WO2007052661A1 - 導電性接着剤 - Google Patents

導電性接着剤 Download PDF

Info

Publication number
WO2007052661A1
WO2007052661A1 PCT/JP2006/321753 JP2006321753W WO2007052661A1 WO 2007052661 A1 WO2007052661 A1 WO 2007052661A1 JP 2006321753 W JP2006321753 W JP 2006321753W WO 2007052661 A1 WO2007052661 A1 WO 2007052661A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
conductive adhesive
filler particles
component
weight
Prior art date
Application number
PCT/JP2006/321753
Other languages
English (en)
French (fr)
Inventor
Atsushi Yamaguchi
Hidenori Miyakawa
Takayuki Higuchi
Koso Matsuno
Hideyuki Tsujimura
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/092,453 priority Critical patent/US7785500B2/en
Priority to JP2007542763A priority patent/JP4897697B2/ja
Publication of WO2007052661A1 publication Critical patent/WO2007052661A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0218Composite particles, i.e. first metal coated with second metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0272Mixed conductive particles, i.e. using different conductive particles, e.g. differing in shape
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/04Soldering or other types of metallurgic bonding
    • H05K2203/0425Solder powder or solder coated metal powder

Definitions

  • the present invention relates to a conductive adhesive for use in electronic component mounting or wiring formation on an electronic circuit board.
  • bonding materials for mounting electronic components include Sn—Pb solder materials, particularly Sn—Pb eutectic solders having a 63S n—37Pb eutectic composition (composition of 63 wt% Sn and 37 wt% Pb). Materials are commonly used.
  • the joining material is also being shifted from a Sn-Pb solder material to a solder material that does not contain lead, so-called lead-free solder material.
  • a typical example of a lead-free solder mainly composed of two kinds of metals is Sn Ag solder as a material that is an eutectic alloy material and has excellent wettability (Patent Document 1).
  • the melting point of Sn-Ag solder is about 30 to 40 ° C higher than that of Sn-Pb solder (about 183 ° C). Is higher than when Sn—Pb solder is used. For this reason, when Sn-Ag solder is used, the mounting temperature when mounting electronic components may exceed the heat resistance temperature of the electronic components. In such cases, the electronic components may be damaged. Had problems.
  • Patent Document 1 Patent No. 3027441
  • Patent Document 2 Japanese Patent Laid-Open No. 10-163605
  • a general conductive adhesive is a mixture of filler particles in which the metal component of lead-free solder is in any form up to a bulk morphing force or a flaky shape and a thermosetting resin component at a predetermined ratio. Is formed.
  • the volume resistivity is higher than when bonding with lead-free solder, which is Balta metal, or conductive adhesives of the same composition are used. Even if it was used, there was a tendency that the volume resistivity varied in some cases. Therefore, the use of the conductive adhesive has been limited.
  • the Ag filler particles may cause migration depending on the environment in which the electronic component is used. And sometimes Z or sulfurated.
  • the present invention is a conductive adhesive comprising metal filler particles as a metal component and a thermosetting resin as a resin component, and after joining, minderation and sulfide of Ag filler particles It is an object of the present invention to provide a conductive adhesive capable of preventing the occurrence of the above.
  • a first invention of the present application includes a metal filler particle component having an alloying force between Ag and at least one metal selected from the group consisting of Sn, Cu, In, Bi and Ni, and a resin component.
  • a conductive adhesive is provided.
  • the metal filler single-particle component is an alloy of an essential Ag component and at least one metal component for which Sn, Cu, In, Bi, and Ni group forces are also selected. Those having a composition are used.
  • the metal filler particles preferably have an average particle size of 5 to 30 m.
  • the resin component is mainly composed of thermosetting resin.
  • the second invention of the present application is a mixture of at least one metal selected from the group consisting of Sn, Cu, In, Bi, and Ni and filler particles that also have an alloying force with Ag and Ag filler particles.
  • a conductive adhesive comprising a metal filler particle component and a resin component.
  • a mixture of metal filler particles having an alloy composition that can be used as the metal filler particle component of the first invention described above and an Ag filler particle is used.
  • the metal filler particles preferably have an average particle size of 5 to 30 m.
  • a rosin component has thermosetting rosin as a main component.
  • Bi and In are blended for the purpose of lowering the melting point of the alloy.
  • the Bi content in the alloy is preferably in the range of 0.1 to 70% by weight, more preferably in the range of 10 to 60% by weight. This is because if the Bi content is less than 0.1% by weight, the effect of lowering the melting point cannot be obtained sufficiently, and if it exceeds 70% by weight, the effect of lowering the melting point cannot be obtained.
  • the content of In in the alloy is preferably in the range of 1.0 to 70% by weight, more preferably in the range of 2.0 to 60% by weight. This is because if the In content is less than 1.0% by weight, the effect of lowering the melting point cannot be sufficiently obtained, and if it exceeds 70% by weight, the effect of lowering the melting point cannot be obtained.
  • the third invention of the present application is a metal filler particle component obtained by mixing Ag filler particles and at least one metal filler particle selected from the group consisting of Cu, Sn, Ni, Zn and A1, and Provided is a conductive adhesive comprising a rosin component.
  • the metal filler particles preferably have an average particle size of 5 to 30 m.
  • the resin component is mainly composed of a thermosetting resin.
  • Cu is intended to improve the mechanical properties of the alloy. Mix.
  • the Cu content in the alloy is preferably in the range of 0.1 to 1.0% by weight, and more preferably in the range of 0.2 to 0.9% by weight. If the Cu content is less than 0.1% by weight, the effect of improving its mechanical properties cannot be obtained, and if it exceeds 1.0% by weight, the alloy tends to become more brittle. This is because it has an adverse effect on the mechanical characteristics.
  • Ni is blended for the purpose of suppressing the oxidation of Sn.
  • the content of Ni in the alloy is preferably in the range of 0.01 to: L 0% by weight, and more preferably in the range of 0.1 to 0.5% by weight. If the Ni content is less than 0.1% by weight, the effect of suppressing the oxidation of Sn cannot be obtained. If the Ni content exceeds 1.0% by weight, a strong Ni oxide film is formed and the melting point rises. This is because the effect of suppressing Sn oxidation is not obtained.
  • a fourth invention of the present application provides a conductive adhesive comprising a metal filler particle component in which a coating layer made of Sn-containing metal is provided on the surface of an Ag filler particle, and a resin component.
  • the metal filler particle component of the conductive adhesive can be heat treated to alloy Ag and the metal of the coating layer at least on the surface of the Ag filler particles.
  • a metal containing only Sn can be used as the Sn-containing metal.
  • the Sn-containing metal may be an alloy of Sn and at least one metal selected from the group strength of Cu, In, Bi, Ni, and Ag.
  • the coating can be performed by means such as plating.
  • the metal filler particles preferably have an average particle size of 5 to 30 m.
  • the resin component is mainly composed of thermosetting resin.
  • a coating layer formed of an alloy of Sn and an alloy of at least one metal selected from the group forces of Cu, In, Bi, Ni and Ag or Sn alone is heat-treated, At least on the surface of the Ag filler particles inside the coating layer, when the alloy of Ag and the metal of the coating layer is alloyed, the portion where the alloy of Ag and the metal of the coating layer is alloyed is much lower than Ag. , The melting point can be shown.
  • the Ag content in the metal filler particle component is 50% by weight or more, and therefore the content of metals other than Ag is 50% by weight or less.
  • the fifth invention of the present application includes a metal filler particle component that also has an alloying force between Sn and at least one metal selected from the group consisting of Cu, In, Bi, Ni, and Ag, and a resin component.
  • the metal filler particle component has an alloy composition in which at least one metal selected from the group consisting of Cu, In, Bi, Ni, and Ag is mixed with Sn, which is an essential component. Is used.
  • a mixture of metal filler particles and Sn filler particles having the above alloy composition can be prepared and used as a metal filler particle component.
  • the metal filler particles preferably have an average particle size of 5 to 30 / zm.
  • the resin component contains thermosetting resin as a main component.
  • the wettability of the metal filler particles can be improved and the melting point can be lowered. If the Bi content is less than 0.1% by weight, the effect of improving wettability cannot be obtained, and if it exceeds 60% by weight, the effect of improving wettability and lowering the melting point cannot be obtained. A range of 1 to 60% by weight is preferred.
  • the melting point of the metal filler particles can be lowered by blending In. If the In content is less than 1% by weight, the effect of lowering the melting point will not be sufficiently obtained, and if it exceeds 60% by weight, the effect of lowering the melting point will not be obtained. It is preferably in the range of% by weight.
  • the mechanical properties of the alloy can be improved by blending Cu and Ag. If the Cu content is less than 0.1% by weight, the effect on the mechanical properties cannot be obtained, and therefore it is preferably 0.1% by weight or more. Content of more preferred Cu is in the range of 0.5 to 0.7 wt 0/0.
  • the Ag content is less than 0.1% by weight, no effect on the mechanical properties can be obtained, and if it exceeds 5% by weight, the melting point rapidly increases.
  • the range is 0.1-5% by weight to rise.
  • Sn can be suppressed by adding Ni. If the Ni content is less than 0.01% by weight, the effect of suppressing the oxidation of Sn cannot be obtained. If the Ni content exceeds 1.0% by weight, a strong Ni oxide film is formed and the melting point is increased. Will rise and no effect will be obtained.
  • the Ni content is preferably 0.01 to 0.1% by weight Ni.
  • a feature common to the first to fifth inventions of the present application is that metals belonging to the group of Cu, Sn, Ni, Zn, and A1 have a higher ionization tendency than Ag. Therefore, these metals coexist with Ag. Letting As a result, the ion ion of Ag can be effectively suppressed.
  • Ag particles can be mixed with one or more metal particles of Cu, Sn, Ni, Zn, and Al, or Ag, Cu, Sn, Ni, Zn, and Al.
  • a form in which one or more metals are alloyed is also included.
  • the effect of suppressing migration and the effect of suppressing sulfur are recognized. Become. If one or more alloys of the group of Cu, Sn, Ni, Zn and Al are added at least 0.1% by weight with respect to Ag, the effect of suppressing the migration of Ag and the effect of suppressing the sulfur content Is recognized.
  • the sixth invention of the present application is a hard adhesive power for a thermosetting resin used as the first component in the resin component in the conductive adhesive according to the first to fifth inventions. It contains a metal complex selected from the group consisting of Cu, Sn, Ni, Zn and Al. Since the ionization tendency is larger than that of Ag such as Cu, Sn, Ni, Zn and A 1, the presence of these metals together with Ag makes it possible to effectively suppress the ionization of Ag.
  • an organic compound or metal containing a metal having a greater ionization tendency than Ag such as Cu, Sn, Ni, Zn and Al, in the resin component
  • the migration suppression effect of Ag is recognized.
  • thermosetting resins known to those skilled in the art can be used as the resin component of the conductive adhesive.
  • an epoxy resin an acrylic resin, a phenol resin, a polyimide resin, a thermosetting polyurethane resin, an unsaturated polyester resin, etc.
  • a preferable thermosetting resin is an epoxy resin.
  • the epoxy resin various ones such as one-part curable type and two-part curable type can be used. One-part curable type is preferable.
  • thermosetting rosin when thermosetting rosin is used, a curable rosin system known to those skilled in the art (a specific curable rosin and a specific type of curing agent required for the curing thereof). In a necessary amount) is used by including it in the fat component.
  • the conductive adhesive composition can be maintained in a reducing atmosphere to some extent even during the heat curing process. Substantially prevent the formation of an acid film on the surface of the filler particles. You can. By preventing acidification on the surface of the metal filler particles during the heat curing process, it prevents melting defects of low melting point metal components during the heat curing process and the formation of an acid film on the surface of the Ag filler particles. be able to.
  • the reducible rosin contains a compound having a carboxyl group, for example, a carboxylic acid.
  • a carboxylic acid Encapsulating such compounds in the resin removes the low melting point metal oxide film (prevents the formation of an acid film on the low melting point metal surface) and facilitates melting. Therefore, the action as a reducing agent can be expressed.
  • various carboxylic acids such as aliphatic carboxylic acids, aromatic carboxylic acids, and alicyclic carboxylic acids can be used.
  • Examples of such compounds include adipic acid, abithic acid, ascorbic acid, acrylic acid, citrate, polyacrylic acid, malic acid, pimelic acid, palmitic acid, myristic acid, lauric acid, sebacic acid, suberic acid, Mention may be made of maleic acid, succinic acid, azelaic acid, fumaric acid, dartaric acid, malonic acid and the like.
  • the carboxylic acid is preferably in the form of a metal salt such as Na, Ag, Cu, or K.
  • the ratio of the first and second rosin components is 90:10 to : LO: 90, particularly 50: 50 to 80: 20 is preferred.
  • the ratio of the second resin component to the metal filler particle component is preferably 20% by weight or less. This is because when it exceeds 20% by weight, no further change is observed in the action as a reducing agent and Z or a curing agent. When the second resin component acts as a curing agent, the amount of curing agent used for the first resin component can be reduced.
  • the conductive adhesive of the first invention of the present application is prepared by using an alloy of Ag and at least one metal selected from the group consisting of Sn, Cu, In, Bi and Ni as the metal filler particle component. Therefore, its Ag component is part of the alloy composition. Therefore, when this conductive adhesive is used for joining two contacts, it is possible to effectively prevent the Ag filler particles from causing migration or sulphation.
  • the conductive adhesive of the second invention of the present application among metal filler particles made of an alloy of at least one metal selected from the group consisting of Sn, Cu, In, Bi and Ni and Ag, Its Ag component is As part of the alloy composition, when this conductive adhesive is used to join two contacts, Ag filler particles migrate from the metal filler particles, or Ag filler particles It can be effectively prevented from being deceived. Furthermore, since this alloy is much lower than Ag and has a melting point, this conductive adhesive comprising a mixture of metal filler particles and Ag filler particles of the alloy as a metal filler particle component is applied.
  • the metal filler of the alloy composition melts and flows in the resin component that maintains the fluid state, and surrounds the Ag filler particles or communicates between the Ag filler particles. And coalesced to form a metal bond or metal bond in the resin component to form a conductive path. Thereafter, when the thermosetting resin is cured, a conductive path formed by the filler particles coalescing and communicating with each other in the thermosetting resin is obtained. Therefore, since at least the surface of the Ag filler particles is surrounded by the alloy, it is considered that the Ag filler particles can effectively prevent migration or sulfidation after application.
  • the conductive adhesive of the third invention of the present application is a metal filler obtained by mixing Ag filler particles and at least one metal filler particle selected from the group force of Cu, Sn, Ni, Zn, and Al. Using a single particle, the metal filler particles other than Ag are themselves relatively low, have a melting point, and have a greater ionization tendency than Ag, making this conductive adhesive suitable for joining two contacts. When used, it is possible to effectively prevent the Ag filler particles from causing migration or sulfuration.
  • metal filler particles are used in which a coating layer made of Sn-containing metal is provided on the surface of Ag filler particles.
  • This metal filler particle has a coating layer of Sn-based metal that has a higher ionization tendency than Ag, effectively preventing the Ag filler particles from migrating or being sulphated. can do.
  • the metal filler particles are heat-treated to form at least an Ag—Sn alloy on the surface of the Ag filler particles (that is, the interface between the Ag filler particles and the Sn-containing metal coating layer).
  • the alloy can also include other metals in the composition. Sn has a greater ionization tendency than Ag and the alloy can have a relatively low melting point. Therefore, when this conductive adhesive is used to join two contacts, Ag It is possible to effectively prevent the filler particles from causing migration or sulfuration.
  • the conductive adhesive of the fifth invention of the present application is a metal filler particle having an alloy composition containing Sn as an essential component, and uses relatively low melting point metal filler particles.
  • the adhesive is applied and then heated, in addition to forming a conductive path by contacting the metal filler particles, at least the surface portion of the metal filler particles, preferably the whole, is melted to maintain a fluid state.
  • the metal components of the molten metal filler particles are united and communicated to substantially form a metal bond or metal bond. Thereafter, when the thermosetting resin is cured, a conductive path formed by coalescence of filler particles in the thermosetting resin is formed.
  • the conductive adhesive of the sixth invention of the present application is a conductive adhesive according to the first to fifth inventions, wherein the thermosetting resin used as the first component in the resin component.
  • the curing agent for the composition includes a metal complex selected from the group consisting of Cu, Sn, Ni, Zn, and A1. Since the ionization tendency is larger than that of Ag such as Cu, Sn, Ni, Zn, and A1, the presence of these metals together with Ag can effectively suppress the ionization of Ag.
  • the conductive adhesive of the present invention can be used for joining electronic parts or forming a wiring. As an example of use, it can be used for connecting electronic parts such as CCD elements, follower elements, and chip parts, and for forming wiring on a substrate for joining them.
  • the electronic components and substrates formed thereby can be used for various electric products such as DVDs, mobile phones, portable AV devices, notebook PCs, and digital cameras.
  • Metal filler particles having an average particle diameter of about 5 m are prepared by preparing an alloy composition of Ag and a metal other than Ag so as to have the composition shown in each example of Table 1, and then granulating the alloy. Was made. 80 parts by weight of the metal filler particles were added to 20 parts by weight of a thermosetting epoxy resin to prepare the conductive adhesive of the first invention of the present application.
  • a thermosetting epoxy resin examples include Epicoat 828 and Epicoat 807 (manufactured by Japan Epoxy Resin (JER)).
  • the thermosetting epoxy resin has Epicoat 828 (Japan Epoxy Resin (JER)) was used, and 2PHZ (Shikoku Chemicals) was used as the curing agent.
  • an example in which the symbol “-a” is added after the number of the example is an example in which a coating layer of Sn-containing metal is provided on the surface of the Ag filler particles in the preparation stage of the metal filler particles.
  • the example in which the symbol “-b” is added after the number of the example is an example in which a coating layer of Sn-containing metal is formed and then heat-treated in the preparation stage of the metal filler particles.
  • the conductive adhesive of each example was printed on a comb electrode defined in JISZ3197 and cured at 150 ° C. for 10 minutes. After applying 45 to 50 VDC between the electrodes and leaving it in a constant temperature and humidity layer of 85 ° C-85% for 1000 hours, we examined whether or not the force of Ag migration occurs at the joint. Use a magnifying glass (more than 20 times) to check whether the Ag migration has occurred. If the formation of dendritic metal from one pole to the other is observed, migration is considered to occur. I saw it.
  • Table 1 shows the metal filler particle components used (% by weight) and the results of migration.
  • Example 10- a 99.9 0.1 ⁇
  • This method for evaluating the occurrence of migration is applied to all the following embodiments.
  • An alloy filler having an average particle size of about 5 / zm by preparing an alloy composition of Sn and a metal other than Sn so as to have the composition shown in each example of Table 2, and then granulating the alloy. Particles were made. 80 parts by weight of the alloy filler particles were added to 20 parts by weight of a thermosetting epoxy resin to produce the conductive adhesive of the fifth invention of the present application. Epoxy Coat 828 (manufactured by Japan Epoxy Resin (JER)) was used as the thermosetting epoxy resin, and 2PHZ (manufactured by Shikoku Kasei) was used as the curing agent. Using the conductive adhesive of each example, whether or not migration occurred was examined in the same manner as in the first embodiment. Table 2 shows the metal filler particle components used (% by weight) and the results of migration.
  • a metal coating layer was formed on the surface of Ag filler particles having an average particle diameter of about 5 m by a plating method using a metal having the composition shown in each example of Table 3. This is heat-treated to a temperature that exceeds the melting point of the metal composition of each example by about 20 ° C. (melting point + about 20 ° C.), and at least the surface of the Ag filler particles of each metal filler particle is Ag. And the metal component of the coating layer were alloyed to produce the metal filler particle component of the fourth invention of the present application. Ag and the coating metal were used in a weight ratio of 10: 1.
  • thermosetting epoxy resin 80 parts by weight of the metal filler single particle component thus obtained was added to 20 parts by weight of a thermosetting epoxy resin to produce the conductive adhesive of the fourth invention of the present application.
  • Epicoat 828 manufactured by Japan Epoxy Resin (JER)
  • JER Japan Epoxy Resin
  • 2PHZ manufactured by Shikoku Kasei
  • Metal filler particles having a metallic force having the composition shown in Table 1 (excluding Ag), having an average particle size of about 5 ⁇ m, and having an average particle size of about 5 ⁇ m
  • the metal filler particle component of the third invention of the present application was prepared by mixing with the existing Ag filler particles. Metal filler particles and Ag filler particles were used at a weight ratio of 1:10. 80 parts by weight of this metal filler single particle component was added to 20 parts by weight of thermosetting epoxy resin to produce the conductive adhesive of the third invention of the present application.
  • Epicoat 828 manufactured by Japan Epoxy Resin (JER)
  • JER Japan Epoxy Resin
  • 2PHZ manufactured by Shikoku Kasei
  • An alloy composition of Sn and a metal other than Sn having the composition shown in each example of Table 4 was prepared, and the alloy was granulated to produce alloy filler particles having an average particle diameter of about 5 ⁇ m. did. Separately, Sn filler particles having an average particle diameter of about 5 m are supplied, and the above alloy filler particles and Sn filler particles are mixed at a weight ratio of 1:10 to achieve the fifth invention of the present application.
  • a metal filler particle component having a modified embodiment was produced. 80 parts by weight of the metal filler single particle component thus obtained was added to 20 parts by weight of a thermosetting epoxy resin to produce a conductive adhesive.
  • Epicoat 828 (manufactured by Japan Epoxy Resin (JER)) was used for the thermosetting epoxy resin, and 2PHZ (manufactured by Shikoku Kasei) was used for the curing agent.
  • the IC chip was bonded to the circuit board using the conductive adhesive of each example.
  • the processing of the obtained circuit board and whether or not Ag migration occurred at the joint were examined in the same manner as in the first embodiment.
  • Table 4 shows the metal filler particle components used (% by weight) and the results of migration.
  • thermosetting resin when a curing agent containing a metal complex selected from the group consisting of Cu, Sn, Ni, Zn, and Al is used as a curing agent for thermosetting resin, the migration of Ag is further suppressed. It was confirmed that an effect was obtained.
  • the rosin component was prepared as follows. Epicoat 828 (manufactured by Japan Epoxy Resin (JER)) was used as the thermosetting resin. As shown in Table 4, hardeners containing Cu, Sn, Ni, Zn, or Al metal complexes (adipic acid metal salts) were used as the hardeners. The weight ratio of curing agent to thermosetting resin was 20:80.
  • the conductive adhesive according to the present invention contains a low melting point metal in the filler particles, thereby melting the low melting point metal filler particles in the heat curing process of the conductive adhesive and performing metal bonding between the filler particles.
  • a volume resistivity equivalent to that of a noble metal so that the solder with a conductive adhesive whose curing temperature is relatively lower than the melting point of lead-free solder. In soldering, thermal damage to electronic components is reduced, so it is useful as a substitute for solder in mounting electronic equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 電子部品実装において、金属成分のマイグレーション及び硫化の発生を防止する導電性接着剤を提供する。導電性接着剤は、熱硬化性樹脂に金属フィラー粒子を分散させてなる。金属フィラー粒子には、Sn、Cu、In、Bi及びNiの群から選ばれる少なくとも1種の金属とAgとの合金からなる組成の金属フィラー粒子、その金属フィラー粒子とAgフィラー粒子との混合物、又はSn等の金属によってAgフィラー粒子の表面に被覆層を形成した金属フィラー粒子を用いることができる。

Description

明 細 書
導電性接着剤
技術分野
[0001] 本発明は、電子回路基板の電子部品実装または配線形成に用いるための導電性 接着剤に関するものである。
背景技術
[0002] 従来、電子部品実装するための接合材料には、 Sn—Pb系はんだ材料、特に 63S n— 37Pb共晶組成(Sn63重量%及び Pb37重量%の組成)を有する Sn— Pb共晶 はんだ材料が一般的に用いられて 、た。
[0003] しかし、近年、電子部品実装において、はんだ付け部の機械的強度向上や熱衝撃 強度等の信頼性特性向上への要求が高まってきている。一方、地球環境保護の関 心が高まる中、電子回路基板などの産業廃棄物の処理についての法規制も進みつ つあり、鉛も世界的に法規制の対象となりつつある。
[0004] そこで、接合材料も、 Sn—Pb系はんだ材料から、鉛を含まないはんだ材料、いわ ゆる鉛フリーはんだ材料への移行が図られつつある。 2種の金属を主成分とする鉛フ リーはんだの代表例には、共晶型合金材料であって濡れ性に優れる材料として、 Sn Ag系はんだがある(特許文献 1)。
[0005] Sn— Ag系はんだの融点は、 Sn— Pb系はんだの融点(約 183°C)と比べて 30〜4 0°C程度高いので、 Sn— Ag系はんだを用いる場合のはんだ付け温度は、 Sn—Pb 系はんだを用いる場合よりも高くなる。そのため、 Sn—Ag系はんだを用いると、電子 部品を実装する際の実装温度が電子部品の耐熱温度以上になる事態が生じること 力 Sあり、そのような場合には電子部品を損傷させ得るという問題点を有していた。
[0006] 上述のように、はんだの融点は実装温度に影響し得るので、より低融点化を達成し 得る鉛フリーはんだが開発されてきている。更に、そのような鉛フリーはんだの金属成 分と榭脂成分、特に熱硬化性榭脂成分とを配合した導電性接着剤が開発されてきて V、る。金属成分の融点及び熱硬化性榭脂成分の硬化温度の両者が比較的低!、導 電性接着剤を用いると、電子部品を実装する際に、電子部品の熱による損傷を防止 ないし軽減することができるので、そのような導電性接着剤ははんだに代わる接合材 料として注目されている。(特許文献 2)
特許文献 1:特許第 3027441号明細書
特許文献 2 :特開平 10— 163605号公報
発明の開示
発明が解決しょうとする課題
[0007] 一般的な導電性接着剤は、鉛フリーはんだの金属成分を塊状形態力 薄片状形 態までのいずれかの形態としたフィラー粒子と熱硬化性榭脂成分とを所定の割合で 配合して形成されている。このような導電性接着剤を用いて、回路基板に電子部品を 接合すると、バルタ金属である鉛フリーはんだによる接合の場合と比べて体積抵抗率 が高くなつたり、同じ組成の導電性接着剤を用いても、場合によって体積抵抗率にば らつきが生じたりする傾向があった。そのため、導電性接着剤は用途が限定されてい た。
[0008] 特に、金属成分として Agフィラー粒子を含む導電性接着剤を用いて電子部品の接 合を行った場合には、その電子部品を使用する環境によっては Agフィラー粒子がマ ィグレーシヨンを生じたり及び Z又は硫ィ匕されることがあった。
[0009] 金属成分として Agフィラー粒子を含む導電性接着剤の場合、 Agフィラー粒子は導 電性接着剤の主要な導電性成分であるため、 Agフィラー粒子がマイグレーションを 生じた場合及び硫化された場合の!/、ずれの場合であっても、その接合部又は配線 形成部の抵抗率が上昇することになる。このことは、その電子部品の信頼性の経時 的な低下をまねき、その電子部品及びその電子部品を使用した電気電子機器の寿 命が短くなることにつながり得る。従って、金属フィラー粒子、特に Agフィラー粒子の マイグレーション及び硫ィ匕を防止することが求められていた。
[0010] 本発明は、金属成分としての金属フィラー粒子及び榭脂成分としての熱硬化性榭 脂を含んでなる導電性接着剤であって、接合後にお 、て Agフィラー粒子のマイダレ ーシヨン及び硫化の発生を防止することができる導電性接着剤を提供することを目的 とする。
課題を解決するための手段 [0011] 本願の第 1の発明は、 Sn、 Cu、 In、 Bi及び Niの群から選ばれる少なくとも 1種の金 属と Agとの合金力 なる金属フィラー粒子成分、並びに榭脂成分を含んでなることを 特徴とする導電性接着剤を提供する。本願の第 1の発明において、金属フイラ一粒 子成分には、必須の成分である Ag成分と、 Sn、 Cu、 In、 Bi及び Niの群力も選ばれ る少なくとも 1種の金属成分との合金組成を有するものを用いる。金属フィラー粒子は 5〜30 mの平均粒子径を有することが好ましい。また、榭脂成分は熱硬化性榭脂 を主成分とすることが好まし 、。
[0012] 本願の第 2の発明は、 Sn、 Cu、 In、 Bi及び Niの群から選ばれる少なくとも 1種の金 属と Agとの合金力もなるフィラー粒子と Agフィラー粒子とを混合してなる金属フィラー 粒子成分、並びに榭脂成分を含んでなることを特徴とする導電性接着剤を提供する 。本願の第 2の発明の金属フィラー粒子成分には、上述した第 1の発明の金属フイラ 一粒子成分として用いることができる合金組成の金属フィラー粒子と、 Agフイラ一粒 子との混合物を用いる。金属フィラー粒子は 5〜30 mの平均粒子径を有することが 好ましい。また、榭脂成分は熱硬化性榭脂を主成分とすることが好ましい。
[0013] 本願の第 1及び第 2の発明の合金に関して、 Bi及び Inはその合金の低融点化を目 的として配合する。合金中の Biの含有量は、 0. 1〜70重量%の範囲が好ましぐ 10 〜60重量%の範囲がより好適である。 Biの含有量が 0. 1重量%より少ないと低融点 化の効果が十分に得られず、 70重量%を超えるとそれ以上の低融点化の効果が得 られないためである。合金中の Inの含有量は、 1. 0〜70重量%の範囲が好ましぐ 2 . 0〜60重量%の範囲がより好適である。 Inの含有量が 1. 0重量%より少ないと低融 点化の効果が十分に得られず、 70重量%を超えるとそれ以上の低融点化の効果が 得られないためである。
[0014] 本願の第 3の発明は、 Agフィラー粒子と、 Cu、 Sn、 Ni、 Zn及び A1の群から選ばれ る少なくとも 1種の金属フィラー粒子とを混合してなる金属フィラー粒子成分、並びに 榭脂成分を含んでなることを特徴とする導電性接着剤を提供する。金属フィラー粒子 は 5〜30 mの平均粒子径を有することが好ましい。また、榭脂成分は熱硬化性榭 脂を主成分とすることが好ま U 、。
[0015] 本願の第 1〜第 3の発明の合金に関して、 Cuは合金の機械的特性向上を目的とし て配合する。合金中の Cuの含有量は、 0. 1〜1. 0重量%の範囲が好ましぐ 0. 2〜 0. 9重量%の範囲がより好ましい。 Cu含有量が 0. 1重量%よりも少量であれば、そ の機械的特性を向上するという効果が得られず、 1. 0重量%を超えると合金がより脆 くなる傾向を示して機械的特性に関して逆効果となるためである。
[0016] 本願の第 1〜第 3の発明の合金に関して、 Niは Snの酸ィ匕抑制を目的として配合す る。合金中の Niの含有量は、 0. 01〜: L 0重量%の範囲が好ましぐ 0. 1〜0. 5重 量%の範囲がより好ましい。 Ni含有量が 0. 1重量%よりも少量であれば、その Snの 酸化抑制という効果が得られず、 1. 0重量%を超えると強固な Ni酸化膜が形成され て融点が上昇して、 Sn酸ィ匕抑制の効果は得られな 、ためである。
[0017] 本願の第 4の発明は、 Agフィラー粒子の表面に Sn含有金属による被覆層を設けた 金属フィラー粒子成分、並びに榭脂成分を含んでなることを特徴とする導電性接着 剤を提供する。 1つの態様において、この導電性接着剤の金属フィラー粒子成分は、 熱処理して、少なくとも Agフィラー粒子の表面において Agと前記被覆層の金属とを 合金化させることができる。もう 1つの態様において、 Sn含有金属には Snのみを成分 とする金属を用いることもできる。また、もう 1つの態様において、 Sn含有金属には、 C u、 In、 Bi、 Ni及び Agの群力 選ばれる少なくとも 1種の金属と Snとの合金を用いる こともできる。被覆はメツキなどの手段によって行うことができる。金属フィラー粒子は 5 〜30 mの平均粒子径を有することが好ましい。また、榭脂成分は熱硬化性榭脂を 主成分とすることが好ま ヽ。
[0018] 本願の第 4の発明に関して、 Snと Cu、 In、 Bi、 Ni及び Agの群力 選ばれる少なく とも 1種の金属との合金又は Sn単独によって形成された被覆層を熱処理して、少なく ともその被覆層の内側の Agフィラー粒子の表面において、 Agと前記被覆層の金属 とを合金化させると、 Agと前記被覆層の金属とが合金化した部分が Agよりも遙かに 低 、融点を示すようにすることができる。
[0019] 本願の第 1〜第 4の発明に共通する特徴として、金属フィラー粒子成分中の Ag含 量は 50重量%以上であり、従って Ag以外の金属の含量は 50重量%以下である。
[0020] 本願の第 5の発明は、 Cu、 In、 Bi、 Ni、及び Agの群から選ばれる少なくとも 1種の 金属と Snとの合金力もなる金属フィラー粒子成分、並びに榭脂成分を含んでなること を特徴とする導電性接着剤を提供する。この発明において、金属フィラー粒子成分 には、必須の成分である Snに、 Cu、 In、 Bi、 Ni、及び Agの群から選ばれる少なくと も 1種の金属を配合した合金組成の金属フィラー粒子を用いる。また、この発明の 1 つの変更態様として、前記合金組成の金属フィラー粒子と Snフィラー粒子との混合 物を調製して、金属フィラー粒子成分とすることもできる。金属フィラー粒子は 5〜30 /z mの平均粒子径を有することが好ましい。また、榭脂成分は熱硬化性榭脂を主成 分とすることが好ましい。
[0021] 本願の第 5の発明に関して、 Biを配合することによって、金属フィラー粒子のぬれ性 を向上すること、及び低融点化を図ることができる。 Biの含有量は、 0. 1重量%ょり少 ないとぬれ性を向上させる効果が得られず、 60重量%を超えるとぬれ性向上及び低 融点化の効果が得られないので、 0. 1〜60重量%の範囲であることが好ましい。
[0022] 本願の第 5の発明に関して、 Inを配合することによって、金属フィラー粒子の低融点 化を図ることができる。 Inの含有量は、 1重量%より少ないと低融点化の効果が十分 に得られず、 60重量%を超えても同様にそれ以上の低融点化の効果が得られない ので、 1〜60重量%の範囲であることが好ましい。
[0023] 本願の第 5の発明に関して、 Cu及び Agを配合することによって、合金の機械的特 性の向上を図ることができる。 Cuの含有量は、 0. 1重量%よりも少量であれば、その 機械的特性に対する効果は得られないため、 0. 1重量%以上であることが好ましい 。より好ましい Cuの含有量は、 0. 5〜0. 7重量0 /0の範囲である。
[0024] 本願の第 5の発明に関して、 Agの含有量は、 0. 1重量%よりも少量であれば、機 械的特性に対する効果は得られず、 5重量%を超えると急激に融点が上昇するため 、 0. 1〜5重量%の範囲である。
[0025] 本願の第 5の発明に関して、 Niを配合することによって、 Snの酸ィ匕抑制を図ること ができる。 Niの含有量は、 0. 01重量%よりも少量であれば、その Snの酸化抑制とい う効果が得られず、 1. 0重量%を超えると強固な Ni酸化膜が形成されて、融点が上 昇し、効果は得られない。 Ni含有量は、 0. 01-0. 1重量%Niが好適である。
[0026] 本願の第 1〜第 5の発明に共通する特徴として、 Cu、 Sn、 Ni、 Zn及び A1の群に属 する金属は Agよりもイオン化傾向が大きいので、これらの金属を Agと共存させること によって、 Agのイオンィ匕を有効に抑制することができる。共存には、 Ag粒子と Cu、 S n、 Ni、 Zn及び Alの群の 1種又は 2種以上の金属粒子とを混合する形態も、 Agと Cu 、 Sn、 Ni、 Zn及び Alの群の 1種又は 2種以上の金属とを合金化する形態も含まれる 。 Agに加えて、 Cu、 Sn、 Ni、 Zn及び Alの群の 1種又は 2種以上の合金が存在する ことによって、マイグレーションを抑制する効果及び硫ィ匕を抑制する効果が認められ るようになる。 Cu、 Sn、 Ni、 Zn及び Alの群の 1種又は 2種以上の合金は、 Agに対し て少なくとも 0. 1重量%添加すれば、 Agのマイグレーション抑制効果及び硫ィ匕を抑 制する効果が認められる。
[0027] 本願の第 6の発明は、第 1〜第 5の発明に係る導電性接着剤において、榭脂成分 中の第 1の成分として用いる熱硬化性榭脂のための硬ィ匕剤力 Cu、 Sn、 Ni、 Zn及 び Alの群カゝら選ばれる金属の錯体を含むことを特徴とする。 Cu、 Sn、 Ni、 Zn及び A 1等の Agよりもイオン化傾向が大きいので、これらの金属を Agと共存させることによつ て、 Agのイオンィ匕を有効に抑制することができる。
[0028] 第 1〜第 5の発明に係る導電性接着剤において、榭脂成分中に、 Cu、 Sn、 Ni、 Zn 及び Al等の Agよりもイオン化傾向が大きい金属を含有する有機化合物又は金属錯 体を含ませることによつても、 Agのマイグレーション抑制効果が認められる。
[0029] 本願の各発明に共通する事項であるが、導電性接着剤の榭脂成分としては、当業 者に既知の種々の熱硬化性榭脂を用いることができる。本発明では、熱硬化性榭脂 として、エポキシ系榭脂、アクリル系榭脂、フエノール系榭脂、ポリイミド系榭脂、熱硬 化性ポリウレタン榭脂、不飽和ポリエステル榭脂等を用いることができるが、好ましい 熱硬化性榭脂はエポキシ系榭脂である。エポキシ系榭脂は一液硬化型、二液硬化 型など種々のものを用いることができる力 一液硬化型のものが好ましい。また、熱硬 化性榭脂を用いる場合には、基本的に当業者に既知の硬化性榭脂の系(特定の硬 化性榭脂及びその硬化に必要とされる特定の種類の硬化剤等を必要な量で含む系 )を榭脂成分に含めて用いる。
[0030] 更に、榭脂成分が還元性を有する榭脂を含む場合には、加熱硬化過程中でも導 電性接着剤組成物内をある程度還元性雰囲気に保つことができるので、加熱硬化 過程において金属フィラー粒子の表面に酸ィ匕膜が生じることを実質的に防止するこ とができる。加熱硬化過程中における金属フィラー粒子表面の酸ィ匕を防止することに よって、加熱硬化過程における低融点金属成分の溶融不良や、 Agフィラー粒子表 面に酸ィ匕膜が生成することを防止することができる。
[0031] 1つの形態において、還元性のある榭脂はカルボキシル基を有する化合物、例え ばカルボン酸を含むことが好ましい。榭脂中にそのような化合物をカ卩えることによって 、低融点金属の酸ィ匕膜を除去し (低融点金属の表面に酸ィ匕膜が生成することを防止 し)、溶融し易くするため還元剤としての作用を発現させることができる。尚、そのよう な化合物には、脂肪族カルボン酸、芳香族カルボン酸、脂環式カルボン酸等の種々 のカルボン酸を用いることができる。そのような化合物の例として、アジピン酸、アビチ ェン酸、ァスコルビン酸、アクリル酸、クェン酸、ポリアクリル酸、リンゴ酸、ピメリン酸、 パルミチン酸、ミリスチン酸、ラウリン酸、セバシン酸、スベリン酸、マレイン酸、コハク 酸、ァゼライン酸、フマル酸、ダルタル酸、マロン酸等を挙げることができる。また、そ のカルボン酸は、 Na、 Ag、 Cu、 K等の金属塩の形態であることが好ましい。
[0032] 榭脂成分に第 1の榭脂成分と第 2の榭脂成分とを用いる場合の割合は、重量基準 で、第 1の榭脂成分:第 2の榭脂成分が 90 : 10〜: LO : 90の範囲、特に 50 : 50〜80: 20の範囲が好ましい。また、金属フィラー粒子成分に対する第 2の榭脂成分の割合 は、 20重量%以下が好適である。 20重量%を超えると、還元剤及び Z又は硬化剤と しての作用にそれ以上の変化は認められないためである。第 2の榭脂成分が硬化剤 として作用する場合には、第 1の榭脂成分に用いる硬化剤の使用量を減らすこともで きる。
発明の効果
[0033] 本願第 1の発明の導電性接着剤は、その金属フィラー粒子成分を Sn、 Cu、 In、 Bi 及び Niの群カゝら選ばれる少なくとも 1種の金属と Agとの合金によって作製しているの で、その Ag成分は合金組成の一部となっている。従って、この導電性接着剤を 2つ の接点の接合に使用した場合に、 Agフィラー粒子がマイグレーションを生じたり、硫 ィ匕されたりすることを有効に防止することができる。
[0034] 本願第 2の発明の導電性接着剤に関して、 Sn、 Cu、 In、 Bi及び Niの群カゝら選ばれ る少なくとも 1種の金属と Agとの合金による金属フィラー粒子の中で、その Ag成分は 合金組成の一部となっているので、この導電性接着剤を 2つの接点の接合に使用し た場合に、その金属フィラー粒子から Agフィラー粒子がマイグレーションを生じたり、 又は Agフィラー粒子が硫ィ匕されたりすることを有効に防止することができる。更に、こ の合金は Agと対比して遙かに低 、融点を有することから、合金による金属フイラ一粒 子と Agフィラー粒子との混合物を金属フィラー粒子成分とするこの導電性接着剤を 適用後、加熱すると、流動状態を保っている榭脂成分の中で、合金組成の金属フイラ 一粒子は溶融及び流動して、 Agフィラー粒子の周りを包囲し又は Agフィラー粒子ど うしの間を連絡し及び合一化し、榭脂成分の中で実質的に金属接合又は金属結合 を形成して導電経路を形成することができる。その後、熱硬化性榭脂が硬化すると、 熱硬化性榭脂の中でフィラー粒子が合一化して相互に連絡して形成した導通経路 が得られる。従って、少なくとも Agフィラー粒子の表面は合金によって包囲されてい るので、適用後において、 Agフィラー粒子がマイグレーションを生じたり、硫化を生じ たりすることを有効に防止することができると考えられる。
[0035] 本願の第 3の発明の導電性接着剤は、 Agフィラー粒子と、 Cu、 Sn、 Ni、 Zn及び Al の群力 選ばれる少なくとも 1種の金属フィラー粒子とを混合してなる金属フイラ一粒 子を用いており、 Ag以外の金属フィラー粒子がそれ自体比較的低 、融点を有するこ と及び Agよりも大きいイオン化傾向を有することによって、この導電性接着剤を 2つの 接点の接合に使用した場合に、 Agフィラー粒子がマイグレーションを生じたり、硫ィ匕 されたりすることを有効に防止することができる。
[0036] 本願の第 4の発明の導電性接着剤では、 Agフィラー粒子の表面に Sn含有金属に よる被覆層を設けた金属フィラー粒子を用いる。この金属フィラー粒子は、 Agよりも大 きいイオン化傾向を有する Snを主成分とする金属の被覆層を有するため、 Agフイラ 一粒子がマイグレーションを生じたり、硫ィ匕されたりすることを有効に防止することが できる。更に、この金属フィラー粒子は、熱処理することによって、 Agフィラー粒子の 表面 (即ち、 Agフィラー粒子と Sn含有金属の被覆層との界面)において少なくとも A g— Sn合金を形成しており、場合によって合金はその他の金属をも組成に含むことが できる。 Snは Agよりも大きいイオン化傾向を有しており、その合金は比較的低い融点 を有し得る。従って、この導電性接着剤を 2つの接点の接合に使用した場合に、 Ag フィラー粒子がマイグレーションを生じたり、硫ィ匕されたりすることを有効に防止するこ とがでさる。
[0037] 本願の第 5の発明の導電性接着剤は、 Snを必須の成分とする合金組成の金属フィ ラー粒子であって、比較的低融点の金属フィラー粒子を用いることから、この導電性 接着剤を適用後、加熱すると、金属フィラー粒子どうしが接触することによって導電パ スを形成することに加えて、金属フィラー粒子の少なくとも表面部分、好ましくは全体 が溶融して、流動状態を保って 、る榭脂成分の中で溶融状態の金属フィラー粒子の 金属成分どうしが合一化及び連絡して、実質的に金属接合又は金属結合を形成す る。その後、熱硬化性榭脂が硬化すると、熱硬化性榭脂の中でフィラー粒子が合一 化して相互に連絡して形成した導通経路が得られる。
[0038] 本願の第 6の発明の導電性接着剤は、第 1〜第 5の発明に係る導電性接着剤にお いて、榭脂成分中の第 1の成分として用いる熱硬化性榭脂のための硬化剤が、 Cu、 Sn、 Ni、 Zn及び A1の群カゝら選ばれる金属の錯体を含むことを特徴とする。 Cu、 Sn、 Ni、 Zn及び A1等の Agよりもイオン化傾向が大きいので、これらの金属を Agと共存さ せることによって、 Agのイオンィ匕を有効に抑制することができる。
[0039] 尚、本発明の導電性接着剤は、電子部品接合用または配線形成に使用することが できる。また、使用例としては、 CCD素子、フォログラム素子、チップ部品等の電子部 品の接続用及びそれらを接合する基板の配線形成に用いることができる。それによ つて形成した電子部品及び基板は、 DVD、携帯電話、ポータブル AV機器、ノート P C、デジタルカメラ等の種々の電気製品に使用することができる。
発明を実施するための最良の形態
[0040] (実施の形態 1)
表 1の各実施例に示す組成を有するように、 Agと Ag以外の金属との合金組成を調 製し、その合金を粒状ィ匕して、約 5 mの平均粒子径を有する金属フィラー粒子を作 製した。この金属フィラー粒子 80重量部を、熱硬化性エポキシ榭脂 20重量部に添カロ して、本願第 1の発明の導電性接着剤を作製した。本願の発明に用いるのに好まし いエポキシ榭脂として、例えば、ェピコート 828、ェピコート 807 (ジャパンエポキシレジ ン (JER)製)を挙げることができる。この実施の形態では、熱硬化性エポキシ榭脂には ェピコート 828 (ジャパンエポキシレジン (JER)製)を、硬化剤には 2PHZ (四国化成製 )を用いた。
尚、各実施例について、実施例の番号の後に「- a」の記号を付した例は、金属フィ ラー粒子の調製段階で、 Agフィラー粒子の表面に Sn含有金属の被覆層を設けた例 であり、
実施例の番号の後に「- b」の記号を付した例は、金属フィラー粒子の調製段階で、 Sn含有金属の被覆層を形成後、熱処理した例である。
各実施例の導電性接着剤を、 JISZ3197に規定されている櫛形電極に印刷し、 15 0°Cにて 10分間で硬化した。電極間には DC45〜50Vを印加し、 85°C— 85%の恒 温恒湿層で 1000時間放置した後、接合部に Agのマイグレーションが発生する力否 かを調べた。 Agのマイグレーションが発生したカゝ否かは、拡大鏡(20倍以上)で確認 し、一方の極から他方の極への樹枝状の金属の生成が見られれば、マイグレーショ ンの発生とみなした。
使用した金属フィラー粒子成分 (重量%)とマイグレーション発生の結果を表 1に示 す。
[表 1]
マイグレー
Ag Sn Cu In Bi Ni
ションの発生 実施例 1 -a 99.5 0.5 〇
実施例 1 -b 99.5 0.5 〇
実施例 2- a 99.5 0.5 〇
実施例 2-b 99.5 0.5 〇
実施例 3- a 99.5 0.5 〇
実施例 3-b 99.5 0.5 〇
実施例 4- a 99.5 0.5 〇
実施例 4-b 99.5 0.5 〇
実施例 5 -a 99.5 0.5 〇
実施例 5-b 99.5 0.5 〇
実施例 6 -a 50 50 〇
実施例 6-b 50 50 〇
実施例 7 -a 99 1 〇
実施例 7-b 99 1 〇
実施例 8- a 95 5 〇
実施例 8-b 95 5 〇
実施例 9- a 95 5 〇
実施例 9-b 95 5 〇
実施例 10- a 99.9 0.1 〇
実施例 10-b 99.9 0.1 〇
比較例 1 100 X マイグレーションの発生の評価:
〇=マイグレーションは発生しなかった
X =マイグレーションが発生した
このマイグレーションの発生の評価方法を、以下のすべての実施の形態に適用す る。
(実施の形態 2)
表 2の各実施例に示す組成を有するように、 Snと Sn以外の金属との合金組成を調 製し、その合金を粒状ィ匕して、約 5 /zmの平均粒子径を有する合金フィラー粒子を作 製した。この合金フィラー粒子 80重量部を、熱硬化性エポキシ榭脂 20重量部に添加 して、本願第 5の発明の導電性接着剤を作製した。熱硬化性エポキシ榭脂にはェピ コート 828 (ジャパンエポキシレジン (JER)製)を、硬化剤には 2PHZ (四国化成製)を 用いた。 各実施例の導電性接着剤を用いて、マイグレーションが発生するカゝ否かを、実施の 形態 1と同様にして調べた。使用した金属フィラー粒子成分 (重量%)とマイグレーシ ヨン発生の結果を表 2に示す。
[表 2]
Figure imgf000013_0001
(実施の形態 3)
表 3の各実施例に示す組成を有する金属を用いてメツキ法により、約 5 mの平均 粒子径を有する Agフィラー粒子の表面に金属の被覆層を形成した。これを各実施例 の金属の組成の融点を約 20°C上回る温度(融点 +約 20°Cの温度)に加熱処理して 、各金属フィラー粒子の少なくとも Agフィラー粒子の表面にぉ 、て Agと被覆層の金 属成分とを合金化させて、本願第 4の発明の金属フィラー粒子成分を作製した。 Agと 被覆層の金属とを 10 : 1の重量比で使用した。このようにして得られた金属フイラ一粒 子成分 80重量部を、熱硬化性エポキシ榭脂 20重量部に添加して、本願第 4の発明 の導電性接着剤を作製した。熱硬化性エポキシ榭脂にはェピコート 828 (ジャパンェ ポキシレジン (JER)製)を、硬化剤には 2PHZ (四国化成製)を用いた。
各実施例の導電性接着剤を用いて、 Agのマイグレーションが発生する力否かを、 実施の形態 1と同様にして調べた。使用した金属フィラー粒子成分 (重量%)とマイグ レーシヨン発生の結果を表 3に示す。
[表 3]
Figure imgf000014_0001
[0043] (実施の形態 4)
表 1の各実施例に示す組成 (Agを除く)を有する金属力 なる金属フィラー粒子で あって、約 5 μ mの平均粒子径を有する粒子を作製し、約 5 μ mの平均粒子径を有 する Agフィラー粒子と混合して、本願第 3の発明の金属フィラー粒子成分を作製した 。金属フィラー粒子と Agフィラー粒子とを 1 : 10の重量比で使用した。この金属フイラ 一粒子成分 80重量部を、熱硬化性エポキシ榭脂 20重量部に添加して、本願第 3の 発明の導電性接着剤を作製した。熱硬化性エポキシ榭脂にはェピコート 828 (ジャパ ンエポキシレジン (JER)製)を、硬化剤には 2PHZ (四国化成製)を用いた。
各実施例の導電性接着剤を用いて、 Agのマイグレーションが発生する力否かを、 実施の形態 1と同様にして調べた。使用した金属フィラー粒子成分 (重量%)とマイグ レーシヨン発生の結果は表 2と同様であった。
[0044] (実施の形態 5)
表 4の各実施例に示す組成を有する Snと Sn以外の金属との合金組成を調製し、そ の合金を粒状ィ匕して、約 5 μ mの平均粒子径を有する合金フィラー粒子を作製した。 これとは別に、約 5 mの平均粒子径を有する Snフィラー粒子を供給し、上記合金フ イラ一粒子と Snフィラー粒子とを 1: 10の重量比で混合して、本願第 5の発明に変更 を加えた態様の金属フィラー粒子成分を作製した。このようにして得られた金属フイラ 一粒子成分 80重量部を、熱硬化性エポキシ榭脂 20重量部に添加して、導電性接着 剤を作製した。熱硬化性エポキシ榭脂にはェピコート 828 (ジャパンエポキシレジン (J ER)製)を、硬化剤には 2PHZ (四国化成製)を用 、た。 各実施例の導電性接着剤を用いて、回路基板に ICチップを接合した。得られた回 路基板の処理、及び接合部に Agのマイグレーションが発生するカゝ否かを、実施の形 態 1と同様にして調べた。使用した金属フィラー粒子成分 (重量%)とマイグレーショ ン発生の結果を表 4に示す。
[表 4]
Figure imgf000015_0001
(実施の形態 6)
この実施の形態では、熱硬化性榭脂用の硬化剤として、 Cu、 Sn、 Ni、 Zn及び Al の群から選ばれる金属錯体を含む硬化剤を使用する場合に、さらに Agのマイグレー シヨン抑制効果が得られることを確認した。榭脂成分は、次のようにして調製した。熱 硬化性榭脂としてェピコート 828 (ジャパンエポキシレジン (JER)製)を用いた。硬化剤 には、表 4に示すように、それぞれ Cu、 Sn、 Ni、 Zn又は Alの金属錯体(アジピン酸 の金属塩)を含む硬化剤を用いた。硬化剤の熱硬化性榭脂に対する重量比は、 20 : 80とした。
各実施例の導電性接着剤を用いて、接合部に Agのマイグレーションが発生するか 否かを、実施の形態 1と同様にして調べた。また、金属成分に Agを用い、熱硬化性 エポキシ榭脂にはェピコート 828 (ジャパンエポキシレジン (JER)製)を、硬ィ匕剤には 2 PHZ (四国化成製)を用 、た。使用した導電性接着剤の組成とマイグレーション発生 の結果を表 4に示す。この実施の形態によれば、マイグレーション発生を抑制すること ができるだけではなぐ硬化特性及び時間に関する性質も向上した。
[表 5]
Figure imgf000016_0001
産業上の利用可能性
本発明にかかる導電性接着剤は、そのフィラー粒子に低融点金属を含有させること により、導電性接着剤の加熱硬化過程において、低融点金属フィラー粒子を溶融さ せ、フィラー粒子間に金属接合を形成させ、導通経路を形成させることにより、ノ レク 金属並みでかつ安定した体積抵抗率を実現することが可能になるので、硬化温度が 鉛フリーはんだの融点より比較的低い導電性接着剤によるはんだ付けにおいては、 電子部品の熱損傷は軽減されるため電子機器の実装において、はんだに代わる材 料として有用である。

Claims

請求の範囲
[I] Agフィラー粒子の表面に Sn含有金属による被覆層を設けた金属フィラー粒子成 分、並びに榭脂成分を含んでなることを特徴とする導電性接着剤。
[2] 前記被覆層を熱処理して、少なくとも Agフィラー粒子の表面において Agと前記被 覆層の金属とを合金化させてなる金属フィラー粒子成分を含んでなることを特徴とす る請求項 1記載の導電性接着剤。
[3] Agフィラー粒子の表面に Sn含有金属による被覆層を設けた後、熱処理して、少な くとも Agフィラー粒子の表面において Agと前記被覆層の金属とを合金化させてなる 金属フィラー粒子と Snフィラー粒子とを混合してなる金属フィラー粒子成分、並びに 榭脂成分を含んでなることを特徴とする導電性接着剤。
[4] Sn含有金属力 Cu、 In、 Bi、 Ni及び Agの群力 選ばれる少なくとも 1種の金属と S nとの合金である請求項 1〜3のいずれかに記載の導電性接着剤。
[5] Cu、 In、 Bi、 Ni、及び Agの群から選ばれる少なくとも 1種の金属と Snとの合金から なる金属フィラー粒子成分、並びに榭脂成分を含んでなることを特徴とする導電性接 着剤。
[6] Cuを 0. 1〜1. 0重量%含有することを特徴とする請求項 1〜5のいずれかに記載 の導電性接着剤。
[7] Inを 1. 0-70. 0重量%含有することを特徴とする請求項 1〜6のいずれかに記載 の導電性接着剤。
[8] Biを 1. 0〜70. 0重量%含有することを特徴とする請求項 1〜7のいずれかに記載 の導電性接着剤。
[9] Niを 0. 01〜: L 0重量%含有することを特徴とする請求項 1〜8のいずれかに記載 の導電性接着剤。
[10] 榭脂成分が、第 1の成分として熱硬化性榭脂を含むことを特徴とする請求項 1〜9 の!、ずれかに記載の導電性接着剤。
[II] 榭脂成分中の第 1の成分として用いる熱硬化性榭脂のための硬化剤が、 Cu、 Sn、 Ni、 Zn及び A1の群から選ばれる金属の錯体を含むことを特徴とする請求項 1〜10 の!、ずれかに記載の導電性接着剤。 榭脂成分が、第 2の成分として還元性を有する榭脂を含むことを特徴とする請求項 1〜 11の 1、ずれかに記載の導電性接着剤。
請求項 1〜 12の ヽずれかに記載の導電性接着剤を用 ヽて電気電子部品が接着さ れていることを特徴とする回路基板。
PCT/JP2006/321753 2005-11-02 2006-10-31 導電性接着剤 WO2007052661A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/092,453 US7785500B2 (en) 2005-11-02 2006-10-31 Electrically conductive adhesive
JP2007542763A JP4897697B2 (ja) 2005-11-02 2006-10-31 導電性接着剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-319489 2005-11-02
JP2005319489 2005-11-02

Publications (1)

Publication Number Publication Date
WO2007052661A1 true WO2007052661A1 (ja) 2007-05-10

Family

ID=38005814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321753 WO2007052661A1 (ja) 2005-11-02 2006-10-31 導電性接着剤

Country Status (3)

Country Link
US (1) US7785500B2 (ja)
JP (1) JP4897697B2 (ja)
WO (1) WO2007052661A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196514A1 (en) * 2007-10-03 2010-06-16 Hitachi Chemical Company, Ltd. Adhesive composition, electronic component-mounted substrate using the adhesive composition, and semiconductor device
WO2012114613A1 (ja) * 2011-02-24 2012-08-30 ソニーケミカル&インフォメーションデバイス株式会社 熱伝導性接着剤
JP2015130452A (ja) * 2014-01-09 2015-07-16 住友ベークライト株式会社 オプトデバイス用導電性樹脂組成物及びオプトデバイス
JP2017201021A (ja) * 2011-01-27 2017-11-09 日立化成株式会社 導電性接着剤組成物
WO2021100366A1 (ja) * 2019-11-19 2021-05-27 コニカミノルタ株式会社 電子デバイス、硫化防止剤及び封止材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008218643A (ja) * 2007-03-02 2008-09-18 Fujitsu Ltd 半導体装置及びその製造方法
JP5212462B2 (ja) * 2008-03-07 2013-06-19 富士通株式会社 導電材料、導電ペースト、回路基板、及び半導体装置
CN115175777A (zh) * 2020-03-26 2022-10-11 同和电子科技有限公司 银粉和其制造方法、以及导电性糊剂
CN114799612B (zh) * 2022-05-27 2024-06-21 常州时创能源股份有限公司 一种光伏用钎焊焊料、其制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294844A (ja) * 2000-04-13 2001-10-23 Asahi Kasei Corp 導電性接着剤
JP2002265920A (ja) * 2001-03-13 2002-09-18 Namics Corp 導電性接着剤およびそれを用いた回路
JP2005194306A (ja) * 2003-12-26 2005-07-21 Togo Seisakusho Corp 通電接着剤とそれを用いた窓用板状部材
US20050230667A1 (en) * 2002-09-04 2005-10-20 Michinori Komagata Conductive adhesive and circuit using the same
JP2006294600A (ja) * 2005-03-15 2006-10-26 Matsushita Electric Ind Co Ltd 導電性接着剤

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027441B2 (ja) 1991-07-08 2000-04-04 千住金属工業株式会社 高温はんだ
US5428249A (en) * 1992-07-15 1995-06-27 Canon Kabushiki Kaisha Photovoltaic device with improved collector electrode
JPH10163605A (ja) 1996-11-27 1998-06-19 Sony Corp 電子回路装置
JPH10279902A (ja) * 1997-04-01 1998-10-20 Asahi Chem Ind Co Ltd 導電性接着剤
DE10392162B4 (de) * 2002-08-07 2012-02-23 Denso Corporation Schaltkreiskartenverbindungsstruktur und Herstellungsverfahren hierfür
US20060289839A1 (en) * 2005-06-23 2006-12-28 Emmerson Gordon T Metal salts of organic acids as conductivity promoters

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001294844A (ja) * 2000-04-13 2001-10-23 Asahi Kasei Corp 導電性接着剤
JP2002265920A (ja) * 2001-03-13 2002-09-18 Namics Corp 導電性接着剤およびそれを用いた回路
US20050230667A1 (en) * 2002-09-04 2005-10-20 Michinori Komagata Conductive adhesive and circuit using the same
JP2005194306A (ja) * 2003-12-26 2005-07-21 Togo Seisakusho Corp 通電接着剤とそれを用いた窓用板状部材
JP2006294600A (ja) * 2005-03-15 2006-10-26 Matsushita Electric Ind Co Ltd 導電性接着剤

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196514A1 (en) * 2007-10-03 2010-06-16 Hitachi Chemical Company, Ltd. Adhesive composition, electronic component-mounted substrate using the adhesive composition, and semiconductor device
EP2196514A4 (en) * 2007-10-03 2011-11-16 Hitachi Chemical Co Ltd ADHESIVE COMPOSITION INSTALLED ON AN ELECTRONIC BUILDING TUBE WITH THE ADHESIVE COMPOSITION AND SEMICONDUCTOR COMPONENT
US9247652B2 (en) 2007-10-03 2016-01-26 Hitachi Chemical Company, Ltd. Adhesive composition, electronic-component-mounted substrate and semiconductor device using the adhesive composition
US10504864B2 (en) 2007-10-03 2019-12-10 Hitachi Chemical Company, Ltd. Adhesive composition, electronic-component-mounted substrate and semiconductor device using the adhesive composition
JP2017201021A (ja) * 2011-01-27 2017-11-09 日立化成株式会社 導電性接着剤組成物
WO2012114613A1 (ja) * 2011-02-24 2012-08-30 ソニーケミカル&インフォメーションデバイス株式会社 熱伝導性接着剤
JP2012188646A (ja) * 2011-02-24 2012-10-04 Sony Chemical & Information Device Corp 熱伝導性接着剤
US9084373B2 (en) 2011-02-24 2015-07-14 Dexerials Corporation Thermally conductive adhesive
JP2015130452A (ja) * 2014-01-09 2015-07-16 住友ベークライト株式会社 オプトデバイス用導電性樹脂組成物及びオプトデバイス
WO2021100366A1 (ja) * 2019-11-19 2021-05-27 コニカミノルタ株式会社 電子デバイス、硫化防止剤及び封止材

Also Published As

Publication number Publication date
JP4897697B2 (ja) 2012-03-14
JPWO2007052661A1 (ja) 2009-04-30
US20090114885A1 (en) 2009-05-07
US7785500B2 (en) 2010-08-31

Similar Documents

Publication Publication Date Title
CN106001978B (zh) 无铅软钎料合金、电子电路基板和电子控制装置
JP5090349B2 (ja) 接合材料、接合部及び回路基板
JP4897697B2 (ja) 導電性接着剤
JP6677668B2 (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
WO2014013632A1 (ja) はんだ合金、ソルダペーストおよび電子回路基板
JP5964597B2 (ja) 異方性導電性ペーストおよびそれを用いた電子部品の接続方法
JP5698447B2 (ja) はんだ接合剤組成物
JP6534122B2 (ja) 樹脂フラックスはんだペースト及び実装構造体
JP5242521B2 (ja) はんだ接合剤組成物
JP2017170464A (ja) 鉛フリーはんだ合金、電子回路基板および電子制御装置
JP6402127B2 (ja) 電子部品の接合方法
JP2013045650A (ja) 異方性導電性ペースト
JP6731034B2 (ja) 鉛フリーはんだ合金、はんだ接合用材料、電子回路実装基板及び電子制御装置
TWI767059B (zh) 無鉛焊料合金、電子電路基板及電子控制裝置
JP4975342B2 (ja) 導電性接着剤
JP2017170527A (ja) はんだ接合体の形成方法、並びに当該形成方法により形成されたはんだ接合体を有する電子回路基板および電子制御装置
JP6585554B2 (ja) 鉛フリーはんだ合金、電子回路基板及び電子制御装置
JP4939072B2 (ja) 導電性接着剤
JP5560032B2 (ja) はんだ接合補強剤組成物、及びこれを用いた実装基板の製造方法
JP2021178336A (ja) 樹脂フラックスはんだペーストおよび実装構造体
JP2017170524A (ja) 鉛フリーはんだ合金を用いたソルダペースト組成物、電子回路基板および電子制御装置
JP2016087691A (ja) Pbフリーはんだ及び電子部品内蔵モジュール
JP6916243B2 (ja) 鉛フリーはんだ合金、電子回路基板及び電子制御装置
JPWO2020031361A1 (ja) 鉛フリーはんだ合金、ソルダペースト、電子回路実装基板及び電子制御装置
JP7437677B2 (ja) はんだ組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007542763

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12092453

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822682

Country of ref document: EP

Kind code of ref document: A1