WO2010077854A1 - High affinity human antibodies to pcsk9 - Google Patents
High affinity human antibodies to pcsk9 Download PDFInfo
- Publication number
- WO2010077854A1 WO2010077854A1 PCT/US2009/068013 US2009068013W WO2010077854A1 WO 2010077854 A1 WO2010077854 A1 WO 2010077854A1 US 2009068013 W US2009068013 W US 2009068013W WO 2010077854 A1 WO2010077854 A1 WO 2010077854A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- seq
- antigen
- pcsk9
- hpcsk9
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 0 *CCCCCCCCCC*C(C(C(C(*)CN)*#C)*=C)[N+]([O-])=O Chemical compound *CCCCCCCCCC*C(C(C(C(*)CN)*#C)*=C)[N+]([O-])=O 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/02—Bacterial antigens
- A61K39/08—Clostridium, e.g. Clostridium tetani
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/14—Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/12—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
- C07K16/1267—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria
- C07K16/1282—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-positive bacteria from Clostridium (G)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21061—Kexin (3.4.21.61), i.e. proprotein convertase subtilisin/kexin type 9
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56911—Bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/195—Assays involving biological materials from specific organisms or of a specific nature from bacteria
- G01N2333/33—Assays involving biological materials from specific organisms or of a specific nature from bacteria from Clostridium (G)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S424/00—Drug, bio-affecting and body treating compositions
- Y10S424/809—Drug, bio-affecting and body treating compositions involving immunoglobulin or antibody fragment, e.g. fab', fv, fc, heavy chain or light chain
Definitions
- the present invention is related to human antibodies and antigen-binding fragments of human antibodies that specifically bind human proprotein convertase subtilisin/kexin type 9 (PCSK9), and therapeutic methods of using those antibodies.
- PCSK9 human proprotein convertase subtilisin/kexin type 9
- PCSK9 Proprotein convertase subtilisin/kexin type 9
- the encoded protein is synthesized as a soluble zymogen that undergoes autocatalytic intramolecular processing in the endoplasmic reticulum.
- Evidence suggest that PCSK9 increases plasma LDL cholesterol by promoting degradation of the LDL receptor, which mediates LDL endocytosis in the liver, the major route of LDL clearance from circulation.
- PCSK9 protein shows that it has a signal sequence, followed by a prodomain, a catalytic domain that contains a conserved triad of residues (D186, H226 and S386), and a C-terminal domain. It is synthesized as a soluble 74-kDa precursor that undergoes autocatalytic cleavage in the ER, generating a 14-kDa prodomain and 60-kDa catalytic fragment. The autocatalytic activity has been shown to be required for secretion. After cleavage the prodomain remains tightly associated with the catalytic domain.
- Antibodies to PCSK9 are described in, for example, WO 2008/057457, WO 2008/057458, WO 2008/057459, WO 2008/063382, WO 2008/125623, and US 2008/0008697.
- the invention provides fully human monoclonal antibodies (mAbs) and antigen-binding fragments thereof that specifically bind and neutralize human PCSK9 (hPCSK9) activity.
- the invention comprises an antibody or antigen-binding fragment of an antibody that specifically binds hPCSK9 and is characterized by at least one of:
- the invention comprises an antibody or antigen-binding fragment of an antibody that specifically binds hPCSK9 and is characterized by at least one of:
- the antibody or fragment thereof is characterized as binding an epitope comprising amino acid residue 238 of hPCSK9 (SEQ ID NO:755). In a more specific embodiment, the antibody or fragment thereof binds an epitope comprising one or more of amino acid residue 238, 153, 159 and 343 of hPCSK9 (SEQ ID NO:755). In a more specific embodiment, the antibody or fragment thereof is characterized as binding an epitope which does not comprise an amino acid residue at position 192, 194, 197 and/or 237 of SEQ ID NO:755.
- the antibody or fragment thereof is characterized as binding an epitope comprising amino acid residue 366 of hPCSK9 (SEQ ID NO:755). In a more specific embodiment, the antibody fragment thereof binds an epitope comprising one or more of amino acid residue at position 147, 366 and 380 of SEQ ID NO:755. In a more specific embodiment, the antibody or fragment thereof is characterized as binding an epitope which does not comprise an amino acid residue at position 215 and/or 238 of SEQ ID NO:755. [0009] In one embodiment, the antibody or fragment thereof is characterized as exhibiting an enhanced binding affinity (K 0 ) for hPCSK9 at pH 5.5 relative to the K D at pH 7.4, as measured by plasmon surface resonance.
- K 0 enhanced binding affinity
- the antibody or fragment thereof exhibits at least a 20-fold, at least a 40-fold or at least a 50-fold enhanced affinity for PCSK9 at an acidic pH relative to a neutral pH, as measured by surface plasmon resonance.
- the antibody or fragment thereof is characterized as not exhibiting an enhanced binding affinity for PCSK9 at an acidic pH relative to a neutral pH, as measured by surface plasmon resonance.
- the binding at an acidic pH is less and the Ty 2 shorter than at neutral pH.
- the antibody or antigen-binding fragment binds human, human GOF mutation D374Y, cynomolgus monkey, rhesus monkey, mouse, rat and hamster PCSK9. [0012] In one embodiment, the antibody or antigen-binding fragment binds human and monkey PCSK9, but does not bind mouse, rat or hamster PCSK9.
- the mAbs can be full-length (e.g., an IgGI or lgG4 antibody) or may comprise only an antigen-binding portion (e.g., a Fab, F(ab') 2 or scFv fragment), and may be modified to affect functionality, e.g., to eliminate residual effector functions (Reddy et al. (2000) J. Immunol. 164: 1925-1933).
- an antigen-binding portion e.g., a Fab, F(ab') 2 or scFv fragment
- the invention comprises an antibody or antigen-binding fragment of an antibody comprising a heavy chain variable region (HCVR) selected from the group consisting of SEQ ID NO:2, 18, 22, 26, 42, 46, 50, 66, 70, 74, 90, 94, 98, 114, 118, 122, 138, 142, 146, 162, 166, 170, 186, 190, 194, 210, 214, 218, 234, 238, 242, 258, 262, 266, 282, 286, 290, 306, 310, 314, 330, 334, 338, 354, 358, 362, 378, 382, 386, 402, 406, 410, 426, 430, 434, 450, 454, 458, 474, 478, 482, 498, 502, 506, 522, 526, 530, 546, 550, 554, 570, 574, 578, 594, 598, 602, 618, 622, 626, 642, 646, 650, 666
- HCVR heavy chain
- the HCVR is an amino acid sequence selected from the group consisting of SEQ ID NO: 50, 66, 70, 74, 90, 94, 122, 138, 142, 218, 234, 238, 242, 258, 262, 314, 330 and 334.
- the HCVR comprises SEQ ID NO:90 or 218.
- the antibody or fragment thereof further comprises a light chain variable region (LCVR) selected from the group consisting of SEQ ID NO: 10, 20, 24, 34, 44, 48, 58, 68, 72, 82, 92, 96, 106, 116, 120, 130, 140, 144, 154, 164, 168, 178, 188, 192, 202, 212, 216, 226, 236, 240, 250, 260, 264, 274, 284, 288, 298, 308, 312, 322, 332, 336, 346, 356, 360, 370, 380, 384, 394, 404, 408, 418, 428, 432, 442, 452, 456, 466, 476, 480, 490, 500, 504, 514, 524, 528, 538, 548, 552, 562, 572, 576, 586, 596, 600, 610, 620, 624, 634, 644, 648, 658, 668, 672, 682
- LCVR light chain
- the LCVR is an amino acid sequence selected from the group consisting of SEQ ID NO: 58, 68, 72, 82, 92, 96, 130, 140, 144, 226, 236, 240, 250, 260, 264, 322, 332 and 336.
- the LCVR comprises SEQ ID NO:92 or 226.
- the antibody or fragment thereof comprises a HCVR and LCVR (HCVR/LCVR) sequence pair selected from the group consisting of SEQ ID NO: 2/10, 18/20, 22/24, 26/34, 42/44, 46/48, 50/58, 66/68, 70/72, 74/82, 90/92, 94/96, 98/106, 1 14/116, 1 18/120, 122/130, 138/140, 142/144, 146/154, 162/164, 166/168, 170/178, 186/188, 190/192, 194/202, 210/212, 214/216, 218/226, 234/236, 238/240, 242/250, 258/260, 262/264, 266/274, 282/284, 286/288, 290/298, 306/308, 310/312, 314/322, 330/332, 334/336, 338/346, 354/356, 358/360, 362/370
- the HCVR and LCVR are selected from the amino acid sequence pairs of SEQ ID NO: 50/58, 66/68, 70/72, 74/82, 90/92, 94/96, 122/130, 138/140, 142/144, 218/226, 234/236, 238/240, 242/250, 258/260, 262/264, 314/322, 330/332 and 334/336.
- the HCVR/LCVR pair comprises SEQ ID NO:90/92 or 218/226.
- the invention features an antibody or antigen-binding fragment of an antibody comprising a heavy chain CDR3 (HCDR3) domain selected from the group consisting of SEQ ID NO:8, 32, 56, 80, 104, 128, 152, 176, 200, 224, 248, 272, 296, 320, 344, 368, 392, 416, 440, 464, 488, 512, 536, 560, 584, 608, 632, 656, 680, 704 and 728, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; and a light chain CDR3 (LCDR3) domain selected from the group consisting of SEQ ID NO:16, 40, 64, 88, 112, 136, 160, 184, 208, 232, 256, 280, 304, 328, 352, 376, 400, 424, 448, 472, 496, 520, 544, 568, 592, 616,
- HCDR3 heavy chain C
- the HCDR3/LCDR3 sequence pairs are SEQ ID NO:56/64, 80/88, 128/136, 224/232, 248/256 or 320/328.
- the HCDR3/LCDR3 comprise SEQ ID NO:80/88 or 224/232.
- the invention comprising an antibody or fragment thereof further comprising a heavy chain CDR1 (HCDR1) domain selected from the group consisting of SEQ ID NO:4, 28, 52, 76, 100, 124, 148, 172, 196, 220, 244, 268, 292, 316, 340, 364, 388, 412, 436, 460, 484, 508, 532, 556, 580, 604, 628, 652, 676, 700 and 724, or a substantially similar sequence thereof having at least 90%, at least 95%, at least 98% or at least 99% sequence identity; a heavy chain CDR2 (HCDR2) domain selected from the group consisting of SEQ ID NO:6, 30, 54, 78, 102, 126, 150, 174, 198, 222, 246, 270, 294, 318, 342, 366, 390, 414, 438, 462, 486, 510, 534, 558, 582, 606, 630, 654, 678, 702 and 7
- HCDR1 heavy chain C
- the heavy and light chain CDR sequences SEQ ID NO:52, 54, 56, 60, 62, 64; 76, 78, 80, 84, 86, 88; 124, 126, 128, 132, 134, 136; 220, 222, 224, 228, 230, 232; 244, 246, 248, 252, 254, 256; and 316, 318, 320, 324, 326, 328.
- the heavy and light chain CDR sequences SEQ ID NO: 76, 78, 80, 84, 86, 88; or 220, 222, 224, 228, 230, 232.
- the invention comprises an antibody or antigen-binding fragment of an antibody which specifically binds hPCSK9, wherein the antibody or fragment comprises heavy and light chain CDR domains contained within heavy and light chain sequence pairs selected from the group consisting of SEQ ID NO: 2/10, 18/20, 22/24, 26/34, 42/44, 46/48, 50/58, 66/68, 70/72, 74/82, 90/92, 94/96, 98/106, 114/116, 118/120, 122/130, 138/140, 142/144,
- the CDR sequences contained within HCVR and LCVR selected from the amino acid sequence pairs of SEQ ID NO: 50/58, 66/68, 70/72, 74/82, 90/92, 94/96, 122/130, 138/140, 142/144, 218/226, 234/236, 238/240, 242/250, 258/260, 262/264, 314/322, 330/332 and 334/336.
- the CDR sequences contained within HCVR and LCVR selected from the amino acid sequence pairs of SEQ ID NO: 90/92 or 218/226.
- the invention provides a fully human monoclonal antibody or antigen-binding fragment thereof that specifically binds neutralizes hPCSK9 activity, wherein the antibody or fragment thereof exhibits one or more of the following characteristics:
- (viii) comprises heavy and light chain CDR3 sequences comprising SEQ ID NO:80 and 88;
- (ix) comprises CDR sequences from SEQ ID NO:90 and 92.
- the invention provides a fully human monoclonal antibody or antigen-binding fragment thereof that specifically binds and neutralizes hPCSK9 activity, wherein the antibody or fragment thereof exhibits one or more of the following characteristics: (i) capable of reducing serum LDL cholesterol at least about 40-70% and sustaining the reduction over at least a 60 or 90 day period relative to a predose level;
- (vii) comprises heavy and light chain CDR3 sequences comprising SEQ ID NO:224 and 232;
- (viii) comprises CDR sequences from SEQ ID NO:218 and 226.
- the invention provides nucleic acid molecules encoding anti-PCSK9 antibodies or fragments thereof.
- Recombinant expression vectors carrying the nucleic acids of the invention, and host cells into which such vectors have been introduced, are also encompassed by the invention, as are methods of producing the antibodies by culturing the host cells under conditions permitting production of the antibodies, and recovering the antibodies produced.
- the invention provides an antibody or fragment thereof comprising a HCVR encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 1 , 17, 21 , 25, 41 , 45, 49, 65, 69, 73, 89, 93, 97, 113, 117, 121 , 137, 141 , 145, 161 , 165, 169, 185, 189, 193, 209, 213, 217, 233, 237, 241 , 257, 261 , 265, 281 , 285, 289, 305, 309, 313, 329, 333, 337, 353, 357, 361 , 377, 381 , 385, 401 , 405, 409, 425, 429, 433, 449, 453, 457, 473, 477, 481 , 497, 501 , 505, 521 , 525, 529, 545, 549, 553, 569, 573,
- the HCVR is encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 49, 65, 69, 73, 89, 93, 121 , 137, 141 , 217, 233, 237, 241 , 257, 261 , 313, 329 and 333.
- the HCVR is encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 89 and 217.
- the antibody or fragment thereof further comprises a LCVR encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 9, 19, 23, 33, 43, 47, 57, 67, 71 , 81 , 91 , 95, 105, 115, 1 19, 129, 139, 143, 153, 163, 167, 177, 187, 191 , 201 , 211 , 215, 225, 235, 239, 249, 259, 263, 273, 283, 287, 297, 307, 311 , 321 , 331 , 335, 345, 355, 359, 369, 379, 383, 393, 403, 407, 417, 427, 431 , 441 , 451 , 455, 465, 475, 479, 489, 499, 503, 513, 523, 527, 537, 547, 551 , 561 , 571 , 575, 585, 5
- the LCVR is encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 57, 67, 71 , 81 , 91 , 95, 129, 139, 143, 225, 235, 239, 249, 259, 263, 321 , 331 and 335. In more specific embodiments, the LCVR is encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NO: 91 and 225.
- the invention features an antibody or antigen-binding fragment of an antibody comprising a HCDR3 domain encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO:7, 31 , 55, 79, 103, 127, 151 , 175, 199, 223, 247, 271 , 295, 319, 343, 367, 391 , 415, 439, 463, 487, 51 1 , 535, 559, 583, 607, 631 , 655, 679, 703 and 727, or a substantially identical sequence having at least 90%, at least 95%, at least 98%, or at least 99% homology thereof; and a LCDR3 domain encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 15, 39, 63, 87, 11 1 , 135, 159, 183, 207, 231 , 255, 279, 303, 327, 351 , 375,
- the HCDR3 and LCDR3 sequences are encoded by the nucleic acid sequence of SEQ ID NO: 55/63, 79/87, 127/135, 223/231 , 247/255 and 319/327, respectively.
- the HCDR3 and LCDR3 sequence pair are encoded by the nucleic acid sequence of SEQ ID NO: 79/87 and 223/231.
- the antibody or fragment thereof further comprises, a HCDR1 domain encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO: 3, 27, 51 , 75, 99, 123, 147, 171 , 195, 219, 243, 267, 291 , 315, 339, 363, 387, 411 , 435, 459, 483, 507, 531 , 555, 579, 603, 627, 651 , 675, 699 and 723, or a substantially identical sequence having at least 90%, at least 95%, at least 98%, or at least 99% homology thereof; a HCDR2 domain encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO:5, 29, 53, 77, 101 , 125, 149, 173, 197, 221 , 245, 269, 293, 317, 341 , 365, 389, 413, 437, 461 , 485, 509
- the heavy and light chain CDR sequences are encoded by the nucleic acid sequences of SEQ ID NO: 51 , 53, 55, 59, 61 , 63; 75, 77, 79, 83, 85, 87; 123, 125, 127, 131 , 133, 135; 219, 221 , 223, 227, 229, 231 ; 243, 245, 247, 251 , 253, 255; and 315, 317, 319, 323, 325, 327.
- the heavy and light chain CDR sequences are encoded by the nucleic acid sequences of SEQ ID NO: 75, 77, 79, 83, 85, 87; and 219, 221 , 223, 227, 229, 231.
- X 1 is Ala, X 2 is Arg or Lys, X 3 is Asp, X 4 is Ser or lie, X 5 is Asn or VaI, X 6 is Leu or Trp, X 7 is GIy or Met, X s is Asn or VaI, X 9 is Phe or Tyr, X 10 is Asp, X 11 is Leu or Met, X 12 is Asp or absent, X 13 is Tyr or absent, X 14 is Tyr or absent, X 15 is Tyr or absent, X 16 is Tyr or absent, X 17 is GIy or absent, X 18 is Met or absent, X 19 is Asp or absent, and X 20 is VaI or absent; and the LCDR3 comprises an amino acid sequence of the formula X 1 - X 2 - X 3 - X 4 - X 5 - X 6 - X 7 - X 8 - X 9 (SEQ ID NO:750) wherein X 1 is GIn or Met, X 2
- the antibody or fragment thereof further comprise a HCDR1 sequence of the formula X 1 - X 2 - X 3 - X 4 - X 5 - X 6 - X 7 - X 8 (SEQ ID NO:745), wherein X 1 is GIy, X 2 is Phe, X 3 is Thr, X 4 is Phe, X 5 is Ser or Asn, X 6 is Ser or Asn, X 7 is Tyr or His, and X 8 is Ala or Trp; a HCDR2 sequence of the formula X 1 - X 2 - X 3 - X 4 - X 5 - X 6 - X 7 - X 8 (SEQ ID NO:746), wherein X 1 is lie, X 2 is Ser or Asn, X 3 is GIy or GIn, X 4 is Asp or Ser, X 5 is GIy, X 6 is Ser or GIy,
- Fig. 1 shows the sequence alignment of heavy and light chain variable regions for 316P and 300N mAbs.
- the invention features a human anti-PCSK9 antibody or antigen-binding fragment of an antibody comprising a heavy chain variable region (HCVR) encoded by nucleotide sequence segments derived from V H , D H and J H germline sequences, and a light chain variable region (LCVR) encoded by nucleotide sequence segments derived from V ⁇ and JK germline sequences, wherein the germline sequences are (a) V H gene segment 3-23, D H gene segment 7-27, J H gene segment 2, V ⁇ gene segment 4-1 and J ⁇ gene segment 2; or (b) V H gene segment 3-7, D H gene segment 2-8, J H gene segment 6, V K gene segment 2-28 and J K gene segment 4.
- HCVR heavy chain variable region
- LCVR light chain variable region
- the invention features an antibody or antigen-binding fragment thereof that binds to a PCSK9 protein of SEQ ID NO:755, wherein the binding of the antibody or fragment thereof to a variant PCSK9 protein is less than 50% of the binding between the antibody or fragment thereof and the PCSK9 protein of SEQ ID NO:755.
- the antibody or fragment thereof binds to the variant PCSK9 protein with a binding affinity (K 0 ) which is less than about 50%, less than about 60%, less than about 70%, less than about 80%, less than about 90% or less than about 95% compared to the binding to PCSK9 (SEQ ID NO:755).
- the variant PCSK9 protein comprises at least one mutation at position 238 of SEQ ID NO:755.
- the mutation is D238R.
- the antibody or antibody fragment binding affinity for the variant PCSK9 protein is at least 90% less relative to the wildtype protein of SEQ ID NO:755, wherein the variant protein comprises a mutation at residue 238.
- the antibody or antibody fragment binding affinity for the variant PCSK9 protein is at least 80% less relative to the wildtype protein of SEQ ID NO:755, wherein the variant protein comprises a mutation at one or more of residue 153, 159, 238 and 343.
- the mutation is one of S153R, E159R, D238R and D343R.
- the variant PCSK9 protein comprises at least one mutation at position 366 of SEQ ID NO:755.
- the mutation is E366K.
- the antibody or antibody fragment binding affinity for the variant PCSK9 protein is at least 95% less relative to the wildtype protein of SEQ ID NO:755, wherein the variant protein comprises a mutation at residue 366.
- the antibody or antibody fragment binding affinity for the variant PCSK9 protein is at least 70%, 80% or 90% less relative to the wildtype protein of SEQ ID NO:755, wherein the variant protein comprises a mutation at one or more of residue 147, 366 and/or 380.
- the mutation is one of S147F, E366K and V380M.
- the invention encompasses anti-PCSK9 antibodies having a modified glycosylation pattern.
- modification to remove undesirable glycosylation sites may be useful, or e.g., removal of a fucose moiety to increase antibody dependent cellular cytotoxicity (ADCC) function (see Shield et al. (2002) JBC 277:26733).
- ADCC antibody dependent cellular cytotoxicity
- modification of galactosylation can be made in order to modify complement dependent cytotoxicity (CDC).
- CDC complement dependent cytotoxicity
- the invention features a pharmaceutical composition comprising a recombinant human antibody or fragment thereof which specifically binds hPCSK9 and a pharmaceutically acceptable carrier.
- the invention features a composition which is a combination of an antibody or antigen-binding fragment of an antibody of the invention, and a second therapeutic agent.
- the second therapeutic agent may be any agent that is advantageously combined with the antibody or fragment thereof of the invention, for example, an agent capable of inducing a cellular depletion of cholesterol synthesis by inhibiting 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase, such as, for example, cerovastatin, atorvastatin, simvastatin, pitavastin, ros uvastatin, fluvastatin, lovastatin, pravastatin, etc.; capable of inhibiting cholesterol uptake and or bile acid re-absorption; capable of increasing lipoprotein cataboiism (such as niacin); and/or activators of the LXR transcription factor that plays a role in cholesterol elimination such as 22-hydroxycholesterol.
- HMG 3-hydroxy-3-methylglutaryl
- the invention features methods for inhibiting hPCSK9 activity using the anti-PCSK9 antibody or antigen-binding portion of the antibody of the invention, wherein the therapeutic methods comprise administering a therapeutically effective amount of a pharmaceutical composition comprising an antibody or antigen-binding fragment of an antibody of the invention.
- the disorder treated is any disease or condition which is improved, ameliorated, inhibited or prevented by removal, inhibition or reduction of PCSK9 activity.
- Specific populations treatable by the therapeutic methods of the invention include subjects indicated for LDL apheresis, subjects with PCSK9-activating mutations (gain of function mutations, "GOF"), subjects with heterozygous Familial Hypercholesterolemia (heFH); subjects with primary hypercholesterolemia who are statin intolerant or statin uncontrolled; and subjects at risk for developing hypercholesterolemia who may be preventably treated.
- Other indications include dyslipidemia associated with secondary causes such as Type 2 diabetes mellitus, cholestatic liver diseases (primary biliary cirrhosis), nephrotic syndrome, hypothyroidism, obesity; and the prevention and treatment of atherosclerosis and cardiovascular diseases.
- the anti-hPCSK9 antibody or antibody fragment of the invention is useful to reduce elevated total cholesterol, non-HDL cholesterol, LDL cholesterol, and/or apolipoprotein B (apolipoprotein B100).
- the antibody or antigen-binding fragment of the invention may be used alone or in combination with a second agent, for example, an HMG-CoA reductase inhibitor and/or other lipid lowering drugs.
- Further embodiments include an antibody or antigen-binding fragment of an antibody as defined above for use to attenuate or inhibit a PCSK9-mediated disease or condition.
- the invention encompasses the use of an antibody or antigen-binding fragment of an antibody as defined above in the manufacture of a medicament for use to attenuate or inhibit a PCSK9-mediated disease or condition.
- the PCSK9-mediated disease or condition is hypercholesterolemia, hyperlipidemia, LDL apheresis, heterozygous for Familial Hypercholesterolemia, statin intolerant, statin uncontrolled, risk for developing hypercholesterolemia, dyslipidemia, cholestatic liver disease, nephrotic syndrome, hypothyroidism, obesity, atherosclerosis and cardiovascular diseases.
- the PCSK9-mediated disease or condition is hypercholesterolemia, hyperlipidemia, LDL apheresis, heterozygous for Familial Hypercholesterolemia, statin intolerant, statin uncontrolled, risk for developing hypercholesterolemia, dyslipidemia, cholestatic liver disease, nephrotic syndrome, hypothyroidism, obesity, atherosclerosis and cardiovascular diseases.
- Fig. 1 Sequence comparison tables of heavy chain (A) and light chain (B) variable regions and CDRs of antibodies H1 H316P and H1 M300N.
- Fig. 2 Antibody concentrations in serum over time. 316P 5 mg/kg (D); 300N 5 mg/kg (O); 316P 15 mg/kg ( ⁇ ); 300N 15 mg/kg (•).
- Fig. 3. Serum total cholesterol level as a percentage of change over buffer control. Control (*); 316P 5 mg/kg ( ⁇ ); 300N 5 mg/kg (A); 316P 15 mg/kg (D); 300N 15 mg/kg ( ⁇ ). [0044] Fig. 4. Serum LDL cholesterol level as a percentage of change over buffer control. Control (*); 316P 5 mg/kg ( ⁇ ); 300N 5 mg/kg (A); 316P 15 mg/kg (D); 300N 15 mg/kg ( ⁇ ). [0045] Fig. 5. Serum LDL cholesterol level normalized to buffer control.
- Buffer control (*); 316P 5 mg/kg ( ⁇ ); 300N 5 mg/kg (A); 316P 15 mg/kg (D); 300N 15 mg/kg ( ⁇ ).
- Fig. 6. Serum HDL cholesterol level as a percentage of change over buffer control. Control (#); 316P 5 mg/kg ( ⁇ ); 300N 5 mg/kg (A); 316P 15 mg/kg (D); 300N 15 mg/kg ( ⁇ ).
- Fig. 7 Serum triglyceride level as a percentage of change over buffer control. Buffer control (*); 316P 5 mg/kg ( ⁇ ); 300N 5 mg/kg (A); 316P 15 mg/kg (D); 300N 15 mg/kg ( ⁇ ).
- Fig. 8. Serum HDL cholesterol level as a percentage of change over buffer control. Buffer control (*); 316P 5 mg/kg ( ⁇ ); 300N 5 mg/kg (A); 316P 15 mg/kg (D); 300N 15 mg/kg ( ⁇ ).
- Serum LDL cholesterol level expressed as a percentage of change over baseline following a single dose subcutaneous administration 316P 5 mg/kg ( ⁇ ); 300N 5 mg/kg (•).
- Fig. 10 Western blot for mouse LDL receptor of total liver homogenates. Samples were taken 24 hours after PBS (lanes 1-3), 5 mg/kg 316P (lanes 4-6), or 5 mg/kg of non-hPCSK9 specific mAb (lanes 7-8) administration and 4 hours after 1.2 mg/kg hPCSK9-mmh (all lanes). [0051] Fig. 11. Effects of 316P on serum LDL cholesterol level in PCSK9 hu/hu mice. Buffer control (H);316P 1 mg/kg (H); 316P 5 mg/kg ( ⁇ ); 316P 10 mg/kg (E).
- Fig. 12 Anti-hPCSK9 mAb serum pharmacokinetic profile in C57BL/6 mice. Single dose of Control I mAb (#) at 10 mg/kg; 316P (A) at 10 mg/kg and 300N ( ⁇ ) at 10 mg/kg.
- Fig. 13 Anti-hPCSK9 mAb serum pharmacokinetic profile in hPCSK9 heterozygous mice: single dose at 10 mg/kg: Control I mAb (•); 316P (A) and 300N ( ⁇ ).
- Fig. 14 Effect of 316P on serum LDL cholesterol levels in Syrian Hamster fed a normal diet. Buffer control (#); 316P 1 mg/kg ( ⁇ ); 316P 3 mg/kg (A); 316P 5 mg/kg (T).
- human proprotein convertase subtilisin/kexin type 9 refers to hPCSK9 having the nucleic acid sequence shown in SEQ ID NO:754 and the amino acid sequence of SEQ ID NO:755, or a biologically active fragment thereof.
- antibody as used herein, is intended to refer to immunoglobulin molecules comprised of four polypeptide chains, two heavy (H) chains and two light (L) chains interconnected by disulfide bonds. Each heavy chain is comprised of a heavy chain variable region (“HCVR” or "VH”) and a heavy chain constant region (comprised of domains CH1 , CH2 and CH3).
- Each light chain is comprised of a light chain variable region ("LCVR or "VL”) and a light chain constant region (CL).
- VL light chain variable region
- CL light chain constant region
- the VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDR), interspersed with regions that are more conserved, termed framework regions (FR).
- CDR complementarity determining regions
- FR framework regions
- Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1 , CDR1 , FR2, CDR2, FR3, CDR3, FR4.
- CDR residues not contacting antigen can be identified based on previous studies (for example residues H60-H65 in CDRH2 are often not required), from regions of Kabat CDRs lying outside Chothia CDRs, by molecular modeling and/or empirically. If a CDR or residue(s) thereof is omitted, it is usually substituted with an amino acid occupying the corresponding position in another human antibody sequence or a consensus of such sequences. Positions for substitution within CDRs and amino acids to substitute can also be selected empirically. Empirical substitutions can be conservative or non-conservative substitutions.
- the term "human antibody”, as used herein, is intended to include antibodies having variable and constant regions derived from human germline immunoglobulin sequences.
- the human mAbs of the invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs and in particular CDR3.
- human antibody as used herein, is not intended to include mAbs in which CDR sequences derived from the germline of another mammalian species (e.g., mouse), have been grafted onto human FR sequences.
- the term "specifically binds,” or the like, means that an antibody or antigen-binding fragment thereof forms a complex with an antigen that is relatively stable under physiologic conditions. Specific binding can be characterized by an equilibrium dissociation constant of at least about 1x10 "6 M or less (e.g., a smaller K 0 denotes a tighter binding). Methods for determining whether two molecules specifically bind are well known in the art and include, for example, equilibrium dialysis, surface plasmon resonance, and the like. An isolated antibody that specifically binds hPCSK9 may, however, exhibit cross-reactivity to other antigens such as PCSK9 molecules from other species. Moreover, multi-specific antibodies (e.g., bispecifics) that bind to hPCSK9 and one or more additional antigens are nonetheless considered antibodies that "specifically bind' hPCSK9, as used herein.
- high affinity antibody refers to those mAbs having a binding affinity to hPCSK9 of at least 10 "10 M; preferably 10 "11 M; even more preferably 10 "12 M, as measured by surface plasmon resonance, e.g., BIACORETM or solution-affinity ELISA.
- slow off rate By the term “slow off rate”, “Koff” or “kd” is meant an antibody that dissociates from hPCSK9 with a rate constant of 1 x 10 "3 s "1 or less, preferably 1 x 10 '4 s "1 or less, as determined by surface plasmon resonance, e.g., BIACORETM.
- antibody fragment refers to one or more fragments of an antibody that retain the ability to specifically bind to hPCSK9.
- An antibody fragment may include a Fab fragment, a F(ab') 2 fragment, a Fv fragment, a dAb fragment, a fragment containing a CDR, or an isolated CDR.
- a therapeutic moiety such as a cytotoxin, a chemotherapeutic drug, an immunosuppressant or a radioisotope.
- an "isolated antibody”, as used herein, is intended to refer to an antibody that is substantially free of other mAbs having different antigenic specificities (e.g., an isolated antibody that specifically binds hPCSK9 is substantially free of mAbs that specifically bind antigens other than hPCSK9).
- An isolated antibody that specifically binds hPCSK9 may, however, have cross- reactivity to other antigens, such as PCSK9 molecules from other species.
- a “neutralizing antibody”, as used herein (or an “antibody that neutralizes PCSK9 activity”) is intended to refer to an antibody whose binding to hPCSK9 results in inhibition of at least one biological activity of PCSK9.
- PCSK9 This inhibition of the biological activity of PCSK9 can be assessed by measuring one or more indicators of PCSK9 biological activity by one or more of several standard in vitro or in vivo assays known in the art (see examples below).
- surface plasmon resonance refers to an optical phenomenon that allows for the analysis of real-time biospecific interactions by detection of alterations in protein concentrations within a biosensor matrix, for example using the BIACORETM system (Pharmacia Biosensor AB, Uppsala, Sweden and Piscataway, NJ).
- K D as used herein, is intended to refer to the equilibrium dissociation constant of a particular antibody-antigen interaction.
- epitopes is a region of an antigen that is bound by an antibody.
- Epitopes may be defined as structural or functional. Functional epitopes are generally a subset of the structural epitopes and have those residues that directly contribute to the affinity of the interaction. Epitopes may also be conformational, that is, composed of non-linear amino acids.
- epitopes may include determinants that are chemically active surface groupings of molecules such as amino acids, sugar side chains, phosphoryl groups, or suifonyl groups, and, in certain embodiments, may have specific three-dimensional structural characteristics, and/or specific charge characteristics.
- nucleic acid or fragment thereof indicates that, when optimally aligned with appropriate nucleotide insertions or deletions with another nucleic acid (or its complementary strand), there is nucleotide sequence identity in at least about 90%, and more preferably at least about 95%, 96%, 97%, 98% or 99% of the nucleotide bases, as measured by any well-known algorithm of sequence identity, such as FASTA, BLAST or GAP, as discussed below.
- the term “substantial similarity” or “substantially similar” means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least 90% sequence identity, even more preferably at least 95%, 98% or 99% sequence identity.
- residue positions which are not identical differ by conservative amino acid substitutions.
- a “conservative amino acid substitution” is one in which an amino acid residue is substituted by another amino acid residue having a side chain (R group) with similar chemical properties (e.g., charge or hydrophobicity). In general, a conservative amino acid substitution will not substantially change the functional properties of a protein.
- the percent or degree of similarity may be adjusted upwards to correct for the conservative nature of the substitution. Means for making this adjustment are well known to those of skill in the art. See, e.g., Pearson (1994) Methods MoI. Biol. 24: 307- 331.
- Examples of groups of amino acids that have side chains with similar chemical properties include 1) aliphatic side chains: glycine, alanine, valine, leucine and isoleucine; 2) aliphatic- hydroxyl side chains: serine and threonine; 3) amide-containing side chains: asparagine and glutamine; 4) aromatic side chains: phenylalanine, tyrosine, and tryptophan; 5) basic side chains: lysine, arginine, and histidine; 6) acidic side chains: aspartate and glutamate, and 7) sulfur-containing side chains: cysteine and methionine.
- Preferred conservative amino acids substitution groups are: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, glutamate-aspartate, and asparagine-glutamine.
- a conservative replacement is any change having a positive value in the PAM250 log-likelihood matrix disclosed in Gonnet et al. (1992) Science 256: 1443 45.
- a "moderately conservative" replacement is any change having a nonnegative value in the PAM250 log-likelihood matrix.
- Protein analysis software matches similar sequences using measures of similarity assigned to various substitutions, deletions and other modifications, including conservative amino acid substitutions.
- GCG software contains programs such as GAP and BESTFIT which can be used with default parameters to determine sequence homology or sequence identity between closely related polypeptides, such as homologous polypeptides from different species of organisms or between a wild type protein and a mutein thereof. See, e.g., GCG Version 6.1. Polypeptide sequences also can be compared using FASTA with default or recommended parameters; a program in GCG Version 6.1.
- FASTA e.g., FASTA2 and FASTA3 provides alignments and percent sequence identity of the regions of the best overlap between the query and search sequences (Pearson (2000) supra).
- Another preferred algorithm when comparing a sequence of the invention to a database containing a large number of sequences from different organisms is the computer program BLAST, especially BLASTP or TBLASTN, using default parameters. See, e.g., Altschul et al. (1990) J. MoI. Biol. 215: 403 410 and (1997) Nucleic Acids Res. 25:3389 402.
- the antibody or antibody fragment for use in the method of the invention may be monospecific, bispecific, or multispecific.
- Multispecific antibodies may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for epitopes of more than one target polypeptide.
- An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) CH3 domain and a second Ig CH3 domain, wherein the first and second Ig CH3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bispecific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference.
- Ig immunoglobulin
- the first Ig CH3 domain binds Protein A and the second Ig CH3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by IMGT exon numbering; H435R by EU numbering).
- the second CH3 may further comprise an Y96F modification (by IMGT; Y436F by EU).
- terapéuticaally effective amount is meant an amount that produces the desired effect for which it is administered. The exact amount will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (see, for example, Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding).
- VELOCIMMUNETM Methods for generating human antibodies in transgenic mice are known (see for example, US 6,596,541 , Regeneron Pharmaceuticals, VELOCIMMUNETM).
- the VELOCIMMUNETM technology involves generation of a transgenic mouse having a genome comprising human heavy and light chain variable regions operably linked to endogenous mouse constant region loci such that the mouse produces an antibody comprising a human variable region and a mouse constant region in response to antigenic stimulation.
- the DNA encoding the variable regions of the heavy and light chains of the antibody are isolated and operably linked to DNA encoding the human heavy and light chain constant regions.
- the DNA is then expressed in a cell capable of expressing the fully human antibody, in specific embodiment, the cell is a CHO cell.
- Antibodies may be therapeutically useful in blocking a ligand-receptor interaction or inhibiting receptor component interaction, rather than by killing cells through fixation of complement and participation in complement-dependent cytotoxicity (CDC), or killing cells through antibody-dependent cell-mediated cytotoxicity (ADCC).
- CDC complement-dependent cytotoxicity
- ADCC antibody-dependent cell-mediated cytotoxicity
- the constant region of an antibody is thus important in the ability of an antibody to fix complement and mediate cell- dependent cytotoxicity.
- the isotype of an antibody may be selected on the basis of whether it is desirable for the antibody to mediate cytotoxicity.
- Human antibodies can exist in two forms that are associated with hinge heterogeneity.
- an antibody molecule comprises a stable four-chain construct of approximately 150-160 kDa in which the dimers are held together by an interchain heavy chain disulfide bond.
- the dimers are not linked via inter-chain disulfide bonds and a molecule of about 75-80 kDa is formed composed of a covalently coupled light and heavy chain (half- antibody). These forms have been extremely difficult to separate, even after affinity purification.
- the frequency of appearance of the second form in various intact IgG isotypes is due to, but not limited to, structural differences associated with the hinge region isotype of the antibody.
- a single amino acid substitution in the hinge region of the human lgG4 hinge can significantly reduce the appearance of the second form (Angal et al. (1993) Molecular Immunology 30:105) to levels typically observed using a human IgGI hinge.
- the instant invention encompasses antibodies having one or more mutations in the hinge, CH2 or CH3 region which may be desirable, for example, in production, to improve the yield of the desired antibody form.
- a VELOCIMMUNETM mouse is challenged with the antigen of interest, and lymphatic cells (such as B-cells) are recovered from the mice that express antibodies.
- the lymphatic cells may be fused with a myeloma cell line to prepare immortal hybridoma cell lines, and such hybridoma cell lines are screened and selected to identify hybridoma cell lines that produce antibodies specific to the antigen of interest.
- DNA encoding the variable regions of the heavy chain and light chain may be isolated and linked to desirable isotypic constant regions of the heavy chain and light chain.
- Such an antibody protein may be produced in a cell, such as a CHO cell.
- DNA encoding the antigen-specific chimeric antibodies or the variable domains of the light and heavy chains may be isolated directly from antigen-specific lymphocytes. [0082] Initially, high affinity chimeric antibodies are isolated having a human variable region and a mouse constant region.
- the antibodies are characterized and selected for desirable characteristics, including affinity, selectivity, epitope, etc.
- the mouse constant regions are replaced with a desired human constant region to generate the fully human antibody of the invention, for example wild-type or modified IgGI or lgG4 (for example, SEQ ID NO:751 , 752, 753). While the constant region selected may vary according to specific use, high affinity antigen-binding and target specificity characteristics reside in the variable region.
- a routine cross-blocking assay such as that described Antibodies, Harlow and Lane (Cold Spring Harbor Press, Cold Spring Harb., NY) can be performed.
- Other methods include alanine scanning mutants, peptide blots (Reineke (2004) Methods MoI Biol 248:443-63), or peptide cleavage analysis.
- methods such as epitope excision, epitope extraction and chemical modification of antigens can be employed (Tomer (2000) Protein Science 9: 487-496).
- epitope refers to a site on an antigen to which B and/or T cells respond.
- B- cell epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents, whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents.
- An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation.
- Modification-Assisted Profiling also known as Antigen Structure-based Antibody Profiling (ASAP) is a method that categorizes large numbers of monoclonal antibodies (mAbs) directed against the same antigen according to the similarities of the binding profile of each antibody to chemically or enzymatically modified antigen surfaces (US 2004/0101920). Each category may reflect a unique epitope either distinctly different from or partially overlapping with epitope represented by another category. This technology allows rapid filtering of genetically identical mAbs, such that characterization can be focused on genetically distinct mAbs. When applied to hybridoma screening, MAP may facilitate identification of rare hybridoma clones that produce mAbs having the desired characteristics. MAP may be used to sort the anti-PCSK9 mAbs of the invention into groups of mAbs binding different epitopes.
- the anti-hPCSK9 antibody or antigen-binding fragment of an antibody binds an epitope within the catalytic domain, which is about 153 to 425 of SEQ ID NO:755); more specifically, an epitope from about 153 to about 250 or from about 250 to about 425; more specifically, the antibody or antibody fragment of the invention binds an epitope within the fragment from about 153 to about 208, from about 200 to about 260, from about 250 to about 300, from about 275 to about 325, from about 300 to about 360, from about 350 to about 400, and/or from about 375 to about 425.
- the anti-hPCSK9 antibody or antigen-binding fragment of an antibody binds an epitope within the propeptide domain (residues 31 to 152 of SEQ ID NO:755); more specifically, an epitope from about residue 31 to about residue 90 or from about residue 90 to about residue 152; more specifically, the antibody or antibody fragment of the invention binds an epitope within the fragment from about residue 31 to about residue 60, from about residue 60 to about residue 90, from about residue 85 to about residue 110, from about residue 100 to about residue 130, from about residue 125 to about residue 150, from about residue 135 to about residue 152, and/or from about residue 140 to about residue 152.
- the anti-hPCSK9 antibody or antigen-binding fragment of an antibody binds an epitope within the C-terminal domain, (residues 426 to 692 of SEQ ID NO:755); more specifically, an epitope from about residue 426 to about residue 570 or from about residue 570 to about residue 692; more specifically, the antibody or antibody fragment of the invention binds an epitope within the fragment from about residue 450 to about residue 500, from about residue 500 to about residue 550, from about residue 550 to about residue 600, and/or from about residue 600 to about residue 692.
- the antibody or antibody fragment binds an epitope which includes more than one of the enumerated epitopes within the catalytic, propeptide or C-terminal domain, and/or within two or three different domains (for example, epitopes within the catalytic and C-terminal domains, or within the propeptide and catalytic domains, or within the propeptide, catalytic and C-terminal domains.
- the antibody or antigen-binding fragment binds an epitope on hPCSK9 comprising amino acid residue 238 of hPCSK9 (SEQ ID NO:755).
- Experimental results show that when D238 was mutated, the K 0 of mAb 316P exhibited >400-fold reduction in binding affinity ( ⁇ 1 x10 "9 M to ⁇ 410 x10 "9 M) and T 1/2 decreased >30-fold (from ⁇ 37 to ⁇ 1 min).
- the mutation was D238R.
- the antibody or antigen-binding fragment of the invention binds an epitope of hPCSK9 comprising two or more of amino acid residues at positions 153, 159, 238 and 343.
- a mutation in amino acid residue 153, 159 or 343 resulted in about a 5- to 10-fold decrease in affinity or similar shortening in T 1/2 .
- the mutation was S153R, E159R and/or D343R.
- the antibody or antigen-binding fragment binds an epitope on hPCSK9 comprising amino acid residue 366 of hPCSK9 (SEQ ID NO:755).
- Experimental results show that when E366 was mutated, the affinity of mAb 300N exhibited about 50-fold decrease ( ⁇ 0.7 x10 "9 M to -36 x10 "9 M) and a similar shortening in T 1/2 (from -120 to ⁇ 2 min).
- the mutation is E366K.
- the present invention includes anti-PCSK9 antibodies that bind to the same epitope as any of the specific exemplary antibodies described herein. Likewise, the present invention also includes anti-PCSK9 antibodies that compete for binding to PCSK9 or a PCSK9 fragment with any of the specific exemplary antibodies described herein.
- test antibody if the test antibody is not able to bind to the PCSK9 molecule following saturation binding with the reference anti-PCSK9 antibody, then the test antibody may bind to the same epitope as the epitope bound by the reference anti-PCSK9 antibody of the invention.
- the above-described binding methodology is performed in two orientations: In a first orientation, the reference antibody is allowed to bind to a PCSK9 molecule under saturating conditions followed by assessment of binding of the test antibody to the PCSK9 molecule. In a second orientation, the test antibody is allowed to bind to a PCSK9 molecule under saturating conditions followed by assessment of binding of the reference antibody to the PCSK9 molecule. If, in both orientations, only the first (saturating) antibody is capable of binding to the PCSK9 molecule, then it is concluded that the test antibody and the reference antibody compete for binding to PCSK9.
- an antibody that competes for binding with a reference antibody may not necessarily bind to the identical epitope as the reference antibody, but may sterically block binding of the reference antibody by binding an overlapping or adjacent epitope.
- Two antibodies bind to the same or overlapping epitope if each competitively inhibits (blocks) binding of the other to the antigen. That is, a 1-, 5-, 10-, 20- or 100-fold excess of one antibody inhibits binding of the other by at least 50% but preferably 75%, 90% or even 99% as measured in a competitive binding assay (see, e.g., Junghans et al., Cancer Res. 1990 50: 1495-1502).
- two antibodies have the same epitope if essentially all amino acid mutations in the antigen that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.
- Two antibodies have overlapping epitopes if some amino acid mutations that reduce or eliminate binding of one antibody reduce or eliminate binding of the other.
- Additional routine experimentation e.g., peptide mutation and binding analyses
- peptide mutation and binding analyses can then be carried out to confirm whether the observed lack of binding of the test antibody is in fact due to binding to the same epitope as the reference antibody or if steric blocking (or another phenomenon) is responsible for the lack of observed binding.
- steric blocking or another phenomenon
- this sort can be performed using ELISA, RIA, surface plasmon resonance, flow cytometry or any other quantitative or qualitative antibody-binding assay available in the art.
- the invention comprises an anti-PCSK9 antibody or antigen binding fragment of an antibody that binds an PCSK9 protein of SEQ ID NO:755, wherein the binding between the antibody or fragment thereof to PCSK9 and a variant PCSK9 protein is less than 50% of the binding between the antibody or fragment and the PCSK9 protein of SEQ ID NO:755.
- the variant PCSK9 protein comprises at least one mutation of a residue at a position selected from the group consisting of 153, 159, 238 and 343.
- the at least one mutation is S153R, E159R, D238R and D343R.
- the variant PCSK9 protein comprises at least one mutation of a residue at a position selected from the group consisting of 366. In one specific embodiment, the variant PCSK9 protein comprises at least one mutation of a residue at a position selected from the group consisting of 147, 366 and 380. In a more specific embodiment, the mutation is S147F, E366K and/or V380M.
- the invention encompasses a human anti-PCSK9 monoclonal antibody conjugated to a therapeutic moiety (“immunoconjugate”), such as a cytotoxin, a chemotherapeutic drug, an immunosuppressant or a radioisotope.
- a therapeutic moiety such as a cytotoxin, a chemotherapeutic drug, an immunosuppressant or a radioisotope.
- Cytotoxin agents include any agent that is detrimental to cells. Examples of suitable cytotoxin agents and chemotherapeutic agents for forming immunoconjugates are known in the art, see for example, WO 05/103081.
- the antibodies of the present invention may be monospecific, bispecific, or multispecific.
- Multispecific mAbs may be specific for different epitopes of one target polypeptide or may contain antigen-binding domains specific for more than one target polypeptide. See, e.g., Tutt et al. (1991) J. Immunol. 147:60-69.
- the human anti-PCSK9 mAbs can be linked to or co- expressed with another functional molecule, e.g., another peptide or protein.
- an antibody or fragment thereof can be functionally linked (e.g., by chemical coupling, genetic fusion, noncovalent association or otherwise) to one or more other molecular entities, such as another antibody or antibody fragment, to produce a bispecific or a multispecific antibody with a second binding specificity.
- An exemplary bi-specific antibody format that can be used in the context of the present invention involves the use of a first immunoglobulin (Ig) CH3 domain and a second Ig CH3 domain, wherein the first and second Ig CH3 domains differ from one another by at least one amino acid, and wherein at least one amino acid difference reduces binding of the bispecific antibody to Protein A as compared to a bi-specific antibody lacking the amino acid difference.
- the first Ig CH3 domain binds Protein A and the second Ig CH3 domain contains a mutation that reduces or abolishes Protein A binding such as an H95R modification (by IMGT exon numbering; H435R by EU numbering).
- the second CH3 may further comprise a Y96F modification (by IMGT; Y436F by EU). Further modifications that may be found within the second CH3 include: D16E, L18M, N44S, K52N, V57M, and V82I (by IMGT; D356E, L358M, N384S, K392N, V397M, and V422I by EU) in the case of IgGI antibodies; N44S, K52N, and V82I (IMGT; N384S, K392N, and V422I by EU) in the case of lgG2 antibodies; and Q15R, N44S, K52N, V57M, R69K, E79Q, and V82I (by IMGT; Q355R, N384S, K392N, V397M, R409K, E419Q, and V422I by EU) in the case of lgG4 antibodies. Variations on the bi-specific antibody format described above are
- the anti-PCSK9 antibodies and antibody fragments of the present invention encompass proteins having amino acid sequences that vary from those of the described mAbs, but that retain the ability to bind human PCSK9. Such variant mAbs and antibody fragments comprise one or more additions, deletions, or substitutions of amino acids when compared to parent sequence, but exhibit biological activity that is essentially equivalent to that of the described mAbs.
- the anti-PCSK9 antibody-encoding DNA sequences of the present invention encompass sequences that comprise one or more additions, deletions, or substitutions of nucleotides when compared to the disclosed sequence, but that encode an anti-PCSK9 antibody or antibody fragment that is essentially bioequivalent to an anti-PCSK9 antibody or antibody fragment of the invention. Examples of such variant amino acid and DNA sequences are discussed above.
- Two antigen-binding proteins, or antibodies are considered bioequivalent if, for example, they are pharmaceutical equivalents or pharmaceutical alternatives whose rate and extent of absorption do not show a significant difference when administered at the same molar dose under similar experimental conditions, either single does or multiple dose. Some antibodies will be considered equivalents or pharmaceutical alternatives if they are equivalent in the extent of their absorption but not in their rate of absorption and yet may be considered bioequivalent because such differences in the rate of absorption are intentional and are reflected in the labeling, are not essential to the attainment of effective body drug concentrations on, e.g., chronic use, and are considered medically insignificant for the particular drug product studied. In one embodiment, two antigen-binding proteins are bioequivalent if there are no clinically meaningful differences in their safety, purity, and potency.
- two antigen-binding proteins are bioequivalent if a patient can be switched one or more times between the reference product and the biological product without an expected increase in the risk of adverse effects, including a clinically significant change in immunogenicity, or diminished effectiveness, as compared to continued therapy without such switching.
- two antigen-binding proteins are bioequivalent if they both act by a common mechanism or mechanisms of action for the condition or conditions of use, to the extent that such mechanisms are known.
- Bioequivalence may be demonstrated by in vivo and in vitro methods.
- Bioequivalence measures include, e.g., (a) an in vivo test in humans or other mammals, in which the concentration of the antibody or its metabolites is measured in blood, plasma, serum, or other biological fluid as a function of time; (b) an in vitro test that has been correlated with and is reasonably predictive of human in vivo bioavailability data; (c) an in vivo test in humans or other mammals in which the appropriate acute pharmacological effect of the antibody (or its target) is measured as a function of time; and (d) in a well-controlled clinical trial that establishes safety, efficacy, or bioavailability or bioequivalence of an antibody.
- Bioequivalent variants of anti-PCSK9 antibodies of the invention may be constructed by, for example, making various substitutions of residues or sequences or deleting terminal or internal residues or sequences not needed for biological activity.
- cysteine residues not essential for biological activity can be deleted or replaced with other amino acids to prevent formation of unnecessary or incorrect intramolecular disulfide bridges upon renaturation.
- the invention provides therapeutic methods for treating a human patient in need of a composition of the invention. While modifications in lifestyle and conventional drug treatment are often successful in reducing cholesterol levels, not all patients are able to achieve the recommended target cholesterol levels with such approaches.
- Various conditions such as familial hypercholesterolemia (FH), appear to be resistant to lowering of LDL-C levels in spite of aggressive use of conventional therapy.
- FH familial hypercholesterolemia
- Homozygous and heterozygous familial hypercholesterolemia hoFH, heFH
- hoFH homozygous familial hypercholesterolemia
- heFH is a condition associated with premature atherosclerotic vascular disease.
- patients diagnosed with hoFH are largely unresponsive to conventional drug therapy and have limited treatment options.
- statins which reduce LDL-C by inhibiting cholesterol synthesis and upregulating the hepatic LDL receptor
- a mean LDL-C reduction of only less than about 20% has been recently reported in patients with genotype-confirmed hoFH treated with the maximal dose of statins.
- the addition of ezetimibe 10 mg/day to this regimen resulted in a total reduction of LDL-C levels of 27%, which is still far from optimal.
- many patients are statin non-responsive, poorly controlled with statin therapy, or cannot tolerate statin therapy; in general, these patients are unable to achieve cholesterol control with alternative treatments.
- Specific populations treatable by the therapeutic methods of the invention include patients indicated for LDL apheresis, subjects with PCSK9-activating (GOF) mutations, heterozygous Familial Hypercholesterolemia (heFH); subjects with primary hypercholesterolemia who are statin intolerant or statin uncontrolled; and subjects at risk for developing hypercholesterolemia who may be preventably treated.
- GAF PCSK9-activating
- heFH heterozygous Familial Hypercholesterolemia
- subjects with primary hypercholesterolemia who are statin intolerant or statin uncontrolled
- subjects at risk for developing hypercholesterolemia who may be preventably treated.
- the invention provides therapeutic compositions comprising the anti-PCSK9 antibodies or antigen-binding fragments thereof of the present invention.
- the administration of therapeutic compositions in accordance with the invention will be administered with suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like.
- suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like.
- suitable carriers, excipients, and other agents that are incorporated into formulations to provide improved transfer, delivery, tolerance, and the like.
- a multitude of appropriate formulations can be found in the formulary known to all pharmaceutical chemists: Remington's Pharmaceutical Sciences, Mack Publishing Company, Easton, PA.
- formulations include, for example, powders, pastes, ointments, jellies, waxes, oils, lipids, lipid (cationic or anionic) containing vesicles (such as LIPOFECTI N TM), DNA conjugates, anhydrous absorption pastes, oil-in-water and water-in-oil emulsions, emulsions carbowax (polyethylene glycols of various molecular weights), semi-solid gels, and semi-solid mixtures containing carbowax. See also Powell et al. "Compendium of excipients for parenteral formulations" PDA (1998) J Pharm Sci Technol 52:238-311.
- the dose may vary depending upon the age and the size of a subject to be administered, target disease, conditions, route of administration, and the like.
- the antibody of the present invention is used for treating various conditions and diseases associated with PCSK9, including hypercholesterolemia, disorders associated with LDL and apolipoprotein B, and lipid metabolism disorders, and the like, in an adult patient, it is advantageous to intravenously administer the antibody of the present invention normally at a single dose of about 0.01 to about 20 mg/kg body weight, more preferably about 0.02 to about 7, about 0.03 to about 5, or about 0.05 to about 3 mg/kg body weight.
- the frequency and the duration of the treatment can be adjusted.
- Various delivery systems are known and can be used to administer the pharmaceutical composition of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the mutant viruses, receptor mediated endocytosis (see, e.g., Wu et al. (1987) J. Biol. Chem. 262:4429-4432).
- Methods of introduction include, but are not limited to, intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes.
- composition may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local.
- epithelial or mucocutaneous linings e.g., oral mucosa, rectal and intestinal mucosa, etc.
- Administration can be systemic or local.
- the pharmaceutical composition can be also delivered in a vesicle, in particular a liposome (see Langer (1990) Science 249:1527-1533; Treat et al. (1989) in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez Berestein and Fidler (eds.), Liss, New York, pp. 353-365; Lopez-Berestein, ibid., pp. 317-327; see generally ibid.).
- the pharmaceutical composition can be delivered in a controlled release system.
- a pump may be used (see Sefton (1987) CRC Crit. Ref. Biomed. Eng. 14:201).
- polymeric materials can be used; see, Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974).
- a controlled release system can be placed in proximity of the composition's target, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138, 1984).
- the injectable preparations may include dosage forms for intravenous, subcutaneous, intracutaneous and intramuscular injections, drip infusions, etc. These injectable preparations may be prepared by methods publicly known.
- the injectable preparations may be prepared, e.g., by dissolving, suspending or emulsifying the antibody or its salt described above in a sterile aqueous medium or an oily medium conventionally used for injections.
- a sterile aqueous medium or an oily medium conventionally used for injections.
- the aqueous medium for injections there are, for example, physiological saline, an isotonic solution containing glucose and other auxiliary agents, etc., which may be used in combination with an appropriate solubilizing agent such as an alcohol (e.g., ethanol), a polyalcohol (e.g., propylene glycol, polyethylene glycol), a nonionic surfactant [e.g., polysorbate 80, HCO-50 (polyoxyethylene (50 mol) adduct of hydrogenated castor oil)], etc.
- an alcohol e.g., ethanol
- a polyalcohol e.g., propylene glycol, polyethylene glyco
- a pharmaceutical composition of the present invention can be delivered subcutaneously or intravenously with a standard needle and syringe.
- a pen delivery device readily has applications in delivering a pharmaceutical composition of the present invention.
- Such a pen delivery device can be reusable or disposable.
- a reusable pen delivery device generally utilizes a replaceable cartridge that contains a pharmaceutical composition.
- the empty cartridge can readily be discarded and replaced with a new cartridge that contains the pharmaceutical composition.
- the pen delivery device can then be reused.
- a disposable pen delivery device there is no replaceable cartridge. Rather, the disposable pen delivery device comes prefilled with the pharmaceutical composition held in a reservoir within the device. Once the reservoir is emptied of the composition, the entire device is discarded.
- Numerous reusable pen and autoinjection delivery devices have applications in the subcutaneous delivery of a pharmaceutical composition of the present invention.
- Examples include, but certainly are not limited to AUTOPEN TM (Owen Mumford, Inc., Woodstock, UK), DISETRONICTM pen (Disetronic Medical Systems, Burghdorf, Switzerland), HUMALOG MIX 75/25TM pen, HUMALOGTM pen, HUMALIN 70/30TM pen (EIi Lilly and Co., Indianapolis, IN), NOVOPENTM I 1 Il and III (Novo Nordisk, Copenhagen, Denmark), NOVOPEN JUNIORTM (Novo Nordisk, Copenhagen, Denmark), BDTM pen (Becton Dickinson, Franklin Lakes, NJ), OPTIPENTM, OPTIPEN PROTM, OPTIPEN STARLETTM, and OPTICLIKTM (sanofi-aventis, Frankfurt, Germany), to name only a few.
- the pharmaceutical compositions for oral or parenteral use described above are prepared into dosage forms in a unit dose suited to fit a dose of the active ingredients.
- dosage forms in a unit dose include, for example, tablets, pills, capsules, injections (ampoules), suppositories, etc.
- the amount of the aforesaid antibody contained is generally about 5 to about 500 mg per dosage form in a unit dose; especially in the form of injection, it is preferred that the aforesaid antibody is contained in about 5 to about 100 mg and in about 10 to about 250 mg for the other dosage forms.
- the invention provides therapeutic methods in which the antibody or antibody fragment of the invention is useful to treat hypercholesterolemia associated with a variety of conditions involving hPCSK9.
- the anti-PCSK9 antibodies or antibody fragments of the invention are particularly useful for the treatment of hypercholesterolemia and the like.
- Combination therapies may include the anti-PCSK9 antibody of the invention with, for example, one or more of any agent that (1) induces a cellular depletion of cholesterol synthesis by inhibiting 3-hydroxy-3- methylglutaryl (HMG)-coenzyme A (CoA) reductase, such as cerivastatin, atorvastatin, simvastatin, pitavastatin, rosuvastatin, fluvastatin, lovastatin, pravastatin; (2) inhibits cholesterol uptake and or bile acid re-absorption; (3) increase lipoprotein catabolism (such as niacin); and activators of the LXR transcription factor that plays a role in cholesterol elimination such as 22- hydroxycholesterol or fixed combinations such as ezetimibe plus simvastatin; a statin with a bile resin (e.g., cholestyramine, colestipol, colesevelam), a fixed combination of niacin plus a statin (e.
- VELOCIMMUNETM mice were immunized with human PCSK9, and the antibody immune response monitored by antigen-specific immunoassay using serum obtained from these mice.
- Anti-hPCSK9 expressing B cells were harvested from the spleens of immunized mice shown to have elevated anti-hPCSK9 antibody titers were fused with mouse myeloma cells to form hybridomas. The hybridomas were screened and selected to identify cell lines expressing hPCSK9-specific antibodies using assays as described below.
- the assays identified several cell lines that produced chimeric anti-hPCSK9 antibodies designated as H1 M300, H1 M504, H1 M505, H1 M500, H1 M497, H1 M498, H1 M494, H1 M309, H1 M312, H1 M499, H1 M493, H1 M496, H1 M503, H1 M502, H1 M508, H1 M495 and H1 M492.
- Human PCSK9-specific antibodies were also isolated directly from antigen-immunized B cells without fusion to myeloma cells, as described in U.S. 2007/0280945A1. Heavy and light chain variable regions were cloned to generate fully human anti-hPCSK9 antibodies designated as H1 H313, H1 H314, H1 H315, H1 H316, H1 H317, H1 H318, H1 H320, H1 H321 and H1 H334. Stable recombinant antibody-expressing CHO cell lines expressing these antibodies were established.
- nucleic acids encoding antibody variable regions were cloned and sequenced.
- the predicted amino acid sequences of the variable regions were confirmed by N-terminal amino acid sequencing. From the nucleic acid sequence and predicted amino acid sequence of the mAbs, gene usage was identified for each antibody chain.
- Equilibrium dissociation constants (Kp) for HPCSK9 binding to mAbs generated via direct isolation of splenocytes were determined by surface kinetics in a real-time biosensor surface plasmon resonance assay (BIACORETM T100). Each selected antibody was captured at a flowrate of 2 ul/min for 6 min on a goat anti-human IgG polyclonal antibody surface created through direct chemical coupling to a BIACORETM chip to form a captured antibody surface.
- Dissociation rate (kd) of selected mAbs for tagged rhesus monkey (Macaca mulata) PCSK9 (mmPCSK9; SEQ ID NO:756) (mmPCSK9-mmh) at 25 0 C was determined as described above. Table 4
- mAbs tested are fully human versions of H1 H316P ("316P") (HCVR/LCVR SEQ ID NO: 90/92; CDR sequences SEQ ID NO: 76/78/80 and 84/86/88) and H1 M300N (“300N”) (HCVR/LCVR SEQ ID NO: 218/226; CDR sequences SEQ ID NO:220/222/224 and 228/230/232).
- hPCSK9-mmh was captured on an anti-myc mAb surface either at a high density (about 35 to 45 resonance units) (RU) or at a low density (about 5 to 14 RU).
- Each antibody, at 50 nM in HBST (pH 7.4 or pH 5.5) was injected over the captured hPCSK9 surface at a flow rate of 100 ⁇ l/ml for 1.5 min at 25°C and antigen-antibody dissociation was monitored for 10 min.
- the antigen binding properties Of 316P and 300N at pH 7.4 or pH 5.5 were determined by a modified BIACORETM assay as described above. Briefly, mAbs were immobilized onto BIACORETM CM5 sensor chips via amine coupling.
- hPCSK9(D374Y)-mmh at varying concentrations of 1.78 nM to 100 nM was injected over the captured antibody surface at a flowrate of 50 ⁇ l/min for 5 min, and the dissociation of hPCSK9(D374Y)-mmh and antibody was monitored for 15 min at 25°C.
- 316P, 300N, and Control I anti-hPCSK9 mAbs were captured on an amine-coupled anti- hFc CM5 chip on BIACORETM2000.
- Tagged (myc-myc-his) human PCSK9, human PCSK1 (hPCSKI) (SEQ ID NO:759), human PCSK7 (hPCSK7) (SEQ ID NO:760), or mouse PCSK9 were injected (100 nM) over the captured mAb surface and allowed to bind at 25°C for 5 min. Changes in RU were recorded.
- Results 300N and Control I bound only to hPCSK9, and 316P bound both hPCSK9 and mPCSK9.
- anti-hPCSK9 mAbs were determined by ELISA. Briefly, anti- hPCSK9 antibody was coated on a 96-well plate. Human PCSK9-mmh, mPCSK9-mmh, maPCSK9-h, hPCSK1-mmh, or hPCSK7-mmh, at 1.2 nM, were added to antibody-coated plates and incubated at RT for 1 hr. Plate-bound PCSK protein was then detected by HRP-conjugated anti-His antibody. Results show that 316P binds human, mouse, and hamster PCSK9, whereas 300N and Control I only bound hPCSK9. None of the anti-hPCSK9 mAbs exhibited significant binding to hPCSKI or hPCSK7.
- Example 8 Inhibition of Binding Between hPCSK9 and hLDLR Domains
- hLDLR-ecto SEQ ID NO:758 human LDLR full length extracellular domain
- hLDLR EGF-A domain amino acids 313-355 of SED ID NO:758
- hLDLR EGF-AB domains amino acids of 314-393 of SEQ ID NO:758
- hLDLR-ecto, EGF-A-hFc, or EGF-AB-hFc protein was amine-coupled on a CM5 chip to create a receptor or receptor fragment surface.
- Selected anti-hPCSK9 mAbs at 62.5 nM (2.5 fold excess over antigen), were premixed with 25 nM of hPCSK9-mmh, followed by 40 min incubation at 25°C to allow antibody-antigen binding to reach equilibrium to form equilibrated solutions.
- the equilibrated solutions were injected over the receptor or receptor fragment surfaces at 2 ⁇ l/min for 40 min at 25°C.
- hLDLR-ecto, hLDLR EGF-A domain, or hLDLR EGF-AB domains were also evaluated with an ELISA-based immunoassay. Briefly, hLDLR-ecto, hLDLR EGF-A-hFc or hLDLR EGF-AB-hFc, each at 2 ⁇ g/ml, was coated on a 96- well plate in PBS buffer overnight at 4°C, and nonspecific binding sites blocked with BSA. This plate was used to measure free hPCSK9-mmh in a PCSK9-mmh solution pre-equilibrated with varying concentrations of anti-hPCSK9 mAbs.
- hPCSK9-mmh 500 pM was pre-mixed with varied amounts of antibody, ranging from 0 to -50 nM in serial dilutions, followed by 1 hr incubation at room temperature (RT) to allow antibody-antigen binding to reach equilibrium.
- the equilibrated sample solutions were transferred to receptor or receptor fragment coated plates. After 1 hour of binding, the plates were washed and bound hPCSK9-mmh detected using HRP conjugated anti-myc antibody.
- IC 5 O values (in pM) were determined as the amount of antibody required to achieve 50% reduction of hPCSK9-mmh bound to the plate- coated receptor or receptor fragment. The results show that specific mAbs functionally block PCSK9 from binding the three receptors at both neutral pH (7.2) and acidic pH (5.5).
- 316P and Control I The ability of 316P and Control I to block hPCSK9 binding to hLDLR was also determined. Briefly, either recombinant hLDLR or hLDLR-EGFA-mFc was immobilized onto BIACORETM CM5 chips via amine coupling. An antigen-antibody mixture of 100 nM hPCSK9- mmh and 316P, Control I mAb, or a non-hPCSK9 specific mAb (each at 250 nM) was incubated at RT for 1 hr, and then injected over the hLDLR or hLDLR-EGFA surface at the flow rate of 10 ⁇ l/ml for 15 min at 25 0 C.
- Chimeric protein #1 consists of a mouse PCSK9 pro-domain (amino acid residues 1- 155 of SEQ ID NO:757) followed by a human PCSK9 catalytic domain (residues 153-425 of SEQ ID NO:755) and a mouse PCSK9 C-terminal domain (residues 429-694 SEQ ID NO:757) (mPro-hCat-mC-term-mmh).
- Chimeric protein #2 consists of a human PCSK9 pro-domain (residues 1-152 of SEQ ID NO:755) followed by a mouse PCSK9 catalytic domain (residues 156-428 of SEQ ID NO:757) and a mouse PCSK9 C-terminai (hPro-mCat-mC-term-mmh).
- Chimeric protein #3 consists of mouse PCSK9 pro-domain and a mouse PCSK9 catalytic domain followed by a human PCSK9 C-terminal domain (residues 426-692 of SEQ ID NO:755) (mPro-mCat-hC-term-mmh).
- hPCSKB with a point mutation of D374Y was generated.
- 316P which cross-reacts with mPCSK9-mmh
- a cross-competition ELISA assay was developed to determine binding domain specificity. Briefly, mAbs specific for chimeric protein #1 , #2, or #3, were first coated on a 96-well plate overnight at 1 ⁇ g/ml. Human PCSK9-mmh (2 ⁇ g/ml) was then added to each well followed by 1 hr incubation at RT. 316P (1 ⁇ g/ml) was added and incubated for another hour at RT. Plate- bound 316P was detected using HRP-conjugated anti-hFc polyclonal antibody.
- 316P binding to hPCSK9-mmh was not affected by the presence of mAbs specific for either chimeric protein #2 or chimeric protein #3, 316P binding to hPCSK9-mmh was greatly reduced by the presence of antibody specific for chimeric protein #1.
- Example 10 BIACORETM-Based Antigen Binding Profile Assessment
- Antibody binding profiles were also established for 316P, 300N, Control I, II, and III mAbs using BIACORETM1000. Briefly, hPCSK9-mmh was captured on an anti-myc surface. A first anti-hPCSK9 mAb (50 ⁇ g/ml) was injected over the PCSK9-bound surface for 10 min, at a flow rate of 10 ⁇ l/min at 25°C. A second anti-hPCSK9 mAb (50 ⁇ g/ml) was then injected over the first mAb-bound surface for 10 min, at a flow rate of 10 ⁇ l/min at 25°C. Ability of the first mAb to block binding of the second mAb was measured and is expressed as percent inhibition.
- HepG2 human hepatocellular liver carcinoma cell line
- LPDS lipoprotein deficient medium
- test mAb was added in various concentrations from 500 nM to 0.98 nM in LPDS medium.
- IC 50 antibody concentration at which increases LDL uptake by 50%).
- 4 mice C57BL/6) were injected with empty vector/saline (control), and 16 mice were injected with a 50 ⁇ g hPCSK9-mmh-DNA/saline mixture in the tail vein equal to 10% of their body weight.
- delivery of hPCSK9 resulted in a 1.6-fold elevation of total cholesterol, 3.4-fold elevation in LDL-choIesterol (LDL-C) and a 1.9-fold elevation in non- HDL cholesterol (relative to control).
- Serum hPCSK9 levels on day 7 were all greater than 1 ⁇ g/ml, as assessed by quantitative ELISA.
- test mAb or buffer control was administered on Day 1.
- Animal care Animals were housed in a temperature- and humidity-monitored environment. The targeted range of temperature and relative humidity was between 18-29 0 C and 30-70%, respectively.
- An automatic lighting system provided a 12-hour diurnal cycle. The dark cycle could be interrupted for study- or facility-related activities. The animals were individually housed in cages that comply with the Animal Welfare Act and recommendations set forth in The Guide for the Care and Use of Laboratory Animals (National Research Council 1996).
- Acclimation Period Previously quarantined animals were acclimated to the study room for a minimum of 14 days prior to initiation of dosing. Acclimation phase data was collected from all animals, including the spare. All animals were assessed for behavioral abnormalities that could affect performance on study. The spare animal was returned to stock after day 1.
- Blood collection Blood was collected by venipuncture from a peripheral vein from restrained, conscious animals. Whenever possible, blood was collected via a single draw and then divided appropriately.
- PK Study Blood samples (1.5 ml) were collected at pre-dose, 2 min, 15, min, 30 min, 1 hr, 2 hr, 4 hr, 8 hr, 12 hr, 24 hr, and subsequently once every 24 hr in serum separator tubes (SST). Specimen storage serum is transferred to 2 vials and stored at -60 0 C or below.
- Serum samples were analyzed using an optimized ELISA (enzyme-linked immunosorbant assay) procedure. Briefly, a microtiter plate was first coated with hPCSK9- mmh. Test mAb 316P or 300N was then captured on the hPCSK9-mmh plate.
- the captured 316P or 300N was detected using a biotinylated mouse anti-hlgG4 followed by binding to NeutrAvidin-HRP. Varying concentrations of 316P or 300N, ranging from 100 to 1.56 ng/ml, were used as standards. One percent monkey serum (assay matrix) in the absence of 316P or 300N was used as the zero (0 ng/ml) standard. The results, shown in Fig. 2, indicate a dose- dependent increase in serum 316P and 300N levels. PK parameters were analyzed using WinNonlin software (Noncompartmental analysis, Model 201- IV bolus administration).
- 316P exhibited maximal suppression of LDL-C levels of up to 80% relative to baseline. The length of this suppression was dose-dependent with at least 60% suppression (relative to baseline LDL-C levels) lasting approximately 18 days (5 mg/kg dose) and approximately 45 days (15 mg/kg dose). 300N exhibits a distinct pharmacodynamic profile from 316P. LDL-C suppression by 300N was sustained for a much longer period of time at comparable doses (50% LDL-C suppression for 28 days following a 5 mg/kg dose and 50% LDL-C suppression for approximately 90 days following a 15 mg/kg dose). There was little or no measurable change in liver function as determined by ALT and AST measurements. All animals receiving an anti-PCSK9 antibody in the study exhibited a rapid suppression If LDL-C and total cholesterol.
- mice were sacrificed and a total of eight tissues (liver, brain, lung, kidney, heart, ileum, adrenal, and pancreas) were collected and levels of LDL receptor were determined by Western blot. Changes in LDL receptor levels were only observed in liver.
- LDL-C 2.49 mg/dl at baseline and 3.1 mg/dl 6 hours after PCSK9; a 25% increase compared to 135% with vehicle.
- Prior administration of the non- hPCSK9 specific mAb blocked LDL-C increases by approximately 27% from PBS alone (LDL-C 4.1 mg/dl compared to PBS 5.6 mg/dl).
- a PK study was conducted in 6-week-old C57BL/6 mice and 11-15 week old hPCSK9 heterozygous mice.
- Serum bleeds were measured for hlgG levels at 0 hr (pre-bleed), 6 hr, day 1 , 3, 6, 10, 14, 21 , 28, 35, 42 and 56, for a total of 12 time points, using an anti-hFc capture and anti-hFc detection sandwich ELISA (Figs. 12 and 13).
- All mAbs achieved their T max at approximately 3 days with corresponding C max levels of approximately 47-1 15 ⁇ g/ml for C57BL/6 mice and 55-196 ⁇ g/ml for HPCSK9 heterozygous mice.
- Control I mAb levels were about 12 ⁇ g/ml and 300N levels were about 1 1 ⁇ g/ml whereas 316P levels were about less than 0.02 ⁇ g/ml in C57BL/6 mice.
- Control I mAb levels were about 29 ⁇ g/ml, while both 300N and 316P levels were below the quantifiable limit (BQL) of 0.02 ⁇ g/ml.
- Example 16 Anti-hPGSK9 Antibody Binding to Mutant/Variant HPCSK9 [0164] To further assess binding between hPCSK9 and anti-hPCSK9 mAbs, 21 variant hPCSK9 proteins in which each variant contained a single point mutation and two variant hPCSK9 proteins each contained a double mutation were generated. Each selected antibody was captured on a F(ab')2 anti-hlgG surface created through direct chemical coupling to a BIACORETM chip to form a captured antibody surface.
- K 0 was reduced from about 1 x 10 "9 M to between about 5 - 8 x10 "9 M when any one of S153, E159 or D343 were mutated; while T 1/2 was decreased from about 37 min to between about 4 - 6 min.
- K 0 was reduced from about 0.69 x 10 "9 M to between about 2 - 9 x10 "9 M when any of S147 or V380 were mutated; while T 1/2 was shortened from about 120 min to between about 24 - 66 min.
- 300N binding to hPCSK9 was not reduced by a mutation at residue 238.
- Control I antibody did not exhibit an altered binding affinity or T 1/2 in response to any of the positional mutations tested; Control Il antibody exhibited a 40-fold decreased affinity when residue 215 was mutated (R215E) (from -0.1x10 "9 to -4.5x10 ⁇ 9 ), and T 1/2 was about 27-fold shorter (from ⁇ 333 to 12 min); while Control III antibody exhibited a decreased affinity when residue 237 was mutated (K 0 decreased from -0.6x10 ⁇ 9 to -5.9 x10 ⁇ 9 , and T 1/2 decreased from -481 to -43 min).
- Binding specificity of 316P, 300N, and control anti-hPCSK9 mAbs to hPCSK9 variants was tested using an ELISA-based immunoassay.
- Anti-PCSK9 mAbs were coated on a 96-well plate overnight at 4°C.
- Each mmh-tagged variant hPCSK9 in CHO-k1 transient transfection lysate supernatants was added to the antibody-coated plate at various concentrations ranging from 0 to 5 nM.
- Example 17 Effect of 316P on Normolipemic and Hyperlipemic Hamster [0169] The ability of anti-PCSK9 mAb 316P to reduce serum LDL-C was tested in normolipemic or hyperlipemic Gold Syrian hamsters (Mesocricetus auratus). Male Syrian Hamsters, age 6-8 weeks, weighing between 80-100 grams, were allowed to acclimate for a period of 7 days before entry into the study. All animals were placed on either a standard chow diet or a hyperlipemic diet of chow supplemented with 0.1 % cholesterol and 10% coconut oil.
- the 316P mAb was delivered to hamsters by a single subcutaneous injection at doses of 1 , 3, or 10 mg/kg for normolipemic hamsters and at doses of 3, 10, or 30 mg/kg for hyperlipemic hamsters.
- Serum samples were taken from all groups at 24 hr and 7, 14, and 22 days post injection, at which time serum lipid levels were assessed and compared to baseline levels taken 7 days prior to the administration of the mAbs.
- Circulating total cholesterol and LDL-C in normolipemic hamsters was significantly reduced in a dose-dependent manner compared to vehicle injection. As shown in Fig. 14, administration of 316P effectively reduced LDL-C levels by up to 60% seven days post injection at the highest dose (10 mg/kg) tested. Similar cholesterol reducing effect of 316P was not observed in hyperlipemic hamsters.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Urology & Nephrology (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biotechnology (AREA)
- Diabetes (AREA)
- Physics & Mathematics (AREA)
- Obesity (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Pathology (AREA)
Priority Applications (43)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA2747123A CA2747123C (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to pcsk9 |
| BRPI0922885-3A BRPI0922885B1 (pt) | 2008-12-15 | 2009-12-15 | Anticorpo humano que se liga especificamente à próproteina convertase subtilisina/kexina tipo 9 (hpcsk9) humana, molécula de ácido nucleico isolada, vetor de expressão, método para produzir o referido anticorpo e composição farmacêutica |
| ES09793408T ES2613489T5 (es) | 2008-12-15 | 2009-12-15 | Anticuerpos humanos de alta afinidad contra PCSK9 |
| KR1020157001056A KR101699707B1 (ko) | 2008-12-15 | 2009-12-15 | Pcsk9에 대한 고친화성 사람 항체 |
| PL16200305T PL3156422T3 (pl) | 2008-12-15 | 2009-12-15 | Ludzkie przeciwciała o wysokim powinowactwie do PCSK9 |
| MYPI2011002276A MY188372A (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to pcsk9 |
| EP09793408.7A EP2358756B2 (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to pcsk9 |
| NZ601923A NZ601923A (en) | 2008-12-15 | 2009-12-15 | High Affinity Human Antibodies to PCSK9 |
| EP21185555.6A EP3943510A3 (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to pcsk9 |
| CN200980150206.XA CN102245641B (zh) | 2008-12-15 | 2009-12-15 | 抗pcsk9的高亲和力人抗体 |
| EP16200305.7A EP3156422B1 (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to pcsk9 |
| LTEP09793408.7T LT2358756T (lt) | 2008-12-15 | 2009-12-15 | Žmogaus antikūnai, pasižymintys dideliu giminingumu pcsk9 |
| AU2009333326A AU2009333326B9 (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to PCSK9 |
| JP2011540965A JP5318965B2 (ja) | 2008-12-15 | 2009-12-15 | Pcsk9に対する高親和性ヒト抗体 |
| HRP20170488TT HRP20170488T4 (hr) | 2008-12-15 | 2009-12-15 | Humana antitijela s visokim afinitetom prema pcsk9 |
| KR1020117013676A KR101504494B1 (ko) | 2008-12-15 | 2009-12-15 | Pcsk9에 대한 고친화성 사람 항체 |
| MEP-2011-111A ME01327B (me) | 2008-12-15 | 2009-12-15 | Humana antitela visokog afiniteta prema pcsk9 |
| DK09793408.7T DK2358756T4 (da) | 2008-12-15 | 2009-12-15 | Humane antistoffer med høj affinitet til PCSK9 |
| NZ593155A NZ593155A (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to human proprotein convertase subtilisin/kexin type 9 |
| MX2011006197A MX2011006197A (es) | 2008-12-15 | 2009-12-15 | Anticuerpos humanos de alta afinidad contra pcsk9. |
| UAA201108829A UA105650C2 (uk) | 2008-12-15 | 2009-12-15 | Високоафінні людські антитіла до pcsk9 |
| MEP-2017-70A ME02760B (me) | 2008-12-15 | 2009-12-15 | Humana antitijela visokog afiniteta prema pcsk9 |
| SI200931637T SI2358756T2 (sl) | 2008-12-15 | 2009-12-15 | Visokoafinitetna humana protitelesa proti PCSK9 |
| MX2014004581A MX341041B (es) | 2008-12-15 | 2009-12-15 | Anticuerpos humanos de alta afinidad contra pcsk9. |
| RU2011129316A RU2552169C3 (ru) | 2008-12-15 | 2009-12-15 | Высокоаффинные человеческие антитела к pcsk9 |
| RS20170255A RS55771B2 (sr) | 2008-12-15 | 2009-12-15 | Humana antitela visokog afiniteta prema pcsk9 |
| SM20170183T SMT201700183T1 (it) | 2008-12-15 | 2009-12-15 | Anticorpi umani ad alta affinita' per la pcsk9 |
| PL09793408.7T PL2358756T5 (pl) | 2008-12-15 | 2009-12-15 | Ludzkie przeciwciała o wysokim powinowactwie wobec pcsk9 |
| MYPI2021002676A MY203040A (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to pcsk9 |
| IL213050A IL213050A (en) | 2008-12-15 | 2011-05-22 | Antibody from a person who binds 9pcsk |
| ZA2011/03762A ZA201103762B (en) | 2008-12-15 | 2011-05-23 | High affinity human antibodies to pcsk9 |
| TN2011000300A TN2011000300A1 (en) | 2008-12-15 | 2011-06-13 | High affinity human antibodies to pcsk9 |
| IL230771A IL230771A (en) | 2008-12-15 | 2014-02-02 | Antibody from a person that binds pcsk9 |
| CY20171100308T CY1118896T1 (el) | 2008-12-15 | 2017-03-10 | Υψηλης συναφειας ανθρωπινα αντισωματα προς pcsk9 |
| NL300879C NL300879I2 (nl) | 2008-12-15 | 2017-06-16 | Alirocumab |
| LTPA2017019C LTC2358756I2 (lt) | 2008-12-15 | 2017-06-19 | Žmogaus antikūnai, pasižymintys dideliu giminingumu pcsk9 |
| CY2017021C CY2017021I2 (el) | 2008-12-15 | 2017-06-19 | Υψηλης συναφειας ανθρωπινα αντισωματα προς pcsk9 |
| FR17C1022C FR17C1022I2 (fr) | 2008-12-15 | 2017-06-21 | Anticorps humains à grande affinité contre pcsk9 |
| LU00024C LUC00024I2 (enExample) | 2008-12-15 | 2017-06-21 | |
| NO2017029C NO2017029I2 (no) | 2008-12-15 | 2017-06-27 | Humant antistoff som spesifikt binder humant proprotein konvertasesubtilisin/keksin type 9 (hPCSK9) (alirokumab). |
| HUS1700029C HUS1700029I1 (hu) | 2008-12-15 | 2017-06-27 | Nagy affinitású PCSK9 elleni humán testek |
| FIEP09793408.7T FI2358756T4 (fi) | 2008-12-15 | 2017-07-03 | Ihmisen vasta-aineita, joilla on suuri affiniteetti PCSK9:ään |
| FIC20170031C FIC20170031I1 (fi) | 2008-12-15 | 2017-07-03 | alirokumabi |
Applications Claiming Priority (12)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12248208P | 2008-12-15 | 2008-12-15 | |
| US61/122,482 | 2008-12-15 | ||
| US21056609P | 2009-03-18 | 2009-03-18 | |
| US61/210,566 | 2009-03-18 | ||
| US16875309P | 2009-04-13 | 2009-04-13 | |
| US61/168,753 | 2009-04-13 | ||
| US21813609P | 2009-06-18 | 2009-06-18 | |
| US61/218,136 | 2009-06-18 | ||
| US24913509P | 2009-10-06 | 2009-10-06 | |
| US61/249,135 | 2009-10-06 | ||
| US26177609P | 2009-11-17 | 2009-11-17 | |
| US61/261,776 | 2009-11-17 |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| WO2010077854A1 true WO2010077854A1 (en) | 2010-07-08 |
| WO2010077854A8 WO2010077854A8 (en) | 2011-07-07 |
Family
ID=41668268
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2009/068013 Ceased WO2010077854A1 (en) | 2008-12-15 | 2009-12-15 | High affinity human antibodies to pcsk9 |
Country Status (46)
Cited By (169)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8030457B2 (en) | 2007-08-23 | 2011-10-04 | Amgen, Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| WO2012071372A2 (en) | 2010-11-23 | 2012-05-31 | Regeneron Pharmaceuticals, Inc. | Human antibodies to the glucagon receptor |
| EP2481758A1 (en) * | 2011-01-28 | 2012-08-01 | Sanofi | Human antibodies to PSCK9 for use in methods of treating particular groups of subjects (11566) |
| WO2012101252A3 (en) * | 2011-01-28 | 2012-11-15 | Sanofi | Human antibodies to pcsk9 for use in methods of treating particular groups of subjects |
| EP2545079A2 (en) * | 2010-03-11 | 2013-01-16 | Rinat Neuroscience Corporation | ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING |
| WO2013016648A2 (en) | 2011-07-28 | 2013-01-31 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-pcsk9 antibodies |
| WO2013050885A1 (en) | 2011-10-07 | 2013-04-11 | Merli Giovanni | A vehicle upper protection structure |
| WO2013086443A1 (en) | 2011-12-08 | 2013-06-13 | Amgen Inc. | Agonistic human lcat antigen binding proteins and their use in therapy |
| WO2013112438A1 (en) | 2012-01-23 | 2013-08-01 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-ang2 antibodies |
| US8530414B2 (en) | 2011-09-16 | 2013-09-10 | Eli Lilly And Company | Antibodies to PCSK9 and uses thereof |
| WO2013188855A1 (en) * | 2012-06-15 | 2013-12-19 | Genentech, Inc. | Anti-pcsk9 antibodies, formulations, dosing, and methods of use |
| WO2014028354A1 (en) * | 2012-08-13 | 2014-02-20 | Regeneron Pharmaceuticals, Inc. | Anti-pcsk9 antibodies with ph-dependent binding characteristics |
| WO2014031712A1 (en) | 2012-08-22 | 2014-02-27 | Regeneron Pharmaceuticals, Inc. | HUMAN ANTIBODIES TO GFRα3 AND METHODS OF USE THEREOF |
| EP2703008A1 (en) * | 2012-08-31 | 2014-03-05 | Sanofi | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
| US8710192B2 (en) | 2009-12-11 | 2014-04-29 | Irm Llc | PCSK9 antagonists |
| JP2014511106A (ja) * | 2010-12-22 | 2014-05-08 | ジェネンテック, インコーポレイテッド | 抗pcsk9抗体及び使用方法 |
| WO2014081780A1 (en) | 2012-11-21 | 2014-05-30 | Amgen Inc. | Drug delivery device |
| CN103930444A (zh) * | 2011-09-16 | 2014-07-16 | 瑞泽恩制药公司 | 用前蛋白转化酶枯草溶菌素-9(PCSK9)抑制剂降低脂蛋白(a)水平的方法 |
| JP2014516953A (ja) * | 2011-05-10 | 2014-07-17 | アムジエン・インコーポレーテツド | コレステロール関連障害を治療または予防する方法 |
| WO2014144096A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Drug cassette, autoinjector, and autoinjector system |
| WO2014143770A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Body contour adaptable autoinjector device |
| WO2014149357A1 (en) | 2013-03-22 | 2014-09-25 | Amgen Inc. | Injector and method of assembly |
| WO2014150983A3 (en) * | 2013-03-15 | 2014-12-04 | Amgen Inc. | Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9 (pcsk9) |
| WO2014194111A1 (en) * | 2013-05-30 | 2014-12-04 | Regeneron Pharmaceuticals, Inc. | Methods for treating autosomal dominant hypercholesterolemia associated with pcsk9 gain-of-function mutations |
| WO2014197752A1 (en) * | 2013-06-07 | 2014-12-11 | Regeneron Pharmaceuticals, Inc. | Methods fo inhibting atherosclerosis by administering an inhibitor of pcsk9 |
| US8945560B1 (en) | 2014-07-15 | 2015-02-03 | Kymab Limited | Method of treating rheumatoid arthritis using antibody to IL6R |
| US8980273B1 (en) | 2014-07-15 | 2015-03-17 | Kymab Limited | Method of treating atopic dermatitis or asthma using antibody to IL4RA |
| US8986694B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Targeting human nav1.7 variants for treatment of pain |
| US8986691B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Method of treating atopic dermatitis or asthma using antibody to IL4RA |
| US8992927B1 (en) | 2014-07-15 | 2015-03-31 | Kymab Limited | Targeting human NAV1.7 variants for treatment of pain |
| US8999341B1 (en) | 2014-07-15 | 2015-04-07 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
| WO2015049517A2 (en) | 2013-10-01 | 2015-04-09 | Kymab Limited | Animal models and therapeutic molecules |
| US9017678B1 (en) | 2014-07-15 | 2015-04-28 | Kymab Limited | Method of treating rheumatoid arthritis using antibody to IL6R |
| WO2015061389A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Drug delivery system with temperature-sensitive control |
| WO2015061386A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Injector and method of assembly |
| US9034332B1 (en) | 2014-07-15 | 2015-05-19 | Kymab Limited | Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| US9040052B1 (en) | 2013-12-17 | 2015-05-26 | Kymab Limited | Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
| US9045548B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| WO2015054619A3 (en) * | 2013-10-11 | 2015-06-04 | Sanofi | Use of a pcsk9 inhibitor to treat hyperlipidemia |
| US9051378B1 (en) | 2014-07-15 | 2015-06-09 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
| US9062105B1 (en) | 2014-07-15 | 2015-06-23 | Kymab Limited | Precision Medicine by targeting VEGF-A variants for treatment of retinopathy |
| US9067998B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting PD-1 variants for treatment of cancer |
| US9090698B2 (en) | 2009-10-08 | 2015-07-28 | The University Of North Carolina At Charlotte | Tumor specific antibodies and uses therefor |
| WO2015119906A1 (en) | 2014-02-05 | 2015-08-13 | Amgen Inc. | Drug delivery system with electromagnetic field generator |
| US9139648B1 (en) | 2014-07-15 | 2015-09-22 | Kymab Limited | Precision medicine by targeting human NAV1.9 variants for treatment of pain |
| WO2015142668A1 (en) * | 2014-03-17 | 2015-09-24 | Sanofi | Methods for reducing cardiovascular risk |
| US9150660B1 (en) | 2014-07-15 | 2015-10-06 | Kymab Limited | Precision Medicine by targeting human NAV1.8 variants for treatment of pain |
| DE202014010499U1 (de) | 2013-12-17 | 2015-10-20 | Kymab Limited | Targeting von humaner PCSK9 zur Cholesterinbehandlung |
| WO2015171777A1 (en) | 2014-05-07 | 2015-11-12 | Amgen Inc. | Autoinjector with shock reducing elements |
| WO2015187793A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Drug delivery system and method of use |
| EP2975059A1 (en) | 2014-07-15 | 2016-01-20 | Kymab Limited | Antibodies for use in treating conditions related to specific pcsk9 variants in specific patients populations |
| WO2016008899A1 (en) | 2014-07-15 | 2016-01-21 | Kymab Limited | Targeting human pcsk9 for cholesterol treatment |
| US9255154B2 (en) | 2012-05-08 | 2016-02-09 | Alderbio Holdings, Llc | Anti-PCSK9 antibodies and use thereof |
| WO2016023916A1 (en) | 2014-08-12 | 2016-02-18 | Kymab Limited | Treatment of disease using ligand binding to targets of interest |
| WO2016061220A2 (en) | 2014-10-14 | 2016-04-21 | Amgen Inc. | Drug injection device with visual and audio indicators |
| WO2016071701A1 (en) | 2014-11-07 | 2016-05-12 | Kymab Limited | Treatment of disease using ligand binding to targets of interest |
| WO2016100055A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with live button or user interface field |
| WO2016100781A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with proximity sensor |
| DE202015009002U1 (de) | 2014-07-15 | 2016-08-18 | Kymab Limited | Targeting von humaner PCSK9 zur Cholesterinbehandlung |
| WO2016133947A1 (en) | 2015-02-17 | 2016-08-25 | Amgen Inc. | Drug delivery device with vacuum assisted securement and/or feedback |
| WO2016138434A1 (en) | 2015-02-27 | 2016-09-01 | Amgen Inc. | Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement |
| US9434782B2 (en) | 2009-07-08 | 2016-09-06 | Kymab Limited | Animal models and therapeutic molecules |
| EP2758535B1 (en) | 2011-09-19 | 2016-11-09 | Kymab Limited | Antibodies, variable domains&chains tailored for human use |
| US9504236B2 (en) | 2009-07-08 | 2016-11-29 | Kymab Limited | Animal models and therapeutic molecules |
| US9550837B2 (en) | 2008-12-15 | 2017-01-24 | Regeneron Pharmaceuticals, Inc. | Therapeutic uses of anti-PCSK9 antibodies |
| WO2017039786A1 (en) | 2015-09-02 | 2017-03-09 | Amgen Inc. | Syringe assembly adapter for a syringe |
| WO2017063593A1 (en) * | 2015-10-16 | 2017-04-20 | Harbour Biomed Limited | Anti-pcsk9 antibodies and uses thereof |
| WO2017071513A1 (zh) * | 2015-10-26 | 2017-05-04 | 北京智仁美博生物科技有限公司 | 抗人pcsk9单克隆抗体及其用途 |
| WO2017100501A1 (en) | 2015-12-09 | 2017-06-15 | Amgen Inc. | Auto-injector with signaling cap |
| WO2017120178A1 (en) | 2016-01-06 | 2017-07-13 | Amgen Inc. | Auto-injector with signaling electronics |
| US9724411B2 (en) | 2008-12-15 | 2017-08-08 | Regeneron Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia and reducing LDL-C using antibodies to PCSK9 |
| WO2017160799A1 (en) | 2016-03-15 | 2017-09-21 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
| US9783618B2 (en) | 2013-05-01 | 2017-10-10 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| US9783593B2 (en) | 2013-05-02 | 2017-10-10 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
| US9788534B2 (en) | 2013-03-18 | 2017-10-17 | Kymab Limited | Animal models and therapeutic molecules |
| WO2017189089A1 (en) | 2016-04-29 | 2017-11-02 | Amgen Inc. | Drug delivery device with messaging label |
| WO2017192287A1 (en) | 2016-05-02 | 2017-11-09 | Amgen Inc. | Syringe adapter and guide for filling an on-body injector |
| WO2017197222A1 (en) | 2016-05-13 | 2017-11-16 | Amgen Inc. | Vial sleeve assembly |
| WO2017200989A1 (en) | 2016-05-16 | 2017-11-23 | Amgen Inc. | Data encryption in medical devices with limited computational capability |
| WO2017209899A1 (en) | 2016-06-03 | 2017-12-07 | Amgen Inc. | Impact testing apparatuses and methods for drug delivery devices |
| US9845362B2 (en) | 2010-10-08 | 2017-12-19 | The University Of North Carolina At Charlotte | Compositions comprising chimeric antigen receptors, T cells comprising the same, and methods of using the same |
| WO2018004842A1 (en) | 2016-07-01 | 2018-01-04 | Amgen Inc. | Drug delivery device having minimized risk of component fracture upon impact events |
| WO2018034784A1 (en) | 2016-08-17 | 2018-02-22 | Amgen Inc. | Drug delivery device with placement detection |
| US9924705B2 (en) | 2012-03-28 | 2018-03-27 | Kymab Limited | Animal models and therapeutic molecules |
| WO2018054240A1 (en) * | 2016-09-20 | 2018-03-29 | Wuxi Biologics (Shanghai) Co. Ltd. | Novel anti-pcsk9 antibodies |
| WO2018081234A1 (en) | 2016-10-25 | 2018-05-03 | Amgen Inc. | On-body injector |
| US9963716B2 (en) | 2011-09-26 | 2018-05-08 | Kymab Limited | Chimaeric surrogate light chains (SLC) comprising human VpreB |
| WO2018136398A1 (en) | 2017-01-17 | 2018-07-26 | Amgen Inc. | Injection devices and related methods of use and assembly |
| WO2018152073A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Insertion mechanism for drug delivery device |
| WO2018151890A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Drug delivery device with sterile fluid flowpath and related method of assembly |
| WO2018165499A1 (en) | 2017-03-09 | 2018-09-13 | Amgen Inc. | Insertion mechanism for drug delivery device |
| WO2018165143A1 (en) | 2017-03-06 | 2018-09-13 | Amgen Inc. | Drug delivery device with activation prevention feature |
| WO2018164829A1 (en) | 2017-03-07 | 2018-09-13 | Amgen Inc. | Needle insertion by overpressure |
| WO2018183039A1 (en) | 2017-03-28 | 2018-10-04 | Amgen Inc. | Plunger rod and syringe assembly system and method |
| US10111953B2 (en) | 2013-05-30 | 2018-10-30 | Regeneron Pharmaceuticals, Inc. | Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9) |
| WO2018226565A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Torque driven drug delivery device |
| WO2018226515A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Syringe assembly for a drug delivery device and method of assembly |
| WO2018237225A1 (en) | 2017-06-23 | 2018-12-27 | Amgen Inc. | Electronic drug delivery device comprising a cap activated by a switch assembly |
| WO2018236619A1 (en) | 2017-06-22 | 2018-12-27 | Amgen Inc. | Device activation impact/shock reduction |
| WO2019014014A1 (en) | 2017-07-14 | 2019-01-17 | Amgen Inc. | NEEDLE INSERTION-RETRACTING SYSTEM HAVING DOUBLE TORSION SPRING SYSTEM |
| WO2019018169A1 (en) | 2017-07-21 | 2019-01-24 | Amgen Inc. | PERMEABLE GAS SEALING ELEMENT FOR MEDICINE CONTAINER AND METHODS OF ASSEMBLY |
| WO2019022950A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | DRUG DELIVERY DEVICE WITH CONTAINER ACCESS SYSTEM AND ASSEMBLY METHOD THEREOF |
| WO2019022951A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | DRUG DELIVERY DEVICE WITH GEAR MODULE AND ASSEMBLY METHOD THEREOF |
| WO2019032482A2 (en) | 2017-08-09 | 2019-02-14 | Amgen Inc. | HYDRAULIC-PNEUMATIC PRESSURE CHAMBER DELIVERY SYSTEM |
| WO2019036181A1 (en) | 2017-08-18 | 2019-02-21 | Amgen Inc. | BODY INJECTOR WITH STERILE ADHESIVE PATCH |
| WO2019040548A1 (en) | 2017-08-22 | 2019-02-28 | Amgen Inc. | NEEDLE INSERTION MECHANISM FOR DRUG DELIVERY DEVICE |
| US10251377B2 (en) | 2012-03-28 | 2019-04-09 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
| WO2019070472A1 (en) | 2017-10-04 | 2019-04-11 | Amgen Inc. | FLOW ADAPTER FOR MEDICATION DELIVERY DEVICE |
| WO2019070552A1 (en) | 2017-10-06 | 2019-04-11 | Amgen Inc. | DRUG DELIVERY DEVICE COMPRISING A LOCKOUT ASSEMBLY AND ASSOCIATED ASSEMBLY METHOD |
| WO2019074579A1 (en) | 2017-10-09 | 2019-04-18 | Amgen Inc. | DRUG DELIVERY DEVICE COMPRISING A DRIVE ASSEMBLY AND ASSEMBLY METHOD THEREOF |
| WO2019090079A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | System and approaches for sterilizing a drug delivery device |
| WO2019090303A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Fill-finish assemblies and related methods |
| WO2019089178A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Drug delivery device with placement and flow sensing |
| WO2019094138A1 (en) | 2017-11-10 | 2019-05-16 | Amgen Inc. | Plungers for drug delivery devices |
| WO2019099324A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Door latch mechanism for drug delivery device |
| WO2019099322A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Autoinjector with stall and end point detection |
| EP3398968A4 (en) * | 2015-12-31 | 2019-08-07 | Jiangsu Hengrui Medicine Co., Ltd. | PCSK9 ANTIBODY, ANTIGEN-BINDING FRAGMENT AND MEDICAL APPLICATION THEREOF |
| TWI670077B (zh) * | 2013-11-12 | 2019-09-01 | 賽諾菲生物技術公司 | 使用pcsk9抑制劑之給藥療程 |
| WO2019173530A1 (en) | 2018-03-06 | 2019-09-12 | Sanofi Biotechnology | Use of pcsk9 inhibitor for reducing cardiovascular risk |
| WO2019231582A1 (en) | 2018-05-30 | 2019-12-05 | Amgen Inc. | Thermal spring release mechanism for a drug delivery device |
| WO2019231618A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Modular fluid path assemblies for drug delivery devices |
| EP3593839A1 (en) | 2013-03-15 | 2020-01-15 | Amgen Inc. | Drug cassette |
| US10544232B2 (en) | 2014-07-16 | 2020-01-28 | Sanofi Biotechnology | Methods for treating patients with heterozygous familial hypercholesterolemia (heFH) with an anti-PCSK9 antibody |
| WO2020023451A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
| WO2020023336A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with grip portion |
| WO2020023220A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation |
| WO2020023444A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
| WO2020028009A1 (en) | 2018-07-31 | 2020-02-06 | Amgen Inc. | Fluid path assembly for a drug delivery device |
| WO2020068623A1 (en) | 2018-09-24 | 2020-04-02 | Amgen Inc. | Interventional dosing systems and methods |
| WO2020068476A1 (en) | 2018-09-28 | 2020-04-02 | Amgen Inc. | Muscle wire escapement activation assembly for a drug delivery device |
| WO2020072846A1 (en) | 2018-10-05 | 2020-04-09 | Amgen Inc. | Drug delivery device having dose indicator |
| WO2020072577A1 (en) | 2018-10-02 | 2020-04-09 | Amgen Inc. | Injection systems for drug delivery with internal force transmission |
| US10618965B2 (en) | 2011-02-25 | 2020-04-14 | Chugai Seiyaku Kabushiki Kaisha | Method for altering plasma retention and immunogenicity of antigen-binding molecule |
| WO2020081479A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Drug delivery device having damping mechanism |
| WO2020081480A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Platform assembly process for drug delivery device |
| WO2020091981A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
| WO2020091956A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
| WO2020092056A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial needle retraction |
| US10667501B2 (en) | 2012-05-17 | 2020-06-02 | Kymab Limited | Transgenic non-human vertebrate for the in vivo production of dual specificity immunoglobulins or hypermutated heavy chain only immunoglobulins |
| US10688119B2 (en) | 2015-03-20 | 2020-06-23 | Aarhus Universitet | Inhibitors of PCSK9 for treatment of lipoprotein metabolism disorders |
| US10766960B2 (en) | 2012-12-27 | 2020-09-08 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
| US10772956B2 (en) | 2015-08-18 | 2020-09-15 | Regeneron Pharmaceuticals, Inc. | Methods for reducing or eliminating the need for lipoprotein apheresis in patients with hyperlipidemia by administering alirocumab |
| WO2020219482A1 (en) | 2019-04-24 | 2020-10-29 | Amgen Inc. | Syringe sterilization verification assemblies and methods |
| US10919953B2 (en) | 2012-08-24 | 2021-02-16 | Chugai Seiyaku Kabushiki Kaisha | FcgammaRIIB-specific Fc region variant |
| WO2021041067A2 (en) | 2019-08-23 | 2021-03-04 | Amgen Inc. | Drug delivery device with configurable needle shield engagement components and related methods |
| US11028184B2 (en) | 2016-06-08 | 2021-06-08 | Changzhou Bojia Biotechnology Co., Ltd | Long-acting PCSK9-specific binding protein and application thereof |
| WO2021119321A1 (en) | 2019-12-10 | 2021-06-17 | Regeneron Pharmaceuticals, Inc. | Use of a pcsk9 inhibitor to treat homozygous familial hypercholesterolemia |
| US11053308B2 (en) | 2016-08-05 | 2021-07-06 | Chugai Seiyaku Kabushiki Kaisha | Method for treating IL-8-related diseases |
| US11180548B2 (en) | 2015-02-05 | 2021-11-23 | Chugai Seiyaku Kabushiki Kaisha | Methods of neutralizing IL-8 biological activity |
| US11267868B2 (en) | 2013-04-02 | 2022-03-08 | Chugai Seiyaku Kabushiki Kaisha | Fc region variant |
| US11359009B2 (en) | 2015-12-25 | 2022-06-14 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies and methods of use |
| US11454633B2 (en) | 2014-12-19 | 2022-09-27 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use |
| US11485795B2 (en) | 2016-12-24 | 2022-11-01 | Innovent Biologics (Suzhou) Co., Ltd | Anti-PCSK9 antibody and use thereof |
| WO2022246055A1 (en) | 2021-05-21 | 2022-11-24 | Amgen Inc. | Method of optimizing a filling recipe for a drug container |
| US11554181B2 (en) | 2014-09-05 | 2023-01-17 | The University Of North Carolina At Charlotte | Tumor specific antibody conjugates and uses therefor |
| US11707056B2 (en) | 2013-05-02 | 2023-07-25 | Kymab Limited | Animals, repertoires and methods |
| US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
| US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
| US11820793B2 (en) | 2011-11-30 | 2023-11-21 | Chugai Seiyaku Kabushiki Kaisha | Drug containing carrier into cell for forming immune complex |
| US11827699B2 (en) | 2011-09-30 | 2023-11-28 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities |
| US12084513B2 (en) | 2017-11-14 | 2024-09-10 | Chugai Seiyaku Kabushiki Kaisha | Anti-C1S antibodies and methods of use |
| EP4467563A1 (en) * | 2023-05-23 | 2024-11-27 | JLP Health GmbH | Ldlr derived polypeptides for anti-viral uses |
| WO2024240848A1 (en) * | 2023-05-23 | 2024-11-28 | Jlp Health Gmbh | Ldlr derived polypeptides for anti-viral uses |
| US12209128B2 (en) | 2016-06-20 | 2025-01-28 | Kymab Limited | Anti-PD-L1 antibodies |
| US12304960B2 (en) | 2018-08-10 | 2025-05-20 | Chugai Seiyaku Kabushiki Kaisha | Anti-CD137 antigen-binding molecule and utilization thereof |
| US12371511B2 (en) | 2011-06-30 | 2025-07-29 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
| US12384855B2 (en) | 2018-12-19 | 2025-08-12 | Kymab Limited | PCSK9 antagonists |
| US12473353B2 (en) | 2019-05-15 | 2025-11-18 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule, a pharmaceutical composition, and a method |
Families Citing this family (133)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2012018687A1 (en) * | 2010-08-02 | 2012-02-09 | Macrogenics, Inc. | Covalent diabodies and uses thereof |
| US20130072665A1 (en) * | 2007-08-23 | 2013-03-21 | Simon Mark Jackson | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (pcsk9) |
| MX368932B (es) | 2009-06-26 | 2019-10-22 | Regeneron Pharma | Anticuerpos biespecificos facilmente aislados con formato de inmunoglobulina original. |
| IN2012DN03824A (enExample) | 2009-10-30 | 2015-08-28 | Merck Sharp & Dohme | |
| JO3274B1 (ar) | 2009-12-24 | 2018-09-16 | Regeneron Pharma | أجسام مضادة بشرية للبروتين 4 المشابه لأجيوبيوتين البشري |
| EP2650016A1 (en) | 2011-01-28 | 2013-10-16 | Sanofi | Human antibodies to PSCK9 for use in methods of treatment based on particular dosage regimens (11565) |
| US8337530B2 (en) * | 2011-03-09 | 2012-12-25 | Zimmer Spine, Inc. | Polyaxial pedicle screw with increased angulation |
| AR088782A1 (es) | 2011-04-29 | 2014-07-10 | Sanofi Sa | Sistemas de ensayo y metodos para identificar y caracterizar farmacos hipolipemiantes |
| KR102111171B1 (ko) | 2011-06-10 | 2020-05-14 | 메디뮨 엘엘씨 | 항슈도모나스 psl 결합 분자 및 그의 용도 |
| AR087329A1 (es) | 2011-06-17 | 2014-03-19 | Regeneron Pharma | Anticuerpos humanos contra proteina 3 de tipo angiopoietina humana |
| HK1202804A1 (en) * | 2011-07-14 | 2015-10-09 | 辉瑞公司 | Treatment with anti-pcsk9 antibodies |
| SMT202000542T1 (it) * | 2011-11-07 | 2020-11-10 | Medimmune Ltd | Terapie di combinazione utilizzando molecole di legame anti-psl e pcrv di pseudomonas |
| ES2886123T3 (es) * | 2012-01-31 | 2021-12-16 | Regeneron Pharma | Anticuerpos anti-asic1 y usos de los mismos |
| CA2865644A1 (en) | 2012-03-16 | 2013-09-19 | Regeneron Pharmaceuticals, Inc. | Mice that produce antigen-binding proteins with ph-dependent binding characteristics |
| KR102213535B1 (ko) | 2012-03-16 | 2021-02-08 | 리제너론 파마슈티칼스 인코포레이티드 | pH-민감성 면역글로불린 서열을 발현하는 비-사람 동물 |
| EP3348140B1 (en) | 2012-03-16 | 2020-12-30 | Regeneron Pharmaceuticals, Inc. | Histidine engineered light chain antibodies and genetically modified rodents for generating the same |
| US20140013456A1 (en) | 2012-03-16 | 2014-01-09 | Regeneron Pharmaceuticals, Inc. | Histidine Engineered Light Chain Antibodies and Genetically Modified Non-Human Animals for Generating the Same |
| US20130281355A1 (en) * | 2012-04-24 | 2013-10-24 | Genentech, Inc. | Cell culture compositions and methods for polypeptide production |
| EA039663B1 (ru) * | 2012-05-03 | 2022-02-24 | Амген Инк. | Применение антитела против pcsk9 для снижения сывороточного холестерина лпнп и лечения связанных с холестерином расстройств |
| EP2703009A1 (en) | 2012-08-31 | 2014-03-05 | Sanofi | Combination treatments involving antibodies to human PCSK9 |
| EP2706070A1 (en) | 2012-09-06 | 2014-03-12 | Sanofi | Combination treatments involving antibodies to human PCSK9 |
| WO2014107657A2 (en) * | 2013-01-04 | 2014-07-10 | Kohn Kenneth I | Cholesterol-lowering compounds in combination with lipid metabolism-altering compounds of non-absorbable sugars, compounds that convert nh3 to nh4+, or hydrogen-generating compounds for the treatment of high cholesterol and inflammation |
| WO2014107739A1 (en) * | 2013-01-07 | 2014-07-10 | Eleven Biotherapeutics, Inc. | Antibodies against pcsk9 |
| AR095196A1 (es) | 2013-03-15 | 2015-09-30 | Regeneron Pharma | Medio de cultivo celular libre de suero |
| WO2014149699A1 (en) | 2013-03-15 | 2014-09-25 | Eli Lilly And Company | Bifunctional protein |
| EP2810955A1 (en) | 2013-06-07 | 2014-12-10 | Sanofi | Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9 |
| ES2901400T3 (es) * | 2013-06-07 | 2022-03-22 | Regeneron Pharma | Métodos para inhibir la ateroesclerosis administrando un inhibidor de PCSK9 |
| EP2862877A1 (en) | 2013-10-18 | 2015-04-22 | Sanofi | Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9 |
| AU2013396206B2 (en) | 2013-06-28 | 2019-11-14 | Amgen Inc. | Methods for treating homozygous familial hypercholesterolemia |
| ES2864350T3 (es) * | 2013-11-12 | 2021-10-13 | Regeneron Pharma | Pautas posológicas para uso con inhibidores de PCSK9 |
| ES2729057T3 (es) * | 2013-12-17 | 2019-10-30 | Aimm Therapeutics Bv | Medios y métodos para contrarrestar trastornos mieloproliferativos o linfoproliferativos |
| CA2939507A1 (en) | 2014-02-14 | 2015-08-20 | Regeneron Pharmaceuticals, Inc. | Methods for treating patients with hypercholesterolemia that is not adequately controlled by moderate-dose statin therapy |
| CA2947605A1 (en) | 2014-05-13 | 2015-11-19 | Bioatla, Llc | Conditionally active biological proteins |
| WO2015200438A1 (en) * | 2014-06-24 | 2015-12-30 | Eleven Biotherapeutics, Inc. | High affinity antibodies against pcsk9 |
| KR20230007538A (ko) * | 2014-07-16 | 2023-01-12 | 사노피 바이오테크놀로지 | 고콜레스테롤혈증이 있는 심혈관 위험이 높은 환자를 치료하는 방법 |
| AR101262A1 (es) | 2014-07-26 | 2016-12-07 | Regeneron Pharma | Plataforma de purificación para anticuerpos biespecíficos |
| US20170224816A1 (en) | 2014-08-06 | 2017-08-10 | Rinat Neuroscience Corp. | Methods for reducing ldl-cholesterol |
| WO2016020799A1 (en) | 2014-08-06 | 2016-02-11 | Rinat Neuroscience Corp. | Methods for reducing ldl-cholesterol |
| EP3194441A1 (en) | 2014-09-16 | 2017-07-26 | Regeneron Pharmaceuticals, Inc. | Anti-glucagon antibodies and uses thereof |
| US10472424B2 (en) | 2014-09-23 | 2019-11-12 | Pfizer Inc. | Treatment with anti-PCSK9 antibodies |
| MA54716A (fr) | 2014-10-23 | 2021-11-17 | Amgen Inc | Réduction de la viscosité de formulations pharmaceutiques |
| CN105461809B (zh) * | 2015-02-11 | 2018-10-12 | 康融东方(广东)医药有限公司 | Pcsk9抗体、其药物组合物及其用途 |
| JP6913030B2 (ja) | 2015-05-18 | 2021-08-04 | アジェンシス,インコーポレイテッド | Axlタンパク質に結合する抗体 |
| WO2016187354A1 (en) | 2015-05-18 | 2016-11-24 | Agensys, Inc. | Antibodies that bind to axl proteins |
| CN106084058B (zh) * | 2015-07-15 | 2019-08-27 | 北京天广实生物技术股份有限公司 | 抗人pcsk9单克隆抗体 |
| TW202440903A (zh) | 2015-08-04 | 2024-10-16 | 美商再生元醫藥公司 | 補充牛磺酸之細胞培養基及用法(一) |
| WO2017055966A1 (en) | 2015-10-01 | 2017-04-06 | Pfizer Inc. | Low viscosity antibody compositions |
| CN106810609A (zh) * | 2015-11-27 | 2017-06-09 | 苏州君盟生物医药科技有限公司 | 抗pcsk9抗体及其应用 |
| KR102860143B1 (ko) * | 2016-02-17 | 2025-09-16 | 리제너론 파아마슈티컬스, 인크. | Angptl3의 억제제를 투여함으로써 죽상 동맥경화증을 치료하거나 예방하기 위한 방법 |
| MA43734A (fr) | 2016-03-03 | 2018-11-28 | Regeneron Pharma | Procédés de traitement de patients atteints d'hyperlipidémie par administration d'un inhibiteur de pcsk9 en combinaison avec un inhibiteur d'angptl3 |
| WO2017163049A1 (en) | 2016-03-21 | 2017-09-28 | Kymab Limited | Anti-malarial antibodies that bind circumsporozoite protein |
| US11066464B2 (en) | 2016-03-21 | 2021-07-20 | Kymab Limited | Anti-malarial antibodies that bind circumsporozoite protein |
| CN107266575B (zh) * | 2016-04-07 | 2021-12-24 | 天士力生物医药股份有限公司 | 前蛋白转化酶枯草溶菌素kexin 9型的结合蛋白及其应用 |
| WO2018029474A2 (en) | 2016-08-09 | 2018-02-15 | Kymab Limited | Anti-icos antibodies |
| US9567399B1 (en) | 2016-06-20 | 2017-02-14 | Kymab Limited | Antibodies and immunocytokines |
| US11365252B2 (en) | 2016-07-20 | 2022-06-21 | University Of Utah Research Foundation | CD229 CAR T cells and methods of use thereof |
| CN116640214A (zh) | 2016-08-09 | 2023-08-25 | 科马布有限公司 | 分离抗体及其应用 |
| WO2018039499A1 (en) | 2016-08-24 | 2018-03-01 | Regeneron Pharmaceuticals, Inc. | Host cell protein modification |
| US11111313B2 (en) | 2016-09-20 | 2021-09-07 | WuXi Biologics Ireland Limited | Anti-PCSK9 antibodies |
| MA46466A (fr) | 2016-10-06 | 2019-08-14 | Amgen Inc | Formulations pharmaceutiques de protéines à viscosité réduite |
| WO2018075621A1 (en) * | 2016-10-19 | 2018-04-26 | Vanderbilt University | Human orthopoxvirus antibodies and methods of use therefor |
| EP3529278A1 (en) | 2016-10-20 | 2019-08-28 | Regeneron Pharmaceuticals, Inc. | Methods of lowering blood glucose levels |
| JOP20190112A1 (ar) | 2016-11-14 | 2019-05-14 | Amgen Inc | علاجات مدمجة لتصلب الشرايين، شاملة مرض قلبي وعائي تصلبي |
| CN107698680B (zh) * | 2017-01-22 | 2019-03-01 | 北京东方百泰生物科技有限公司 | 抗pcsk9单克隆抗体 |
| CN108424457B (zh) * | 2017-02-13 | 2021-06-01 | 成都金洛克锶生物技术有限公司 | 针对pcsk9抗体与检测试剂盒的制备及其用途 |
| JP7377596B2 (ja) | 2017-02-22 | 2023-11-10 | アムジエン・インコーポレーテツド | 低粘度、高濃度エボロクマブ製剤及びそれらの製造方法 |
| US9989519B1 (en) * | 2017-05-04 | 2018-06-05 | Clayton Pharmaceuticals, LLC | Method for determining in vitro bioequivalence of a sucralfate suspension sample to a sucralfate suspension reference listed drug (RLD) |
| TW202310872A (zh) * | 2017-06-09 | 2023-03-16 | 法商賽諾菲生物技術公司 | 藉由投予pcsk9抑制劑治療糖尿病患者高血脂症之方法 |
| US20190031774A1 (en) | 2017-06-09 | 2019-01-31 | Sanofi Biotechnology | Methods for treating hyperlipidemia in diabetic patients by administering a pcsk9 inhibitor |
| GB201709808D0 (en) | 2017-06-20 | 2017-08-02 | Kymab Ltd | Antibodies |
| MX2020000228A (es) | 2017-07-06 | 2020-08-10 | Regeneron Pharma | Proceso de cultivo celular para producir una glicoproteina. |
| GB201721338D0 (en) | 2017-12-19 | 2018-01-31 | Kymab Ltd | Anti-icos Antibodies |
| EP3728314A1 (en) | 2017-12-19 | 2020-10-28 | Kymab Limited | Bispecific antibody for icos and pd-l1 |
| JP7321159B2 (ja) | 2017-12-22 | 2023-08-04 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 薬剤生成物不純物を特性決定するためのシステム及び方法 |
| BR112020013336A2 (pt) | 2018-01-31 | 2020-12-01 | Regeneron Pharmaceuticals, Inc. | produto farmacêutico proteico, métodos para caracterizar as impurezas do produto farmacêutico proteico de alto peso molecular intermediário, para produção de um anticorpo, e para caracterizar as impurezas de fármaco com variação de carga, anticorpo, e, sistema para caracterizar impurezas de fármaco de alto peso molecular intermediário. |
| US12110342B2 (en) | 2018-01-31 | 2024-10-08 | The Wistar Institute Of Anatomy And Biology | Nucleic acid monoclonal antibodies targeting PCSK9 and methods of use |
| TWI786265B (zh) | 2018-02-02 | 2022-12-11 | 美商再生元醫藥公司 | 用於表徵蛋白質二聚合之系統及方法 |
| US11957745B2 (en) | 2018-02-22 | 2024-04-16 | Vanderbilt University | Human Japanese Encephalitis Virus antibodies and methods of use therefor |
| MX2020008988A (es) | 2018-02-28 | 2020-09-28 | Regeneron Pharma | Sistemas y metodos para la identificacion de contaminantes virales. |
| US12253490B2 (en) | 2018-03-19 | 2025-03-18 | Regeneron Pharmaceuticals, Inc. | Microchip capillary electrophoresis assays and reagents |
| DK3768709T3 (da) | 2018-03-19 | 2024-01-29 | Regeneron Pharma | Mikrochip-kapillærelektroforese-assays og reagenser |
| US12259355B2 (en) | 2018-03-19 | 2025-03-25 | Regeneron Pharmaceuticals, Inc. | Microchip capillary electrophoresis assays and reagents |
| TW202016125A (zh) | 2018-05-10 | 2020-05-01 | 美商再生元醫藥公司 | 用於定量及調節蛋白質黏度之系統與方法 |
| MY208638A (en) | 2018-07-02 | 2025-05-21 | Amgen Inc | Anti-steap1 antigen-binding protein |
| IL280880B2 (en) | 2018-08-27 | 2025-04-01 | Regeneron Pharma | Using Raman Spectroscopy in Downstream Purification |
| BR112020026348A2 (pt) | 2018-08-30 | 2021-03-30 | Regeneron Pharmaceuticals, Inc. | Método para avaliar a estequiometria e distribuição de tamanho de complexos de proteínas, para selecionar um medicamento de proteína principal e para caracterizar complexos de proteínas, e, composição farmacêutica |
| CN110872353B (zh) * | 2018-09-03 | 2021-05-04 | 深圳华大基因科技有限公司 | 特异性结合pcsk9抗原的纳米抗体及其制备方法和应用 |
| CN113286814A (zh) * | 2018-10-31 | 2021-08-20 | 德里尼亚公司 | 多价调节性t细胞调节子 |
| CN111110841A (zh) * | 2018-10-31 | 2020-05-08 | 上海君实生物医药科技股份有限公司 | 含有抗pcsk9抗体的稳定制剂 |
| FI3857237T3 (fi) | 2019-01-16 | 2023-05-03 | Regeneron Pharma | Disulfidisidosten luonnehtimismenetelmiä |
| CN109734813B (zh) * | 2019-01-28 | 2022-06-17 | 广东昭泰体内生物医药科技有限公司 | 一种嵌合抗原受体及其应用 |
| US20200363400A1 (en) | 2019-05-13 | 2020-11-19 | Regeneron Pharmaceuticals, Inc. | Competitive Ligand Binding Assays |
| EP4640848A2 (en) | 2019-05-17 | 2025-10-29 | Regeneron Pharmaceuticals, Inc. | Genome-based methods for reducing cardiovascular risk |
| CN120334439A (zh) | 2019-09-24 | 2025-07-18 | 里珍纳龙药品有限公司 | 用于色谱介质的使用和再生的系统及方法 |
| WO2021058597A1 (en) | 2019-09-24 | 2021-04-01 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods of determining whether a subject is at risk of developing arterial plaques |
| US12297451B1 (en) | 2019-10-25 | 2025-05-13 | Regeneron Pharmaceuticals, Inc. | Cell culture medium |
| CN119318636A (zh) | 2019-11-25 | 2025-01-17 | 里珍纳龙药品有限公司 | 使用非水性乳液的持续释放调配物 |
| EP4354145B1 (en) | 2020-01-21 | 2025-09-17 | Regeneron Pharmaceuticals, Inc. | Deglycosylation methods for electrophoresis of glycosylated proteins |
| CN116490208A (zh) * | 2020-08-06 | 2023-07-25 | 史坦利科西斯治疗有限责任公司 | Il-8抗体及其使用方法 |
| BR112023003273A2 (pt) | 2020-08-31 | 2023-05-02 | Regeneron Pharma | Estratégias de alimentação de asparagina para melhorar desempenho da cultura celular e mitigar variantes da sequência de asparagina |
| CA3191141A1 (en) | 2020-11-25 | 2022-06-02 | Hunter Chen | Sustained release formulations using non-aqueous membrane emulsification |
| WO2022133135A1 (en) | 2020-12-17 | 2022-06-23 | Regeneron Pharmaceuticals, Inc. | Fabrication of protein-encapsulating microgels |
| TW202233827A (zh) | 2021-01-20 | 2022-09-01 | 美商再生元醫藥公司 | 改良細胞培養中蛋白質效價的方法 |
| AR125585A1 (es) | 2021-03-03 | 2023-08-02 | Regeneron Pharma | Sistemas y métodos para cuantificar y modificar la viscosidad de proteínas |
| IL305731A (en) | 2021-03-26 | 2023-11-01 | Regeneron Pharma | Methods and systems for developing mixing protocols |
| WO2022243378A1 (en) | 2021-05-18 | 2022-11-24 | Kymab Limited | Uses of anti-icos antibodies |
| BR112023024984A2 (pt) | 2021-06-01 | 2024-02-20 | Regeneron Pharma | Tampão de amostra de eletroforese aquosa, método para identificar contaminantes ou impurezas em uma amostra de droga proteica, e, kit |
| GB202107994D0 (en) | 2021-06-04 | 2021-07-21 | Kymab Ltd | Treatment of cancer |
| EP4367134A1 (en) | 2021-07-05 | 2024-05-15 | Regeneron Pharmaceuticals, Inc. | Utilization of antibodies to shape antibody responses to an antigen |
| TW202326138A (zh) | 2021-09-08 | 2023-07-01 | 美商再生元醫藥公司 | 用於定量抗體及其他含Fc蛋白之高通量及基於質譜之方法 |
| CN118139881A (zh) | 2021-09-20 | 2024-06-04 | 瑞泽恩制药公司 | 控制抗体异质性的方法 |
| JP2024540835A (ja) | 2021-10-07 | 2024-11-06 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | pHメーター較正及び補正 |
| IL311245A (en) | 2021-10-07 | 2024-05-01 | Regeneron Pharma | Systems and methods for pH modeling and control |
| CN118176167A (zh) | 2021-10-26 | 2024-06-11 | 瑞泽恩制药公司 | 用于产生实验室用水和分配处于不同温度的实验室用水的系统和方法 |
| CN119137473A (zh) | 2022-03-18 | 2024-12-13 | 里珍纳龙药品有限公司 | 分析多肽变体的方法及系统 |
| EP4525991A1 (en) | 2022-05-18 | 2025-03-26 | Kymab Limited | Uses of anti-icos antibodies |
| WO2024040020A1 (en) | 2022-08-15 | 2024-02-22 | Absci Corporation | Quantitative affinity activity specific cell enrichment |
| WO2024130165A1 (en) | 2022-12-16 | 2024-06-20 | Regeneron Pharmaceuticals, Inc. | Angptl3 inhibitors for triglyceride reduction in multifactorial chylomicronemia syndrome |
| EP4634659A1 (en) | 2022-12-16 | 2025-10-22 | Regeneron Pharmaceuticals, Inc. | Methods and systems for assessing chromatographic column integrity |
| WO2024158880A1 (en) | 2023-01-25 | 2024-08-02 | Regeneron Pharmaceuticals, Inc. | Methods of modeling liquid protein composition stability |
| EP4655595A1 (en) | 2023-01-25 | 2025-12-03 | Regeneron Pharmaceuticals, Inc. | Mass spectrometry-based characterization of antibodies co-expressed in vivo |
| TW202445138A (zh) | 2023-02-01 | 2024-11-16 | 美商再生元醫藥公司 | 用於生物巨分子分析之具質譜法的不對稱流場流分離 |
| WO2024178213A2 (en) | 2023-02-22 | 2024-08-29 | Regeneron Pharmaceuticals, Inc. | System suitability parameters and column aging |
| WO2024229136A1 (en) | 2023-05-01 | 2024-11-07 | Regeneron Pharmaceuticals, Inc. | Multidose antibody drug products using phenol or benzyl alcohol |
| TW202528736A (zh) | 2023-09-08 | 2025-07-16 | 美商再生元醫藥公司 | 用於評估層析管柱完整性的方法及系統 |
| US20250095773A1 (en) | 2023-09-18 | 2025-03-20 | Regeneron Pharmaceuticals, Inc. | Methods and systems for developing chromatography protocols |
| US20250109905A1 (en) | 2023-09-29 | 2025-04-03 | Regeneron Pharmaceuticals, Inc. | Lyophilization using controlled nucleation |
| WO2025085594A1 (en) | 2023-10-18 | 2025-04-24 | Regeneron Pharmaceuticals, Inc. | Rapid purification of monoclonal antibody from in-process upstream cell culture material |
| WO2025096932A1 (en) | 2023-11-02 | 2025-05-08 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipase activity using stress |
| WO2025144700A1 (en) | 2023-12-27 | 2025-07-03 | Absci Corporation | Nanobody library screening using bacterial surface display |
| WO2025166281A1 (en) | 2024-02-01 | 2025-08-07 | Regeneron Pharmaceuticals, Inc. | Platform for charge-detection mass spectrometry analysis of aavs |
| WO2025175164A1 (en) | 2024-02-16 | 2025-08-21 | Regeneron Pharmaceuticals, Inc. | Methods of producing concentrated formulated drug substances comprising proteins, and concentrated formulated drug substance made by the methods |
| WO2025194043A1 (en) | 2024-03-15 | 2025-09-18 | Regeneron Pharmaceuticals, Inc. | Polysorbate and polyoxyethylene sorbitan as excipients for stable protein formulations |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008057458A2 (en) * | 2006-11-07 | 2008-05-15 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2008057459A2 (en) * | 2006-11-07 | 2008-05-15 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2008057457A2 (en) * | 2006-11-07 | 2008-05-15 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2008125623A2 (en) * | 2007-04-13 | 2008-10-23 | Novartis Ag | Molecules and methods for modulating proprotein convertase subtilisin/kexin type 9 (pcsk9) |
| WO2008133647A2 (en) * | 2006-11-07 | 2008-11-06 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2009026558A1 (en) | 2007-08-23 | 2009-02-26 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (pcsk9) |
| WO2009055783A2 (en) * | 2007-10-26 | 2009-04-30 | Schering Corporation | Anti-pcsk9 and methods for treating lipid and cholesterol disorders |
Family Cites Families (177)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0747045B2 (ja) | 1986-10-15 | 1995-05-24 | 株式会社大協精工 | 積層した注射器用滑栓 |
| US5670373A (en) | 1988-01-22 | 1997-09-23 | Kishimoto; Tadamitsu | Antibody to human interleukin-6 receptor |
| US5171840A (en) | 1988-01-22 | 1992-12-15 | Tadamitsu Kishimoto | Receptor protein for human B cell stimulatory factor-2 |
| FI94339C (fi) | 1989-07-21 | 1995-08-25 | Warner Lambert Co | Menetelmä farmaseuttisesti käyttökelpoisen /R-(R*,R*)/-2-(4-fluorifenyyli)- , -dihydroksi-5-(1-metyylietyyli)-3-fenyyli-4-/(fenyyliamino)karbonyyli/-1H-pyrroli-1-heptaanihapon ja sen farmaseuttisesti hyväksyttävien suolojen valmistamiseksi |
| US5859205A (en) | 1989-12-21 | 1999-01-12 | Celltech Limited | Humanised antibodies |
| DE69133566T2 (de) | 1990-01-12 | 2007-12-06 | Amgen Fremont Inc. | Bildung von xenogenen Antikörpern |
| US5016784A (en) | 1990-02-15 | 1991-05-21 | Dexus Research Inc. | Applicator for highly reactive materials |
| US5795965A (en) | 1991-04-25 | 1998-08-18 | Chugai Seiyaku Kabushiki Kaisha | Reshaped human to human interleukin-6 receptor |
| JP2648897B2 (ja) | 1991-07-01 | 1997-09-03 | 塩野義製薬株式会社 | ピリミジン誘導体 |
| WO1993000807A1 (en) | 1991-07-03 | 1993-01-21 | Cryolife, Inc. | Method for stabilization of biomaterials |
| JP3100727B2 (ja) | 1992-01-23 | 2000-10-23 | 株式会社大協精工 | 変性ポリシロキサン組成物及び該組成物を被覆した衛生ゴム製品 |
| AU670793B2 (en) | 1992-04-30 | 1996-08-01 | Alpha Therapeutic Corporation | Improved solubilization and stabilization of factor VIII complex |
| CA2147466A1 (en) | 1992-10-20 | 1994-04-28 | Just P. J. Brakenhoff | Interleukin-6 receptor antagonists |
| US6177401B1 (en) | 1992-11-13 | 2001-01-23 | Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften | Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis |
| US5888511A (en) | 1993-02-26 | 1999-03-30 | Advanced Biotherapy Concepts, Inc. | Treatment of autoimmune diseases, including AIDS |
| US5888510A (en) | 1993-07-21 | 1999-03-30 | Chugai Seiyaku Kabushiki Kaisha | Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component |
| GB9410534D0 (en) | 1994-05-26 | 1994-07-13 | Lynxvale Ltd | Improvements in or relating to growth factor inhibitors |
| WO1996012503A1 (en) | 1994-10-21 | 1996-05-02 | Chugai Seiyaku Kabushiki Kaisha | Remedy for diseases caused by il-6 production |
| CN1075387C (zh) | 1994-12-29 | 2001-11-28 | 中外制药株式会社 | 含有il-6拮抗剂的抗肿瘤剂的作用增强剂 |
| CA2211578C (en) | 1995-02-13 | 2010-09-21 | Chugai Seiyaku Kabushiki Kaisha | Muscle protein proteolysis inhibiting agent containing il-6 receptor antibody |
| JP3172057B2 (ja) | 1995-04-05 | 2001-06-04 | 株式会社大協精工 | ラミネートゴム栓 |
| US6267958B1 (en) | 1995-07-27 | 2001-07-31 | Genentech, Inc. | Protein formulation |
| MX9800684A (es) | 1995-07-27 | 1998-04-30 | Genentech Inc | Formulacion de proteinas liofilizadas isotonicas estables. |
| US6685940B2 (en) | 1995-07-27 | 2004-02-03 | Genentech, Inc. | Protein formulation |
| JPH09154588A (ja) | 1995-10-07 | 1997-06-17 | Toagosei Co Ltd | Vegf結合性ポリペプチド |
| AU2548097A (en) | 1996-03-26 | 1997-10-17 | Eli Lilly And Company | Formulations of ob protein |
| US6100071A (en) | 1996-05-07 | 2000-08-08 | Genentech, Inc. | Receptors as novel inhibitors of vascular endothelial growth factor activity and processes for their production |
| ES2263178T3 (es) | 1996-06-27 | 2006-12-01 | Chugai Seiyaku Kabushiki Kaisha | Remedios para mieloma para ser utilizados junto con agentes antitumorales de mostaza nitrogenada. |
| EP0852951A1 (de) | 1996-11-19 | 1998-07-15 | Roche Diagnostics GmbH | Stabile lyophilisierte pharmazeutische Zubereitungen von mono- oder polyklonalen Antikörpern |
| US7312196B2 (en) | 1997-01-08 | 2007-12-25 | Amylin Pharmaceuticals, Inc. | Formulations for amylin agonist peptides |
| US20070224663A1 (en) | 1997-03-07 | 2007-09-27 | Human Genome Sciences, Inc. | Human Secreted Proteins |
| US6171586B1 (en) | 1997-06-13 | 2001-01-09 | Genentech, Inc. | Antibody formulation |
| US20020187150A1 (en) | 1997-08-15 | 2002-12-12 | Chugai Seiyaku Kabushiki Kaisha | Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient |
| US6187330B1 (en) | 1998-01-30 | 2001-02-13 | Scios Inc. | Controlled release delivery of peptide or protein |
| PT1074268E (pt) | 1998-03-17 | 2008-02-28 | Chugai Pharmaceutical Co Ltd | Agentes profilácticos ou terapêuticos para doenças intestinais inflamatórias contendo anticorpos antagonistas do receptor il-6 |
| JP3512349B2 (ja) | 1999-01-29 | 2004-03-29 | 株式会社大協精工 | 柱状ゴム要素の成形型 |
| US7001892B1 (en) | 1999-06-11 | 2006-02-21 | Purdue Research Foundation | Pharmaceutical materials and methods for their preparation and use |
| US7129338B1 (en) * | 1999-07-08 | 2006-10-31 | Research Association For Biotechnology | Secretory protein or membrane protein |
| EP1514933A1 (en) | 1999-07-08 | 2005-03-16 | Research Association for Biotechnology | Secretory protein or membrane protein |
| US7029895B2 (en) * | 1999-09-27 | 2006-04-18 | Millennium Pharmaceuticals, Inc. | 27411, a novel human PGP synthase |
| US6670373B1 (en) | 1999-10-07 | 2003-12-30 | Eli Lilly And Company | Compounds and method for inhibiting MRP1 |
| EP1257572A2 (en) | 2000-02-07 | 2002-11-20 | Millennium Pharmaceuticals, Inc. | Narc-1, subtilase-like homologs |
| US6629949B1 (en) | 2000-05-08 | 2003-10-07 | Sterling Medivations, Inc. | Micro infusion drug delivery device |
| US6659982B2 (en) | 2000-05-08 | 2003-12-09 | Sterling Medivations, Inc. | Micro infusion drug delivery device |
| US7148197B2 (en) | 2000-08-24 | 2006-12-12 | The Regents Of The University Of California | Orally administered small peptides synergize statin activity |
| JP4799803B2 (ja) | 2000-09-08 | 2011-10-26 | マサチューセッツ インスティテュート オブ テクノロジー | G−csfアナログ組成物および方法 |
| IL155002A0 (en) | 2000-10-12 | 2003-10-31 | Genentech Inc | Reduced-viscosity concentrated protein formulations |
| WO2002034292A1 (fr) | 2000-10-25 | 2002-05-02 | Chugai Seiyaku Kabushiki Kaisha | Agents preventifs ou therapeutiques contre le psoriasis renfermant l'antagoniste de l'il-6 comme substance active |
| JP4889187B2 (ja) | 2000-10-27 | 2012-03-07 | 中外製薬株式会社 | Il−6アンタゴニストを有効成分として含有する血中mmp−3濃度低下剤 |
| US6596541B2 (en) | 2000-10-31 | 2003-07-22 | Regeneron Pharmaceuticals, Inc. | Methods of modifying eukaryotic cells |
| US7754208B2 (en) | 2001-01-17 | 2010-07-13 | Trubion Pharmaceuticals, Inc. | Binding domain-immunoglobulin fusion proteins |
| US20030133939A1 (en) | 2001-01-17 | 2003-07-17 | Genecraft, Inc. | Binding domain-immunoglobulin fusion proteins |
| JP2002209975A (ja) | 2001-01-19 | 2002-07-30 | Daikyo Seiko Ltd | 医薬バイアル用ラミネートゴム栓 |
| UA80091C2 (en) | 2001-04-02 | 2007-08-27 | Chugai Pharmaceutical Co Ltd | Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist |
| ATE454137T1 (de) | 2001-07-25 | 2010-01-15 | Facet Biotech Corp | Stabile lyophilisierte pharmazeutische formulierung des igg-antikörpers daclizumab |
| US20040033228A1 (en) | 2002-08-16 | 2004-02-19 | Hans-Juergen Krause | Formulation of human antibodies for treating TNF-alpha associated disorders |
| US20060275294A1 (en) | 2002-08-22 | 2006-12-07 | Omoigui Osemwota S | Method of prevention and treatment of aging, age-related disorders and/or age-related manifestations including atherosclerosis, peripheral vascular disease, coronary artery disease, osteoporosis, arthritis, type 2 diabetes, dementia, alzheimers disease and cancer |
| US20060078531A1 (en) | 2004-10-12 | 2006-04-13 | Osemwota Sota | Method of prevention and treatment of atherosclerosis, peripheral vascular disease, coronary artery disease, and age-related disorders including osteoporosis, arthritis, type 2 diabetes, dementia and Alzheimer's disease |
| US20060078533A1 (en) | 2004-10-12 | 2006-04-13 | Omoigui Osemwota S | Method of prevention and treatment of aging and age-related disorders including atherosclerosis, peripheral vascular disease, coronary artery disease, osteoporosis, arthritis, type 2 diabetes, dementia, alzheimer's disease and cancer |
| US20060078532A1 (en) | 2004-10-12 | 2006-04-13 | Omoigui Osemwota S | Method of prevention and treatment of Atherosclerosis, Peripheral vascular disease, Coronary artery disease, aging and age-related disorders including osteoporosis, arthritis, type 2 diabetes, dementia and Alzheimer's disease |
| US20040101920A1 (en) | 2002-11-01 | 2004-05-27 | Czeslaw Radziejewski | Modification assisted profiling (MAP) methodology |
| AU2003293543A1 (en) | 2002-12-13 | 2004-07-09 | Abgenix, Inc. | System and method for stabilizing antibodies with histidine |
| US7534427B2 (en) | 2002-12-31 | 2009-05-19 | Immunomedics, Inc. | Immunotherapy of B cell malignancies and autoimmune diseases using unconjugated antibodies and conjugated antibodies and antibody combinations and fusion proteins |
| DK1610820T4 (da) | 2003-04-04 | 2013-11-04 | Genentech Inc | Høj-koncentration antistof- og proteinformuleringer |
| EP1471152A1 (en) * | 2003-04-25 | 2004-10-27 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Mutations in the human PCSK9 gene associated to hypercholesterolemia |
| GB2401040A (en) | 2003-04-28 | 2004-11-03 | Chugai Pharmaceutical Co Ltd | Method for treating interleukin-6 related diseases |
| DE10355251A1 (de) | 2003-11-26 | 2005-06-23 | Merck Patent Gmbh | Pharmazeutische Zubereitung enthaltend einen Antikörper gegen den EGF-Rezeptor |
| US8617550B2 (en) | 2003-12-19 | 2013-12-31 | Chugai Seiyaku Kabushiki Kaisha | Treatment of vasculitis with IL-6 antagonist |
| BRPI0506679A (pt) | 2004-02-11 | 2007-05-15 | Warner Lambert Co | métodos de tratar osteoartrite com antagonistas de il-6 |
| EP1740946B1 (en) | 2004-04-20 | 2013-11-06 | Genmab A/S | Human monoclonal antibodies against cd20 |
| EA014226B1 (ru) | 2004-07-26 | 2010-10-29 | Байоджен Айдек Ма Инк. | Антитела к cd154, их фрагменты и способы применения антител и фрагментов |
| US20110313024A1 (en) | 2004-08-20 | 2011-12-22 | Leonid Beigelman | RNA INTERFERENCE MEDIATED INHIBITION OF PROPROTEIN CONVERTASE SUBTILISIN KEXIN 9 (PCSK9) GENE EXPRESSION USING SHORT INTERFERING NUCLEIC ACID (siNA) |
| US20070036788A1 (en) | 2004-09-22 | 2007-02-15 | Ahmed Sheriff | Use of a compound for reducing the biological effectiveness of il-6 |
| JO3000B1 (ar) | 2004-10-20 | 2016-09-05 | Genentech Inc | مركبات أجسام مضادة . |
| RU2007126985A (ru) | 2004-12-16 | 2009-01-27 | Дженентек, Инк. (Us) | Способы лечения аутоиммунных заболеваний |
| US20060147945A1 (en) | 2005-01-06 | 2006-07-06 | Edmonds Brian T | Novel secreted proteins and their uses |
| KR20080071192A (ko) | 2005-11-22 | 2008-08-01 | 와이어쓰 | 면역글로불린 융합 단백질 제형 |
| US20080131374A1 (en) | 2006-04-19 | 2008-06-05 | Medich John R | Uses and compositions for treatment of rheumatoid arthritis |
| ES2366974T3 (es) | 2006-05-05 | 2011-10-27 | Isis Pharmaceuticals, Inc. | Compuestos y procedimientos para modular la expresión de sglt2. |
| WO2007136989A2 (en) | 2006-05-05 | 2007-11-29 | Isis Pharmaceuticals, Inc. | Compounds and methods for modulating expression of dgat2 |
| SG171676A1 (en) | 2006-05-11 | 2011-06-29 | Alnylam Pharmaceuticals Inc | Compositions and methods for inhibiting expression of the pcsk9 gene |
| US8080248B2 (en) | 2006-06-02 | 2011-12-20 | Regeneron Pharmaceuticals, Inc. | Method of treating rheumatoid arthritis with an IL-6R antibody |
| CA2652976C (en) | 2006-06-02 | 2015-08-11 | Regeneron Pharmaceuticals, Inc. | High affinity antibodies to human il-6 receptor |
| SI2944306T1 (sl) | 2006-06-16 | 2021-04-30 | Regeneron Pharmaceuticals, Inc. | Formulacije antagonista VEGF, primerne za intravitrealno dajanje |
| US7572618B2 (en) * | 2006-06-30 | 2009-08-11 | Bristol-Myers Squibb Company | Polynucleotides encoding novel PCSK9 variants |
| US7608693B2 (en) | 2006-10-02 | 2009-10-27 | Regeneron Pharmaceuticals, Inc. | High affinity human antibodies to human IL-4 receptor |
| US8093222B2 (en) | 2006-11-27 | 2012-01-10 | Isis Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia |
| JP2010510807A (ja) | 2006-11-27 | 2010-04-08 | アイシス ファーマシューティカルズ, インコーポレーテッド | 高コレステロール血症を治療するための方法 |
| CN101589143A (zh) | 2006-11-27 | 2009-11-25 | Isis药物公司 | 用于治疗高胆固醇血症的方法 |
| JP5100101B2 (ja) | 2006-12-12 | 2012-12-19 | キヤノン株式会社 | 画像形成装置 |
| US8354102B2 (en) | 2007-05-15 | 2013-01-15 | Hoffmann-La Roche Inc. | Antibodies directed to mGluR7 |
| WO2009042765A1 (en) | 2007-09-25 | 2009-04-02 | The Regents Of The University Of California | Methods of modulating prokineticin 2 for treatment of stress response and anxiety-related disorders |
| RU2505603C2 (ru) | 2007-09-26 | 2014-01-27 | Чугаи Сейяку Кабусики Кайся | Антитело против рецептора il-6 |
| PE20091174A1 (es) | 2007-12-27 | 2009-08-03 | Chugai Pharmaceutical Co Ltd | Formulacion liquida con contenido de alta concentracion de anticuerpo |
| AR070316A1 (es) | 2008-02-07 | 2010-03-31 | Merck & Co Inc | Antagonistas de pcsk9 (proproteina subtilisina-kexina tipo 9) |
| AR070315A1 (es) | 2008-02-07 | 2010-03-31 | Merck & Co Inc | Anticuerpos 1b20 antagonistas de pcsk9 |
| PT2708559T (pt) | 2008-04-11 | 2018-05-16 | Chugai Pharmaceutical Co Ltd | Molécula de ligação ao antigénio capaz de se ligar repetidamente a duas ou mais moléculas de antigénio |
| TWI516501B (zh) | 2008-09-12 | 2016-01-11 | 禮納特神經系統科學公司 | Pcsk9拮抗劑類 |
| MX2011003013A (es) | 2008-09-19 | 2011-04-11 | Pfizer | Formulacion liquida estable de anticuerpos. |
| SG2014011365A (en) | 2008-09-19 | 2014-05-29 | Hoffmann La Roche | Novel antibody formulation |
| TWI440469B (zh) | 2008-09-26 | 2014-06-11 | Chugai Pharmaceutical Co Ltd | Improved antibody molecules |
| WO2010068526A1 (en) | 2008-12-12 | 2010-06-17 | Merck Sharp & Dohme Corp. | Pcsk9 immunoassay |
| US20130064834A1 (en) | 2008-12-15 | 2013-03-14 | Regeneron Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia using antibodies to pcsk9 |
| US8357371B2 (en) | 2008-12-15 | 2013-01-22 | Regeneron Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia using antibodies to PCSK9 |
| JO3672B1 (ar) | 2008-12-15 | 2020-08-27 | Regeneron Pharma | أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9). |
| US20100216667A1 (en) | 2008-12-17 | 2010-08-26 | Meyer Brian K | Method for determining compatibility of an active pharmaceutical ingredient with materials |
| CA2754528A1 (en) | 2009-03-06 | 2010-09-10 | Genetech, Inc. | Antibody formulation |
| EP2442792A4 (en) | 2009-06-15 | 2015-12-23 | Alnylam Pharmaceuticals Inc | TESTING GENE PCSK9 LIPID-FORMULATED DSRNA |
| WO2010148337A1 (en) | 2009-06-18 | 2010-12-23 | Wyeth Llc | Lyophilized formulations for small modular immunopharmaceuticals |
| WO2011006000A1 (en) | 2009-07-08 | 2011-01-13 | Haiyan Liu | Berberine derivatives useful for modulating lipid levels and their methods of synthesis |
| WO2011009697A1 (en) | 2009-07-21 | 2011-01-27 | Santaris Pharma A/S | Antisense oligomers targeting pcsk9 |
| WO2011028938A1 (en) | 2009-09-02 | 2011-03-10 | Alnylam Pharmaceuticals, Inc. | Methods for lowering serum cholestrol in a subject using inhibition of pcsk9 |
| WO2011037791A1 (en) | 2009-09-25 | 2011-03-31 | Merck Sharp & Dohme Corp. | Antagonists of pcsk9 |
| US20120264146A1 (en) | 2009-10-02 | 2012-10-18 | The Regents Of The University Of California | Combination of spla2 activity and lp(a) cardiovascular risk factors for the diagnosis/prognosis of a cardiovascular disease/event |
| IN2012DN03824A (enExample) | 2009-10-30 | 2015-08-28 | Merck Sharp & Dohme | |
| US8802827B2 (en) | 2009-10-30 | 2014-08-12 | Merck Sharp & Dohme Corp. | AX1 PCSK9 antagonists |
| WO2011061712A1 (en) | 2009-11-20 | 2011-05-26 | Biocon Limited | Formulations of antibody |
| AR079336A1 (es) | 2009-12-11 | 2012-01-18 | Irm Llc | Antagonistas de la pro-proteina convertasa-subtilisina/quexina tipo 9 (pcsk9) |
| JO3274B1 (ar) | 2009-12-24 | 2018-09-16 | Regeneron Pharma | أجسام مضادة بشرية للبروتين 4 المشابه لأجيوبيوتين البشري |
| JO3417B1 (ar) | 2010-01-08 | 2019-10-20 | Regeneron Pharma | الصيغ المستقرة التي تحتوي على الأجسام المضادة لمضاد مستقبل( interleukin-6 (il-6r |
| CN105218674A (zh) | 2010-03-11 | 2016-01-06 | 瑞纳神经科学公司 | 呈pH依赖性抗原结合的抗体 |
| GB201005005D0 (en) | 2010-03-25 | 2010-05-12 | Angeletti P Ist Richerche Bio | New vaccine |
| AU2011202239C1 (en) | 2010-05-19 | 2017-03-16 | Sanofi | Long-acting formulations of insulins |
| DE102010024698A1 (de) | 2010-06-23 | 2011-12-29 | Eads Deutschland Gmbh | Verfahren, Vorrichtung und Anordnung zur Entfernung organischer Verschmutzung von Anströmbereichen eines Luftfahrzeugs |
| US10023657B2 (en) * | 2010-10-01 | 2018-07-17 | Ludwig Institute For Cancer Research Ltd. | Reversible protein multimers, methods for their production and use |
| KR101867279B1 (ko) | 2010-10-06 | 2018-06-15 | 리제너론 파아마슈티컬스, 인크. | 항―인터류킨―4 수용체(il-4r) 항체를 함유하는 안정화된 제형 |
| WO2012054438A1 (en) | 2010-10-22 | 2012-04-26 | Schering Corporation | Anti-pcsk9 |
| CN103328514B (zh) | 2010-11-09 | 2015-12-02 | 阿尔蒂单抗治疗公司 | 用于抗原结合的蛋白复合物及其使用方法 |
| JO3756B1 (ar) * | 2010-11-23 | 2021-01-31 | Regeneron Pharma | اجسام مضادة بشرية لمستقبلات الجلوكاجون |
| US8771696B2 (en) * | 2010-11-23 | 2014-07-08 | Regeneron Pharmaceuticals, Inc. | Method of reducing the severity of stress hyperglycemia with human antibodies to the glucagon receptor |
| EP2648750B1 (en) | 2010-12-10 | 2017-01-25 | Novartis AG | Antibody formulation |
| WO2012088313A1 (en) | 2010-12-22 | 2012-06-28 | Genentech, Inc. | Anti-pcsk9 antibodies and methods of use |
| HRP20180959T1 (hr) | 2011-01-28 | 2018-07-27 | Sanofi Biotechnology | Ljudska protutijela za pcsk9 za uporabu u postupcima liječenja određenih skupina subjekata |
| EP2673302A1 (en) | 2011-02-11 | 2013-12-18 | Irm Llc | Pcsk9 antagonists |
| US8440890B1 (en) | 2011-03-09 | 2013-05-14 | Pioneer Hi Bred International Inc | Maize variety inbred PH1D0D |
| CA2833748C (en) | 2011-04-20 | 2019-07-16 | Amgen Inc. | Autoinjector apparatus |
| AR088782A1 (es) | 2011-04-29 | 2014-07-10 | Sanofi Sa | Sistemas de ensayo y metodos para identificar y caracterizar farmacos hipolipemiantes |
| KR101875155B1 (ko) | 2011-05-02 | 2018-07-09 | 밀레니엄 파머슈티컬스 인코퍼레이티드 | 항-α4β7 항체에 대한 제형 |
| JOP20200043A1 (ar) | 2011-05-10 | 2017-06-16 | Amgen Inc | طرق معالجة أو منع الاضطرابات المختصة بالكوليسترول |
| US20140004122A1 (en) | 2011-05-10 | 2014-01-02 | Amgen Inc. | Methods for treating or preventing cholesterol related disorders |
| WO2012168491A1 (en) | 2011-06-10 | 2012-12-13 | Novartis Ag | Pharmaceutical formulations of pcsk9 antagonists |
| CA2746171C (en) | 2011-07-13 | 2018-11-06 | William Jani | Retrievable stimulation frac (rsf) plug |
| HK1202804A1 (en) | 2011-07-14 | 2015-10-09 | 辉瑞公司 | Treatment with anti-pcsk9 antibodies |
| AR087305A1 (es) * | 2011-07-28 | 2014-03-12 | Regeneron Pharma | Formulaciones estabilizadas que contienen anticuerpos anti-pcsk9, metodo de preparacion y kit |
| CA2848201C (en) | 2011-09-16 | 2020-10-27 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipoprotein(a) levels by administering an inhibitor of proprotein convertase subtilisin kexin-9 (pcsk9) |
| AR087715A1 (es) | 2011-09-16 | 2014-04-09 | Lilly Co Eli | Anticuerpos anti pcsk9 y usos de los mismos |
| TWI589299B (zh) | 2011-10-11 | 2017-07-01 | 再生元醫藥公司 | 用於治療類風濕性關節炎之組成物及其使用方法 |
| US9943594B2 (en) | 2011-10-11 | 2018-04-17 | Sanofi Biotechnology | Methods for the treatment of rheumatoid arthritis |
| NZ626955A (en) | 2012-03-08 | 2016-01-29 | Hoffmann La Roche | Abeta antibody formulation |
| JP2015515279A (ja) | 2012-04-19 | 2015-05-28 | アセチロン ファーマシューティカルズ インコーポレイテッドAcetylon Pharmaceuticals,Inc. | 治療に反応する患者を同定するバイオマーカーおよびそのような患者の治療 |
| EA039663B1 (ru) | 2012-05-03 | 2022-02-24 | Амген Инк. | Применение антитела против pcsk9 для снижения сывороточного холестерина лпнп и лечения связанных с холестерином расстройств |
| US9255154B2 (en) | 2012-05-08 | 2016-02-09 | Alderbio Holdings, Llc | Anti-PCSK9 antibodies and use thereof |
| NZ702093A (en) | 2012-05-25 | 2017-08-25 | Catabasis Pharmaceuticals Inc | Methods of lowering proprotein convertase subtilisin/kexin type 9 (pcsk9) |
| NZ704771A (en) * | 2012-08-13 | 2018-02-23 | Regeneron Pharma | Anti-pcsk9 antibodies with ph-dependent binding characteristics |
| EP2703009A1 (en) | 2012-08-31 | 2014-03-05 | Sanofi | Combination treatments involving antibodies to human PCSK9 |
| EP2703008A1 (en) | 2012-08-31 | 2014-03-05 | Sanofi | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
| EP2706070A1 (en) | 2012-09-06 | 2014-03-12 | Sanofi | Combination treatments involving antibodies to human PCSK9 |
| RU2538801C2 (ru) | 2013-02-07 | 2015-01-10 | Закрытое акционерное общество "Инновационный научно-производственный центр "Пептоген" | ПРИМЕНЕНИЕ ТЕТРАПЕПТИДА Arg-Pro-Gly-Pro В КАЧЕСТВЕ СРЕДСТВА ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ГИПЕРХОЛЕСТЕРИНЕМИИ, СПОСОБ ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ГИПЕРХОЛЕСТЕРИНЕМИИ, ФАРМАЦЕВТИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ПРОФИЛАКТИКИ И ЛЕЧЕНИЯ ГИПЕРХОЛЕСТЕРИНЕМИИ И СПОСОБ ЕЕ ПОЛУЧЕНИЯ |
| TWI682780B (zh) | 2013-05-30 | 2020-01-21 | 美商再生元醫藥公司 | 醫藥組成物用於製造治療與pcsk9功能獲得性突變有關之體染色體顯性高膽固醇血症的藥物之用途 |
| US10111953B2 (en) | 2013-05-30 | 2018-10-30 | Regeneron Pharmaceuticals, Inc. | Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9) |
| CN111920954A (zh) | 2013-06-07 | 2020-11-13 | 再生元制药公司 | 通过施用pcsk9抑制剂抑制动脉粥样硬化的方法 |
| CN115192704A (zh) | 2013-10-11 | 2022-10-18 | 赛诺菲生物技术公司 | Pcsk9抑制剂用于治疗高血脂症的用途 |
| CN106062003A (zh) | 2013-11-12 | 2016-10-26 | 赛诺菲生物技术公司 | 用于与pcsk9抑制剂一起使用的给药方案 |
| US9034332B1 (en) * | 2014-07-15 | 2015-05-19 | Kymab Limited | Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| US8883157B1 (en) * | 2013-12-17 | 2014-11-11 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
| US8945560B1 (en) | 2014-07-15 | 2015-02-03 | Kymab Limited | Method of treating rheumatoid arthritis using antibody to IL6R |
| CA2939507A1 (en) | 2014-02-14 | 2015-08-20 | Regeneron Pharmaceuticals, Inc. | Methods for treating patients with hypercholesterolemia that is not adequately controlled by moderate-dose statin therapy |
| US20150284473A1 (en) | 2014-03-17 | 2015-10-08 | Laurence Bessac | Methods for reducing cardiovascular risk |
| WO2015140079A1 (en) | 2014-03-17 | 2015-09-24 | Sanofi | Methods for treating subjects with primary hypercholesterolemia that is not adequately controlled |
| KR20170029613A (ko) | 2014-07-16 | 2017-03-15 | 사노피 바이오테크놀로지 | 이형접합성 가족성 고콜레스테롤혈증(heFH) 환자의 치료방법 |
| KR20230007538A (ko) | 2014-07-16 | 2023-01-12 | 사노피 바이오테크놀로지 | 고콜레스테롤혈증이 있는 심혈관 위험이 높은 환자를 치료하는 방법 |
| IL314925A (en) | 2015-08-18 | 2024-10-01 | Regeneron Pharma | Antibodies against PCSK9 for the treatment of patients with hyperlipidemia undergoing lipoprotein-lowering therapy |
| US10933134B2 (en) | 2017-03-16 | 2021-03-02 | Memorial Sloan Kettering Cancer Center | Combination therapies for treatment of cancer |
| TW202310872A (zh) | 2017-06-09 | 2023-03-16 | 法商賽諾菲生物技術公司 | 藉由投予pcsk9抑制劑治療糖尿病患者高血脂症之方法 |
| US20190031774A1 (en) | 2017-06-09 | 2019-01-31 | Sanofi Biotechnology | Methods for treating hyperlipidemia in diabetic patients by administering a pcsk9 inhibitor |
| EP3762026A1 (en) | 2018-03-06 | 2021-01-13 | Sanofi Biotechnology | Use of pcsk9 inhibitor for reducing cardiovascular risk |
| DE102023206495B3 (de) | 2023-07-07 | 2024-11-21 | Volkswagen Aktiengesellschaft | Integrierter Schaltkreis, Anordnung sowie Verfahren zum Einkoppeln von optischen Signalen in einen integrierten Schaltkreis |
-
2009
- 2009-12-14 JO JOP/2009/0481A patent/JO3672B1/ar active
- 2009-12-15 MX MX2014004581A patent/MX341041B/es unknown
- 2009-12-15 NZ NZ601923A patent/NZ601923A/xx unknown
- 2009-12-15 BR BRPI0922885-3A patent/BRPI0922885B1/pt active IP Right Grant
- 2009-12-15 TW TW098142896A patent/TWI465249B/zh active
- 2009-12-15 DK DK16200305.7T patent/DK3156422T3/da active
- 2009-12-15 US US12/637,942 patent/US8062640B2/en active Active
- 2009-12-15 LT LTEP16200305.7T patent/LT3156422T/lt unknown
- 2009-12-15 EP EP09793408.7A patent/EP2358756B2/en active Active
- 2009-12-15 ME MEP-2017-70A patent/ME02760B/me unknown
- 2009-12-15 ME MEP-2011-111A patent/ME01327B/me unknown
- 2009-12-15 ES ES16200305T patent/ES2898661T3/es active Active
- 2009-12-15 RS RS20170255A patent/RS55771B2/sr unknown
- 2009-12-15 WO PCT/US2009/068013 patent/WO2010077854A1/en not_active Ceased
- 2009-12-15 UA UAA201108829A patent/UA105650C2/uk unknown
- 2009-12-15 UY UY0001032329A patent/UY32329A/es not_active Application Discontinuation
- 2009-12-15 HU HUE09793408A patent/HUE032681T2/en unknown
- 2009-12-15 PE PE2011001214A patent/PE20120014A1/es active IP Right Grant
- 2009-12-15 PL PL09793408.7T patent/PL2358756T5/pl unknown
- 2009-12-15 EP EP21185555.6A patent/EP3943510A3/en active Pending
- 2009-12-15 HR HRP20170488TT patent/HRP20170488T4/hr unknown
- 2009-12-15 DK DK09793408.7T patent/DK2358756T4/da active
- 2009-12-15 HR HRP20211688TT patent/HRP20211688T1/hr unknown
- 2009-12-15 SM SM20170183T patent/SMT201700183T1/it unknown
- 2009-12-15 MX MX2011006197A patent/MX2011006197A/es active IP Right Grant
- 2009-12-15 RS RS20211437A patent/RS62580B1/sr unknown
- 2009-12-15 JP JP2011540965A patent/JP5318965B2/ja active Active
- 2009-12-15 KR KR1020157001056A patent/KR101699707B1/ko active Active
- 2009-12-15 ES ES09793408T patent/ES2613489T5/es active Active
- 2009-12-15 MY MYPI2021002676A patent/MY203040A/en unknown
- 2009-12-15 CN CN201410749251.XA patent/CN104447997A/zh active Pending
- 2009-12-15 SI SI200931637T patent/SI2358756T2/sl unknown
- 2009-12-15 RU RU2011129316A patent/RU2552169C3/ru active Protection Beyond IP Right Term
- 2009-12-15 PT PT97934087T patent/PT2358756T/pt unknown
- 2009-12-15 KR KR1020117013676A patent/KR101504494B1/ko active Active
- 2009-12-15 SI SI200932149T patent/SI3156422T1/sl unknown
- 2009-12-15 PL PL16200305T patent/PL3156422T3/pl unknown
- 2009-12-15 RU RU2015109166A patent/RU2697773C2/ru active
- 2009-12-15 AU AU2009333326A patent/AU2009333326B9/en active Active
- 2009-12-15 PA PA20098854201A patent/PA8854201A1/es unknown
- 2009-12-15 EP EP16200305.7A patent/EP3156422B1/en active Active
- 2009-12-15 CA CA2747123A patent/CA2747123C/en active Active
- 2009-12-15 HU HUE16200305A patent/HUE056244T2/hu unknown
- 2009-12-15 CN CN200980150206.XA patent/CN102245641B/zh active Active
- 2009-12-15 NZ NZ593155A patent/NZ593155A/xx unknown
- 2009-12-15 AR ARP090104880A patent/AR077724A1/es active IP Right Grant
- 2009-12-15 PT PT162003057T patent/PT3156422T/pt unknown
- 2009-12-15 LT LTEP09793408.7T patent/LT2358756T/lt unknown
-
2010
- 2010-11-19 US US12/949,846 patent/US8501184B2/en active Active
-
2011
- 2011-05-22 IL IL213050A patent/IL213050A/en active IP Right Grant
- 2011-05-23 ZA ZA2011/03762A patent/ZA201103762B/en unknown
- 2011-06-02 CR CR20110296A patent/CR20110296A/es unknown
- 2011-06-06 NI NI201100111A patent/NI201100111A/es unknown
- 2011-06-13 DO DO2011000184A patent/DOP2011000184A/es unknown
- 2011-06-13 TN TN2011000300A patent/TN2011000300A1/fr unknown
- 2011-06-14 HN HN2011001659A patent/HN2011001659A/es unknown
- 2011-06-14 CO CO11073672A patent/CO6571847A2/es active IP Right Grant
- 2011-06-15 EC EC2011011134A patent/ECSP11011134A/es unknown
-
2012
- 2012-11-30 US US13/690,585 patent/US20130085266A1/en not_active Abandoned
-
2013
- 2013-04-19 JP JP2013088230A patent/JP5902122B2/ja active Active
-
2014
- 2014-02-02 IL IL230771A patent/IL230771A/en active IP Right Grant
-
2015
- 2015-06-12 US US14/737,488 patent/US9550837B2/en active Active
-
2016
- 2016-12-13 US US15/377,364 patent/US10023654B2/en active Active
-
2017
- 2017-03-10 CY CY20171100308T patent/CY1118896T1/el unknown
- 2017-06-16 NL NL300879C patent/NL300879I2/nl unknown
- 2017-06-19 CY CY2017021C patent/CY2017021I2/el unknown
- 2017-06-19 LT LTPA2017019C patent/LTC2358756I2/lt unknown
- 2017-06-21 LU LU00024C patent/LUC00024I2/en unknown
- 2017-06-21 FR FR17C1022C patent/FR17C1022I2/fr active Active
- 2017-06-27 NO NO2017029C patent/NO2017029I2/no unknown
- 2017-06-27 HU HUS1700029C patent/HUS1700029I1/hu unknown
- 2017-07-03 FI FIEP09793408.7T patent/FI2358756T4/fi active
- 2017-07-03 FI FIC20170031C patent/FIC20170031I1/fi unknown
-
2018
- 2018-06-04 US US15/996,773 patent/US10941210B2/en active Active
-
2021
- 2021-01-28 US US17/160,634 patent/US20210253735A1/en not_active Abandoned
-
2023
- 2023-04-05 US US18/296,265 patent/US12269897B2/en active Active
-
2025
- 2025-01-16 US US19/025,495 patent/US20250154286A1/en active Pending
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008057458A2 (en) * | 2006-11-07 | 2008-05-15 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2008057459A2 (en) * | 2006-11-07 | 2008-05-15 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2008057457A2 (en) * | 2006-11-07 | 2008-05-15 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2008063382A2 (en) | 2006-11-07 | 2008-05-29 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2008133647A2 (en) * | 2006-11-07 | 2008-11-06 | Merck & Co., Inc. | Antagonists of pcsk9 |
| WO2008125623A2 (en) * | 2007-04-13 | 2008-10-23 | Novartis Ag | Molecules and methods for modulating proprotein convertase subtilisin/kexin type 9 (pcsk9) |
| WO2009026558A1 (en) | 2007-08-23 | 2009-02-26 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (pcsk9) |
| WO2009055783A2 (en) * | 2007-10-26 | 2009-04-30 | Schering Corporation | Anti-pcsk9 and methods for treating lipid and cholesterol disorders |
Non-Patent Citations (3)
| Title |
|---|
| ALBORN WILLIAM E ET AL: "Serum proprotein convertase subtilisin Kexin type 9 is correlated directly with serum LDL cholesterol", CLINICAL CHEMISTRY, AMERICAN ASSOCIATION FOR CLINICAL CHEMISTRY, WASHINGTON, DC, vol. 53, no. 10, 1 October 2007 (2007-10-01), pages 1814 - 1819, XP009104836, ISSN: 0009-9147 * |
| CHAN JOYCE C Y ET AL: "A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 16 JUN 2009, vol. 106, no. 24, 16 June 2009 (2009-06-16), pages 9820 - 9825, XP002570200, ISSN: 1091-6490 * |
| LAGACE THOMAS A ET AL: "Secreted PCSK9 decreases the number of LDL receptors in hepatocytes and in livers of parabiotic mice", JOURNAL OF CLINICAL INVESTIGATION, AMERICAN SOCIETY FOR CLINICAL INVESTIGATION, US, vol. 116, no. 11, 1 November 2006 (2006-11-01), pages 2995 - 3005, XP002493243, ISSN: 0021-9738 * |
Cited By (346)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8030457B2 (en) | 2007-08-23 | 2011-10-04 | Amgen, Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US9920134B2 (en) | 2007-08-23 | 2018-03-20 | Amgen Inc. | Monoclonal antibodies to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US8871914B2 (en) | 2007-08-23 | 2014-10-28 | Amgen, Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US8871913B2 (en) | 2007-08-23 | 2014-10-28 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US8889834B2 (en) | 2007-08-23 | 2014-11-18 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US8859741B2 (en) | 2007-08-23 | 2014-10-14 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US9493576B2 (en) | 2007-08-23 | 2016-11-15 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US8981064B2 (en) | 2007-08-23 | 2015-03-17 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| EP3666797B1 (en) | 2007-08-23 | 2023-05-17 | Amgen, Inc | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (pcsk9) |
| US9056915B2 (en) | 2007-08-23 | 2015-06-16 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US8883983B2 (en) | 2007-08-23 | 2014-11-11 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US8563698B2 (en) | 2007-08-23 | 2013-10-22 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US8168762B2 (en) | 2007-08-23 | 2012-05-01 | Amgen Inc. | Antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US9045547B2 (en) | 2007-08-23 | 2015-06-02 | Amgen Inc. | Methods of using antigen binding proteins to proprotein convertase subtilisin kexin type 9 (PCSK9) |
| US12269897B2 (en) | 2008-12-15 | 2025-04-08 | Regeneron Pharmaceuticals, Inc. | Anti-PCSK9 antibodies |
| US10023654B2 (en) | 2008-12-15 | 2018-07-17 | Regeneron Pharmaceuticals, Inc. | Anti-PCSK9 antibodies |
| US9724411B2 (en) | 2008-12-15 | 2017-08-08 | Regeneron Pharmaceuticals, Inc. | Methods for treating hypercholesterolemia and reducing LDL-C using antibodies to PCSK9 |
| US10941210B2 (en) | 2008-12-15 | 2021-03-09 | Regeneron Pharmaceuticals, Inc. | Anti-PCSK9 antibodies |
| US9550837B2 (en) | 2008-12-15 | 2017-01-24 | Regeneron Pharmaceuticals, Inc. | Therapeutic uses of anti-PCSK9 antibodies |
| US9504236B2 (en) | 2009-07-08 | 2016-11-29 | Kymab Limited | Animal models and therapeutic molecules |
| US11606941B2 (en) | 2009-07-08 | 2023-03-21 | Kymab Limited | Animal models and therapeutic molecules |
| US11564380B2 (en) | 2009-07-08 | 2023-01-31 | Kymab Limited | Animal models and therapeutic molecules |
| US10165763B2 (en) | 2009-07-08 | 2019-01-01 | Kymab Limited | Animal models and therapeutic molecules |
| US11812731B2 (en) | 2009-07-08 | 2023-11-14 | Kymab Ltd. | Animal models and therapeutic molecules |
| US9505827B2 (en) | 2009-07-08 | 2016-11-29 | Kymab Limited | Animal models and therapeutic molecules |
| US10064398B2 (en) | 2009-07-08 | 2018-09-04 | Kymab Limited | Animal models and therapeutic molecules |
| US9434782B2 (en) | 2009-07-08 | 2016-09-06 | Kymab Limited | Animal models and therapeutic molecules |
| US9447177B2 (en) | 2009-07-08 | 2016-09-20 | Kymab Limited | Transgenic mouse homozygous for chimeric IgH locus |
| US9090698B2 (en) | 2009-10-08 | 2015-07-28 | The University Of North Carolina At Charlotte | Tumor specific antibodies and uses therefor |
| US8710192B2 (en) | 2009-12-11 | 2014-04-29 | Irm Llc | PCSK9 antagonists |
| EP2545079A2 (en) * | 2010-03-11 | 2013-01-16 | Rinat Neuroscience Corporation | ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING |
| US9845362B2 (en) | 2010-10-08 | 2017-12-19 | The University Of North Carolina At Charlotte | Compositions comprising chimeric antigen receptors, T cells comprising the same, and methods of using the same |
| EP3608338A1 (en) | 2010-11-23 | 2020-02-12 | Regeneron Pharmaceuticals, Inc. | Human antibodies to the glucagon receptor |
| WO2012071372A2 (en) | 2010-11-23 | 2012-05-31 | Regeneron Pharmaceuticals, Inc. | Human antibodies to the glucagon receptor |
| JP2014511106A (ja) * | 2010-12-22 | 2014-05-08 | ジェネンテック, インコーポレイテッド | 抗pcsk9抗体及び使用方法 |
| CN103476796A (zh) * | 2011-01-28 | 2013-12-25 | 赛诺菲 | 治疗特定受试者组的方法中使用的针对pcsk9的人抗体 |
| US12083176B2 (en) | 2011-01-28 | 2024-09-10 | Sanofi Biotechnology | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
| AU2019229366B2 (en) * | 2011-01-28 | 2021-09-16 | Sanofi Biotechnology | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
| EP2481758A1 (en) * | 2011-01-28 | 2012-08-01 | Sanofi | Human antibodies to PSCK9 for use in methods of treating particular groups of subjects (11566) |
| CN110711248A (zh) * | 2011-01-28 | 2020-01-21 | 赛诺菲生物技术公司 | 包含针对pcsk9的人抗体的药物组合物 |
| AU2017216546B2 (en) * | 2011-01-28 | 2019-10-03 | Sanofi Biotechnology | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
| JP2018203772A (ja) * | 2011-01-28 | 2018-12-27 | サノフィ・バイオテクノロジー | 被験者の特定のグループを処置する方法において使用するためのpcsk9に対するヒト抗体 |
| WO2012101252A3 (en) * | 2011-01-28 | 2012-11-15 | Sanofi | Human antibodies to pcsk9 for use in methods of treating particular groups of subjects |
| JP2014511361A (ja) * | 2011-01-28 | 2014-05-15 | サノフイ | 被験者の特定のグループを処置する方法において使用するためのpcsk9に対するヒト抗体 |
| US9682013B2 (en) | 2011-01-28 | 2017-06-20 | Sanofi Biotechnology | Pharmaceutical compositions comprising human antibodies to PCSK9 |
| JP2014508142A (ja) * | 2011-01-28 | 2014-04-03 | サノフイ | Pcsk9に対するヒト抗体を含んでなる医薬組成物 |
| JP2017095490A (ja) * | 2011-01-28 | 2017-06-01 | サノフィ・バイオテクノロジー | 被験者の特定のグループを処置する方法において使用するためのpcsk9に対するヒト抗体 |
| JP2020172514A (ja) * | 2011-01-28 | 2020-10-22 | サノフィ・バイオテクノロジー | 被験者の特定のグループを処置する方法において使用するためのpcsk9に対するヒト抗体 |
| US9561155B2 (en) | 2011-01-28 | 2017-02-07 | Sanofi Biotechnology | Method of reducing cholesterol levels using a human anti-PCSK9 antibody |
| JP2017095491A (ja) * | 2011-01-28 | 2017-06-01 | サノフィ・バイオテクノロジー | Pcsk9に対するヒト抗体を含んでなる医薬組成物 |
| US11246925B2 (en) | 2011-01-28 | 2022-02-15 | Sanofi Biotechnology | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
| EP3395836A1 (en) * | 2011-01-28 | 2018-10-31 | Sanofi Biotechnology | Human antibodies to pcsk9 for use in methods of treating particular groups of subjects |
| JP7140800B2 (ja) | 2011-01-28 | 2022-09-21 | サノフィ・バイオテクノロジー | 被験者の特定のグループを処置する方法において使用するためのpcsk9に対するヒト抗体 |
| JP2022141869A (ja) * | 2011-01-28 | 2022-09-29 | サノフィ・バイオテクノロジー | 被験者の特定のグループを処置する方法において使用するためのpcsk9に対するヒト抗体 |
| CN107899010A (zh) * | 2011-01-28 | 2018-04-13 | 赛诺菲生物技术公司 | 治疗特定受试者组的方法中使用的针对pcsk9的人抗体 |
| EP3326648A1 (en) * | 2011-01-28 | 2018-05-30 | Sanofi Biotechnology | Pharmaceutical compositions comprising human antibodies to pcsk9 |
| CN103476797A (zh) * | 2011-01-28 | 2013-12-25 | 赛诺菲 | 包含针对pcsk9的人抗体的药物组合物 |
| RU2721279C2 (ru) * | 2011-01-28 | 2020-05-18 | Санофи Байотекнолоджи | Антитела человека к pcsk9 для применения в способах лечения конкретных групп индивидуумов |
| AU2012210480B2 (en) * | 2011-01-28 | 2017-05-18 | Sanofi Biotechnology | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
| EP2668211A1 (en) * | 2011-01-28 | 2013-12-04 | Sanofi | Pharmaceutical compositions comprising human antibodies to pcsk9 |
| US10618965B2 (en) | 2011-02-25 | 2020-04-14 | Chugai Seiyaku Kabushiki Kaisha | Method for altering plasma retention and immunogenicity of antigen-binding molecule |
| US11718678B2 (en) | 2011-02-25 | 2023-08-08 | Chugai Seiyaku Kabushiki Kaisha | Method for altering plasma retention and immunogenicity of antigen-binding molecule |
| JP2018199717A (ja) * | 2011-05-10 | 2018-12-20 | アムジエン・インコーポレーテツド | コレステロール関連障害を治療または予防する方法 |
| JP2014516953A (ja) * | 2011-05-10 | 2014-07-17 | アムジエン・インコーポレーテツド | コレステロール関連障害を治療または予防する方法 |
| JP2017160208A (ja) * | 2011-05-10 | 2017-09-14 | アムジエン・インコーポレーテツド | コレステロール関連障害を治療または予防する方法 |
| US12371511B2 (en) | 2011-06-30 | 2025-07-29 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
| JP2014525915A (ja) * | 2011-07-28 | 2014-10-02 | リジェネロン・ファーマシューティカルズ・インコーポレイテッド | 抗pcsk9抗体を含む安定化製剤 |
| EP4218814A2 (en) | 2011-07-28 | 2023-08-02 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-pcsk9 antibodies |
| WO2013016648A2 (en) | 2011-07-28 | 2013-01-31 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-pcsk9 antibodies |
| JP2018070649A (ja) * | 2011-07-28 | 2018-05-10 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | 抗pcsk9抗体を含む安定化製剤 |
| US11673967B2 (en) | 2011-07-28 | 2023-06-13 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-PCSK9 antibodies |
| US8795669B2 (en) | 2011-07-28 | 2014-08-05 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-PCSK9 antibodies |
| US10752701B2 (en) | 2011-07-28 | 2020-08-25 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-PCSK9 antibodies |
| US10472425B2 (en) | 2011-07-28 | 2019-11-12 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-PCSK9 antibodies |
| US9193801B2 (en) | 2011-07-28 | 2015-11-24 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-PCSK9 antibodies |
| JP2017071620A (ja) * | 2011-07-28 | 2017-04-13 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | 抗pcsk9抗体を含む安定化製剤 |
| EP4252857B1 (en) | 2011-09-16 | 2024-09-25 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipoprotein(a) levels by administering an inhibitor of proprotein convertase subtilisin kexin-9 (pcsk9) |
| CN103930444A (zh) * | 2011-09-16 | 2014-07-16 | 瑞泽恩制药公司 | 用前蛋白转化酶枯草溶菌素-9(PCSK9)抑制剂降低脂蛋白(a)水平的方法 |
| US11116839B2 (en) | 2011-09-16 | 2021-09-14 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipoprotein(a) levels by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9) |
| JP2014527967A (ja) * | 2011-09-16 | 2014-10-23 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | プロタンパク質転換酵素サブチリシンケキシン−9(PCSK9)の阻害剤を投与することによってリポタンパク質(a)レベルを低下させる方法 |
| JP2014530188A (ja) * | 2011-09-16 | 2014-11-17 | イーライ リリー アンド カンパニー | Pcsk9に対する抗体およびその使用 |
| CN103930444B (zh) * | 2011-09-16 | 2020-08-04 | 瑞泽恩制药公司 | 用前蛋白转化酶枯草溶菌素-9(PCSK9)抑制剂降低脂蛋白(a)水平的方法 |
| EP3536712B1 (en) | 2011-09-16 | 2023-05-31 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipoprotein(a) levels by administering an inhibitor of proprotein convertase subtilisin kexin-9 (pcsk9) |
| US8530414B2 (en) | 2011-09-16 | 2013-09-10 | Eli Lilly And Company | Antibodies to PCSK9 and uses thereof |
| US10076571B2 (en) | 2011-09-16 | 2018-09-18 | Regeneron Pharmaceuticals, Inc. | Methods for reducing lipoprotein(a) levels by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9) |
| CN111789944A (zh) * | 2011-09-16 | 2020-10-20 | 瑞泽恩制药公司 | 用前蛋白转化酶枯草溶菌素-9(PCSK9)抑制剂降低脂蛋白(a)水平的方法 |
| JP2017206520A (ja) * | 2011-09-16 | 2017-11-24 | リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. | プロタンパク質転換酵素サブチリシンケキシン−9(PCSK9)の阻害剤を投与することによってリポタンパク質(a)レベルを低下させる方法 |
| US11051497B2 (en) | 2011-09-19 | 2021-07-06 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| EP2758535B1 (en) | 2011-09-19 | 2016-11-09 | Kymab Limited | Antibodies, variable domains&chains tailored for human use |
| EP3311661B1 (en) | 2011-09-19 | 2022-04-20 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| EP2757875B1 (en) | 2011-09-19 | 2017-11-29 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| EP3839049A3 (en) * | 2011-09-19 | 2021-10-20 | Kymab Limited | Antibodies, variable domains & chains tailored for human use |
| EP3311661A1 (en) | 2011-09-19 | 2018-04-25 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| US9963716B2 (en) | 2011-09-26 | 2018-05-08 | Kymab Limited | Chimaeric surrogate light chains (SLC) comprising human VpreB |
| US11827699B2 (en) | 2011-09-30 | 2023-11-28 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing antibodies promoting disappearance of antigens having plurality of biological activities |
| WO2013050885A1 (en) | 2011-10-07 | 2013-04-11 | Merli Giovanni | A vehicle upper protection structure |
| US11820793B2 (en) | 2011-11-30 | 2023-11-21 | Chugai Seiyaku Kabushiki Kaisha | Drug containing carrier into cell for forming immune complex |
| WO2013086443A1 (en) | 2011-12-08 | 2013-06-13 | Amgen Inc. | Agonistic human lcat antigen binding proteins and their use in therapy |
| WO2013112438A1 (en) | 2012-01-23 | 2013-08-01 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-ang2 antibodies |
| US9402898B2 (en) | 2012-01-23 | 2016-08-02 | Regeneron Pharmaceuticals, Inc. | Stabilized formulations containing anti-Ang2 antibodies |
| US9938357B2 (en) | 2012-03-28 | 2018-04-10 | Kymab Limited | Animal models and therapeutic molecules |
| US9896516B2 (en) | 2012-03-28 | 2018-02-20 | Kymab Limited | Animal models and therapeutic molecules |
| US10251377B2 (en) | 2012-03-28 | 2019-04-09 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
| US11297811B2 (en) | 2012-03-28 | 2022-04-12 | Kymab Limited | Transgenic non-human vertebrate for the expression of class-switched, fully human, antibodies |
| US10774155B2 (en) | 2012-03-28 | 2020-09-15 | Kymab Limited | Animal models and therapeutic molecules |
| US9924705B2 (en) | 2012-03-28 | 2018-03-27 | Kymab Limited | Animal models and therapeutic molecules |
| US9938358B2 (en) | 2012-03-28 | 2018-04-10 | Kymab Limited | Animal models and therapeutic molecules |
| US10259885B2 (en) | 2012-05-08 | 2019-04-16 | Alderbio Holdings Llc | Anti-PCSK9 antibodies and use thereof |
| US9255154B2 (en) | 2012-05-08 | 2016-02-09 | Alderbio Holdings, Llc | Anti-PCSK9 antibodies and use thereof |
| US10667501B2 (en) | 2012-05-17 | 2020-06-02 | Kymab Limited | Transgenic non-human vertebrate for the in vivo production of dual specificity immunoglobulins or hypermutated heavy chain only immunoglobulins |
| US9266961B2 (en) | 2012-06-15 | 2016-02-23 | Genentech, Inc. | Anti-PCSK9 antibodies, formulations, dosing, and methods of use |
| WO2013188855A1 (en) * | 2012-06-15 | 2013-12-19 | Genentech, Inc. | Anti-pcsk9 antibodies, formulations, dosing, and methods of use |
| EA028244B1 (ru) * | 2012-08-13 | 2017-10-31 | Ридженерон Фармасьютикалз, Инк. | АНТИТЕЛА К PCSK9 C pH-ЗАВИСИМЫМИ ХАРАКТЕРИСТИКАМИ СВЯЗЫВАНИЯ |
| AU2013302925B2 (en) * | 2012-08-13 | 2018-07-05 | Regeneron Pharmaceuticals, Inc. | Anti-PCSK9 antibodies with pH-dependent binding characteristics |
| US9540449B2 (en) | 2012-08-13 | 2017-01-10 | Regeneron Pharmaceuticals, Inc. | Anti-PCSK9 antibodies with pH-dependent binding characteristics |
| WO2014028354A1 (en) * | 2012-08-13 | 2014-02-20 | Regeneron Pharmaceuticals, Inc. | Anti-pcsk9 antibodies with ph-dependent binding characteristics |
| WO2014031712A1 (en) | 2012-08-22 | 2014-02-27 | Regeneron Pharmaceuticals, Inc. | HUMAN ANTIBODIES TO GFRα3 AND METHODS OF USE THEREOF |
| US8968736B2 (en) | 2012-08-22 | 2015-03-03 | Regeneron Pharmaceuticals, Inc. | Human antibodies to GFRα3 and methods of use thereof |
| US10077311B2 (en) | 2012-08-22 | 2018-09-18 | Regeneron Pharmaceuticals, Inc. | Human antibodies to GFR alpha3 and methods of reducing pain associated with GFR alpha3-related diseases |
| US10947312B2 (en) | 2012-08-22 | 2021-03-16 | Regeneron Pharmaceuticals, Inc. | Human antibodies to GFRα3 and methods of making thereof |
| EP3450458A1 (en) | 2012-08-22 | 2019-03-06 | Regeneron Pharmaceuticals, Inc. | Human antibodies to gfr 3 and methods of use thereof |
| US9522185B2 (en) | 2012-08-22 | 2016-12-20 | Regeneron Pharmaceuticals, Inc. | Human antibodies to GFR α3 and methods of treating pain associated with osteoarthritis or bone cancer |
| US10919953B2 (en) | 2012-08-24 | 2021-02-16 | Chugai Seiyaku Kabushiki Kaisha | FcgammaRIIB-specific Fc region variant |
| EP2703008A1 (en) * | 2012-08-31 | 2014-03-05 | Sanofi | Human antibodies to PCSK9 for use in methods of treating particular groups of subjects |
| US12115341B2 (en) | 2012-11-21 | 2024-10-15 | Amgen Inc. | Drug delivery device |
| US12370304B2 (en) | 2012-11-21 | 2025-07-29 | Amgen Inc. | Drug delivery device |
| US11439745B2 (en) | 2012-11-21 | 2022-09-13 | Amgen Inc. | Drug delivery device |
| WO2014081780A1 (en) | 2012-11-21 | 2014-05-30 | Amgen Inc. | Drug delivery device |
| EP4234694A2 (en) | 2012-11-21 | 2023-08-30 | Amgen Inc. | Drug delivery device |
| US11458247B2 (en) | 2012-11-21 | 2022-10-04 | Amgen Inc. | Drug delivery device |
| US10682474B2 (en) | 2012-11-21 | 2020-06-16 | Amgen Inc. | Drug delivery device |
| EP3656426A1 (en) | 2012-11-21 | 2020-05-27 | Amgen, Inc | Drug delivery device |
| US11344681B2 (en) | 2012-11-21 | 2022-05-31 | Amgen Inc. | Drug delivery device |
| EP3081249A1 (en) | 2012-11-21 | 2016-10-19 | Amgen, Inc | Drug delivery device |
| EP3072548A1 (en) | 2012-11-21 | 2016-09-28 | Amgen, Inc | Drug delivery device |
| US10766960B2 (en) | 2012-12-27 | 2020-09-08 | Chugai Seiyaku Kabushiki Kaisha | Heterodimerized polypeptide |
| WO2014144096A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Drug cassette, autoinjector, and autoinjector system |
| WO2014150983A3 (en) * | 2013-03-15 | 2014-12-04 | Amgen Inc. | Human antigen binding proteins that bind to proprotein convertase subtilisin kexin type 9 (pcsk9) |
| EP3593839A1 (en) | 2013-03-15 | 2020-01-15 | Amgen Inc. | Drug cassette |
| WO2014143770A1 (en) | 2013-03-15 | 2014-09-18 | Amgen Inc. | Body contour adaptable autoinjector device |
| US11297810B2 (en) | 2013-03-18 | 2022-04-12 | Kymab Limited | Animal models and therapeutic molecules |
| US10226033B2 (en) | 2013-03-18 | 2019-03-12 | Kymab Limited | Animal models and therapeutic molecules |
| US9788534B2 (en) | 2013-03-18 | 2017-10-17 | Kymab Limited | Animal models and therapeutic molecules |
| WO2014149357A1 (en) | 2013-03-22 | 2014-09-25 | Amgen Inc. | Injector and method of assembly |
| EP3831427A1 (en) | 2013-03-22 | 2021-06-09 | Amgen Inc. | Injector and method of assembly |
| US11267868B2 (en) | 2013-04-02 | 2022-03-08 | Chugai Seiyaku Kabushiki Kaisha | Fc region variant |
| US9783618B2 (en) | 2013-05-01 | 2017-10-10 | Kymab Limited | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
| US10730930B2 (en) | 2013-05-02 | 2020-08-04 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
| US11820810B2 (en) | 2013-05-02 | 2023-11-21 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
| US9783593B2 (en) | 2013-05-02 | 2017-10-10 | Kymab Limited | Antibodies, variable domains and chains tailored for human use |
| US11707056B2 (en) | 2013-05-02 | 2023-07-25 | Kymab Limited | Animals, repertoires and methods |
| CN105263963B (zh) * | 2013-05-30 | 2021-03-05 | 瑞泽恩制药公司 | 伴pcsk9功能获得性突变的常染色体显性高胆固醇血症的治疗方法 |
| AU2014274077B2 (en) * | 2013-05-30 | 2019-09-26 | Regeneron Pharmaceuticals, Inc. | Methods for treating autosomal dominant hypercholesterolemia associated with PCSK9 gain-of-function mutations |
| CN105263963A (zh) * | 2013-05-30 | 2016-01-20 | 瑞泽恩制药公司 | 伴pcsk9功能获得性突变的常染色体显性高胆固醇血症的治疗方法 |
| WO2014194111A1 (en) * | 2013-05-30 | 2014-12-04 | Regeneron Pharmaceuticals, Inc. | Methods for treating autosomal dominant hypercholesterolemia associated with pcsk9 gain-of-function mutations |
| US10111953B2 (en) | 2013-05-30 | 2018-10-30 | Regeneron Pharmaceuticals, Inc. | Methods for reducing remnant cholesterol and other lipoprotein fractions by administering an inhibitor of proprotein convertase subtilisin kexin-9 (PCSK9) |
| US10494442B2 (en) | 2013-06-07 | 2019-12-03 | Sanofi Biotechnology | Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9 |
| US10995150B2 (en) | 2013-06-07 | 2021-05-04 | Regeneron Pharmaceuticals, Inc. | Methods for inhibiting atherosclerosis by administering an anti-PCSK9 antibody |
| CN105705521A (zh) * | 2013-06-07 | 2016-06-22 | 再生元制药公司 | 通过施用pcsk9抑制剂抑制动脉粥样硬化的方法 |
| AU2014274844B2 (en) * | 2013-06-07 | 2019-11-28 | Regeneron Pharmaceuticals, Inc. | Methods for inhibiting atherosclerosis by administering an inhibitor of PCSK9 |
| CN111920954A (zh) * | 2013-06-07 | 2020-11-13 | 再生元制药公司 | 通过施用pcsk9抑制剂抑制动脉粥样硬化的方法 |
| WO2014197752A1 (en) * | 2013-06-07 | 2014-12-11 | Regeneron Pharmaceuticals, Inc. | Methods fo inhibting atherosclerosis by administering an inhibitor of pcsk9 |
| US10149462B2 (en) | 2013-10-01 | 2018-12-11 | Kymab Limited | Animal models and therapeutic molecules |
| US11399522B2 (en) | 2013-10-01 | 2022-08-02 | Kymab Limited | Animal models and therapeutic molecules |
| WO2015049517A2 (en) | 2013-10-01 | 2015-04-09 | Kymab Limited | Animal models and therapeutic molecules |
| WO2015054619A3 (en) * | 2013-10-11 | 2015-06-04 | Sanofi | Use of a pcsk9 inhibitor to treat hyperlipidemia |
| EA037526B1 (ru) * | 2013-10-11 | 2021-04-08 | Санофи Байотекнолоджи | Применение ингибитора pcsk9 для лечения гиперлипидемии |
| CN105814085A (zh) * | 2013-10-11 | 2016-07-27 | 赛诺菲生物技术公司 | Pcsk9抑制剂用于治疗高血脂症的用途 |
| EP3689913A1 (en) * | 2013-10-11 | 2020-08-05 | Sanofi Biotechnology | Use of a pcsk9 inhibitor to treat hyperlipidemia |
| EP3957345A1 (en) | 2013-10-24 | 2022-02-23 | Amgen, Inc | Drug delivery system with temperature-sensitive control |
| WO2015061389A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Drug delivery system with temperature-sensitive control |
| EP3789064A1 (en) | 2013-10-24 | 2021-03-10 | Amgen, Inc | Injector and method of assembly |
| WO2015061386A1 (en) | 2013-10-24 | 2015-04-30 | Amgen Inc. | Injector and method of assembly |
| EP3501575A1 (en) | 2013-10-24 | 2019-06-26 | Amgen, Inc | Drug delivery system with temperature-sensitive-control |
| EP3421066A1 (en) | 2013-10-24 | 2019-01-02 | Amgen, Inc | Injector and method of assembly |
| TWI670077B (zh) * | 2013-11-12 | 2019-09-01 | 賽諾菲生物技術公司 | 使用pcsk9抑制劑之給藥療程 |
| US10428157B2 (en) | 2013-11-12 | 2019-10-01 | Sanofi Biotechnology | Dosing regimens for use with PCSK9 inhibitors |
| US11434305B2 (en) | 2013-12-17 | 2022-09-06 | Kymab Limited | Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| DE202014010499U1 (de) | 2013-12-17 | 2015-10-20 | Kymab Limited | Targeting von humaner PCSK9 zur Cholesterinbehandlung |
| US9040052B1 (en) | 2013-12-17 | 2015-05-26 | Kymab Limited | Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| DE202014010421U1 (de) | 2013-12-17 | 2015-11-12 | Kymab Limited | Menschliche Ziele |
| US10611849B2 (en) | 2013-12-17 | 2020-04-07 | Kymab Limited | Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| US10618971B2 (en) | 2013-12-17 | 2020-04-14 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
| WO2015119906A1 (en) | 2014-02-05 | 2015-08-13 | Amgen Inc. | Drug delivery system with electromagnetic field generator |
| US11773175B2 (en) | 2014-03-04 | 2023-10-03 | Kymab Limited | Antibodies, uses and methods |
| US11753479B2 (en) | 2014-03-04 | 2023-09-12 | Kymab Limited | Nucleic acids encoding anti-OX40L antibodies |
| WO2015142668A1 (en) * | 2014-03-17 | 2015-09-24 | Sanofi | Methods for reducing cardiovascular risk |
| AU2015231713B2 (en) * | 2014-03-17 | 2020-11-19 | Regeneron Pharmaceuticals, Inc. | Methods for reducing cardiovascular risk |
| EP4403213A3 (en) * | 2014-03-17 | 2024-10-23 | Sanofi Biotechnology | Methods for reducing cardiovascular risk |
| EP3785749A1 (en) | 2014-05-07 | 2021-03-03 | Amgen Inc. | Autoinjector with shock reducing elements |
| WO2015171777A1 (en) | 2014-05-07 | 2015-11-12 | Amgen Inc. | Autoinjector with shock reducing elements |
| US11992659B2 (en) | 2014-06-03 | 2024-05-28 | Amgen Inc. | Controllable drug delivery system and method of use |
| EP4036924A1 (en) | 2014-06-03 | 2022-08-03 | Amgen, Inc | Devices and methods for assisting a user of a drug delivery device |
| WO2015187797A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Controllable drug delivery system and method of use |
| WO2015187799A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Systems and methods for remotely processing data collected by a drug delivery device |
| WO2015187793A1 (en) | 2014-06-03 | 2015-12-10 | Amgen Inc. | Drug delivery system and method of use |
| US11213624B2 (en) | 2014-06-03 | 2022-01-04 | Amgen Inc. | Controllable drug delivery system and method of use |
| US11738146B2 (en) | 2014-06-03 | 2023-08-29 | Amgen Inc. | Drug delivery system and method of use |
| EP4362039A2 (en) | 2014-06-03 | 2024-05-01 | Amgen Inc. | Controllable drug delivery system and method of use |
| US9062105B1 (en) | 2014-07-15 | 2015-06-23 | Kymab Limited | Precision Medicine by targeting VEGF-A variants for treatment of retinopathy |
| US9109034B1 (en) | 2014-07-15 | 2015-08-18 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
| US8999341B1 (en) | 2014-07-15 | 2015-04-07 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
| US9017678B1 (en) | 2014-07-15 | 2015-04-28 | Kymab Limited | Method of treating rheumatoid arthritis using antibody to IL6R |
| DE202015009002U1 (de) | 2014-07-15 | 2016-08-18 | Kymab Limited | Targeting von humaner PCSK9 zur Cholesterinbehandlung |
| US8986691B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Method of treating atopic dermatitis or asthma using antibody to IL4RA |
| US9439963B2 (en) | 2014-07-15 | 2016-09-13 | Kymab Limited | Methods of treating anaemia |
| US9394568B2 (en) | 2014-07-15 | 2016-07-19 | Kymab Limited | Methods of treating anaemia |
| DE202015008988U1 (de) | 2014-07-15 | 2016-06-30 | Kymab Limited | Targeting von humaner PCSK9 zur Cholesterinbehandlung |
| US9023359B1 (en) | 2014-07-15 | 2015-05-05 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
| US9034332B1 (en) | 2014-07-15 | 2015-05-19 | Kymab Limited | Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| US9045545B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision medicine by targeting PD-L1 variants for treatment of cancer |
| US9045548B1 (en) | 2014-07-15 | 2015-06-02 | Kymab Limited | Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment |
| US9051378B1 (en) | 2014-07-15 | 2015-06-09 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
| EP3332790A1 (en) | 2014-07-15 | 2018-06-13 | Kymab Limited | Antibodies for use in treating conditions related to specific pcsk9 variants in specific patients populations |
| US10711059B2 (en) | 2014-07-15 | 2020-07-14 | Kymab Limited | Methods for treating neurodegenerative diseases using anti-PD-L1 antibodies |
| US9068012B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting rare human PCSK9 variants for cholesterol treatment |
| US9428578B2 (en) | 2014-07-15 | 2016-08-30 | Kymab Limited | Methods of treating anaemia |
| US9067998B1 (en) | 2014-07-15 | 2015-06-30 | Kymab Limited | Targeting PD-1 variants for treatment of cancer |
| US8992927B1 (en) | 2014-07-15 | 2015-03-31 | Kymab Limited | Targeting human NAV1.7 variants for treatment of pain |
| US9139648B1 (en) | 2014-07-15 | 2015-09-22 | Kymab Limited | Precision medicine by targeting human NAV1.9 variants for treatment of pain |
| US9150660B1 (en) | 2014-07-15 | 2015-10-06 | Kymab Limited | Precision Medicine by targeting human NAV1.8 variants for treatment of pain |
| DE202015008974U1 (de) | 2014-07-15 | 2016-06-30 | Kymab Limited | Targeting von humaner PCSK9 zur Cholesterinbehandlung |
| US8986694B1 (en) | 2014-07-15 | 2015-03-24 | Kymab Limited | Targeting human nav1.7 variants for treatment of pain |
| US8980273B1 (en) | 2014-07-15 | 2015-03-17 | Kymab Limited | Method of treating atopic dermatitis or asthma using antibody to IL4RA |
| US8945560B1 (en) | 2014-07-15 | 2015-02-03 | Kymab Limited | Method of treating rheumatoid arthritis using antibody to IL6R |
| US9914769B2 (en) | 2014-07-15 | 2018-03-13 | Kymab Limited | Precision medicine for cholesterol treatment |
| US10618955B2 (en) | 2014-07-15 | 2020-04-14 | Kymab Limited | Methods for treating neurodegenerative disease using anti-PD-1 antibodies |
| US11555066B2 (en) | 2014-07-15 | 2023-01-17 | Kymab Limited | Precision medicine for cholesterol treatment |
| EP2975059A1 (en) | 2014-07-15 | 2016-01-20 | Kymab Limited | Antibodies for use in treating conditions related to specific pcsk9 variants in specific patients populations |
| WO2016008899A1 (en) | 2014-07-15 | 2016-01-21 | Kymab Limited | Targeting human pcsk9 for cholesterol treatment |
| DE202015009007U1 (de) | 2014-07-15 | 2016-08-19 | Kymab Limited | Targeting von humaner PCSK9 zur Cholesterinbehandlung |
| DE202015009006U1 (de) | 2014-07-15 | 2016-08-19 | Kymab Limited | Targeting von humaner PCSK9 zur Cholesterinbehandlung |
| US11306155B2 (en) | 2014-07-16 | 2022-04-19 | Sanofi Biotechnology | Methods for treating patients with heterozygous familial hypercholesterolemia (heFH) with an anti-PCSK9 antibody |
| US10544232B2 (en) | 2014-07-16 | 2020-01-28 | Sanofi Biotechnology | Methods for treating patients with heterozygous familial hypercholesterolemia (heFH) with an anti-PCSK9 antibody |
| WO2016023916A1 (en) | 2014-08-12 | 2016-02-18 | Kymab Limited | Treatment of disease using ligand binding to targets of interest |
| US11554181B2 (en) | 2014-09-05 | 2023-01-17 | The University Of North Carolina At Charlotte | Tumor specific antibody conjugates and uses therefor |
| WO2016061220A2 (en) | 2014-10-14 | 2016-04-21 | Amgen Inc. | Drug injection device with visual and audio indicators |
| EP3943135A2 (en) | 2014-10-14 | 2022-01-26 | Amgen Inc. | Drug injection device with visual and audible indicators |
| WO2016071701A1 (en) | 2014-11-07 | 2016-05-12 | Kymab Limited | Treatment of disease using ligand binding to targets of interest |
| EP3848072A1 (en) | 2014-12-19 | 2021-07-14 | Amgen Inc. | Drug delivery device with proximity sensor |
| US10799630B2 (en) | 2014-12-19 | 2020-10-13 | Amgen Inc. | Drug delivery device with proximity sensor |
| EP3689394A1 (en) | 2014-12-19 | 2020-08-05 | Amgen Inc. | Drug delivery device with live button or user interface field |
| US11357916B2 (en) | 2014-12-19 | 2022-06-14 | Amgen Inc. | Drug delivery device with live button or user interface field |
| WO2016100781A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with proximity sensor |
| WO2016100055A1 (en) | 2014-12-19 | 2016-06-23 | Amgen Inc. | Drug delivery device with live button or user interface field |
| US10765801B2 (en) | 2014-12-19 | 2020-09-08 | Amgen Inc. | Drug delivery device with proximity sensor |
| US12415039B2 (en) | 2014-12-19 | 2025-09-16 | Amgen Inc. | Drug delivery device with proximity sensor |
| US11944794B2 (en) | 2014-12-19 | 2024-04-02 | Amgen Inc. | Drug delivery device with proximity sensor |
| US12169205B2 (en) | 2014-12-19 | 2024-12-17 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant fc regions, and methods of use |
| US11454633B2 (en) | 2014-12-19 | 2022-09-27 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies, polypeptides containing variant Fc regions, and methods of use |
| US11180548B2 (en) | 2015-02-05 | 2021-11-23 | Chugai Seiyaku Kabushiki Kaisha | Methods of neutralizing IL-8 biological activity |
| EP3556411A1 (en) | 2015-02-17 | 2019-10-23 | Amgen Inc. | Drug delivery device with vacuum assisted securement and/or feedback |
| WO2016133947A1 (en) | 2015-02-17 | 2016-08-25 | Amgen Inc. | Drug delivery device with vacuum assisted securement and/or feedback |
| EA039310B1 (ru) * | 2015-02-26 | 2022-01-12 | Санофи Байотекнолоджи | Способы снижения сердечно-сосудистого риска |
| WO2016138434A1 (en) | 2015-02-27 | 2016-09-01 | Amgen Inc. | Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement |
| EP3981450A1 (en) | 2015-02-27 | 2022-04-13 | Amgen, Inc | Drug delivery device having a needle guard mechanism with a tunable threshold of resistance to needle guard movement |
| US10688119B2 (en) | 2015-03-20 | 2020-06-23 | Aarhus Universitet | Inhibitors of PCSK9 for treatment of lipoprotein metabolism disorders |
| US11904017B2 (en) | 2015-08-18 | 2024-02-20 | Regeneron Pharmaceuticals, Inc. | Methods for reducing or eliminating the need for lipoprotein apheresis in patients with hyperlipidemia by administering alirocumab |
| US10772956B2 (en) | 2015-08-18 | 2020-09-15 | Regeneron Pharmaceuticals, Inc. | Methods for reducing or eliminating the need for lipoprotein apheresis in patients with hyperlipidemia by administering alirocumab |
| WO2017039786A1 (en) | 2015-09-02 | 2017-03-09 | Amgen Inc. | Syringe assembly adapter for a syringe |
| US10858446B2 (en) | 2015-10-16 | 2020-12-08 | Pharmaexplorer Limited | Anti-PCSK9 antibodies and uses thereof |
| WO2017063593A1 (en) * | 2015-10-16 | 2017-04-20 | Harbour Biomed Limited | Anti-pcsk9 antibodies and uses thereof |
| WO2017071513A1 (zh) * | 2015-10-26 | 2017-05-04 | 北京智仁美博生物科技有限公司 | 抗人pcsk9单克隆抗体及其用途 |
| WO2017100501A1 (en) | 2015-12-09 | 2017-06-15 | Amgen Inc. | Auto-injector with signaling cap |
| US12252532B2 (en) | 2015-12-25 | 2025-03-18 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies and methods of use |
| US11359009B2 (en) | 2015-12-25 | 2022-06-14 | Chugai Seiyaku Kabushiki Kaisha | Anti-myostatin antibodies and methods of use |
| EP3398968A4 (en) * | 2015-12-31 | 2019-08-07 | Jiangsu Hengrui Medicine Co., Ltd. | PCSK9 ANTIBODY, ANTIGEN-BINDING FRAGMENT AND MEDICAL APPLICATION THEREOF |
| WO2017120178A1 (en) | 2016-01-06 | 2017-07-13 | Amgen Inc. | Auto-injector with signaling electronics |
| EP3721922A1 (en) | 2016-03-15 | 2020-10-14 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
| WO2017160799A1 (en) | 2016-03-15 | 2017-09-21 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
| EP4035711A1 (en) | 2016-03-15 | 2022-08-03 | Amgen Inc. | Reducing probability of glass breakage in drug delivery devices |
| WO2017189089A1 (en) | 2016-04-29 | 2017-11-02 | Amgen Inc. | Drug delivery device with messaging label |
| WO2017192287A1 (en) | 2016-05-02 | 2017-11-09 | Amgen Inc. | Syringe adapter and guide for filling an on-body injector |
| WO2017197222A1 (en) | 2016-05-13 | 2017-11-16 | Amgen Inc. | Vial sleeve assembly |
| WO2017200989A1 (en) | 2016-05-16 | 2017-11-23 | Amgen Inc. | Data encryption in medical devices with limited computational capability |
| WO2017209899A1 (en) | 2016-06-03 | 2017-12-07 | Amgen Inc. | Impact testing apparatuses and methods for drug delivery devices |
| US11028184B2 (en) | 2016-06-08 | 2021-06-08 | Changzhou Bojia Biotechnology Co., Ltd | Long-acting PCSK9-specific binding protein and application thereof |
| US12209128B2 (en) | 2016-06-20 | 2025-01-28 | Kymab Limited | Anti-PD-L1 antibodies |
| WO2018004842A1 (en) | 2016-07-01 | 2018-01-04 | Amgen Inc. | Drug delivery device having minimized risk of component fracture upon impact events |
| US11053308B2 (en) | 2016-08-05 | 2021-07-06 | Chugai Seiyaku Kabushiki Kaisha | Method for treating IL-8-related diseases |
| US11780912B2 (en) | 2016-08-05 | 2023-10-10 | Chugai Seiyaku Kabushiki Kaisha | Composition for prophylaxis or treatment of IL-8 related diseases |
| WO2018034784A1 (en) | 2016-08-17 | 2018-02-22 | Amgen Inc. | Drug delivery device with placement detection |
| WO2018054240A1 (en) * | 2016-09-20 | 2018-03-29 | Wuxi Biologics (Shanghai) Co. Ltd. | Novel anti-pcsk9 antibodies |
| WO2018081234A1 (en) | 2016-10-25 | 2018-05-03 | Amgen Inc. | On-body injector |
| US11779604B2 (en) | 2016-11-03 | 2023-10-10 | Kymab Limited | Antibodies, combinations comprising antibodies, biomarkers, uses and methods |
| US11485795B2 (en) | 2016-12-24 | 2022-11-01 | Innovent Biologics (Suzhou) Co., Ltd | Anti-PCSK9 antibody and use thereof |
| WO2018136398A1 (en) | 2017-01-17 | 2018-07-26 | Amgen Inc. | Injection devices and related methods of use and assembly |
| WO2018152073A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Insertion mechanism for drug delivery device |
| WO2018151890A1 (en) | 2017-02-17 | 2018-08-23 | Amgen Inc. | Drug delivery device with sterile fluid flowpath and related method of assembly |
| WO2018165143A1 (en) | 2017-03-06 | 2018-09-13 | Amgen Inc. | Drug delivery device with activation prevention feature |
| WO2018164829A1 (en) | 2017-03-07 | 2018-09-13 | Amgen Inc. | Needle insertion by overpressure |
| WO2018165499A1 (en) | 2017-03-09 | 2018-09-13 | Amgen Inc. | Insertion mechanism for drug delivery device |
| EP4512445A2 (en) | 2017-03-28 | 2025-02-26 | Amgen Inc. | Plunger rod and syringe assembly system |
| WO2018183039A1 (en) | 2017-03-28 | 2018-10-04 | Amgen Inc. | Plunger rod and syringe assembly system and method |
| EP4241807A2 (en) | 2017-03-28 | 2023-09-13 | Amgen Inc. | Plunger rod and syringe assembly system and method |
| WO2018226515A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Syringe assembly for a drug delivery device and method of assembly |
| WO2018226565A1 (en) | 2017-06-08 | 2018-12-13 | Amgen Inc. | Torque driven drug delivery device |
| WO2018236619A1 (en) | 2017-06-22 | 2018-12-27 | Amgen Inc. | Device activation impact/shock reduction |
| WO2018237225A1 (en) | 2017-06-23 | 2018-12-27 | Amgen Inc. | Electronic drug delivery device comprising a cap activated by a switch assembly |
| WO2019014014A1 (en) | 2017-07-14 | 2019-01-17 | Amgen Inc. | NEEDLE INSERTION-RETRACTING SYSTEM HAVING DOUBLE TORSION SPRING SYSTEM |
| WO2019018169A1 (en) | 2017-07-21 | 2019-01-24 | Amgen Inc. | PERMEABLE GAS SEALING ELEMENT FOR MEDICINE CONTAINER AND METHODS OF ASSEMBLY |
| EP4292576A2 (en) | 2017-07-21 | 2023-12-20 | Amgen Inc. | Gas permeable sealing member for drug container and methods of assembly |
| WO2019022950A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | DRUG DELIVERY DEVICE WITH CONTAINER ACCESS SYSTEM AND ASSEMBLY METHOD THEREOF |
| EP4085942A1 (en) | 2017-07-25 | 2022-11-09 | Amgen Inc. | Drug delivery device with gear module and related method of assembly |
| WO2019022951A1 (en) | 2017-07-25 | 2019-01-31 | Amgen Inc. | DRUG DELIVERY DEVICE WITH GEAR MODULE AND ASSEMBLY METHOD THEREOF |
| WO2019032482A2 (en) | 2017-08-09 | 2019-02-14 | Amgen Inc. | HYDRAULIC-PNEUMATIC PRESSURE CHAMBER DELIVERY SYSTEM |
| WO2019036181A1 (en) | 2017-08-18 | 2019-02-21 | Amgen Inc. | BODY INJECTOR WITH STERILE ADHESIVE PATCH |
| WO2019040548A1 (en) | 2017-08-22 | 2019-02-28 | Amgen Inc. | NEEDLE INSERTION MECHANISM FOR DRUG DELIVERY DEVICE |
| WO2019070472A1 (en) | 2017-10-04 | 2019-04-11 | Amgen Inc. | FLOW ADAPTER FOR MEDICATION DELIVERY DEVICE |
| EP4257164A2 (en) | 2017-10-06 | 2023-10-11 | Amgen Inc. | Drug delivery device with interlock assembly and related method of assembly |
| WO2019070552A1 (en) | 2017-10-06 | 2019-04-11 | Amgen Inc. | DRUG DELIVERY DEVICE COMPRISING A LOCKOUT ASSEMBLY AND ASSOCIATED ASSEMBLY METHOD |
| WO2019074579A1 (en) | 2017-10-09 | 2019-04-18 | Amgen Inc. | DRUG DELIVERY DEVICE COMPRISING A DRIVE ASSEMBLY AND ASSEMBLY METHOD THEREOF |
| WO2019090086A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | Systems and approaches for sterilizing a drug delivery device |
| WO2019090079A1 (en) | 2017-11-03 | 2019-05-09 | Amgen Inc. | System and approaches for sterilizing a drug delivery device |
| WO2019090303A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Fill-finish assemblies and related methods |
| WO2019089178A1 (en) | 2017-11-06 | 2019-05-09 | Amgen Inc. | Drug delivery device with placement and flow sensing |
| WO2019094138A1 (en) | 2017-11-10 | 2019-05-16 | Amgen Inc. | Plungers for drug delivery devices |
| US12084513B2 (en) | 2017-11-14 | 2024-09-10 | Chugai Seiyaku Kabushiki Kaisha | Anti-C1S antibodies and methods of use |
| WO2019099324A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Door latch mechanism for drug delivery device |
| WO2019099322A1 (en) | 2017-11-16 | 2019-05-23 | Amgen Inc. | Autoinjector with stall and end point detection |
| WO2019173530A1 (en) | 2018-03-06 | 2019-09-12 | Sanofi Biotechnology | Use of pcsk9 inhibitor for reducing cardiovascular risk |
| WO2019231582A1 (en) | 2018-05-30 | 2019-12-05 | Amgen Inc. | Thermal spring release mechanism for a drug delivery device |
| WO2019231618A1 (en) | 2018-06-01 | 2019-12-05 | Amgen Inc. | Modular fluid path assemblies for drug delivery devices |
| WO2020023336A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with grip portion |
| WO2020023220A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Hybrid drug delivery devices with tacky skin attachment portion and related method of preparation |
| WO2020023444A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
| WO2020023451A1 (en) | 2018-07-24 | 2020-01-30 | Amgen Inc. | Delivery devices for administering drugs |
| WO2020028009A1 (en) | 2018-07-31 | 2020-02-06 | Amgen Inc. | Fluid path assembly for a drug delivery device |
| US12304960B2 (en) | 2018-08-10 | 2025-05-20 | Chugai Seiyaku Kabushiki Kaisha | Anti-CD137 antigen-binding molecule and utilization thereof |
| WO2020068623A1 (en) | 2018-09-24 | 2020-04-02 | Amgen Inc. | Interventional dosing systems and methods |
| WO2020068476A1 (en) | 2018-09-28 | 2020-04-02 | Amgen Inc. | Muscle wire escapement activation assembly for a drug delivery device |
| WO2020072577A1 (en) | 2018-10-02 | 2020-04-09 | Amgen Inc. | Injection systems for drug delivery with internal force transmission |
| WO2020072846A1 (en) | 2018-10-05 | 2020-04-09 | Amgen Inc. | Drug delivery device having dose indicator |
| WO2020081479A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Drug delivery device having damping mechanism |
| WO2020081480A1 (en) | 2018-10-15 | 2020-04-23 | Amgen Inc. | Platform assembly process for drug delivery device |
| WO2020092056A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial needle retraction |
| WO2020091981A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
| WO2020091956A1 (en) | 2018-11-01 | 2020-05-07 | Amgen Inc. | Drug delivery devices with partial drug delivery member retraction |
| US12384855B2 (en) | 2018-12-19 | 2025-08-12 | Kymab Limited | PCSK9 antagonists |
| WO2020219482A1 (en) | 2019-04-24 | 2020-10-29 | Amgen Inc. | Syringe sterilization verification assemblies and methods |
| US12473353B2 (en) | 2019-05-15 | 2025-11-18 | Chugai Seiyaku Kabushiki Kaisha | Antigen-binding molecule, a pharmaceutical composition, and a method |
| WO2021041067A2 (en) | 2019-08-23 | 2021-03-04 | Amgen Inc. | Drug delivery device with configurable needle shield engagement components and related methods |
| WO2021119321A1 (en) | 2019-12-10 | 2021-06-17 | Regeneron Pharmaceuticals, Inc. | Use of a pcsk9 inhibitor to treat homozygous familial hypercholesterolemia |
| WO2022246055A1 (en) | 2021-05-21 | 2022-11-24 | Amgen Inc. | Method of optimizing a filling recipe for a drug container |
| WO2024240848A1 (en) * | 2023-05-23 | 2024-11-28 | Jlp Health Gmbh | Ldlr derived polypeptides for anti-viral uses |
| EP4467563A1 (en) * | 2023-05-23 | 2024-11-27 | JLP Health GmbH | Ldlr derived polypeptides for anti-viral uses |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12269897B2 (en) | Anti-PCSK9 antibodies | |
| US8357371B2 (en) | Methods for treating hypercholesterolemia using antibodies to PCSK9 | |
| US9724411B2 (en) | Methods for treating hypercholesterolemia and reducing LDL-C using antibodies to PCSK9 | |
| HK40067101A (en) | High affinity human antibodies to pcsk9 | |
| AU2014262171B2 (en) | High affinity human antibodies to PCSK9 | |
| HK1155180B (en) | High affinity human antibodies to pcsk9 | |
| HK1155180A (en) | High affinity human antibodies to pcsk9 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 200980150206.X Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09793408 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 213050 Country of ref document: IL |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011540965 Country of ref document: JP Ref document number: 12011501005 Country of ref document: PH |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 593155 Country of ref document: NZ Ref document number: 2009333326 Country of ref document: AU |
|
| REEP | Request for entry into the european phase |
Ref document number: 2009793408 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2009793408 Country of ref document: EP Ref document number: CR2011-000296 Country of ref document: CR |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2747123 Country of ref document: CA |
|
| ENP | Entry into the national phase |
Ref document number: 0134011 Country of ref document: KE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/006197 Country of ref document: MX |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011001435 Country of ref document: CL Ref document number: 001214-2011 Country of ref document: PE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13226983 Country of ref document: CO Ref document number: 11073672 Country of ref document: CO Ref document number: DZP2011000408 Country of ref document: DZ |
|
| ENP | Entry into the national phase |
Ref document number: 20117013676 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 4213/CHENP/2011 Country of ref document: IN |
|
| ENP | Entry into the national phase |
Ref document number: 2009333326 Country of ref document: AU Date of ref document: 20091215 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: a201108829 Country of ref document: UA Ref document number: 2011129316 Country of ref document: RU |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 230771 Country of ref document: IL |
|
| ENP | Entry into the national phase |
Ref document number: PI0922885 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110607 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: P-2017/0255 Country of ref document: RS |