WO2019189512A1 - 導電性接着剤組成物 - Google Patents

導電性接着剤組成物 Download PDF

Info

Publication number
WO2019189512A1
WO2019189512A1 PCT/JP2019/013450 JP2019013450W WO2019189512A1 WO 2019189512 A1 WO2019189512 A1 WO 2019189512A1 JP 2019013450 W JP2019013450 W JP 2019013450W WO 2019189512 A1 WO2019189512 A1 WO 2019189512A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive composition
conductive adhesive
mass
silver
conductive
Prior art date
Application number
PCT/JP2019/013450
Other languages
English (en)
French (fr)
Inventor
真太郎 阿部
近藤 剛史
満生 渡辺
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to DE112019001726.8T priority Critical patent/DE112019001726T5/de
Priority to KR1020207026446A priority patent/KR102425784B1/ko
Priority to US16/981,125 priority patent/US20210017428A1/en
Priority to SG11202008948UA priority patent/SG11202008948UA/en
Priority to JP2020509283A priority patent/JP7025529B2/ja
Priority to CN201980018621.3A priority patent/CN111918946B/zh
Publication of WO2019189512A1 publication Critical patent/WO2019189512A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances

Definitions

  • the present invention relates to a conductive adhesive composition.
  • a conductive adhesive composition is used as a die bond material for bonding and bonding a semiconductor element to a support member such as a lead frame.
  • metal powders such as silver powder and copper powder are generally used because of their high electrical conductivity. Adhesives containing these and paste adhesives that adhere by sintering Many reports have been made.
  • a conductive adhesive composition using silver-coated copper having excellent migration resistance as a conductive filler has been reported.
  • a substantially spherical silver-coated copper powder and silver fine powder are contained, and the ratio of the substantially spherical silver-coated copper powder to the silver fine powder (substantially spherical silver-coated copper powder: silver fine powder) is 95: 5 to 55 by volume ratio.
  • An electronic component is disclosed in which components are connected with a heat conductive composition containing 90 to 99% by weight of conductive particles of 45.
  • the present invention has been invented in view of the above problems, and an object of the present invention is to provide a conductive adhesive composition having excellent thermal conductivity and excellent migration resistance.
  • a conductive adhesive composition containing a conductive filler (A) containing silver powder (a1) and silver-coated copper powder (a2) and a binder composition (B).
  • A a conductive filler
  • B a binder composition
  • the conductive adhesive composition of the present invention contains a conductive filler (A) containing silver powder (a1) and silver-coated copper powder (a2), and a binder composition (B). 3 to 65% by mass of silver-coated copper powder (a2) based on the total amount of the conductive filler (A), and the conductive filler (A) is a non-volatile component in the conductive adhesive composition Contains 95 to 99.95% by mass with respect to the total amount.
  • the silver powder (a1) contains silver powder having an average particle diameter of 0.5 to 20 ⁇ m and silver powder having an average particle diameter of 10 to 200 nm.
  • the conductive filler (A) contains 5 to 50% by mass of silver powder having an average particle size of 10 to 200 nm.
  • the conductive adhesive cured product of the present invention is obtained by curing any one of the above conductive adhesive compositions.
  • the electronic device of the present invention uses any one of the above-mentioned conductive adhesive compositions for bonding parts.
  • the conductive adhesive composition of the present invention is excellent in thermal conductivity and conductivity, and is also excellent in migration resistance.
  • average particle size of silver powder (a1S) having an average particle size of nanometer order means 50% average particle size (D50) of the particle size distribution measured using the dynamic light scattering method. For example, it can be measured using a nanotrack particle distribution measuring device manufactured by Nikkiso Co., Ltd. Further, the “average particle size” of components other than silver powder (a1S) whose average particle size is on the order of nanometers is the 50% average particle size of the particle size distribution measured using a laser diffraction / scattering particle size analyzer ( D50), which can be measured, for example, using a laser diffraction / scattering particle size analyzer MT-3000 manufactured by Nikkiso Co., Ltd.
  • D50 laser diffraction / scattering particle size analyzer
  • the conductive adhesive composition of the present invention contains a conductive filler (A) and a binder composition (B). Below, the component which comprises the electroconductive adhesive composition of this invention is demonstrated.
  • the conductive filler (A) is a component that contributes to the conductivity of the conductive adhesive composition.
  • the content of the conductive filler (A) is set to the total amount of nonvolatile components in the conductive adhesive composition. 95 mass% or more. Moreover, it is preferable that it is 97 mass% or more with respect to the non volatile component whole quantity in a conductive adhesive composition, and, as for content of an electroconductive filler (A), it is more preferable that it is 98 mass% or more.
  • the content of the conductive filler (A) is changed to a non-volatile content in the conductive adhesive composition in order to facilitate pasting of the conductive adhesive composition. It shall be 99.95 mass% or less with respect to the whole quantity of a component. Further, the content of the conductive filler (A) is more preferably 99.90% by mass or less, and further preferably 99% by mass or less, with respect to the total amount of nonvolatile components in the conductive adhesive composition. .
  • the non-volatile component in a conductive adhesive composition is a component which does not volatilize after hardening among the components contained in a conductive adhesive composition, and a conductive filler (A) and a binder composition (B). This is the case.
  • the conductive filler (A) contains silver powder (a1).
  • content of silver powder (a1) is not specifically limited, From a heat conductive viewpoint, it is preferable that content of silver powder (a1) with respect to the whole quantity of an electroconductive filler (A) is 40 mass% or more, and 45 The content is more preferably at least 50% by mass, further preferably at least 50% by mass, and most preferably at least 55% by mass.
  • the silver powder (a1) may be composed of one kind of silver powder, but may be composed of two or more kinds of silver powders having different shapes and different average particle diameters, and the average particle diameter is particularly in the order of nanometers. It is preferable that silver powder (a1S) and silver powder (a1L) whose average particle diameter is a micrometer order are included.
  • the average particle size of silver powder (a1L) (hereinafter, also simply referred to as “silver powder (a1L)”) whose average particle size is on the order of micrometers is to suppress shrinkage after curing of the conductive adhesive composition, and to be adhered
  • it is preferably 0.5 ⁇ m or more, more preferably 1 ⁇ m or more, and further preferably 2 ⁇ m or more.
  • the average particle diameter of silver powder (a1L) is 20 micrometers or less, and is 10 micrometers or less. Is more preferably 5 ⁇ m or less.
  • the shape of the silver powder (a1L) is not particularly limited, and examples thereof include powder, spherical, flake, foil, plate, and dendritic shapes. Generally, it is flaky or spherical.
  • Silver powder (a1S) having an average particle size on the order of nanometers (hereinafter, also simply referred to as “silver powder (a1S)”) is usually coated with a coating agent described later in order to suppress aggregation.
  • the average particle size is preferably 10 nm or more, more preferably 30 nm or more, and even more preferably 50 nm or more.
  • the average particle size of the silver powder (a1S) is preferably 200 nm or less, more preferably 150 nm or less, and even more preferably 100 nm or less.
  • the shape of the silver powder (a1S) is not particularly limited, and those similar to those exemplified in the description of the shape of the silver powder (a1L) can be used, but are generally flaky or spherical.
  • the contents of silver powder (a1L) and silver powder (a1S) contained in the conductive filler (A) in the present invention are not particularly limited, but by increasing the content of silver powder (a1S), the conductive adhesive In the cured product obtained by curing the composition, a dense structure can be obtained, and thus particularly high thermal conductivity and electrical conductivity can be obtained.
  • the content of silver powder (a1S) is preferably small. Therefore, it is preferable that content of silver powder (a1L) and silver powder (a1S) is the following ranges, respectively.
  • the content of the silver powder (a1L) with respect to the total amount of the conductive filler (A) is preferably 20% by mass or more, more preferably 30% by mass or more, and 40% by mass or more. More preferably, it is most preferably 45% by mass or more.
  • content of silver powder (a1L) with respect to the whole quantity of an electroconductive filler (A) is 95 mass% or less, it is more preferable that it is 90 mass% or less, and it is 85 mass% or less. More preferably, it is most preferable that it is 80 mass% or less.
  • content of the silver powder (a1S) with respect to the whole quantity of an electroconductive filler (A) is 5 mass% or more, it is more preferable that it is 10 mass% or more, and it is 15 mass% or more. Further preferred. Moreover, it is preferable that content of silver powder (a1S) with respect to the whole quantity of an electroconductive filler (A) is 50 mass% or less, it is more preferable that it is 40 mass% or less, and it is 30 mass% or less. Further preferred.
  • the silver-coated copper powder (a2) in the present invention is not particularly limited as long as it has a silver coating on the surface of the copper powder, and for example, a commercially available one can be used.
  • Silver-coated copper powder is a component that improves the migration resistance of the conductive adhesive composition.
  • the silver-coated copper powder with respect to the total amount of the conductive filler (A) The content of (a2) is 3% by mass or more.
  • the content of the silver-coated copper powder (a2) with respect to the total amount of the conductive filler (A) is preferably 5% by mass or more, and preferably 10% by mass or more. More preferably, it is more preferably 20% by mass or more, and most preferably 30% by mass or more.
  • the content of the silver-coated copper powder (a2) with respect to the total amount of the conductive filler (A) is set to 65% by mass or less.
  • the content of the silver-coated copper powder (a2) with respect to the total amount of the conductive filler (A) is preferably 60% by mass or less, and 55% by mass or less. More preferably, it is more preferably 50% by mass or less, and most preferably 45% by mass or less.
  • the average particle diameter of the silver-coated copper powder (a2) is not particularly limited, but by increasing the particle diameter, the number of interfaces between silver and copper per conductive path can be reduced, and the thermal conductivity is further improved. Therefore, it is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 5 ⁇ m or more. From the viewpoint of applicability such as dispensing, the average particle diameter of the silver-coated copper powder (a2) is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 10 ⁇ m or less.
  • the shape of the silver-coated copper powder (a2) is not particularly limited, and the same shape as exemplified in the description of the shape of the silver powder (a1L) can be used, but generally it is flaky or spherical. is there.
  • the silver content in the silver-coated copper powder (a2) is not particularly limited, but is usually about 5% by mass to 30% by mass, preferably 10% by mass to 30% by mass.
  • cover with silver may be partial and the whole copper powder may be coat
  • the method of coating with silver is not particularly limited, but the coating can be formed by plating, for example.
  • the conductive adhesive composition of the present invention may contain components other than the silver powder (a1) and the silver-coated copper powder (a2) (hereinafter also referred to as “other fillers”) within the scope of the effects of the present invention. Good. Other fillers are not particularly limited as long as they have conductivity, and known fillers can be used as the conductive filler.
  • the surface may be coat
  • the coating agent containing carboxylic acid is mentioned, for example.
  • the coating agent containing carboxylic acid By using the coating agent containing carboxylic acid, the heat dissipation of the conductive adhesive composition can be further improved.
  • the coating agent stearic acid, oleic acid or the like is generally used.
  • both are stirred and kneaded in a mixer, the solvent is volatilized by impregnating the conductive filler (A) with a carboxylic acid solution.
  • the publicly known methods such as the method of making them.
  • the conductive filler (A) is dispersed in the binder composition (B).
  • the binder composition (B) can contain a binder resin, a curing agent, a curing accelerator, a diluent, and the like.
  • the content of the binder composition (B) is not particularly limited, but in order to obtain good thermal conductivity and conductivity, 5% by mass with respect to the total amount of nonvolatile components in the conductive adhesive composition. Preferably, it is preferably 3% by mass or less, more preferably 2% by mass or less. Further, in order to obtain good coatability and adhesive strength, the content of the binder composition (B) is preferably 0.05% by mass or more based on the total amount of nonvolatile components in the conductive adhesive composition. The content is more preferably 0.1% by mass or more, and further preferably 1% by mass or more.
  • binder resin Although it does not specifically limit as binder resin, for example, an epoxy resin, a phenol resin, a urethane resin, an acrylic resin, a silicone resin, a polyimide resin, etc. can be used, Even if these are used independently, it may be used in combination of multiple types. Good. From the viewpoint of workability, the binder resin in the present invention is preferably a thermosetting resin, and particularly preferably an epoxy resin.
  • the content of the binder resin is preferably 0.04% by mass or more based on the total amount of nonvolatile components in the conductive adhesive composition because stable adhesive strength can be obtained.
  • the content of the binder resin is more preferably 0.08% by mass or more, further preferably 0.2% by mass or more, and most preferably 0.2% by mass or more with respect to the total amount of nonvolatile components in the conductive adhesive composition. It is 5 mass% or more.
  • the content of the binder resin is preferably 4.8% by mass or less, and preferably 2.8% by mass or less, based on the total amount of nonvolatile components in the conductive adhesive composition. More preferably, it is more preferably 2.5% by mass or less, and most preferably 2.0% by mass or less.
  • the curing agent is a component for curing the binder resin, and for example, amine-based curing agents such as tertiary amines, alkylureas, and imidazoles, and phenol-based curing agents can be used. Only one type of curing agent may be used, or two or more types may be used in combination.
  • the content of the curing agent is not particularly limited, but is preferably 1% by mass or less based on the total amount of nonvolatile components in the conductive adhesive composition. In such a case, an uncured curing agent remains. It becomes difficult, and adhesiveness with a to-be-adhered material becomes favorable.
  • the curing accelerator is a component for accelerating the effect of the binder resin.
  • Only one type of curing accelerator may be used, or two or more types may be used in combination.
  • the content of the curing accelerator is not particularly limited and may be determined as appropriate, but is usually 0.2% by mass or less based on the total amount of nonvolatile components in the conductive adhesive composition.
  • the diluent is a component for diluting the binder resin, and is not particularly limited, but a reactive diluent is preferably used.
  • a reactive diluent is preferably used.
  • 1,4 butanediol diglycidyl ether, neopentyl diglycidyl ether, or the like is used. it can. Only one type of diluent may be used, or two or more types may be used in combination.
  • the content of the diluent is not particularly limited, but is preferably 0.1 to 1.5% by mass, for example, 0.3 to 1% with respect to the total amount of nonvolatile components in the conductive adhesive composition. More preferably, it is 2% by mass, and in such a case, the viscosity of the conductive composition falls within a good range.
  • the binder composition (B) can appropriately contain, for example, a thermoplastic resin as long as the effects of the present invention are not impaired.
  • a thermoplastic resin include phenoxy resin, amide resin, polyester, polyvinyl butyral, and ethyl cellulose.
  • the conductive adhesive composition of the present invention may appropriately contain other components as long as the effects of the present invention are not impaired.
  • other components include a solvent, an antioxidant, an ultraviolet absorber, a tackifier, a viscosity modifier, a dispersant, a coupling agent, a toughness imparting agent, and an elastomer.
  • the paste can be easily formed by adding a solvent to the conductive adhesive composition of the present invention.
  • the solvent is not particularly limited, but a solvent having a boiling point of 350 ° C. or less is preferable and a solvent having a boiling point of 300 ° C. or less is more preferable in order for the solvent to easily volatilize when the conductive adhesive composition is cured.
  • Specific examples include acetate, ether, hydrocarbon, and the like. More specifically, butyl triglycol, dibutyl carbitol, butyl carbitol acetate, and the like are preferably used.
  • the content of the solvent is not particularly limited, but when the solvent is contained, it is preferably contained in an amount of 0.5 to 20% by mass, preferably 1.0 to 10% by mass with respect to the total amount of the conductive adhesive composition. Is more preferable.
  • the conductive adhesive composition of the present invention can be obtained by mixing and stirring the above-described conductive filler (A) and binder composition (B) and other components in any order when they are contained.
  • the mixing method is not particularly limited. For example, methods such as a two-roll, three-roll, sand mill, roll mill, ball mill, colloid mill, jet mill, bead mill, kneader, homogenizer, and propellerless mixer can be employed. .
  • the conductive adhesive composition is usually cured by heating to perform bonding.
  • the heating temperature at that time is not particularly limited, but the conductive fillers (A) and the adhering material and the conductive filler (A) are in close contact with each other to form a close contact state.
  • the temperature is preferably 100 ° C. or higher, more preferably 130 ° C. or higher, and further preferably 150 ° C. or higher.
  • the bonding between the conductive fillers (A) proceeds excessively, and the necking between the conductive fillers (A) is generated, so that the conductive fillers (A) are firmly bonded to each other to avoid being too hard. Therefore, the heating temperature at the time of curing is preferably 250 ° C. or less, more preferably 230 ° C. or less, and further preferably 210 ° C. or less.
  • the bonding strength obtained using the conductive adhesive composition of the present invention can be evaluated by various methods. For example, the bonding strength measured by the method described in the column of Examples described later is used. can do.
  • the preferred bonding strength varies depending on the application and the like, but for example, if it is a 2 mm ⁇ 2 mm chip described in the examples, it is preferably 150 N or more, more preferably 200 N or more.
  • the per unit area it is preferably 37N / mm 2 or more, more preferably 50 N / mm 2 or more.
  • the conductivity of a cured conductive adhesive obtained by curing the conductive adhesive composition of the present invention can be evaluated by various methods. It can evaluate using the volume resistance value measured by the method as described in the column of an Example. Although the preferred volume resistance value varies depending on the application, etc., the volume resistance value of the cured product obtained by curing the conductive adhesive composition of the present invention in order to ensure the conductivity of the material to be bonded is, for example, less than 30 ⁇ cm. Preferably, it is less than 10 ⁇ cm.
  • the thermal conductivity of the cured product obtained by curing the conductive adhesive composition of the present invention can also be evaluated by various methods. For example, the thermal conductivity measured by the method described in the Examples section below. It can be evaluated using the rate. Although the preferred thermal conductivity varies depending on the application and the like, the thermal conductivity of the cured product obtained by curing the conductive adhesive composition of the present invention is preferably 75 W / m ⁇ K or more, for example, 100 W / m. -More preferably, it is K or more.
  • the migration resistance of the cured product obtained by curing the conductive adhesive composition of the present invention can also be evaluated by various methods. For example, it can be evaluated by the method described in the Examples section below. it can.
  • the preferred migration resistance varies depending on the application and the like, but for example, the current value measured by the method described in the Examples section below is preferably less than 10 mA, more preferably less than 1 mA.
  • the use of the conductive adhesive composition of the present invention is not particularly limited, it can be used, for example, for bonding components in electronic equipment.
  • Tables 1 and 2 show non-volatile components contained in the conductive adhesive compositions of Examples and Comparative Examples. After mixing 100 parts by mass of these non-volatile components and 6.1 parts by mass of a volatile component (butyl triglycol) in the order of binder composition (B), solvent and conductive filler (A) with a propeller-less mixer. The mixture was kneaded with three rolls to prepare conductive adhesive compositions having the compositions shown in Tables 1 and 2. The numerical values in each column in the table represent the following.
  • each component name content (% by mass) of each component with respect to the total amount of non-volatile components in the conductive adhesive composition
  • the obtained conductive adhesive composition was applied to a 12 mm ⁇ 12 mm PPF-plated copper lead frame, and a 2 mm ⁇ 2 mm silver sputtering silicon chip was placed on the coated surface.
  • a metal joined body (hereinafter also simply referred to as “metal joined body”) in which a PPF-plated copper lead frame and a silver-sputtered silicon chip were joined by a cured conductive adhesive was prepared. The following evaluation was performed using the obtained metal joined body.
  • ⁇ Volume resistance value> A conductive adhesive composition obtained in a rectangular shape having a width of 5 mm and a length of 50 mm is applied on a glass substrate, heated at 230 ° C. for 60 minutes, and cured conductive adhesive (hereinafter simply referred to as “cured product”). Say). The obtained cured product was cooled to room temperature, and the resistance value was measured at both ends in the length direction. Subsequently, the thickness of the cured product was measured, and the volume resistance value was obtained from the resistance value and the thickness. Moreover, the volume resistance value was evaluated according to the following criteria according to the value of the obtained volume resistance value. The results are shown in Tables 1 and 2. (Evaluation criteria) ⁇ (good): less than 10 ⁇ cm ⁇ (slightly good): 10 ⁇ cm or more and less than 30 ⁇ cm ⁇ (defect): 30 ⁇ ⁇ cm or more
  • thermal conductivity was evaluated according to the following criteria according to the value of the obtained thermal conductivity ⁇ .
  • the results are shown in Tables 1 and 2.
  • ⁇ Migration resistance> As shown below, migration resistance was evaluated by a water drop test. That is, first, the obtained conductive adhesive composition was printed on a glass substrate with a metal mask, heated at 200 ° C. for 90 minutes to be cured, and the distance between electrodes was 2 mm, the width was 10 mm, the length was 10 mm, and the thickness was 50 ⁇ m. The counter electrode was prepared. Next, a voltage of 5 V was applied between the electrodes, distilled water was dropped between 20 ⁇ L electrodes in a cylindrical cap placed directly between the electrodes, and the current value after 300 seconds was measured. Also, migration resistance was evaluated according to the following criteria according to the obtained current value. The results are shown in Tables 1 and 2. (Evaluation criteria) ⁇ (Good): Less than 1 mA ⁇ (Slightly good): 1 mA or more and less than 10 mA ⁇ (Bad): 10 mA or more
  • Examples 1 to 10 which are the conductive adhesive compositions of the present invention, were excellent in all of bonding strength, volume resistance value, thermal conductivity, and migration resistance.
  • Comparative Example 1 containing no silver-coated copper powder (a2), the migration resistance was poor.
  • Comparative Example 2 in which copper powder was contained instead of the silver-coated copper powder (a2) of the conductive adhesive composition of Example 3, migration resistance was poor.
  • Comparative Example 3 in which solder powder was contained instead of the silver-coated copper powder (a2) of the conductive adhesive composition of Example 3, the bonding strength, volume resistance value, and thermal conductivity were poor.
  • thermal conductivity was unsatisfactory.
  • the comparative example 5 whose content with respect to the whole quantity of the non-volatile component in the conductive adhesive composition of a conductive filler (A) is 94 mass%, thermal conductivity was unsatisfactory.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)

Abstract

本発明は、熱伝導性及び耐マイグレーション性に優れる導電性接着剤組成物を提供することを目的とする。本発明は、銀粉(a1)と銀被覆銅粉(a2)とを含む導電性フィラー(A)と、バインダ組成物(B)とを含有する導電性接着剤組成物であって、銀被覆銅粉(a2)を導電性フィラー(A)の全体量に対して3~65質量%含有し、導電性フィラー(A)を導電性接着剤組成物中の不揮発成分全量に対して95~99.95質量%含有する導電性接着剤組成物に関する。

Description

導電性接着剤組成物
 本発明は、導電性接着剤組成物に関する。
 電子部品において、半導体素子をリードフレーム等の支持部材に接着・接合するためのダイボンド材として、導電性接着剤組成物が用いられている。導電性接着剤組成物には、高い電気伝導性を有することから銀粉や銅粉等の金属粉が一般的に用いられており、これらを含む接着剤や焼結により接着するペースト状の接着剤に関する報告が多くなされている。
 ここで、近年小型化・高機能化された電子部品、例えば、パワーデバイス又は発光ダイオード(LED)に対する需要が急速に拡大しており、電子部品の小型化が進行するに伴い、半導体素子の発熱量は増大傾向にある。ところが、半導体素子は、高温環境に長時間さらされると、本来の機能を発揮することができなくなり、また、寿命が低下することになる。そのため、ダイボンド材には半導体素子から発生した熱を支持部材に効率よく逃がすために、高い熱伝導率が求められており、その要求水準は上昇を続けている。
 上述の要請から熱伝導性を向上させるために、導電性フィラーとして特に熱伝導性に優れる銀を使用し、その含有量を増加させた導電性接着剤組成物が報告されている。
 しかしながら、銀は耐マイグレーション性が低いこと、及び導電性フィラーの含有量を増加させたことに起因し、このような導電性接着剤組成物は特にマイグレーションが生じやすいという欠点があった。
 上記に鑑みて、耐マイグレーションに優れる銀被覆銅を導電性フィラーとして用いた導電性接着剤組成物が報告されている。
 例えば、特許文献1において、略球状銀被覆銅粉及び銀微粉を含み、略球状銀被覆銅粉と銀微粉の割合(略球状銀被覆銅粉:銀微粉)が体積比で95:5~55:45である導電粒子を90~99重量%含む熱伝導組成物で部品間を接続してなる電子部品が開示されている。
日本国特許第5609492号公報
 しかしながら、銀被覆銅は銀と比較すると熱伝導性に劣り、したがって銀被覆銅を導電性フィラーとして用いた導電性接着剤組成物では十分な熱伝導性が得られない恐れがある。
 特許文献1の実施例においては熱伝導率が35~58w/mKの導電組成物が開示されているが、近年の熱伝導性に対する要求水準の向上から、より高い熱伝導率を有する導電性接着剤組成物が望まれている。
 上記のように熱伝導率と耐マイグレーション性の両立は困難であり、従って、高い熱伝導率と、優れた耐マイグレーション性とを兼ね備える導電性接着剤組成物が望まれていた。
 本発明は、上記課題に鑑みて発明されたものであり、その目的は、熱伝導性に優れ、さらに耐マイグレーション性にも優れる導電性接着剤組成物を提供することである。
 本発明者らは、鋭意研究した結果、銀粉(a1)と銀被覆銅粉(a2)とを含む導電性フィラー(A)と、バインダ組成物(B)とを含有する導電性接着剤組成物において、銀被覆銅粉(a2)及びバインダ組成物(B)の含有量を適切な範囲とすることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明の導電性接着剤組成物は銀粉(a1)と銀被覆銅粉(a2)とを含む導電性フィラー(A)と、バインダ組成物(B)とを含有する導電性接着剤組成物であって、銀被覆銅粉(a2)を導電性フィラー(A)の全体量に対して3~65質量%含有し、導電性フィラー(A)を導電性接着剤組成物中の不揮発成分全量に対して95~99.95質量%含有する。
 本発明の一態様に係る導電性接着剤組成物は、銀粉(a1)が、平均粒径0.5~20μmの銀粉と平均粒径10~200nmの銀粉とを含有する。
 本発明の一態様に係る導電性接着剤組成物は、導電性フィラー(A)が、平均粒径10~200nmの銀粉を5~50質量%含有する。
 また、本発明の導電性接着剤硬化物は、前記いずれか1の導電性接着剤組成物を硬化したものである。
 また、本発明の電子機器は、前記いずれか1の導電性接着剤組成物を部品の接着に使用したものである。
 本発明の導電性接着剤組成物は、熱伝導性及び導電性に優れ、さらに耐マイグレーション性にも優れる。
 以下に、本発明を実施するための形態を説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
 また、本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値、及び上限値として含む意味で使用される。
 本明細書において平均粒径がナノメートルオーダーである銀粉(a1S)の「平均粒径」とは動的光散乱法を用いて測定された粒子径分布の50%平均粒子径(D50)を意味し、例えば、日機装株式会社製のナノトラック粒子分布測定装置を用いて測定することができる。
 また、平均粒径がナノメートルオーダーである銀粉(a1S)以外の成分の「平均粒径」とはレーザー回折・散乱式粒度分析計を用いて測定された粒子径分布の50%平均粒子径(D50)を意味し、例えば、日機装株式会社製のレーザー回折・散乱式粒度分析計MT-3000を用いて測定することができる。
 [導電性接着剤組成物]
 本発明の導電性接着剤組成物は、導電性フィラー(A)とバインダ組成物(B)とを含有する。以下に、本発明の導電性接着剤組成物を構成する成分について説明する。
 <導電性フィラー(A)>
 導電性フィラー(A)は、導電性接着剤組成物の導電性に寄与する成分である。本発明の導電性接着剤組成物においては、良好な熱伝導性及び導電性を得るために、導電性フィラー(A)の含有量を、導電性接着剤組成物中の不揮発成分全量に対して95質量%以上とする。また、導電性フィラー(A)の含有量は、導電性接着剤組成物中の不揮発成分全量に対して97質量%以上であることが好ましく、98質量%以上であることがより好ましい。
 さらに、本発明の導電性接着剤組成物においては、導電性接着剤組成物のペースト化を容易にするために、導電性フィラー(A)の含有量を、導電性接着剤組成物中の不揮発成分全量に対して99.95質量%以下とする。また、導電性フィラー(A)の含有量は、導電性接着剤組成物中の不揮発成分全量に対して99.90質量%以下であることがより好ましく、99質量%以下であることがさらに好ましい。
 なお、導電性接着剤組成物中の不揮発成分とは導電性接着剤組成物に含まれる成分のうち、硬化後においても揮発しない成分であり、導電性フィラー(A)、バインダ組成物(B)などがこれに該当する。
 (銀粉(a1))
 本発明において、導電性フィラー(A)は銀粉(a1)を含む。銀粉(a1)の含有量は特に限定されないが、熱伝導性の観点から、導電性フィラー(A)の全体量に対する銀粉(a1)の含有量は、40質量%以上であることが好ましく、45質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、55質量%以上であることが最も好ましい。また、導電性フィラー(A)の全体量に対する銀粉(a1)の含有量は、耐マイグレーション性の観点からは95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが最も好ましい。
 本発明において、銀粉(a1)は1種の銀粉から構成されてもよいが、2種以上の形状や平均粒径の異なる銀粉から構成されてもよく、特に平均粒径がナノメートルオーダーである銀粉(a1S)と、平均粒径がマイクロメートルオーダーである銀粉(a1L)とを含むことが好ましい。
 平均粒径がマイクロメートルオーダーである銀粉(a1L)(以下、単に「銀粉(a1L)ともいう」)の平均粒径は、導電性接着剤組成物の硬化後の収縮を抑制し、被接着材料との密着性を向上させるために、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることがさらに好ましい。
 また、銀粉(a1L)の焼結を進みにくくし、被接着材料との密着性を向上させるためには、銀粉(a1L)の平均粒径は20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。
 銀粉(a1L)の形状は特に限定されず、例えば、粉状、球状、フレーク状、箔状、プレート状、樹枝状等が挙げられる。一般的にはフレーク状または球状である。
 平均粒径がナノメートルオーダーである銀粉(a1S)(以下、単に「銀粉(a1S)ともいう」)は通常、凝集を抑制するために後述のコーティング剤で被覆されているが、このコーティング剤の除去を容易とし、焼結を進みやすくするために、平均粒径が10nm以上であることが好ましく、30nm以上であることがより好ましく、50nm以上であることがさらに好ましい。
 一方、銀粉(a1S)の平均粒径が過大であると銀粉(a1S)の比表面積が小さくなり、焼結が進みにくくなる。したがって、銀粉(a1S)の平均粒径は200nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることがさらに好ましい。
 銀粉(a1S)の形状は特に限定されず、銀粉(a1L)の形状の説明において例示したものと同様の形状のものを使用することができるが、一般的にはフレーク状または球状である。
 本発明における導電性フィラー(A)に含まれる銀粉(a1L)、及び銀粉(a1S)の含有量はいずれも特に限定されないが、銀粉(a1S)の含有量を増加させることにより、導電性接着剤組成物を硬化して得られる硬化物において緻密な構造を得ることができ、したがって特に高い熱伝導性、及び導電性を得ることができる。一方、導電性接着剤組成物の塗工性を向上させる観点からは銀粉(a1S)の含有量は少ないことが好ましい。したがって、銀粉(a1L)、及び銀粉(a1S)の含有量は、それぞれ下記の範囲であることが好ましい。
 すなわち、導電性フィラー(A)の全体量に対する銀粉(a1L)の含有量は、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、45質量%以上であることが最も好ましい。また、導電性フィラー(A)の全体量に対する銀粉(a1L)の含有量は、95質量%以下であることが好ましく、90質量%以下であることがより好ましく、85質量%以下であることがさらに好ましく、80質量%以下であることが最も好ましい。
 また、導電性フィラー(A)の全体量に対する銀粉(a1S)の含有量は、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましい。また、導電性フィラー(A)の全体量に対する銀粉(a1S)の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。
 (銀被覆銅粉(a2))
 本発明における銀被覆銅粉(a2)は、銅粉の表面に銀の被覆を備えるものであれば特に限定はされず、例えば市販されているものを用いることができる。
 銀被覆銅粉は導電性接着剤組成物の耐マイグレーション性を向上させる成分であり、本発明においては十分な耐マイグレーション性を得るために、導電性フィラー(A)の全体量に対する銀被覆銅粉(a2)の含有量を3質量%以上とする。また、より良好な耐マイグレーション性を得るために、導電性フィラー(A)の全体量に対する銀被覆銅粉(a2)の含有量は5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることがさらに好ましく、30質量%以上であることが最も好ましい。
 一方、銀被覆銅粉(a2)は銀粉(a1)と比較すると熱伝導性に劣るため、銀被覆銅粉の含有量を増加させると、導電性接着剤組成物の熱伝導性は低下する。したがって、本発明においては十分な熱伝導性を得るために、導電性フィラー(A)の全体量に対する銀被覆銅粉(a2)の含有量を65質量%以下とする。また、より良好な熱伝導性を得るために、導電性フィラー(A)の全体量に対する銀被覆銅粉(a2)の含有量は60質量%以下であることが好ましく、55質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、45質量%以下であることが最も好ましい。
 銀被覆銅粉(a2)の平均粒径は特に限定されないが、粒径を大きくすることにより導電パス当たりの銀と銅との界面数を低減でき、熱伝導率をより一層良好なものとすることができるため、1μm以上であることが好ましく、2μm以上であることがより好ましく、5μm以上であることがさらに好ましい。
 また、ディスペンスなどの塗布性の観点からは、銀被覆銅粉(a2)の平均粒径は20μm以下であることが好ましく、15μm以下であることがより好ましく、10μm以下であることがさらに好ましい。
 銀被覆銅粉(a2)の形状は特に限定されず、銀粉(a1L)の形状の説明において例示したものと同様の形状のものを使用することができるが、一般的にはフレーク状または球状である。
 銀被覆銅粉(a2)における銀の含有量は特に限定されないが、通常5質量%~30質量%程度であり、好ましくは10質量%~30質量%である。
 また、銀による被覆は、部分的であってもよく、銅粉の全体が銀により被覆されていてもよい。銀による被覆の方法も特に限定されないが、例えばめっきなどにより被覆を形成することができる。
 (その他の成分)
 本発明の導電性接着剤組成は、本発明の効果を奏する範囲において上記銀粉(a1)と銀被覆銅粉(a2)以外の成分(以下、「その他のフィラー」ともいう)を含有してもよい。その他のフィラーとしては導電性を有するものであれば特に限定はされず、導電性フィラーとして公知のものを使用することができる。
 本発明の導電性フィラー(A)を構成する上記の成分は、その表面がコーティング剤で被覆されていてもよい。導電性フィラー(A)を構成する上記の成分の表面がコーティング剤で被覆されることにより、バインダ組成物(B)との分散性が向上し、ペースト化しやすくなる。コーティング剤としては、例えば、カルボン酸を含むコーティング剤が挙げられる。カルボン酸を含むコーティング剤を用いることによって、導電性接着剤組成物の放熱性をより一層向上させることができる。
 コーティング剤としては、一般的にはステアリン酸、オレイン酸などが用いられる。
 導電性フィラー(A)の表面をコーティング剤で被覆する方法としては、例えば、両者をミキサー中で撹拌、混練する方法、該導電性フィラー(A)にカルボン酸の溶液を含浸して溶剤を揮発させる方法等の公知の方法が挙げられる。
 <バインダ組成物(B)>
 本発明の導電性接着剤組成物において、導電性フィラー(A)は、バインダ組成物(B)中に分散される。バインダ組成物(B)は、バインダ樹脂、硬化剤、硬化促進剤、希釈剤、などを含有し得る。
 本発明においてバインダ組成物(B)の含有量は特に限定はされないが、良好な熱伝導性及び導電性を得るためには、導電性接着剤組成物中の不揮発成分全量に対して5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましい。
 また、良好な塗工性及び接着強度を得るために、バインダ組成物(B)の含有量は導電性接着剤組成物中の不揮発成分全量に対して0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、1質量%以上であることがさらに好ましい。
 バインダ樹脂としては特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、シリコーン樹脂又はポリイミド樹脂等を用いることができ、これらを単独で用いても、複数種類組み合わせて用いてもよい。作業性の観点から本発明におけるバインダ樹脂は熱硬化性樹脂であることが好ましく、エポキシ樹脂であることが特に好ましい。
 バインダ樹脂の含有量は導電性接着剤組成物中の不揮発成分全量に対して0.04質量%以上であると安定した接着強度を得ることができるため好ましい。バインダ樹脂の含有量は、より好ましくは導電性接着剤組成物中の不揮発成分全量に対して0.08質量%以上であり、さらに好ましくは0.2質量%以上であり、最も好ましくは0.5質量%以上である。一方、熱伝導率を確保するため、バインダ樹脂の含有量は導電性接着剤組成物中の不揮発成分全量に対して4.8質量%以下であることが好ましく、2.8質量%以下であることがより好ましく、2.5質量%以下であることがさらに好ましく、2.0質量%以下であることが最適である。
 硬化剤は、バインダ樹脂を硬化させるための成分であり、例えば、三級アミン、アルキル尿素、イミダゾール等のアミン系硬化剤や、フェノール系硬化剤等を用いることができる。硬化剤は1種類だけ使用しても2種類以上を併用してもよい。硬化剤の含有量は特に限定されるものではないが、導電性接着剤組成物中の不揮発成分全量に対して1質量%以下であることが好ましく、このような場合未硬化の硬化剤が残りにくくなり、被接着材料との密着性が良好となる。
 硬化促進剤は、バインダ樹脂の効果を促進するための成分であり、例えば、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4―メチル-5-ヒドロキシメチルイミダゾール、2―メチル-4-メチルイミダゾール、1-シアノ-2-エチル-4-メチルイミダゾール等のイミダゾール類、第3級アミン類、トリフェニルフォスフィン類、尿素系化合物、フェノール類、アルコール類、カルボン酸類等を用いることができる。硬化促進剤は1種類だけ使用しても2種類以上を併用してもよい。硬化促進剤の含有量は特に限定されるものではなく、適宜決定すればよいが、通常は導電性接着剤組成物中の不揮発成分全量に対して0.2質量%以下である。
 希釈剤は、バインダ樹脂を希釈するための成分であり、特に限定はされないが反応性希釈剤を用いることが好ましく、例えば1,4ブタンジオールジグリシジルエーテル、ネオペンチルジグリシジルエーテル等を用いることができる。希釈剤は1種類だけ使用しても2種類以上を併用してもよい。希釈剤の含有量は特に限定されるものではないが、導電性接着剤組成物中の不揮発成分全量に対して例えば0.1~1.5質量%であることが好ましく、0.3~1.2質量%であることがより好ましく、このような場合導電性組成物の粘度が良好な範囲内となる。
 上記成分以外にも、バインダ組成物(B)には、例えば熱可塑性樹脂を、本発明の効果を損なわない範囲で適宜含有させることができる。熱可塑性樹脂としては、例えばフェノキシ樹脂、アミド樹脂、ポリエステル、ポリビニルブチラール、エチルセルロース等が挙げられる。
 <その他の成分>
 本発明の導電性接着剤組成物には、導電性フィラー(A)、バインダ組成物(B)以外にも、本発明の効果を損なわない範囲で他の成分を適宜含有させてもよい。他の成分として、例えば溶剤、酸化防止剤、紫外線吸収剤、粘着付与剤、粘性調整剤、分散剤、カップリング剤、強靭性付与剤、エラストマー等が挙げられる。
 本発明の導電性接着剤組成物に溶剤を含有させることにより、ペースト化が容易となる。溶剤は特に限定されないが、導電性接着剤組成物の硬化の際に溶剤が揮発しやすくするためには沸点350℃以下のものが好ましく、沸点300℃以下のものがより好ましい。具体的にはアセテート、エーテル、炭化水素等が挙げられ、より具体的には、ブチルトリグリコール、ジブチルカルビトール、ブチルカルビトールアセテート等が好ましく用いられる。溶剤の含有量は特に限定されないが、溶剤を含有させる場合は導電性接着剤組成物の全体量に対し0.5~20質量%含有させることが好ましく、1.0~10質量%含有させることがより好ましい。
 本発明の導電性接着剤組成物は、上記の導電性フィラー(A)及びバインダ組成物(B)並びに含有させる場合はその他の成分を任意の順序で混合、撹拌することにより得ることができる。混合の方法は特に限定されず、例えば、二本ロール、三本ロール、サンドミル、ロールミル、ボールミル、コロイドミル、ジェットミル、ビーズミル、ニーダー、ホモジナイザー、及びプロペラレスミキサー等の方式を採用することができる。
 [接合方法]
 本発明の導電性接着剤組成物を用いて接着を行う際には、通常加熱により導電性接着剤組成物を硬化させて接着を行う。その際の加熱の温度は特に限定はされないが、導電性フィラー(A)同士、及び、被接着材料と導電性フィラー(A)との間に、互いに点接触した近接状態を形成させ、接着部としての形状を安定させるために、100℃以上であることが好ましく、130℃以上であることがより好ましく、150℃以上であることがさらに好ましい。
 また、導電性フィラー(A)同士の結合が過度に進行し、導電性フィラー(A)間のネッキングが生じて導電性フィラー(A)同士が強固に結合し、硬すぎる状態となることを避けるために、硬化の際の加熱温度は、250℃以下であることが好ましく、230℃以下であることがより好ましく、210℃以下であることがさらに好ましい。
 本発明の導電性接着剤組成物を用いて得られる接合の強度は、種々の方法により評価することができるが、例えば後述の実施例の欄に記載の方法で測定した接合強度を用いて評価することができる。好ましい接合強度は用途等により異なるが、例えば実施例に記載の2mm×2mmのチップであれば、150N以上であることが好ましく、200N以上であることがより好ましい。単位面積あたりでは、37N/mm以上であることが好ましく、50N/mm以上であることがより好ましい。
 本発明の導電性接着剤組成物を硬化して得られる導電性接着剤硬化物(以下、単に「硬化物」ともいう)の導電性も種々の方法により評価することができるが、例えば後述の実施例の欄に記載の方法で測定した体積抵抗値を用いて評価することができる。好ましい体積抵抗値は用途等により異なるが、被接着材料の導電性を確保するために、本発明の導電性接着剤組成物を硬化して得られる硬化物の体積抵抗値は、例えば30μΩcm未満であることが好ましく、10μΩcm未満であることがより好ましい。
 本発明の導電性接着剤組成物を硬化して得られる硬化物の熱伝導性も種々の方法により評価することができるが、例えば、後述の実施例の欄に記載の方法で測定した熱伝導率を用いて評価することができる。好ましい熱伝導率は用途等により異なるが、本発明の導電性接着剤組成物を硬化して得られる硬化物の熱伝導率は、例えば75W/m・K以上であることが好ましく、100W/m・K以上であることがより好ましい。
 本発明の導電性接着剤組成物を硬化して得られる硬化物の耐マイグレーション性も種々の方法により評価することができるが、例えば、後述の実施例の欄に記載の方法で評価することができる。好ましい耐マイグレーション性は用途等により異なるが、例えば後述の実施例の欄に記載の方法で測定される電流値が10mA未満であることが好ましく、1mA未満であることがより好ましい。
 本発明の導電性接着剤組成物の用途は特に限定されないが、例えば電子機器における部品の接着に用いることができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 A.導電性接着剤組成物の調製
 表1及び2に、実施例及び比較例の導電性接着剤組成物に含まれる不揮発成分を示す。これらの不揮発成分100質量部及び揮発成分である溶剤(ブチルトリグリコール)6.1質量部をバインダ組成物(B)、溶剤、導電性フィラー(A)の順でプロペラレスミキサーにて混合した後、三本ロールにて混練し、表1、2に示す組成の導電性接着剤組成物を調製した。表中の各欄の数値が表すものは下記のとおりである。
 各成分名の欄:導電性接着剤組成物中の不揮発成分の全量に対する各成分の含有量(質量%)
 「(A)合計」欄:導電性接着剤組成物中の不揮発成分の全量に対する導電性フィラー(A)の総含有量(質量%)
 「(B)合計」欄:導電性接着剤組成物中の不揮発成分の全量に対するバインダ組成物(B)の総含有量(質量%)
 「(a2)の割合(%)」欄:導電性フィラー(A)の総含有量に対する銀被覆銅粉(a2)の含有量(質量%)
 「(a1S)の割合(%)」欄:導電性フィラー(A)の総含有量に対する銀粉(a1S)の含有量(質量%)
 [導電性フィラー(A)]
・銀粉(a1L):フレーク状、平均粒子径d50:3μm
・銀粉(a1S): 球状、平均粒子径d50:50nm
・銀被覆銅粉(a2):フレーク状、平均粒子径d50:6μm、銀含有量20質量%
・銅粉:球状、平均粒子径d50:5.5μm
・はんだ粉:球状、平均粒子径d50:5μm
 [バインダ組成物(B)]
・バインダ樹脂1:「カネエース(登録商標) MX-136」(商品名)、株式会社カネカ製、室温で液状
・バインダ樹脂2:「EPALLOY(登録商標) 8330」(商品名)、Emerald Performance Materials社製、室温で液状
・バインダ樹脂3:「アデカレジン(登録商標) EP-3950L」(商品名)、ADEKA社製、室温で液状
・希釈剤:2官能反応性希釈剤(アデカグリシロール(登録商標) ED-523L、ADEKA社製)
・硬化剤:フェノール系硬化剤(MEH8000H、明和化成社製)
・硬化剤促進:2-フェニル-4,5-ジヒドロキシメチルイミダゾール(2PHZ、四国化成社製)
 B.物性評価
 得られた導電性接着剤組成物を12mm×12mmのPPFメッキした銅リードフレームに塗布し、塗布面に2mm×2mmの銀スパッタリングシリコンチップを戴置後、大気雰囲気下、230℃で60分加熱し、PPFメッキした銅リードフレームと銀スパッタリングしたシリコンチップが導電性接着剤硬化物により接合された金属接合体(以下、単に「金属接合体」ともいう)を作製した。得られた金属接合体を用いて、下記の評価を行った。
 <接合強度>
 得られた金属接合体に対してノードソン・アドバンスト・テクノロジー社製のボンドテスター4000を用いて室温において破壊試験を行い、室温における接合強度を得た。また、得られた接合強度の値に応じて下記基準で接合強度を評価した。結果を表1、2に示す。
(評価基準)
 ○(良好):200N以上
 △(やや良好):150N以上200N未満
 ×(不良):150N未満
 <体積抵抗値>
 ガラス基板上に幅5mm、長さ50mmの長方形状に得られた導電性接着剤組成物を塗布し、230℃で60分加熱し、導電性接着剤硬化物(以下、単に「硬化物」ともいう)を得た。得られた硬化物を室温まで冷却し、長さ方向の両端で抵抗値を測定した。続いて、硬化物の厚みを測定し、抵抗値と厚みから体積抵抗値を求めた。また、得られた体積抵抗値の値に応じて下記基準で体積抵抗値を評価した。結果を表1、2に示す。
(評価基準)
 ○(良好):10μΩcm未満
 △(やや良好):10μΩcm以上30μΩcm未満
 ×(不良):30μΩ・cm以上
 <熱伝導率>
 得られた金属接合体の導電性接着剤硬化物に対して、レーザーフラッシュ法熱定数測定装置(「LFA467HT」(商品名)、NETZSCH社製)を用いてASTM-E1461に準拠して熱拡散aを測定し、ピクノメーター法により室温での比重dを算出し、また、示差走査熱量測定装置(「DSC7020」(商品名)、セイコー電子工業社製)を用いてJIS-K7123 2012に準拠して室温での比熱Cpを測定して、関係式λ=a×d×Cpにより熱伝導率λ(W/m・K)を算出した。また、得られた熱伝導率λの値に応じて下記基準で熱伝導率を評価した。結果を表1、2に示す。
(評価基準)
 ○(良好):100W/m・K以上
 △(やや良好):75W/m・K以上100W/m・K未満
 ×(不良):75W/m・K未満
 <耐マイグレーション性>
 以下に示すようにして、ウォータードロップ試験により耐マイグレーション性の評価を行った。
 すなわち、まず得られた導電性接着剤組成物を、ガラス基板上にメタルマスクにより印刷し、200℃で90分加熱して硬化させて、電極間距離2mm、幅10mm、長さ10mm、厚み50μmの対向電極を作製した。次いで、電極間に電圧5Vを印加して、電極間直上に設置した円筒キャップ内に蒸留水を20μL電極間に滴下し、300秒後の電流値を測定した。また、得られた電流値に応じて下記基準で耐マイグレーション製を評価した。結果を表1、2に示す。
(評価基準)
 ○(良好):1mA未満
 △(やや良好):1mA以上10mA未満
 ×(不良):10mA以上
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明の導電性接着剤組成物である実施例1~10は、接合強度、体積抵抗値、熱伝導率、耐マイグレーション性のすべてに優れた。
 一方、銀被覆銅粉(a2)を含有しない比較例1では、耐マイグレーション性が不良であった。
 また、実施例3の導電性接着剤組成物の銀被覆銅粉(a2)にかえて銅粉を含有させた比較例2では、耐マイグレーション性が不良であった。
 また、実施例3の導電性接着剤組成物の銀被覆銅粉(a2)にかえてはんだ粉を含有させた比較例3では、接合強度、体積抵抗値、及び熱伝導率が不良であった。
 また、銀被覆銅粉(a2)の導電性フィラー(A)の全体量に対する含有量が70質量%である比較例4では、熱伝導率が不良であった。
 また、導電性フィラー(A)の導電性接着剤組成物中の不揮発成分の全量に対する含有量が94質量%である比較例5では、熱伝導率が不良であった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。なお、本出願は、2018年3月30日付けで出願された日本特許出願(特願2018-068688)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (5)

  1.  銀粉(a1)と銀被覆銅粉(a2)とを含む導電性フィラー(A)と、バインダ組成物(B)とを含有する導電性接着剤組成物であって、
     前記銀被覆銅粉(a2)を前記導電性フィラー(A)の全体量に対して3~65質量%含有し、
     前記導電性フィラー(A)を前記導電性接着剤組成物中の不揮発成分全量に対して95~99.95質量%含有する導電性接着剤組成物。
  2.  前記銀粉(a1)が、平均粒径0.5~20μmの銀粉と平均粒径10~200nmの銀粉とを含有する請求項1に記載の導電性接着剤組成物。
  3.  前記平均粒径10~200nmの銀粉を前記導電性フィラー(A)の全体量に対して5~50質量%含有する請求項2に記載の導電性接着剤組成物。
  4.  請求項1~3のいずれか1項に記載の導電性接着剤組成物を硬化した、導電性接着剤硬化物。
  5.  請求項1~3のいずれか1項に記載の導電性接着剤組成物を部品の接着に使用した電子機器。
PCT/JP2019/013450 2018-03-30 2019-03-27 導電性接着剤組成物 WO2019189512A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112019001726.8T DE112019001726T5 (de) 2018-03-30 2019-03-27 Elektro-leitende Adhäsiv-Zusammensetzung
KR1020207026446A KR102425784B1 (ko) 2018-03-30 2019-03-27 도전성 접착제 조성물
US16/981,125 US20210017428A1 (en) 2018-03-30 2019-03-27 Electroconductive adhesive composition
SG11202008948UA SG11202008948UA (en) 2018-03-30 2019-03-27 Electroconductive adhesive composition
JP2020509283A JP7025529B2 (ja) 2018-03-30 2019-03-27 導電性接着剤組成物
CN201980018621.3A CN111918946B (zh) 2018-03-30 2019-03-27 导电性粘接剂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-068688 2018-03-30
JP2018068688 2018-03-30

Publications (1)

Publication Number Publication Date
WO2019189512A1 true WO2019189512A1 (ja) 2019-10-03

Family

ID=68059206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013450 WO2019189512A1 (ja) 2018-03-30 2019-03-27 導電性接着剤組成物

Country Status (8)

Country Link
US (1) US20210017428A1 (ja)
JP (1) JP7025529B2 (ja)
KR (1) KR102425784B1 (ja)
CN (1) CN111918946B (ja)
DE (1) DE112019001726T5 (ja)
SG (1) SG11202008948UA (ja)
TW (1) TWI701316B (ja)
WO (1) WO2019189512A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395979B2 (ja) 2019-11-15 2023-12-12 住友ベークライト株式会社 導電性ペーストおよび半導体装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI775201B (zh) * 2020-10-30 2022-08-21 臻鼎科技股份有限公司 導電樹脂組合物及應用該導電樹脂組合物的導電層及電路板
KR102402322B1 (ko) * 2021-07-12 2022-05-26 한국과학기술연구원 페이스트 제조 방법 및 이를 활용한 신축성 전극 제조 방법
CN113913133B (zh) * 2021-11-09 2022-11-29 无锡创达新材料股份有限公司 一种导电热固性树脂组合物的应用
CN115188519A (zh) * 2022-07-04 2022-10-14 上海玖银电子科技有限公司 一种银包铜银浆及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032471A (ja) * 2003-07-08 2005-02-03 Hitachi Chem Co Ltd 導電ペースト及びその製造方法
JP2011065999A (ja) * 2010-09-27 2011-03-31 Hitachi Chem Co Ltd 電子部品及びその製造方法
JP2013510220A (ja) * 2009-11-05 2013-03-21 ドクサンテコピア カンパニーリミテッド 導電性接着剤とその製造方法及びそれを含む電子装置
JP2016089038A (ja) * 2014-11-05 2016-05-23 京セラケミカル株式会社 電子部品用導電性接着剤及びコンデンサ
JP2016519174A (ja) * 2013-03-14 2016-06-30 ダウ コーニング コーポレーションDow Corning Corporation 硬化性シリコーン組成物、導電性シリコーン粘着剤、これらの製造及び使用方法、並びにこれらを含有する電気デバイス
JP2016131070A (ja) * 2015-01-13 2016-07-21 京都エレックス株式会社 熱硬化型導電性ペースト組成物
JP2016222748A (ja) * 2015-05-27 2016-12-28 東洋インキScホールディングス株式会社 導電性接着剤、ならびにそれを用いた導電性接着シートおよび電磁波シールドシート
JP2017076591A (ja) * 2015-10-16 2017-04-20 三井金属鉱業株式会社 金属ペースト

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5191204A (en) 1975-09-30 1976-08-10 1*44 butanjioorunoseizoho
JP4389148B2 (ja) * 2002-05-17 2009-12-24 日立化成工業株式会社 導電ペースト
CN101148571B (zh) * 2007-10-19 2010-10-06 东华大学 耐高温环氧导电胶粘剂及其制备方法
JP2011060752A (ja) * 2009-08-12 2011-03-24 Nippon Kineki Kk 導電性ペースト組成物
TWI588237B (zh) * 2012-09-28 2017-06-21 住友金屬鑛山股份有限公司 導電性接著劑
JP6870258B2 (ja) * 2016-09-23 2021-05-12 日亜化学工業株式会社 導電性接着剤および導電性材料

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032471A (ja) * 2003-07-08 2005-02-03 Hitachi Chem Co Ltd 導電ペースト及びその製造方法
JP2013510220A (ja) * 2009-11-05 2013-03-21 ドクサンテコピア カンパニーリミテッド 導電性接着剤とその製造方法及びそれを含む電子装置
JP2011065999A (ja) * 2010-09-27 2011-03-31 Hitachi Chem Co Ltd 電子部品及びその製造方法
JP2016519174A (ja) * 2013-03-14 2016-06-30 ダウ コーニング コーポレーションDow Corning Corporation 硬化性シリコーン組成物、導電性シリコーン粘着剤、これらの製造及び使用方法、並びにこれらを含有する電気デバイス
JP2016089038A (ja) * 2014-11-05 2016-05-23 京セラケミカル株式会社 電子部品用導電性接着剤及びコンデンサ
JP2016131070A (ja) * 2015-01-13 2016-07-21 京都エレックス株式会社 熱硬化型導電性ペースト組成物
JP2016222748A (ja) * 2015-05-27 2016-12-28 東洋インキScホールディングス株式会社 導電性接着剤、ならびにそれを用いた導電性接着シートおよび電磁波シールドシート
JP2017076591A (ja) * 2015-10-16 2017-04-20 三井金属鉱業株式会社 金属ペースト

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395979B2 (ja) 2019-11-15 2023-12-12 住友ベークライト株式会社 導電性ペーストおよび半導体装置

Also Published As

Publication number Publication date
KR102425784B1 (ko) 2022-07-28
KR20200118205A (ko) 2020-10-14
TWI701316B (zh) 2020-08-11
DE112019001726T5 (de) 2020-12-10
JP7025529B2 (ja) 2022-02-24
TW201942293A (zh) 2019-11-01
SG11202008948UA (en) 2020-10-29
CN111918946B (zh) 2021-12-14
JPWO2019189512A1 (ja) 2021-03-18
US20210017428A1 (en) 2021-01-21
CN111918946A (zh) 2020-11-10

Similar Documents

Publication Publication Date Title
WO2019189512A1 (ja) 導電性接着剤組成物
JP6091019B2 (ja) 熱伝導性導電性接着剤組成物
JP4247801B2 (ja) ペースト状金属粒子組成物および接合方法
JP2012253031A (ja) 導電ペースト
JP2007269959A (ja) 導電性接着剤、電子装置およびその製造方法
JP4998732B2 (ja) 異方性導電接着剤
JP2015185807A (ja) ダイアタッチペースト、および半導体装置
JP2002265920A (ja) 導電性接着剤およびそれを用いた回路
JP3879749B2 (ja) 導電粉及びその製造方法
JP2001297627A (ja) 導電材
JP5609492B2 (ja) 電子部品及びその製造方法
JP2010153506A (ja) 導電性バンプ形成用組成物及びそれを用いてなるプリント配線基板
JP2009205899A (ja) 導電性ペースト組成物およびプリント配線板
WO2019013230A1 (ja) 導電性接着剤組成物
JP2010153507A (ja) 導電性バンプ形成用組成物及びそれを用いてなるプリント配線基板
JP6301366B2 (ja) 電子部品接着材料及び電子部品の接着方法
CN111655815B (zh) 导电性粘接剂组合物、导电性粘接剂固化产物以及电子设备
JP5119766B2 (ja) 導電性接着剤およびこれを用いた電子部品
JP2004137345A (ja) 導電性接着剤およびその製造方法
JP5861600B2 (ja) 導電性接着剤組成物及びそれを用いた電子素子
JP2006111807A (ja) 電子部品及びその製造法
JP2005310538A (ja) 電子部品及びその製造法
JP2006140206A (ja) 銀とカーボンナノチューブを含む導電性樹脂ペースト組成物およびこれを用いた半導体装置
TW202140694A (zh) 導電墨水、其用途及使用其製造電子電路之方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776009

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207026446

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020509283

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19776009

Country of ref document: EP

Kind code of ref document: A1