WO2015098059A1 - 電子部品接着材料及び電子部品の接着方法 - Google Patents

電子部品接着材料及び電子部品の接着方法 Download PDF

Info

Publication number
WO2015098059A1
WO2015098059A1 PCT/JP2014/006328 JP2014006328W WO2015098059A1 WO 2015098059 A1 WO2015098059 A1 WO 2015098059A1 JP 2014006328 W JP2014006328 W JP 2014006328W WO 2015098059 A1 WO2015098059 A1 WO 2015098059A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
epoxy resin
parts
mass
adhesive material
Prior art date
Application number
PCT/JP2014/006328
Other languages
English (en)
French (fr)
Inventor
光司郎 生駒
裕貴 堀尾
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to KR1020167012034A priority Critical patent/KR101862734B1/ko
Priority to JP2015554547A priority patent/JP6301366B2/ja
Priority to CN201480069841.6A priority patent/CN105814161A/zh
Publication of WO2015098059A1 publication Critical patent/WO2015098059A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin

Definitions

  • the present invention relates to an electronic component adhesive material such as an adhesive composition for bonding an electronic component to a circuit board. More specifically, after the electronic component is once bonded to the circuit board, it is used as an adhesive composition, an adhesive film, or the like that facilitates the rework work of peeling as necessary, and has improved storage stability.
  • the present invention relates to an electronic component adhesive material.
  • an epoxy thermosetting resin has been used as an adhesive between an electronic component and a circuit board.
  • Epoxy thermosetting resins are cured by reacting an epoxy resin with a cross-linking agent to form a cross-linked structure. Therefore, both initial characteristics after curing, after heat and humidity resistance tests, and after heat resistance tests are excellent and reliable. Has the feature of high.
  • Patent Document 1 describes that the reworkability of an adhesive composition is improved by blending a non-crosslinkable thermoplastic material with a crosslinkable resin.
  • Patent Document 2 discloses a conductive adhesive composed of a bisphenol A type epoxy resin, a phenoxy resin, a liquid epoxy compound, and a conductive filler for the purpose of improving both reworkability and adhesiveness. ing. However, its reworkability and adhesiveness are still insufficient.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an electronic component adhesive material having reworkability, storage stability, heat resistance, and heat and humidity resistance.
  • an object of the present invention is to provide a highly reliable electronic component adhesive composition and adhesive film that can withstand environmental tests under severe conditions of 85 ° C./85% RH. Moreover, it aims at providing the adhesion
  • the electronic component adhesive material of the present invention comprises 20 to 100 parts by mass of core-shell type organic particles and 0.1 to 100 parts by mass of conductive particles with respect to 100 parts by mass of the epoxy resin. In the part, 45 parts by mass or more of a phenoxy type epoxy resin having a glass transition temperature of 100 ° C. or higher is contained.
  • the electronic component adhesive material of the present invention does not contain an epoxy resin curing agent.
  • the conductive paste of the present invention contains 100 to 900 parts by mass of a solvent with respect to the electronic component adhesive material of the present invention.
  • the conductive adhesive film is formed by forming a coating containing the above-mentioned electronic component adhesive material on a release substrate.
  • the electronic component is bonded to the circuit board through the conductor layer made of the electronic component adhesive material of the present invention.
  • the electronic device has a peel strength of 10 N / cm or less when the electronic device is heated to 200 ° C.
  • the electronic component adhesive material of the present invention comprises an epoxy resin containing a predetermined amount or more of a phenoxy type epoxy resin having a glass transition temperature of 100 ° C. or higher, a predetermined amount of core-shell type organic particles, and conductive particles.
  • the reworkability and storage stability are improved as compared with the prior art.
  • it is excellent in adhesiveness and can be bonded with high heat and humidity resistance that can withstand severe test conditions of 85 ° C./85% RH test. Therefore, the reliability of products using this adhesive material can be greatly improved.
  • the electronic component adhesive material of the present invention includes an epoxy resin containing a predetermined amount or more of a phenoxy type epoxy resin having a glass transition temperature (hereinafter sometimes abbreviated as “Tg”) of 100 ° C. or more, core-shell type organic particles, and conductivity. And at least particles.
  • Tg glass transition temperature
  • the phenoxy-type epoxy resin used in the present invention is a polymer obtained by polymerizing a prepolymer obtained by a condensation reaction of bisphenol and epichlorohydrin and at least one of the prepolymers.
  • the term “phenoxy resin” is intended to include any of the above prepolymers, polymers thereof, or mixtures of prepolymers and polymers.
  • bisphenol refers to a compound having two hydroxyphenyl groups, and is not particularly limited as long as a phenoxy resin having a Tg in the above range can be obtained.
  • 1,1-bis (4-hydroxyphenyl) -1-phenylethane represented by the formula (formula (1)), bis (4-hydroxyphenyl) diphenylmethane (formula (2)), 2,2-bis (3 -Methyl-4-hydroxyphenyl) propane (formula (3)), 1,3-bis (2- (4-hydroxyphenyl) -2-propyl) benzene (formula (4)), 1,4-bis (2 -(4-Hydroxyphenyl) -2-propyl) benzene (formula (5)), 5,5- (1-methylethylidene) -bis [1,1- (bisphenyl) -2-ol] propane (formula 6)), 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohe
  • the phenoxy resin used in the present invention is a thermoplastic resin that does not substantially form a crosslinked structure even after curing.
  • the phenoxy resin is preferably solid at room temperature.
  • Solid at room temperature means a solid state that does not exhibit fluidity in a solvent-free state at 25 ° C.
  • the phenoxy resin is solid at room temperature, it can be used as a conductive paste or a conductive adhesive film.
  • the phenoxy-type epoxy resin having a glass transition temperature of 100 ° C. or higher should contain 45 parts by mass or more in 100 parts by mass of the epoxy resin from the viewpoint that both heat resistance, in particular, moist heat resistance after bonding and reworkability are good. It is more preferable to contain 50 parts by mass or more.
  • an epoxy resin other than the phenoxy-type epoxy resin can also be used.
  • epoxy resins other than the above phenoxy type epoxy resins include known epoxy resins such as sulfonyl type epoxy resins, biphenyl type epoxy resins, novolac type epoxy resins, glycidyl amine type epoxy resins, glycidyl ester type epoxy resins and the like. Can be mentioned.
  • a resin other than the epoxy resin such as the phenoxy type epoxy resin can be used as long as it does not contradict the object of the present invention.
  • resins include acrylic resins, polyester resins, polyimide resins, polyamide resins, polyolefin resins, urethane resins and the like.
  • the core-shell type organic particles (hereinafter sometimes referred to as “core-shell type particles”) used in the present invention are multi-layered fine particles having at least an inner core and an outer shell having different compositions. It is made of acrylic rubber, and an outer shell is formed by graft polymerization of an acrylic polymer or epoxy polymer on the surface of the inner core.
  • a thixotropy index an effect of improving peel strength and thixotropy (hereinafter sometimes referred to as a thixotropy index) is obtained, and an effect of preventing sedimentation of conductive particles is obtained by improving the thixotropy. It is done.
  • the size of the core-shell type particles used in the present invention is preferably in the range of 0.01 to 10 ⁇ m, more preferably 0.1 to 5 ⁇ m in terms of average particle size.
  • the suitable compounding quantity of the said core-shell type organic particle in this invention is based also on the particle size, from the point that the peeling strength and the thixotropy improvement effect and printability are favorable, with respect to 100 mass parts of resin components, It is preferably within the range of 20 to 100 parts by mass, and more preferably within the range of 20 to 50 parts by mass.
  • inorganic particles can be added to the electronic component adhesive material of the present invention as necessary.
  • examples of such inorganic particles include known inorganic particles such as talc, silica fine particles, alumina, barium sulfate, mica powder, aluminum hydroxide, magnesium hydroxide, and calcium carbonate. From the viewpoint of improving both properties, talc and silica particles are preferable.
  • the blending amount is preferably in the range of 1 to 200 parts by weight with respect to 100 parts by weight of the resin component from the viewpoint of improvement in peel strength and thixotropy. It is more preferable that
  • the conductive particles used in the present invention are not particularly limited, and those generally used in various conductive pastes and conductive adhesive films can be appropriately selected and used. Preferable specific examples include those made of gold, silver, copper, and nickel.
  • a metal powder composed of two or more kinds of alloys, and those coated with these metal powders with other kinds of metals can be used.
  • what coated the resin particle with the metal, and what provided the insulating layer in the resin particle which coated the metal can also be used.
  • the shape of the metal powder can be appropriately selected from conventionally used shapes such as a spherical shape, a scaly shape, and a dendritic shape, but a spherical shape is preferable.
  • the particle size is not limited, but is usually about 1 to 50 ⁇ m in average particle size.
  • the blending amount of the conductive particles is preferably in the range of 0.1 to 100 parts by weight, preferably 1 to 50 parts by weight with respect to 100 parts by weight of the resin component, from the viewpoints of conductivity and insulation. More preferred. When the blending amount of the conductive particles is within the above range, it can be used as an anisotropic conductive material.
  • the electronic component adhesive of the present invention is used as a conductive paste, it is adjusted to have a desired viscosity by adding a solvent.
  • the solvent used in the present invention preferably has a boiling point of 100 to 300 ° C., more preferably 150 to 250 ° C., from the viewpoint of good workability when applying the paste.
  • Preferable specific examples of the solvent include N-methylpyrrolidone, hexane, heptane, decane, toluene, xylene, cyclohexanone, solvent naphtha, butyl carbitol, butyl carbitol acetate, isophorone and the like.
  • the amount of the solvent used is in the range of 100 to 900 parts by mass with respect to 100 parts by mass of the total amount (but solid content) of the phenoxy type epoxy resin, the core-shell type organic particles and the conductive particles of the adhesive composition. Is preferred.
  • the solvent is 100 parts by mass or more, when the conductive paste is applied by screen printing, it becomes easy to prevent clogging of the screen and occurrence of coating unevenness. Moreover, it becomes easy to ensure coating thickness as it is 900 mass parts or less.
  • the adhesive material of the present invention preferably has a 90 ° peel strength (tensile speed: 50 m / min, maximum value at break) of 10 N / cm or less in an environment of 200 ° C., because reworkability is particularly excellent. More preferably, it is 5 N / cm or less.
  • the thixotropy index (TI) at 25 ° C. of the conductive paste is preferably 1.5 or more.
  • TI is 1.5 or more, sedimentation of conductive particles can be suppressed.
  • TI is 3.0 or less. When TI is 3.0 or less, when the conductive paste is applied by screen printing, clogging of the screen and uneven application can be prevented.
  • the electronic component adhesive material of the present invention is not limited to the resin component other than the phenoxy-type epoxy resin as long as it does not contradict the purpose of the present invention, but also an antioxidant, a pigment, a dye, a tackifier resin, a plasticizer, Additive components such as ultraviolet absorbers, antifoaming agents, leveling regulators, fillers, flame retardants and the like can also be blended.
  • the electronic component adhesive material of the present invention preferably contains no curing agent.
  • the curing agent is a known curing agent for epoxy resin that accelerates curing of the epoxy resin, such as aliphatic polyamine, polyamide resin, aliphatic diamine, aromatic diamine, imidazole compound, acid anhydride and the like. By not containing a curing agent, reworkability and storage stability can be improved.
  • the electronic component adhesive material of the present invention may be in the form of, for example, an anisotropic conductive adhesive film.
  • the conductive paste is applied to a release substrate such as a polyester film or a polyimide film whose surface has been subjected to a release treatment. It is obtained by applying and drying.
  • the operation of adhering electronic components using the anisotropic conductive adhesive paste or film obtained as described above can be performed according to a conventional method.
  • the method of manufacturing an electronic device by bonding an electronic component to a circuit board using a conductive adhesive paste is not limited, for example, it can be manufactured by the following method. First, a conductive adhesive paste is applied to the surface of the circuit board by screen printing to form a predetermined pattern. Next, the circuit board is heated to volatilize the solvent to form a conductor layer having a predetermined pattern. Furthermore, an electronic device is obtained by placing an electronic component on the conductor layer, thermocompression bonding, and bonding the electronic component to the circuit board via the conductive adhesive layer.
  • the temperature and pressure during thermocompression bonding can be appropriately set, but are preferably 2 to 4 MPa and 100 to 220 ° C.
  • the method of manufacturing an electronic device by bonding an electronic component to a circuit board using a conductive adhesive film is not limited, but can be manufactured by the following method, for example.
  • a conductive adhesive film in which a conductive adhesive layer is formed on a release substrate is obtained by applying a conductive adhesive paste to the surface of the release substrate and volatilizing the solvent.
  • the conductive adhesive layer on the conductive adhesive film is bonded to the surface of the circuit board and temporarily pressed to transfer the conductive adhesive layer to the surface of the circuit board.
  • the temperature and pressure during temporary pressing can be appropriately set, but are preferably 1 to 5 MPa and 80 to 100 ° C.
  • the peeling substrate is peeled to expose the conductive adhesive layer to form a conductor layer, and an electronic component is placed thereon, thermocompression bonded, and the electronic component is bonded to the circuit board via the conductive adhesive layer.
  • the temperature and pressure at the time of thermocompression bonding can be appropriately set, but when the electronic component adhesive material of the present invention is used, it is preferably 2 to 4 MPa and 100 to 220 ° C.
  • the peel strength of the electronic component when heated to 200 ° C. is preferably 10 N / cm or less, and more preferably 5 N / cm or less.
  • the peel strength is 10 N / cm or less, an electronic device having excellent reworkability can be obtained.
  • Electronic parts can be repaired according to the conventional work method.
  • the bonded circuit board and electronic parts are heated to about 150 to 230 ° C, the electronic parts are removed, the adhesive is wiped off, and the electronic parts are re-used. Glue the parts.
  • Example 1 Into a glass container equipped with a stirrer, a dropping funnel and a thermometer, 700 g of epichlorohydrin and 1100 g of 1,1-bis (4-hydroxyphenyl) -1-phenylethane were charged and dissolved uniformly, and then heated to 80 ° C. Next, 400 g of a 20% aqueous sodium hydroxide solution was dropped into the glass container over 5 hours and reacted for 2 hours. Then, the aqueous phase was removed, and excess epichlorohydrin was recovered by distillation to obtain a reaction product. To the obtained reaction product, 500 g of toluene was added and dissolved uniformly.
  • epoxy resin A Phenoxy type epoxy resin
  • the glass transition temperature was measured by the following method using a differential scanning calorimeter. First, a sample of 10 mg to 20 mg was placed on an aluminum pan, and the sample was heated from ⁇ 10 ° C. to 200 ° C. at a temperature increase rate of 10 ° C./min under a nitrogen stream (first temperature increase), and then cooled. Next, the second temperature increase was performed under the same conditions as the first temperature increase. Based on the baseline shift of the DSC curve obtained at this time, the glass transition temperature was measured (hereinafter, epoxy resins B and C were also measured in the same manner).
  • Example 2 An electronic component adhesive material was obtained in the same manner as in Example 1 except that the blending amounts of the core-shell type particles, the conductive particles, and the solvent were changed to the blending amounts shown in Table 1.
  • Example 3 An electronic component adhesive material was obtained in the same manner as in Example 1 except that the blending amounts of the core-shell type particles, the conductive particles, and the solvent were changed to the blending amounts shown in Table 1.
  • Example 4 Electronic component as in Example 1, except that the amounts of epoxy resin A, epoxy resin B (glass transition temperature 98 ° C.), core-shell type organic particles, conductive particles, and solvent were set as shown in Table 1. An adhesive material was obtained.
  • Example 5 An electronic component adhesive material was obtained in the same manner as in Example 1 except that the blending amounts of the epoxy resin A, the epoxy resin B, the core-shell type organic particles, the conductive particles, and the solvent were changed to the blending amounts shown in Table 1.
  • Example 2 An electronic component adhesive material was obtained in the same manner as in Example 1 except that the blending amounts of the core-shell type particles, the conductive particles, and the solvent were changed to the blending amounts shown in Table 1.
  • Example 3 An electronic component adhesive material was obtained in the same manner as in Example 1 except that the blending amounts of the core-shell type particles, the conductive particles, and the solvent were changed to the blending amounts shown in Table 1.
  • ⁇ Manufacture and evaluation of anisotropic conductive adhesive paste A phenoxy-type epoxy resin, core-shell type organic particles, conductive particles, and a solvent were blended and mixed in the proportions shown in Table 1 to obtain a conductive adhesive paste.
  • This conductive adhesive paste is applied to a flexible printed circuit board, and the flexible printed circuit board and FR-4 (glass epoxy copper clad laminate) are bonded together via this paste and pressed at a temperature of 180 ° C. and a pressure of 4 MPa for 7 seconds.
  • FR-4 glass epoxy copper clad laminate
  • Epoxy resin B bisphenol A type epoxy resin (product name: JER1256, manufactured by Mitsubishi Chemical Corporation)
  • Epoxy resin C sulfonyl type epoxy resin (trade name YX8100, manufactured by Mitsubishi Chemical Corporation)
  • Latent curing agent Modified imidazole type curing agent (Asahi Kasei Co., Ltd., trade name HX3921HP)
  • Core-shell type organic particles manufactured by Aika Kogyo Co., Ltd., trade name AC3816N (core layer: acrylic rubber, outer shell: acrylic glassy polymer, average primary particle size: 0.5 ⁇ m)
  • Conductive particles gold-plated resin particles with an average particle size of 10 ⁇ m
  • Solvent butyl carbitol acetate (boiling point 247 ° C.)
  • ⁇ Evaluation sample Flexible printed circuit board (manufactured by Kansai Electronics Industry Co., Ltd.)
  • Composition polyimide 25 ⁇ m, adhesive 20 ⁇ m, copper foil 18 ⁇ m
  • connection resistance value Measured using an evaluation sample having the shape shown in FIG.
  • reference numeral 1 is a flexible printed circuit board (FPC)
  • reference numeral 2 is a glass epoxy board
  • reference numeral 3 is a resistance meter
  • reference signs a to g are electrodes formed on the flexible printed circuit board
  • reference signs a ′ to g ′ are glass.
  • Each of the electrodes formed on the epoxy substrate is shown.
  • the widths of the electrodes a to g and a ′ to g ′ are all 75 ⁇ m.
  • the electrode a and the electrode a ′ were bonded to each other at the overlapping portion of the flexible printed circuit board 1 and the glass epoxy substrate 2 by overlapping the end portions as shown in FIG.
  • the length (l) of the overlapped portion is 5 mm.
  • the connection resistance is measured using a resistance meter (manufactured by Hioki Electric Co., Ltd., low resistance meter, DC method 3227 milliohm high tester), and between the other electrodes The connection resistance (between bb ′ and gg ′) was also measured, and the average value was obtained. If it is 1 ⁇ or less, it can be used without any problem.
  • connection resistance value (85 ° C./85% reliability): After the sample for evaluation was allowed to stand in a high temperature and high humidity environment (85 ° C. and 85% RH) for 250 hours, the connection resistance value was measured in the same manner as described above. In addition, if the connection resistance value is 1 ⁇ or less and the change rate is 30% or less, it can be used without any problem.
  • the rate of change refers to a ratio (%) represented by the following formula.
  • Peel strength (initial) The flexible printed circuit board of the sample for evaluation was peeled at a tensile tester (manufactured by Shimadzu Corporation, trade name AGS-X50S) at a tensile speed of 50 m / min and a peel angle of 90 ° at room temperature. The maximum value at break was measured. If it is 10 N / cm or more, it can be used without problems.
  • Peel strength (85 ° C./85% reliability): After leaving the sample for evaluation in a high temperature and high humidity environment (85 ° C. and 85% RH) for 250 hours, the peel strength was measured in the same manner as described above. If it is 10 N / cm or more, it can be used without problems.
  • Thixotropic index The electronic component adhesive material is adjusted to 25 ° C., the viscosity at 0.25 rpm and 2 rpm is measured with an E-type viscometer, and the ratio of the viscosities (viscosity at 2 rpm ⁇ viscosity at 0.25 rpm) is thixotropic. It was an index. If the thixotropy index is 1.5 or more, sedimentation of the conductive fine particles can be prevented.
  • Printing workability An 80-mesh screen (Tetron (registered trademark)) was used, and the adhesive composition was printed so that the dry film thickness (drying temperature 150 ° C., 15 minutes) was maintained at 20 ⁇ 5 ⁇ m. .
  • Visual observation was made for the presence of defects such as stringing between the screen and the printed material, stenciling, foaming, and bleeding, and the evaluation was made according to the following criteria: A: There are no defects such as stringing, stenciling, foaming, bleeding, etc., and good printing workability.
  • C Defects are remarkable and printing workability is poor.
  • Particle sedimentation characteristics The adhesive composition was sufficiently stirred and mixed, and the adhesive composition after being allowed to stand at room temperature for 1 week was visually observed. When no sedimentation of conductive particles was observed, A (particle sedimentation) The characteristic was good), and the case where sedimentation of conductive particles was observed was defined as C (poor particle sedimentation characteristic).
  • the adhesive materials of the examples have excellent reworkability, high moisture and heat resistance that can withstand harsh conditions such as 85 ° C./85% RH test, storage stability, Printing workability was also good.
  • Comparative Example 1 using an epoxy resin having a low glass transition temperature has low heat resistance
  • Comparative Examples 2 to 4 in which the amount of core-shell type particles is outside the range specified in the present invention is printing workability or storage stability. The result was that either sex was low.
  • Comparative Example 5 using a curing agent, the reworkability was inferior due to the crosslinking of the epoxy resin. Further, Comparative Examples 6 and 7 having a low content of phenoxy-type epoxy resin having a glass transition temperature of 100 ° C. or higher had poor heat resistance.
  • the adhesive material of the present invention is suitably used for bonding various electronic components as an anisotropic conductive paste or anisotropic conductive film having excellent reworkability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

リワーク性、保存安定性、耐熱性等を兼ね備えた、導電性ペースト、導電性フィルム等の電子部品接着材料及びこれを用いた信頼性の高い電子機器を提供することを目的とする。エポキシ樹脂100質量部に対し、コアシェル型有機粒子20~100質量部と、導電性粒子0.1~100質量部とを含有してなり、上記エポキシ樹脂100質量部中、ガラス転移温度が100℃以上のフェノキシ型エポキシ樹脂を45質量部以上含有する接着材料を用いる。

Description

電子部品接着材料及び電子部品の接着方法
 本発明は、電子部品を回路基板に接着するための接着剤組成物等の電子部品接着材料に関するものである。より詳細には、電子部品を回路基板にいったん接着させた後に、必要に応じて剥離させるリワーク作業をより容易にするとともに、保存安定性が向上した、接着剤組成物や接着フィルム等として用いられる電子部品接着材料に関するものである。
 従来より、電子部品と回路基板との接着剤として、エポキシ系熱硬化性樹脂が使用されている。エポキシ系熱硬化性樹脂は、エポキシ樹脂と架橋剤とを反応させて架橋構造を形成させることにより硬化させるため、硬化後の初期特性、耐湿熱試験後、耐熱試験後の特性ともに優れ、信頼性が高いという特長を有する。
 一方で、電子部品を回路基板に貼り付けた後、電子部品の位置を微修正するために、回路基板を加熱して接着剤を軟化させ、電子部品を回路基板から剥がして再度貼り付ける、リワークやリペアと呼ばれる作業が行われる場合があり、このリワーク作業の容易さ(以下、これを「リワーク性」と称する)を向上させることが求められているが、エポキシ系熱硬化性樹脂はこのリワーク性や保存安定性に劣るという問題を有する。
 リワーク性を向上させる手法としては、エポキシ系熱硬化性樹脂の架橋構造の架橋密度をコントロールする方法が知られている。
 例えば、特許文献1には、架橋性樹脂に非架橋性の熱可塑性材料を配合することにより接着剤組成物のリワーク性を向上させることが記載されている。
 しかしながら、架橋密度をコントロールしたとしても、架橋構造を有する限りは、加熱しても流動性が低く、また接着剤が若干残るなどの問題を生じ、リワーク性がいまだ不十分であった。また、リワーク性と接着性・耐熱性とは本来相反する性質であり、リワーク性が向上する一方で、接着性・耐熱性が低下するという問題は解決されていない。
 これに関し、例えば特許文献2には、リワーク性と接着性を共に向上させることを目的とする、ビスフェノールA型エポキシ樹脂、フェノキシ樹脂、液状エポキシ化合物及び導電性フィラーからなる導電性接着剤が開示されている。しかし、そのリワーク性も接着性等も、なお不十分なものである。
 以上の通り、リワーク性、保存安定性、耐熱性及び耐湿熱性のいずれをも高いレベルで満足させる電子部品接着材料は、未だ得られていないのが実情である。
特表平05-506691号公報 特開平11-209716号公報
 本発明は上記に鑑みてなされたものであり、リワーク性、保存安定性、耐熱性及び耐湿熱性を兼ね備えた電子部品接着材料を提供することを目的とする。特に85℃/85%RHという厳しい条件の環境試験に耐える、信頼性の高い電子部品接着剤組成物及び接着フィルムを提供することを目的とする。また、上記本発明の接着材料を用いて、効果的な接着を可能とする接着方法を提供することを目的とする。
 本発明の電子部品接着材料は、エポキシ樹脂100質量部に対し、コアシェル型有機粒子20~100質量部と、導電性粒子0.1~100質量部とを含有してなり、上記エポキシ樹脂100質量部中、ガラス転移温度が100℃以上のフェノキシ型エポキシ樹脂を45質量部以上含有するものとする。
 本発明の電子部品接着材料は、エポキシ樹脂用硬化剤を含まないことが好ましい。
 本発明の導電性ペーストは、上記本発明の電子部品接着材料に対して、溶剤を100~900質量部含有するものとする。
 また、導電性接着フィルムは上記電子部品接着材料を含有する被膜が剥離基材上に形成されてなるものとする。
 本発明の電子機器は、電子部品が上記本発明の電子部品接着材料からなる導体層を介して回路基板に接着しているものとする。
 上記電子機器は、電子機器を200℃に加熱したときの、電子部品の剥離強度が10N/cm以下であることが好ましい。
 本発明の電子部品接着材料は、上記の通り、ガラス転移温度が100℃以上であるフェノキシ型エポキシ樹脂を所定量以上含有するエポキシ樹脂と所定量のコアシェル型有機粒子及び導電性粒子からなることにより、リワーク性及び保存安定性が従来よりも向上したものとなる。一方で、接着性にも優れ、85℃/85%RH試験という厳しい試験条件にも耐える高い耐湿熱性を有する接着が可能となる。従って、この接着材料を使用した製品の信頼性を大幅に向上させることが可能となる。
接続抵抗の測定方法を説明するための測定用サンプルの概略図である。 図1の要部(電極どうしの接着部分)を示す拡大図である。
 本発明の電子部品接着材料は、ガラス転移温度(以下、「Tg」と略記する場合がある)が100℃以上のフェノキシ型エポキシ樹脂を所定量以上含有するエポキシ樹脂とコアシェル型有機粒子と導電性粒子とを少なくとも含有する。
 本発明で使用するフェノキシ型エポキシ樹脂は、ビスフェノールとエピクロルヒドリンとの縮合反応で得られるプレポリマー、及びそのプレポリマーの少なくとも1種を重合させてなる重合物である。本明細書で単に「フェノキシ樹脂」と言うときは、上記プレポリマー、又はその重合物、又はプレポリマーと重合物との混合物のいずれをも包含するものとする。
 また、本明細書において「ビスフェノール」とは、2個のヒドロキシフェニル基を有する化合物をいい、Tgが上記範囲となるフェノキシ樹脂が得られるものであれば特に限定されないが、好ましい例としては、下記式で表される1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン(式(1))、ビス(4-ヒドロキシフェニル)ジフェニルメタン(式(2))、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン(式(3))、1,3-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン(式(4))、1,4-ビス(2-(4-ヒドロキシフェニル)-2-プロピル)ベンゼン(式(5))、5,5-(1-メチルエチリデン)-ビス[1,1-(ビスフェニル)-2-オール]プロパン(式(6))、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン(式(7))、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(式(8))等が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 上記重合には架橋剤を使用せず、従って、本発明で使用するフェノキシ樹脂は硬化後も実質的に架橋構造を形成しない熱可塑性樹脂である。
 上記フェノキシ樹脂は、常温で固体であることが好ましい。常温で固体とは、25℃において無溶媒状態で流動性を示さない固体状態であることを意味する。上記フェノキシ樹脂が常温で固体であると、導電性ペーストや導電性接着フィルムとして使用することができる。
 耐熱性、特に接着後の耐湿熱性とリワーク性とが共に良好であるという点から、ガラス転移温が100℃以上の上記フェノキシ型エポキシ樹脂は、エポキシ樹脂100質量部中45質量部以上含有することが好ましく、50質量部以上含有することがより好ましい。
 本発明の電子部品接着材料には、上記フェノキシ型エポキシ樹脂以外のエポキシ樹脂を使用することもできる。そのような上記フェノキシ型エポキシ樹脂以外のエポキシ樹脂の例としては、スルフォニル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂等の公知のエポキシ樹脂が挙げられる。
 本発明の電子部品接着材料には、本発明の目的に反しない範囲であれば、上記フェノキシ型エポキシ樹脂等のエポキシ樹脂以外の樹脂を使用することもできる。そのような樹脂の例としては、アクリル樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリオレフィン樹脂、ウレタン樹脂等が挙げられる。
 次に、本発明で使用するコアシェル型有機粒子(以下、「コアシェル型粒子」という場合もある)とは、異なる組成の内核と外殻とを少なくとも有する多層構造微粒子であり、本発明では内核がアクリル系ゴムからなり、内核の表面にアクリル系重合体やエポキシ系重合体をグラフト重合させて外殻を形成したものである。このようなコアシェル型粒子を適量使用することにより、剥離強度やチキソ性(以下、チクソトロピー指数と称する場合がある)の向上効果が得られ、チキソ性の向上によって導電性粒子の沈降防止効果が得られる。
 本発明で使用するコアシェル型粒子の大きさは、平均粒径で0.01~10μmの範囲が好ましく、0.1~5μmがより好ましい。
 本発明における上記コアシェル型有機粒子の好適な配合量は、その粒径にもよるが、剥離強度及びチキソ性の向上効果及び印刷性が良好である点から、樹脂成分100質量部に対して、20~100質量部の範囲内であることが好ましく、20~50質量部の範囲内であることがより好ましい。
 また、本発明の電子部品接着材料には、必要に応じて無機粒子を加えることもできる。このような無機粒子の例としては、タルク、シリカ微粒子、アルミナ、硫酸バリウム、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム等の公知の無機粒子が挙げられるが、中でも、剥離強度とチキソ性を共に向上させる点からは、タルクとシリカ粒子が好ましい。
 無機微粒子を配合する場合の配合量は、剥離強度とチキソ性の向上の点から、樹脂成分100質量部に対して、1~200質量部の範囲内であることが好ましく、2~100質量部であることがより好ましい。
 本発明で使用する導電性粒子は、特に限定されず、各種導電性ペーストや導電性接着フィルムで一般に使用されているものを適宜選択して使用することができる。好ましい具体例としては、金、銀、銅、及びニッケルからなるものが挙げられる。これらのうちの単一の金属からなる金属粉のほか、2種以上の合金からなる金属粉や、これらの金属粉を他種の金属でコートしたものも使用できる。さらには、樹脂粒子に金属をコートしたものや、金属をコートした樹脂粒子に絶縁層を設けたものを用いることもできる。
 金属粉の形状は、球状、リン片状、樹枝状等の従来から用いられているものから適宜選択して使用できるが、球状が好ましい。また、粒径も制限されないが、通常は平均粒径で1~50μm程度である。
 導電性粒子の配合量は、導電性と絶縁性の観点から、樹脂成分100質量部に対して0.1~100質量部の範囲内であることが好ましく、1~50質量部であることがより好ましい。導電性粒子の配合量が上記の範囲内であると、異方性の導電性材料として使用することができる。
 本発明の電子部品接着剤を導電性ペーストとして使用する場合は、溶剤を添加することにより所望の粘度となるように調整する。本発明で使用する溶剤は、ペーストを塗布する際の作業性が良好である点から、沸点が100~300℃であることが好ましく、150~250℃であることがより好ましい。溶剤の好ましい具体例としては、N-メチルピロリドン、ヘキサン、ヘプタン、デカン、トルエン、キシレン、シクロヘキサノン、ソルベントナフサ、ブチルカルビトール、ブチルカルビトールアセテート、イソホロン等が挙げられる。
 また、溶剤の使用量は、接着剤組成物のフェノキシ型エポキシ樹脂とコアシェル型有機粒子と導電性粒子の合計量(但し、固形分)100質量部に対して、100~900質量部の範囲内が好ましい。溶剤が100質量部以上であると、導電性ペーストをスクリーン印刷で塗布する場合に、スクリーンの目詰まりや塗布ムラの発生を防止し易くなる。また、900質量部以下であると、塗布厚さを確保し易くなる。
 本発明の接着材料は、リワーク性が特に優れる点から、200℃の環境下における90°剥離強度(引張り速度:50m/分、破断時の最大値)が10N/cm以下であることが好ましく、5N/cm以下であることがより好ましい。
 また、導電性ペーストの25℃におけるチクソトロピー指数(TI)は、1.5以上であることが好ましい。TIが1.5以上であると、導電性粒子の沈降を抑制することができる。また、TIは3.0以下であることが好ましい。TIが3.0以下であると、導電性ペーストをスクリーン印刷で塗布する場合に、スクリーンの目詰まりや塗布むらの発生を防止することができる。
 本発明の電子部品接着材料には、本発明の目的に反しない範囲であれば、上記フェノキシ型エポキシ樹脂以外の樹脂成分のみならず、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、難燃剤等の添加成分を配合することもできる。
 本発明の電子部品接着材料には、硬化剤が含まれないことが好ましい。ここで硬化剤とは、脂肪族ポリアミンやポリアミド樹脂、脂肪族ジアミン、芳香族ジアミン、イミダゾール類化合物、酸無水物等、エポキシ樹脂の硬化を促進させる公知のエポキシ樹脂用硬化剤である。硬化剤を含有させないことにより、リワーク性や保存安定性を向上させることができる。
 本発明の電子部品接着材料は、例えば異方導電性接着フィルムの形態とすることもでき、その場合、例えば、表面を剥離処理したポリエステルフィルムやポリイミドフィルム等の剥離基材に上記導電性ペーストを塗布して、乾燥させることにより得られる。
 上記により得られた異方導電性接着ペースト又はフィルムを使用して電子部品を接着する作業は、従来の方法に準じて行うことができる。
 導電性接着ペーストを使用して電子部品を回路基板に接着して電子機器を製造する方法は限定されないが、例えば次の方法により製造できる。先ず、スクリーン印刷によって導電性接着ペーストを回路基板の表面に塗布し、所定のパターンを形成する。次いで、回路基板を加熱して溶媒を揮発させて所定のパターンからなる導体層を形成する。さらに、その導体層の上に電子部品を載せ、熱圧着し、導電性接着剤層を介して電子部品が回路基板に接着されることで、電子機器が得られる。熱圧着の際の温度及び圧力は適宜設定することができるが、2~4MPa、100~220℃が好ましい。
 導電性接着フィルムを使用して電子部品を回路基板に接着して電子機器を製造する方法も限定されないが、例えば次の方法により製造できる。先ず、剥離基材の表面に導電性接着ペーストを塗布し、溶剤を揮発させることで、剥離基材上に導電性接着剤層が形成された導電性接着フィルムを得る。次いで、導電性接着フィルム上の導電性接着剤層を回路基板の表面に貼り合せ、仮プレスを行い、導電性接着剤層を回路基板の表面に転写させる。なお、仮プレスをする際の温度及び圧力は適宜設定することができるが、1~5MPa、80~100℃であることが好ましい。次いで、剥離基材を剥がして導電性接着剤層を露出させて導体層を形成し、その上に電子部品を載せ、熱圧着し、導電性接着剤層を介して電子部品が回路基板に接着されることで、電子機器が得られる。熱圧着の際の温度及び圧力は適宜設定することができるが、本発明の電子部品接着材料を使用する際は、2~4MPa、100~220℃が好ましい。
 このようにして得られた電子機器は、200℃に加熱したときの電子部品の剥離強度が、10N/cm以下であることが好ましく、5N/cm以下であることがより好ましい。剥離強度が10N/cm以下であると、リワーク性に優れる電子機器が得られる。
 電子部品のリペア作業は従来の作業方法に準じて行うことができ、接着された回路基板と電子部品を150~230℃程度に加熱して、電子部品を取り外し、接着剤を拭き取って、再度電子部品の接着を行う。
 以下に本発明の実施例を示すが、本発明は以下の実施例によって限定されるものではない。なお、以下において配合割合等は、特にことわらない限り質量基準(質量部、質量%等)とする。
<導電性樹脂組成物の調製>
[実施例1]
 攪拌機、滴下ロート及び温度計を備えたガラス容器にエピクロルヒドリン700gと1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン1100gを投入し、均一に溶解させた後、80℃まで加熱した。次いで、ガラス容器内に20%の水酸化ナトリウム水溶液400gを5時間かけて滴下し、2時間反応させた後、水相を取り除き、過剰のエピクロルヒドリンを蒸留回収して反応生成物を得た。得られた反応生成物にトルエン500gを加えて均一に溶解させ、水160gを加えて水洗した後、油水分離し、油層から水を除去した後、更にトルエンを留去させて、エポキシ樹脂A(フェノキシ型エポキシ樹脂)を得た。得られたエポキシ樹脂Aのガラス転移温度は130℃であった。
 なお、ガラス転移温度は、示差走査熱量計を使用して、次の方法で測定した。先ず、10mg~20mgの試料をアルミパンに載せ、窒素気流下で、昇温速度10℃/分で-10℃から200℃まで試料を加熱し(1回目の昇温)、冷却した。次いで、1回目の昇温と同条件で2回目の昇温を行った。このとき得られたDSC曲線のベースラインシフトをもとに、ガラス転移温度を測定した(以下、エポキシ樹脂B及びCについても同様の方法で測定した)。
 次いで、得られたエポキシ樹脂Aと、コアシェル型粒子、導電性粒子及び溶剤とを、表1に示す配合量に従って均一に混合させ、電子部品接着材料を得た。
[実施例2]
 コアシェル型粒子、導電性粒子及び溶剤の配合量を表1に示す配合量とした以外は、実施例1と同様にして電子部品接着材料を得た。
[実施例3]
 コアシェル型粒子、導電性粒子及び溶剤の配合量を表1に示す配合量とした以外は、実施例1と同様にして電子部品接着材料を得た。
[実施例4]
 エポキシ樹脂A、エポキシ樹脂B(ガラス転移温度98℃)、コアシェル型有機粒子、導電性粒子及び溶剤の配合量を表1に示す配合量としたこと以外は、実施例1と同様にして電子部品接着材料を得た。
[実施例5]
 エポキシ樹脂A、エポキシ樹脂B、コアシェル型有機粒子、導電性粒子及び溶剤の配合量を表1に示す配合量としたこと以外は、実施例1と同様にして電子部品接着材料を得た。
[比較例1]
 エポキシ樹脂Aの代わりに、エポキシ樹脂Bを用い、エポキシ樹脂B、コアシェル型粒子、導電性粒子及び溶剤の配合量を表1に示す配合量とした以外は、実施例1と同様にして電子部品接着材料を得た。
[比較例2]
 コアシェル型粒子、導電性粒子及び溶剤の配合量を表1に示す配合量とした以外は、実施例1と同様にして電子部品接着材料を得た。
[比較例3]
 コアシェル型粒子、導電性粒子及び溶剤の配合量を表1に示す配合量とした以外は、実施例1と同様にして電子部品接着材料を得た。
[比較例4]
 コアシェル型粒子、導電性粒子及び溶剤の配合量を表1に示す配合量とした以外は、実施例1と同様にして電子部品接着材料を得た。
[比較例5]
 エポキシ樹脂Aに代えて、エポキシ樹脂B、エポキシ樹脂C及びイミダゾール系硬化剤(旭化成(株)製、商品名HX3921HP)を用い、エポキシ樹脂B、エポキシ樹脂C、コアシェル型粒子、導電性粒子及び溶剤の配合量を表1に示す配合量とした以外は、実施例1と同様にして電子部品接着材料を得た。
[比較例6]
 エポキシ樹脂A、エポキシ樹脂B、コアシェル型有機粒子、導電性粒子及び溶剤の配合量を表1に示す配合量としたこと以外は、実施例1と同様にして電子部品接着材料を得た。
[比較例7]
 エポキシ樹脂A、エポキシ樹脂B、コアシェル型有機粒子、導電性粒子及び溶剤の配合量を表1に示す配合量としたこと以外は、実施例1と同様にして電子部品接着材料を得た。
<異方導電性接着ペーストの製造及び評価>
 フェノキシ型エポキシ樹脂、コアシェル型有機粒子、導電性粒子、溶剤を表1に示す割合で配合して混合し、導電性接着ペーストを得た。この導電性接着ペーストをフレキシブルプリント基板に塗布して、このペーストを介してフレキシブルプリント基板とFR-4(ガラスエポキシ銅張積層板)とを貼り合わせ、温度180℃、圧力4MPaで7秒間プレスすることにより貼り合わせ、評価用サンプルを作成し、以下の方法で剥離強度、接続抵抗値、チキソ性、リワーク特性を、測定又は評価した。各成分の配合を表1に、測定・評価結果を表2に示す。
<配合成分>
 エポキシ樹脂B:ビスフェノールA型エポキシ樹脂(三菱化学(株)製、商品名JER1256)
 エポキシ樹脂C:スルフォニル型エポキシ樹脂(三菱化学(株)製、商品名YX8100)
 潜在性硬化剤:変性イミダゾール型硬化剤(旭化成(株)製、商品名HX3921HP)
 コアシェル型有機粒子:アイカ工業(株)製、商品名AC3816N(コア層:アクリル系ゴム、外殻:アクリル系ガラス状ポリマー、平均一次粒径:0.5μm)
 導電性粒子:平均粒径10μmの金メッキ樹脂粒子
 溶剤:ブチルカルビトールアセテート(沸点247℃)
<評価サンプル>
フレキシブルプリント基板(関西電子工業(株)製)
 構成:ポリイミド25μm、接着剤20μm、銅箔18μm
 メッキ:ニッケル3μm、金0.05μm
ガラスエポキシ基板(関西電子工業(株)製)
 構成:銅箔35μm
 メッキ:ニッケル3μm、金0.05μm
<測定・評価方法>
 リワーク特性:評価用サンプルのフレキシブルプリント基板を、200℃の環境下で引張試験機(島津製作所(株)製、商品名AGS-X50S)で引張速度50m/分、剥離角度90°にて剥離し、破断時の最大値を測定した。10N/cm以下であれば、リワーク性が良好である。
 接続抵抗値(初期):図1に示す形状を有する評価用サンプルを用いて測定した。図1において、符号1はフレキシブルプリント基板(FPC)、符号2はガラスエポキシ基板、符号3は抵抗計、符号a~gはフレキシブルプリント基板上に形成された電極、符号a’~g’はガラスエポキシ基板上に形成された電極をそれぞれ示す。電極a~g,a’~g’の幅はいずれも75μmである。電極aと電極a’とを、フレキシブルプリント基板1とガラスエポキシ基板2との重なり部分で、図2に示すように端部どうしを重ね合わせて上記異方導電性接着ペーストで接着した。重ね合わせ部分の長さ(l)は5mmである。これらの電極aと電極a’との端末端子間で、抵抗計(日置電機(株)製、低抵抗計、直流方式3227ミリオームハイテスタ)を使用して接続抵抗を測定し、他の電極間(b-b’間~g-g’間)の接続抵抗もそれぞれ測定して、平均値を求めた。なお、1Ω以下であれば問題なく使用できる。
 接続抵抗値(85℃/85%信頼性):上記評価用サンプルを高温高湿度環境下(85℃85%RH)に250時間放置した後、上記と同様にして接続抵抗値を測定した。なお、接続抵抗値が1Ω以下で、かつ、その変化率が30%以下であれば問題なく使用できる。ここで変化率とは、次式で表される割合(%)をいうものとする。
Figure JPOXMLDOC01-appb-M000001
 剥離強度(初期):評価用サンプルのフレキシブルプリント基板を、常温で引張試験機(島津製作所(株)製、商品名AGS-X50S)で引張速度50m/分、剥離角度90°にて剥離し、破断時の最大値を測定した。10N/cm以上であれば問題なく使用できる。
 剥離強度(85℃/85%信頼性):評価用サンプルを高温高湿度環境下(85℃85%RH)に250時間放置した後、上記と同様にして剥離強度を測定した。10N/cm以上であれば問題なく使用できる。
 チクソトロピー指数:電子部品接着材料を25℃に調整し、回転数0.25rpm及び2rpmにおける粘度をE型粘度計で測定し、それらの粘度の比(2rpmにおける粘度÷0.25rpmにおける粘度)をチクソトロピー指数とした。なお、チクソトロピー指数が1.5以上であれば導電性微粒子の沈降を防ぐことができる。
 印刷作業性:80メッシュのスクリーン(テトロン(登録商標))を使用し、乾燥膜厚(乾燥温度150℃、15分間)が20±5μmを維持するように、接着剤組成物の印刷を実施した。目視により、スクリーンと印刷物間の糸引き、版ぬけ、泡かみ、にじみ等の不具合の有無を観察し、次の基準で評価した;
 A:糸引き、版ぬけ、泡かみ、にじみ等の不具合がなく、印刷作業性良好、
 B:不具合が若干あるが、許容範囲であり、印刷作業性やや良好、
 C:不具合が顕著にあり、印刷作業性不良。
 粒子沈降特性:接着剤組成物を十分に撹拌混合し、室温下で1週間放置した後の接着剤組成物を目視で観察し、導電性粒子の沈降が見られなかった場合をA(粒子沈降特性良好)、導電性粒子の沈降が見られた場合をC(粒子沈降特性不良)とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示された結果から分かるように、実施例の接着材料は、リワーク性に優れ、85℃/85%RH試験という厳しい条件の試験にも耐える高い耐湿熱性を有し、保存安定性や印刷作業性も良好であった。
 これに対し、ガラス転移温度の低いエポキシ樹脂を用いた比較例1は耐熱性が低く、コアシェル型粒子の量が本発明で規定した範囲外である比較例2~4は印刷作業性か保存安定性のいずれかが低いという結果になった。
 また、硬化剤を用いた比較例5では、エポキシ樹脂の架橋によりリワーク性が劣ったものとなった。さらに、ガラス転移温度が100℃以上のフェノキシ型エポキシ樹脂の含有量が少ない比較例6,7は耐熱性が劣っていた。
 本発明の接着材料は、リワーク性に優れる異方導電性ペースト又は異方導電性フィルムとして各種電子部品の接着に好適に用いられる。
 1……フレキシブルプリント基板
 2……ガラスエポキシ基板
 3……抵抗計
 

Claims (6)

  1.  エポキシ樹脂100質量部に対し、
     コアシェル型有機粒子20~100質量部、及び
     導電性粒子0.1~100質量部を含有してなり、
     前記エポキシ樹脂100質量部中、ガラス転移温度が100℃以上のフェノキシ型エポキシ樹脂を45質量部以上含有することを特徴とする、
     電子部品接着材料。
  2.  エポキシ樹脂用硬化剤を含有しないことを特徴とする、請求項1に記載の電子部品接着材料。
  3.  請求項1又は2に記載の電子部品接着材料に対して、溶剤を100~900質量部含有することを特徴とする、導電性ペースト。
  4.  請求項1又は2に記載の電子部品接着材料を含有する被膜が剥離基材上に形成されてなる、導電性接着フィルム。
  5.  電子部品が、請求項1又は2に記載の電子部品接着材料からなる導体層を介して回路基板に接着していることを特徴とする電子機器。
  6.  前記電子機器を200℃に加熱したときの、電子部品の剥離強度が10N/cm以下であることを特徴とする、請求項5に記載の電子機器。
     
PCT/JP2014/006328 2013-12-26 2014-12-18 電子部品接着材料及び電子部品の接着方法 WO2015098059A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167012034A KR101862734B1 (ko) 2013-12-26 2014-12-18 전자 부품 접착 재료 및 전자 부품의 접착 방법
JP2015554547A JP6301366B2 (ja) 2013-12-26 2014-12-18 電子部品接着材料及び電子部品の接着方法
CN201480069841.6A CN105814161A (zh) 2013-12-26 2014-12-18 电子零部件接合材料及电子零部件接合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-269792 2013-12-26
JP2013269792 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098059A1 true WO2015098059A1 (ja) 2015-07-02

Family

ID=53477962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006328 WO2015098059A1 (ja) 2013-12-26 2014-12-18 電子部品接着材料及び電子部品の接着方法

Country Status (5)

Country Link
JP (1) JP6301366B2 (ja)
KR (1) KR101862734B1 (ja)
CN (1) CN105814161A (ja)
TW (1) TWI609938B (ja)
WO (1) WO2015098059A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139020A (ja) * 2019-02-27 2020-09-03 ナミックス株式会社 導電性接着剤

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500237A (zh) * 2020-06-08 2020-08-07 东莞市新懿电子材料技术有限公司 一种快速流动可低温固化的底部填充胶粘剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279903A (ja) * 1997-04-04 1998-10-20 Asahi Chem Ind Co Ltd 導電性接着剤
JP2001323224A (ja) * 2000-05-17 2001-11-22 Hitachi Chem Co Ltd 接着剤組成物、それを用いた回路端子の接続方法及び回路端子の接続構造
JP2005294086A (ja) * 2004-04-01 2005-10-20 Sumitomo Electric Ind Ltd フィルム状接着剤
JP2010272546A (ja) * 2010-08-27 2010-12-02 Sony Chemical & Information Device Corp 実装体の製造方法、接続方法及び異方性導電膜
WO2011046176A1 (ja) * 2009-10-15 2011-04-21 日立化成工業株式会社 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール
JP2011184528A (ja) * 2010-03-05 2011-09-22 Hitachi Chem Co Ltd 回路接続材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05506691A (ja) 1990-06-08 1993-09-30 ミネソタ マイニング アンド マニュファクチャリング カンパニー 電子用途のための再加工性接着剤
JPH11209716A (ja) 1998-01-30 1999-08-03 Asahi Chem Ind Co Ltd 導電性の接着剤
KR100776131B1 (ko) * 2006-12-22 2007-11-16 제일모직주식회사 열가소성 수지를 이용한 복층 구조의 이방 도전성 접착필름

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279903A (ja) * 1997-04-04 1998-10-20 Asahi Chem Ind Co Ltd 導電性接着剤
JP2001323224A (ja) * 2000-05-17 2001-11-22 Hitachi Chem Co Ltd 接着剤組成物、それを用いた回路端子の接続方法及び回路端子の接続構造
JP2005294086A (ja) * 2004-04-01 2005-10-20 Sumitomo Electric Ind Ltd フィルム状接着剤
WO2011046176A1 (ja) * 2009-10-15 2011-04-21 日立化成工業株式会社 導電性接着剤、太陽電池及びその製造方法、並びに太陽電池モジュール
JP2011184528A (ja) * 2010-03-05 2011-09-22 Hitachi Chem Co Ltd 回路接続材料
JP2010272546A (ja) * 2010-08-27 2010-12-02 Sony Chemical & Information Device Corp 実装体の製造方法、接続方法及び異方性導電膜

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139020A (ja) * 2019-02-27 2020-09-03 ナミックス株式会社 導電性接着剤

Also Published As

Publication number Publication date
KR101862734B1 (ko) 2018-07-04
TWI609938B (zh) 2018-01-01
TW201540800A (zh) 2015-11-01
JP6301366B2 (ja) 2018-03-28
KR20160102390A (ko) 2016-08-30
CN105814161A (zh) 2016-07-27
JPWO2015098059A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP5151902B2 (ja) 異方導電性フィルム
KR101355855B1 (ko) 이방성 도전 필름
CN107112658B (zh) 各向异性导电膜和连接方法
TW201335260A (zh) 樹脂硬化物與半硬化樹脂膜及其製造方法、樹脂組合物
JP2008094908A (ja) 電極接続用接着剤
TWI421323B (zh) Anisotropic conductive adhesive
JP6570259B2 (ja) 樹脂組成物、絶縁フィルム、および半導体装置
WO2019189512A1 (ja) 導電性接着剤組成物
JP6301366B2 (ja) 電子部品接着材料及び電子部品の接着方法
JP2000239636A (ja) 硬化性導電ペースト
JP5956362B2 (ja) 異方性導電フィルム、接続方法、及び接合体
TWI423267B (zh) 用於向異性傳導膜之組成物
JP2000261116A (ja) プリント配線板層間接続バンプ用硬化性導電ペースト
TW201807054A (zh) 含導電性粒子之樹脂組成物及含該樹脂組成物之電子裝置
JP4867805B2 (ja) 電極接続用接着剤
JP2680412B2 (ja) 異方性導電フィルム
JPH07173448A (ja) 異方導電フィルム
TW201522560A (zh) 接著劑組成物及膜卷裝體
EP3086411A1 (en) Mounting body manufacturing method and anisotropic conductive film
JP5273514B2 (ja) 電極接続用接着剤とその製造方法
JP2010024384A (ja) 異方導電性組成物
JP2009084307A (ja) 電極接続用接着剤
JP2010153507A (ja) 導電性バンプ形成用組成物及びそれを用いてなるプリント配線基板
JP3981341B2 (ja) 異方導電性接着剤
JP2009001661A (ja) 接着剤及び接合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874590

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554547

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167012034

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14874590

Country of ref document: EP

Kind code of ref document: A1