature and high humidity test.
  • the conductive adhesive of the present invention it is possible to connect at lower temperature than Sn—Ag—Cu solder, but when used for bonding a wiring member to the electrode of the solar cell, The characteristics are sufficiently maintained even after the high temperature and high humidity test.
  • the conductive adhesive according to the present invention containing an agent, inorganic fine particles and the like, excellent storage stability of the conductive adhesive is exhibited while ensuring sufficient electrical conductivity.
  • the conductive adhesive according to the present embodiment contains at least conductive particles containing a metal and a thermosetting resin.
  • the melting point of the conductive particles is preferably 220 ° C. or lower, more preferably 200 ° C. or lower.
  • the melting point of the conductive particles is preferably low, but the lower limit is usually about 120 ° C.
  • the conductive particles having such a melting point include, for example, at least one metal selected from bismuth (Bi), indium (In), tin (Sn), and zinc (Zn).
  • the conductive particles are often formed from an alloy.
  • the conductive particles are preferably substantially free of lead.
  • the conductive particles are Sn42-Bi58 solder (melting point 138 ° C.), Sn48-In52 solder (melting point 117 ° C.), Sn42-Bi57-Ag1 solder (melting point 139 ° C.), Sn90-Ag2-Cu0.5.
  • Metal particles composed of solder selected from -Bi7.5 solder (melting point 189 ° C), Sn96-Zn8-Bi3 solder (melting point 190 ° C) and Sn91-Zn9 solder (melting point 197 ° C). These solders are preferable because they exhibit a clear solidification behavior after melting. These may be used alone or in combination of two or more.
  • the conductive particles may be composed only of metal, or particles having core particles made of a solid material other than metal such as ceramics, silica, and resin, and a metal film covering the surface. There may be.
  • the core particle may be a metal particle.
  • the melting point of the metal film covering the surface of the conductive particles may be 220 ° C.
  • the conductive adhesive may contain conductive particles having a melting point higher than 220 ° C. together with conductive particles having a melting point of 220 ° C. or lower.
  • Such conductive particles are made of, for example, an alloy containing Pt, Au, Ag, Cu, Ni, Pd, Al, or a combination thereof. More specifically, Au particle
  • the average particle diameter of the conductive particles is not particularly limited, but is preferably 0.1 to 100 ⁇ m.
  • the average particle size is less than 0.1 ⁇ m, the viscosity of the adhesive composition tends to increase and workability tends to decrease.
  • the average particle diameter of the conductive particles exceeds 100 ⁇ m, the printability is lowered and the effect of improving the connection reliability tends to be reduced.
  • the average particle size is more preferably 1.0 to 70 ⁇ m.
  • the average particle size of the conductive particles is particularly preferably from 5.0 to 50 ⁇ m.
  • the content of the conductive particles is preferably such that the mass of the metal contained in the conductive particles is 5 to 95% by mass with respect to the total mass of the conductive adhesive.
  • the amount of the conductive particles is less than 5% by mass, the conductivity of the cured product of the conductive adhesive tends to decrease.
  • the amount of the conductive particles exceeds 95% by mass, the viscosity of the conductive adhesive tends to increase and workability tends to decrease.
  • the amount of components other than the conductive particles in the conductive adhesive is relatively small, the mounting reliability of the cured product tends to be lowered.
  • the amount of the conductive particles is more preferably 10 to 90% by mass from the viewpoint of improving workability or conductivity.
  • the thermosetting resin has a function of curing by heating and bonding the adherend, and also acts as a binder component that binds the conductive particles in the conductive adhesive and the rheology control agent described later.
  • the thermosetting resin is selected from, for example, epoxy resins, (meth) acrylic resins, maleimide resins, cyanate resins, and precursors thereof. Among these, a compound having a polymerizable carbon-carbon double bond represented by (meth) acrylic resin and maleimide resin, and an epoxy resin are preferable.
  • These thermosetting resins are excellent in heat resistance and adhesiveness, and also can be handled in a liquid state if dissolved or dispersed in an organic solvent as required, so that they are excellent in workability.
  • the above-mentioned thermosetting resins are used singly or in combination of two or more.
  • (Meth) acrylic resin is composed of a compound having a polymerizable carbon-carbon double bond.
  • examples of such compounds include monoacrylate compounds, monomethacrylate compounds, diacrylate compounds, and dimethacrylate compounds.
  • Examples of the monoacrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, amyl acrylate, isoamyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2- Ethylhexyl acrylate, nonyl acrylate, decyl acrylate, isodecyl acrylate, lauryl acrylate, tridecyl acrylate, hexadecyl acrylate, stearyl acrylate, isostearyl acrylate, cyclohexyl acrylate, isobornyl acrylate, diethylene glycol acrylate, polyethylene glycol acrylate, polypropylene Acrylate, 2-methoxyethyl acrylate, 2-eth
  • Examples of the monomethacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, amyl methacrylate, isoamyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2- Ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, hexadecyl methacrylate, stearyl methacrylate, isostearyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, diethylene glycol methacrylate , Polyethylene glycol
  • diacrylate compound examples include ethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 1,3-butanediol diacrylate, neo Pentyl glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, bisphenol A, bisphenol F or bisphenol AD 1 mole and glycidyl acrylate 2 Mole reactant, polyethylene of bisphenol A, bisphenol F or bisphenol AD Examples include diacrylates of oxide adducts, diacrylates of polypropylene oxide adducts of bisphenol A, bisphenol F or bisphenol AD, bis (acryloxypropyl) polydimethylsiloxane, and bis (acryloxypropyl)
  • dimethacrylate compound examples include ethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,3-butanediol dimethacrylate, neo Pentyl glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, bisphenol A, bisphenol F or bisphenol AD 1 mole and glycidyl methacrylate 2 Molar reactants, bisphenol A, bisphenol F or Include dimethylsiloxane copolymer - scan phenol AD dimethacrylate of a polyethylene oxide adduct of polypropylene oxide adduct of bisphenol F
  • the conductive adhesive preferably contains a radical polymerization initiator.
  • the radical polymerization initiator is preferably an organic peroxide from the viewpoint of effectively suppressing voids. Further, from the viewpoint of improving the curability and viscosity stability of the conductive adhesive, the organic peroxide preferably has a 1 minute half-life temperature of 70 to 170 ° C.
  • radical polymerization initiators include 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis. (T-butylperoxy) cyclododecane, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, dicumyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di (T-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) -3-hexyne, cumene hydroperoxide. These are used singly or in combination of two or more.
  • the blending ratio of the radical polymerization initiator is preferably 0.01 to 20% by mass and more preferably 0.1 to 10% by mass with respect to the total amount of components other than the conductive particles in the conductive adhesive. More preferably, it is 0.5 to 5% by mass.
  • epoxy resin any compound having two or more epoxy groups can be used without particular limitation.
  • examples of such an epoxy resin include an epoxy resin derived from bisphenol A, bisphenol F, bisphenol AD, and the like and epichlorohydridone.
  • Such an epoxy resin can be obtained commercially.
  • Specific examples include AER-X8501 (trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.), R-301 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), YL-980 (Japan Epoxy Resin (trade name), which is a bisphenol A type epoxy resin.
  • Product name YDF-170 (trade name, manufactured by Toto Kasei Co., Ltd.), YL-983 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), and bisphenol AD type epoxy resin.
  • R-1710 (trade name, manufactured by Mitsui Petrochemical Co., Ltd.), N-730S (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), a phenol novolac type epoxy resin, Quatrex-2010 (product, manufactured by Dow Chemical Co., Ltd.) Name), YDCN-702S (trade name, manufactured by Toto Kasei Co., Ltd.), a cresol novolac type epoxy resin, EOCN 100 (manufactured by Nippon Kayaku Co., Ltd., trade name), EPPN-501 (trade name, produced by Nippon Kayaku Co., Ltd.) which is a polyfunctional epoxy resin, TACTIX-742 (trade name, produced by Dow Chemical Co., Ltd.), VG-3010 ( Mitsui Petrochemical Co., Ltd., trade name), 1032S (Japan Epoxy Resin Co., Ltd., trade name), HP-4032 (manufactured by Dainippon Ink & Chemicals, trade name), an epoxy resin
  • k represents an integer of 1 to 5.
  • epoxy resins bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, and amine type epoxy resins that have few ionic impurities and are excellent in reactivity are particularly preferable.
  • epoxy resins are used singly or in combination of two or more.
  • the conductive adhesive may further contain an epoxy compound having only one epoxy group as a reactive diluent.
  • an epoxy compound is commercially available. Specific examples thereof include, for example, PGE (trade name, manufactured by Nippon Kayaku Co., Ltd.), PP-101 (trade name, manufactured by Toto Kasei Co., Ltd.), ED-502, ED-509, ED-509S (manufactured by Asahi Denka Kogyo Co., Ltd.) Product name), YED-122 (manufactured by Yuka Shell Epoxy Co., Ltd., product name), KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd., product name), TSL-8350, TSL-8355, TSL-9905 (manufactured by Toshiba Silicone Co., Ltd.) Product name). These are used singly or in combination of two or more.
  • the blending ratio of the reactive diluent may be in a range that does not hinder the effect of the present invention, and is preferably 0 to 30% by mass with respect to the total amount of the epoxy resin.
  • the conductive adhesive further contains a curing agent for the epoxy resin, and in addition to that, it further contains a curing accelerator for improving the curability. Is preferred.
  • the curing agent is not particularly limited as long as it is conventionally used, and a commercially available one can be obtained.
  • Commercially available curing agents include, for example, phenol novolac resin H-1 (product name, manufactured by Meiwa Kasei Co., Ltd.), VR-9300 (product name, manufactured by Mitsui Toatsu Chemical Co., Ltd.), and phenol-aralkyl resin XL-225.
  • each R1 independently represents a monovalent hydrocarbon group, preferably a methyl group or an allyl group, and q represents an integer of 1 to 5.
  • R2 represents an alkyl group, preferably a methyl group or an ethyl group
  • R3 represents a hydrogen atom or a monovalent hydrocarbon group
  • p represents an integer of 2 to 4.
  • the mixing ratio of the curing agent is preferably such that the total amount of reactive groups in the curing agent is 0.3 to 1.2 equivalents with respect to 1.0 equivalent of epoxy groups of the epoxy resin.
  • the ratio is more preferably from 1.0 to 1.0 equivalent, and still more preferably from 0.5 to 1.0 equivalent. If the reactive group is less than 0.2 equivalent, the reflow crack resistance of the conductive adhesive tends to decrease, and if it exceeds 1.2 equivalent, the viscosity of the conductive adhesive increases and workability decreases.
  • the reactive group is a substituent having a reactive activity with an epoxy resin, and examples thereof include a phenolic hydroxyl group.
  • the curing accelerator is not particularly limited as long as it is conventionally used as a curing accelerator, such as dicyandiamide, and a commercially available product is available.
  • Commercially available products include, for example, ADH, PDH, and SDH (both trade names manufactured by Nippon Hydrazine Kogyo Co., Ltd.), which are dibasic acid dihydrazides represented by the following general formula (IV), and a reaction product of an epoxy resin and an amine compound.
  • R4 represents a divalent aromatic group or a linear or branched alkylene group having 1 to 12 carbon atoms, preferably an m-phenylene group or a p-phenylene group.
  • Examples of commercially available curing accelerators include, in addition to those described above, organic boron salt compounds such as EMZ ⁇ K and TPPK (both manufactured by Hokuko Chemical Co., Ltd., trade names), tertiary amines or salts thereof such as DBU, U— CAT102, 106, 830, 840, 5002 (all are trade names, manufactured by San Apro Co., Ltd.), Cureazole, which is an imidazole, 2PZ-CN, 2P4MHZ, C17Z, 2PZ-OK, 2PZ-CNS, C11Z-CNS (all Shikoku Chemicals) (Trade name, manufactured by Co., Ltd.) may be used.
  • organic boron salt compounds such as EMZ ⁇ K and TPPK (both manufactured by Hokuko Chemical Co., Ltd., trade names)
  • tertiary amines or salts thereof such as DBU, U— CAT102, 106, 830, 840, 5002 (all
  • the blending ratio of the curing accelerator is preferably 0.01 to 90 parts by mass and more preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin. If the blending ratio of the curing accelerator is less than 0.01 parts by mass, the curability tends to decrease, and if it exceeds 90 parts by mass, the viscosity increases and the workability when handling the conductive adhesive is decreased. Tend.
  • the conductive adhesive preferably contains a flux activator.
  • the flux activator is a compound having a function of removing an oxide film formed on the surface of conductive particles containing a metal.
  • a compound that does not inhibit the curing reaction of the thermosetting resin is used. Examples of such a compound include a rosin resin and a compound containing a carboxyl group, a phenolic hydroxyl group or a hydroxyl group.
  • a compound containing a hydroxyl group and a carboxyl group is preferable, and aliphatic dihydroxycarboxylic acid is particularly preferable because it exhibits good flux activity and reactivity with an epoxy resin used as a thermosetting resin.
  • a compound represented by the following general formula (V) or tartaric acid is preferable.
  • R5 represents an optionally substituted alkyl group having 1 to 5 carbon atoms, and from the viewpoint of more effectively exerting the above-described effects of the present invention, a methyl group, an ethyl group, a propyl group Group, butyl group or pentyl group is preferred.
  • n and m each independently represent an integer of 0 to 5, and from the viewpoint of more effectively exhibiting the above-described effects of the present invention, n is 0 and m is 1, or both n and m are 1 It is preferable that both n and m are 1.
  • Examples of the compound represented by the general formula (V) include 2,2-bishydroxymethylpropionic acid, 2,2-bishydroxymethylbutanoic acid and 2,2-bishydroxymethylpentanoic acid.
  • the content of the flux activator is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass of the conductive particles, from the viewpoint of more effectively exhibiting the above-described effects of the present invention. Further, from the viewpoint of storage stability and conductivity, the content is more preferably 1.0 to 10 parts by mass.
  • the content of the flux activator is less than 0.5 parts by mass, the meltability of the metal constituting the conductive particles tends to decrease and the conductivity tends to decrease, and when it exceeds 20 parts by mass, the storage stability, There is a tendency for printability to decrease.
  • the conductive adhesive preferably contains a rheology control agent.
  • This rheology control agent is a compound that imparts a thixotropic property to a conductive adhesive that exhibits high viscosity when the shearing force is low and exhibits low viscosity when the shearing force is high.
  • Examples of the compound used as the rheology control agent include compounds having an ester bond such as hydrogenated castor oil, beeswax and carnauba wax (for example, ITOHWAX CO-FA, DCO-FA, E-210, E-230, E- 250, E-270, E-70G, J-50, J-420, J-500, J-550S, J-530.J-630, J-700), stearamide and hydroxystearic acid ethylenebisamide Containing a single or multiple amide bond (for example, BYK-405, Anti-Terra-205, manufactured by Big Chemie Japan, trade names GP-1, EB-21, manufactured by Ajinomoto Healthy Supply Co., Ltd.) and urea bond Urea compounds and intermediate polar groups or low polar groups at the end Compounds (for example, trade names BYK-410, 411, 420, 425, 428, 430, 431, LPR20320, P104, and P105 manufactured by Big Chemie Japan) are included
  • Inorganic fine particles or organic fine particles can be used as a rheology control agent.
  • examples of inorganic fine particles include alumina, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, crystalline silica, and amorphous silica.
  • Organic fine particles include, for example, styrene-divinylbenzene copolymer, polystyrene, alkyl methacrylate-butadiene-styrene copolymer, alkyl acrylate-butadiene-styrene copolymer, alkyl methacrylate-silicone copolymer, alkyl acrylate.
  • Core-shell type organic fine particles composed of a core layer and a shell layer, each containing these organic materials, can also be used.
  • the kind and shape of the inorganic fine particles and organic fine particles are not particularly limited.
  • the rheology control agent is added to impart thixotropy to the conductive adhesive.
  • thixotropy By imparting thixotropy, settling of conductive particles dispersed in the conductive adhesive is suppressed during freezing or refrigerated storage and use at room temperature, and thus the storage stability of the conductive adhesive is improved. Can be held.
  • the rheology control agent can be used alone or in combination of two or more.
  • Rheology control agents include, in particular, silica particles and polystyrene, styrene-divinylbenzene copolymers, alkyl methacrylate-butadiene-styrene copolymers, alkyl acrylate-butadiene-styrene copolymers or alkyl methacrylate-silicone copolymers. Since it is excellent in a dispersibility, it is preferable that it is at least 1 sort (s) chosen from the particle
  • Silica particles are subjected to a wide variety of surface treatments. Organic fine particles such as polystyrene particles preferably have a narrow particle size distribution.
  • the average particle size of the fine particles is preferably 100 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the lower limit of the average particle size of the fine particles is not particularly limited, but is preferably 0.001 ⁇ m or more because the viscosity rapidly increases as the surface area of the fine particles increases and the dispersibility also decreases.
  • a method of measuring the particle size of about 200 fine particles using a scanning electron microscope (SEM) or the principle of the laser scattering diffraction method is used. It is measured by a method of measuring using a particle size distribution measuring apparatus.
  • SEM scanning electron microscope
  • an adherend is bonded using a conductive adhesive, and then heated and cured (preferably at 150 to 200 ° C. for 1 to 10 hours) to prepare a sample. And a method of observing the cut surface with an SEM.
  • the content of the rheology control agent is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the thermosetting resin, and 0.5 to 30 parts by mass from the viewpoint of storage stability and conductivity. More preferably.
  • the content of the rheology control agent is less than 0.1 parts by mass, the viscosity tends to decrease and the effect of suppressing sedimentation of the conductive particles tends to be small.
  • the content exceeds 50 parts by mass the printability tends to decrease. There is.
  • the conductive adhesive has a measurement temperature of 25 ° C. and a rotation speed of 0.
  • the viscosity measured under the condition of 5 rpm is preferably 100 to 500 Pa ⁇ s, and more preferably 150 to 300 Pa ⁇ s.
  • the viscosity at 25 ° C. and 0.5 rpm is higher than 500 Pa ⁇ s, the printability is likely to be impaired.
  • the viscosity (B) of the conductive adhesive measured at a temperature of 25 ° C. and a rotational speed of 0.5 rpm after being allowed to stand at 25 ° C. for 24 hours, and the conductive adhesion measured under the same conditions before being left to stand
  • (B) / (A) is preferably 0.7 to 1.5.
  • (B) / (A) is less than 0.7, there is a high possibility that the conductive particles have settled and the conductive adhesive has become non-uniform, and electrical properties such as printability and volume resistance may be reduced. There is.
  • (B) / (A) is higher than 1.5, the thermosetting resin may be cured, and the printability may be deteriorated.
  • the viscosity can be measured using a known rotational viscometer.
  • a rotational viscometer using an SPP rotor with a special groove for example, TV manufactured by Toki Sangyo Co., Ltd.
  • the viscosity before standing is measured immediately after preparing the conductive adhesive, specifically, within 2 hours after mixing all the components constituting the conductive adhesive.
  • the conductive adhesive is selected from the group consisting of a flexible agent for stress relaxation, a diluent for improving workability, an adhesive strength improver, a wettability improver, and an antifoaming agent, if necessary.
  • the above additives may be included. In addition to these components, various additives may be contained within a range that does not impair the effects of the present invention.
  • liquid polybutadiene manufactured by Ube Industries, trade names “CTBN-1300 ⁇ 31”, “CTBN-1300 ⁇ 9”, Nippon Soda Co., Ltd., trade name “NISSO-PB-C-2000”)
  • the content of the flexible agent is preferably 0 to 500 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the conductive adhesive may contain a coupling agent such as a silane coupling agent or a titanium coupling agent for the purpose of improving the adhesive strength.
  • a coupling agent such as a silane coupling agent or a titanium coupling agent for the purpose of improving the adhesive strength.
  • examples of the silane coupling agent include trade name “KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.
  • an anionic surfactant, a fluorine-based surfactant, or the like may be contained in the conductive adhesive.
  • the conductive adhesive may contain silicone oil or the like as an antifoaming agent.
  • the said adhesive force improver, wettability improver, and antifoamer are used individually by 1 type or in combination of 2 or more types, respectively. These are preferably contained in an amount of 0.1 to 10% by mass with respect to the total amount of the conductive adhesive.
  • the conductive adhesive may contain a diluent as necessary in order to improve the workability during production of the conductive adhesive and the application workability during use.
  • a diluent an organic solvent having a relatively high boiling point such as butyl cellosolve, carbitol, butyl cellosolve, carbitol acetate, dipropylene glycol monomethyl ether, ethylene glycol diethyl ether, and ⁇ -terpineol is preferable.
  • This diluent is preferably contained in an amount of 0.1 to 30% by mass with respect to the total amount of the conductive adhesive.
  • the conductive adhesive is a paste in which each component is uniformly dispersed by heating, if necessary, by mixing, dissolving, pulverizing and kneading or dispersing each of the above components at once or in a plurality of times. Obtained as a thing.
  • Examples of the apparatus used in this case include a known stirrer, a raker, a three roll, a planetary mixer and the like.
  • the conductive adhesive according to this embodiment described above it is possible to achieve both a predetermined adhesive force and conductivity by curing in a short time while having good storage stability.
  • the conductive adhesive according to the present embodiment is suitably used for electrically connecting the electrode connected to the solar battery cell and the wiring member.
  • FIG. 1 is a schematic diagram showing a main part of one embodiment of a solar cell module, and shows an outline of a structure in which a plurality of solar cells are connected to each other by wiring.
  • 1A shows the solar cell module as viewed from the light receiving surface side
  • FIG. 1B as viewed from the back surface side
  • FIG. 1C as viewed from the side surface side.
  • the solar cell module 100 includes a plurality of solar cells 6, a grid electrode 7 and a bus electrode (surface electrode) 3 a provided on the light receiving surface side of each solar cell 6, and a back surface side of the solar cell 6.
  • 4b and a conductive adhesive 10 interposed between the surface electrode 3a on the light receiving surface side and the first wiring member 4a and between the surface electrode 3b on the back surface side and the second wiring member 4b.
  • the plurality of solar cells 6 are electrically connected in series by connecting the first wiring member 4a and the second wiring member 4b to each other.
  • the first wiring member 4a is a temperature at which conductive particles melt the conductive adhesive in a state where the conductive adhesive is interposed between the surface electrode 3a on the light receiving surface side and the first wiring member 4a. It is electrically connected and bonded to the surface electrode 3a on the light receiving surface side by a method including a step of heating to (for example, a temperature equal to or higher than the melting point of the metal constituting the conductive particles).
  • the conductive particles melt the conductive adhesive with the conductive adhesive interposed between the front surface electrode 3b on the back surface side and the second wiring member 4b.
  • first and second wiring members 4a and 4b As the first and second wiring members 4a and 4b, a Cu wire and a solder plating wire which are usually used in the technical field can be used. As the first and second wiring members 4a and 4b, a film-like wiring board in which metal wiring is formed on a plastic substrate can also be used.
  • FIG. 2 is a schematic diagram showing one embodiment of a method for manufacturing a solar cell.
  • the grid electrode 7 and the bus electrode (surface electrode) 3 a connected to the light receiving surface of the solar cell 6, and the back electrode 8 connected to the back surface of the solar cell 6 Is provided (FIG. 2A).
  • a liquid conductive adhesive 10 is applied to the surface electrode 3a, and the first wiring member 4a is disposed opposite to the surface electrode 3a with the applied conductive adhesive 10 in between (see FIG. 2).
  • the conductive adhesive can be applied by a method such as a dispensing method, a screen printing method, or a stamping method.
  • a liquid conductive adhesive 10 is applied to the back electrode 8, and the second wiring member 4b is disposed opposite to the back electrode 8 with the applied conductive adhesive 10 interposed therebetween (FIG. 2). (C)).
  • the sealing resin 15a is disposed on the opposite side of the first wiring member 4a from the solar battery cell 6, and the sealing resin 15b is disposed on the opposite side of the second wiring member 4b from the solar battery cell 6. ((D) of FIG. 2).
  • the sealing resins 15a and 15b may be EVA or polyvinyl butyral which is a commonly used ethylene / vinyl acetate copolymer resin.
  • a glass substrate 16 is disposed on the sealing resin 15a on the light receiving surface side, and a protective film 17 called a back sheet is disposed on the sealing resin 15b on the back surface side.
  • the first wiring member 4a is heated to the surface electrode 3a and the second wiring member 4b is moved to the back surface by heating to a temperature at which the conductive particles in the conductive adhesive 10 melt while pressurizing the whole as necessary.
  • the solar cells are sealed with the sealing resins 15a and 15b while being electrically connected and bonded to the electrodes 8, respectively.
  • the heating conditions at this time are, for example, 150 to 170 ° C. for 1 to 30 minutes.
  • the cost can be reduced by significantly shortening the process and improving the productivity as compared with the conventional methods.
  • the manufacturing method of the solar cell is not limited to the above embodiment, and can be modified as appropriate.
  • the wiring members instead of connecting the wiring member and the electrode together with the sealing of the solar battery cells, the wiring members may be connected sequentially or simultaneously, and then the solar battery cells may be sealed. Good.
  • liquid conductive adhesive was prepared using the following materials.
  • TETRAD-X amine type epoxy resin, trade name (curing accelerator) manufactured by Mitsubishi Gas Chemical Company, Inc.
  • 2PZ-CN (Shikoku Kasei Co., Ltd., trade name of imidazole compound) (Flux activator)
  • BHBA 2,2-bishydroxymethylbutanoic acid
  • BHVA 2,2-bishydroxymethylpentanoic acid (conductive particles)
  • Sn42-Bi58 particles melting point 138 ° C., average particle size 20 ⁇ m Sn42-Bi57-Ag1 (solder) particles: melting point 139 ° C., average particle size 20 ⁇ m Sn96.5-Ag3-Cu0.5 solder: melting point 217 ° C
  • TCG-1 Silver powder, trade name manufactured by Tokuru Chemical Laboratory MA05K: Ag plating Cu powder, trade name manufactured by Hitachi Chemical Co., Ltd.
  • Example 1 YDF-170, 2PZ-CN, and BHPA were mixed, and the mixture was passed through three rolls three times to prepare an adhesive component. Sn42-Bi58 particles were added to and mixed with 30 parts by mass of the adhesive component. Further, the mixture was passed through three rolls three times, and then defoamed at 500 Pa or less for 10 minutes using a vacuum stirrer to obtain a conductive adhesive.
  • Examples 2-7, Reference Examples 1-4 The conductive adhesives of Examples 2 to 7 and Reference Examples 1 to 4 were obtained in the same procedure as in Example 1 except that the materials shown in Tables 1 and 2 were used in the blending ratios shown in the table. Details of the materials shown in Tables 1 and 2 are as follows. The unit of the blending ratio of each material in Tables 1 and 2 is part by mass.
  • a solar cell (125 mm ⁇ 125 mm, thickness 310 ⁇ m) having surface electrodes (material: silver glass paste, 2 mm ⁇ 125 mm) formed on the light receiving surface and the back surface was prepared.
  • a conductive adhesive was printed on the surface electrode on the light receiving surface side using a metal mask (thickness 100 ⁇ m, opening size 1.2 mm ⁇ 125 mm), and the printed shape was observed.
  • a tab wire manufactured by Hitachi Cable, trade name: A-TPS
  • the tab wire was adhered by heating on a hot plate at 160 ° C. for 10 minutes.
  • a tab wire was adhered to the front surface electrode on the back surface side to obtain a solar cell with a tab wire.
  • the external appearance of the obtained photovoltaic cell with a tab wire was visually observed.
  • the IV curve of the solar cells with tab lines was measured using a solar simulator (trade name: WXS-155S-10, AM: 1.5G, manufactured by Wacom Denso Co., Ltd.). Next, the solar cell was allowed to stand for 240 hours in a high-temperature and high-humidity atmosphere at 85 ° C. and 85% RH, and then the IV curve was measured in the same manner.
  • a curve factor (fill factor, hereinafter abbreviated as “FF”) indicating the solar cell characteristics is derived from each IV curve, and F. before leaving in a high-temperature, high-humidity atmosphere. F (0 h) and F. after standing under high temperature and high humidity conditions.
  • F (240h) change rate [ (F.F (240h) /F.F (0h)) ⁇ 100] is expressed as ⁇ F.
  • F was used as an evaluation index. In general, ⁇ F. If the value of F is 95% or more, it is determined that the connection reliability is good. The evaluation results are shown in Tables 1 and 2.
  • liquid conductive adhesive and evaluation example 8 11.0 parts by mass of a bisphenol F type epoxy resin (YDF-170, manufactured by Tohto Kasei Co., Ltd., epoxy equivalent 170) and 0.5 parts by mass of an imidazole compound (2PZ-CN, manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator; 1.5 parts by mass of 2,2-bishydroxymethylpropionic acid (BHPA) as a flux activator and silica particles (R972, manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 16 nm) subjected to a hydrophobic surface treatment as a rheology control agent ) 0.4 parts by mass were mixed and passed through 3 rolls 3 times to prepare an adhesive component.
  • BHPA 2,2-bishydroxymethylpropionic acid
  • YH-434L tetrafunctional polyglycidylamine type epoxy resin, ED-509S manufactured by Toto Kasei Co.,
  • t-butylphenylglycidyl ether manufactured by Asahi Denka Kogyo Co., Ltd. (curing accelerator) 2PZ-CN (Shikoku Kasei Co., Ltd., trade name of imidazole compound) (Flux activator)
  • BHBA 2,2-bishydroxymethylbutanoic acid
  • BHVA 2,2-bishydroxymethylpentanoic acid (conductive particles)
  • Sn42-Bi58 particles melting point 138 ° C., average particle size 20 ⁇ m
  • R805 Silica particles hydrophobized with octylsilane (Nippon Aerosil Co., Ltd., average particle size 12 nm)
  • CS1 Core-shell type organic fine particles having a butadiene rubber core layer and a polymethyl methacrylate shell layer (Rohm and Haas Japan,
  • a flux agent manufactured by Senju Metal Co., Ltd., trade name: Deltalux 533 was applied on the light-receiving surface and the back surface electrode of the solar cell.
  • a tab wire (trade name: A-TPS, manufactured by Hitachi Cable, Ltd.) coated with solder of Sn96.5-Ag3.0-Cu0.5 is placed on the surface electrode to which the fluxing agent has been applied. It heated to 260 degreeC, the solder which coat
  • Example 19 A solar battery cell (125 mm ⁇ 125 mm, thickness 310 ⁇ m) having surface electrodes (material: silver glass paste, 2 mm ⁇ 125 mm) formed on the light receiving surface and the back surface was prepared.
  • the conductive adhesive of Example 9 was printed using a metal mask (thickness 100 ⁇ m, opening size 1.2 mm ⁇ 125 mm).
  • a tab wire (trade name: A-TPS, manufactured by Hitachi Cable Ltd.) as a wiring member coated with solder was placed on the printed conductive adhesive. Then, the tab wire was arrange
  • a sealing resin manufactured by Mitsui Chemicals Fabro, trade name: Solar EVA SC50B
  • a protective film manufactured by Kobayashi Co., Ltd., trade name: Kobatec PV
  • a sealing resin manufactured by Mitsui Chemicals Fabro, Solar EVA SC50B
  • a glass substrate 200 ⁇ 200 ⁇ 3 mm
  • the obtained laminate is mounted so that the glass substrate is in contact with the hot plate side of a vacuum laminator (trade name: LM-50 ⁇ 50-S, manufactured by NPC Corporation), and evacuated for 5 minutes. went.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)

Abstract

金属を含む導電性粒子と、熱硬化性樹脂と、フラックス活性剤と、好ましくはレオロジーコントロール剤と、を含有する導電性接着剤。導電性粒子の融点が好ましくは220℃以下である。導電性接着剤は、太陽電池セル6に接続された電極3a,3bに配線部材4a,4bを電気的に接続するとともに接着するために用いられる。

Description

導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール
 本発明は、導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュールに関する。
 深刻化する地球温暖化や化石エネルギー枯渇問題を解決する手段として、太陽光を用いた発電システムである太陽電池が注目されている。現在、主流の太陽電池は、単結晶又は多結晶のSiウェハを有する太陽電池セルが、電極及び金属配線部材を介して直列又は並列に接続した構造を有している。通常、太陽電池セルの電極と金属配線部材との接続は、良好な導電性を示し安価なはんだを用いて行われてきた(特許文献1)。最近では、環境問題を考慮して、Pbを含まないSn-Ag-Cuはんだによって配線部材である銅線を被覆し、はんだの溶融温度以上に加熱して太陽電池セルの電極と配線部材とを接続する方法が知られている(特許文献1、2)。
 しかし、この接続の際、Sn-Ag-Cuはんだの融点を越える260℃以上の加熱が必要となるため、太陽電池セルの反りや割れが発生し、歩留まりが低下することが問題となっている。近年は、低コスト化を目的に太陽電池セルの厚みが薄化する傾向にあるため、反り及び割れを防止する対策が急務となっている。
 一方、より低温で電気的な接続が可能な導電性接着剤の使用も提案されている(特許文献3~6)。これらの導電性接着剤は、熱硬化性樹脂中に、銀粒子に代表される金属粒子が分散された組成物であり、主として、金属粒子が太陽電池セルの電極及び配線部材と物理的に接触することにより電気的な接続が発現される。
特開2002-263880号公報 特開2004-204256号公報 特開平8-330615号公報 特開2003-133570号公報 特開2005-243935号公報 特開2007-265635号公報
 しかしながら、金属粒子を含む従来の導電性接着剤を用いて製造された太陽電池は、信頼性の点で必ずしも十分でないことが明らかとなった。具体的には、高温高湿環境下に太陽電池が暴露されたときに、その特性が著しく低下してしまうという問題があった。
 そこで、本発明は、上記従来技術が有する課題に鑑み、Sn-Ag-Cuはんだよりも低温での接続が可能でありながら、太陽電池の電極に配線部材を接着するために用いられたときに太陽電池の特性が高温高湿試験後にも十分に維持される導電性接着剤を提供することを主な目的とする。更に、本発明は、高温高湿試験後にも十分な特性を維持可能な太陽電池及び太陽電池モジュールを提供することを目的とする。
 本発明は、金属を含む導電性粒子と、熱硬化性樹脂と、フラックス活性剤と、を含有する導電性接着剤に関する。導電性粒子の融点が220℃以下である。本発明に係る導電性接着剤は、太陽電池セルに接続された電極と配線部材を電極に電気的に接続するとともに接着するために用いられる。
 上記本発明に係る導電性接着剤によれば、Sn-Ag-Cuはんだよりも低温での接続が可能でありながら、太陽電池の電極に配線部材を接着するために用いられたときに太陽電池の特性が高温高湿試験後にも十分に維持される。
 本発明はまた、金属を含む導電性粒子と、熱硬化性樹脂と、フラックス活性剤と、レオロジーコントロール剤と、を含有する導電性接着剤に関する。この導電性接着剤は、回転粘度計により測定温度25℃、回転速度0.5rpmの条件で測定される粘度が100~500Pa・sである。また、導電性接着剤は、太陽電池セルに接続された電極と配線部材との間に当該導電性接着剤を介在させた状態で当該導電性接着剤を導電性粒子が溶融する温度に加熱する工程を含む方法により配線部材を電極に電気的に接続するとともに接着するために用いられる。本発明に係る導電性接着剤は、導電性粒子と、熱硬化性樹脂と、フラックス活性剤と、無機微粒子又は有機微粒子と、を含有していてもよい。
 上記本発明に係る導電性接着剤によれば、Sn-Ag-Cuはんだよりも低温での接続が可能でありながら、太陽電池の電極に配線部材を接着するために用いられたときに、太陽電池の特性が高温高湿試験後にも十分に維持される。また、レオロジーコントロール剤、又は無機微粒子若しくは有機微粒子を用いることにより、十分な導通性を確保しながら、導電性接着剤の優れた保存安定性が発揮される。この場合も、導電性粒子の融点は220℃以下であることが好ましい。これにより、より低温での接着が可能となって、太陽電池セルの反りや割れが十分に防止される。
 本発明の導電性接着剤は、25℃で24時間放置された後に測定される粘度の、放置される前に測定される粘度に対する比が0.7~1.5であることが好ましい。この粘度は、回転粘度計により測定温度25℃、回転速度0.5rpmの条件で測定される。
 導電性粒子は、ビスマス、インジウム、スズ及び亜鉛からなる群より選ばれる少なくとも1種の金属を含むことが好ましい。これにより、良好な導通性を維持しながら、導電性粒子の融点を低くすることができる。
 熱硬化性樹脂は、エポキシ樹脂及び(メタ)アクリル樹脂のうち少なくとも一方を含むことが好ましい。
 フラックス活性剤は、水酸基及びカルボキシル基を有する化合物であることが好ましい。
 別の側面において、本発明は太陽電池に関する。本発明に係る太陽電池は、太陽電池セルと、太陽電池セルの受光面及び裏面にそれぞれ接続された電極と、受光面側の電極と対向配置された第一の配線部材及び裏面側の電極と対向配置された第二の配線部材と、受光面側の電極と第一の配線部材との間及び裏面側の電極と第二の配線部材との間に介在する上記本発明に係る導電性接着剤と、を備える。第一の配線部材及び第二の配線部材は、それぞれ電極に電気的に接続されるとともに接着されている。
 上記本発明に係る太陽電池は、その特性が高温高湿試験後にも十分に維持される。
 更に別の側面において、本発明は太陽電池の製造方法に関する。本発明に係る製造方法は、太陽電池セルの受光面及び裏面それぞれに接続された電極に上記本発明に係る導電性接着剤を塗布する工程と、塗布された導電性接着剤を間に挟んで、第一の配線部材を受光面側の電極と対向配置し、第二の配線部材を裏面側の電極と対向配置する工程と、第一の配線部材及び第二の配線部材それぞれの太陽電池セルとは反対側に封止樹脂を配置し、受光面側の封止樹脂上にガラス基板を配置し、裏面側の封止樹脂上に保護フィルムを配置し、その状態で全体を加熱することにより、第一の配線部材及び第二の配線部材をそれぞれ電極に電気的に接続するとともに接着しながら太陽電池セルを封止する工程と、を備える。
 上記本発明に係る製造方法によれば、高温高湿試験後にも特性を十分に維持する太陽電池を効率的に製造することができる。
 更に別の側面において、本発明は太陽電池モジュールに関する。本発明に係る太陽電池モジュールは、複数の太陽電池セルと、複数の太陽電池セルの受光面及び裏面にそれぞれ接続された電極と、受光面側の電極と対向配置された第一の配線部材及び裏面側の電極と対向配置された第二の配線部材と、受光面側の電極と第一の配線部材との間及び裏面側の電極と第二の配線部材との間に介在する上記本発明に係る導電性接着剤と、を備える。第一の配線部材及び第二の配線部材は、それぞれ電極に電気的に接続されるとともに接着されている。配線部材同士の接続によって、複数の前記太陽電池セルが電気的に接続されている。
 上記本発明に係る太陽電池モジュールは、その特性が高温高湿試験後にも十分に維持される。
 太陽電池及び太陽電池モジュールにおいて、第一の配線部材及び第二の配線部材は、受光面側の電極と第一の配線部材との間及び裏面側の電極と第二の配線部材との間に当該導電性接着剤を介在させた状態で当該導電性接着剤を導電性粒子が溶融する温度に加熱する工程を含む方法により、それぞれ電極に電気的に接続されるとともに接着されていることが好ましい。
 導電性粒子が溶融する温度での加熱により、導電性粒子が溶融及び凝集して電極-配線部材間に金属結合のパスが形成されるとともに、その周辺で熱硬化性樹脂が硬化して金属結合のパスが補強される。その結果、太陽電池の特性が高温高湿試験後にも十分に維持されると考えられる。
 本発明に係る導電性接着剤によれば、Sn-Ag-Cuはんだよりも低温での接続が可能でありながら、太陽電池の電極に配線部材を接着するために用いられたときに太陽電池の特性が高温高湿試験後にも十分に維持される。
 更には、従来、導電性接着剤を長期に保存したときに粘度低下などの特性の変化が大きい場合があり、導電性接着剤の保存安定性の更なる改善も求められていたところ、レオロジーコントロール剤及び無機微粒子等を含有する本願発明に係る導電性接着剤によれば、十分な導通性を確保しながら、導電性接着剤の優れた保存安定性が発揮される。
太陽電池モジュールの一実施形態を示す模式図である。 太陽電池の製造方法の一実施形態を示す模式図である。
 本実施形態に係る導電性接着剤は、金属を含む導電性粒子と、熱硬化性樹脂とを少なくとも含有する。
 導電性粒子の融点は、好ましくは220℃以下、より好ましくは200℃以下である。導電性粒子の融点は低いことが好ましいが、その下限は通常120℃程度である。このような融点を有する導電性粒子は、例えば、ビスマス(Bi)、インジウム(In)、スズ(Sn)、及び亜鉛(Zn)から選ばれる少なくとも1種の金属を含む。導電性粒子は合金から形成される場合が多い。導電性粒子は、鉛を実質的に含まないことが好ましい。より具体的には、導電性粒子は、Sn42-Bi58はんだ(融点138℃)、Sn48-In52はんだ(融点117℃)、Sn42-Bi57-Ag1はんだ(融点139℃)、Sn90-Ag2-Cu0.5-Bi7.5はんだ(融点189℃)、Sn96-Zn8-Bi3はんだ(融点190℃)及びSn91-Zn9はんだ(融点197℃)から選ばれるはんだから構成される金属粒子である。これらはんだは、明確な融解後の固化挙動を示すため好ましい。これらは単独で又は2種以上を組み合わせて用いられる。
 上記導電性粒子は、金属のみから構成されていてもよいし、セラミックス、シリカ、及び樹脂のような金属以外の固体材料からなる核体粒子と、その表面を被覆する金属膜とを有する粒子であってもよい。核体粒子が金属粒子であることもあり得る。導電性粒子の表面を覆う金属膜の融点が220℃であればよい。
 導電性接着剤は、220℃以下の融点を有する導電性粒子とともに、220℃よりも高い融点を有する導電性粒子を含有してもよい。このような導電性粒子は、例えば、Pt、Au、Ag、Cu、Ni、Pd、Al又はこれらの組み合わせを含む合金から構成される。より具体的には、Au粒子、Ag粒子、Cu粒子、及びAgめっきCu粒子が挙げられる。
 導電性粒子の平均粒子径は、特に制限はないが、0.1~100μmであると好ましい。この平均粒子径が0.1μm未満であると、接着剤組成物の粘度が高くなり作業性が低下する傾向にある。また、導電性粒子の平均粒子径が100μmを超えると、印刷性が低下するとともに、接続信頼性向上の効果が小さくなる傾向にある。接着剤組成物の印刷性及び作業性を更に良好にする観点から、この平均粒子径は1.0~70μmであるとより好ましい。さらに、接着剤組成物の保存安定性並びに硬化物の実装信頼性を向上させる観点から、導電性粒子の平均粒子径は5.0~50μmであると特に好ましい。
 導電性粒子の含有量は、その導電性粒子に含まれる金属の質量が導電性接着剤全体の質量に対して5~95質量%となるような量であることが好ましい。導電性粒子の量が5質量%未満の場合は、導電性接着剤の硬化物の導電性が低下する傾向にある。一方、導電性粒子の量が95質量%を超えると、導電性接着剤の粘度が高くなり作業性が低下する傾向にある。また、導電性接着剤中の導電性粒子以外の成分の量が相対的に少なくなるため、硬化物の実装信頼性が低下する傾向にある。導電性粒子の量は、作業性又は導電性を向上させる観点から、10~90質量%であることがより好ましい。
 熱硬化性樹脂は、加熱により硬化して被着体を接着する作用を有すると共に、導電性接着剤中の導電性粒子及び後述するレオロジーコントロール剤等を互いに結合するバインダ成分として作用する。熱硬化性樹脂は、例えば、エポキシ樹脂、(メタ)アクリル樹脂、マレイミド樹脂及びシアネート樹脂並びにそれらの前駆体から選ばれる。これらの中では、(メタ)アクリル樹脂及びマレイミド樹脂に代表される重合可能な炭素-炭素二重結合を有する化合物、並びに、エポキシ樹脂が好ましい。これらの熱硬化性樹脂は、耐熱性及び接着性に優れ、しかも必要に応じて有機溶剤中に溶解又は分散させれば液体の状態で取り扱うこともできるため、作業性にも優れている。上述の熱硬化性樹脂は1種を単独で又は2種以上を組み合わせて用いられる。
 (メタ)アクリル樹脂は、重合可能な炭素-炭素二重結合を有する化合物から構成される。係る化合物として、例えば、モノアクリレート化合物、モノメタクリレート化合物、ジアクリレート化合物、及びジメタクリレート化合物が挙げられる。
 モノアクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、アミルアクリレート、イソアミルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、イソデシルアクリレート、ラウリルアクリレート、トリデシルアクリレート、ヘキサデシルアクリレート、ステアリルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、ジエチレングリコールアクリレート、ポリエチレングリコールアクリレート、ポリプロピレンアクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、2-ブトキシエチルアクリレート、メトキシジエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、ジシクロペンテニルオキシエチルアクリレート、2-フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2-ベンゾイルオキシエチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ベンジルアクリレート、2-シアノエチルアクリレート、γ-アクリロキシエチルトリメトキシシラン、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、アクリロキシエチルホスフェート及びアクリロキシエチルフェニルアシッドホスフェートが挙げられる。
 モノメタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、アミルメタクリレート、イソアミルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、トリデシルメタクリレート、ヘキサデシルメタクリレート、ステアリルメタクリレート、イソステアリルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、ジエチレングリコールメタクリレート、ポリエチレングリコールメタクリレート、ポリプロピレンメタクリレート、2-メトキシエチルメタクリレート、2-エトキシエチルメタクリレート、2-ブトキシエチルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、2-フェノキシエチルメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシポリエチレングリコールメタクリレート、2-ベンゾイルオキシエチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、ベンジルメタクリレート、2-シアノエチルメタクリレート、γ-メタクリロキシエチルトリメトキシシラン、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、メタクリロキシエチルホスフェート及びメタクリロキシエチルフェニルアシッドホスフェートが挙げられる。
 ジアクリレート化合物としては、例えば、エチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,3-ブタンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジルアクリレート2モルの反応物、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジアクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物のジアクリレート、ビス(アクリロキシプロピル)ポリジメチルシロキサン、ビス(アクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマーが挙げられる。
 ジメタクリレート化合物としては、例えば、エチレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジルメタクリレート2モルの反応物、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジメタクリレート、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物、ビス(メタクリロキシプロピル)ポリジメチルシロキサン、ビス(メタクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマーが挙げられる。
 これらの重合可能な炭素-炭素二重結合を有する化合物は1種を単独で又は2種以上を組み合わせて用いられる。
 熱硬化性樹脂が重合可能な炭素-炭素二重結合を有する化合物から構成される場合、導電性接着剤は、ラジカル重合開始剤を含むことが好ましい。ラジカル重合開始剤は、ボイドを有効に抑制する観点等から、有機過酸化物が好適である。また、導電性接着剤の硬化性及び粘度安定性を向上させる観点から、有機過酸化物はその1分間半減期温度が70~170℃であることが好ましい。
 ラジカル重合開始剤としては、例えば、1,1,3,3,-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、クメンハイドロパーオキサイドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 ラジカル重合開始剤の配合割合は、導電性接着剤中の導電性粒子以外の成分の総量に対して0.01~20質量%であると好ましく、0.1~10質量%であるとより好ましく、0.5~5質量%であると更に好ましい。
 エポキシ樹脂としては、2個以上のエポキシ基を有する化合物であれば特に制限なく使用することができる。このようなエポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールADなどとエピクロクヒドリドンとから誘導されるエポキシ樹脂が挙げられる。
 かかるエポキシ樹脂は市販のものを入手することができる。その具体例としては、ビスフェノールA型エポキシ樹脂であるAER-X8501(旭化成工業社製、商品名)、R-301(ジャパンエポキシレジン(株)製、商品名)、YL-980(ジャパンエポキシレジン(株)製、商品名)、ビスフェノールF型エポキシ樹脂であるYDF-170(東都化成社製、商品名)、YL-983(ジャパンエポキシレジン(株)製、商品名)、ビスフェノールAD型エポキシ樹脂であるR-1710(三井石油化学工業社製、商品名)、フェノールノボラック型エポキシ樹脂であるN-730S(大日本インキ化学工業社製、商品名)、Quatrex-2010(ダウ・ケミカル社製、商品名)、クレゾールノボラック型エポキシ樹脂であるYDCN-702S(東都化成社製、商品名)、EOCN-100(日本化薬社製、商品名)、多官能エポキシ樹脂であるEPPN-501(日本化薬社製、商品名)、TACTIX-742(ダウ・ケミカル社製、商品名)、VG-3010(三井石油化学工業社製、商品名)、1032S(ジャパンエポキシレジン(株)製、商品名)、ナフタレン骨格を有するエポキシ樹脂であるHP-4032(大日本インキ化学工業社製、商品名)、脂環式エポキシ樹脂であるEHPE-3150、CEL-3000(共にダイセル化学工業社製、商品名)、DME-100(新日本理化社製、商品名)、EX-216L(ナガセ化成工業社製、商品名)、脂肪族エポキシ樹脂であるW-100(新日本理化社、商品名)、アミン型エポキシ樹脂であるELM-100(住友化学工業社製、商品名)、YH-434L(東都化成社製、商品名)、TETRAD-X、TETRAC-C(共に三菱瓦斯化学社、商品名)、630、630LSD(共にジャパンエポキシレジン(株)製、商品名)、レゾルシン型エポキシ樹脂であるデナコールEX-201(ナガセ化成工業社製、商品名)、ネオペンチルグリコール型エポキシ樹脂であるデナコールEX-211(ナガセ化成工業社製、商品名)、ヘキサンディネルグリコール型エポキシ樹脂であるデナコールEX-212(ナガセ化成工業社製、商品名)、エチレン・プロピレングリコール型エポキシ樹脂であるデナコールEXシリーズ(EX-810、811、850、851、821、830、832、841、861(いずれもナガセ化成工業社製、商品名))、下記一般式(I)で表されるエポキシ樹脂E-XL-24、E-XL-3L(共に三井化学社製、商品名)が挙げられる。式(I)中、kは1~5の整数を示す。これらのエポキシ樹脂の中でも、イオン性不純物が少なく、かつ反応性に優れるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、アミン型エポキシ樹脂が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
 上述のエポキシ樹脂は1種を単独で又は2種以上を組み合わせて用いられる。
 熱硬化性樹脂がエポキシ樹脂である場合、導電性接着剤は、反応性希釈剤として、1個のみエポキシ基を有するエポキシ化合物を更に含有してもよい。そのようなエポキシ化合物は市販品として入手可能である。その具体例としては、例えばPGE(日本化薬社製、商品名)、PP-101(東都化成社製、商品名)、ED-502、ED-509、ED-509S(旭電化工業社製、商品名)、YED-122(油化シェルエポキシ社製、商品名)、KBM-403(信越化学工業社製、商品名)、TSL-8350、TSL-8355、TSL-9905(東芝シリコーン社製、商品名)が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 反応性希釈剤の配合割合は、本発明による効果を阻害しない範囲であればよく、上記エポキシ樹脂の全量に対して0~30質量%であることが好ましい。
 熱硬化性樹脂がエポキシ樹脂である場合、導電性接着剤はエポキシ樹脂の硬化剤を更に含有することが好適であり、それに加えて硬化性を向上させるための硬化促進剤を含有することがより好適である。
 硬化剤としては、従来用いられるものであれば特に限定されず、市販のものが入手可能である。市販の硬化剤としては、例えば、フェノールノボラック樹脂であるH-1(明和化成社製、商品名)、VR-9300(三井東圧化学社製、商品名)、フェノールアラルキル樹脂であるXL-225(三井東圧化学社製、商品名)、下記一般式(II)で表されるp-クレゾールノボラック樹脂であるMTPC(本州化学工業社製、商品名)、アリル化フェノールノボラック樹脂であるAL-VR-9300(三井東圧化学社製、商品名)、下記一般式(III)で表される特殊フェノール樹脂であるPP-700-300(日本石油化学社製、商品名)が挙げられる。式(II)中、R1は、それぞれ独立に1価の炭化水素基、好ましくはメチル基又はアリル基を示し、qは1~5の整数を示す。また、式(III)中、R2はアルキル基、好ましくはメチル基又はエチル基を示し、R3は水素原子又は1価の炭化水素基を示し、pは2~4の整数を示す。
Figure JPOXMLDOC01-appb-C000002
 硬化剤の配合割合は、エポキシ樹脂のエポキシ基1.0当量に対して、硬化剤中の反応活性基の総量が0.3~1.2当量となる割合であることが好ましく、0.4~1.0当量となる割合であることがより好ましく、0.5~1.0当量となる割合であることが更に好ましい。反応活性基が0.2当量未満であると、導電性接着剤の耐リフロークラック性が低下する傾向があり、1.2当量を超えると導電性接着剤の粘度が上昇し、作業性が低下する傾向がある。上記反応活性基は、エポキシ樹脂との反応活性を有する置換基のことであり、例えば、フェノール性水酸基が挙げられる。
 硬化促進剤としては、ジシアンジアミド等、従来硬化促進剤として用いられているものであれば特に限定されず、市販品が入手可能である。市販品としては、例えば、下記一般式(IV)で表される二塩基酸ジヒドラジドであるADH、PDH、SDH(いずれも日本ヒドラジン工業社製、商品名)、エポキシ樹脂とアミン化合物との反応物からなるマイクロカプセル型硬化剤であるノバキュア(旭化成工業社製、商品名)が挙げられる。式(IV)中、R4は2価の芳香族基又は炭素数1~12の直鎖若しくは分岐鎖のアルキレン基、好ましくはm-フェニレン基又はp-フェニレン基を示す。これらの硬化促進剤は1種を単独で又は2種以上を組み合わせて用いられる。
Figure JPOXMLDOC01-appb-C000003
 市販の硬化促進剤として、上述のものの他、例えば、有機ボロン塩化合物であるEMZ・K、TPPK(共に北興化学工業社製、商品名)、三級アミン類又はその塩であるDBU、U-CAT102、106、830、840、5002(いずれもサンアプロ社製、商品名)、イミダゾール類であるキュアゾール、2PZ-CN、2P4MHZ、C17Z、2PZ-OK、2PZ-CNS、C11Z-CNS(いずれも四国化成(株)製、商品名)を用いてもよい。
 上記硬化促進剤の配合割合は、エポキシ樹脂100質量部に対して0.01~90質量部であると好ましく、0.1~50質量部であるとより好ましい。この硬化促進剤の配合割合が0.01質量部未満であると硬化性が低下する傾向があり、90質量部を超えると粘度が増大し、導電性接着剤を取り扱う際の作業性が低下する傾向がある。
 導電性接着剤は、好ましくはフラックス活性剤を含有する。フラックス活性剤は、金属を含む導電性粒子の表面に形成された酸化膜を除去する機能を有する化合物である。フラックス活性剤として、熱硬化性樹脂の硬化反応を阻害しない化合物が用いられる。このような化合物としては、ロジン系樹脂、及び、カルボキシル基、フェノール性水酸基または水酸基を含有する化合物が挙げられる。良好なフラックス活性を示し、かつ熱硬化性樹脂として用いるエポキシ樹脂との反応性を示すことから、水酸基及びカルボキシル基を含有する化合物が好ましく、脂肪族ジヒドロキシカルボン酸が特に好ましい。具体的には、下記一般式(V)で表される化合物又は酒石酸が好ましい。式(V)中、R5は置換基を有していてもよい炭素数1~5のアルキル基を示し、本発明による上述の効果をより有効に発揮する観点から、メチル基、エチル基、プロピル基、ブチル基又はペンチル基であると好ましい。また、n及びmはそれぞれ独立に0~5の整数を示し、本発明による上述の効果をより有効に発揮する観点から、nが0かつmが1であるか、n及びmの両方が1であると好ましく、n及びmの両方が1であるとより好ましい。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(V)で表される化合物としては、例えば、2,2-ビスヒドロキシメチルプロピオン酸、2,2-ビスヒドロキシメチルブタン酸及び2,2-ビスヒドロキシメチルペンタン酸が挙げられる。
 フラックス活性剤の含有量は、本発明による上記効果をより有効に発揮する観点から、導電性粒子100質量部に対して、0.5~20質量部であることが好ましい。さらに、保存安定性、導電性の観点から、1.0~10質量部であることがより好ましい。フラックス活性剤の含有量が0.5質量部未満の場合、導電性粒子を構成する金属の溶融性が低下し導電性が低下する傾向があり、20質量部を超えた場合、保存安定性、印刷性が低下する傾向がある。
 導電性接着剤は、好ましくはレオロジーコントロール剤を含有する。このレオロジーコントロール剤は、せん断力が低い場合には高粘度を示し、せん断力が高い場合には低粘度を示すチキソトロピック性を導電性接着剤に付与する化合物である。レオロジーコントロール剤として用いられる化合物としては、例えば、硬化ひまし油、蜜ロウ及びカルナバワックスのようなエステル結合を有する化合物(例えば、ITOHWAX CO-FA、DCO-FA、E-210、E-230、E-250、E-270、E-70G、J-50、J-420、J-500、J-550S、J-530.J-630、J-700)、ステアリン酸アミド及びヒドロキシステアリン酸エチレンビスアミドのような単数又は複数のアミド結合を有する化合物(例えば、ビックケミー・ジャパン社製 商品名 BYK-405、Anti―Terra-205、味の素ヘルシーサプライ社製 商品名 GP-1、EB-21)、尿素結合を含有するウレア化合物及びこれらに中極性基又は低極性基を末端に導入した化合物(例えば、ビックケミー・ジャパン社製 商品名 BYK-410、411、420、425、428、430、431、LPR20320、P104、P105)が挙げられる。
 無機微粒子又は有機微粒子をレオロジーコントロール剤として用いることができる。無機微粒子は、例えば、アルミナ、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、結晶性シリカ、非晶性シリカ、窒化ホウ素及びチタニアから選ばれる1種以上の無機材料から形成される。有機微粒子は、例えば、スチレン-ジビニルベンゼン共重合体、ポリスチレン、メタクリル酸アルキル-ブタジエン-スチレン共重合体、アクリル酸アルキル-ブタジエン-スチレン共重合体、メタクリル酸アルキル-シリコーン共重合体、アクリル酸アルキル-シリコーン共重合体、ポリグアニジン、ポリメタクリル酸メチル、ポリブタジエン、ポリアミド、ポリウレタン、ポリエチレン、ポリプロピレン、フェノール樹脂、シリコーンゴム及びポリアクリロニトリルから選ばれる有機材料から形成される。コア層とシェル層とから構成され、それぞれがこれらの有機材料を含むコアシェル型有機微粒子を用いることもできる。無機微粒子及び有機微粒子の種類、形状は特に限定されない。
 レオロジーコントロール剤は、導電性接着剤にチキソ性を付与するために添加される。チキソ性が付与されることにより、冷凍又は冷蔵保管時及び室温での使用時に、導電性接着剤中に分散した導電性粒子の沈降が抑制されて、導電性接着剤の良好な保存安定性を保持することができる。
 レオロジーコントロール剤は、単独又は二種類以上を組み合わせて使用することができる。レオロジーコントロール剤は、特に、シリカ粒子、並びに、ポリスチレン、スチレン-ジビニルベンゼン共重合体、メタクリル酸アルキル-ブタジエン-スチレン共重合体、アクリル酸アルキル-ブタジエン-スチレン共重合体若しくはメタクリル酸アルキル-シリコーン共重合体の粒子から選ばれる少なくとも1種であることが分散性に優れるため好ましい。シリカ粒子は多種多様な表面処理が施される。ポリスチレン粒子等の有機微粒子は狭い粒度分布を有することが好ましい。
 上記微粒子の平均粒子径は100μm以下が好ましく、30μm以下がより好ましい。平均粒子径が100μmを超えると、微粒子の表面積低下に伴って粘度及びチキソ性が低下するため、導電性粒子の沈降抑制の効果が低下し、結果として作業性が低下する原因となり得る。微粒子の平均粒径の下限は特に制限はないが、微粒子の表面積の増加に伴って急激に粘度が上昇するほか、分散性も低下するため0.001μm以上が好ましい。
 上記微粒子の平均粒子径及び最大粒子径は、例えば、走査型電子顕微鏡(SEM)を用いて、200個程度の微粒子の粒径を測定する方法や、微粒子自体をレーザー散乱回折法の原理を用いた粒度分布測定装置を使用して測定する方法により測定される。SEMを用いた測定方法としては、例えば、導電性接着剤を用いて被着体を接着した後、加熱硬化(好ましくは150~200℃で1~10時間)させてサンプルを作製し、このサンプルの中心部分を切断して、その切断面をSEMで観察する方法が挙げられる。
 レオロジーコントロール剤の含有量は、熱硬化性樹脂100質量部に対して、0.1~50質量部であることが好ましく、保存安定性、導電性の観点から、0.5~30質量部であることがより好ましい。レオロジーコントロール剤の含有量が0.1質量部未満の場合、粘度が低下して導電性粒子の沈降抑制の効果が小さくなる傾向があり、50質量部を超えた場合、印刷性が低下する傾向がある。
 導電性接着剤は、印刷性、ディスペンス性等の作業性に加え、低温(-20~5℃)での保管時の安定性を考慮すると、回転粘度計により測定温度25℃、回転速度0.5rpmの条件で測定される粘度が100~500Pa・sであることが好ましく、150~300Pa・sであることがより好ましい。この粘度が100Pa・s未満の場合、印刷後やディスペンス後に形状の保持が困難になる傾向がある。一方、25℃、0.5rpmにおける粘度が500Pa・sよりも高い場合、印刷性が損なわれる可能性が高い。
 25℃で24時間放置後に回転粘度計により測定温度25℃、回転速度0.5rpmの条件で測定される導電性接着剤の粘度(B)と、放置前に同条件で測定される導電性接着剤の粘度(A)の比に関して、(B)/(A)が0.7~1.5であることが好ましい。(B)/(A)が0.7未満の場合、導電性粒子が沈降して導電性接着剤が不均一化している可能性が高く、印刷性及び体積抵抗等の電気特性が低下する恐れがある。一方、(B)/(A)が1.5よりも高い場合、熱硬化性樹脂の硬化が進行している可能性があり、印刷性が悪化する恐れがある。
 上記粘度は、公知の回転粘度計を用いて測定することができるが、高粘度の導電性接着剤に関しては特殊溝が形成されたSPPローターを用いた回転粘度計(例えば東機産業社製TV-33型粘度計)が好適である。放置前の粘度は、導電性接着剤を調製した直後、具体的には、導電性接着剤を構成する全成分を混合してから2時間以内に測定される。
 導電性接着剤は、必要に応じて、応力緩和のための可撓剤、作業性向上のための希釈剤、接着力向上剤、濡れ性向上剤及び消泡剤からなる群より選ばれる1種以上の添加剤を含んでもよい。また、これらの成分の他、本発明による効果を阻害しない範囲において各種添加剤が含まれていてもよい。
 例えば、可撓剤としては、液状ポリブタジエン(宇部興産社製、商品名「CTBN-1300×31」、「CTBN-1300×9」、日本曹達社製、商品名「NISSO-PB-C-2000」)などが挙げられる。可撓剤の含有量は、熱硬化性樹脂100質量部に対して、0~500質量部であると好適である。
 導電性接着剤は、接着力向上の目的で、シランカップリング剤やチタンカップリング剤などのカップリング剤を含有してもよい。シランカップリング剤としては、例えば、信越化学社製、商品名「KBM-573」が挙げられる。また、濡れ性向上の目的で、アニオン系界面活性剤やフッ素系界面活性剤等を導電性接着剤に含有させてもよい。導電性接着剤は、消泡剤としてシリコーン油等を含有してもよい。上記接着力向上剤、濡れ性向上剤、消泡剤は、それぞれ1種を単独で又は2種以上を組み合わせて用いられる。これらは導電性接着剤の全体量に対して、0.1~10質量%含まれることが好ましい。
 導電性接着剤は、導電性接着剤の作製時の作業性及び使用時の塗布作業性をより良好にするため、必要に応じて希釈剤を含有してもよい。このような希釈剤としては、ブチルセロソルブ、カルビトール、酢酸ブチルセロソルブ、酢酸カルビトール、ジプロピレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル、α-テルピネオール等の比較的沸点の高い有機溶剤が好ましい。この希釈剤は、導電性接着剤の全体量に対して0.1~30質量%含まれることが好ましい。
 上述の各成分は、それぞれにおいて例示されたもののいずれを組み合わせてもよい。
 導電性接着剤は、上述の各成分を一度に又は複数回に分けて、必要に応じて加熱するとともに、混合、溶解、解粒混練又は分散することにより、各成分が均一に分散したペースト状のものとして得られる。この際に用いられる装置としては、公知の撹拌器、らいかい器、3本ロール、プラネタリーミキサー等が挙げられる。
 以上説明した本実施形態に係る導電性接着剤によると、良好な保存安定性を有しつつ、短時間の硬化で所定の接着力と導電性を両立することが可能である。本実施形態に係る導電性接着剤、太陽電池セルに接続された電極と配線部材とを電気的に接続するために好適に用いられる。
 図1は、太陽電池モジュールの一実施形態の要部を示す模式図であり、複数の太陽電池セルが相互に配線接続された構造の概略を示している。図1の(a)は受光面側から、図1の(b)は裏面側から、図1の(c)は側面側から見た太陽電池モジュールを示す。
 太陽電池モジュール100は、複数の太陽電池セル6と、それぞれの太陽電池セル6の受光面側に設けられたグリッド電極7及びバス電極(表面電極)3aと、太陽電池セル6の裏面側に設けられた裏面電極8及びバス電極(表面電極)3bと、受光面側の表面電極3aと対向配置された第一の配線部材4a及び裏面側の表面電極3bと対向配置された第二の配線部材4bと、受光面側の表面電極3aと第一の配線部材4aとの間及び裏面側の表面電極3bと第二の配線部材4bとの間に介在する導電性接着剤10とを備える。第一の配線部材4aと第二の配線部材4bとが互いに接続されることにより複数の太陽電池セル6が直列に電気的に接続されている。
 第一の配線部材4aは、受光面側の表面電極3aと第一の配線部材4aとの間に当該導電性接着剤を介在させた状態で当該導電性接着剤を導電性粒子が溶融する温度(例えば、導電性粒子を構成する金属の融点以上の温度)に加熱する工程を含む方法により、受光面側の表面電極3aに電気的に接続されるとともに接着されている。同様に、第二の配線部材4bは、裏面側の表面電極3bと第二の配線部材4bとの間に当該導電性接着剤を介在させた状態で当該導電性接着剤を導電性粒子が溶融する温度に加熱する工程を含む方法により、裏面側の表面電極3bに電気的に接続されるとともに接着されている。
 第一及び第二の配線部材4a、4bとして、当該技術分野において通常使用されているCu線及びはんだメッキ線を用いることができる。第一及び第二の配線部材4a、4bとして、プラスチック基板上に金属配線を形成したフィルム状配線基板を使用することもできる。
 図2は、太陽電池の製造方法の一実施形態を示す模式図である。図2に示す実施形態に係る方法においては、太陽電池セル6の受光面に接続されたグリッド電極7及びバス電極(表面電極)3aと、太陽電池セル6の裏面に接続された裏面電極8とが設けられる(図2の(a))。
 次いで、表面電極3aに液状の導電性接着剤10が塗布され、塗布された導電性接着剤10を間に挟んで、第一の配線部材4aが表面電極3aと対向配置される(図2の(b))。導電性接着剤は、ディスペンス法、スクリーン印刷法、スタンピング法等の方法により塗布することができる。続いて、裏面電極8に液状の導電性接着剤10が塗布され、塗布された導電性接着剤10を間に挟んで、第二の配線部材4bが裏面電極8と対向配置される(図2の(c))。
 その後、第一の配線部材4aの太陽電池セル6とは反対側に封止樹脂15aが配置され、第二の配線部材4bの太陽電池セル6とは反対側に封止樹脂15bが配置される(図2の(d))。封止樹脂15a、15bは、一般に使用される、エチレン・酢酸ビニル共重合樹脂であるEVA又はポリビニルブチラールであり得る。
 更に、受光面側の封止樹脂15a上にガラス基板16が配置され、裏面側の封止樹脂15b上にバックシートと呼ばれる保護フィルム17が配置される。この状態で全体を必要により加圧しながら導電性接着剤10中の導電性粒子が溶融する温度に加熱することにより、第一の配線部材4aを表面電極3aに、第二の配線部材4bを裏面電極8にそれぞれ電気的に接続するとともに接着しながら、同時に、太陽電池セルが封止樹脂15a、15bにより封止される。このときの加熱の条件は、例えば、150~170℃で1分~30分間である。
 このように、配線部材の接着と、太陽電池セルの封止を一括で行うことにより、これまでの方法と比較して工程の著しい短縮及び生産性の向上による低コスト化を図ることができる。
 太陽電池の製造方法は上記実施形態に限られるものではなく、適宜変形が可能である。例えば、配線部材と電極との接続を太陽電池セルの封止と一括して行うのに代えて、各配線部材の接続を逐次的に又は同時に行った後、太陽電池セルを封止してもよい。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
1.実施例1~8、参考例1~4
1-1.液状導電性接着剤の作製及びその評価
 下記の材料を用いて、液状導電性接着剤を調整した。
(熱硬化性樹脂)
YDF-170(東都化成社製、ビスフェノールF型エポキシ樹脂の商品名、エポキシ当量=170)
TETRAD-X:アミン型エポキシ樹脂、三菱瓦斯化学社製商品名
(硬化促進剤)
2PZ-CN(四国化成社製、イミダゾール化合物の商品名)
(フラックス活性剤)
BHBA:2,2-ビスヒドロキシメチルブタン酸
BHVA:2,2-ビスヒドロキシメチルペンタン酸
(導電性粒子)
Sn42-Bi58粒子:融点138℃、平均粒子径20μm
Sn42-Bi57-Ag1(はんだ)粒子:融点139℃、平均粒径20μm
Sn96.5-Ag3-Cu0.5はんだ:融点217℃
TCG-1:銀粉、徳力化学研究所製商品名
MA05K:AgめっきCu粉、日立化成工業株式会社製商品名
実施例1
 YDF-170と、2PZ-CNと、BHPAとを混合し、混合物を3本ロールに3回通して、接着剤成分を調製した。この接着剤成分30質量部に対して、Sn42-Bi58粒子を加えて混合した。さらにそれらの混合物を3本ロールに3回通した後、真空撹拌らいかい器を用いて500Pa以下で10分間脱泡処理を行って、導電性接着剤を得た。
実施例2~7、参考例1~4
 表1及び表2に示す各材料を表に示す配合割合で用いたこと以外は実施例1と同様の手順で、実施例2~7、参考例1~4の導電性接着剤を得た。表1、2に示した材料の詳細は以下の通りである。表1、2中の各材料の配合割合の単位は質量部である。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
2.太陽電池特性の測定
 受光面及び裏面上に表面電極(材質:銀ガラスペースト、2mm×125mm)が形成された太陽電池セル(125mm×125mm、厚さ310μm)を準備した。受光面側の表面電極上に、導電性接着剤をメタルマスク(厚み100μm、開口寸法1.2mm×125mm)を用いて印刷し、印刷形状を観察した。次に、太陽電池セルの表面電極上に、はんだで被覆された配線部材としてのタブ線(日立電線社製、商品名:A-TPS)を、印刷された導電性接着剤を介して配置し、ホットプレート上で160℃で10分間加熱して、タブ線を接着した。同様の処理により、裏面側の表面電極にもタブ線を接着して、タブ線付き太陽電池セルを得た。得られたタブ線付き太陽電池セルの外観を目視で観察した。
 タブ線付き太陽電池セルのIV曲線を、ソーラシミュレータ(ワコム電創社製、商品名:WXS-155S-10、AM:1.5G)を用いて測定した。次いで、太陽電池セルを85℃、85%RHの高温高湿雰囲気下で240時間静置した後、同様にIV曲線を測定した。それぞれのIV曲線から太陽電池特性を示す曲線因子(fill factor、以下「F.F」と略す。)をそれぞれ導出し、高温高湿雰囲気下に静置する前のF.F(0h)と高温高湿条件下に静置した後のF.F(240h)の変化率[=(F.F(240h)/F.F(0h))×100]をΔF.Fとし、これを評価指標として用いた。一般に、ΔF.Fの値が95%以上であると接続信頼性が良好であると判断される。評価結果を表1、2に示す。
実施例8~18、参考例5~7
1.液状導電性接着剤の作製及びその評価
実施例8
 ビスフェノールF型エポキシ樹脂(YDF-170、東都化成社製、エポキシ当量170)11.0質量部と、硬化促進剤としてのイミダゾール化合物(2PZ-CN、四国化成社製)0.5質量部と、フラックス活性剤としての2,2-ビスヒドロキシメチルプロピオン酸(BHPA)1.5質量部と、レオロジーコントロール剤としての疎水性表面処理を施したシリカ粒子(R972、日本アエロジル社製、平均粒径16nm)0.4質量部とを混合し、3本ロールに3回通して接着剤成分を調製した。
 得られた接着剤成分に導電性粒子であるSn42-Bi58粒子(平均粒子径20μm、融点:138℃)87.0質量部を加えて乳鉢を用いて20分間混合した。次いで、混合物を、真空撹拌らいかい器を用いて10分間脱泡処理して、導電性接着剤を得た。
実施例9~18、参考例5~7]
 表3、表4に示す各材料を表に示す配合割合で用いたこと以外は実施例8と同様の手順で、実施例9~18、参考例5~7の導電性接着剤を得た。表3、4に示した材料の詳細は以下の通りである。表3、4中の各材料の配合割合の単位は質量部である。
(熱硬化性樹脂)
YDF-170(東都化成社製、ビスフェノールF型エポキシ樹脂の商品名、エポキシ当量=170)
YH-434L:4官能ポリグリシジルアミン型エポキシ樹脂、東都化成社製
ED-509S:t-ブチルフェニルグリシジルエーテル、旭電化工業社製
(硬化促進剤)
2PZ-CN(四国化成社製、イミダゾール化合物の商品名)
(フラックス活性剤)
BHBA:2,2-ビスヒドロキシメチルブタン酸
BHVA:2,2-ビスヒドロキシメチルペンタン酸
(導電性粒子)
Sn42-Bi58粒子:融点138℃、平均粒子径20μm
Sn42-Bi57-Ag1(はんだ)粒子:融点139℃、平均粒径20μm
(レオロジーコントロール剤)
R805:オクチルシランによる疎水化処理されたシリカ粒子(日本アエロジル社製、平均粒径12nm)
CS1:ブタジエン系ゴムのコア層と、ポリメタクリル酸メチルのシェル層とを有するコアシェル型有機微粒子(ロームアンドハースジャパン社製、EXL2655、平均粒径600nm以下)
CS2:ポリアクリル酸エステル系ゴムのコア層と、ポリメタクリル酸メチルのシェル層とを有するコアシェル型有機微粒子(三菱レイヨン社製、W-450A、平均粒径600nm以下)
RC1:変性ウレア化合物(ビックケミー・ジャパン社製、BYK410(不揮発分52%))
RC2:ポリアミドアマイド化合物(ビックケミー・ジャパン社製、Anti-Terra-205(不揮発分52%))
RC3:ヒドロキシ脂肪酸アミド化合物(伊藤製油社製、ITOHWAX J-630)
RC4:変性アミド化合物(味の素ヘルシーサプライ社製、GP-1)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
粘度及び外観の評価
 各実施例、参考例で得られた液状の導電性接着剤を容量300ccのガラス容器内に保管し、作製直後及び室温(23~28℃)で24時間放置後の導電性接着剤の粘度を、平行平板を装着した回転粘度計(SPPローター使用、東機産業社製TV-33型粘度計)を用いて測定した。同時に、導電性接着剤の外観を観察し、分離及び導電性粒子の沈降の有無を確認した。評価結果を表5、表6に示した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
2.太陽電池特性の測定
 良好な安定性を示した実施例8、9、12、13、14、15の導電性接着剤を用い、実施例1~7と同様に太陽電池の作製及びその評価を行った。評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000011
参考例8
 太陽電池セルの受光面及び裏面の表面電極上にフラックス剤(千住金属製、商品名:デルタラックス533)を塗布した。フラックス剤が塗布された表面電極上にSn96.5-Ag3.0-Cu0.5のはんだで被覆されたタブ線(日立電線社製、商品名:A-TPS)を配置し、ホットプレート上で260℃に加熱して、タブ線を被覆するはんだを溶融させてタブ線と表面電極との接続を試みた。しかし、加熱後の急速冷却時に太陽電池セルが割れたため、太陽電池特性を測定することができなかった。
 以上の実験結果から、実施例8~18の導電性接着剤はいずれも良好な保存安定性を示し、かつ優れた太陽電池特性を示すことが確認された。一方、レオロジーコントロール剤を含まない参考例の導電性接着剤は、室温放置後の接着剤組成物の粘度が低下するとともに、2層に分離して導電粒子が沈降し、保存安定性に劣ることが分かった。また、従来のSn96.5-Ag3.0-Cu0.5のはんだで被覆されたタブ線を用いた参考例8では接続後の冷却時に太陽電池セルの割れが発生し、接続プロセスの裕度が狭いことが分かった。
実施例19
 受光面及び裏面上に表面電極(材質:銀ガラスペースト、2mm×125mm)が形成された太陽電池セル(125mm×125mm、厚さ310μm)を準備した。その表面電極上に、メタルマスク(厚み100μm、開口寸法1.2mm×125mm)を用いて実施例9の導電性接着剤を印刷した。印刷された導電性接着剤上に、はんだで被覆された配線部材としてのタブ線(日立電線社製、商品名:A-TPS)を配置させた。その後、同様の手順により、太陽電池セル裏面側の表面電極上にも、導電性接着剤を介してタブ線を配置した。続いて、太陽電池セルの裏面側に封止樹脂(三井化学ファブロ社製、商品名:ソーラーエバSC50B)及び保護フィルム((株)コバヤシ製、商品名:コバテックPV)を、太陽電池セルの受光面側に封止樹脂(三井化学ファブロ社製、ソーラーエバSC50B)及びガラス基板(200×200×3mm)をそれぞれ積層した。得られた積層体を、真空ラミネータ((株)エヌ・ピー・シー製、商品名:LM-50×50-S)の熱板側にガラス基板が接するように搭載し、5分間真空引きを行った。その後、真空ラミネータの真空を解放した状態で165℃で10分間加熱して、太陽電池を作製した。得られた太陽電池の特性を、実施例8と同様の方法で測定した。その結果、表面電極及びタブ線からの接着剤のはみ出しは微小で良好な外観を示し、かつ85℃、85%RH、240時間静置後のΔF.Fも96.8%と良好な特性が示されることが分かった。
 3a…バス電極(表面電極)、3b…バス電極(表面電極)、4a…第一の配線部材、4b…第二の配線部材、6…太陽電池セル、7…グリッド電極、8…裏面電極、10…導電性接着剤、15a,15b…封止樹脂、16…ガラス基板、17…保護フィルム、100…太陽電池モジュール。

Claims (17)

  1.  金属を含む導電性粒子と、
     熱硬化性樹脂と、
     フラックス活性剤と、を含有する導電性接着剤であって、
     前記導電性粒子の融点が220℃以下であり、
     太陽電池セルに接続された電極と配線部材を前記電極に電気的に接続するとともに接着するために用いられる、導電性接着剤。
  2.  前記導電性粒子が、ビスマス、インジウム、スズ及び亜鉛からなる群より選ばれる少なくとも1種の金属を含む、請求項1に記載の導電性接着剤。
  3.  前記熱硬化性樹脂が、エポキシ樹脂及び(メタ)アクリル樹脂のうち少なくとも一方を含む、請求項1又は2に記載の導電性接着剤。
  4.  前記フラックス活性剤が、水酸基及びカルボキシル基を有する化合物である、請求項1~3のいずれか一項に記載の導電性接着剤。
  5.  太陽電池セルと、
     前記太陽電池セルの受光面及び裏面にそれぞれ接続された電極と、
     受光面側の前記電極と対向配置された第一の配線部材及び裏面側の前記電極と対向配置された第二の配線部材と、
     受光面側の前記電極と前記第一の配線部材との間及び裏面側の前記電極と前記第二の配線部材との間に介在する請求項1~4のいずれか一項に記載の導電性接着剤と、を備え、
     前記第一の配線部材及び前記第二の配線部材がそれぞれ前記電極に電気的に接続されるとともに接着されている、
    太陽電池。
  6.  太陽電池セルの受光面及び裏面それぞれに接続された電極に請求項1~4のいずれか一項に記載の導電性接着剤を塗布する工程と、
     塗布された前記導電性接着剤を間に挟んで、第一の配線部材を受光面側の前記電極と対向配置し、第二の配線部材を裏面側の前記電極と対向配置する工程と、
     前記第一の配線部材及び前記第二の配線部材それぞれの前記太陽電池セルとは反対側に封止樹脂を配置し、受光面側の前記封止樹脂上にガラス基板を配置し、裏面側の前記封止樹脂上に保護フィルムを配置し、その状態で全体を加熱することにより、前記第一の配線部材及び前記第二の配線部材をそれぞれ前記電極に電気的に接続するとともに接着しながら前記太陽電池セルを封止する工程と、
    を備える太陽電池の製造方法。
  7.  複数の太陽電池セルと、
     前記複数の太陽電池セルの受光面及び裏面にそれぞれ接続された電極と、
     受光面側の前記電極と対向配置された第一の配線部材及び裏面側の前記電極と対向配置された第二の配線部材と、
     受光面側の前記電極と前記第一の配線部材との間及び裏面側の前記電極と前記第二の配線部材との間に介在する請求項1~4のいずれか一項に記載の導電性接着剤と、を備え、
     前記第一の配線部材及び前記第二の配線部材がそれぞれ前記電極に電気的に接続されるとともに接着されており、
     前記配線部材同士の接続によって複数の前記太陽電池セルが電気的に接続されている、太陽電池モジュール。
  8.  金属を含む導電性粒子と、
     熱硬化性樹脂と、
     フラックス活性剤と、
     レオロジーコントロール剤と、を含有する導電性接着剤であって、
     回転粘度計により測定温度25℃、回転速度0.5rpmの条件で測定される粘度が100~500Pa・sであり、
     太陽電池セルに接続された電極に配線部材を電気的に接続するとともに接着するために用いられる、導電性接着剤。
  9.  金属を含む導電性粒子と、
     熱硬化性樹脂と、
     フラックス活性剤と、
     無機微粒子又は有機微粒子と、を含有する導電性接着剤であって、
     回転粘度計により測定温度25℃、回転速度0.5rpmの条件で測定される粘度が100~500Pa・sであり、
     太陽電池セルに接続された電極に配線部材を電気的に接続するとともに接着するために用いられる、導電性接着剤。
  10.  25℃で24時間放置された後に回転粘度計により測定温度25℃、回転速度0.5rpmの条件で測定される粘度の、放置される前に回転粘度計により測定温度25℃、回転速度0.5rpmの条件で測定される粘度に対する比が0.7~1.5である、請求項8又は9に記載の導電性接着剤。
  11.  前記導電性粒子の融点が220℃以下である、請求項8~10のいずれか一項に記載の導電性接着剤。
  12.  前記導電性粒子が、ビスマス、インジウム、スズ及び亜鉛からなる群より選ばれる少なくとも1種の金属を含む、請求項8~11のいずれか一項に記載の導電性接着剤。
  13.  前記熱硬化性樹脂が、エポキシ樹脂及び(メタ)アクリル樹脂のうち少なくとも一方を含む、請求項8~12のいずれか一項に記載の導電性接着剤。
  14.  前記フラックス活性剤が、水酸基及びカルボキシル基を有する化合物である、請求項8~13のいずれか一項に記載の導電性接着剤。
  15.  太陽電池セルと、
     前記太陽電池セルの受光面及び裏面にそれぞれ接続された電極と、
     受光面側の前記電極と対向配置された第一の配線部材及び裏面側の前記電極と対向配置された第二の配線部材と、
     受光面側の前記電極と前記第一の配線部材との間及び裏面側の前記電極と前記第二の配線部材との間に介在する請求項8~14のいずれか一項に記載の導電性接着剤と、を備え、
     前記第一の配線部材及び前記第二の配線部材がそれぞれ前記電極に電気的に接続されるとともに接着されている、太陽電池。
  16.  太陽電池セルの受光面及び裏面それぞれに接続された電極に請求項8~14のいずれか一項に記載の導電性接着剤を塗布する工程と、
     塗布された前記導電性接着剤を間に挟んで、第一の配線部材を受光面側の前記電極と対向配置し、第二の配線部材を裏面側の前記電極と対向配置する工程と、
     前記第一の配線部材及び前記第二の配線部材それぞれの前記太陽電池セルとは反対側に封止樹脂を配置し、受光面側の前記封止樹脂上にガラス基板を配置し、裏面側の前記封止樹脂上に保護フィルムを配置し、その状態で全体を加熱することにより、前記第一の配線部材及び前記第二の配線部材をそれぞれ前記電極に電気的に接続するとともに接着しながら前記太陽電池セルを封止する工程と、を備える太陽電池の製造方法。
  17.  複数の太陽電池セルと、
     前記複数の太陽電池セルの受光面及び裏面にそれぞれ接続された電極と、
     受光面側の前記電極と対向配置された第一の配線部材及び裏面側の前記電極と対向配置された第二の配線部材と、
     受光面側の前記電極と前記第一の配線部材との間及び裏面側の前記電極と前記第二の配線部材との間に介在する請求項8~14のいずれか一項に記載の導電性接着剤と、を備え、
     前記第一の配線部材及び前記第二の配線部材がそれぞれ前記電極に電気的に接続されるとともに接着されており、
     前記配線部材同士の接続によって複数の前記太陽電池セルが電気的に接続されている、太陽電池モジュール。
PCT/JP2010/068061 2009-10-15 2010-10-14 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール WO2011046176A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10823444A EP2490265A1 (en) 2009-10-15 2010-10-14 Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module
US13/501,981 US8962986B2 (en) 2009-10-15 2010-10-14 Conductive adhesive, solar cell, method for manufacturing solar cell, and solar cell module
KR1020127011972A KR101420547B1 (ko) 2009-10-15 2010-10-14 도전성 접착제, 태양 전지 및 그 제조 방법, 그리고 태양 전지 모듈
JP2011536172A JP5875867B2 (ja) 2009-10-15 2010-10-14 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール
CN2010800465367A CN102576766A (zh) 2009-10-15 2010-10-14 导电性粘接剂、太阳能电池及其制造方法、以及太阳能电池模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009238385 2009-10-15
JP2009-238385 2009-10-15

Publications (1)

Publication Number Publication Date
WO2011046176A1 true WO2011046176A1 (ja) 2011-04-21

Family

ID=43876225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068061 WO2011046176A1 (ja) 2009-10-15 2010-10-14 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール

Country Status (7)

Country Link
US (1) US8962986B2 (ja)
EP (1) EP2490265A1 (ja)
JP (2) JP5875867B2 (ja)
KR (1) KR101420547B1 (ja)
CN (1) CN102576766A (ja)
TW (1) TWI418605B (ja)
WO (1) WO2011046176A1 (ja)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043491A1 (ja) * 2010-09-29 2012-04-05 日立化成工業株式会社 太陽電池モジュール
WO2012102077A1 (ja) * 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物、接続体及び太陽電池モジュール
WO2012101869A1 (ja) * 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法
WO2012102079A1 (ja) * 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物、接続体及び太陽電池モジュール
WO2012102076A1 (ja) * 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物、導電性接着剤付金属導線、接続体及び太陽電池モジュール
US20120260965A1 (en) * 2011-06-14 2012-10-18 Jongkyoung Hong Solar cell module
WO2013012071A1 (ja) * 2011-07-21 2013-01-24 日立化成工業株式会社 導電材料
WO2013015285A1 (ja) * 2011-07-25 2013-01-31 日立化成工業株式会社 素子および太陽電池
WO2013015172A1 (ja) * 2011-07-25 2013-01-31 日立化成工業株式会社 素子及び太陽電池
US20130081691A1 (en) * 2011-10-04 2013-04-04 Shin-Etsu Chemical Co., Ltd. Coating fluid for boron diffusion
JP2013076045A (ja) * 2011-09-13 2013-04-25 Tamura Seisakusho Co Ltd 接着剤組成物およびそれを用いた太陽電池セルと配線基板との接続方法
CN103199122A (zh) * 2012-01-10 2013-07-10 日东电工株式会社 导电性粘接片及太阳能电池组件
CN103296106A (zh) * 2012-02-23 2013-09-11 Lg电子株式会社 太阳能电池模块
WO2013090607A3 (en) * 2011-12-14 2013-11-21 Dow Corning Corporation A photovoltaic cell and an article including an isotropic or anisotropic electrically conductive layer
WO2013090545A3 (en) * 2011-12-13 2013-12-05 Dow Corning Corporation Photovoltaic cell and method of forming the same
JP2013258313A (ja) * 2012-06-13 2013-12-26 Hitachi Chemical Co Ltd 太陽電池モジュールの製造方法
JP2014002899A (ja) * 2012-06-18 2014-01-09 Sekisui Chem Co Ltd 導電接着材料、太陽電池モジュール部品及び太陽電池モジュール部品の製造方法
JP2014003175A (ja) * 2012-06-19 2014-01-09 Hitachi Chemical Co Ltd 太陽電池素子の製造方法、太陽電池素子及び太陽電池
JP2014037490A (ja) * 2012-08-17 2014-02-27 Taiyo Holdings Co Ltd 無機粒子含有ペーストおよび塗布形成物
JP2014037491A (ja) * 2012-08-17 2014-02-27 Taiyo Holdings Co Ltd 無機粒子含有ペーストおよび塗布形成物
JP2014070180A (ja) * 2012-09-28 2014-04-21 Tamura Seisakusho Co Ltd 接着剤組成物、太陽電池モジュール、および、太陽電池セルと配線との接続方法
JP2014084452A (ja) * 2012-10-26 2014-05-12 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
EP2749620A1 (en) * 2011-08-23 2014-07-02 Dexerials Corporation Conductive adhesive and solar cell module
JP2014220510A (ja) * 2012-02-29 2014-11-20 日立化成株式会社 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP5655974B2 (ja) * 2012-02-23 2015-01-21 日立化成株式会社 不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法、及び太陽電池素子の製造方法
JP2015115488A (ja) * 2013-12-12 2015-06-22 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
WO2015098059A1 (ja) * 2013-12-26 2015-07-02 タツタ電線株式会社 電子部品接着材料及び電子部品の接着方法
JP2015137299A (ja) * 2014-01-21 2015-07-30 住友ベークライト株式会社 樹脂組成物、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、バックグラインドテープ兼ダイシングテープ一体型接着シート、および電子装置
JP2015168803A (ja) * 2014-03-10 2015-09-28 日立化成株式会社 導電性接着剤組成物、接続体、太陽電池モジュール及びその製造方法
JP2016000786A (ja) * 2014-06-12 2016-01-07 Dic株式会社 粘着シート、その製造方法及び物品
JP2016222894A (ja) * 2015-05-29 2016-12-28 株式会社タムラ製作所 導電性接着剤および電子基板
JPWO2016121668A1 (ja) * 2015-01-29 2017-11-09 ハリマ化成株式会社 導電性ペースト
JP2018009079A (ja) * 2016-07-12 2018-01-18 千住金属工業株式会社 導電性接着剤、接合体および継手
JP2018178125A (ja) * 2018-06-26 2018-11-15 日立化成株式会社 導電性接着剤組成物、接続体、太陽電池モジュール及びその製造方法
US20190085211A1 (en) * 2011-12-15 2019-03-21 Dexerials Corporation Adhesive agent, and method for connecting electronic component

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048921A1 (en) * 2011-07-21 2013-02-28 Hitachi Chemical Co., Ltd. Conductive material
TWI467792B (zh) * 2011-08-25 2015-01-01 Of Energy Ministry Of Economic Affairs Bureau 薄膜太陽能電池之異種金屬接合的方法
KR101305665B1 (ko) * 2011-10-17 2013-09-09 엘지이노텍 주식회사 태양광 발전장치 및 이의 제조방법
GB2504957A (en) * 2012-08-14 2014-02-19 Henkel Ag & Co Kgaa Curable compositions comprising composite particles
CN103923578A (zh) * 2013-01-10 2014-07-16 杜邦公司 包括含氟弹性体的导电粘合剂
DE102013103837A1 (de) 2013-04-16 2014-10-16 Teamtechnik Maschinen Und Anlagen Gmbh Aufbringen von Leitkleber auf Solarzellen
KR101419035B1 (ko) * 2013-10-25 2014-07-16 주식회사 에스에너지 후면 전극형 태양전지 모듈 및 그 제조 방법
CN103666316B (zh) * 2013-12-10 2016-05-18 江苏瑞德新能源科技有限公司 一种高温可修复导电胶及其制备方法
EP3147340A4 (en) * 2014-05-23 2018-01-03 Dexerials Corporation Adhesive agent and connection structure
WO2015186704A1 (ja) * 2014-06-05 2015-12-10 積水化学工業株式会社 導電ペースト、接続構造体及び接続構造体の製造方法
WO2016104276A1 (ja) * 2014-12-26 2016-06-30 積水化学工業株式会社 導電ペースト、接続構造体及び接続構造体の製造方法
US10294324B2 (en) * 2015-03-31 2019-05-21 Namics Corporation Resin composition, conductive resin composition, adhesive, conductive adhesive, paste for forming electrodes, and semiconductor device
US9718334B2 (en) 2015-04-09 2017-08-01 Kevin Paul Means Assembly and method for supporting and locking movable solar panels
CN107922800B (zh) 2015-08-28 2020-02-28 杜邦公司 经涂覆的铜颗粒及其用途
WO2017035694A1 (en) 2015-08-28 2017-03-09 E.I. Du Pont De Nemours And Company Electrically conductive adhesives
US10629323B2 (en) 2015-08-28 2020-04-21 Dupont Electronics, Inc. Electrically conductive adhesives
TWI770013B (zh) * 2016-03-29 2022-07-11 日商拓自達電線股份有限公司 導電性塗料及使用其之屏蔽封裝體之製造方法
KR101879374B1 (ko) * 2017-02-22 2018-08-17 주식회사 탑선 태양전지모듈
KR101814064B1 (ko) * 2017-08-03 2018-01-02 주식회사 아이씨에이치 Rf성능을 향상 및 유지시키는 갈바닉 부식 방지 및 산화 방지 효과가 우수한 저 저항 도전성 테이프
JP6628776B2 (ja) * 2017-09-14 2020-01-15 株式会社タムラ製作所 電極の接続方法および電子基板の製造方法
JP7182597B2 (ja) * 2018-02-21 2022-12-02 株式会社カネカ 配線材を用いた太陽電池セル及び太陽電池モジュール
JP7235048B2 (ja) * 2018-05-15 2023-03-08 株式会社レゾナック 硬化性組成物、硬化性組成物セット、蓄熱材、及び物品
JPWO2020045246A1 (ja) * 2018-08-29 2021-08-12 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用電池部材およびその製造方法、並びに非水系二次電池用積層体の製造方法および非水系二次電池の製造方法
AU2019415500A1 (en) * 2018-12-28 2021-08-12 Kos Ltd. Molten solder for photovoltaic module, electrode wire, for photovoltaic module, comprising same, and photovoltaic module
CN114220587A (zh) * 2021-11-23 2022-03-22 苏州思尔维纳米科技有限公司 一种用于低温银浆的助剂及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330615A (ja) 1995-05-30 1996-12-13 Canon Inc 直列型太陽電池およびその製造方法
JP2002263880A (ja) 2001-03-06 2002-09-17 Hitachi Cable Ltd Pbフリー半田、およびこれを使用した接続用リード線ならびに電気部品
JP2003016838A (ja) * 2001-06-28 2003-01-17 Sumitomo Bakelite Co Ltd 導電性ペースト及び該ペーストを用いてなる半導体装置
JP2003133570A (ja) 2001-10-24 2003-05-09 Fuji Electric Corp Res & Dev Ltd 太陽電池モジュールの製造方法
JP2004204256A (ja) 2002-12-24 2004-07-22 Hitachi Cable Ltd 低熱膨張平角導体
JP2005243935A (ja) 2004-02-26 2005-09-08 Shin Etsu Handotai Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2006041309A (ja) * 2004-07-29 2006-02-09 Kyocera Corp 太陽電池素子の接続構造及びこれを含む太陽電池モジュール
JP2007019106A (ja) * 2005-07-05 2007-01-25 Kyocera Chemical Corp 電極形成用導電性ペースト及び太陽電池セル
JP2007265635A (ja) 2006-03-27 2007-10-11 Sekisui Jushi Co Ltd 太陽電池セルの接続方法、及び色素増感型太陽電池
WO2007125650A1 (ja) * 2006-04-27 2007-11-08 Sumitomo Bakelite Co., Ltd. 接着テープ、半導体パッケージおよび電子機器
WO2009063841A1 (ja) * 2007-11-15 2009-05-22 Hitachi Chemical Company, Ltd. 太陽電池セル

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744533A (en) * 1997-06-04 1998-04-28 Johnson Matthey, Inc. Adhesive composition for bonding a semiconductor device
JP3923687B2 (ja) * 1999-09-14 2007-06-06 松下電器産業株式会社 電子部品実装用接合剤およびこれを用いた電子部品の実装方法
JP3849842B2 (ja) * 1999-10-05 2006-11-22 Tdk株式会社 はんだ付け用フラックス、はんだぺ一スト、電子部品装置、電子回路モジュール、電子回路装置、及び、はんだ付け方法
JP3656558B2 (ja) * 2001-02-19 2005-06-08 株式会社村田製作所 導電性ペースト及びそれを用いた電子部品
US7214419B2 (en) * 2002-05-31 2007-05-08 Tatsuta Electric Wire & Cable Co., Ltd. Conductive paste multilayered board including the conductive paste and process for producing the same
EP2033229B1 (en) * 2006-06-19 2012-07-04 Cabot Corporation Photovoltaic conductive features and processes for forming same
JP5468199B2 (ja) * 2006-11-22 2014-04-09 日立化成株式会社 導電性接着剤組成物、電子部品搭載基板及び半導体装置
JP4294048B2 (ja) * 2006-11-29 2009-07-08 三洋電機株式会社 太陽電池モジュール
TWI438916B (zh) * 2007-07-13 2014-05-21 Sanyo Electric Co 太陽電池模組之製造方法
JP5252472B2 (ja) * 2007-09-28 2013-07-31 シャープ株式会社 太陽電池、太陽電池の製造方法、太陽電池モジュールの製造方法および太陽電池モジュール
KR101334429B1 (ko) 2007-10-03 2013-11-29 히타치가세이가부시끼가이샤 접착제 조성물 및 그것을 이용한 전자부품 탑재 기판 및 반도체장치

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330615A (ja) 1995-05-30 1996-12-13 Canon Inc 直列型太陽電池およびその製造方法
JP2002263880A (ja) 2001-03-06 2002-09-17 Hitachi Cable Ltd Pbフリー半田、およびこれを使用した接続用リード線ならびに電気部品
JP2003016838A (ja) * 2001-06-28 2003-01-17 Sumitomo Bakelite Co Ltd 導電性ペースト及び該ペーストを用いてなる半導体装置
JP2003133570A (ja) 2001-10-24 2003-05-09 Fuji Electric Corp Res & Dev Ltd 太陽電池モジュールの製造方法
JP2004204256A (ja) 2002-12-24 2004-07-22 Hitachi Cable Ltd 低熱膨張平角導体
JP2005243935A (ja) 2004-02-26 2005-09-08 Shin Etsu Handotai Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2006041309A (ja) * 2004-07-29 2006-02-09 Kyocera Corp 太陽電池素子の接続構造及びこれを含む太陽電池モジュール
JP2007019106A (ja) * 2005-07-05 2007-01-25 Kyocera Chemical Corp 電極形成用導電性ペースト及び太陽電池セル
JP2007265635A (ja) 2006-03-27 2007-10-11 Sekisui Jushi Co Ltd 太陽電池セルの接続方法、及び色素増感型太陽電池
WO2007125650A1 (ja) * 2006-04-27 2007-11-08 Sumitomo Bakelite Co., Ltd. 接着テープ、半導体パッケージおよび電子機器
WO2009063841A1 (ja) * 2007-11-15 2009-05-22 Hitachi Chemical Company, Ltd. 太陽電池セル

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043491A1 (ja) * 2010-09-29 2012-04-05 日立化成工業株式会社 太陽電池モジュール
JPWO2012043491A1 (ja) * 2010-09-29 2014-02-06 日立化成株式会社 太陽電池モジュール
JP6115135B2 (ja) * 2010-09-29 2017-04-19 日立化成株式会社 太陽電池モジュール
WO2012102077A1 (ja) * 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物、接続体及び太陽電池モジュール
WO2012101869A1 (ja) * 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法
WO2012102079A1 (ja) * 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物、接続体及び太陽電池モジュール
WO2012102076A1 (ja) * 2011-01-27 2012-08-02 日立化成工業株式会社 導電性接着剤組成物、導電性接着剤付金属導線、接続体及び太陽電池モジュール
US20120260965A1 (en) * 2011-06-14 2012-10-18 Jongkyoung Hong Solar cell module
KR101816163B1 (ko) * 2011-06-14 2018-01-08 엘지전자 주식회사 태양전지 모듈
WO2013012071A1 (ja) * 2011-07-21 2013-01-24 日立化成工業株式会社 導電材料
JPWO2013012071A1 (ja) * 2011-07-21 2015-02-23 日立化成株式会社 導電材料
CN103563011A (zh) * 2011-07-21 2014-02-05 日立化成株式会社 导电材料
WO2013015285A1 (ja) * 2011-07-25 2013-01-31 日立化成工業株式会社 素子および太陽電池
WO2013015172A1 (ja) * 2011-07-25 2013-01-31 日立化成工業株式会社 素子及び太陽電池
CN103890960A (zh) * 2011-07-25 2014-06-25 日立化成株式会社 元件及太阳能电池
JPWO2013015172A1 (ja) * 2011-07-25 2015-02-23 日立化成株式会社 素子及び太陽電池
US9240502B2 (en) 2011-07-25 2016-01-19 Hitachi Chemical Company, Ltd. Element and photovoltaic cell
JPWO2013015285A1 (ja) * 2011-07-25 2015-02-23 日立化成株式会社 素子および太陽電池
EP2749620A1 (en) * 2011-08-23 2014-07-02 Dexerials Corporation Conductive adhesive and solar cell module
EP2749620A4 (en) * 2011-08-23 2015-04-29 Dexerials Corp CONDUCTIVE ADHESIVE AND SOLAR CELL MODULE
JP2013076045A (ja) * 2011-09-13 2013-04-25 Tamura Seisakusho Co Ltd 接着剤組成物およびそれを用いた太陽電池セルと配線基板との接続方法
US20130081691A1 (en) * 2011-10-04 2013-04-04 Shin-Etsu Chemical Co., Ltd. Coating fluid for boron diffusion
US9181615B2 (en) * 2011-10-04 2015-11-10 Shin-Etsu Chemical Co., Ltd. Coating fluid for boron diffusion
CN104115277A (zh) * 2011-12-13 2014-10-22 道康宁公司 光伏电池及其形成方法
WO2013090545A3 (en) * 2011-12-13 2013-12-05 Dow Corning Corporation Photovoltaic cell and method of forming the same
CN104126230A (zh) * 2011-12-14 2014-10-29 道康宁公司 包括各向同性或各向异性导电层的光伏电池和制品
WO2013090607A3 (en) * 2011-12-14 2013-11-21 Dow Corning Corporation A photovoltaic cell and an article including an isotropic or anisotropic electrically conductive layer
US20190085211A1 (en) * 2011-12-15 2019-03-21 Dexerials Corporation Adhesive agent, and method for connecting electronic component
JP2013143426A (ja) * 2012-01-10 2013-07-22 Nitto Denko Corp 導電性接着シートおよび太陽電池モジュール
CN103199122A (zh) * 2012-01-10 2013-07-10 日东电工株式会社 导电性粘接片及太阳能电池组件
JP5655974B2 (ja) * 2012-02-23 2015-01-21 日立化成株式会社 不純物拡散層形成組成物、不純物拡散層付き半導体基板の製造方法、及び太陽電池素子の製造方法
CN103296106A (zh) * 2012-02-23 2013-09-11 Lg电子株式会社 太阳能电池模块
EP2631953A3 (en) * 2012-02-23 2013-12-25 LG Electronics Inc. Solar cell module
US9496440B2 (en) 2012-02-23 2016-11-15 Lg Electronics Inc. Solar cell module
US9040813B2 (en) 2012-02-23 2015-05-26 Lg Electronics Inc. Solar cell module
CN103296106B (zh) * 2012-02-23 2016-08-17 Lg电子株式会社 太阳能电池模块
JP2014220510A (ja) * 2012-02-29 2014-11-20 日立化成株式会社 n型拡散層形成組成物、n型拡散層の製造方法、及び太陽電池セルの製造方法
JP2013258313A (ja) * 2012-06-13 2013-12-26 Hitachi Chemical Co Ltd 太陽電池モジュールの製造方法
JP2014002899A (ja) * 2012-06-18 2014-01-09 Sekisui Chem Co Ltd 導電接着材料、太陽電池モジュール部品及び太陽電池モジュール部品の製造方法
JP2014003175A (ja) * 2012-06-19 2014-01-09 Hitachi Chemical Co Ltd 太陽電池素子の製造方法、太陽電池素子及び太陽電池
JP2014037490A (ja) * 2012-08-17 2014-02-27 Taiyo Holdings Co Ltd 無機粒子含有ペーストおよび塗布形成物
JP2014037491A (ja) * 2012-08-17 2014-02-27 Taiyo Holdings Co Ltd 無機粒子含有ペーストおよび塗布形成物
JP2014070180A (ja) * 2012-09-28 2014-04-21 Tamura Seisakusho Co Ltd 接着剤組成物、太陽電池モジュール、および、太陽電池セルと配線との接続方法
JP2014084452A (ja) * 2012-10-26 2014-05-12 Hitachi Chemical Co Ltd 熱硬化性樹脂組成物、プリプレグ、積層板及びプリント配線板
JP2015115488A (ja) * 2013-12-12 2015-06-22 日立化成株式会社 パッシベーション層形成用組成物、パッシベーション層付半導体基板、パッシベーション層付半導体基板の製造方法、太陽電池素子、太陽電池素子の製造方法及び太陽電池
WO2015098059A1 (ja) * 2013-12-26 2015-07-02 タツタ電線株式会社 電子部品接着材料及び電子部品の接着方法
JPWO2015098059A1 (ja) * 2013-12-26 2017-03-23 タツタ電線株式会社 電子部品接着材料及び電子部品の接着方法
JP2015137299A (ja) * 2014-01-21 2015-07-30 住友ベークライト株式会社 樹脂組成物、接着シート、ダイシングテープ一体型接着シート、バックグラインドテープ一体型接着シート、バックグラインドテープ兼ダイシングテープ一体型接着シート、および電子装置
US9862866B2 (en) 2014-03-10 2018-01-09 Hitachi Chemical Company, Ltd. Electrically conductive adhesive composition, connection structure, solar battery module, and method for producing same
JP2015168803A (ja) * 2014-03-10 2015-09-28 日立化成株式会社 導電性接着剤組成物、接続体、太陽電池モジュール及びその製造方法
JP2016000786A (ja) * 2014-06-12 2016-01-07 Dic株式会社 粘着シート、その製造方法及び物品
JPWO2016121668A1 (ja) * 2015-01-29 2017-11-09 ハリマ化成株式会社 導電性ペースト
JP2016222894A (ja) * 2015-05-29 2016-12-28 株式会社タムラ製作所 導電性接着剤および電子基板
JP2018009079A (ja) * 2016-07-12 2018-01-18 千住金属工業株式会社 導電性接着剤、接合体および継手
JP2018178125A (ja) * 2018-06-26 2018-11-15 日立化成株式会社 導電性接着剤組成物、接続体、太陽電池モジュール及びその製造方法

Also Published As

Publication number Publication date
JP2016035076A (ja) 2016-03-17
EP2490265A1 (en) 2012-08-22
US20120227786A1 (en) 2012-09-13
TWI418605B (zh) 2013-12-11
KR20120065446A (ko) 2012-06-20
JPWO2011046176A1 (ja) 2013-03-07
JP6112187B2 (ja) 2017-04-12
US8962986B2 (en) 2015-02-24
TW201125951A (en) 2011-08-01
KR101420547B1 (ko) 2014-07-17
JP5875867B2 (ja) 2016-03-02
CN102576766A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
JP6112187B2 (ja) 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール
JP6060684B2 (ja) 太陽電池モジュールの製造方法
US9862866B2 (en) Electrically conductive adhesive composition, connection structure, solar battery module, and method for producing same
JP5900349B2 (ja) 導電性接着剤組成物、接続体及び太陽電池モジュール
TWI445019B (zh) 導電性接著劑組成物、連接體及太陽電池模組及其製造方法
WO2012049984A1 (ja) 太陽電池モジュール
JP2011023577A (ja) 導電性接着剤組成物、これを用いた接続体、太陽電池セルの製造方法及び太陽電池モジュール
WO2012102076A1 (ja) 導電性接着剤組成物、導電性接着剤付金属導線、接続体及び太陽電池モジュール
JP6115135B2 (ja) 太陽電池モジュール
JP6144048B2 (ja) 導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法
JP2014084395A (ja) 導電性接着剤組成物、導電性接着剤付金属導線、接続体及び太陽電池モジュールとその製造方法
JP2013258313A (ja) 太陽電池モジュールの製造方法
JP6119124B2 (ja) 太陽電池素子及び太陽電池の製造方法
JP2018178125A (ja) 導電性接着剤組成物、接続体、太陽電池モジュール及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080046536.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823444

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011536172

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12012500718

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010823444

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127011972

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 4124/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13501981

Country of ref document: US