WO2012101869A1 - 導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法 - Google Patents

導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法 Download PDF

Info

Publication number
WO2012101869A1
WO2012101869A1 PCT/JP2011/072657 JP2011072657W WO2012101869A1 WO 2012101869 A1 WO2012101869 A1 WO 2012101869A1 JP 2011072657 W JP2011072657 W JP 2011072657W WO 2012101869 A1 WO2012101869 A1 WO 2012101869A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
conductive adhesive
conductive
battery cell
solar battery
Prior art date
Application number
PCT/JP2011/072657
Other languages
English (en)
French (fr)
Inventor
精吾 横地
林 宏樹
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to JP2012554618A priority Critical patent/JP6144048B2/ja
Priority to EP11856888.0A priority patent/EP2669346A4/en
Priority to US13/981,777 priority patent/US20130319499A1/en
Publication of WO2012101869A1 publication Critical patent/WO2012101869A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0512Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module made of a particular material or composition of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0837Bismuth
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0893Zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2231Oxides; Hydroxides of metals of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a conductive adhesive composition suitably used for electrical joining of a plurality of solar cells, a coating method thereof, a connection body, a solar cell module, and a manufacturing method thereof.
  • Patent Document 3 This conductive adhesive is a composition in which metal particles represented by silver particles are mixed and dispersed in a thermosetting resin, and these metal particles are in physical contact with the electrodes and wiring members of solar cells. Thus, an electrical connection is developed.
  • a method using a non-contact dispenser is also known.
  • the contact type dispenser performs application in a state where the dispenser and the application target are in contact with each other via the conductive adhesive, but the non-contact type dispenser continuously applies a fixed amount of the conductive adhesive. Therefore, the dispenser and the application medium can be applied without contact through the discharged liquid.
  • the contact-type dispenser performs application in a state where the dispenser and the application medium are in contact with each other via a conductive adhesive. Therefore, the height of the discharge position is controlled with respect to the change in the height of the application surface. There is a need for this, so the solar cells must be stopped in the manufacturing process for application.
  • the dispenser and the application medium do not come into contact with each other in the non-contact type dispenser, such a problem does not occur, drawing at high speed is possible, and work efficiency is expected to be improved.
  • the present invention provides a conductive adhesive composition that can be electrically bonded at a low temperature, has sufficient storage stability, and can be applied with a non-contact dispenser, and its It aims at providing the apply
  • conductive particles containing a metal having a melting point of 210 ° C. or lower (hereinafter, also simply referred to as “(A) conductive particles”), (B) thermosetting resin, and (C) flux activity.
  • a conductive adhesive composition containing an agent, wherein the conductive adhesive composition has a viscosity of 5 to 30 Pa ⁇ s, and (A) the content of the conductive particles of the conductive adhesive composition Provided is a conductive adhesive composition that is 70 to 90% by mass based on the total amount.
  • a conductive adhesive composition it can be electrically joined at a low temperature, has sufficient storage stability, and can be applied with a non-contact dispenser.
  • the “melting point” refers to a value measured by, for example, differential scanning calorimetry (DSC).
  • the metal in the conductive particles preferably contains at least one component selected from bismuth, indium, tin, and zinc. Thereby, melting
  • the average particle diameter of the conductive particles is preferably 2 to 95 ⁇ m. Thereby, storage stability and the applicability
  • the above-mentioned conductive adhesive composition further contains a curing agent or an effect accelerator. Thereby, connection stability further improves.
  • thermosetting resin is preferably an epoxy resin. Thereby, connection stability further improves.
  • the present invention also provides a method for applying a conductive adhesive composition, in which the above-mentioned conductive adhesive composition is applied to a target adhesive surface with a non-contact dispenser. Since this coating method uses the above-mentioned conductive adhesive composition, it can be easily applied using a non-contact dispenser.
  • the “target adhesive surface” is not particularly limited, and specific examples thereof include solar cell electrodes, wiring members and wiring boards, and semiconductor wiring boards.
  • the present invention is also a connection body in which a plurality of solar cells are connected via a metal conductor, and the electrode surface of the solar cell and the metal conductor are connected via the above-described conductive adhesive composition. Provide a connected body.
  • the present invention also includes a step of applying the above-described conductive adhesive composition on the electrode surface of the solar battery cell with a non-contact dispenser, and a conductive adhesive composition applied on the electrode surface of the solar battery cell.
  • a solar cell module comprising: a step of laminating a protective film; and a step of sealing the solar cell while electrically connecting and bonding the solar cell and the wiring member by heating the obtained laminate.
  • the present invention also provides a solar cell module in which electrodes of a plurality of solar cells and wiring members are electrically connected via the above-described conductive adhesive composition.
  • a conductive adhesive composition that can be applied with a non-contact dispenser while maintaining the electrical characteristics of the solar battery cell, and manufacturing of a solar battery module using the conductive adhesive composition A method can be provided. Moreover, a solar cell module can be efficiently manufactured by this invention.
  • the conductive adhesive composition of the present invention contains (A) conductive particles, (B) a thermosetting resin, and (C) a flux activator.
  • the conductive particles those containing a metal having a melting point of 210 ° C. or lower, more preferably those containing a metal having a melting point of 200 ° C. or lower can be used.
  • fusing point of the metal in electroconductive particle is not specifically limited, It is about 120 degreeC. When such conductive particles are used in the conductive adhesive composition, it is considered that the conductive particles melt and aggregate at a relatively low temperature, and this aggregate contributes to the electrical connection of the object.
  • the metal in the conductive particles is preferably composed of a metal other than lead in consideration of environmental friendliness.
  • a metal constituting the conductive particles for example, a simple substance or an alloy containing at least one component selected from tin (Sn), bismuth (Bi), indium (In), zinc (Zn), and the like is used. Can be mentioned.
  • the said alloy can obtain more favorable connection reliability, in the range from which melting
  • Specific examples of the metal constituting the conductive particles include Sn42-Bi58 solder (melting point 138 ° C.), Sn48-In52 solder (melting point 117 ° C.), Sn42-Bi57-Ag1 solder (melting point 139 ° C.), Sn90-Ag2-Cu0.5-Bi7.5 solder (melting point 189 ° C), Sn96-Zn8-Bi3 solder (melting point 190 ° C), Sn91-Zn9 solder (melting point 197 ° C), etc. have clear solidification behavior after melting It is preferable to show. Solidification behavior refers to cooling and solidifying again after melting. Among these, Sn42-Bi58 solder or Sn42-Bi57-Ag1 solder is preferably used from the viewpoint of availability and low melting point. These may be used alone or in combination of two or more.
  • the average particle diameter of the conductive particles is not particularly limited, but is preferably 2 to 95 ⁇ m.
  • the average particle diameter is less than 2 ⁇ m, the viscosity of the conductive adhesive composition tends to increase, and the workability tends to decrease.
  • the average particle diameter of the conductive particles exceeds 95 ⁇ m, the coatability tends to deteriorate and problems such as precipitation of the conductive particles in the conductive adhesive composition tend to occur.
  • the applicability refers to the shape retention force during application of the conductive adhesive composition. It is preferable that the coating shape is maintained after coating, that is, the coating property is good.
  • the average particle diameter is more preferably 5 to 50 ⁇ m. Further, from the viewpoint of further improving the storage stability of the conductive adhesive composition and the mounting reliability of the cured product, the average particle diameter is particularly preferably 5 to 30 ⁇ m.
  • the average particle diameter is a value determined by laser diffraction and scattering method (Kamioka Mining Test Method No. 2).
  • the conductive particles are composed only of a metal having a melting point of 210 ° C. or lower, and the surface of particles made of a solid material other than a metal such as ceramics, silica, or resin material has a melting point of 210 ° C. or lower.
  • the conductive particles may be coated with a metal film made of a certain metal or a mixture thereof.
  • the content of (A) conductive particles in the conductive adhesive composition is 70 to 90% by mass with respect to the total amount of the conductive adhesive composition. When it is less than 70% by mass, the cohesiveness of the metal component is lowered. Moreover, when it exceeds 90 mass%, the viscosity of a conductive adhesive composition will become high and workability
  • (a1) conductive particles made of a metal having a melting point higher than 210 ° C. may be used in combination.
  • the metal having a melting point higher than 210 ° C. include, for example, one kind of metal selected from Pt, Au, Ag, Cu, Ni, Pd, Al and the like, or an alloy made of two or more kinds of metals.
  • Au powder, Ag powder, Cu powder, Ag plating Cu powder, etc. are mentioned.
  • “MA05K” trade name, manufactured by Hitachi Chemical Co., Ltd.
  • the blending ratio of (A) :( a1) is 99: 1 to 50: It is preferably in the range of 50, more preferably in the range of 99: 1 to 60:40.
  • thermosetting resin has an action of adhering the adherend, and also functions as a binder component that binds the conductive particles in the adhesive composition and the filler added as necessary.
  • resins include thermosetting resins such as epoxy resins, (meth) acrylic resins, maleimide resins and cyanate resins, and precursors thereof.
  • (meth) acrylic resin refers to methacrylic resin and acrylic resin.
  • a compound having a polymerizable carbon-carbon double bond in a molecule represented by (meth) acrylic resin and maleimide resin, or an epoxy resin is preferable.
  • an epoxy resin is preferable from the viewpoint of adhesive strength during curing.
  • thermosetting resins are excellent in heat resistance and adhesiveness, and also can be handled in a liquid state if dissolved or dispersed in an organic solvent as required, so that they are excellent in workability.
  • the above-mentioned thermosetting resins are used singly or in combination of two or more.
  • (Meth) acrylic resin is composed of a compound having a polymerizable carbon-carbon double bond.
  • examples of such compounds include monoacrylate compounds, monomethacrylate compounds, diacrylate compounds, and dimethacrylate compounds.
  • Examples of the monoacrylate compound include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, amyl acrylate, isoamyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2- Ethylhexyl acrylate, nonyl acrylate, decyl acrylate, isodecyl acrylate, lauryl acrylate, tridecyl acrylate, hexadecyl acrylate, stearyl acrylate, isostearyl acrylate, cyclohexyl acrylate, isobornyl acrylate, diethylene glycol acrylate, polyethylene glycol acrylate, polypropylene Glycol acrylate, 2-methoxyethyl acrylate,
  • Examples of the monomethacrylate compound include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, amyl methacrylate, isoamyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2- Ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, hexadecyl methacrylate, stearyl methacrylate, isostearyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, diethylene glycol methacrylate , Polyethylene glycol
  • diacrylate compound examples include ethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, 1,3-butanediol diacrylate, neo Pentyl glycol diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, bisphenol A, bisphenol F or 1 mol of bisphenol AD and glycidyl acrylate 2 Mole reactant, polyethylene of bisphenol A, bisphenol F or bisphenol AD And diacrylates of oxide adducts, diacrylates of polypropylene oxide adducts of bisphenol A, bisphenol F or bisphenol AD, bis (acryloxypropyl) polydimethylsiloxane and bis (acryloxypropyl) methyl
  • dimethacrylate compound examples include ethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,3-butanediol dimethacrylate, neo Pentyl glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, bisphenol A, bisphenol F or bisphenol AD 1 mole and glycidyl methacrylate 2 Molar reactants, bisphenol A, bisphenol F or Dimethacrylate of a polyethylene oxide adduct of scan phenol AD, polypropylene oxide adduct of bisphenol F or bisphenol AD, bis (methacryloxypropyl
  • thermosetting resin examples include thermosetting resin, thermosetting resin, and thermosetting resin. These compounds may be used after being previously polymerized, and these compounds may be used as (A) conductive particles and (C) flux activators. They may be mixed together and polymerized at the same time as mixing.
  • the conductive adhesive composition preferably contains a radical polymerization initiator.
  • the radical polymerization initiator is preferably an organic peroxide from the viewpoint of effectively suppressing voids.
  • the decomposition temperature of the organic peroxide is preferably 70 to 170 ° C., more preferably 80 to 160 ° C. .
  • radical polymerization initiator examples include 1,1,3,3-tetramethylbutylperoxy 2-ethylhexanoate, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis ( t-butylperoxy) cyclododecane, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, dicumyl peroxide, t-butylcumyl peroxide, 2,5-dimethyl-2,5-di ( t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) 3-hexyne and cumene hydroperoxide. These are used singly or in combination of two or more.
  • the blending ratio of the radical polymerization initiator is preferably 0.01 to 20% by mass with respect to the total amount of components other than the conductive particles and the solvent of the conductive adhesive composition (hereinafter referred to as “adhesive component”).
  • the content is more preferably 0.1 to 10% by mass, and further preferably 0.5 to 5% by mass.
  • a commercially available acrylic resin can be used. Specific examples include FINEDIC A-261 (manufactured by Dainippon Ink and Chemicals, trade name, softening point 105 ⁇ 3 ° C.), FINEDIC A-229-30 (manufactured by Dainippon Ink and Chemicals, product) Name, 109 ⁇ 3 ° C.).
  • the “softening point” means that measured by a rheometer that can change the measurement temperature, for example.
  • epoxy resin a known compound can be used without particular limitation as long as it is a compound having two or more epoxy groups in one molecule.
  • epoxy resins include, for example, bisphenol A, bisphenol AD, bisphenol S, bisphenol F or condensates of halogenated bisphenol A and epichlorohydrin, glycidyl ether of phenol novolac resin, glycidyl ether of cresol novolac resin, bisphenol A novolac resin. Of glycidyl ether.
  • an epoxy resin a commercially available product can be used.
  • Specific examples include AER-X8501 (trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.), R-301 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.), YL-980 (Japan Epoxy), which are bisphenol A type epoxy resins.
  • YH-434L (trade name, manufactured by Toto Kasei Co., Ltd.), TETRAD-X, TETRAD-C (both manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name), 630, 630LSD (both Japan Epoxy Resin Co., Ltd.) Product name), Denacol EX-201 (product name, manufactured by Nagase Kasei Kogyo Co., Ltd.) which is a resorcinol type epoxy resin, Denacol EX-211 (product made by Nagase Kasei Kogyo Co., Ltd.) which is a neopentyl glycol type epoxy resin, Product name), Denacol EX-212 (trade name, manufactured by Nagase Chemicals Co., Ltd.) which is a hexane dinel glycol type epoxy resin, Denacol EX series (EX-810, 811, 850) which is an ethylene / propylene glycol type epoxy resin 851, 821, 830, 832, 8
  • k represents an integer of 1 to 5.
  • epoxy resins are used singly or in combination of two or more.
  • the conductive adhesive composition when the above-mentioned epoxy resin as a thermosetting resin, it may further contain an epoxy compound having only one epoxy group in one molecule as a reactive diluent.
  • epoxy compounds are commercially available, and specific examples thereof include, for example, PGE (trade name, manufactured by Nippon Kayaku Co., Ltd.), PP-101 (trade name, manufactured by Tohto Kasei Co., Ltd.), ED-502, ED-509, ED-509S (trade name, manufactured by Asahi Denka Kogyo Co., Ltd.), YED-122 (trade name, manufactured by Yuka Shell Epoxy Co., Ltd.), KBM-403 (Shin-Etsu Chemical Co., Ltd.) Product name), TSL-8350, TSL-8355, TSL-9905 (trade name, manufactured by Toshiba Silicone Co., Ltd.). These are used singly or in combination of two or more.
  • the content may be in a range that does not impair the effect of the present invention, and is preferably 0.1 to 30% by mass with respect to the total amount of the epoxy resin.
  • the conductive adhesive composition contains an epoxy resin as a thermosetting resin, it is more preferable to contain a curing agent or a curing accelerator.
  • the curing agent is not particularly limited as long as it is conventionally used, and a commercially available one can be obtained.
  • Commercially available curing agents include, for example, phenol novolac resin H-1 (trade name, manufactured by Meiwa Kasei Co., Ltd.), VR-9300 (trade name, manufactured by Mitsui Toatsu Chemical Co., Ltd.), and phenol aralkyl resin.
  • a certain XL-225 (trade name, manufactured by Mitsui Toatsu Chemical Co., Ltd.), MTPC (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), a p-cresol novolak resin represented by the following general formula (II), allyl AL-VR-9300 (trade name, manufactured by Mitsui Toatsu Chemicals Co., Ltd.), a specialized phenol resin represented by the following general formula (III) (Japan Petrochemical ( Product name).
  • each R 1 independently represents a monovalent hydrocarbon group, preferably a methyl group or an allyl group, and q represents an integer of 1 to 5.
  • R 2 Represents an alkyl group, preferably a methyl group or an ethyl group
  • R 3 represents a hydrogen atom or a monovalent hydrocarbon group
  • p represents an integer of 2 to 4.
  • the mixing ratio of the curing agent is preferably such that the total amount of reactive groups in the curing agent is 0.3 to 1.2 equivalents with respect to 1.0 equivalent of epoxy groups of the epoxy resin.
  • the ratio is more preferably 1.0 to 1.0 equivalent, and further preferably 0.5 to 1.0 equivalent.
  • the reactive group is a substituent having a reactive activity with an epoxy resin, and examples thereof include a phenolic hydroxyl group.
  • the curing accelerator is not particularly limited as long as it is conventionally used as a curing accelerator such as dicyandiamide, and a commercially available product is available.
  • commercially available products include ADH, PDH, and SDH (trade names, manufactured by Nippon Hydrazine Kogyo Co., Ltd.), which are dibasic acid dihydrazides represented by the following general formula (IV), an epoxy resin and an amine compound.
  • Examples include NOVACURE (trade name, manufactured by Asahi Kasei Kogyo Co., Ltd.), which is a microcapsule type curing agent made of a reaction product.
  • R 4 represents a divalent aromatic group or a linear or branched alkylene group having 1 to 12 carbon atoms, preferably an m-phenylene group or a p-phenylene group.
  • the blending ratio of the curing accelerator is preferably 0.01 to 90 parts by mass and more preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the epoxy resin. If the blending ratio of this curing accelerator is less than 0.01 parts by mass, the curability tends to decrease, and if it exceeds 90 parts by mass, the viscosity increases and the workability when handling the adhesive component tends to decrease. There is.
  • EMZ ⁇ K TPPK (trade name, manufactured by Hokuko Chemical Co., Ltd.) which is an organic boron salt compound, tertiary DBU, U-CAT102, 106, 830, 840, 5002 (above, trade name, manufactured by San Apro Co., Ltd.), an amine or a salt thereof, Cureazole, an imidazole, 2PZ-CN, 2P4MHZ, C17Z, 2PZ-OK 2PZ-CNS, C11Z-CNS (above, trade name, manufactured by Shikoku Kasei Co., Ltd.) may be used.
  • the blending ratio of these curing accelerators is preferably 0.1 to 20 parts by mass, more preferably 0.1 to 15 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • one kind of each of the curing agent and the curing accelerator may be used alone or in combination of two or more kinds.
  • the content of the thermosetting resin (B) in the conductive adhesive composition is preferably 1 to 60% by mass, more preferably 5 to 40% by mass, based on the total amount of the adhesive components. It is particularly preferred that the content be ⁇ 30% by mass.
  • thermoplastic resins that function as a binder may be added to the conductive adhesive composition of the present embodiment.
  • thermoplastic resin include ABS resin (acrylonitrile, butadiene, styrene copolymer synthetic resin), polypropylene resin, polyethylene resin, polyvinyl chloride resin, polystyrene resin, polymethyl methacrylate resin, polybutadiene resin, polyethylene terephthalate resin, polyphenylene.
  • Ether resin nylon resin, polyamide resin, polycarbonate resin, polyacetal resin, polybutylene terephthalate resin, polyphenylene sulfide resin, polyether ether ketone resin, modified polyphenylene ether resin, liquid crystal polymer, fluorine resin, urethane resin, polyarylate resin, polyimide
  • resins polyamideimide resins, polyetherimide resins, polyethersulfone resins, and polysulfone resins. These thermoplastic resins are used alone or in combination of two or more.
  • the flux activator shows (A) the ability to remove the oxide film formed on the surface of the conductive particles. By using such a flux activator, (A) an oxide film that hinders aggregation of conductive particles is removed.
  • a known compound can be used without particular limitation as long as it is a compound that does not inhibit the curing reaction of the (B) thermosetting resin.
  • Such compounds include rosin resins, compounds containing a carboxyl group, phenolic hydroxyl group or alcoholic hydroxyl group in the molecule, 2,4-diethylglutaric acid, 2,2-diethylglutaric acid, 3-methylglutaric acid.
  • Dibasic acids having an alkyl group in the side chain such as 2-ethyl-3-propylglutaric acid, 2,5-diethyladipic acid, etc., which exhibit good flux activity and (B) thermosetting resin
  • a compound containing a hydroxyl group and a carboxyl group in the molecule is preferable, and an aliphatic dihydroxycarboxylic acid is particularly preferable.
  • a compound represented by the following general formula (V) or tartaric acid is preferable.
  • R 5 represents an alkyl group having 1 to 5 carbon atoms, and from the viewpoint of more effectively exerting the effect of using the compound represented by the general formula (V), a methyl group, An ethyl group or a propyl group is preferred.
  • N and m each independently represents an integer of 0 to 5, and n is 0 and m is 1 from the viewpoint of more effectively exerting the effect of using the compound represented by the general formula (V).
  • n and m are both preferably 1, and both n and m are more preferably 1.
  • Examples of the compound represented by the general formula (V) include 2,2-bis (hydroxymethyl) propionic acid, 2,2-bis (hydroxymethyl) butanoic acid, and 2,2-bis (hydroxymethyl) pentane. Examples include acids.
  • the content of the flux activator is 0.1 to 30 parts by mass with respect to 100 parts by mass of the total amount of the conductive particles (A) from the viewpoint of more effectively exhibiting the above-described effects of the present invention. Is preferred. Further, from the viewpoint of storage stability and conductivity, the amount is more preferably 0.5 to 20 parts by mass, and more preferably 1 to 10 parts by mass.
  • the conductive adhesive composition may contain a coupling agent such as a silane coupling agent or a titanium coupling agent for the purpose of improving the adhesive strength.
  • a coupling agent such as a silane coupling agent or a titanium coupling agent for the purpose of improving the adhesive strength.
  • examples of the silane coupling agent include trade name “KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd.
  • an anionic surfactant or a fluorosurfactant may be contained in the adhesive component.
  • you may contain silicone oil etc. as an antifoamer.
  • the said adhesive force improver, wettability improver, and antifoamer are used individually by 1 type or in combination of 2 or more types, respectively. These are preferably contained in an amount of 0.1 to 10% by mass based on the total amount of the conductive adhesive composition.
  • the conductive adhesive composition may contain a filler.
  • the filler include polymer particles such as acrylic rubber and polystyrene, and inorganic particles such as diamond, boron nitride, aluminum nitride, alumina, and silica. These fillers may be used alone or in combination of two or more.
  • the conductive adhesive composition includes, as necessary, a flexible agent for stress relaxation, a diluent for improving workability, an adhesive strength improver, a wettability improver, and an antifoaming agent.
  • a flexible agent for stress relaxation e.g., a silicone rubber, a silicone rubber, and a silicone rubber.
  • a diluent for improving workability e.g., a silicone rubber, a silicone rubber, and a wettability improver, and an antifoaming agent.
  • One or more additives selected from the group consisting of agents may be included.
  • various additives may be included within a range that does not impair the effects of the present invention.
  • the flexible agent CTBN-1300 ⁇ 31, CTBN-1300 ⁇ 9 (above, manufactured by Ube Industries, Ltd., trade name), NISSO-PB-C-2000 (made by Nippon Soda Co., Ltd., trade name) ) And the like.
  • the content thereof is preferably 0.01 to 500 parts by mass with respect to 100 parts by mass of the total amount of the thermosetting resin.
  • an organic solvent can be added as necessary in order to improve the workability during preparation of the paste composition and the application workability during use.
  • an organic solvent having a relatively high boiling point such as butyl cellosolve, carbitol, butyl cellosolve, carbitol acetate, dipropylene glycol monomethyl ether, ethylene glycol diethyl ether, ⁇ -terpineol and the like is preferable.
  • This organic solvent is preferably contained in an amount of 0.1 to 30% by mass with respect to the total amount of the adhesive composition.
  • the viscosity of the conductive adhesive composition described above is 5 to 30 Pa ⁇ s.
  • the viscosity exceeds 30 Pa ⁇ s, the liquid cannot fly, and the application work by the non-contact dispenser becomes impossible. If the nozzle diameter is increased, the discharge performance is improved, but it is difficult to draw a thin line having a line width of 2.0 mm or less of the conductive adhesive composition applied on the target adhesive surface.
  • the line width it is preferable from the viewpoint of work that the conductive adhesive composition does not spread so much on the solar battery cell and a thin line width can be obtained.
  • the viscosity is more preferably from 10 to 30 Pa ⁇ s, particularly preferably from 20 to 30 Pa ⁇ s from the viewpoint of preventing sedimentation and separation and improving stability.
  • each component described above is divided into one or more times and heated as necessary, and each component is uniformly dispersed by mixing, dissolving, pulverizing kneading or dispersing. Obtained as a paste.
  • the dispersing / dissolving device used in this case include a known stirrer, a leaker, a three roll, a planetary mixer and the like.
  • the dispenser used when applying the conductive adhesive composition of the present embodiment to the target adhesive surface with a non-contact type dispenser is particularly capable of applying the conductive adhesive composition to the substrate in a non-contact manner.
  • the distance between the target adhesive surface and the discharge port of the dispenser is preferably 0.3 to 5.0 mm, more preferably 0.5 to 2.5 mm, and 0.5 to 1.5 mm. More preferably. If it is narrower than 0.3 mm, the liquid droplets are not interrupted between the discharge port and the target adhesive surface, and dragging of the liquid droplets occurs. If it is larger than 5.0 mm, the positional accuracy of application to the target adhesive surface may be deteriorated. There is.
  • the inner diameter of the nozzle is preferably 100 to 300 mm, and more preferably 120 to 250 mm. If it is smaller than 100 mm, clogging is likely to occur at the time of discharge, and if it is larger than 300 mm, the line width becomes wide, and there is a tendency that the line is bulged out during pressure bonding in the production of a solar cell module.
  • Such devices are provided as, for example, E-Star series (manufactured by Sanei Tech) and AeroJet series (manufactured by Musashi Engineering) from Sunei Tech Co., Ltd. and Musashi Engineering Co., Ltd.
  • FIG. 1 is a schematic diagram showing a main part of a solar cell module, and shows an outline of a structure in which a plurality of solar cells are connected to each other as an example.
  • Fig.1 (a) shows the surface side of a solar cell module
  • FIG.1 (b) shows a back surface side
  • FIG.1 (c) shows a side surface side.
  • the solar cell module 100 includes a grid electrode 7 and a bus bar electrode (front electrode) 3a on the front side of the semiconductor wafer 6, and a back electrode 8 and a bus bar electrode (front electrode) on the back side.
  • a plurality of solar cells 20 each having a surface electrode 3 b are connected to each other by a wiring member 4.
  • the wiring member 4 is electrically connected to the bus bar electrode 3a serving as a surface electrode at one end and the bus bar electrode 3b serving as a surface electrode through the conductive adhesive composition 10 of the present embodiment.
  • the conductive adhesive composition of the present embodiment is applied to either or both of the electrode on the solar cell side cell surface and the wiring member using a non-contact type dispenser.
  • FIG. 2 is a diagram for explaining an embodiment of the method for manufacturing the solar cell module of the present embodiment.
  • the solar cell module of the present embodiment is, for example, a step of applying the conductive adhesive composition 10 of the present embodiment on the bus bar electrodes 3a and 3b by a non-contact dispenser, and applying the conductive adhesive composition 10 on the bus bar electrodes 3a and 3b.
  • the wiring member 4 is disposed on the conductive adhesive composition 10 thus prepared, the step of producing the connection body 30, the step of disposing the sealing material 2 on both surfaces of the connection body 30, and the light receiving surface of the solar battery cell 20.
  • the glass 1 is placed on the side sealing material 2, and the back sheet 5 (protective film) is placed on the back sealing material 2 of the solar battery cell 20, and the resulting laminate is heated at a temperature of 140 to 210 ° C.
  • thermocompression bonding at a pressure of 0.1 to 6 MPa for 30 minutes.
  • electrical connection between the bus bar electrodes 3a and 3b of the solar battery cell 20 and the wiring member 4 and adhesion by curing of the thermosetting resin are performed. Sealing is performed, and a solar cell module can be manufactured in a lump.
  • FIG. 3 is a diagram for explaining a method of applying the conductive adhesive composition of the present invention on the surface electrode of the solar battery cell using a non-contact type dispenser.
  • a certain amount of the conductive adhesive composition 10 is continuously applied to the bus bar electrode 3a by the non-contact dispenser 40 while moving the solar cells in a direction parallel to the bus bar electrode 3a.
  • the conductive adhesive composition 10 can be applied linearly along the electrodes.
  • the connection body 30 can be obtained by disposing the wiring member 4 thereon. Since application
  • coating of a conductive adhesive composition can be performed without stopping the transportation of a photovoltaic cell by performing it with a non-contact type dispenser, the manufacturing efficiency of a solar cell module can be improved.
  • the wiring member 4 and the bus bar electrodes 3a and 3b are arranged to face each other through the conductive adhesive composition 10, and then at a temperature of 140 to 210 ° C. for 1 to 30 minutes, Temporary pressure bonding may be performed in which the bus bar electrodes 3a and 3b are electrically connected to the wiring member 4 by heat pressure bonding at a pressure of 0.1 to 6.0 MPa. Since the solar battery cells and the wiring member 4 are connected by performing the temporary pressure bonding, the connection body 30 becomes easy to handle, and workability at the time of manufacturing the solar battery module is improved.
  • the sealing material 2 is disposed on both surfaces of the obtained connection body 30, the glass 1 is placed on the sealing material 2 on the light receiving surface side of the solar battery cell 20, and the back surface of the solar battery cell 20 is A back sheet 5 (protective film) is placed on the sealing material 2, and the obtained laminate is thermocompression bonded at a temperature of 140 to 180 ° C. for 1 to 30 minutes at a pressure of 0.1 to 6 MPa.
  • a solar cell module can be manufactured by sealing.
  • Examples of the glass 1 include white plate tempered glass with dimples for solar cells.
  • Examples of the sealing material 2 include sealing resins using ethylene / vinyl acetate copolymer resin (EVA) or polyvinyl butyral.
  • Examples of the wiring member 4 include a TAB wire obtained by dipping or plating a solder on a Cu wire.
  • Examples of the back sheet 5 include a PET-based or tedla-PET laminated material, a metal foil-PET laminated material, and the like.
  • the conductive adhesive composition of the present embodiment can be connected to the solar cell electrode in the above-described process even when a wiring board in which a metal conductive wire is formed on a plastic substrate is used. Moreover, also when using a film-form wiring board, it can connect with the electrode of a photovoltaic cell by the process similar to the above using the conductive adhesive composition of this embodiment.
  • the cured product of the conductive adhesive composition of the present embodiment can be used as a substrate, an electronic component, and a conductive layer that bonds and electrically connects the substrate and the electronic component. Further, it can also be used as a support layer for mounting a semiconductor, a semiconductor element, and a conductive layer that bonds and electrically connects the support base and the semiconductor element.
  • the conductive adhesive composition of the present embodiment can also be used for connection between the electrode of the back electrode type (back contact type) solar battery cell and the wiring member.
  • the conductive adhesive composition of the present embodiment is applied onto the electrode of the wiring board or the back electrode of the solar battery cell.
  • a sealing material formed by hollowing out the electrode part (conductive adhesive composition application part) of the wiring board is laminated on the wiring board, and the solar battery cell is placed on the sealing material, and the back electrode of the solar battery cell and the electrode of the wiring board. It arrange
  • a sealing material and glass are disposed on the light receiving surface of the solar battery cell, a back sheet is disposed on the back surface side of the solar battery cell, and the solar battery module is thermocompression-bonded, whereby the back electrode of the solar battery cell and the wiring board The connection and adhesion with the electrodes, and the sealing step of the solar battery cell can be performed at once.
  • the glass and the sealing material those mentioned in the method for producing the solar cell module can be used.
  • Example 1 the material used by the Example and the comparative example was produced by the following method, or was obtained.
  • An example of the preparation method is shown in Example 1.
  • the resin compositions and blending ratios of other examples and comparative examples are as shown in Tables 1 and 2, and the preparation method is the same as in Example 1.
  • Example 1 YL983-U (Mitsubishi Chemical Corporation, trade name of bisphenol F type epoxy resin) 20.0% by mass, 2P4MHZ-PW (Shikoku Kasei Co., Ltd., 2-phenyl-4-methyl-5-hydroxymethyl) 1.0% by mass of imidazole product name and 4.0% by mass of BHPA (2,2-bis (hydroxymethyl) propionic acid, product name of Tokyo Chemical Industry Co., Ltd.)
  • the adhesive component was prepared by circulating.
  • the electrically conductive adhesive composition was obtained by performing a defoaming process for 10 minutes at 500 Pa or less using a vacuum stirrer.
  • Examples 2 to 7 and Comparative Examples 1 to 5 Except for the compositions shown in Tables 1 and 2, conductive adhesive compositions of Examples 2 to 7 and Comparative Examples 1 to 5 were obtained in the same manner as Example 1. The details of the materials shown in Tables 1 and 2 are as follows. Moreover, the unit of the blending ratio of each material in Tables 1 and 2 is mass%. Sn42-Bi57-Ag1 particles: melting point 139 ° C. Sn96.5-Ag3-Cu0.5 particles: melting point 217 ° C.
  • TETRAD-X amine type epoxy compound, manufactured by Mitsubishi Gas Chemical Co., Ltd., trade name (see formula (VI) below)
  • ED-509S p-tert-butylphenylglycidyl ether, reactive diluent, Asahi Denka Kogyo Co., Ltd., trade name
  • Viscosity Viscosity was measured at 25 ° C. and 2.5 rpm according to JIS Z 3284 compliant vortex groove rotating disk type viscosity measurement (using a TV-33H viscometer SPP rotor manufactured by Toki Sangyo Co., Ltd.).
  • a surface electrode material: silver glass formed on the light-receiving surface of a solar cell (125 mm ⁇ 125 mm, thickness 310 ⁇ m) using the conductive adhesive compositions obtained in Examples 1 to 7 and Comparative Examples 1 to 5 It is applied using a non-contact dispenser (trade name: E-STAR, manufactured by Saneitec Co., Ltd., nozzle inner diameter: 210 ⁇ m) on the paste, 2 mm ⁇ 125 mm, and evaluation of coating property and measurement of the width of the coating line are performed according to the following criteria. Went. A: Stable and continuous application of 100,000 shots or more is possible. B: The liquid flies but the dispenser is clogged within 100,000 shots. C: The clogged application or the liquid does not fly within 100,000 shots.
  • the conductive adhesive compositions of Examples 1 to 7 above could be applied with a non-contact dispenser, and the line width was 2.0 mm or less. Further, it was confirmed that the metal particles also aggregated by heating at 160 ° C. Although the viscosity was within the range of the present invention as in Examples 4 and 5, it was found that when the viscosity was lower than 20 Pa ⁇ s, the cohesiveness and stability were slightly inferior. Further, when conductive particles having a relatively large average particle diameter of 90 ⁇ m were used as in Example 6, the stability was slightly reduced due to sedimentation and the applicability was slightly reduced, but the cohesion was good.
  • Example 7 in which the conductive particle content is 80% by mass and the viscosity is 30 Pa ⁇ s using a reactive diluent, it can be applied with a non-contact dispenser, and the aggregation of metal particles is also good. Met.
  • Comparative Example 1 in which the conductive particles were 65% by mass could be applied by a non-contact dispenser and the line width was 2.0 mm or less, but some of the metal particles did not aggregate. If the cohesiveness is poor, sufficient conductivity may not be obtained, which is not preferable. Comparative Examples 2 and 3 having a viscosity higher than 30 Pa ⁇ S could not be applied with a non-contact dispenser. Comparative Example 5 using a metal having a melting point higher than 210 ° C. as conductive particles could be applied by a contact dispenser and had a line width of 2.0 mm or less, but the metal particles did not aggregate at all. In Comparative Example 5 in which the content of the conductive particles was 90% by mass or more, the viscosity was very high and the coating could not be performed.

Abstract

(A)融点が210℃以下である金属を含む導電性粒子、(B)熱硬化性樹脂及び(C)フラックス活性剤を含有する導電性接着剤組成物であって、該導電性接着剤組成物の粘度が5~30Pa・sであり、かつ(A)導電性粒子の含有量が導電性接着剤組成物の全量に対して70~90質量%である導電性接着剤組成物。

Description

導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法
 本発明は、複数の太陽電池セルの電気的な接合に好適に用いられる導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法に関する。
 深刻化する地球温暖化や化石エネルギー枯渇問題を解決する手段として、太陽光を用いた発電システムである太陽電池が注目されている。現在主流の太陽電池は、単結晶又は多結晶のSiウエハ上に電極が形成された太陽電池セルを、配線部材を介して直列又は並列に接続した構造が採用されている。通常、太陽電池セルの電極と金属配線部材の接続には、良好な導電性を示し、かつ安価なはんだが用いられてきた(特許文献1)。さらに最近では、環境問題を考慮して、Pbを含まないSn-Ag-Cuはんだを配線部材である銅線に被覆し、前記はんだの溶融温度以上に加熱して太陽電池セルの電極と配線部材を接続する方法が知られている(特許文献1、2)。
 また、はんだの代替材料として、低温で電気的な接続が可能な導電性接着剤の使用が提案されている(特許文献3)。この導電性接着剤は、熱硬化性樹脂中に銀粒子に代表される金属粒子が混合、分散された組成物であり、これら金属粒子が太陽電池セルの電極及び配線部材と物理的に接触することで電気的な接続が発現する。
特開2002-263880号公報 特開2004-204256号公報 特開2005-243935号公報
 ところで、この導電性接着剤を太陽電池セルの電極上に塗布する方法としては、従来印刷法又は接触型ディスペンサでの塗布法が一般的に用いられている。これらの方法を用いた場合には、塗布のために太陽電池セルを製造工程内で止める必要があるため、作業性の改善が求められている。
 一方、接着剤を塗布する方法としては、非接触型ディスペンサを用いた方法も知られている。上記の接触型のディペンサは、ディスペンサと塗布対象が導電性接着剤を介して接触している状態で塗布を行うものであるが、非接触型のディスペンサは、定量の導電性接着剤を連続的に液滴として吐出するため、ディスペンサと塗布媒体が吐液を介して接触することなく、塗布することができる。接触型のディスペンサは、ディスペンサと塗布媒体が導電性接着剤を介して接触している状態で塗布を行うものであるため、塗布面の高さの変化に対して吐出位置の高さ制御を行う必要があり、このため塗布のために太陽電池セルを製造工程内で止めなければならない。これに対して、非接触型のディスペンサは、ディスペンサと塗布媒体とが接触しないため、このような問題が生じず、高速での描画が可能となり、作業効率の向上が見込まれる。
 しかしながら従来の導電性接着剤は、非接触型ディスペンサの吐出口で詰まってしまうため、液を吐出させることができないという問題がある。さらに、非接触型ディスペンサを用いて導電性接着剤の吐出を行う上で、充分な保存安定性を備えることが望まれる。さらにまた、太陽電池セルの電極の電気的な接合の際には、低温での電気的な接合が望まれる。
 そこで、本発明は上記事情に鑑み、低温での電気的な接合が可能であり、充分な保存安定性を備え、かつ非接触型ディスペンサで塗布することが可能な導電性接着剤組成物及びその塗布方法、並びにこれらを用いた接続体及び太陽電池モジュールを提供することを目的とする。
 本発明は、(A)融点が210℃以下である金属を含む導電性粒子(以下、単に「(A)導電性粒子」ともいう。)、(B)熱硬化性樹脂及び(C)フラックス活性剤を含有する導電性接着剤組成物であって、該導電性接着剤組成物の粘度が5~30Pa・sであり、かつ(A)導電性粒子の含有量が導電性接着剤組成物の全量に対して70~90質量%である導電性接着剤組成物を提供する。
 かかる導電性接着剤組成物によれば、低温での電気的な接合が可能であり、充分な保存安定性を備え、かつ非接触型ディスペンサで塗布することが可能である。
 なお、本明細書中、「融点」とは、例えば示差走査熱量測定(Differential scanning calorimetry(DSC))により測定されるものをいう。
 (A)導電性粒子における金属は、ビスマス、インジウム、スズ、亜鉛から選ばれる少なくとも1種の成分を含有することが好ましい。これにより、良好な導通性を維持しながら、導電性粒子の融点を低くすることができる。
 (A)導電性粒子の平均粒子径は2~95μmであることが好ましい。これにより、保存安定性及び非接触型ディスペンサによる塗布性がより向上する。
 上述の導電性接着剤組成物は、硬化剤又は効果促進剤をさらに含有することが好ましい。これにより、接続安定性がさらに向上する。
 (B)熱硬化性樹脂はエポキシ樹脂であることが好ましい。これにより、接続安定性がさらに向上する。
 本発明はまた、上述の導電性接着剤組成物を非接触型ディスペンサによって対象接着面に塗布する、導電性接着剤組成物の塗布方法を提供する。かかる塗布方法は、上述の導電性接着剤組成物を用いているので、非接触型ディスペンサを用いて容易に塗布が可能である。
 なお、「対象接着面」とは、特に限定されるものではないが、その具体例としては、太陽電池セルの電極、配線部材及び配線基板、半導体の配線基板が挙げられる。
 本発明はまた、複数の太陽電池セルが金属導線を介して接続される接続体であって、該太陽電池セルの電極面と金属導線とが、上述の導電性接着剤組成物を介して接続されている接続体を提供する。
 本発明はまた、上述の導電性接着剤組成物を、非接触型ディスペンサにより太陽電池セルの電極面上に塗布する工程と、太陽電池セルの電極面上に塗布された導電性接着剤組成物上に配線部材を配置した後、太陽電池セルの両面に封止材を積層する工程と、太陽電池セルの受光面側の封止材上にガラス、太陽電池セルの裏面の封止材上に保護フィルムを積層する工程と、得られた積層体を加熱することで太陽電池セルと配線部材とを電気的に接続するとともに接着しながら、太陽電池セルを封止する工程とを有する太陽電池モジュールの製造方法を提供する。
 本発明はまた、上述の導電性接着剤組成物を介して、複数の太陽電池セルの電極と配線部材を電気的に接続した太陽電池モジュールを提供する。
 本発明によれば、太陽電池セルの電気特性を維持しながら、非接触型ディスペンサで塗布することができる導電性接着剤組成物と、該導電性接着剤組成物を用いた太陽電池モジュールの製造方法を提供することができる。また本発明により太陽電池モジュールを効率よく製造することができる。
本発明に係る太陽電池モジュールの要部を示す模式図である。 本発明に係る太陽電池モジュールの製造方法の一実施形態を説明するための図である。 本発明の導電性接着剤組成物を、太陽電池セルの表面電極上に非接触型ディスペンサを用いて塗布する方法を説明するための図である。
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。
 本発明の導電性接着剤組成物は、(A)導電性粒子、(B)熱硬化性樹脂、(C)フラックス活性剤を含む。
 (A)導電性粒子としては、融点が210℃以下である金属を含むもの、より好ましくは融点が200℃以下である金属を含むものを使用することができる。(A)導電性粒子における金属の融点の下限は、特に限定されないが、120℃程度である。このような導電性粒子を導電性接着剤組成物に用いると、比較的低い温度で溶融して凝集し、この凝集体が対象物の電気的接続に貢献するものと考えられる。
 (A)導電性粒子における金属は、環境への優しさを考慮して、鉛以外の金属から構成されることが好ましい。(A)導電性粒子を構成する金属としては、例えば、スズ(Sn)、ビスマス(Bi)、インジウム(In)、亜鉛(Zn)等から選ばれる少なくとも1種の成分を含有する単体又は合金が挙げられる。なお、当該合金は、より良好な接続信頼性を得ることができる点から、(A)導電性粒子における金属全体としての融点が210℃となる範囲で、Pt、Au、Ag、Cu、Ni、Pd、Al等から選ばれる高融点の成分を含有することもできる。
 (A)導電性粒子を構成する金属としては、具体的には、Sn42-Bi58はんだ(融点138℃)、Sn48-In52はんだ(融点117℃)、Sn42-Bi57-Ag1はんだ(融点139℃)、Sn90-Ag2-Cu0.5-Bi7.5はんだ(融点189℃)、Sn96-Zn8-Bi3はんだ(融点190℃)、Sn91-Zn9はんだ(融点197℃)などが、明確な融解後の固化挙動を示すため好ましい。固化挙動とは溶融後、冷えて再び固まることをいう。これらの中でも入手容易性や低融点である観点からSn42-Bi58はんだ又はSn42-Bi57-Ag1はんだを用いることが好ましい。これらは単独又は2種以上を組み合わせて用いられる。
 (A)導電性粒子の平均粒子径は、特に制限はないが、2~95μmであると好ましい。この平均粒子径が2μm未満であると、導電性接着剤組成物の粘度が高くなり、作業性が低下する傾向にある。また、導電性粒子の平均粒子径が95μmを超えると、塗布性が低下するとともに、導電性接着剤組成物中で導電性粒子の沈降が起こるなどの問題が生じる傾向がある。塗布性とは、導電性接着剤組成物の塗布時の形状保持力を指す。塗布後に塗布形状が保たれる、すなわち塗布性が良好であることが好ましい。導電性接着剤組成物の塗布性及び作業性をさらに良好にする観点から、この平均粒子径は5~50μmであるとより好ましい。さらに、導電性接着剤組成物の保存安定性並びに硬化物の実装信頼性をより向上させる観点から、この平均粒子径は5~30μmであると特に好ましい。ここで、平均粒子径はレーザー回折、散乱法(神岡鉱業試験法No.2)によって求められた値である。
 (A)導電性粒子は、融点が210℃以下である金属のみで構成されるものの他、セラミックスやシリカ、樹脂材料等の金属以外の固体材料からなる粒子の表面を、融点が210℃以下である金属からなる金属膜で被覆した導電性粒子であってもよく、それらの混合物であってもよい。
 導電性接着剤組成物における(A)導電性粒子の含有量は、導電性接着剤組成物の全量に対して、70~90質量%である。70質量%未満の場合は、金属成分の凝集性が低下する。また、90質量%を超えると、導電性接着剤組成物の粘度が高くなり、作業性が低下する。また、相対的に導電性接着剤組成物中の接着剤成分が少なくなるため、硬化物の実装信頼性が低下する。さらに、作業性又は導電性を向上させる点から、(A)導電性粒子の含有量は、70~85質量%であることより好ましく、硬化物の実装信頼性を高める観点から、70~80質量%であることが特に好ましい。
 なお、(A)導電性粒子とともに、(a1)融点が210℃より高い金属からなる導電性粒子を併用しても良い。このような融点が210℃より高い金属としては、例えば、Pt、Au、Ag、Cu、Ni、Pd、Al等から選ばれる一種類の金属又は二種類以上の金属からなる合金が挙げられ、より具体的にはAu粉、Ag粉、Cu粉、AgめっきCu粉などが挙げられる。市販品としては、鍍銀銅粉である「MA05K」(日立化成工業(株)製、商品名)が入手可能である。
 (A)導電性粒子とともに、(a1)融点が210℃より高い金属からなる導電性粒子を併用する場合、その配合比率は、(A):(a1)が重量比で99:1~50:50の範囲内であることが好ましく、99:1~60:40の範囲内であることがより好ましい。
 (B)熱硬化樹脂は、被着体を接着する作用を有するとともに、接着剤組成物中の導電性粒子及び必要に応じて添加されるフィラーを互いに結合するバインダ成分として機能する。このような樹脂としては、例えばエポキシ樹脂、(メタ)アクリル樹脂、マレイミド樹脂及びシアネート樹脂等の熱硬化性樹脂、並びにそれらの前駆体が挙げられる。ここで(メタ)アクリル樹脂とは、メタクリル樹脂及びアクリル樹脂を指す。これらの中では、(メタ)アクリル樹脂及びマレイミド樹脂に代表される分子中に重合可能な炭素-炭素二重結合を有する化合物、又は、エポキシ樹脂が好ましい。特に硬化時の接着強度の観点から、エポキシ樹脂が好ましい。これらの熱硬化性樹脂は、耐熱性及び接着性に優れ、しかも必要に応じて有機溶剤中に溶解又は分散させれば液体の状態で取り扱うこともできるため、作業性にも優れている。上述の熱硬化性樹脂は1種を単独で又は2種以上を組み合わせて用いられる。
 (メタ)アクリル樹脂は、重合可能な炭素-炭素二重結合を有する化合物から構成される。かかる化合物としては、例えば、モノアクリレート化合物、モノメタクリレート化合物、ジアクリレート化合物、及びジメタクリレート化合物が挙げられる。
 モノアクリレート化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、アミルアクリレート、イソアミルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、イソデシルアクリレート、ラウリルアクリレート、トリデシルアクリレート、ヘキサデシルアクリレート、ステアリルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、ジエチレングリコールアクリレート、ポリエチレングリコールアクリレート、ポリプロピレングリコールアクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、2-ブトキシエチルアクリレート、メトキシジエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、ジシクロペンテニルオキシエチルアクリレート、2-フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2-ベンゾイルオキシエチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ベンジルアクリレート、2-シアノエチルアクリレート、γ-アクリロキシエチルトリメトキシシラン、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、アクリロキシエチルホスフェート及びアクリロキシエチルフェニルアシッドホスフェートが挙げられる。
 モノメタクリレート化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、アミルメタクリレート、イソアミルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、トリデシルメタクリレート、ヘキサデシルメタクリレート、ステアリルメタクリレート、イソステアリルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、ジエチレングリコールメタクリレート、ポリエチレングリコールメタクリレート、ポリプロピレングリコールメタクリレート、2-メトキシエチルメタクリレート、2-エトキシエチルメタクリレート、2-ブトキシエチルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、ジシクロペンテニルオキシエチルメタクリレート、2-フェノキシエチルメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシポリエチレングリコールメタクリレート、2-ベンゾイルオキシエチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、ベンジルメタクリレート、2-シアノエチルメタクリレート、γ-メタクリロキシエチルトリメトキシシラン、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、メタクリロキシエチルホスフェート及びメタクリロキシエチルフェニルアシッドホスフェートが挙げられる。
 ジアクリレート化合物としては、例えば、エチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,3-ブタンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジルアクリレート2モルの反応物、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジアクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物のジアクリレート、ビス(アクリロキシプロピル)ポリジメチルシロキサン及びビス(アクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマーが挙げられる。
 ジメタクリレート化合物としては、例えば、エチレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジルメタクリレート2モルの反応物、ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジメタクリレート、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物、ビス(メタクリロキシプロピル)ポリジメチルシロキサン及びビス(メタクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマーが挙げられる。
 これらの化合物は1種を単独で又は2種以上を組み合わせて用いられる。また、熱硬化性樹脂として(メタ)アクリル樹脂を含有するとき、これらの化合物をあらかじめ重合してから用いても良く、また、これらの化合物を(A)導電性粒子及び(C)フラックス活性剤とともに混合し、混合と同時に重合を行っても良い。
 熱硬化性樹脂が重合可能な炭素-炭素二重結合を有する化合物から構成される場合、導電性接着剤組成物はラジカル重合開始剤を含むことが好ましい。ラジカル重合開始剤は、ボイドを有効に抑制する観点等から、有機過酸化物が好適である。また、導電性接着剤組成物の硬化性及び粘度安定性を向上させる観点から、有機過酸化物はその分解温度が70~170℃であることが好ましく、80~160℃であることがより好ましい。
 ラジカル重合開始剤としては、例えば、1,1,3,3,-テトラメチルブチルパーオキシ2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)3-ヘキシン及びクメンハイドロパーオキサイドが挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 ラジカル重合開始剤の配合割合は、導電性接着剤組成物の導電性粒子及び溶剤以外の成分(以下、「接着剤成分」という)の総量に対して0.01~20質量%であると好ましく、0.1~10質量%であるとより好ましく、0.5~5質量%であるとさらに好ましい。
 アクリル樹脂としては市販のものを用いることができる。その具体例としては、FINEDIC A-261(大日本インキ化学工業(株)製、商品名、軟化点105±3℃)、FINEDIC A-229-30(大日本インキ化学工業(株)製、商品名、109±3℃)等が挙げられる。なお、「軟化点」とは、例えば測定温度を変化させることができるレオメータにより測定されるものをいう。
 エポキシ樹脂としては、その1分子中に2個以上のエポキシ基を有する化合物であれば特に制限なく公知の化合物を使用することができる。このようなエポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールAD、ビスフェノールS、ビスフェノールF若しくはハロゲン化ビスフェノールAとエピクロルヒドリンの縮合物、フェノールノボラック樹脂のグリシジルエーテル、クレゾールノボラック樹脂のグリシジルエーテル、ビスフェノールAノボラック樹脂のグリシジルエーテルが挙げられる。
 かかるエポキシ樹脂としては市販のものを用いることができる。その具体例としては、ビスフェノールA型エポキシ樹脂であるAER-X8501(旭化成工業(株)製、商品名)、R-301(ジャパンエポキシレジン(株)製、商品名)、YL-980(ジャパンエポキシレジン(株)製、商品名)、ビスフェノールF型エポキシ樹脂であるYDF-170(東都化成社製、商品名)、YL-983(ジャパンエポキシレジン(株)製、商品名)、ビスフェノールAD型エポキシ樹脂であるR-1710(三井石油化学工業(株)製、商品名)、フェノールノボラック型エポキシ樹脂であるN-730S(大日本インキ化学工業(株)製、商品名)、Quatrex-2010(ダウ・ケミカル社製、商品名)、クレゾールノボラック型エポキシ樹脂であるYDCN-702S(東都化成(株)製、商品名)、EOCN-100(日本化薬(株)製、商品名)、多官能エポキシ樹脂であるEPPN-501(日本化薬社製、商品名)、TACTIX-742(ダウ・ケミカル(株)製、商品名)、VG-3010(三井石油化学工業(株)製、商品名)、1032S(ジャパンエポキシレジン(株)製、商品名)、ナフタレン骨格を有するエポキシ樹脂であるHP-4032(大日本インキ化学工業(株)製、商品名)、脂環式エポキシ樹脂であるEHPE-3150、CEL-3000(以上、ダイセル化学工業(株)製、商品名)、DME-100(新日本理化(株)製、商品名)、EX-216L(ナガセ化成工業(株)製、商品名)、脂肪族エポキシ樹脂であるW-100(新日本理化(株)製、商品名)、アミン型エポキシ化合物であるELM-100(住友化学工業(株)製、商品名)、YH-434L(東都化成(株)製、商品名)、TETRAD-X、TETRAD-C(ともに三菱瓦斯化学(株)製、商品名)、630、630LSD(ともにジャパンエポキシレジン(株)製、商品名)、レゾルシン型エポキシ樹脂であるデナコールEX-201(ナガセ化成工業(株)製、商品名)、ネオペンチルグリコール型エポキシ樹脂であるデナコールEX-211(ナガセ化成工業(株)製、商品名)、ヘキサンディネルグリコール型エポキシ樹脂であるデナコールEX-212(ナガセ化成工業(株)製、商品名)、エチレン・プロピレングリコール型エポキシ樹脂であるデナコールEXシリーズ(EX-810、811、850、851、821、830、832、841、861(以上、ナガセ化成工業(株)製、商品名))、下記一般式(I)で表されるエポキシ樹脂E-XL-24、E-XL-3L(以上、三井化学(株)製、商品名)が挙げられる。これらのエポキシ樹脂の中でも、イオン性不純物が少なく、かつ反応性に優れるビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、アミン型エポキシ樹脂が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
(式(I)中、kは1~5の整数を示す。)
 上述のエポキシ樹脂は1種を単独で又は2種以上を組み合わせて用いられる。
 また、導電性接着剤組成物が上述のエポキシ樹脂を熱硬化性樹脂として含有する場合、反応性希釈剤として、1分子中に1個のみエポキシ基を有するエポキシ化合物をさらに含有してもよい。そのようなエポキシ化合物は市販品として入手可能であり、その具体例としては、例えばPGE(日本化薬(株)製、商品名)、PP-101(東都化成(株)製、商品名)、ED-502、ED-509、ED-509S(旭電化工業(株)製、商品名)、YED-122(油化シェルエポキシ(株)製、商品名)、KBM-403(信越化学工業(株)製、商品名)、TSL-8350、TSL-8355、TSL-9905(東芝シリコーン(株)製、商品名)が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。
 反応性希釈剤を含有させる場合の含有量は、本発明による効果を阻害しない範囲であればよく、上記エポキシ樹脂の全量に対して0.1~30質量%であることが好ましい。
 導電性接着剤組成物がエポキシ樹脂を熱硬化性樹脂として含有する場合、硬化剤又は硬化促進剤を含有することがより好適である。
 硬化剤としては、従来用いられるものであれば特に限定されず、市販のものが入手可能である。市販の硬化剤としては、例えば、フェノールノボラック樹脂であるH-1(明和化成(株)製、商品名)、VR-9300(三井東圧化学(株)製、商品名)、フェノールアラルキル樹脂であるXL-225(三井東圧化学(株)製、商品名)、下記一般式(II)で表されるp-クレゾールノボラック樹脂であるMTPC(本州化学工業(株)製、商品名)、アリル化フェノールノボラック樹脂であるAL-VR-9300(三井東圧化学(株)製、商品名)、下記一般式(III)で表される特殊フェノール樹脂であるPP-700-300(日本石油化学(株)製、商品名)が挙げられる。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
(式(II)中、Rは、それぞれ独立に1価の炭化水素基、好ましくはメチル基又はアリル基を示し、qは1~5の整数を示す。また式(III)中、Rはアルキル基、好ましくはメチル基又はエチル基を示し、Rは水素原子又は1価の炭化水素基を示し、pは2~4の整数を示す。)
 硬化剤の配合割合は、エポキシ樹脂のエポキシ基1.0当量に対して、硬化剤中の反応活性基の総量が0.3~1.2当量となる割合であることが好ましく、0.4~1.0当量となる割合であることがより好ましく、0.5~1.0当量となる割合であることがさらに好ましい。反応活性基が0.2当量未満であると、接着剤成分の耐リフロークラック性が低下する傾向があり、1.2当量を超えると接着剤成分の粘度が上昇し、作業性が低下する傾向がある。上記反応活性基は、エポキシ樹脂との反応活性を有する置換基のことであり、例えばフェノール性水酸基が挙げられる。
 また、硬化促進剤としては、ジシアンジアミド等、従来硬化促進剤として用いられているものであれば特に限定されず、市販品が入手可能である。市販品としては、例えば、下記一般式(IV)で表される二塩基酸ジヒドラジドであるADH、PDH、SDH(以上、日本ヒドラジン工業(株)製、商品名)、エポキシ樹脂とアミン化合物との反応物からなるマイクロカプセル型硬化剤であるノバキュア(旭化成工業(株)製、商品名)が挙げられる。これらの硬化促進剤は1種を単独で又は2種以上を組み合わせて用いられる。
Figure JPOXMLDOC01-appb-C000004
(式(IV)中、Rは2価の芳香族基又は炭素数1~12の直鎖若しくは分岐鎖のアルキレン基、好ましくはm-フェニレン基又はp-フェニレン基を示す。)
 上記硬化促進剤の配合割合は、エポキシ樹脂100質量部に対して0.01~90質量部であると好ましく、0.1~50質量部であるとより好ましい。この硬化促進剤の配合割合が0.01質量部未満であると硬化性が低下する傾向があり、90質量部を超えると粘度が増大し、接着剤成分を取り扱う際の作業性が低下する傾向がある。
 また、市販の硬化促進剤として、上述のものに加えてあるいはその代りに、例えば、有機ボロン塩化合物であるEMZ・K、TPPK(以上、北興化学工業(株)製、商品名)、三級アミン類又はその塩であるDBU、U-CAT102、106、830、840、5002(以上、サンアプロ(株)製、商品名)、イミダゾール類であるキュアゾール、2PZ-CN、2P4MHZ、C17Z、2PZ-OK、2PZ-CNS、C11Z-CNS(以上、四国化成(株)製、商品名)を用いてもよい。
 これらの硬化促進剤の配合割合は、エポキシ樹脂100質量部に対して0.1~20質量部であると好ましく、0.1~15質量部であるとより好ましい。
 また、硬化剤及び硬化促進剤はそれぞれの1種を単独で又は2種以上を組み合わせて用いてもよい。
 導電性接着剤組成物における(B)熱硬化性樹脂の含有量は、接着剤成分の総量に対して、1~60質量%であると好ましく、5~40質量%であるとより好ましく、10~30質量%であると特に好ましい。
 なお、本実施形態の導電性接着剤組成物には、上述の熱硬化性樹脂に加えて、バインダとして機能する熱可塑性樹脂を1種又は2種以上添加してもよい。熱可塑性樹脂としては、例えば、ABS樹脂(アクリロニトリル、ブタジエン、スチレン共重合合成樹脂)、ポリプロピレン樹脂、ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリメタクリル酸メチル樹脂、ポリブタジエン樹脂、ポリエチレンテレフタレート樹脂、ポリフェニレンエーテル樹脂、ナイロン樹脂、ポリアミド樹脂、ポリカーボネイト樹脂、ポリアセタール樹脂、ポリブチレンテレフタラート樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルエーテルケトン樹脂、変性ポリフェニレンエーテル樹脂、液晶ポリマー、フッ素樹脂、ウレタン樹脂、ポリアリレート樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂が挙げられる。これらの熱可塑性樹脂は1種を単独で又は2種以上を組み合わせて用いられる。
 (C)フラックス活性剤は、(A)導電性粒子の表面に形成された酸化膜除去能を示すものである。このようなフラックス活性剤を用いることにより、(A)導電性粒子の凝集の妨げとなる酸化膜が除去される。(C)フラックス活性剤は、(B)熱硬化性樹脂の硬化反応を阻害しない化合物であれば特に制限なく公知の化合物を使用することができる。このような化合物としては、ロジン系樹脂、分子内にカルボキシル基、フェノール性水酸基又はアルコール性水酸基を含有する化合物、2,4-ジエチルグルタル酸、2,2-ジエチルグルタル酸、3-メチルグルタル酸、2-エチル-3-プロピルグルタル酸、2,5-ジエチルアジピン酸等の側鎖にアルキル基を有する二塩基酸が挙げられるが、良好なフラックス活性を示し、かつ(B)熱硬化性樹脂として用いるエポキシ樹脂と良好な反応性を示すことから、分子内に水酸基とカルボキシル基を含有する化合物が好ましく、脂肪族ジヒドロキシカルボン酸が特に好ましい。具体的には、下記一般式(V)で表される化合物又は酒石酸が好ましい。
Figure JPOXMLDOC01-appb-C000005
 ここで、式(V)中、Rは炭素数1~5のアルキル基を示し、一般式(V)で表される化合物を用いることによる効果をより有効に発揮する観点から、メチル基、エチル基又はプロピル基であると好ましい。また、n及びmはそれぞれ独立に0~5の整数を示し、一般式(V)で表される化合物を用いることによる効果をより有効に発揮する観点から、nが0かつmが1であるか、n及びmの両方が1であると好ましく、n及びmの両方が1であるとより好ましい。
 上記一般式(V)で表される化合物としては、例えば、2,2-ビス(ヒドロキシメチル)プロピオン酸、2,2-ビス(ヒドロキシメチル)ブタン酸、2,2-ビス(ヒドロキシメチル)ペンタン酸が挙げられる。
 (C)フラックス活性剤の含有量は、本発明による上記効果をより有効に発揮する観点から、(A)導電性粒子の全量100質量部に対して、0.1~30質量部であることが好ましい。さらに、保存安定性、導電性の観点から、0.5~20質量部であることがより好ましく、1~10質量部であることがより好ましい。
(C)フラックス活性剤の含有量が0.1質量部未満の場合、(A)導電性粒子における金属の溶融性が低下し導電性が低下する傾向があり、20質量部を超えた場合、保存安定性、塗布性が低下する傾向がある。
 導電性接着剤組成物は、接着力向上の目的で、シランカップリング剤やチタンカップリング剤などのカップリング剤が含有されてもよい。シランカップリング剤としては、例えば、信越化学社製、商品名「KBM-573」が挙げられる。また、濡れ性向上の目的で、アニオン系界面活性剤やフッ素系界面活性剤等を接着剤成分に含有させてもよい。さらに消泡剤としてシリコーン油等を含有してもよい。上記接着力向上剤、濡れ性向上剤、消泡剤は、それぞれ1種を単独で又は2種以上を組み合わせて用いられる。これらは導電性接着剤組成物の全量に対して、0.1~10質量%含まれることが好ましい。
 導電性接着剤組成物は、フィラーを含有してもよい。フィラーとしては、例えば、アクリルゴム、ポリスチレンなどのポリマー粒子、ダイヤモンド、窒化ホウ素、窒化アルミニウム、アルミナ、シリカ等の無機粒子が挙げられる。これらのフィラーは1種を単独で又は2種以上を混合して用いてもよい。
 導電性接着剤組成物は、上述の各成分の他、必要に応じて、応力緩和のための可撓剤、作業性向上のための希釈剤、接着力向上剤、濡れ性向上剤及び消泡剤からなる群より選ばれる1種以上の添加剤を含んでもよい。また、これらの成分の他、本発明による効果を阻害しない範囲において各種添加剤を含んでいてもよい。
 例えば、可撓剤としては、CTBN-1300×31、CTBN-1300×9(以上、宇部興産(株)製、商品名)、NISSO-PB-C-2000(日本曹達(株)製、商品名)等の液状ポリブタジエンが挙げられる。可撓剤を含有する場合、その含有量は、熱硬化性樹脂の総量100質量部に対して、0.01~500質量部であると好適である。
 導電性接着剤組成物には、ペースト組成物の作製時の作業性及び使用時の塗布作業性をより良好にするため、必要に応じて有機溶媒を添加することができる。このような有機溶媒としては、ブチルセロソルブ、カルビトール、酢酸ブチルセロソルブ、酢酸カルビトール、ジプロピレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル、α-テルピネオール等の比較的沸点の高い有機溶媒が好ましい。この有機溶媒は、接着剤組成物の全体量に対して0.1~30質量%含まれることが好ましい。
 本発明において、上述の各成分は、それぞれにおいて例示されたもののいずれを組み合わせてもよい。
 上述の導電性接着剤組成物の粘度は5~30Pa・sである。粘度が30Pa・sを超えると、液の飛翔ができなくなり、非接触ディスペンサによる塗布作業ができなくなる。ノズル径を大きくすれば吐出性能は向上するが、対象接着面上に塗布された導電性接着剤組成物の線幅が2.0mm以下の細い線を引くことが困難になる。線幅については、太陽電池セル上で導電性接着剤組成物があまり広がらず、細い線幅がひけることが、作業上の観点から好ましい。粘度が5Pa・sよりも低いと、導電性粒子が沈降し、分離してしまう傾向がある。粘度は10~30Pa・sであることがより好ましく、沈降や分離などを防ぎ、安定性を高める観点から20~30Pa・sであることが特に好ましい。
 上述の導電性接着剤組成物は、上述の各成分を一度に又は複数回に分けて、必要に応じて加熱するとともに、混合、溶解、解粒混練又は分散することにより各成分が均一に分散したペースト状のものとして得られる。この際に用いられる分散・溶解装置としては、公知の撹拌器、らいかい器、3本ロール、プラネタリーミキサー等が挙げられる。
 本実施形態の導電性接着剤組成物を非接触型ディスペンサによって対象接着面に塗布する際に用いられるディスペンサは、導電性接着剤組成物を基材に対して非接触で塗布可能であれば特に制限はないが、対象接着面とディスペンサの吐出口の間隔が0.3~5.0mmであることが好ましく、0.5~2.5mmであることがより好ましく、0.5~1.5mmであることがさらに好ましい。0.3mmより狭いと吐出口と対象接着面の間で液滴が途切れず、液滴の引きずりが起きてしまい、5.0mmより広いと対象接着面への塗布の位置精度が悪化する可能性がある。
 また、ノズルの内径は100~300mmであることが好ましく、120~250mmであることがより好ましい。100mmよりも小さいと吐出時に詰まりが発生しやすくなり、300mmよりも大きいと線幅が広くなり、太陽電池モジュール作成における圧着時にはみ出てしまう傾向がある。
 こうした装置は、例えば、株式会社サンエイテック、武蔵エンジニアリング株式会社などからE-Starシリーズ(サンエイテック製)、AeroJetシリーズ(武蔵エンジニアリング製)として提供されている。
 次に、上記本実施形態の導電性接着剤組成物を用いて製造される太陽電池モジュールの一例を、図1を用いて説明する。
 図1は、太陽電池モジュールの要部を示す模式図であり、複数の太陽電池セルが相互に配線接続された構造の概略を一つの例として示している。図1(a)は太陽電池モジュールの表面側を示し、図1(b)は裏面側を示し、図1(c)は側面側を示す。
 図1(a)~(c)に示すように、太陽電池モジュール100は、半導体ウエハ6の表面側にグリッド電極7及びバスバー電極(表面電極)3aが、裏面側に裏面電極8及びバスバー電極(表面電極)3bがそれぞれ形成された太陽電池セル20が、配線部材4により複数相互に接続されている。そして、配線部材4は、その一端が表面電極としてのバスバー電極3aと、他端が表面電極としてのバスバー電極3bと、それぞれ本実施形態の導電性接着剤組成物10を介して電気的に接続されている。本実施形態の導電性接着剤組成物は、非接触型のディスペンサを用いて太陽電池側セル表面の電極若しくは配線部材のいずれか又は両方に塗布される。
 図2は、本実施形態の太陽電池モジュールの製造方法の一実施形態を説明するための図である。
 本実施形態の太陽電池モジュールは、例えば、本実施形態の導電性接着剤組成物10を、非接触型ディスペンサにより、バスバー電極3a及び3b上に塗布する工程と、バスバー電極3a及び3b上に塗布された導電性接着剤組成物10上に配線部材4を配置し、接続体30を作製する工程と、接続体30の両面に封止材2を配置する工程と、太陽電池セル20の受光面側の封止材2上にガラス1を、太陽電池セル20の裏面の封止材2上にバックシート5(保護フィルム)を配置し、得られた積層体を140~210℃の温度で1~30分間、0.1~6MPaの圧力で加熱圧着する工程とを含む製造方法により製造される。この加熱圧着の工程で、太陽電池セル20のバスバー電極3a及び3bと配線部材4との間の、電気的な接続及び熱硬化性樹脂の硬化による接着が行われると同時に、太陽電池セル20の封止が行われ、太陽電池モジュールを一括で製造することができる。
 図3は、本発明の導電性接着剤組成物を、太陽電池セルの表面電極上に非接触型ディスペンサを用いて塗布する方法を説明するための図である。
 この塗布方法によれば、太陽電池セルをバスバー電極3aと平行な方向に移動させながら、非接触型ディスペンサ40により、バスバー電極3aに対して一定量の導電性接着剤組成物10を連続的に吐出することで、電極に沿って線状に導電性接着剤組成物10を塗布することができる。その上に配線部材4を配置することで接続体30を得ることができる。導電性接着剤組成物の塗布を非接触型ディスペンサにより行うことで、太陽電池セルの輸送を停止することなく塗布を行うことができるため、太陽電池モジュールの製造効率を向上させることができる。
 これらの製造方法の他、導電性接着剤組成物10を介して、配線部材4とバスバー電極3a及び3bとを相対向するように配置した後、140~210℃の温度で1~30分間、0.1~6.0MPaの圧力で、加熱圧着することで、バスバー電極3a及び3bと配線部材4との電気的な接続を行う、仮圧着を行っても良い。仮圧着を行うことで、太陽電池セルと配線部材4の接続が行われるため、接続体30が取り扱いやすくなり、太陽電池モジュール製造時の作業性が向上する。
 仮圧着を行った場合、得られた接続体30の両面に封止材2を配置し、太陽電池セル20の受光面側の封止材2上にガラス1を、太陽電池セル20の裏面の封止材2上にバックシート5(保護フィルム)を配置し、得られた積層体を140~180℃の温度で1~30分間、0.1~6MPaの圧力で加熱圧着して太陽電池セルを封止することで、太陽電池モジュールを製造することができる。
 ガラス1としては、太陽電池用ディンプル付き白板強化ガラスなどが挙げられる。封止材2としては、エチレン・酢酸ビニル共重合樹脂(EVA)やポリビニルブチラールを用いた封止樹脂が挙げられる。配線部材4としては、Cu線に半田をディップ又はめっきしたTAB線などが挙げられる。バックシート5としては、PET系又はテドラ-PET積層材料、金属箔-PET積層材料などが挙げられる。
 本実施形態の導電性接着剤組成物は、プラスチック基板上に金属導線を形成した配線基板を使用する場合にも、上述の工程で太陽電池セルの電極との接続を行うことができる。また、フィルム状配線基板を使用する場合にも、本実施形態の導電性接着剤組成物を用いて上述と同様の工程で太陽電池セルの電極との接続を行うことができる。
 本実施形態の導電性接着剤組成物の硬化物は基板と、電子部品と、該基板と該電子部品とを接着して電気的に接続する導電層として用いることができる。また、半導体搭載用の支持基材と、半導体素子と、支持基材と半導体素子とを接着して電気的に接続する導電層としても用いることができる。
 また、本実施形態の導電性接着剤組成物は、裏面電極型(バックコンタクト型)太陽電池セルの電極と配線部材との接続にも用いることができる。この場合、まず、配線基板の電極上又は太陽電池セルの裏面電極上に本実施形態の導電性接着剤組成物を塗布する。次いで、配線基板上に配線基板の電極部(導電性接着剤組成物塗布部)をくりぬいた封止材を積層し、その上に太陽電池セルを、太陽電池セルの裏面電極と配線基板の電極部とが導電性接着剤組成物を介して接するように配置する。さらにその太陽電池セルの受光面上に封止材とガラスを、太陽電池セルの裏面側にバックシートを配置し、この太陽電池モジュールを加熱圧着することで、太陽電池セルの裏面電極と配線基板の電極との接続及び、接着と、太陽電池セルの封止工程を一括で行うことができる。ガラス及び封止材としては、上記太陽電池モジュールの製造方法で挙げたものを用いることができる。
 以下、実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例及び比較例で用いた材料は、下記の方法で作製したもの、あるいは入手したものである。調製方法の一例を実施例1に示すが、その他の実施例及び比較例の樹脂組成、配合比は表1~2に示すとおりであり、調製方法に関しては実施例1と同様である。
[実施例1]
 YL983-U(三菱化学(株)製、ビスフェノールF型エポキシ樹脂の商品名)20.0質量%と、2P4MHZ―PW(四国化成(株)製、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールの商品名)1.0質量%と、BHPA(2,2-ビス(ヒドロキシメチル)プロピオン酸、東京化成工業株式会社製の商品名)4.0質量%を混合し、3本ロールを3回通して接着剤成分を調製した。
 次に、上述の接着剤成分25質量%に対して、導電性粒子であるSn42-Bi58粒子(平均粒子径20μm、融点:138℃)75質量%を加えて混合した。さらにそれらの混合物に3本ロールを3回通した後、真空撹拌らいかい器を用いて500Pa以下で10分間脱泡処理を行うことにより導電性接着剤組成物を得た。
[実施例2~7及び比較例1~5]
 表1~2に示す組成とした以外は実施例1と同様にして、実施例2~7、比較例1~5の導電性接着剤組成物を得た。なお、表1、2に示した材料の詳細は以下のとおりである。また、表1、2中の各材料の配合割合の単位は質量%である。
Sn42-Bi57-Ag1粒子:融点139℃
Sn96.5-Ag3-Cu0.5粒子:融点217℃
TETRAD-X:アミン型エポキシ化合物、三菱瓦斯化学(株)製、商品名(下記式(VI)参照)
Figure JPOXMLDOC01-appb-C000006
ED-509S:p-tert-ブチルフェニルグリシジルエ-テル、反応性希釈剤、旭電化工業(株)、商品名
 上記実施例1~7、比較例1~5に係る液状導電性接着剤組成物の特性を下記の方法で測定した。その結果を表1、表2にまとめて示した。
[粘度]
 粘度は、JIS Z 3284準拠の渦上溝付き回転円盤方式粘度測定に従い、25℃、2.5rpmの粘度を測定した(東機産業(株)製 TV-33H型粘度計 SPPロータ使用)。
[安定性の評価]
 実施例1~7及び比較例1~5で得られた導電性接着剤組成物を、25℃、24時間放置後に観察した際に、目視で沈降・分離等の外観異常がない状態をAとし、外観上に若干の分離沈降が確認されるが、薬さじ等による弱い撹拌で均一となる状態をBとし、外観上の変化が薬さじ等による弱い撹拌で均一とならない場合をCとした。
[塗布性の評価及び線幅の測定]
 実施例1~7及び比較例1~5で得られた導電性接着剤組成物を、太陽電池セル(125mm×125mm、厚さ310μm)の受光面上に形成された表面電極(材質:銀ガラスペースト、2mm×125mm)上に非接触ディスペンサ(サンエイテック(株)製 商品名:E-STAR、ノズル内径210μm)を用いて塗布し、下記の基準で塗布性の評価及び塗布線の幅の測定を行った。
A:100,000ショット以上の安定した連続塗布が可能
B:液が飛翔するが100,000ショット以内でディスペンサが詰まる
C:100,000ショット以内で塗布詰まり若しくは、液が飛翔しなくなる
[凝集性の評価]
 上記塗布性の評価において塗布された導電性接着剤組成物を、ホットプレート上で160℃、10分間加熱した後、導電性粒子における金属の凝集状態をX線透視装置(島津製作所製 マイクロフォーカスX線透視装置 SMX-1000)で確認し、下記の基準で評価した。なお、金属の凝集が観察されれば、太陽電池セルの電極と配線部材とが電気的に接続されているということができる。
A:完全凝集、未凝集粒子無し
B:凝集しているが若干の未凝集粒子あり
C:全く凝集していない
-:塗布できないため、測定不可
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上記実施例1~7の導電性接着剤組成物は非接触型ディスペンサで塗布することができ、また線幅も2.0mm以下であった。また、160℃で加熱することにより金属粒子も凝集することが確認できた。実施例4及び5のように粘度が本発明の範囲内ではあるものの、20Pa・sより低いと、凝集性や安定性が若干劣ることが分かった。また実施例6のように、平均粒子径が90μmと比較的大きい導電性粒子を用いると、沈降により安定性が少し低下し、塗布性も少し低下するものの、凝集性は良好であった。また、導電性粒子の含有量を80質量%とし、反応性希釈剤を用いて粘度を30Pa・sにした実施例7でも、非接触型ディスペンサで塗布することができ、金属粒子の凝集も良好であった。
 一方、導電性粒子が65質量%である比較例1は、非接触ディスペンサにより塗布ができ、線幅も2.0mm以下であったが、金属粒子の一部が凝集しなかった。凝集性が悪いと充分な導電性が得られなくなる可能性があり好ましくない。粘度が30Pa・Sよりも大きい比較例2及び比較例3は非接触ディスペンサで塗布することができなかった。融点が210℃よりも高い金属を導電性粒子として用いた比較例5は、接触ディスペンサにより塗布ができ、線幅も2.0mm以下であったが、金属粒子は全く凝集しなかった。導電性粒子の含有量が90質量%以上である比較例5では、粘度が非常に高く、塗布を行うことができなかった。
 1…ガラス、2…封止材、3a,3b…バスバー電極、4…配線部材、5…バックシート、6…半導体ウエハ、7…グリッド電極、8…裏面電極、10…導電性接着剤組成物、20…太陽電池セル、30…接続体、40…非接触型ディスペンサ、100…太陽電池モジュール。

Claims (9)

  1.  (A)融点が210℃以下である金属を含む導電性粒子、(B)熱硬化性樹脂及び(C)フラックス活性剤を含有する導電性接着剤組成物であって、
     該導電性接着剤組成物の粘度が5~30Pa・sであり、かつ前記(A)導電性粒子の含有量が前記導電性接着剤組成物の全量に対して70~90質量%である導電性接着剤組成物。
  2.  前記(A)導電性粒子における金属が、ビスマス、インジウム、スズ、亜鉛から選ばれる少なくとも1種の成分を含有する、請求項1記載の導電性接着剤組成物。
  3.  前記(A)導電性粒子の平均粒子径が2~95μmである、請求項1又は2に記載の導電性接着剤組成物。
  4.  硬化剤又は硬化促進剤をさらに含有する、請求項1ないし3のいずれか一項に記載の導電性接着剤組成物。
  5.  (B)熱硬化性樹脂がエポキシ樹脂である、請求項1ないし4のいずれか一項に記載の導電性接着剤組成物。
  6.  請求項1ないし5のいずれか一項に記載の導電性接着剤組成物を非接触型ディスペンサによって対象接着面に塗布する、導電性接着剤組成物の塗布方法。
  7.  複数の太陽電池セルが金属導線を介して接続される接続体であって、
     該太陽電池セルの電極面と金属導線とが、請求項1ないし5のいずれか一項に記載の導電性接着剤組成物を介して接続されている接続体。
  8.  請求項1ないし5のいずれか一項に記載の導電性接着剤組成物を、非接触型ディスペンサにより太陽電池セルの電極面上に塗布する工程と、
     前記太陽電池セルの電極面上に塗布された導電性接着剤組成物上に配線部材を配置した後、太陽電池セルの両面に封止材を積層する工程と、
     前記太陽電池セルの受光面側の前記封止材上にガラス、前記太陽電池セルの裏面の前記封止材上に保護フィルムを積層する工程と、
     得られた積層体を加熱することで前記太陽電池セルと配線部材とを電気的に接続するとともに接着しながら、前記太陽電池セルを封止する工程と、を有する太陽電池モジュールの製造方法。
  9.  請求項1ないし5のいずれか一項に記載の導電性接着剤組成物を介して、複数の太陽電池セルの電極と配線部材を電気的に接続した太陽電池モジュール。
PCT/JP2011/072657 2011-01-27 2011-09-30 導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法 WO2012101869A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012554618A JP6144048B2 (ja) 2011-01-27 2011-09-30 導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法
EP11856888.0A EP2669346A4 (en) 2011-01-27 2011-09-30 CONDUCTIVE BINDER COMPOSITION AND MANUFACTURING METHOD THEREOF, SOLDER UNIT, SOLAR CELL MODULE, AND MANUFACTURING METHOD THEREOF
US13/981,777 US20130319499A1 (en) 2011-01-27 2011-09-30 Conductive binder composition and method for producing the same, bonded unit, and solar cell module and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-015629 2011-01-27
JP2011015629 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012101869A1 true WO2012101869A1 (ja) 2012-08-02

Family

ID=46580458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/072657 WO2012101869A1 (ja) 2011-01-27 2011-09-30 導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法

Country Status (5)

Country Link
US (1) US20130319499A1 (ja)
EP (1) EP2669346A4 (ja)
JP (3) JP6144048B2 (ja)
TW (1) TWI452111B (ja)
WO (1) WO2012101869A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150322298A1 (en) * 2012-12-14 2015-11-12 Conpart As Method of applying a conductive adhesive
KR20210123251A (ko) * 2018-10-31 2021-10-13 한국생산기술연구원 고출력 슁글드 어레이 구조의 태양전지 모듈 및 그 제조방법
KR20230048715A (ko) 2021-10-05 2023-04-12 한국생산기술연구원 고출력 슁글드 태양전지 모듈 및 그의 제조방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799421B2 (en) 2013-06-07 2017-10-24 Heraeus Precious Metals North America Conshohocken Llc Thick print copper pastes for aluminum nitride substrates
CN105162407B (zh) * 2014-06-20 2018-02-02 维斯幕达有限公司 用于自动水平式组装电池片前后连接及预固定的光伏面板的装置及系统
US9991412B2 (en) 2014-12-05 2018-06-05 Solarcity Corporation Systems for precision application of conductive adhesive paste on photovoltaic structures
US9899546B2 (en) 2014-12-05 2018-02-20 Tesla, Inc. Photovoltaic cells with electrodes adapted to house conductive paste
DE102016218338A1 (de) * 2016-09-23 2018-03-29 Siemens Healthcare Gmbh Röntgendetektor mit wärmeleitfähiger Zwischenschicht
CN114783770B (zh) * 2022-06-20 2022-12-13 西安宏星电子浆料科技股份有限公司 一种多层陶瓷电容器外部电极浆料及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263880A (ja) 2001-03-06 2002-09-17 Hitachi Cable Ltd Pbフリー半田、およびこれを使用した接続用リード線ならびに電気部品
JP2004204256A (ja) 2002-12-24 2004-07-22 Hitachi Cable Ltd 低熱膨張平角導体
JP2005243935A (ja) 2004-02-26 2005-09-08 Shin Etsu Handotai Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2006199937A (ja) * 2004-12-15 2006-08-03 Tamura Kaken Co Ltd 導電性接着剤、これを用いた導電部及び電子部品モジュール
JP2006229025A (ja) * 2005-02-18 2006-08-31 Clean Venture 21:Kk 光電変換装置の製造方法および光電変換装置
WO2009069273A1 (ja) * 2007-11-28 2009-06-04 Panasonic Corporation 導電性ペーストおよびこれを用いた電気電子機器
JP2009138155A (ja) * 2007-12-10 2009-06-25 Fukuda Metal Foil & Powder Co Ltd 無溶剤型導電性接着剤
JP2009283453A (ja) * 2008-04-23 2009-12-03 Panasonic Corp 導電性ペーストおよびこれを用いた実装構造体
JP2010238927A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd 太陽電池セル、太陽電池モジュールおよび太陽電池システム
WO2011046176A1 (ja) * 2009-10-15 2011-04-21 日立化成工業株式会社 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854103B2 (ja) * 2001-06-28 2006-12-06 住友ベークライト株式会社 導電性ペースト及び該ペーストを用いてなる半導体装置
JP2004359830A (ja) * 2003-06-05 2004-12-24 Kyocera Chemical Corp 導電性接着剤組成物
JP4595301B2 (ja) * 2003-08-29 2010-12-08 住友ベークライト株式会社 半導体用樹脂ペースト及び半導体装置
ATE510306T1 (de) * 2005-02-18 2011-06-15 Clean Venture 21 Corp Matrixanordnung sphärischer solarzellen und ihr herstellungsverfahren
JP2006286956A (ja) * 2005-03-31 2006-10-19 Sumitomo Bakelite Co Ltd 半導体用接着剤および半導体用接着剤を使用して製作された半導体装置
WO2007052661A1 (ja) * 2005-11-02 2007-05-10 Matsushita Electric Industrial Co., Ltd. 導電性接着剤
JP5323310B2 (ja) * 2005-11-10 2013-10-23 日立化成株式会社 接続構造及びその製造方法
JP4294048B2 (ja) * 2006-11-29 2009-07-08 三洋電機株式会社 太陽電池モジュール
JP5204454B2 (ja) * 2007-10-02 2013-06-05 積水化学工業株式会社 接着剤
JP2009113033A (ja) * 2007-10-17 2009-05-28 Hitachi Chem Co Ltd 三次元形状樹脂成形品に回路を形成する回路形成装置
JP2010000442A (ja) * 2008-06-20 2010-01-07 Panasonic Corp 液体吐出装置
JP5321445B2 (ja) * 2009-12-28 2013-10-23 住友ベークライト株式会社 半導体装置の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263880A (ja) 2001-03-06 2002-09-17 Hitachi Cable Ltd Pbフリー半田、およびこれを使用した接続用リード線ならびに電気部品
JP2004204256A (ja) 2002-12-24 2004-07-22 Hitachi Cable Ltd 低熱膨張平角導体
JP2005243935A (ja) 2004-02-26 2005-09-08 Shin Etsu Handotai Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2006199937A (ja) * 2004-12-15 2006-08-03 Tamura Kaken Co Ltd 導電性接着剤、これを用いた導電部及び電子部品モジュール
JP2006229025A (ja) * 2005-02-18 2006-08-31 Clean Venture 21:Kk 光電変換装置の製造方法および光電変換装置
WO2009069273A1 (ja) * 2007-11-28 2009-06-04 Panasonic Corporation 導電性ペーストおよびこれを用いた電気電子機器
JP2009138155A (ja) * 2007-12-10 2009-06-25 Fukuda Metal Foil & Powder Co Ltd 無溶剤型導電性接着剤
JP2009283453A (ja) * 2008-04-23 2009-12-03 Panasonic Corp 導電性ペーストおよびこれを用いた実装構造体
JP2010238927A (ja) * 2009-03-31 2010-10-21 Sanyo Electric Co Ltd 太陽電池セル、太陽電池モジュールおよび太陽電池システム
WO2011046176A1 (ja) * 2009-10-15 2011-04-21 日立化成工業株式会社 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2669346A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150322298A1 (en) * 2012-12-14 2015-11-12 Conpart As Method of applying a conductive adhesive
KR20210123251A (ko) * 2018-10-31 2021-10-13 한국생산기술연구원 고출력 슁글드 어레이 구조의 태양전지 모듈 및 그 제조방법
KR102400387B1 (ko) * 2018-10-31 2022-05-20 한국생산기술연구원 고출력 슁글드 어레이 구조의 태양전지 모듈 및 그 제조방법
KR20230048715A (ko) 2021-10-05 2023-04-12 한국생산기술연구원 고출력 슁글드 태양전지 모듈 및 그의 제조방법

Also Published As

Publication number Publication date
EP2669346A1 (en) 2013-12-04
US20130319499A1 (en) 2013-12-05
JP2017201021A (ja) 2017-11-09
EP2669346A4 (en) 2015-05-20
TW201231613A (en) 2012-08-01
JPWO2012101869A1 (ja) 2014-06-30
JP2016074911A (ja) 2016-05-12
JP6144048B2 (ja) 2017-06-07
TWI452111B (zh) 2014-09-11

Similar Documents

Publication Publication Date Title
JP6112187B2 (ja) 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール
JP6144048B2 (ja) 導電性接着剤組成物及びその塗布方法、接続体、並びに太陽電池モジュール及びその製造方法
JP6508292B2 (ja) 導電性接着剤組成物
JP6060684B2 (ja) 太陽電池モジュールの製造方法
JP2011023577A (ja) 導電性接着剤組成物、これを用いた接続体、太陽電池セルの製造方法及び太陽電池モジュール
WO2012049984A1 (ja) 太陽電池モジュール
JP5900349B2 (ja) 導電性接着剤組成物、接続体及び太陽電池モジュール
JP6115135B2 (ja) 太陽電池モジュール
TWI445019B (zh) 導電性接著劑組成物、連接體及太陽電池模組及其製造方法
JP2008150597A (ja) 導電性接着剤組成物、電子部品搭載基板及び半導体装置
JP2014084395A (ja) 導電性接着剤組成物、導電性接着剤付金属導線、接続体及び太陽電池モジュールとその製造方法
JP2013258313A (ja) 太陽電池モジュールの製造方法
JP7331693B2 (ja) 導電性接着剤組成物及びこれを用いた接続構造体
JP2014011232A (ja) 太陽電池素子、太陽電池素子の製造方法、太陽電池モジュールの製造方法及び太陽電池モジュール
JP6119124B2 (ja) 太陽電池素子及び太陽電池の製造方法
JP2018178125A (ja) 導電性接着剤組成物、接続体、太陽電池モジュール及びその製造方法
JP2018014540A (ja) 太陽電池素子、太陽電池素子の製造方法、太陽電池モジュールの製造方法及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856888

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554618

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011856888

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13981777

Country of ref document: US