WO2009090916A1 - オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物 - Google Patents

オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物 Download PDF

Info

Publication number
WO2009090916A1
WO2009090916A1 PCT/JP2009/050213 JP2009050213W WO2009090916A1 WO 2009090916 A1 WO2009090916 A1 WO 2009090916A1 JP 2009050213 W JP2009050213 W JP 2009050213W WO 2009090916 A1 WO2009090916 A1 WO 2009090916A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
organosilicon compound
silicon compound
oxetanyl
Prior art date
Application number
PCT/JP2009/050213
Other languages
English (en)
French (fr)
Inventor
Sayaka Ooike
Hiroshi Suzuki
Akinori Kitamura
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to US12/812,808 priority Critical patent/US8329774B2/en
Priority to CN200980102245.2A priority patent/CN101970539B/zh
Publication of WO2009090916A1 publication Critical patent/WO2009090916A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms

Definitions

  • the present invention relates to an organosilicon compound having an oxetanyl group, a method for producing the same, and a curable composition. Specifically, the present invention was obtained by hydrolyzing and condensing a silicon compound having an oxetanyl group and having 2 or 3 hydrolyzable groups and a silicon compound having 4 siloxane bond-forming groups. The present invention relates to a condensed organosilicon compound having an oxetanyl group, which is difficult to gel, a method for producing the same, and a curable composition containing the organosilicon compound.
  • Organosilicon having an oxetanyl group by hydrolyzing and condensing a silicon compound having an oxetanyl group and three hydrolyzable groups and a silicon compound having four siloxane bond-forming groups in the presence of an acidic catalyst
  • Patent Document 1 A method for producing a compound and a composition containing this organosilicon compound are known (Patent Document 1).
  • the compound obtained by hydrolysis and condensation in the presence of an acidic catalyst may gel during storage depending on the storage conditions.
  • Applications are limited.
  • a silicon compound (s1) having an oxetanyl group and three OR groups (R is a hydrocarbon group) and four OR groups (R is a hydrocarbon group) When the organosilicon compound having an oxetanyl group is produced by hydrolyzing and condensing the silicon compound (s2) having an oxetanyl group under acidic conditions, the ratio of the OR group in the organosilicon compound is It was as high as at least 9% with respect to the total amount of OR groups in (s1) and OR groups in silicon compound (s2). This resulted in a cured product with insufficient gel formation, hardness, wear resistance, and the like.
  • Example 1 of Patent Document 1 a silicon compound having an oxetanyl group and three hydrolyzable groups and a silicon compound having three siloxane bond-forming groups (methyltriethoxysilane) Condensates that are hydrolyzed and condensed under acidic conditions and do not gel are obtained.
  • Comparative Example 1 of Patent Document 1 there is a disclosure that these compounds are gelled so as to be hydrolyzed and condensed under alkaline conditions. That is, it has an inhibiting factor for combining Patent Document 1 and Patent Document 2 or 3.
  • the purpose of the present invention is that the proportion of the inorganic part in the structure is high, is stable without gelation after production, has excellent solubility in organic solvents, and has excellent storage stability when made into a composition.
  • Another object of the present invention is to provide an organosilicon compound having an oxetanyl group, a method for producing the same, and a curable composition that provides a cured product having high hardness and excellent wear resistance.
  • a silicon compound (A) represented by the following general formula (1) and a silicon compound (B) represented by the following general formula (2) are added to 1 mol of the silicon compound (A).
  • An organosilicon compound having an oxetanyl group obtained by a method comprising a step of hydrolyzing and condensing the silicon compound (B) at a ratio of 0.3 to 2.8 mol.
  • R 0 is an organic group having an oxetanyl group
  • R 1 has an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an oxetanyl group.
  • An organic group, X is a hydrolyzable group, and n is 0 or 1.
  • SiY 4 (2) [Wherein Y is a siloxane bond-forming group. ] 2. 2.
  • R 0 is an organic group having an oxetanyl group
  • R 1 has an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an oxetanyl group.
  • An organic group, X is a hydrolyzable group, and n is 0 or 1.
  • SiY 4 (2) [Wherein Y is a siloxane bond-forming group. ] 6). 6.
  • R 3 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 4 is an alkylene group having 2 to 6 carbon atoms.
  • the amount of the basic substance used for the alkaline condition is 1 to 20 moles when the total number of moles of the silicon compound (A) and the silicon compound (B) is 100 moles.
  • a cationic curable composition comprising the organosilicon compound having an oxetanyl group described in 1 above and a cationic polymerization initiator. 10. 10. The cationic curable composition according to 9 above, wherein the cationic polymerization initiator is a photocationic polymerization initiator. 11. The cation according to 9 or 10, further comprising another cation polymerizable compound, wherein the cation polymerizable compound is at least one selected from an epoxy compound, another oxetanyl group-containing compound, and a vinyl ether compound. Curable composition. 12 10. A method for producing a cured film, comprising a step of applying the cationic curable composition according to 9 above to the surface of a substrate and curing the obtained film. 13.
  • a method for producing a cured film comprising a step of applying the cationic curable composition according to 11 above to the surface of a substrate and curing the obtained film.
  • a method for producing an article having a cured film comprising a step of applying the cationic curable composition according to 9 above to the surface of a substrate and curing the obtained film.
  • the proportion of the inorganic portion is high, it is stable without gelation after production, it has excellent solubility in an organic solvent, and is preserved even when it is used as a composition. Excellent stability.
  • cured material obtained using the curable composition containing the organosilicon compound which has this oxetanyl group is high hardness, and is excellent in abrasion resistance.
  • the “ratio of the inorganic part” means the ratio of the part that does not contain a carbon atom as an atom constituting the compound to the entire structure of the compound.
  • a stable organosilicon compound can be produced without causing gelation after production.
  • at least one X is an OR group (R is a hydrocarbon group selected from an alkyl group, a cycloalkyl group, an aralkyl group, and an aryl group)
  • At least one Y in the general formula (2) is an OR group (R is a hydrocarbon group selected from an alkyl group, a cycloalkyl group, an aralkyl group, and an aryl group).
  • the ratio of OR groups derived from silicon compounds (A) and (B) is determined by the ratio of OR groups contained in these compounds before production. For example, it may be 8% or less with respect to the total amount. And this organosilicon compound is remarkably excellent in storage stability.
  • the cationic curable composition of the present invention a cured product having high hardness and excellent wear resistance can be provided.
  • the manufacturing method of the cured film of this invention the cured film which is high hardness and excellent in abrasion resistance can be efficiently formed in the surface of a base material.
  • an article comprising a substrate and a cured film having a high hardness and excellent wear resistance formed on the surface of the substrate is efficiently formed. can do.
  • Organosilicon compound having oxetanyl group and method for producing the same The organosilicon compound having oxetanyl group of the present invention (hereinafter referred to as “organosilicon compound (C)”) is represented by the following general formula (1) under alkaline conditions.
  • the silicon compound (A) and the silicon compound (B) represented by the following general formula (2) are mixed in an amount of 0.3 to 2.8 with respect to 1 mol of the silicon compound (A). It is obtained by a method comprising a step of hydrolysis / condensation at a molar ratio.
  • the manufacturing method of the organosilicon compound (C) of the present invention includes a silicon compound (A) represented by the following general formula (1) and a silicon compound represented by the following general formula (2) under alkaline conditions.
  • B) is hydrolyzed and condensed at a ratio of 0.3 to 2.8 mol of the silicon compound (B) with respect to 1 mol of the silicon compound (A).
  • R 0 is an organic group having an oxetanyl group
  • R 1 has an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an oxetanyl group.
  • SiY 4 (2) [Wherein Y is a siloxane bond-forming group. ] Only one silicon compound (A) may be used, or two or more may be used in combination. Only one silicon compound (B) may be used, or two or more silicon compounds (B) may be used in combination.
  • Silicon compound (A) This silicon compound (A) is a compound having an oxetanyl group represented by the general formula (1). This silicon compound (A) is a component for imparting cationic curability to the resulting organosilicon compound (C).
  • R 0 is an organic group having an oxetanyl group, and this organic group preferably has 20 or less carbon atoms.
  • Particularly preferred R 0 is an organic group having a structure represented by the following general formula (3). [Wherein R 3 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 4 is an alkylene group having 2 to 6 carbon atoms. ]
  • R 3 is preferably an ethyl group.
  • R 4 is preferably a linear alkylene group, particularly preferably a propylene group (trimethylene group). This is because it is easy to obtain or synthesize an oxetane compound that forms such an organic functional group. If the carbon number of R 3 or R 4 in the general formula (3) is too large, the resulting organosilicon compound (C) is unlikely to have a high proportion of inorganic parts, and the surface hardness of the resulting cured product is not sufficient. There is a case.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an oxetanyl group. It is an organic group.
  • R 1 is an organic group having an oxetanyl group
  • particularly preferred R 1 is an organic group having a structure represented by the general formula (3).
  • X in the general formula (1) is a hydrolyzable group, and a plurality of X may be the same or different from each other.
  • Examples of X include a hydrogen atom, a halogen atom, an alkoxy group, a cycloalkoxy group, an aralkyloxy group, and an aryloxy group.
  • Preferred X is an alkoxy group, a cycloalkoxy group or an aryloxy group.
  • the alkoxy group is preferably an alkoxy group having 1 to 6 carbon atoms, and examples thereof include methoxy group, ethoxy group, n-propoxy group, iso-propoxy group, n-butoxy group, iso-butoxy group, sec -Butoxy group, tert-butoxy group, n-pentyl group, n-hexyl group and the like. Of these, alkoxy groups having 1 to 3 carbon atoms are particularly preferable.
  • the cycloalkoxy group is preferably a cycloalkoxy group having 3 to 8 carbon atoms, and examples thereof include a cyclopentyloxy group and a cyclohexyloxy group.
  • the aralkyloxy group is preferably an aralkyloxy group having 7 to 12 carbon atoms, and examples thereof include benzyloxy group and 2-phenylethyloxy.
  • the aryloxy group is preferably an aryloxy group having 6 to 10 carbon atoms, and examples thereof include a phenyloxy group, an o-toluyloxy group, an m-toluyloxy group, a p-toluyloxy group, and a naphthyloxy group.
  • X in the general formula (1) is preferably an alkoxy group having 1 to 3 carbon atoms because the hydrolyzability of the alkoxy group is good.
  • X is particularly preferably a methoxy group because the raw materials are easily available and inexpensive, and the hydrolysis reaction is easy to control.
  • n is 0 or 1.
  • the silicon compound (A) in the case where n is 0 has three hydrolyzable groups X and is also referred to as “T monomer”.
  • the silicon compound (A) in the case where n is 1 has two hydrolyzable groups X, and is also called “D monomer”.
  • n is preferably 1.
  • a silicon compound (A) where n is 0 and a silicon compound (A) where n is 1 may be used in combination.
  • Silicon compound (B) This silicon compound (B) is a compound having one silicon atom and four siloxane bond-forming groups represented by the general formula (2). This silicon compound (B) has four siloxane bond-forming groups Y (also referred to as “Q monomer”), and is a component for increasing the proportion of the inorganic portion in the resulting organosilicon compound (C). is there.
  • generation group produces
  • Y in the general formula (2) is a siloxane bond-forming group, and a plurality of Y may be the same or different from each other.
  • the siloxane bond-forming group Y include a hydroxyl group and a hydrolyzable group.
  • hydrolyzable group those similar to X in the general formula (1) can be used.
  • the siloxane bond-forming group Y is preferably other than a halogen atom, that is, a hydroxyl group, a hydrogen atom, an alkoxy group (methoxy group, ethoxy group, propoxy group, butoxy group, etc.), cycloalkoxy group (cyclopentyloxy group, cyclohexyl).
  • Oxy group etc. aralkyloxy group (benzyloxy group, 2-phenylethyloxy group etc.), aryloxy group (phenyloxy group, o-toluyloxy group, m-toluyloxy group, p-toluyloxy group, naphthyloxy) Group, etc.).
  • aralkyloxy group benzyloxy group, 2-phenylethyloxy group etc.
  • aryloxy group phenyloxy group, o-toluyloxy group, m-toluyloxy group, p-toluyloxy group, naphthyloxy
  • an alkoxy group, a cycloalkoxy group, an aralkyloxy group and an aryloxy group are preferable, and an alkoxy group is particularly preferable.
  • Examples of the silicon compound (B) include the following.
  • a group, a cycloalkoxy group, an aralkyloxy group or an aryloxy group, three of which are the same or different from each other, and two of the silicon compounds (iii) siloxane bond-forming groups Y which are hydroxyl groups or hydrogen atoms are the same or different from each other
  • an alkoxy group, a cycloalkoxy group, an aralkyloxy group or an aryloxy group, and two of them are the same or different from each other
  • three of the silicon compound (iv) siloxane bond-forming group Y which is a hydroxyl group or a hydrogen atom The same or different from each other, an alkoxy group, cycloalkoxy , An aralkyloxy group or an aryloxy group, and one silicon compound having a hydroxyl group or a hydrogen atom
  • a silicon compound in which four siloxane bond-forming groups Y are the same or different from each other and are a hydroxyl group or
  • Examples of the silicon compound of the aspect (i) include tetramethoxysilane Si (OCH 3 ) 4 , tetraethoxysilane Si (OC 2 H 5 ) 4 , tetrapropoxysilane Si (OC 3 H 7 ) 4 , tetrabutoxysilane Si ( OC 4 H 9 ) 4 and the like.
  • the hydrocarbon group forming the alkoxy group may be linear or branched. However, since the branched group is liable to cause steric hindrance, it is preferably a linear hydrocarbon group.
  • Examples of the silicon compound of the above embodiment (ii) include H 3 SiOCH 3 , H 3 SiOC 2 H 5 , H 3 SiOC 3 H 7 and the like. Examples of the silicon compound of the above embodiment (iii), H 2 Si ( OCH 3) 2, H 2 Si (OC 2 H 5) 2, H 2 Si (OC 3 H 7) 2 and the like.
  • generation groups are alkoxy groups is preferable, and especially preferable compounds are tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
  • tetrapropoxysilane is used as the silicon compound (B)
  • thickening, gelation and the like during the production of the organosilicon compound (C) can be made difficult to occur. Accordingly, tetrapropoxysilane is most preferable as the silicon compound (B).
  • the method for producing the organosilicon compound (C) of the present invention comprises a silicon compound (A) represented by the above general formula (1) and the above general formula (2) under alkaline conditions.
  • a silicon compound (A), a silicon compound (B), water, and a basic substance for making alkaline conditions are used.
  • the present invention can further include the following steps after the first step.
  • (Second step) A step of neutralizing the reaction solution obtained in the first step with an acid.
  • (Third step) A step of removing volatile components from the neutralized liquid obtained in the second step.
  • (Fourth step) A step of dissolving and at least dissolving the organosilicon compound (C) in the cleaning organic solvent by mixing and contacting the concentrated liquid obtained in the third step with the cleaning organic solvent.
  • (5th process) The process of obtaining the organic solution containing an organosilicon compound (C), after wash
  • (Sixth Step) A step of removing volatile components from the organic solution obtained in the fifth step.
  • the method for producing an organosilicon compound (C) of the present invention preferably includes a first step, a second step and a fifth step.
  • the first step is a step of hydrolyzing and condensing the silicon compound (A) and the silicon compound (B) at a specific ratio as described above under alkaline conditions.
  • the lower limit of the ratio of the silicon compound (B) to 1 mol of the silicon compound (A) used in the reaction is 0.3 mol, preferably 0.4 mol, more preferably 0.5 mol, still more preferably 0. .9 moles.
  • the upper limit of the ratio of the silicon compound (B) to 1 mol of the silicon compound (A) used in the reaction is 2.8 mol, preferably 2.6 mol, more preferably 2.5 mol, still more preferably Is 2.1 moles.
  • the ratio of an inorganic part will become low in the obtained organosilicon compound (C), and it will obtain using the composition containing a silicon compound (C).
  • the obtained cured product has insufficient surface hardness and heat resistance.
  • the use ratio of the silicon compound (B) is too large, the organosilicon compound (C) cannot be produced due to thickening or gelation during production, or the obtained organosilicon compound (C) is thickened or It tends to gel and becomes poor in storage stability.
  • Water used in the first step is a component necessary for hydrolyzing the hydrolyzable group contained in the raw material silicon compound (silicon compound (A) and silicon compound (B) when having a hydrolyzable group). is there.
  • the amount of water used is preferably 0.5 to 10 mol, more preferably 1 to 5 mol, per 1 mol of the hydrolyzable group. If the amount of water used is too small, the reaction may be insufficient. If the amount of water used is too large, the step of removing water after the reaction becomes long and it is not economical.
  • the reaction condition in the first step is to make the reaction system alkaline, that is, it is essential that the pH exceeds 7, preferably 8 or more, more preferably 9 or more.
  • the upper limit is usually pH 13.
  • the reaction system By setting the reaction system to the above pH, an organosilicon compound having excellent storage stability can be produced in a high yield.
  • the reaction conditions in the first step are acidic conditions (less than pH 7), the organosilicon compound obtained by hydrolysis and condensation is inferior in storage stability and may gel during storage. is there. Moreover, under neutral conditions (around pH 7), hydrolysis / condensation reaction does not proceed easily, and the organosilicon compound cannot be obtained in good yield.
  • the basic substance used to make the reaction system alkaline acts as a reaction catalyst for smoothly advancing the hydrolysis / condensation reaction between the silicon compound (A) and the silicon compound (B).
  • the basic substance include ammonia, organic amines, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, choline, sodium hydroxide, potassium hydroxide, hydroxide Examples include calcium. Of these, ammonium compounds having a quaternary nitrogen atom with good catalytic activity are preferred, and tetramethylammonium hydroxide is more preferred.
  • the basic substance is used in an amount of 1 to 20 moles, with the total number of moles of the silicon compound (A) and the silicon compound (B) being 100 moles, in order to adjust the reaction system to the preferred pH. Preferably there is. If the amount of the basic substance is too small, the hydrolysis / condensation reaction proceeds slowly and the reaction time may be long. Even if the amount of the basic substance used is too large, the effect of improving the reaction efficiency is not remarkable and is not economical.
  • an organic solvent is preferably used as the reaction solvent.
  • organic solvents suitable as a reaction solvent include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran and 1,4-dioxane; toluene, benzene and xylene Aromatic hydrocarbons such as hexane; aliphatic hydrocarbons such as hexane; ligroin and the like.
  • An organic solvent may be used individually by 1 type and 2 or more types may be used together. Alcohols are preferable organic solvents because the raw silicon compound and the product have good solubility.
  • the reaction temperature in the first step is preferably 0 ° C. to 120 ° C., more preferably 10 ° C. to 100 ° C., still more preferably 40 ° C. to 80 ° C.
  • the reaction time in the first step is preferably 1 to 30 hours, more preferably 4 to 24 hours.
  • the organosilicon compound (C) of the present invention obtained by the hydrolysis / condensation reaction in the first step is a siloxane formed by a hydrolyzable group in the silicon compound (A) and a siloxane bond-forming group in the silicon compound (B).
  • a polysiloxane having a bond is a polysiloxane having a bond.
  • most of the hydrolyzable groups in the silicon compound (A) and the siloxane bond-forming groups in the silicon compound (B) are converted into siloxane bonds.
  • the second step is a step of neutralizing the reaction solution containing the organosilicon compound (C) obtained in the first step with an acid.
  • acids include inorganic acids such as phosphoric acid, nitric acid, sulfuric acid and hydrochloric acid, carboxylic acids such as acetic acid, formic acid, lactic acid, acrylic acid and oxalic acid, and sulfonic acids such as p-toluenesulfonic acid and methanesulfonic acid.
  • the organic acid is mentioned.
  • nitric acid and sulfuric acid are preferable acids because they hardly affect the stability of the oxetanyl group (addition reaction to the oxetanyl group hardly occurs) and are relatively easily removed by washing with water.
  • the amount of acid used is appropriately selected according to the pH of the reaction solution containing the organosilicon compound (C), but is preferably 1 to 1.1 equivalents, more preferably 1 equivalent to 1 equivalent of the basic substance. 1 to 1.05 equivalents.
  • the third step is a step of removing volatile components from the neutralized liquid obtained in the second step.
  • distillation is performed under normal pressure (atmospheric pressure) or reduced pressure conditions.
  • the volatile component removed in the third step is mainly the organic solvent used as the reaction solvent in the first step.
  • an organic solvent that is miscible with water such as methanol
  • this third step is usually carried out because there is a problem with water cleaning (fifth step) described later.
  • an organic silicon compound (C) can be obtained by adding a large amount of an organic solvent suitable for washing the neutralized solution with water.
  • the third step and the fourth step can be omitted.
  • the reaction solvent in the first step is not miscible with water and is an organic solvent suitable for washing the neutralized solution with water, and the reaction solvent is a solvent miscible with water such as alcohol. Even if there is, if the organic silicon compound (C) can be washed by adding a large amount of an organic solvent suitable for washing the neutralized solution with water, the third step and the fourth step are performed. Can be omitted.
  • the fourth step is a step in which at least the organosilicon compound (C) is dissolved in the cleaning organic solvent by mixing and contacting the concentrated liquid obtained in the third step and the cleaning organic solvent.
  • the organic solvent for cleaning a compound that dissolves the organosilicon compound (C) and is immiscible with water is used. “Immiscible with water” means that water and an organic solvent for washing are sufficiently mixed and then separated into an aqueous layer and an organic layer when allowed to stand.
  • Preferred organic solvents for washing include ketones such as methyl isobutyl ketone; ethers such as diisopropyl ether; aromatic hydrocarbons such as toluene; aliphatic hydrocarbons such as hexane; esters such as ethyl acetate.
  • the cleaning organic solvent may be the same as or different from the reaction solvent used in the first step.
  • the fifth step is a step of obtaining an organic solution containing the organosilicon compound (C) after washing the organic liquid obtained in the fourth step with water.
  • This organic liquid means a liquid obtained in the second step when the third step and the fourth step are omitted.
  • the said 5th process isolate separates the process which mixes and contacts water and an organic type liquid, and an aqueous layer and an organic layer (layer containing an organosilicon compound (C)), and an organic layer (organic solution)
  • the step of recovering if the mixing and contact of water and the organic liquid is insufficient, or if the separation between the aqueous layer and the organic layer is insufficient, the resulting organosilicon compound (C) will contain impurities. It may contain a lot or become less stable.
  • the temperature of the step of mixing and contacting the water and the organic liquid in the fifth step is not particularly limited, but is preferably 0 ° C. to 70 ° C., more preferably 10 ° C. to 60 ° C.
  • the temperature of the step of separating the aqueous layer and the organic layer is not particularly limited, but is preferably 0 ° C. to 70 ° C., more preferably 10 ° C. to 60 ° C. It is preferable to set the treatment temperature in the two steps to about 40 ° C. to 60 ° C. because there is an effect of shortening the separation time of the aqueous layer and the organic layer.
  • the sixth step is a step of removing volatile components from the organic solution obtained in the fifth step. In this step, distillation is performed under normal pressure (atmospheric pressure) or reduced pressure conditions.
  • the volatile component removed in the sixth step is the cleaning organic solvent used in the fourth step, but if any other volatile component is contained, all are removed simultaneously in this step.
  • the organosilicon compound (C) of the present invention is isolated.
  • the cleaning organic solvent used in the fourth step is used as the solvent for the organosilicon compound (C).
  • the sixth step can be omitted.
  • the organosilicon compound (C) obtained in the first step is stable without being altered or denatured during or after the treatment in each subsequent step.
  • the condensation rate of the silicon compound (A) and the silicon compound (B) can be 92% or more, more preferably 95% or more, and still more preferably 98% or more. It is most preferable that substantially all of the siloxane bond-forming groups (including hydrolyzable groups) are condensed, but the upper limit of the condensation rate is usually 99.9%.
  • the T monomer and / or D monomer that is the silicon compound (A) and the Q monomer that is the silicon compound (B) are copolycondensed without being gelled under alkaline conditions. It is possible to use the M monomer in such a low ratio that does not lower the properties. Specifically, in the first step, the amount of the M monomer used can be 10 mol or less with respect to 100 mol of the total number of moles of the silicon compound (A) and the silicon compound (B).
  • Organosilicon compound (C) The organosilicon compound (C) of the present invention is a polysiloxane having an oxetanyl group and a siloxane bond. And this organosilicon compound (C) is a compound containing the silicate unit represented by [SiO4 / 2 ]. This silicate unit is a structural unit in which four oxygen atoms are bonded to one silicon atom, and is a structural unit derived from the silicon compound (B).
  • the organosilicon compound (C) of the present invention is further represented by a silsesquioxane unit represented by [R 0 SiO 3/2 ] and / or [R 0 R 1 SiO 2/2 ].
  • Diorganosiloxane units may be included.
  • the silsesquioxane unit and the diorganosiloxane unit are structural units in which three and two oxygen atoms are bonded to one silicon atom, respectively, and are structural units derived from the silicon compound (A).
  • the organosilicon compound (C) of the present invention a compound containing a silicate unit represented by [SiO 4/2 ] and a silsesquioxane unit represented by [R 0 SiO 3/2 ], A compound containing a silicate unit represented by [SiO 4/2 ] and a diorganosiloxane unit represented by [R 0 R 1 SiO 2/2 ], and a silicate represented by [SiO 4/2 ] And a compound containing a unit, a silsesquioxane unit represented by [R 0 SiO 3/2 ], and a diorganosiloxane unit represented by [R 0 R 1 SiO 2/2 ].
  • the content ratio of each structural unit is determined by the use ratio of the silicon compounds (A) and (B).
  • the organosilicon compound (C) of the present invention is excellent in the surface hardness and the like of the resulting cured film, it is represented by a silicate unit represented by [SiO 4/2 ] and [R 0 SiO 3/2 ].
  • a compound containing a silsesquioxane unit is preferable.
  • the organosilicon compound (C) of the present invention has an organic part and an inorganic part in its structure.
  • R 0 and R 1 in the above general formula (1) representing the silicon compound (A) form an organic moiety.
  • a part of at least one of the hydrolyzable group (alkoxy group etc.) derived from the silicon compound (A) and the hydrolyzable group (alkoxy group etc.) derived from the silicon compound (B) remains. If so, this is also an organic part.
  • the portion other than the organic portion is an inorganic portion that does not contain a carbon atom.
  • the condensation rate can be set to 92% or more. Therefore, the organic silicon compound (C) has a high proportion of inorganic parts and a sufficiently formed polysiloxane structure. When the condensation rate is low, the hardness of the cured film obtained using this organosilicon compound (C) tends to decrease. Moreover, there exists a tendency for the storage stability of an organosilicon compound (C) to fall.
  • the organosilicon compound (C) of the present invention has a siloxane bond-forming group (including a hydrolyzable group)
  • the remaining ratio can be calculated from a 1 H NMR (nuclear magnetic resonance spectrum) chart.
  • “all the hydrolyzable groups are substantially condensed” means that, for example, in the 1 H NMR chart of the obtained organosilicon compound (C), a peak based on a siloxane bond-forming group is hardly observed. Can be confirmed.
  • the silicon compound (A) used in the production of the organosilicon compound (C) is a compound (T monomer having three hydrolyzable groups) where n in the general formula (1) is 0
  • the resulting organosilicon compound (C) has silsesquioxane units and silicate units as constituent units. It becomes the compound which has.
  • the organosilicon compound (C) can partially have a ladder-like, cage-like or random-like structure. Since the organosilicon compound (C) of the present invention has an oxetanyl group, it has cationic curability.
  • a cured film having a large surface hardness and excellent heat resistance can be provided.
  • the number average molecular weight of the organosilicon compound (C) of the present invention is preferably 1,000 to 20,000, more preferably 1,000 to 10,000 in terms of standard polystyrene by gel permeation chromatography (GPC) analysis. More preferably, it is 2,000 to 6,000.
  • organosilicon compound (C1) is an organic group in which R 0 in the above general formula (1) is represented by the above general formula (3).
  • N is 0 and at least 1, preferably 2, and more preferably 3 X is an OR group (R is a carbon atom selected from an alkyl group, a cycloalkyl group, an aralkyl group and an aryl group)
  • a silicon compound (A) which is a hydrogen group) and at least 1, preferably 2, more preferably 3, particularly preferably 4 Y in the general formula (2) is an OR group (R is And a silicon compound (B) which is a hydrocarbon group selected from an alkyl group, a cycloalkyl group, an aralkyl group and an aryl group.) And a compound obtained by hydrolysis and condensation under alkaline conditions.
  • the ratio of OR groups derived from the silicon compounds (A) and (B), which are the raw materials for production, contained in the organosilicon compound (C1) is the total amount of OR groups contained in these compounds before production. On the other hand, it is preferably 0 to 8%, more preferably 0.1 to 6%, still more preferably 0.5 to 5%.
  • the above-mentioned ratio in the organosilicon compound obtained by hydrolysis / condensation of the production raw material under acidic conditions often exceeds 8%, and the stability after production is not sufficient, and the curable composition and The hardness and the like of the cured product obtained at that time were not sufficient.
  • the organosilicon compound (C1) it has excellent storage stability, high workability due to high solubility in the organic solvent, and hardness and abrasion resistance of a cured product obtained when a curable composition is obtained. Excellent in properties.
  • the cationic curable composition of the present invention is characterized by containing the organosilicon compound (C) of the present invention and a cationic polymerization initiator.
  • the cation-curable composition of the present invention further includes other cationic polymerizable compounds (hereinafter referred to as “cationic polymerizable compound (D)”), sensitizers, thixotropic agents, silane coupling agents, You may contain an antifoamer, a filler, an inorganic polymer, an organic polymer, an organic solvent, etc.
  • the organosilicon compound (C) is preferably the organosilicon compound (C1) from the viewpoints of curability of the cationic curable composition, hardness of the resulting cured product, wear resistance, and the like.
  • a cationic polymerization initiator is a compound that generates a cation when irradiated with light such as ultraviolet rays (photo cationic polymerization initiator) or a compound that generates a cation when heated (thermal cationic polymerization initiator). These compounds can be used.
  • a composition containing a photocationic polymerization initiator is referred to as a photocationic curable composition
  • a composition containing a thermal cationic polymerization initiator is referred to as a thermal cation curable composition.
  • Photocationic polymerization initiator examples include onium salts such as iodonium salts, sulfonium salts, diazonium salts, selenium salts, pyridinium salts, ferrocenium salts, and phosphonium salts. Of these, iodonium salts and sulfonium salts are preferred. In particular, aromatic iodonium salts and aromatic sulfonium salts are thermally relatively stable, and the curable compositions containing them have good storage stability. Since it is easy, it is a preferable photocationic polymerization initiator.
  • onium salts such as iodonium salts, sulfonium salts, diazonium salts, selenium salts, pyridinium salts, ferrocenium salts, and phosphonium salts. Of these, iodonium salts and sulfonium salts are preferred. In particular, aromatic iodonium salts and aromatic sulf
  • examples of the counter anion include BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , PF 6 ⁇ , B (C 6 F 5 ) 4 ⁇ and the like. It is done.
  • aromatic iodonium salt examples include (tricumyl) iodonium tetrakis (pentafluorophenyl) borate, diphenyliodonium / hexafluorophosphate, diphenyliodonium / hexafluoroantimonate, diphenyliodonium / tetrafluoroborate, diphenyliodonium / tetrakis (pentafluorophenyl).
  • aromatic iodonium salt such as “UV-9380C” (trade name) manufactured by GE Toshiba Silicone, “RHODOSIL PHOTOINITITOR 2074” (trade name) manufactured by Rhodia, manufactured by Wako Pure Chemical Industries, Ltd. “WPI-016”, “WPI-116”, “WPI-113” (trade name), and the like.
  • aromatic sulfonium salt examples include bis [4- (diphenylsulfonio) phenyl] sulfide / bishexafluorophosphate, bis [4- (diphenylsulfonio) phenyl] sulfide / bishexafluoroantimonate, bis [4- ( Diphenylsulfonio) phenyl] sulfide-bistetrafluoroborate, bis [4- (diphenylsulfonio) phenyl] sulfide-tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium hexafluorophosphate, diphenyl- 4- (phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulf
  • aromatic sulfonium salts include “Syracure UVI-6990”, “ “Syracure UVI-6922” and “Syracure UVI-6974” (trade name), “Adekaoptomer SP-150”, “Adekaoptomer SP-152”, “Adekaoptomer SP-170” and “Adekaoptomer SP-170” manufactured by Adeka Co., Ltd.
  • Adekaoptomer SP-172 "(trade name),” WPAG-593 “,” WPAG-596 “,” WPAG-640 "and” WPAG-641 "(trade name) manufactured by Wako Pure Chemical Industries, Ltd. Can be mentioned.
  • aromatic diazonium salt examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate.
  • the content of the photocationic polymerization initiator contained in the photocationic curable composition is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the whole of the cationically polymerizable compound including the organosilicon compound (C). Part, more preferably 0.1 to 7 parts by weight, still more preferably 0.2 to 5 parts by weight.
  • the content of the cationic photopolymerization initiator is within this range, the curability of the curable composition (can be cured in a short time and energy cost can be reduced), and the hardness and abrasion resistance of the resulting cured product are excellent. .
  • thermal cationic polymerization initiator examples include sulfonium salts, phosphonium salts, quaternary ammonium salts and the like. Of these, sulfonium salts are preferred.
  • the counter anion in the thermal cationic polymerization initiator examples include AsF 6 ⁇ , SbF 6 ⁇ , PF 6 ⁇ , B (C 6 F 5 ) 4 ⁇ and the like.
  • sulfonium salts examples include triphenylsulfonium boron tetrafluoride, antiphenyl triphenylsulfonium hexafluoride, arsenic triphenylsulfonium hexafluoride, arsenic tri (4-methoxyphenyl) sulfonium hexafluoride, and diphenyl (4-phenylthiophenyl). ) Sulfonium arsenic hexafluoride and the like.
  • sulfonium salt such as “Adeka Opton CP-66” and “Adeka Opton CP-77” (trade name) manufactured by Adeka Corporation, “Sun Aid SI-60L”, “Sun Aid” manufactured by Sanshin Chemical Industry Co., Ltd. SI-80L “and” Sun-Aid SI-100L “(trade name).
  • Examples of the phosphonium salt include ethyltriphenylphosphonium antimony hexafluoride and tetrabutylphosphonium antimony hexafluoride.
  • Examples of the ammonium salt type compounds include N, N-dimethyl-N-benzylanilinium hexafluoride antimony, N, N-diethyl-N-benzylanilinium boron tetrafluoride, N, N-dimethyl-N—.
  • the content of the thermal cationic polymerization initiator contained in the thermal cationic curable composition is preferably 0.01 to 10 mass with respect to 100 mass parts of the whole cationic polymerizable compound including the organosilicon compound (C). Part, more preferably 0.1 to 7 parts by weight, still more preferably 0.2 to 5 parts by weight. When the content of the thermal cationic polymerization initiator is within this range, the curability of the curable composition, the hardness of the resulting cured product, and the wear resistance are excellent.
  • This cationically polymerizable compound (D) is a compound having cationic polymerizability other than the organosilicon compound (C), for example, an epoxy compound (a compound having an epoxy group), a compound having another oxetanyl group (another oxetanyl) Group-containing compound), a compound having a vinyl ether group (vinyl ether compound), and the like. These compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • an epoxy compound having an alicyclic structure is particularly preferable because it has an effect of smoothly promoting cationic polymerization of the oxetanyl group in the organosilicon compound (C).
  • epoxy compound a monofunctional epoxy compound, a polyfunctional epoxy compound, etc.
  • the polyfunctional epoxy compound include dicyclopentadiene dioxide, limonene dioxide, 4-vinylcyclohexene dioxide, (3,4-epoxycyclohexyl) methyl-3,4-epoxycyclohexyl carboxylate (for example, manufactured by Daicel Chemical Industries, Ltd.) “Celoxide 2021P” (trade name)), di (3,4-epoxycyclohexyl) adipate, bisphenol A type epoxy resin, halogenated bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol S diglycidyl ether, bisphenol F-type epoxy resin, 1,6-hexanediol diglycidyl ether, polytetramethylene glycol diglycidyl ether, compound in which both ends of polybutadiene are glycidyl etherified o-cresol novolac type epoxy resin
  • a block copolymer having an ethylene-butylene copolymer portion and an isoprene polymer portion such as a compound in which a portion of the isoprene polymer portion is epoxidized, “EHPE3150” (trade name) manufactured by Daicel Chemical Industries, Ltd.
  • a compound having a structure in which a vinyl group is epoxidized a cage silsesquioxane having a glycidyl group, such as “Q-4” in “Q8 series” manufactured by Mayaterials, “manufactured by Mayaterials” Examples thereof include alicyclic cage silsesquioxane having an epoxy group, epoxidized vegetable oil, and the like such as “Q-5” in “Q8 series”.
  • Examples of monofunctional epoxy compounds include ⁇ -olefin epoxides such as 1,2-epoxyhexadecane, phenyl glycidyl ether, 2-ethylhexyl glycidyl ether, dodecyl glycidyl ether, and glycidyl methacrylate.
  • ⁇ -olefin epoxides such as 1,2-epoxyhexadecane, phenyl glycidyl ether, 2-ethylhexyl glycidyl ether, dodecyl glycidyl ether, and glycidyl methacrylate.
  • oxetanyl group containing compound a monofunctional oxetane compound, a polyfunctional oxetane compound, etc. are mentioned.
  • polyfunctional oxetane compound 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene (XDO), di [2- (3-oxetanyl) butyl] ether (DOX), 1, 4-bis [(3-ethyloxetane-3-yl) methoxy] benzene (HQOX), 1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene (RSOX), 1,2-bis [ (3-Ethyloxetane-3-yl) methoxy] benzene (CTOX), 4,4′-bis [(3-ethyloxetane-3-yl) methoxy] biphenyl (4,4′-BPO
  • Monofunctional oxetane compounds include 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane (EHOX), 3-ethyl-3- (dodecyloxymethyl) oxetane (OXR-12), and 3-ethyl. -3- (octadecyloxymethyl) oxetane (OXR-18), 3-ethyl-3- (phenoxymethyl) oxetane (POX), 3-ethyl-3-hydroxymethyloxetane (OXA), and the like.
  • vinyl ether compound a monofunctional vinyl ether compound, a polyfunctional vinyl ether compound, etc.
  • examples of the polyfunctional vinyl ether compound include cyclohexane dimethanol divinyl ether, triethylene glycol divinyl ether, and novolak divinyl ether.
  • examples of the monofunctional vinyl ether compound include hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, dodecyl vinyl ether, propenyl ether propylene carbonate, cyclohexyl vinyl ether and the like.
  • the content of the cationic polymerizable compound (D) is preferably based on 100 parts by mass of the organosilicon compound (C). Is 0.1 to 1,000 parts by mass, more preferably 1 to 300 parts by mass, and still more preferably 2 to 100 parts by mass.
  • the content of the cationic polymerizable compound (D) is within this range, the curability of the curable composition, the hardness of the resulting cured product, and the wear resistance are excellent.
  • the cation curable composition of the present invention can contain a photo sensitizer.
  • a radical photopolymerization initiator can be preferably used.
  • Typical photosensitizers that can be used in the present invention are the compounds disclosed by Crivello in Advanced in Polymer Science (Adv. In Polymer. Sci., 62, 1 (1984)). Specific examples include pyrenes, perylenes, acridine oranges, thioxanthones, 2-chlorothioxanthones, and benzoflavins. Of these, thioxanthones are particularly preferred because they have the effect of increasing the activity of a photocationic polymerization initiator such as an onium salt.
  • the photocationic curable composition of this invention contains a photosensitizer
  • content of this photosensitizer is with respect to 100 mass parts of the whole cationic polymerizable compound containing the said organosilicon compound (C).
  • the amount is preferably 0.5 to 10 parts by mass, more preferably 1 to 8 parts by mass, and still more preferably 3 to 6 parts by mass.
  • the content of the cationic polymerizable compound (D) is within this range, the curability of the curable composition, the hardness of the resulting cured product, and the wear resistance are excellent.
  • Organic Solvent may be either a compound that dissolves the organosilicon compound (C) or a compound that does not dissolve the organosilicon compound (C), or a combination of both.
  • the organic solvent is a compound that dissolves the organosilicon compound (C) as described above or a mixture that dissolves the organosilicon compound (C) by using both of them, the resulting cationic curability is obtained. It is excellent in workability using the composition, film formability and the like.
  • the photocationic curable composition and the thermal cation curable composition according to the present invention can be obtained by mixing raw material components.
  • a conventionally known mixer or the like may be used. Specific examples include a reaction flask, a change can mixer, a planetary mixer, a disper, a Henschel mixer, a kneader, an ink roll, an extruder, a three-roll mill, and a sand mill.
  • the cationic curable composition of the present invention can be cationically cured by a method such as a method of irradiating active energy rays, a method of heating, a method of using a combination of active energy ray irradiation and heating.
  • a method of irradiating active energy rays such as a method of irradiating active energy rays, a method of heating, a method of using a combination of active energy ray irradiation and heating.
  • Specific examples of the active energy ray include an electron beam, ultraviolet light, and visible light, and ultraviolet light is particularly preferable.
  • the method for producing the cured film of the present invention is a method of applying the cationic curable composition of the present invention to the surface of a substrate and curing the resulting film. It is characterized by providing the process to make. Moreover, the manufacturing method of the articles
  • the cationic curable composition contains an organic solvent, it is usually cured after the organic solvent is volatilized after the coating film is formed.
  • the substrate is not particularly limited, and the constituent material may be either an organic material or an inorganic material. Specifically, metals, alloys, glass, ceramics, resins, paper, wood, concrete, and the like can be used.
  • the shapes include films, sheets, plates (flat plates, curved plates), cubes, rectangular parallelepipeds, pyramids, cones, linear bodies (straight lines, curved lines, etc.), annular bodies (circular, polygonal forms, etc.), tubes, spheres And the like, and irregular shapes having irregularities, grooves, through holes, corners, and the like.
  • the base material is preferably a substrate containing a resin (usually a flat plate).
  • polyester resin polycarbonate resin
  • ABS resin ASA resin
  • AES resin polystyrene, styrene / acrylonitrile copolymer, styrene / maleic anhydride copolymer, (meth) acrylic acid ester / styrene copolymer
  • Polyethylene polypropylene, polyarylate resin, polyvinyl chloride resin, acrylic resin; polyphenylene ether, polyphenylene sulfide, fluororesin, polyether ketone, polyether ether ketone, polysulfone, polyether sulfone, phenoxy resin, etc.
  • Polycarbonate resin Polycarbonate resin.
  • the method for forming the coating is also not particularly limited, and is appropriately selected according to the constituent material, shape, etc. of the substrate.
  • the coating can be formed using an applicator, bar coater, wire bar coater, roll coater, curtain flow coater or the like.
  • a dip coating method, a scat method, a spray method, etc. can also be used.
  • the curing method and curing conditions are selected depending on whether the cationic curable composition is photocurable or thermosetting.
  • Curing conditions in the case of photocuring, the type of light source, the amount of light irradiation, etc., and in the case of thermosetting, heating temperature, heating time, etc.
  • thermosetting heating temperature, heating time, etc.
  • the cationic curable composition is a photocationic curable composition
  • light irradiation may be performed by a known light irradiation device or the like.
  • a known light irradiation device for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a chemical lamp, a black light lamp, a microwave-excited mercury lamp, a metal halide lamp, and a UV-free electrode A lamp, LED, etc. are mentioned.
  • the light irradiation intensity to the coating may be selected according to the purpose, application, etc., and is a light wavelength region effective for activation of the photocationic polymerization initiator (although it varies depending on the kind of the photocationic polymerization initiator,
  • the light irradiation intensity in a wavelength of ⁇ 420 nm is preferably 0.1 to 100 mW / cm 2 .
  • the irradiation energy should be appropriately set according to the type and composition of the active energy ray, and the light irradiation time for the coating may be selected according to the purpose, application, etc.
  • the integrated light amount expressed as the product of the light irradiation intensity and the light irradiation time at 10 to 5000 mJ / cm 2 is set. More preferably, it is 500 to 3,000 mJ / cm 2 , and still more preferably 2,000 to 3,000 mJ / cm 2 . Therefore, if the integrated light quantity is in the above range, the composition is smoothly cured and a uniform cured product can be easily obtained. Note that most of the film components are dried by touch by cationic polymerization after 0.1 to several minutes after light irradiation, but heating may be used in combination to promote the cationic polymerization reaction.
  • the curing method and curing conditions are not particularly limited.
  • the curing temperature is preferably 80 ° C. to 200 ° C., more preferably 100 ° C. to 180 ° C. Within the above range, the temperature may be constant or the temperature may be raised. Furthermore, you may combine temperature rising and temperature falling.
  • the curing time is appropriately selected depending on the kind of the thermal cationic polymerization initiator, the content ratio of other components, etc., but is usually 30 to 300 minutes, preferably 60 to 240 minutes.
  • the thickness of the cured film is not particularly limited, but is preferably 0.1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m, and still more preferably 5 to 20 ⁇ m.
  • TMSOX 3-ethyl-3-((3- (trimethoxysilyl) propoxy) methyl) oxetane
  • the organosilicon compound (C-1) was analyzed by 1 H NMR analysis and IR (infrared absorption) to confirm the presence of an oxetanyl group.
  • 1 H NMR analysis about 1 g of the organosilicon compound (C-1) and about 100 mg of hexamethyldisiloxane (hereinafter referred to as “HMDSO”), which is an internal standard substance, are precisely weighed and mixed, and the proton of HMDSO is mixed.
  • HMDSO hexamethyldisiloxane
  • the content of the silicon compound (A) that is, the structural unit (T monomer unit) derived from TMSOX and the content of the alkoxy group of the organosilicon compound (C-1) were determined.
  • the content of the silicon compound (B), that is, the structural unit (Q monomer unit) derived from TMOS was calculated.
  • the obtained organosilicon compound (C-1) was a copolycondensate obtained by a stoichiometric reaction between the silicon compound (A) and the silicon compound (B).
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-1) was 1.0% with respect to the entire alkoxy group contained in the raw material. The amount was equivalent to Further, in the organosilicon compound (C-1), the ratio of the inorganic portion was 42%.
  • Mn number average molecular weight (Mn) of the organosilicon compound (C-1) was measured by gel permeation chromatography (GPC), it was Mn 4,000 (polystyrene conversion value) (see Table 1).
  • the organosilicon compound (C-1) was stored in the dark at 60 ° C. for 3 days in the atmosphere, and then confirmed to be soluble in THF and propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”) at 25 ° C. As a result, the solubility was good.
  • the organosilicon compound (C-1) was dissolved in PGMEA to prepare a 50% by mass solution, and then allowed to stand in the dark at 60 ° C.
  • the number average molecular weight and viscosity after a certain period of time were as shown in Table 2, and there was almost no change with time.
  • the viscosity was measured with an E-type viscometer “VISCONIC-EMD” (model name) manufactured by Tokyo Keiki Co., Ltd.
  • Example 1-2 A reactor equipped with a stirrer and a thermometer was charged with 56.6 g of methanol, 8.35 g (0.03 mol) of TMSOX, and 2.28 g (0.015 mol) of TMOS, and then 2.5% by mass of tetramethyl hydroxide.
  • Aqueous ammonium solution 4.1 g water 0.225 mol, tetramethylammonium hydroxide 1.13 mmol
  • This mixture was reacted at a temperature of 25 ° C. and a pH of 9 for 2 hours with stirring. Thereafter, 0.72 g (1.14 mmol) of 10 mass% nitric acid aqueous solution was added to neutralize the reaction solution.
  • the organosilicon compound (C-2) was analyzed by 1 H NMR analysis and IR analysis, and it was confirmed that an oxetanyl group was present. Further, this organosilicon compound (C-2) was also obtained by a stoichiometric reaction between the silicon compound (A) and the silicon compound (B) by 1 H NMR analysis as in Example 1-1. It was confirmed to be a copolycondensate obtained.
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-2) is 1.5% with respect to the total alkoxy group contained in the charged raw material. The amount was equivalent to In the organosilicon compound (C-2), the proportion of inorganic moieties was 34%.
  • Example 1-3 A reactor equipped with a stirrer and a thermometer was charged with 60 g of methanol, 8.35 g (0.03 mol) of TMSOX, and 19.8 g (0.075 mol) of tetrapropoxysilane, and then 1.2% by mass of tetrahydroxide hydroxide. 20.5 g of methylammonium aqueous solution (water 1.13 mol, tetramethylammonium hydroxide 2.6 mmol) was gradually added. This mixture was reacted at a temperature of 25 ° C. and a pH of 9 for 2 hours with stirring. Thereafter, 1.7 g (2.7 mmol) of 10% by mass nitric acid aqueous solution was added to neutralize the reaction solution.
  • methylammonium aqueous solution water 1.13 mol, tetramethylammonium hydroxide 2.6 mmol
  • the organosilicon compound (C-3) was subjected to 1 H NMR analysis and IR analysis, and it was confirmed that an oxetanyl group was present. Further, this organosilicon compound (C-3) was also obtained by a stoichiometric reaction between the silicon compound (A) and the silicon compound (B) by 1 H NMR analysis as in Example 1-1. It was confirmed to be a copolycondensate obtained.
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-3) is 3.0% with respect to the total alkoxy group contained in the raw material. The amount was equivalent to In the organosilicon compound (C-3), the proportion of inorganic portions was 56%.
  • Example 1-4 A reactor equipped with a stirrer and a thermometer was charged with 41 g of 1-propanol and 6.23 g (0.04 mol) of tetramethoxysilane, and then 0.3 g of a 25 mass% tetramethylammonium hydroxide methanol solution (8 mmol of methanol). , Tetramethylammonium hydroxide 0.8 mmol) was gradually added. This mixture was reacted at a temperature of 25 ° C. and a pH of 9 for 1 hour with stirring. Thereafter, 5.52 g (0.02 mol) of TMSOX was added, and 4.07 g of water was further added.
  • the organosilicon compound (C-4) was analyzed by 1 H NMR analysis and IR analysis, and it was confirmed that an oxetanyl group was present. Further, this organosilicon compound (C-4) was also obtained by a stoichiometric reaction between the silicon compound (A) and the silicon compound (B) by 1 H NMR analysis as in Example 1-1. It was confirmed to be a copolycondensate obtained.
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-4) is 1.0% with respect to the total alkoxy group contained in the charged raw material. The amount was equivalent to In the organosilicon compound (C-4), the proportion of inorganic moieties was 53%.
  • Example 1-5 A reactor equipped with a stirrer and a thermometer was charged with 203.41 g of methanol, 27.98 g (0.1 mol) of TMSOX, and 22.84 g (0.15 mol) of TMOS, and then 25% by mass of tetramethylammonium hydroxide. A mixed solution consisting of 6.38 g of methanol solution (0.15 mol of methanol, 17.5 mmol of tetramethylammonium hydroxide), 16.22 g (0.9 mol) of water and 22.6 g of methanol was gradually added. The mixture was reacted for 2 hours at a temperature of 20 ° C. and a pH of 9 with stirring.
  • the organosilicon compound (C-5) was analyzed by 1 H NMR analysis and IR analysis, and it was confirmed that an oxetanyl group was present. Further, this organosilicon compound (C-5) was also obtained by a stoichiometric reaction between the silicon compound (A) and the silicon compound (B) by 1 H NMR analysis as in Example 1-1. It was confirmed to be a copolycondensate obtained.
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-5) was 3.2% based on the total alkoxy group contained in the charged raw material. The amount was equivalent to In the organosilicon compound (C-5), the proportion of inorganic moieties was 47%.
  • Example 1-6 A reactor equipped with a stirrer and a thermometer was charged with 203.41 g of methanol, 27.98 g (0.1 mol) of TMSOX, and 22.84 g (0.15 mol) of TMOS, and then 25% by mass of tetramethylammonium hydroxide. A mixed solution consisting of 6.38 g of methanol solution (0.15 mol of methanol, 17.5 mmol of tetramethylammonium hydroxide), 16.22 g (0.9 mol) of water and 22.6 g of methanol was gradually added. The mixture was reacted for 2 hours at a temperature of 60 ° C. and a pH of 9 with stirring.
  • the organosilicon compound (C-6) was analyzed by 1 H NMR analysis and IR analysis, and it was confirmed that an oxetanyl group was present. Further, this organosilicon compound (C-6) was also obtained by the stoichiometric reaction of silicon compound (A) and silicon compound (B) by 1 H NMR analysis as in Example 1-1. It was confirmed to be a copolycondensate obtained.
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-6) is 3.0% with respect to the total alkoxy group contained in the charged raw material. The amount was equivalent to In the organosilicon compound (C-6), the proportion of inorganic moieties was 47%.
  • Comparative Example 1-1 A reactor equipped with a stirrer and a thermometer was charged with 430 g of methanol, 55.68 g (0.2 mol) of TMSOX, and 30.44 g (0.2 mol) of TMOS, and then 25.5 g of a 0.7 mass% hydrochloric acid aqueous solution ( Water 1.4 mol, hydrogen chloride 4.8 mmol) was gradually added. The mixture was reacted for 18 hours at a temperature of 25 ° C. and a pH of 5 with stirring. Since no acid remained in the reaction solution, neutralization with a basic substance was not performed. Thereafter, the solvent (methanol) was distilled off under reduced pressure to obtain a colorless and transparent liquid organosilicon compound (C-7). Since no acid remained, the reaction product was not washed with water. The yield was 60.2g.
  • the organosilicon compound (C-7) was analyzed by 1 H NMR analysis and IR analysis, and it was confirmed that an oxetanyl group was present. Further, this organosilicon compound (C-7) was also obtained by a stoichiometric reaction between the silicon compound (A) and the silicon compound (B) by 1 H NMR analysis as in Example 1-1. It was confirmed to be a copolycondensate obtained.
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-7) was 9.0% with respect to the entire alkoxy group contained in the charged raw material. The amount was equivalent to In the organosilicon compound (C-7), the proportion of inorganic moieties was 39%.
  • Comparative Example 1-2 An organosilicon compound (C-8) was produced in the same manner as in Comparative Example 1-1 except that the amount of hydrogen chloride as the acid catalyst was changed to 10 mmol.
  • the organosilicon compound (C-8) was analyzed by 1 H NMR analysis and IR analysis, and it was confirmed that an oxetanyl group was present. Further, this organosilicon compound (C-8) was also obtained by a stoichiometric reaction between the silicon compound (A) and the silicon compound (B) by 1 H NMR analysis as in Example 1-1. It was confirmed to be a copolycondensate obtained.
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-8) was 9.1% with respect to the entire alkoxy group contained in the charged raw material. The amount was equivalent to In the organosilicon compound (C-8), the proportion of inorganic moieties was 39%.
  • the number average molecular weight and viscosity of the organosilicon compound (C-8) and the change with time thereof were measured in the same manner as in Example 1-1, and are shown in Table 1 and Table 3, respectively.
  • Comparative Example 1-3 A reactor equipped with a stirrer and a thermometer was charged with 60 g of methanol, 8.35 g (0.03 mol) of TMSOX, and 23.8 g (0.09 mol) of tetrapropoxysilane. 24.5 g of aqueous methylammonium solution (water 1.35 mol, tetramethylammonium hydroxide 3 mmol) was gradually added. The mixture was reacted for 2 hours at a temperature of 25 ° C. and a pH of 9 while stirring. Thereafter, 1.92 g (3.06 mmol) of a 10 mass% nitric acid aqueous solution was added to neutralize the reaction solution.
  • aqueous methylammonium solution water 1.35 mol, tetramethylammonium hydroxide 3 mmol
  • Comparative Example 1-4 A reactor equipped with a stirrer and a thermometer was charged with 133.6 g (0.48 mol) of TMSOX and 118.4 g of isopropyl alcohol, and then bubbled with nitrogen to adjust the internal temperature of the mixed raw material to 80 ° C. Thereafter, while stirring the mixed raw material, 4.38 g (12 mmol) of 25% by mass of tetramethylammonium hydroxide and 22.66 g of water were added dropwise and reacted at a temperature of 80 ° C. and pH 9 for 1 hour. Next, 2.47 g of 25% by mass sulfuric acid was added to the reaction solution to neutralize the reaction solution.
  • Comparative Example 1-5 A reactor equipped with a stirrer and a thermometer was charged with 56.6 g of methanol, 8.35 g (0.03 mol) of TMSOX, and 2.28 g (0.015 mol) of TMOS, and then 25. 5 g (water 1.4 mol, hydrogen chloride 4.8 mmol) was gradually added. The mixture was reacted for 18 hours at a temperature of 25 ° C. and a pH of 5 with stirring. Since no acid remained in the reaction solution, neutralization with a basic substance was not performed. Thereafter, the solvent (methanol) was distilled off under reduced pressure to obtain a colorless and transparent liquid organosilicon compound (C-11). Since no acid remained, the reaction product was not washed with water. The yield was 5.44g.
  • the organosilicon compound (C-11) was analyzed by 1 H NMR analysis and IR analysis, and it was confirmed that an oxetanyl group was present. Further, this organosilicon compound (C-11) was also obtained by a stoichiometric reaction between the silicon compound (A) and the silicon compound (B) by 1 H NMR analysis as in Example 1-1. It was confirmed that this was a copolycondensate obtained.
  • the content of the alkoxy group (methoxy group bonded to the silicon atom) calculated from the 1 H NMR chart of the organosilicon compound (C-11) was 9.3% with respect to the total alkoxy group contained in the charged raw material. The amount was equivalent to In the organosilicon compound (C-11), the proportion of inorganic moieties was 31%.
  • the haze of the cured film before and after the Taber abrasion test under the above-described conditions was determined as a haze meter “NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd.
  • the model name was measured in accordance with JIS K7105, JIS K7361-1 and JIS K7136.
  • Example 2-2 A photocationic curable composition was prepared in the same manner as in Example 2-1, except that the organosilicon compound (C-4) was used instead of the organosilicon compound (C-1). Various evaluations were conducted except for the universal hardness test and wear loss measurement (see Table 4). In the production of the cured film for the Taber abrasion test, the number of times of ultraviolet irradiation was 15 times.
  • Example 2-3 A photocationic curable composition was prepared in the same manner as in Example 2-1, except that the organosilicon compound (C-3) was used instead of the organosilicon compound (C-1). Various evaluations were conducted except for the universal hardness test and wear loss measurement (see Table 4). In the production of the cured film for the Taber abrasion test, the number of times of ultraviolet irradiation was 15 times.
  • Example 2-4 50 parts by mass of 100 parts by mass of the organosilicon compound (C-1) and 2 parts by mass of (tricumyl) iodonium tetrakis (pentafluorophenyl) borate as a photocationic polymerization initiator were dissolved in 102 parts by mass of PGMEA as a solvent.
  • % PGMEA solution photocationic curable composition
  • Example 2-5 90 parts by mass of an organosilicon compound (C-1) and an epoxy compound Q-4 represented by the following formula (5) (one of “Q8 series” manufactured by Mayateries), a cage silsesquioxy having a glycidyl group Sun) 10 parts by mass and 2 parts by mass of (tricumyl) iodonium tetrakis (pentafluorophenyl) borate, which is a cationic polymerization initiator, are dissolved in 102 parts by weight of PGMEA, which is a solvent, and a 50% by mass PGMEA solution (photocation) Curable composition) was prepared and subjected to various evaluations excluding the pencil hardness test, universal hardness test and wear loss measurement. (See Table 4). In the production of the cured film for the Taber abrasion test, the number of times of ultraviolet irradiation was 15 times.
  • Example 2-6 A photocationic curable composition was prepared in the same manner as in Example 2-5 except that the organosilicon compound (C-4) was used instead of the organosilicon compound (C-1), and a pencil hardness test was performed. Various evaluations were conducted except for the universal hardness test and wear loss measurement (see Table 4). In the production of the cured film for the Taber abrasion test, the number of times of ultraviolet irradiation was 15 times.
  • Comparative Example 2-1 A photocationic curable composition was prepared and evaluated in the same manner as in Example 2-1, except that the organosilicon compound (C-7) was used instead of the organosilicon compound (C-1). (See Table 4).
  • the compositions containing the organosilicon compounds obtained by the production method of the present invention gave a cured film having excellent hardness and wear resistance.
  • the reason is considered that the organosilicon compound (C) contains a hydrolyzate of tetrafunctional silane (Q monomer unit) as a constituent unit and has a high proportion of inorganic parts.
  • a small increase in haze ( ⁇ H) indicates that the cured films are hardly damaged.
  • the organosilicon compound of the present invention has a high proportion of the inorganic portion in the structure, and has good post-production stability and storage stability.
  • This organosilicon compound has cationic curability.
  • the curable composition of this invention can give the hardened
  • the composition has cationic curability, and the cured product of the composition includes a hard coat, protective films for various substrates, a resist film, modifiers for various polymer materials, plastic reinforcing agents, various It is useful as a coating material modifier, a coating material raw material, a low dielectric constant material, an insulating film material, a heat resistance imparting material, a liquid crystal raw material, a semiconductor sealing material, an optical waveguide material, a hard mask material, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明の目的は、その構造中に占める無機部分の割合が高く、製造後、ゲル化することなく安定であり、組成物とした場合に保存安定性に優れた、オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物を提供することである。本発明のオキセタニル基を有する有機ケイ素化合物は、アルカリ性条件下、下記一般式(1)で表されるケイ素化合物Aと、4個のシロキサン結合生成基を有するケイ素化合物Bとを、ケイ素化合物Aの1モルに対してケイ素化合物Bを0.3~2.8モルの割合で加水分解・縮合する工程を備える方法により得られた化合物である。  【化1】 [式中、R0はオキセタニル基を有する有機基であり、R1は炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基またはオキセタニル基を有する有機基であり、Xは加水分解性基であり、nは0または1である。]

Description

オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物
 本発明は、オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物に関するものである。詳しくは、本発明は、オキセタニル基を有し2個または3個の加水分解性基を有するケイ素化合物と、4個のシロキサン結合生成基を有するケイ素化合物とを加水分解・縮合させて得られた、ゲル化しにくい、オキセタニル基を有する縮合された有機ケイ素化合物およびその製造方法ならびにこの有機ケイ素化合物を含有する硬化性組成物に関するものである。
 オキセタニル基を有し3個の加水分解性基を有するケイ素化合物と、4個のシロキサン結合生成基を有するケイ素化合物とを、酸性触媒存在下で加水分解・縮合させて、オキセタニル基を有する有機ケイ素化合物を製造する方法およびこの有機ケイ素化合物を含有する組成物は知られている(特許文献1)。しかし、酸性触媒存在下で加水分解・縮合させて得られた化合物は、保存条件によっては保存中にゲル化することもあり、この有機ケイ素化合物またはこの化合物を含有する組成物の使用目的によっては用途が制限される。
 また、特許文献1の方法を用いて、オキセタニル基を有し3個のOR基(Rは炭化水素基である)を有するケイ素化合物(s1)と、4個のOR基(Rは炭化水素基である)を有するケイ素化合物(s2)とを、酸性条件下で加水分解・縮合させて、オキセタニル基を有する有機ケイ素化合物を製造した場合、この有機ケイ素化合物中のOR基の割合は、ケイ素化合物(s1)中のOR基およびケイ素化合物(s2)中のOR基の合計量に対して、少なくとも9%と高かった。これにより、ゲルの生成や、硬度、耐摩耗性等が不十分な硬化物を招くこととなった。
 また、オキセタニル基を有し3個の加水分解性基を有するケイ素化合物をアルカリ性条件下で加水分解・縮合させて、オキセタニル基を有する有機ケイ素化合物を製造する方法およびこの有機ケイ素化合物を含有する組成物も知られている(特許文献2、3)。しかし、硬度、耐摩耗性等を向上させるために、得られた有機ケイ素化合物において無機部分の割合を高めることについては開示されていない。
 なお、特許文献1の実施例1によると、オキセタニル基を有し3個の加水分解性基を有するケイ素化合物と、3個のシロキサン結合生成基を有するケイ素化合物(メチルトリエトキシシラン)とを、酸性条件下で加水分解・縮合させ、ゲル化しない縮合物が得られている。一方、特許文献1の比較例1によると、これらの化合物をアルカリ性条件下で加水分解・縮合させようとしてゲル化したという開示がある。即ち、特許文献1と、特許文献2または3とを組み合わせることの阻害要因を有している。
国際公開パンフレットWO2004/076534 特開平11-029640号公報 特開平11-199673号公報
 本発明の目的は、その構造中に占める無機部分の割合が高く、製造後、ゲル化することなく安定であり、有機溶剤への溶解性に優れ、組成物とした場合に保存安定性に優れた、オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに高硬度であり且つ耐摩耗性に優れた硬化物を与える硬化性組成物を提供することである。
 上記課題を解決するため、本発明は、以下に示される。
1.アルカリ性条件下、下記一般式(1)で表されるケイ素化合物(A)と、下記一般式(2)で表されるケイ素化合物(B)とを、上記ケイ素化合物(A)1モルに対して上記ケイ素化合物(B)0.3~2.8モルの割合で加水分解・縮合する工程を備える方法により得られたことを特徴とする、オキセタニル基を有する有機ケイ素化合物。
Figure JPOXMLDOC01-appb-C000005
[式中、R0はオキセタニル基を有する有機基であり、R1は炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基またはオキセタニル基を有する有機基であり、Xは加水分解性基であり、nは0または1である。]
  SiY4     (2)
[式中、Yはシロキサン結合生成基である。]
2.[SiO4/2]で表されるシリケート単位と、[R0SiO3/2]で表されるシルセスキオキサン単位とを含む上記1に記載のオキセタニル基を有する有機ケイ素化合物。
3.上記一般式(1)におけるR0が、下記一般式(3)で表される有機基である上記1または2に記載のオキセタニル基を有する有機ケイ素化合物。
Figure JPOXMLDOC01-appb-C000006
[式中、R3は水素原子または炭素数1~6のアルキル基であり、R4は炭素数2~6のアルキレン基である。]
4.上記一般式(1)におけるXがアルコキシ基、シクロアルコキシ基またはアリールオキシ基である上記1に記載のオキセタニル基を有する有機ケイ素化合物。
5.上記1に記載のオキセタニル基を有する有機ケイ素化合物を製造する方法であって、アルカリ性条件下、下記一般式(1)で表されるケイ素化合物(A)と、下記一般式(2)で表されるケイ素化合物(B)とを、上記ケイ素化合物(A)1モルに対して上記ケイ素化合物(B)0.3~2.8モルの割合で加水分解・縮合する工程を備えることを特徴とする、オキセタニル基を有する有機ケイ素化合物の製造方法。
Figure JPOXMLDOC01-appb-C000007
[式中、R0はオキセタニル基を有する有機基であり、R1は炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基またはオキセタニル基を有する有機基であり、Xは加水分解性基であり、nは0または1である。]
  SiY4     (2)
[式中、Yはシロキサン結合生成基である。]
6.上記一般式(1)におけるR0が、下記一般式(3)で表される有機基である上記5に記載のオキセタニル基を有する有機ケイ素化合物の製造方法。
Figure JPOXMLDOC01-appb-C000008
[式中、R3は水素原子または炭素数1~6のアルキル基であり、R4は炭素数2~6のアルキレン基である。]
7.アルカリ性条件とするための塩基性物質の使用量が、上記ケイ素化合物(A)および上記ケイ素化合物(B)の合計モル数を100モルとした場合に、1~20モルである、上記5に記載のオキセタニル基を有する有機ケイ素化合物の製造方法。
8.上記塩基性物質が水酸化テトラアルキルアンモニウムである上記7に記載のオキセタニル基を有する有機ケイ素化合物の製造方法。
9.上記1に記載のオキセタニル基を有する有機ケイ素化合物と、カチオン重合開始剤とを含有することを特徴とするカチオン硬化性組成物。
10.上記カチオン重合開始剤が光カチオン重合開始剤である上記9に記載のカチオン硬化性組成物。
11.更に、他のカチオン重合性化合物を含有し、該カチオン重合性化合物が、エポキシ化合物、他のオキセタニル基含有化合物、および、ビニルエーテル化合物から選ばれた少なくとも1種である上記9または10に記載のカチオン硬化性組成物。
12.上記9に記載のカチオン硬化性組成物を基材の表面に塗布し、得られた被膜を硬化させる工程を備えることを特徴とする硬化膜の製造方法。
13.上記11に記載のカチオン硬化性組成物を基材の表面に塗布し、得られた被膜を硬化させる工程を備えることを特徴とする硬化膜の製造方法。
14.上記9に記載のカチオン硬化性組成物を基材の表面に塗布し、得られた被膜を硬化させる工程を備えることを特徴とする、硬化膜を有する物品の製造方法。
15.上記基材が、ポリカーボネート樹脂を含む基板である上記14に記載の硬化膜を有する物品の製造方法。
16.上記14に記載の方法により得られたことを特徴とする、硬化膜を有する物品。
 本発明のオキセタニル基を有する有機ケイ素化合物によれば、無機部分の割合が高く、製造後、ゲル化することなく安定であり、有機溶剤への溶解性に優れ、組成物とした場合にも保存安定性に優れる。そして、このオキセタニル基を有する有機ケイ素化合物を含有する硬化性組成物を用いて得られる硬化物は、高硬度であり、耐摩耗性に優れる。
 尚、「無機部分の割合」とは、化合物を構成する原子として炭素原子を含まない部分が化合物の構造全体に占める割合を意味する。
 本発明のオキセタニル基を有する有機ケイ素化合物の製造方法によれば、製造後のゲル化を招くことなく安定な有機ケイ素化合物を製造することができる。特に、上記一般式(1)において少なくとも1個のXがOR基(Rは、アルキル基、シクロアルキル基、アラルキル基およびアリール基から選ばれた炭化水素基である。)であるケイ素化合物(A)と、上記一般式(2)において少なくとも1個のYがOR基(Rは、アルキル基、シクロアルキル基、アラルキル基およびアリール基から選ばれた炭化水素基である。)であるケイ素化合物(B)とを、製造原料として用いた場合、得られた有機ケイ素化合物において、ケイ素化合物(A)および(B)に由来するOR基の割合を、製造前のこれらの化合物に含まれるOR基の合計量に対して、例えば、8%以下等とすることができる。そして、この有機ケイ素化合物は、著しく保存安定性に優れる。
 本発明のカチオン硬化性組成物によれば、高硬度であり、耐摩耗性に優れる硬化物を与えることができる。
 また、本発明の硬化膜の製造方法によれば、基材の表面に、高硬度であり、耐摩耗性に優れる硬化膜を効率よく形成することができる。
 更に、本発明の硬化膜を有する物品の製造方法によれば、基材と、この基材の表面に形成された高硬度であり、耐摩耗性に優れる硬化膜とを備える物品を効率よく形成することができる。
1.オキセタニル基を有する有機ケイ素化合物およびその製造方法
 本発明のオキセタニル基を有する有機ケイ素化合物(以下、「有機ケイ素化合物(C)」という。)は、アルカリ性条件下、下記一般式(1)で表されるケイ素化合物(A)と、下記一般式(2)で表されるケイ素化合物(B)とを、上記ケイ素化合物(A)1モルに対して上記ケイ素化合物(B)0.3~2.8モルの割合で加水分解・縮合する工程を備える方法により得られたことを特徴とする。
 また、本発明の有機ケイ素化合物(C)の製造方法は、アルカリ性条件下、下記一般式(1)で表されるケイ素化合物(A)と、下記一般式(2)で表されるケイ素化合物(B)とを、上記ケイ素化合物(A)1モルに対して上記ケイ素化合物(B)0.3~2.8モルの割合で加水分解・縮合する工程を備えることを特徴とする。
Figure JPOXMLDOC01-appb-C000009
[式中、R0はオキセタニル基を有する有機基であり、R1は炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基またはオキセタニル基を有する有機基であり、Xは加水分解性基であり、nは0または1である。]
  SiY4     (2)
[式中、Yはシロキサン結合生成基である。]
 上記ケイ素化合物(A)は、1つのみ用いてよいし、2つ以上を組み合わせて用いることができる。上記ケイ素化合物(B)もまた、1つのみ用いてよいし、2つ以上を組み合わせて用いることができる。
1-1.ケイ素化合物(A)
 このケイ素化合物(A)は、上記一般式(1)で表される、オキセタニル基を有する化合物である。このケイ素化合物(A)は、得られる有機ケイ素化合物(C)にカチオン硬化性を付与するための成分である。
 上記一般式(1)において、R0はオキセタニル基を有する有機基であり、この有機基は炭素数が20以下であるものが好ましい。
 また、特に好ましいR0は、下記一般式(3)で表される構造を有する有機基である。
Figure JPOXMLDOC01-appb-C000010
[式中、R3は水素原子または炭素数1~6のアルキル基であり、R4は炭素数2~6のアルキレン基である。]
 上記一般式(3)において、R3は、好ましくはエチル基である。R4は、好ましくは直鎖状のアルキレン基であり、特に好ましくはプロピレン基(トリメチレン基)である。その理由は、このような有機官能基を形成するオキセタン化合物の入手または合成が容易なためである。
 上記一般式(3)におけるR3またはR4の炭素数が大きすぎると、得られる有機ケイ素化合物(C)において無機部分の割合が高いものになりにくく、得られる硬化物の表面硬度が十分でない場合がある。
 また、上記ケイ素化合物(A)を表す一般式(1)において、R1は炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基またはオキセタニル基を有する有機基である。R1がオキセタニル基を有する有機基である場合、特に好ましいR1は、上記一般式(3)で表される構造を有する有機基である。
 上記一般式(1)におけるXは加水分解性基であり、複数存在するXは、互いに同一であっても異なっていてもよい。Xとしては、水素原子、ハロゲン原子、アルコキシ基、シクロアルコキシ基、アラルキルオキシ基、アリールオキシ基等が例示される。好ましいXは、アルコキシ基、シクロアルコキシ基およびアリールオキシ基である。Xがハロゲン原子である場合には、後述する加水分解反応においてハロゲン化水素が生じるので、反応液がアルカリ性を維持できるように管理する必要がある。反応液が酸性雰囲気となるのを防ぎアルカリ性を維持できるようにするため、あらかじめXの当量以上の塩基性物質を加えておくこともよい。
 アルコキシ基は、好ましくは、炭素数1~6のアルコキシ基であり、その例としては、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチル基、n-へキシル基等が挙げられる。これらのうち、炭素数1~3のアルコキシ基が特に好ましい。
 シクロアルコキシ基は、好ましくは、炭素数3~8のシクロアルコキシ基であり、その例としては、シクロペンチルオキシ基、シクロヘキシルオキシ基等が挙げられる。
 アラルキルオキシ基は、好ましくは、炭素数7~12のアラルキルオキシ基であり、その例としては、ベンジルオキシ基、2-フェニルエチルオキシ等挙げられる。
 アリールオキシ基は、好ましくは、炭素数6~10のアリールオキシ基であり、その例としては、フェニルオキシ基、o-トルイルオキシ基、m-トルイルオキシ基、p-トルイルオキシ基、ナフチルオキシ基等が挙げられる。
 アルコキシ基の加水分解性が良好であることから、本発明において、上記一般式(1)のXは、炭素数1~3のアルコキシ基であることが好ましい。また、原料の入手が容易であり安価であること、加水分解反応が制御しやすいことから、特に好ましいXはメトキシ基である。
 上記一般式(1)において、nは0または1である。nが0である場合のケイ素化合物(A)は、加水分解性基Xを3個有しており、「Tモノマー」とも呼ばれる。また、nが1である場合のケイ素化合物(A)は、加水分解性基Xを2個有しており、「Dモノマー」とも呼ばれる。
 得られる有機ケイ素化合物(C)において無機部分の割合がより高いものにするためには、nは0であるケイ素化合物(A)を用いることが好ましい。
 得られる有機ケイ素化合物(C)を、後述する溶剤への溶解性により優れたものにするためには、nは1であることが好ましい。
 上記効果のバランスをとるために、nが0のケイ素化合物(A)と、nが1のケイ素化合物(A)とを併用してもよい。
1-2.ケイ素化合物(B)
 このケイ素化合物(B)は、上記一般式(2)で表される、ケイ素原子1個およびシロキサン結合生成基4個を有する化合物である。このケイ素化合物(B)は、シロキサン結合生成基Yを4個有するもの(「Qモノマー」とも呼ばれる。)であり、得られる有機ケイ素化合物(C)における無機部分の割合を高くするための成分である。シロキサン結合生成基は、ケイ素化合物(A)における加水分解性基との反応により、シロキサン結合を生成する。
 上記一般式(2)におけるYは、シロキサン結合生成基であり、複数存在するYは、互いに同一であっても異なっていてもよい。シロキサン結合生成基Yとしては、水酸基、加水分解性基等が挙げられる。加水分解性基としては、上記一般式(1)におけるXと同様のものが使用できる。
 シロキサン結合生成基Yは、好ましくはハロゲン原子以外のものであり、即ち、水酸基、水素原子、アルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等)、シクロアルコキシ基(シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アラルキルオキシ基(ベンジルオキシ基、2-フェニルエチルオキシ基等)、アリールオキシ基(フェニルオキシ基、o-トルイルオキシ基、m-トルイルオキシ基、p-トルイルオキシ基、ナフチルオキシ基等)等である。これらのうち、アルコキシ基、シクロアルコキシ基、アラルキルオキシ基およびアリールオキシ基が好ましく、アルコキシ基が特に好ましい。
 尚、シロキサン結合生成基Yがハロゲン原子であるケイ素化合物(B)を用いると、上記一般式(1)における加水分解性基Xの説明と同様に、反応の進行とともに反応液の液性が変化し、管理が煩雑となる場合がある。
 上記ケイ素化合物(B)としては、以下に例示される。
(i)シロキサン結合生成基Yの4個が、互いに同一または異なって、アルコキシ基、シクロアルコキシ基、アラルキルオキシ基またはアリールオキシ基であるケイ素化合物
(ii)シロキサン結合生成基Yの1個がアルコキシ基、シクロアルコキシ基、アラルキルオキシ基またはアリールオキシ基であり、3個が、互いに同一または異なって、水酸基または水素原子であるケイ素化合物
(iii)シロキサン結合生成基Yの2個が、互いに同一または異なって、アルコキシ基、シクロアルコキシ基、アラルキルオキシ基またはアリールオキシ基であり、2個が、互いに同一または異なって、水酸基または水素原子であるケイ素化合物
(iv)シロキサン結合生成基Yの3個が、互いに同一または異なって、アルコキシ基、シクロアルコキシ基、アラルキルオキシ基またはアリールオキシ基であり、1個が、水酸基または水素原子であるケイ素化合物
(v)シロキサン結合生成基Yの4個が、互いに同一または異なって、水酸基または水素原子であるケイ素化合物
 これらのうち、態様(i)が好ましい。
 上記態様(i)のケイ素化合物としては、テトラメトキシシランSi(OCH34、テトラエトキシシランSi(OC254、テトラプロポキシシランSi(OC374、テトラブトキシシランSi(OC494等が挙げられる。アルコキシ基を形成する炭化水素基は、直鎖状でも分岐状でもよいが、分岐したものは立体障害が起きやすくなるので、直鎖状の炭化水素基であることが好ましい。
 上記態様(ii)のケイ素化合物としては、H3SiOCH3、H3SiOC25、H3SiOC37等が挙げられる。
 上記態様(iii)のケイ素化合物としては、H2Si(OCH32、H2Si(OC252、H2Si(OC372等が挙げられる。
 上記態様(iv)のケイ素化合物としては、HSi(OCH33、HSi(OC253、HSi(OC373等が挙げられる。
 また、上記態様(v)のケイ素化合物としては、HSi(OH)3、H2Si(OH)2、H3Si(OH)、SiH4、Si(OH)4等が挙げられる。
 上記ケイ素化合物(B)としては、すべてのシロキサン結合生成基がアルコキシ基である化合物が好ましく、特に好ましい化合物は、テトラメトキシシラン、テトラエトキシシランおよびテトラプロポキシシランである。
 上記ケイ素化合物(B)としてテトラプロポキシシランを使用すると、有機ケイ素化合物(C)の製造中の増粘、ゲル化等を起こりにくくすることができる。従って、テトラプロポキシシランはケイ素化合物(B)として最も好ましいものである。
1-3.有機ケイ素化合物(C)の製造方法
 本発明の有機ケイ素化合物(C)の製造方法は、アルカリ性条件下、上記一般式(1)で表されるケイ素化合物(A)と、上記一般式(2)で表されるケイ素化合物(B)とを、ケイ素化合物(A)1モルに対してケイ素化合物(B)0.3~2.8モルの割合で加水分解・縮合する工程(以下、「第1工程」という。)を含む。この第1工程では、通常、ケイ素化合物(A)、ケイ素化合物(B)、水、および、アルカリ性条件とするための塩基性物質が用いられる。本発明は、第1工程の後、更に、以下の工程を含むことができる。
(第2工程)第1工程で得られた反応液を、酸により中和する工程。
(第3工程)第2工程で得られた中和液から揮発性成分を除去する工程。
(第4工程)第3工程で得られた濃縮液と、洗浄用有機溶剤とを、混合および接触させて、少なくとも有機ケイ素化合物(C)を洗浄用有機溶剤に溶解する工程。
(第5工程)第4工程で得られた有機系液を水により洗浄した後、有機ケイ素化合物(C)を含む有機溶液を得る工程。
(第6工程)第5工程で得られた有機溶液から揮発性成分を除去する工程。
 本発明の有機ケイ素化合物(C)の製造方法は、第1工程、第2工程および第5工程を含むことが好ましい。
1-3-1.第1工程
 第1工程は、ケイ素化合物(A)とケイ素化合物(B)とを、上記のように、特定の割合で使用してアルカリ性条件において加水分解・縮合させる工程である。
 反応に使用されるケイ素化合物(A)1モルに対するケイ素化合物(B)の割合の下限は、0.3モルであり、好ましくは0.4モル、より好ましくは0.5モル、更に好ましくは0.9モルである。また、反応に使用されるケイ素化合物(A)1モルに対するケイ素化合物(B)の割合の上限は、2.8モルであり、好ましくは2.6モル、より好ましくは2.5モル、更に好ましくは2.1モルである。
 上記ケイ素化合物(B)の使用割合が上記範囲にあると、得られる有機ケイ素化合物(C)を含有する組成物が硬化するときの体積収縮が抑制される。尚、上記ケイ素化合物(B)の使用割合が0.9モル以上である場合には、体積収縮の抑制効果のみならず、有機ケイ素化合物(C)を含有する組成物を基材上で硬化させたときに、硬化物と基材との優れた密着性を得ることができる。
 上記第1工程において、ケイ素化合物(B)の使用割合が少なすぎると、得られる有機ケイ素化合物(C)において無機部分の割合が低くなり、ケイ素化合物(C)を含有する組成物を用いて得られた硬化物が表面硬度や耐熱性の不十分なものとなる。一方、ケイ素化合物(B)の使用割合が多すぎると、有機ケイ素化合物(C)の製造中に増粘またはゲル化して製造ができなかったり、得られた有機ケイ素化合物(C)が増粘またはゲル化しやすく保存安定性の悪いものになったりする。
 第1工程において用いられる水は、原料ケイ素化合物(ケイ素化合物(A)および加水分解性基を有する場合のケイ素化合物(B))に含まれる加水分解性基を加水分解するために必要な成分である。使用される水の量は、上記加水分解性基1モルに対して、好ましくは0.5~10モル、より好ましくは1~5モルである。
 水の使用量が少なすぎると、反応が不十分となる場合がある。水の使用量が多すぎると、反応後に水を除去する工程が長くなり経済的ではない。
 第1工程における反応条件は、反応系をアルカリ性にすることであり、即ち、pHは7を超えることが必須であり、好ましくはpH8以上、より好ましくはpH9以上である。尚、上限は、通常、pH13である。反応系を上記pHとすることにより、保存安定性に優れた有機ケイ素化合物を高い収率で製造することができる。
 第1工程における反応条件が、酸性条件下(pH7未満)である場合には、加水分解・縮合させて得られる有機ケイ素化合物は、保存安定性に劣るものとなり、保存中にゲル化することもある。
 また、中性条件下(pH7付近)では、加水分解・縮合反応が進行しにくく、有機ケイ素化合物を収率よく得ることができない。
 尚、pH13を超える条件で製造する場合には、pH8~pH13の場合と同様、有機ケイ素化合物を高収率で得ることができるが、その条件とするための塩基性物質の使用量が多くなるため、経済的ではなく、また反応終了後に反応液を中和するコストもアップする。
 第1工程において、反応系をアルカリ性にするために用いられる塩基性物質は、ケイ素化合物(A)とケイ素化合物(B)との加水分解・縮合反応を円滑に進行させるための反応触媒として作用する。上記塩基性物質の例としては、アンモニア、有機アミン類、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、コリン、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられる。これらのうち、触媒活性の良好な第4級窒素原子を有するアンモニウム化合物が好ましく、水酸化テトラメチルアンモニウムがより好ましい。
 第1工程における塩基性物質の使用量は、反応系を、上記好ましいpHに調整するために、ケイ素化合物(A)およびケイ素化合物(B)の合計モル数を100モルとして、1~20モルであることが好ましい。塩基性物質の量が少なすぎると加水分解・縮合反応の進行が遅く、反応時間が長くなる場合もある。塩基性物質の使用量が多すぎても、反応効率の向上効果は顕著でなく、経済的ではない。
 第1工程において、反応溶媒として有機溶剤が使用されることが好ましい。反応溶媒として好適な有機溶剤の例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類;アセトン、メチルエチルケトン等のケトン類;テトラヒドロフラン、1,4-ジオキサン等のエーテル類;トルエン、ベンゼン、キシレン等の芳香族炭化水素;ヘキサン等の脂肪族炭化水素;リグロイン等が挙げられる。有機溶剤は、1種単独で用いてよいし、2種類以上が併用されてもよい。アルコール類は、原料ケイ素化合物および生成物の溶解性が良好であり、好ましい有機溶剤である。
 第1工程における反応温度は、好ましくは0℃~120℃、より好ましくは10℃~100℃、更に好ましくは40℃~80℃である。反応温度が40℃~80℃である場合には、高分子量成分等の副生を抑制することができるとともに、ゲル化しにくく、後述する数平均分子量を有し且つ分子量分布がよりシャープである有機ケイ素化合物(C)を得ることができる。
 また、第1工程における反応時間は、好ましくは1~30時間、より好ましくは4~24時間である。
 第1工程の加水分解・縮合反応で得られる、本発明の有機ケイ素化合物(C)は、ケイ素化合物(A)における加水分解性基およびケイ素化合物(B)におけるシロキサン結合生成基によって形成されたシロキサン結合を有するポリシロキサンである。上記第1工程において、ケイ素化合物(A)における加水分解性基およびケイ素化合物(B)におけるシロキサン結合生成基の大部分は、シロキサン結合に転化される。
1-3-2.第2工程
 第2工程は、第1工程で得られた、有機ケイ素化合物(C)を含む反応液を、酸により、中和する工程である。酸の例としては、リン酸、硝酸、硫酸、塩酸等の無機酸や、酢酸、蟻酸、乳酸、アクリル酸、シュウ酸等のカルボン酸、p-トルエンスルホン酸、メタンスルホン酸等のスルホン酸等の有機酸が挙げられる。これらのうち、硝酸および硫酸は、オキセタニル基の安定性に悪影響を及ぼしにくく(オキセタニル基への付加反応が起こりにくく)、水洗により比較的除去されやすいので好ましい酸である。酸の使用量は、有機ケイ素化合物(C)を含む反応液のpHに応じて、適宜、選択されるが、塩基性物質1当量に対して、好ましくは1~1.1当量、より好ましくは1~1.05当量である。
1-3-3.第3工程
 第3工程は、第2工程で得られた中和液から揮発性成分を除去する工程である。この工程では、常圧(大気圧)または減圧の条件における蒸留が行われる。第3工程において除去される揮発性成分としては、第1工程の反応溶媒として使用された有機溶剤が主である。反応溶媒として、例えば、メタノールのように水と混和する有機溶剤が使用された場合には、後述する水による洗浄(第5工程)に支障があるため、通常、この第3工程が実施される。
 尚、第1工程における反応溶媒が、アルコール等の水と混和する有機溶剤であったとしても、中和液の水による洗浄に適した有機溶剤を多量に追加することで有機ケイ素化合物(C)の洗浄を行うことが可能な場合には、この第3工程及び第4工程を省略することができる。
 また、第1工程における反応溶媒が、水と混和しないものであり、中和液の水による洗浄に適した有機溶剤である場合、および、上記反応溶媒が、アルコール等の水と混和する溶媒であったとしても、中和液の水による洗浄に適した有機溶剤を多量に追加することで有機ケイ素化合物(C)の洗浄を行うことが可能な場合には、第3工程および第4工程を省略することができる。
1-3-4.第4工程
 第4工程は、第3工程で得られた濃縮液と、洗浄用有機溶剤とを、混合および接触させて、少なくとも有機ケイ素化合物(C)を洗浄用有機溶剤に溶解する工程である。洗浄用有機溶剤としては、有機ケイ素化合物(C)を溶解し、水と混和しない化合物を使用する。水と混和しないとは、水と洗浄用有機溶剤とを十分混合した後、静置すると、水層及び有機層に分離することを意味する。
 好ましい洗浄用有機溶剤としては、メチルイソブチルケトン等のケトン類;ジイソプロピルエーテル等のエーテル類;トルエン等の芳香族炭化水素;ヘキサン等の脂肪族炭化水素;酢酸エチル等のエステル類等が挙げられる。
 上記洗浄用有機溶剤は、第1工程において用いられた反応溶媒と同一であってよいし、異なってもよい。
1-3-5.第5工程
 第5工程は、第4工程で得られた有機系液を水により洗浄した後、有機ケイ素化合物(C)を含む有機溶液を得る工程である。尚、この有機系液は、第3工程および第4工程が省略された場合、第2工程で得られた液を意味する。この第5工程によって、第1工程において使用された塩基性物質および第2工程において使用された酸ならびにそれらの塩は、水層に含まれ、有機層から実質的に除かれる。
 尚、上記第5工程は、水と有機系液とを混合および接触させる工程、ならびに、水層と有機層(有機ケイ素化合物(C)を含む層)とを分離し、有機層(有機溶液)を回収する工程を含む。これらの工程において、水と有機系液との混合および接触が不十分であったり、水層と有機層との分離が不十分であったりすると、得られる有機ケイ素化合物(C)は、不純物を多く含むものとなったり安定性の劣るものになったりする。
 第5工程における、水と有機系液とを混合および接触させる工程の温度は、特に制限されないが、好ましくは0℃~70℃、より好ましくは10℃~60℃である。また、水層と有機層とを分離する工程の温度もまた、特に限定されないが、好ましくは0℃~70℃、より好ましくは10℃~60℃である。2つの工程における処理温度を40℃~60℃程度とすることは、水層及び有機層の分離時間の短縮効果があるため、好ましい。
1-3-6.第6工程
 第6工程は、第5工程で得られた有機溶液から揮発性成分を除去する工程である。この工程では、常圧(大気圧)または減圧の条件における蒸留が行われる。第6工程において除去される揮発性成分としては、第4工程で用いた洗浄用有機溶剤であるが、他に揮発性成分が含まれていれば、この工程において、すべて同時に除去される。
 以上の工程によって、本発明の有機ケイ素化合物(C)は単離される。
 尚、この有機ケイ素化合物(C)が有機溶剤に溶解されてなる溶液とする場合には、上記第4工程で用いた洗浄用有機溶剤を、そのまま有機ケイ素化合物(C)の溶媒として使用することができ、第6工程は省略することができる。
 本発明の製造方法において、第1工程により得られた有機ケイ素化合物(C)は、その後の各工程における処理中または処理後において、変質又は変性することなく、安定である。
 本発明の製造方法において、ケイ素化合物(A)およびケイ素化合物(B)の縮合率は、92%以上とすることができ、より好ましくは95%以上、更に好ましくは98%以上である。シロキサン結合生成基(加水分解性基を含む)は実質的に全てが縮合されていることが最も好ましいが、縮合率の上限は、通常、99.9%である。
 上記のように、公知の方法によるQモノマーとTモノマーとの共重縮合反応においては、両者を均一に反応させることは難しく、ゲルが生じやすい。このため、トリメチルアルコキシシランやヘキサメチルジシロキサン等の、シロキサン結合生成基を1つのみ有するケイ素化合物(「Mモノマー」とも呼ばれる)を、末端封止剤として作用させることでゲル化を回避する方法が知られている。
 しかしながら、所定量以上のMモノマーを併用することで、ゲル化は回避できても、得られる有機ケイ素化合物の無機的性質は低下する傾向にある。本発明では、アルカリ性条件下、ケイ素化合物(A)であるTモノマー及び/又はDモノマーと、ケイ素化合物(B)であるQモノマーとをゲル化させずに共重縮合させているが、無機的性質を下げない程度の低い割合でMモノマーを併用することは可能である。具体的には、第1工程の際に、Mモノマーの使用量を、ケイ素化合物(A)及びケイ素化合物(B)の合計モル数100モルに対して、10モル以下とすることができる。
1-4.有機ケイ素化合物(C)
 本発明の有機ケイ素化合物(C)は、オキセタニル基を有し、シロキサン結合を有するポリシロキサンである。そして、この有機ケイ素化合物(C)は、[SiO4/2]で表されるシリケート単位を含む化合物である。このシリケート単位は、1個のケイ素原子に4個の酸素原子が結合した構成単位であり、ケイ素化合物(B)に由来する構成単位である。
 また、本発明の有機ケイ素化合物(C)は、更に、[R0SiO3/2]で表されるシルセスキオキサン単位、および/または、[R01SiO2/2]で表されるジオルガノシロキサン単位を含んでもよい。シルセスキオキサン単位およびジオルガノシロキサン単位は、それぞれ、1個のケイ素原子に3個および2個の酸素原子が結合した構成単位であり、ケイ素化合物(A)に由来する構成単位である。
 従って、本発明の有機ケイ素化合物(C)としては、[SiO4/2]で表されるシリケート単位と、[R0SiO3/2]で表されるシルセスキオキサン単位とを含む化合物、[SiO4/2]で表されるシリケート単位と、[R01SiO2/2]で表されるジオルガノシロキサン単位とを含む化合物、および、[SiO4/2]で表されるシリケート単位と、[R0SiO3/2]で表されるシルセスキオキサン単位と、[R01SiO2/2]で表されるジオルガノシロキサン単位とを含む化合物、が挙げられる。各構造単位の含有割合は、ケイ素化合物(A)及び(B)の使用割合によって決定される。
 本発明の有機ケイ素化合物(C)は、得られる硬化膜の表面硬度等に優れることから、[SiO4/2]で表されるシリケート単位と、[R0SiO3/2]で表されるシルセスキオキサン単位とを含む化合物であることが好ましい。
 また、本発明の有機ケイ素化合物(C)は、その構造中において、有機部分および無機部分を有する。ケイ素化合物(A)を表す上記一般式(1)におけるR0およびR1は有機部分を形成する。また、ケイ素化合物(A)に由来する加水分解性基(アルコキシ基等)、および、ケイ素化合物(B)に由来する加水分解性基(アルコキシ基等)、の少なくとも一方のうちの一部が残存する場合は、これも有機部分である。上記有機部分以外の部分は、炭素原子を含まない無機部分である。
 上記のように、本発明の製造方法において、縮合率を92%以上とすることができるので、無機部分の割合が高く、ポリシロキサン構造が十分に形成された有機ケイ素化合物(C)である。縮合率が低い場合、この有機ケイ素化合物(C)を用いて得られる硬化膜の硬度が低下する傾向がある。また、有機ケイ素化合物(C)の貯蔵安定性が低下する傾向がある。
 本発明の有機ケイ素化合物(C)が、シロキサン結合生成基(加水分解性基を含む)を有する場合には、その残存割合は、1H NMR(核磁気共鳴スペクトル)チャートから算出することができる。尚、「加水分解性基の全てが実質的に縮合されている」ことは、例えば、得られた有機ケイ素化合物(C)の1H NMRチャートにおいてシロキサン結合生成基に基づくピークがほとんど観察されないことにより確認することができる。
 例えば、有機ケイ素化合物(C)の製造に用いられるケイ素化合物(A)が、上記一般式(1)におけるnが0である化合物(加水分解性基を3個有するTモノマー)である場合には、ケイ素化合物(B)(シロキサン結合生成基を4個有するQモノマー)との加水分解・縮合反応の結果、得られる有機ケイ素化合物(C)は、構成単位としてシルセスキオキサン単位およびシリケート単位を有する化合物となる。
 上記の場合、有機ケイ素化合物(C)は、部分的にラダー(はしご)状、かご状またはランダム状の構造をとることができる。
 本発明の有機ケイ素化合物(C)は、オキセタニル基を有するため、カチオン硬化性を備える。有機ケイ素化合物(C)をカチオン硬化させることにより、表面硬度が大きく耐熱性に優れた硬化膜を与えることができる。
 本発明の有機ケイ素化合物(C)の数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)分析による標準ポリスチレン換算で、好ましくは1,000~20,000、より好ましくは1,000~10,000、更に好ましくは2,000~6,000である。
 本発明において、好ましい有機ケイ素化合物(C)(以下、「有機ケイ素化合物(C1)」という。)は、上記一般式(1)においてR0が上記一般式(3)で表される有機基であり、nが0であり、且つ、少なくとも1個、好ましくは2個、より好ましくは3個のXがOR基(Rは、アルキル基、シクロアルキル基、アラルキル基およびアリール基から選ばれた炭化水素基である。)であるケイ素化合物(A)と、上記一般式(2)において少なくとも1個、好ましくは2個、より好ましくは3個、特に好ましくは4個のYがOR基(Rは、アルキル基、シクロアルキル基、アラルキル基およびアリール基から選ばれた炭化水素基である。)であるケイ素化合物(B)とを、アルカリ性条件下、加水分解・縮合して得られた化合物である。そして、この有機ケイ素化合物(C1)に含まれる、製造原料であるケイ素化合物(A)および(B)に由来するOR基の割合は、製造前のこれらの化合物に含まれるOR基の合計量に対して、好ましくは0~8%、より好ましくは0.1~6%であり、更に好ましくは0.5~5%である。上記製造原料を、酸性条件下、加水分解・縮合して得られた有機ケイ素化合物における上記割合は8%を超えることが多く、製造後の安定性が十分ではなく、また、硬化性組成物としたときに得られる硬化物の硬度等も十分ではなかった。
 しかしながら、上記有機ケイ素化合物(C1)によると、保存安定性に優れ、上記有機溶剤に対する溶解性が高いことで作業性に優れ、硬化性組成物としたときに得られる硬化物の硬度、耐摩耗性等にも優れる。
2.カチオン硬化性組成物
 本発明のカチオン硬化性組成物は、上記本発明の有機ケイ素化合物(C)と、カチオン重合開始剤とを含有することを特徴とする。
 本発明のカチオン硬化性組成物は、更に、他のカチオン重合性を有する化合物(以下、「カチオン重合性化合物(D)」という。)、増感剤、チクソトロピー性付与剤、シランカップリング剤、消泡剤、充填剤、無機ポリマー、有機ポリマー、有機溶剤等を含有してもよい。
 有機ケイ素化合物(C)は、カチオン硬化性組成物の硬化性、得られる硬化物の硬度、耐摩耗性等の観点から、好ましくは、上記有機ケイ素化合物(C1)である。
2-1.カチオン重合開始剤
 カチオン重合開始剤は、紫外線等の光が照射されてカチオンを生成する化合物(光カチオン重合開始剤)または加熱されてカチオンを生成する化合物(熱カチオン重合開始剤)であり、公知の化合物を用いることができる。以下、光カチオン重合開始剤を含有する組成物を、光カチオン硬化性組成物といい、熱カチオン重合開始剤を含有する組成物を、熱カチオン硬化性組成物という。
2-1-1.光カチオン重合開始剤
 光カチオン重合開始剤としては、ヨードニウム塩、スルホニウム塩、ジアゾニウム塩、セレニウム塩、ピリジニウム塩、フェロセニウム塩、ホスホニウム塩等のオニウム塩が挙げられる。これらのうち、ヨードニウム塩およびスルホニウム塩が好ましく、特に、芳香族ヨードニウム塩および芳香族スルホニウム塩は、熱的に比較的安定であり、これらを含有する硬化性組成物が保存安定性のよいものとなりやすいため、好ましい光カチオン重合開始剤である。
 光カチオン重合開始剤がヨードニウム塩またはスルホニウム塩である場合、対アニオンの例としては、BF4 -、AsF6 -、SbF6 -、PF6 -、B(C654-等が挙げられる。
 上記芳香族ヨードニウム塩としては、(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム・ヘキサフルオロホスフェート、ジフェニルヨードニウム・ヘキサフルオロアンチモネート、ジフェニルヨードニウム・テトラフルオロボレート、ジフェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウムヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウム・テトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・ヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・ヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・テトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 上記芳香族ヨードニウム塩としては、市販品を用いることができ、GE東芝シリコーン社製「UV-9380C」(商品名)、ローディア社製「RHODOSIL PHOTOINITIATOR2074」(商品名)、和光純薬工業株式会社製「WPI-016」、「WPI-116」および「WPI-113」(商品名)等が挙げられる。
 上記芳香族スルホニウム塩としては、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビステトラフルオロボレート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・ヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・ヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・テトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロホスフェート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロアンチモネート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビステトラフルオロボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 上記芳香族スルホニウム塩としては、市販品を用いることができ、例えば、市販のトリアリールスルホニウム塩(芳香族スルホニウム塩)としては、ダウ・ケミカル日本株式会社製の、「サイラキュアUVI-6990」、「サイラキュアUVI-6992」および「サイラキュアUVI-6974」(商品名)、株式会社アデカ製の「アデカオプトマーSP-150」、「アデカオプトマーSP-152」、「アデカオプトマーSP-170」および「アデカオプトマーSP-172」(商品名)、和光純薬工業株式会社製の「WPAG-593」、「WPAG-596」、「WPAG-640」および「WPAG-641」(商品名)、等が挙げられる。
 上記芳香族ジアゾニウム塩としては、ベンゼンジアゾニウムヘキサフルオロアンチモネート、ベンゼンジアゾニウムヘキサフルオロホスフェート、ベンゼンジアゾニウムヘキサフルオロボーレート等が挙げられる。
 光カチオン硬化性組成物に含有される光カチオン重合開始剤の含有量は、上記有機ケイ素化合物(C)を含むカチオン重合性化合物の全体100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~7質量部、更に好ましくは0.2~5質量部である。上記光カチオン重合開始剤の含有量がこの範囲にあると、硬化性組成物の硬化性(短時間で硬化でき、エネルギーコストを抑制できる)、得られる硬化物の硬度、耐摩耗性等に優れる。
2-1-2.熱カチオン重合開始剤
 熱カチオン重合開始剤としては、スルホニウム塩、ホスホニウム塩、第4アンモニウム塩等が挙げられる。これらのうち、スルホニウム塩が好ましい。
 熱カチオン重合開始剤における対アニオンの例としては、AsF6 -、SbF6 -、PF6 -、B(C654-等が挙げられる。
 上記スルホニウム塩としては、トリフェニルスルホニウム四フッ化ホウ素、トリフェニルスルホニウム六フッ化アンチモン、トリフェニルスルホニウム六フッ化ヒ素、トリ(4-メトキシフェニル)スルホニウム六フッ化ヒ素、ジフェニル(4-フェニルチオフェニル)スルホニウム六フッ化ヒ素等が挙げられる。
 上記スルホニウム塩としては、市販品を用いることができ、アデカ社製「アデカオプトンCP-66」および「アデカオプトンCP-77」(商品名)、三新化学工業社製「サンエイドSI-60L」、「サンエイドSI-80L」および「サンエイドSI-100L」(商品名)、等が挙げられる。
 上記ホスホニウム塩としては、エチルトリフェニルホスホニウム六フッ化アンチモン、テトラブチルホスホニウム六フッ化アンチモン等が挙げられる。
 上記アンモニウム塩型化合物としては、例えば、N,N-ジメチル-N-ベンジルアニリニウム六フッ化アンチモン、N,N-ジエチル-N-ベンジルアニリニウム四フッ化ホウ素、N,N-ジメチル-N-ベンジルピリジニウム六フッ化アンチモン、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸、N,N-ジメチル-N-(4-メトキシベンジル)ピリジニウム六フッ化アンチモン、N,N-ジエチル-N-(4-メトキシベンジル)ピリジニウム六フッ化アンチモン、N,N-ジエチル-N-(4-メトキシベンジル)トルイジニウム六フッ化アンチモン、N,N-ジメチル-N-(4-メトキシベンジル)トルイジニウム六フッ化アンチモン等が挙げられる。
 熱カチオン硬化性組成物に含有される熱カチオン重合開始剤の含有量は、上記有機ケイ素化合物(C)を含むカチオン重合性化合物の全体100質量部に対して、好ましくは0.01~10質量部、より好ましくは0.1~7質量部、更に好ましくは0.2~5質量部である。上記熱カチオン重合開始剤の含有量がこの範囲にあると、硬化性組成物の硬化性、得られる硬化物の硬度、耐摩耗性等に優れる。
2-2.カチオン重合性化合物(D)
 このカチオン重合性化合物(D)は、有機ケイ素化合物(C)以外のカチオン重合性を有する化合物であり、例えば、エポキシ化合物(エポキシ基を有する化合物)、他のオキセタニル基を有する化合物(他のオキセタニル基含有化合物)、ビニルエーテル基を有する化合物(ビニルエーテル化合物)等が挙げられる。これらの化合物は、1種単独で用いてよいし、2種以上を組み合わせて用いてもよい。エポキシ化合物のうち、脂環構造を有するエポキシ化合物は、上記有機ケイ素化合物(C)におけるオキセタニル基のカチオン重合を円滑に進める効果を奏するため、特に好ましい。
 上記エポキシ化合物としては、単官能エポキシ化合物、多官能エポキシ化合物等が挙げられる。
 多官能エポキシ化合物としては、ジシクロペンタジエンジオキサイド、リモネンジオキサイド、4-ビニルシクロヘキセンジオキサイド、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート(例えば、ダイセル化学工業社製「セロキサイド2021P」(商品名))、ジ(3,4-エポキシシクロヘキシル)アジペート、ビスフェノールA型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、ビスフェノールSジグリシジルエーテル、ビスフェノールF型エポキシ樹脂、1,6-ヘキサンジオールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ポリブタジエンの両末端がグリシジルエーテル化された化合物、o-クレゾールノボラック型エポキシ樹脂、m-クレゾールノボラック型エポキシ樹脂、p-クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ポリブタジエンの内部エポキシ化物、ダイセル化学工業社製「エポフレンド」(商品名)等の、スチレン-ブタジエン共重合体における、二重結合が一部エポキシ化された化合物、KRATON社製「L-207」(商品名)等の、エチレン-ブチレン共重合体部およびイソプレン重合体部を備えるブロック共重合体における、イソプレン重合体部の一部がエポキシ化された化合物、ダイセル化学工業社製「EHPE3150」(商品名)等の、4-ビニルシクロヘキセンオキサイドの開環重合体において、ビニル基をエポキシ化した構造の化合物、Mayaterials社製「Q8シリーズ」における「Q-4」等の、グリシジル基を有するかご状シルセスキオキサン、Mayaterials社製「Q8シリーズ」における「Q-5」等の、エポキシ基を有する脂環タイプのかご状シルセスキオキサン、エポキシ化植物油等が挙げられる。
 また、単官能エポキシ化合物としては、1,2-エポキシヘキサデカン等のα-オレフィンエポキサイド、フェニルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ドデシルグリシジルエーテル、グリシジルメタクリレート等が挙げられる。
 上記他のオキセタニル基含有化合物としては、単官能オキセタン化合物、多官能オキセタン化合物等が挙げられる。
 多官能オキセタン化合物としては、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(XDO)、ジ[2-(3-オキセタニル)ブチル]エーテル(DOX)、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、4,4’-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ビフェニル(4,4’-BPOX)、2,2’-ビス〔(3-エチル-3-オキセタニル)メトキシ〕ビフェニル(2,2’-BPOX)、3,3’,5,5’-テトラメチル〔4,4’-ビス(3-エチルオキセタン-3-イル)メトキシ〕ビフェニル(TM-BPOX)、2,7-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ナフタレン(2,7-NpDOX)、1,6-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕-2,2,3,3,4,4,5,5-オクタフルオロヘキサン(OFH-DOX)、3(4),8(9)-ビス[(1-エチル-3-オキセタニル)メトキシメチル〕-トリシクロ[5.2.1.02.6]デカン、1,2-ビス[2-[(1-エチル-3-オキセタニル)メトキシ]エチルチオ]エタン、4,4’-ビス[(1-エチル-3-オキセタニル)メチル]チオジベンゼンチオエーテル、2,3-ビス[(3-エチルオキセタン-3-イル)メトキシメチル]ノルボルナン(NDMOX)、2-エチル-2-[(3-エチルオキセタン-3-イル)メトキシメチル]-1,3-0-ビス[(1-エチル-3-オキセタニル)メチル]-プロパン-1,3-ジオール(TMPTOX)、2,2-ジメチル-1,3-0-ビス[(3-エチルオキセタン-3-イル)メチル]-プロパン-1,3-ジオール(NPGOX)、2-ブチル-2-エチル-1,3-0-ビス[(3-エチルオキセタン-3-イル)メチル]-プロパン-1,3-ジオール、1,4-0-ビス[(3-エチルオキセタン-3-イル)メチル]-ブタン-1,4-ジオール、2,4,6-0-トリス[(3-エチルオキセタン-3-イル)メチル]シアヌル酸、ビスフェノールAおよび3-エチル-3-クロロメチルオキセタン(以下、「OXC」と略す)のエーテル化物(BisAOX)、ビスフェノールFおよびOXCのエーテル化物(BisFOX)、フェノールノボラックおよびOXCのエーテル化物(PNOX)、クレゾールノボラックおよびOXCのエーテル化物(CNOX)、オキセタニルシルセスキオキサン(OX-SQ)、3-エチル-3-ヒドロキシメチルオキセタンのシリコンアルコキサイド(OX-SC)等が挙げられる。
 また、単官能オキセタン化合物としては、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(EHOX)、3-エチル-3-(ドデシロキシメチル)オキセタン(OXR-12)、3-エチル-3-(オクタデシロキシメチル)オキセタン(OXR-18)、3-エチル-3-(フェノキシメチル)オキセタン(POX)、3-エチル-3-ヒドロキシメチルオキセタン(OXA)等が挙げられる。
 上記ビニルエーテル化合物としては、単官能ビニルエーテル化合物、多官能ビニルエーテル化合物等が挙げられる。
 多官能ビニルエーテル化合物としては、シクロヘキサンジメタノールジビニルエーテル、トリエチレングリコールジビニルエーテル、ノボラック型ジビニルエーテル等が挙げられる。
 また、単官能ビニルエーテル化合物としては、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、ドデシルビニルエーテル、プロペニルエーテルプロピレンカーボネート、シクロヘキシルビニルエーテル等が挙げられる。
 本発明のカチオン硬化性組成物が、カチオン重合性化合物(D)を含有する場合、このカチオン重合性化合物(D)の含有量は、上記有機ケイ素化合物(C)100質量部に対して、好ましくは0.1~1,000質量部、より好ましくは1~300質量部、更に好ましくは2~100質量部である。上記カチオン重合性化合物(D)の含有量がこの範囲にあると、硬化性組成物の硬化性、得られる硬化物の硬度、耐摩耗性等に優れる。
2-3.増感剤
 本発明のカチオン硬化性組成物が、光カチオン硬化性組成物である場合、光増感剤を含有することができる。
 光増感剤としては、光ラジカル重合開始剤が好適に使用できる。本発明において用いることができる典型的な光増感剤は、クリベロがアドバンスド イン ポリマーサイエンス(Adv.in Polymer.Sci.,62,1(1984))で開示している化合物である。具体的には、ピレン類、ペリレン類、アクリジンオレンジ類、チオキサントン類、2-クロロチオキサントン類、ペンゾフラビン類等が挙げられる。これらのうち、チオキサントン類が、オニウム塩等の光カチオン重合開始剤の活性を高める効果を奏するため、特に好適である。
 本発明の光カチオン硬化性組成物が、光増感剤を含有する場合、この光増感剤の含有量は、上記有機ケイ素化合物(C)を含むカチオン重合性化合物の全体100質量部に対して、好ましくは0.5~10質量部、より好ましくは1~8質量部、更に好ましくは3~6質量部である。上記カチオン重合性化合物(D)の含有量がこの範囲にあると、硬化性組成物の硬化性、得られる硬化物の硬度、耐摩耗性等に優れる。
2-4.有機溶剤
 この有機溶剤としては、上記有機ケイ素化合物(C)を溶解する化合物、および、上記有機ケイ素化合物(C)を溶解しない化合物のいずれでもよく、また両者を併用してもよい。上記有機溶剤が、上記のような、有機ケイ素化合物(C)を溶解する化合物である場合や両者を併用して有機ケイ素化合物(C)を溶解する混合物である場合には、得られるカチオン硬化性組成物を用いた作業性、成膜性等に優れる。
 本発明に係る光カチオン硬化性組成物および熱カチオン硬化性組成物は、原料成分を混合することにより得ることができる。混合の際には、従来、公知の混合機等を用いればよい。具体的には、反応用フラスコ、チェンジ缶式ミキサー、プラネタリーミキサー、ディスパー、ヘンシェルミキサー、ニーダー、インクロール、押出機、3本ロールミル、サンドミル等が挙げられる。
 本発明のカチオン硬化性組成物は、活性エネルギー線を照射する方法、加熱する方法、活性エネルギー線照射および加熱を併用する方法等の方法によってカチオン硬化させることができる。
 活性エネルギー線の具体例としては、電子線、紫外線、可視光等が挙げられるが、紫外線が特に好ましい。
3.硬化膜の製造方法ならびにこの硬化膜を有する物品およびその製造方法
 本発明の硬化膜の製造方法は、上記本発明のカチオン硬化性組成物を基材の表面に塗布し、得られた被膜を硬化させる工程を備えることを特徴とする。
 また、本発明の硬化膜を有する物品の製造方法は、上記本発明のカチオン硬化性組成物を基材の表面に塗布し、得られた被膜を硬化させる工程を備えることを特徴とする。
 カチオン硬化性組成物が有機溶剤を含有する場合は、通常、塗膜形成後、有機溶剤を揮発させてから硬化させる。
 基材としては、特に限定されず、その構成材料は、有機材料及び無機材料のいずれでもよい。具体的には、金属、合金、ガラス、セラミックス、樹脂、紙、木、コンクリート等を使用することができる。また、その形状としては、フィルム、シート、板(平板、曲板)、立方体、直方体、角錐、円錐、線状体(直線、曲線等)、環状体(円形、多角形等)、管、球等の定形体、凹凸、溝、貫通孔、角部等を有する不定形体が挙げられる。
 上記基材は、樹脂を含む基板(通常、平板である)であることが好ましい。この樹脂としては、ポリエステル樹脂、ポリカーボネート樹脂、ABS樹脂、ASA樹脂、AES樹脂、ポリスチレン、スチレン・アクリロニトリル共重合体、スチレン・無水マレイン酸共重合体、(メタ)アクリル酸エステル・スチレン共重合体、ポリエチレン、ポリプロピレン、ポリアリレート樹脂、ポリ塩化ビニル樹脂、アクリル樹脂;ポリフェニレンエーテル、ポリフェニレンサルファイド、フッ素樹脂、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、フェノキシ樹脂等が挙げられるが、好ましくはポリカーボネート樹脂である。
 被膜の形成方法もまた、特に限定されず、基材の構成材料、形状等に応じて、適宜、選択される。基材がフィルム、シート等の平板状である場合には、アプリケーター、バーコーター、ワイヤーバーコーター、ロールコーター、カーテンフローコーター等を用いて、被膜を形成することができる。また、ディップコート法、スキャット法、スプレー法等を用いることもできる。
 本発明において、カチオン硬化性組成物が、光硬化性であるか、熱硬化性であるかにより、その硬化方法および硬化条件が選択される。また、硬化条件(光硬化の場合、光源の種類、光照射量等であり、熱硬化の場合、加熱温度、加熱時間等である。)は、カチオン硬化性組成物に含有されるカチオン重合開始剤の種類、量、他のカチオン重合性化合物の種類等によって、適宜、選択される。
 上記カチオン硬化性組成物が、光カチオン硬化性組成物である場合、その硬化方法としては、従来、公知の光照射装置等によって光照射を行えばよい。この光照射装置としては、例えば、波長400nm以下に発光分布を有する、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプ、UV無電極ランプ、LED等が挙げられる。
 上記被膜への光照射強度は、目的、用途等に応じて選択すればよく、光カチオン重合開始剤の活性化に有効な光波長領域(光カチオン重合開始剤の種類によって異なるが、通常、300~420nmの波長の光が用いられる。)における光照射強度は、好ましくは0.1~100mW/cm2である。
 また、照射エネルギーは、活性エネルギー線の種類や配合組成に応じて適宜設定すべきものであるが、上記被膜への光照射時間も、目的、用途等に応じて選択すればよく、上記光波長領域における光照射強度および光照射時間の積として表される積算光量が10~5,000mJ/cm2となるように設定されることが好ましい。より好ましくは500~3,000mJ/cm2であり、更に好ましくは2,000~3,000mJ/cm2である。従って、積算光量が上記範囲にあれば、組成物の硬化が円滑に進行し、均一な硬化物を容易に得ることができる。
 尚、光照射後0.1~数分後には、ほとんどの被膜成分は、カチオン重合により指触乾燥するが、カチオン重合反応を促進するために、加熱を併用してもよい。
 上記カチオン硬化性組成物が、熱カチオン硬化性組成物である場合、その硬化方法及び硬化条件は、特に限定されない。
 硬化温度は、好ましくは80℃~200℃であり、より好ましくは100℃~180℃である。上記範囲内で、温度を一定としてもよいし、昇温させてもよい。更には、昇温と降温とを組み合わせてもよい。硬化時間は、熱カチオン重合開始剤の種類、他の成分の含有割合等により適宜、選択されるが、通常、30~300分であり、好ましくは60~240分である。上記好ましい条件で被膜を硬化させることにより、膨れ、クラック等のない均一な硬化膜を形成することができ、この硬化膜を有する物品を得ることができる。
 本発明の硬化膜を有する物品において、硬化膜の厚さは、特に限定されないが、好ましくは0.1~100μm、より好ましくは1~50μm、更に好ましくは5~20μmである。
1.オキセタニル基を有する有機ケイ素化合物の製造および評価
  実施例1-1
 攪拌機および温度計を備えた反応器に、メタノール400gと、下記式(4)で表される3-エチル-3-((3-(トリメトキシシリル)プロポキシ)メチル)オキセタン(以下、「TMSOX」という。)55.68g(0.2mol)と、テトラメトキシシラン(以下、「TMOS」という。)30.44g(0.2mol)とを仕込んだ後、1.7質量%水酸化テトラメチルアンモニウム水溶液53.64g(水3mol、水酸化テトラメチルアンモニウム10mmol)を徐々に加えた。この混合物を、攪拌しながら、温度25℃、pH9で24時間反応させた。その後、10質量%硝酸水溶液を6.61g(10.5mmol)加えて、反応液を中和した。次いで、減圧下で有機溶剤(メタノール)および水を留去して、得られた残渣(反応生成物)をメチルイソブチルケトンに溶解させ、水洗を行うことで塩類や過剰の酸を除去した。その後、減圧下でメチルイソブチルケトン溶液から溶剤(メチルイソブチルケトン)を留去し、無色の半固体の有機ケイ素化合物(C-1)を得た。収量は48.5gであった。
Figure JPOXMLDOC01-appb-C000011
 有機ケイ素化合物(C-1)を1H NMR分析およびIR(赤外吸収)分析し、オキセタニル基が存在することを確認した。
 1H NMR分析は、有機ケイ素化合物(C-1)約1gおよび内部標準物質であるヘキサメチルジシロキサン(以下、「HMDSO」という)約100mgを、それぞれ精秤して混合し、HMDSOのプロトンを基準として行った。この1H NMR分析により、ケイ素化合物(A)、即ち、TMSOXに由来する構造単位(Tモノマー単位)の含有量および有機ケイ素化合物(C-1)のアルコキシ基の含有量を求め、これらを基にしてケイ素化合物(B)、即ち、TMOSに由来する構造単位(Qモノマー単位)の含有量を計算した。その結果、得られた有機ケイ素化合物(C-1)は、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-1)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して1.0%に相当する量であった。
 また、上記有機ケイ素化合物(C-1)において、無機部分の割合は42%であった。
 また、上記有機ケイ素化合物(C-1)の数平均分子量(Mn)を、ゲルパーミエーションクロマトグラフィー(GPC)により測定したところ、Mn4,000(ポリスチレン換算値)であった(表1参照)。
 上記有機ケイ素化合物(C-1)を、大気中、60℃の暗所に3日間保管後、25℃におけるTHF及びプロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」という。)への溶解性を確認したところ、溶解性はいずれも良好であった。
 また、上記有機ケイ素化合物(C-1)を、PGMEAに溶解させて、50質量%の溶液を調製した後、60℃暗所で静置した。一定時間経過後の数平均分子量および粘度は、表2に示すとおりであり、経時変化は、ほとんどなかった。粘度は、東京計器社製E型粘度計「VISCONIC-EMD」(型式名)により測定した。
  実施例1-2
 攪拌機および温度計を備えた反応器に、メタノール56.6gと、TMSOX8.35g(0.03mol)と、TMOS2.28g(0.015mol)とを仕込んだ後、2.5質量%水酸化テトラメチルアンモニウム水溶液4.1g(水0.225mol、水酸化テトラメチルアンモニウム1.13mmol)を徐々に加えた。この混合物を、攪拌しながら、温度25℃、pH9で、2時間反応させた。その後、10質量%硝酸水溶液を0.72g(1.14mmol)加えて、反応液を中和した。次いで、減圧下で有機溶剤(メタノール)および水を留去して、得られた残渣(反応生成物)を酢酸エチルに溶解させ、水洗を行うことで塩類や過剰の酸を除去した。その後、減圧下で酢酸エチル溶液から溶剤(酢酸エチル)を留去し、無色透明な液体の有機ケイ素化合物(C-2)を得た。収量は7.34gであった。
 有機ケイ素化合物(C-2)を1H NMR分析およびIR分析し、オキセタニル基が存在することを確認した。
 また、この有機ケイ素化合物(C-2)についても、実施例1-1と同様にした1H NMR分析により、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-2)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して1.5%に相当する量であった。
 また、上記有機ケイ素化合物(C-2)において、無機部分の割合は34%であった。
 また、上記有機ケイ素化合物(C-2)の数平均分子量及び粘度並びにこれらの経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表2に示した。
  実施例1-3
 攪拌機および温度計を備えた反応器に、メタノール60gと、TMSOX8.35g(0.03mol)と、テトラプロポキシシラン19.8g(0.075mol)とを仕込んだ後、1.2質量%水酸化テトラメチルアンモニウム水溶液20.5g(水1.13mol、水酸化テトラメチルアンモニウム2.6mmol)を徐々に加えた。この混合物を、攪拌しながら、温度25℃、pH9で、2時間反応させた。その後、10質量%硝酸水溶液を1.7g(2.7mmol)加えて、反応液を中和した。次いで、減圧下で有機溶剤(メタノールおよびプロパノール)と水を留去して、得られた残渣(反応生成物)をメチルイソブチルケトンに溶解させ、水洗を行うことで塩類や過剰の酸を除去した。その後、減圧下でメチルイソブチルケトン溶液から溶剤(メチルイソブチルケトン)を留去し、無色透明な半固体の有機ケイ素化合物(C-3)を得た。収量は11.4gであった。
 有機ケイ素化合物(C-3)を1H NMR分析およびIR分析し、オキセタニル基が存在することを確認した。
 また、この有機ケイ素化合物(C-3)についても、実施例1-1と同様にした1H NMR分析により、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-3)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して3.0%に相当する量であった。
 また、上記有機ケイ素化合物(C-3)において、無機部分の割合は56%であった。
 また、上記有機ケイ素化合物(C-3)の数平均分子量及び粘度並びにこれらの経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表2に示した。
  実施例1-4
 攪拌機および温度計を備えた反応器に、1-プロパノール41gと、テトラメトキシシラン6.23g(0.04mol)とを仕込んだ後、25質量%水酸化テトラメチルアンモニウムメタノール溶液0.3g(メタノール8mmol、水酸化テトラメチルアンモニウム0.8mmol)を徐々に加えた。この混合物を、攪拌しながら、温度25℃、pH9で1時間反応させた。その後、TMSOX5.52g(0.02mol)を加え、更に水4.07gを加えた。次いで、25質量%水酸化テトラメチルアンモニウムメタノール溶液1.24g(メタノール29mmol、水酸化テトラメチルアンモニウム3.4mmol)を加え、撹拌しながら、温度23℃、pH9で24時間、そして、60℃で4時間反応させた。その後、10質量%硝酸水溶液2.78g(4.4mmol)加え、反応液を中和した。次いで、この反応液を、酢酸エチル160gと水180gの混合液の中に加え抽出を行い、反応生成物を含む酢酸エチル層を回収した。この酢酸エチル層を水洗することで塩類や過剰の酸を除去した。その後、減圧下で酢酸エチル溶液から溶剤(酢酸エチル)を留去し、無色透明な固体の有機ケイ素化合物(C-4)を得た。収量は6.5gであった。
 有機ケイ素化合物(C-4)を1H NMR分析およびIR分析し、オキセタニル基が存在することを確認した。
 また、この有機ケイ素化合物(C-4)についても、実施例1-1と同様にした1H NMR分析により、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-4)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して1.0%に相当する量であった。
 また、上記有機ケイ素化合物(C-4)において、無機部分の割合は53%であった。
 また、上記有機ケイ素化合物(C-4)の数平均分子量及び粘度並びにこれらの経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表2に示した。
  実施例1-5
 攪拌機および温度計を備えた反応器に、メタノール203.41gと、TMSOX27.98g(0.1mol)と、TMOS22.84g(0.15mol)とを仕込んだ後、水酸化テトラメチルアンモニウムの25質量%メタノール溶液6.38g(メタノール0.15mol、水酸化テトラメチルアンモニウム17.5mmol)と、水16.22g(0.9mol)と、メタノール22.6gとからなる混合液を徐々に加えた。この混合物を、撹拌しながら、温度20℃、pH9で2時間反応させた。その後、10質量%硝酸水溶液11.60g(18.4mmol)を加えて中和した。次いで、減圧下で有機溶剤(メタノール)および水を留去して、得られた残渣(反応生成物)をPGMEAに溶解させ、水洗を行うことで塩類や過剰の酸を除去した。その後、減圧下でPGMEA溶液からPGMEA等を留去し、無色の固体の有機ケイ素化合物(C-5)を得た。収量は27.25g(収率91%)であった。
 有機ケイ素化合物(C-5)を1H NMR分析およびIR分析し、オキセタニル基が存在することを確認した。
 また、この有機ケイ素化合物(C-5)についても、実施例1-1と同様にした1H NMR分析により、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-5)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して3.2%に相当する量であった。
 また、上記有機ケイ素化合物(C-5)において、無機部分の割合は47%であった。
 有機ケイ素化合物(C-5)をGPC分析したところ、カラムの検出限界(分子量40万)を超える成分が含まれていることが分かった。GPCクロマトグラムにおいて、カラムの検出限界を超える成分(保持時間=6~10分)の面積と、検出限界を超えない成分(保持時間=11~16分:この範囲のMn=2,900)の面積との比は5:5であった。
 また、上記有機ケイ素化合物(C-5)の粘度およびその経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表2に示した。
  実施例1-6
 攪拌機および温度計を備えた反応器に、メタノール203.41gと、TMSOX27.98g(0.1mol)と、TMOS22.84g(0.15mol)とを仕込んだ後、水酸化テトラメチルアンモニウムの25質量%メタノール溶液6.38g(メタノール0.15mol、水酸化テトラメチルアンモニウム17.5mmol)と、水16.22g(0.9mol)と、メタノール22.6gとからなる混合液を徐々に加えた。この混合物を、撹拌しながら、温度60℃、pH9で2時間反応させた。その後、10質量%硝酸水溶液11.60g(18.4mmol)を加えて中和した。次いで、減圧下で有機溶剤(メタノール)および水を留去して、得られた残渣(反応生成物)をPGMEAに溶解させ、水洗を行うことで塩類や過剰の酸を除去した。その後、減圧下でPGMEA溶液からPGMEA等を留去し、無色の固体の有機ケイ素化合物(C-6)を得た。収量は27.55(収率92%)であった。
 有機ケイ素化合物(C-6)を1H NMR分析およびIR分析し、オキセタニル基が存在することを確認した。
 また、この有機ケイ素化合物(C-6)についても、実施例1-1と同様にした1H NMR分析により、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-6)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して3.0%に相当する量であった。
 また、上記有機ケイ素化合物(C-6)において、無機部分の割合は47%であった。
 また、上記有機ケイ素化合物(C-6)の数平均分子量及び粘度並びにこれらの経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表2に示した。
  比較例1-1
 攪拌機および温度計を備えた反応器に、メタノール430gと、TMSOX55.68g(0.2mol)と、TMOS30.44g(0.2mol)とを仕込んだ後、0.7質量%塩酸水溶液25.5g(水1.4mol、塩化水素4.8mmol)を徐々に加えた。この混合物を、攪拌しながら、温度25℃、pH5で18時間反応させた。反応液に酸が残存していなかったため、塩基性物質による中和は行わなかった。その後、減圧下で溶剤(メタノール)を留去し、無色透明な液体の有機ケイ素化合物(C-7)を得た。酸が残存していなかったため、反応生成物の水洗浄は行わなかった。収量は60.2gであった。
 有機ケイ素化合物(C-7)を1H NMR分析およびIR分析し、オキセタニル基が存在することを確認した。
 また、この有機ケイ素化合物(C-7)についても、実施例1-1と同様にした1H NMR分析により、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-7)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して9.0%に相当する量であった。
 また、上記有機ケイ素化合物(C-7)において、無機部分の割合は39%であった。
 また、上記有機ケイ素化合物(C-7)の数平均分子量及び粘度並びにこれらの経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表3に示した。
  比較例1-2
 酸触媒である塩化水素の量を10mmolに変えた以外は、比較例1-1と同様にして、有機ケイ素化合物(C-8)を製造した。
 有機ケイ素化合物(C-8)を1H NMR分析およびIR分析し、オキセタニル基が存在することを確認した。
 また、この有機ケイ素化合物(C-8)についても、実施例1-1と同様にした1H NMR分析により、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-8)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して9.1%に相当する量であった。
 また、上記有機ケイ素化合物(C-8)において、無機部分の割合は39%であった。
 また、上記有機ケイ素化合物(C-8)の数平均分子量及び粘度並びにこれらの経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表3に示した。
  比較例1-3
 攪拌機および温度計を備えた反応器に、メタノール60gと、TMSOX8.35g(0.03mol)と、テトラプロポキシシラン23.8g(0.09mol)とを仕込んだ後、1.1質量%水酸化テトラメチルアンモニウム水溶液24.5g(水1.35mol、水酸化テトラメチルアンモニウム3mmol)を徐々に加えた。この混合物を、攪拌しながら、温度25℃、pH9で2時間反応させた。その後、10質量%硝酸水溶液を1.92g(3.06mmol)加えて、反応液を中和した。次いで、減圧下で有機溶剤(メタノール)と水を留去して、得られた残渣(反応生成物)をメチルイソブチルケトンに溶解させ、水洗を行うことで塩類や過剰の酸を除去した。その後、減圧下でメチルイソブチルケトン溶液から溶剤(メチルイソブチルケトン)を留去したところ、ゲル化してしまい有機ケイ素化合物は得られなかった。
  比較例1-4
 攪拌機および温度計を備えた反応器に、TMSOX133.6g(0.48mol)と、イソプロピルアルコール118.4gとを仕込んだ後、窒素でバブリングし、混合原料の内温を80℃に調整した。その後、この混合原料を、撹拌しながら、25質量%水酸化テトラメチルアンモニウム4.38g(12mmol)および水22.66gを滴下し、温度80℃、pH9で1時間反応させた。次いで、反応液に、25質量%硫酸2.47gを加えて、反応液を中和した。その後、減圧下で有機溶剤(メタノール)と水を留去して、得られた残渣(反応生成物)をメチルイソブチルケトンに溶解させ、水洗を行うことで塩類や過剰の酸を除去した。次いで、減圧下でメチルイソブチルケトン溶液から溶剤(メチルイソブチルケトン)を留去し、無色透明な粘性液体の有機ケイ素化合物(C-10)を得た。収量は101.3gであった。
 上記有機ケイ素化合物(C-10)において、無機部分の割合は25%であった。
 また、上記有機ケイ素化合物(C-10)の数平均分子量及び粘度並びにこれらの経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表3に示した。
  比較例1-5
 攪拌機および温度計を備えた反応器に、メタノール56.6gと、TMSOX8.35g(0.03mol)と、TMOS2.28g(0.015mol)とを仕込んだ後、0.7質量%塩酸水溶液25.5g(水1.4mol、塩化水素4.8mmol)を徐々に加えた。この混合物を、攪拌しながら、温度25℃、pH5で18時間反応させた。反応液に酸が残存していなかったため、塩基性物質による中和は行わなかった。その後、減圧下で溶剤(メタノール)を留去し、無色透明な液体の有機ケイ素化合物(C-11)を得た。酸が残存していなかったため、反応生成物の水洗浄は行わなかった。収量は5.44gであった。
 有機ケイ素化合物(C-11)を1H NMR分析およびIR分析し、オキセタニル基が存在することを確認した。
 また、この有機ケイ素化合物(C-11)についても、実施例1-1と同様にした1H NMR分析により、ケイ素化合物(A)およびケイ素化合物(B)が化学量論的に反応して得られた共重縮合物であることが確認された。
 有機ケイ素化合物(C-11)の1H NMRチャートから算出したアルコキシ基(ケイ素原子に結合したメトキシ基)の含有量は、仕込み原料に含まれていたアルコキシ基の全体に対して9.3%に相当する量であった。
 また、上記有機ケイ素化合物(C-11)において、無機部分の割合は31%であった。
 また、上記有機ケイ素化合物(C-11)の数平均分子量及び粘度並びにこれらの経時変化を、実施例1-1と同様にして測定し、それぞれ、表1及び表3に示した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
2.硬化性組成物の製造および評価
  実施例2-1
 有機ケイ素化合物(C-1)90質量部と、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート10質量部と、光カチオン重合開始剤である(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート2質量部とを、溶剤であるPGMEA102質量部に溶解させて、50質量%のPGMEA溶液(光カチオン硬化性組成物)を調製した。
 上記光カチオン硬化性組成物について、硬化性、硬度および耐摩耗性の評価を行った。その結果を表4に示す。
(1)硬化性試験
 バーコーターを用いて、光カチオン硬化性組成物をガラス基板および鋼板に塗布し、約50℃で5分間加熱して溶剤(PGMEA)を揮発させて約15μmの厚さの被膜を形成させた。その後、大気中、下記条件により紫外線照射を行って硬化させ、表面のタックがなくなるまでの照射回数を測定した。
[紫外線照射条件]
ランプ:80W/cm高圧水銀ランプ
ランプ高さ:10cm
コンベアスピード:10m/min
(2)鉛筆硬度試験
 光カチオン硬化性組成物を、ガラス板および鋼板に塗布し、約50℃で5分間加熱して溶剤(PGMEA)を揮発させて約15μmの厚さの被膜を形成させた。その後、上記(1)硬化性試験と同じ条件で紫外線硬化(紫外線照射回数3回)させて硬化膜を得た。
 この硬化膜を、温度23℃、湿度60%の恒温室内に24時間静置した後、JIS K5600-5-4に準じて表面の鉛筆硬度を測定した。
(3)ユニバーサル硬度試験
 光カチオン硬化性組成物を、ガラス板および鋼板に塗布し、約50℃で5分間加熱して溶剤(PGMEA)を揮発させて約15μmの厚さの被膜を形成させた。その後、上記(1)硬化性試験と同じ条件で紫外線硬化(紫外線照射回数3回)させて硬化膜を得た。
 この硬化膜を、温度23℃、湿度60%の恒温室内に24時間静置した後、最大荷重1mN/20secでユニバーサル硬度を測定した。
(4)テーバー摩耗試験
 バーコーターを用いて、光カチオン硬化性組成物を、ポリカーボネート板に塗布し、約50℃で5分間加熱して溶剤(PGMEA)を揮発させて約15μmの厚さの被膜を形成させた。その後、上記(1)硬化性試験と同じ条件で紫外線硬化(紫外線照射回数5回)させて硬化膜を得た。
 この硬化膜を、温度23℃、湿度60%の恒温室内に24時間静置した後、以下の条件においてテーバー摩耗試験を実施した。
 試験条件は、摩耗輪として「CS-10F」を使用し、各250gの荷重をかけ、500回転で摩耗減量を測定した。尚、測定ごとに「ST-11」(砥石)にて摩耗輪のリフェーシングを実施した。
 また、上記条件におけるテーバー摩耗試験の前後の硬化膜のヘイズを、23℃±2℃、50%±5%RHの恒温室内に設置された日本電色工業(株)製ヘーズメーター「NDH2000」(型式名)を用いて、JIS K7105、JIS K7361-1およびJIS K7136に準拠して測定した。
  実施例2-2
 有機ケイ素化合物(C-1)に代えて、有機ケイ素化合物(C-4)を用いた以外は、実施例2-1と同様にして、光カチオン硬化性組成物を調製し、鉛筆硬度試験、ユニバーサル硬度試験及び摩耗減量測定を除く各種評価を行った(表4参照)。尚、テーバー摩耗試験用硬化膜の製造に際しては、紫外線照射回数を15回とした。
  実施例2-3
 有機ケイ素化合物(C-1)に代えて、有機ケイ素化合物(C-3)を用いた以外は、実施例2-1と同様にして、光カチオン硬化性組成物を調製し、鉛筆硬度試験、ユニバーサル硬度試験及び摩耗減量測定を除く各種評価を行った(表4参照)。尚、テーバー摩耗試験用硬化膜の製造に際しては、紫外線照射回数を15回とした。
  実施例2-4
 有機ケイ素化合物(C-1)100質量部と、光カチオン重合開始剤である(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート2質量部とを、溶剤であるPGMEA102重量部に溶解させて、50質量%のPGMEA溶液(光カチオン硬化性組成物)を調製し、鉛筆硬度試験、ユニバーサル硬度試験及び摩耗減量測定を除く各種評価を行った。(表4参照)。尚、テーバー摩耗試験用硬化膜の製造に際しては、紫外線照射回数を15回とした。
  実施例2-5
 有機ケイ素化合物(C-1)90質量部と、下記式(5)で表されるエポキシ化合物Q-4(Mayaterials社製「Q8シリーズ」のうちの1種、グリシジル基を有するかご状シルセスキオキサン)10質量部と、カチオン重合開始剤である(トリクミル)ヨードニウムテトラキス(ペンタフルオロフェニル)ボレート2質量部とを、溶剤であるPGMEA102重量部に溶解させて、50質量%のPGMEA溶液(光カチオン硬化性組成物)を調製し、鉛筆硬度試験、ユニバーサル硬度試験及び摩耗減量測定を除く各種評価を行った。(表4参照)。尚、テーバー摩耗試験用硬化膜の製造に際しては、紫外線照射回数を15回とした。
Figure JPOXMLDOC01-appb-C000015
  実施例2-6
 有機ケイ素化合物(C-1)に代えて、有機ケイ素化合物(C-4)を用いた以外は、実施例2-5と同様にして、光カチオン硬化性組成物を調製し、鉛筆硬度試験、ユニバーサル硬度試験及び摩耗減量測定を除く各種評価を行った(表4参照)。尚、テーバー摩耗試験用硬化膜の製造に際しては、紫外線照射回数を15回とした。
  比較例2-1
 有機ケイ素化合物(C-1)に代えて、有機ケイ素化合物(C-7)を用いた以外は、実施例2-1と同様にして、光カチオン硬化性組成物を調製し、各種評価を行った(表4参照)。
Figure JPOXMLDOC01-appb-T000016
 表4から分かるように、本発明の製造方法により得られた有機ケイ素化合物を含有する組成物(実施例2-1~2-6)は、硬度及び耐摩耗性に優れた硬化膜を与えた。その理由は、有機ケイ素化合物(C)が、4官能シランの加水分解物(Qモノマー単位)を構成単位として含み、無機部分の割合が高いためと考えられる。また、実施例2-1~2-6の硬化膜における、ヘイズの増加量(ΔH)が小さいのは、硬化膜に傷がつきにくいことを示している。
 本発明の有機ケイ素化合物は、その構造中に占める無機部分の割合が高く、製造後の安定性および保存安定性が良好である。そして、この有機ケイ素化合物は、カチオン硬化性を有する。
 また、本発明の硬化性組成物は、表面硬度が大きく、耐摩耗性に優れた硬化物を与えることができる。そして、この組成物は、カチオン硬化性を有し、該組成物の硬化物は、ハードコート、各種基材の保護膜、レジスト被膜、各種高分子材料の改質剤、プラスチックの強化剤、各種コーティング材料の改質剤、コーティング材料用原料、低誘電率材料、絶縁膜材料、耐熱性付与材料、液晶用原料、半導体封止材料、光導波路用材料、ハードマスク材料等として有用である。

Claims (16)

  1.  アルカリ性条件下、下記一般式(1)で表されるケイ素化合物(A)と、下記一般式(2)で表されるケイ素化合物(B)とを、上記ケイ素化合物(A)1モルに対して上記ケイ素化合物(B)0.3~2.8モルの割合で加水分解・縮合する工程を備える方法により得られたことを特徴とする、オキセタニル基を有する有機ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R0はオキセタニル基を有する有機基であり、R1は炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基またはオキセタニル基を有する有機基であり、Xは加水分解性基であり、nは0または1である。]
      SiY4         (2)
    [式中、Yはシロキサン結合生成基である。]
  2.  [SiO4/2]で表されるシリケート単位と、[R0SiO3/2]で表されるシルセスキオキサン単位とを含む請求項1に記載のオキセタニル基を有する有機ケイ素化合物。
  3.  上記一般式(1)におけるR0が、下記一般式(3)で表される有機基である請求項1または2に記載のオキセタニル基を有する有機ケイ素化合物。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R3は水素原子または炭素数1~6のアルキル基であり、R4は炭素数2~6のアルキレン基である。]
  4.  上記一般式(1)におけるXがアルコキシ基、シクロアルコキシ基またはアリールオキシ基である請求項1に記載のオキセタニル基を有する有機ケイ素化合物。
  5.  請求項1に記載のオキセタニル基を有する有機ケイ素化合物を製造する方法であって、アルカリ性条件下、下記一般式(1)で表されるケイ素化合物(A)と、下記一般式(2)で表されるケイ素化合物(B)とを、上記ケイ素化合物(A)1モルに対して上記ケイ素化合物(B)0.3~2.8モルの割合で加水分解・縮合する工程を備えることを特徴とする、オキセタニル基を有する有機ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    [式中、R0はオキセタニル基を有する有機基であり、R1は炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基またはオキセタニル基を有する有機基であり、Xは加水分解性基であり、nは0または1である。]
      SiY4     (2)
    [式中、Yはシロキサン結合生成基である。]
  6.  上記一般式(1)におけるR0が、下記一般式(3)で表される有機基である請求項5に記載のオキセタニル基を有する有機ケイ素化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式中、R3は水素原子または炭素数1~6のアルキル基であり、R4は炭素数2~6のアルキレン基である。]
  7.  アルカリ性条件とするための塩基性物質の使用量が、上記ケイ素化合物(A)および上記ケイ素化合物(B)の合計モル数を100モルとした場合に、1~20モルである、請求項5に記載のオキセタニル基を有する有機ケイ素化合物の製造方法。
  8.  上記塩基性物質が水酸化テトラアルキルアンモニウムである請求項7に記載のオキセタニル基を有する有機ケイ素化合物の製造方法。
  9.  請求項1に記載のオキセタニル基を有する有機ケイ素化合物と、カチオン重合開始剤とを含有することを特徴とするカチオン硬化性組成物。
  10.  上記カチオン重合開始剤が光カチオン重合開始剤である請求項9に記載のカチオン硬化性組成物。
  11.  更に、他のカチオン重合性化合物を含有し、該カチオン重合性化合物が、エポキシ化合物、他のオキセタニル基含有化合物、および、ビニルエーテル化合物から選ばれた少なくとも1種である請求項9または10に記載のカチオン硬化性組成物。
  12.  請求項9に記載のカチオン硬化性組成物を基材の表面に塗布し、得られた被膜を硬化させる工程を備えることを特徴とする硬化膜の製造方法。
  13.  請求項11に記載のカチオン硬化性組成物を基材の表面に塗布し、得られた被膜を硬化させる工程を備えることを特徴とする硬化膜の製造方法。
  14.  請求項9に記載のカチオン硬化性組成物を基材の表面に塗布し、得られた被膜を硬化させる工程を備えることを特徴とする、硬化膜を有する物品の製造方法。
  15.  上記基材が、ポリカーボネート樹脂を含む基板である請求項14に記載の硬化膜を有する物品の製造方法。
  16.  請求項14に記載の方法により得られたことを特徴とする、硬化膜を有する物品。
PCT/JP2009/050213 2008-01-15 2009-01-09 オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物 WO2009090916A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/812,808 US8329774B2 (en) 2008-01-15 2009-01-09 Organosilicon compounds which have oxetanyl groups, and a method for the production and curable compositions of the same
CN200980102245.2A CN101970539B (zh) 2008-01-15 2009-01-09 具有氧杂环丁烷基的有机硅化合物及其制造方法和固化性组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008005425 2008-01-15
JP2008-005425 2008-01-15
JP2008026796 2008-02-06
JP2008-026796 2008-02-06

Publications (1)

Publication Number Publication Date
WO2009090916A1 true WO2009090916A1 (ja) 2009-07-23

Family

ID=40885307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050213 WO2009090916A1 (ja) 2008-01-15 2009-01-09 オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物

Country Status (5)

Country Link
US (1) US8329774B2 (ja)
KR (1) KR101587297B1 (ja)
CN (1) CN101970539B (ja)
TW (1) TWI498357B (ja)
WO (1) WO2009090916A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073933A1 (ja) * 2008-12-26 2010-07-01 東亞合成株式会社 オキセタニル基を有するケイ素化合物の製造方法
JP2011053682A (ja) * 2009-08-31 2011-03-17 Xerox Corp Possメラミンでオーバーコートした光導電体
CN102566281A (zh) * 2010-12-16 2012-07-11 第一毛织株式会社 硬掩模组合物和形成图案的方法以及包括该图案的半导体集成电路器件
WO2015087686A1 (ja) * 2013-12-13 2015-06-18 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
JP2018070863A (ja) * 2013-12-13 2018-05-10 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
WO2022168804A1 (ja) 2021-02-05 2022-08-11 東亞合成株式会社 無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099460A1 (ja) * 2011-12-26 2013-07-04 東亞合成株式会社 有機半導体絶縁膜用組成物及び有機半導体絶縁膜
KR101413069B1 (ko) * 2011-12-30 2014-07-02 제일모직 주식회사 하드마스크 조성물용 모노머, 상기 모노머를 포함하는 하드마스크 조성물 및 상기 하드마스크 조성물을 사용하는 패턴형성방법
KR102232773B1 (ko) * 2014-06-24 2021-03-26 삼성디스플레이 주식회사 표시 장치용 커버 윈도우, 이를 포함하는 표시 장치, 및 표시 장치용 커버 윈도우의 제조 방법
TWI519560B (zh) 2014-11-24 2016-02-01 財團法人工業技術研究院 含氧雜環丁烷基與環氧基之樹脂與樹脂組成物
KR102302500B1 (ko) * 2014-11-28 2021-09-15 엘지디스플레이 주식회사 플라스틱 기판, 그 제조 방법 및 이를 포함하는 표시 장치
KR102325187B1 (ko) * 2015-01-09 2021-11-10 삼성디스플레이 주식회사 표시 장치용 커버 윈도우, 이를 포함하는 표시 장치, 및 표시 장치용 커버 윈도우의 제조 방법
KR102567687B1 (ko) * 2015-06-17 2023-08-18 주식회사 다이셀 경화성 조성물
CN111356652B (zh) * 2017-11-27 2023-07-07 东亚合成株式会社 层间交联型层状无机化合物及其制造方法
CN111819183A (zh) * 2018-02-28 2020-10-23 中央硝子株式会社 包含六氟异丙醇基的硅化合物及其制造方法
CN113166540A (zh) * 2018-10-30 2021-07-23 陶氏东丽株式会社 紫外线固化性聚有机硅氧烷组合物及其用途
KR20220078629A (ko) * 2019-10-03 2022-06-10 다우 실리콘즈 코포레이션 자외선 경화성 오가노폴리실록산 조성물 및 그의 용도

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129640A (ja) * 1997-07-07 1999-02-02 Toagosei Co Ltd 光カチオン硬化性組成物の製造方法及び光カチオン硬化性ハードコート剤組成物
JPH11199673A (ja) * 1998-01-13 1999-07-27 Toagosei Co Ltd 光カチオン硬化性樹脂組成物
JP2001342194A (ja) * 2000-06-01 2001-12-11 Toagosei Co Ltd 多官能オキセタン化合物およびその製造方法、ならびに該オキセタン化合物からなるカチオン硬化性組成物
WO2004076534A1 (ja) * 2003-02-27 2004-09-10 Toagosei Co., Ltd カチオン硬化性含ケイ素化合物の製造方法
JP2005089697A (ja) * 2003-09-19 2005-04-07 Toagosei Co Ltd 活性エネルギー線硬化型組成物
JP2006131849A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd 二液型硬化性組成物
JP2006131850A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd 熱硬化性組成物
JP2006152086A (ja) * 2004-11-26 2006-06-15 Toagosei Co Ltd 硬化性組成物
JP2008150404A (ja) * 2006-12-14 2008-07-03 Shin Etsu Chem Co Ltd 高分子量オルガノポリシロキサンの製造方法
JP2008231333A (ja) * 2007-03-23 2008-10-02 Asahi Kasei Corp 硬化性シリコーン合成法、及び該合成法により得られる硬化性シリコーンとその硬化物
JP2009024176A (ja) * 2008-08-01 2009-02-05 Shin Etsu Chem Co Ltd 光記録媒体用硬化性樹脂組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463084A (en) * 1992-02-18 1995-10-31 Rensselaer Polytechnic Institute Photocurable silicone oxetanes
US6096903A (en) * 1997-03-25 2000-08-01 Ivoclar Ag Hydrolysable and polymerizable oxetane silanes
US6121342A (en) * 1998-01-13 2000-09-19 Toagosei Co., Ltd. Photocationically curable compositions and process for producing the same
DE19860361A1 (de) * 1998-12-24 2000-06-29 Espe Dental Ag Vernetzbare Monomere auf Cyclosiloxanbasis, deren Herstellung und deren Verwendung in polymerisierbaren Massen
DE19934407A1 (de) * 1999-07-22 2001-01-25 Espe Dental Ag Hydrolysierbare und polymerisierbare Silane mit geringer Viskosität und deren Verwendung
TWI300516B (ja) * 2001-07-24 2008-09-01 Jsr Corp
US6743510B2 (en) * 2001-11-13 2004-06-01 Sumitomo Chemical Company, Limited Composition comprising a cationic polymerization compound and coating obtained from the same
JP3624907B2 (ja) 2002-06-19 2005-03-02 株式会社オーティス 屋根化粧パネル取付金具
EP1403953A3 (en) * 2002-09-26 2009-07-29 FUJIFILM Corporation Organic-inorganic hybrid material, organic-inorganic hybrid proton-conductive material and fuel cell
CN1753936A (zh) 2003-02-27 2006-03-29 东亚合成株式会社 阳离子固化性含硅化合物的制造方法
JP4424751B2 (ja) * 2003-07-22 2010-03-03 キヤノン株式会社 インクジェットヘッドおよびその製造方法
KR101118493B1 (ko) * 2004-05-31 2012-03-12 후지필름 가부시키가이샤 광학 필름, 편광판, 및 그것을 이용한 화상 표시 장치
KR101194153B1 (ko) * 2004-08-04 2012-11-27 도아고세이가부시키가이샤 폴리오르가노실록산 및 이를 포함하는 경화성 조성물
WO2006085421A1 (ja) * 2005-02-08 2006-08-17 The Yokohama Rubber Co., Ltd. オキセタン化合物およびそれを含む硬化性組成物
JP4872549B2 (ja) * 2005-11-15 2012-02-08 セントラル硝子株式会社 熱線遮蔽膜形成基材の製法
JP4868135B2 (ja) * 2006-04-18 2012-02-01 信越化学工業株式会社 光反応性基含有シロキサン化合物、その製造方法及び光硬化性樹脂組成物、その硬化皮膜を有する物品
WO2009066608A1 (ja) 2007-11-19 2009-05-28 Toagosei Co., Ltd. ポリシロキサンおよびその製造方法ならびに硬化物の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129640A (ja) * 1997-07-07 1999-02-02 Toagosei Co Ltd 光カチオン硬化性組成物の製造方法及び光カチオン硬化性ハードコート剤組成物
JPH11199673A (ja) * 1998-01-13 1999-07-27 Toagosei Co Ltd 光カチオン硬化性樹脂組成物
JP2001342194A (ja) * 2000-06-01 2001-12-11 Toagosei Co Ltd 多官能オキセタン化合物およびその製造方法、ならびに該オキセタン化合物からなるカチオン硬化性組成物
WO2004076534A1 (ja) * 2003-02-27 2004-09-10 Toagosei Co., Ltd カチオン硬化性含ケイ素化合物の製造方法
JP2005089697A (ja) * 2003-09-19 2005-04-07 Toagosei Co Ltd 活性エネルギー線硬化型組成物
JP2006131849A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd 二液型硬化性組成物
JP2006131850A (ja) * 2004-11-09 2006-05-25 Toagosei Co Ltd 熱硬化性組成物
JP2006152086A (ja) * 2004-11-26 2006-06-15 Toagosei Co Ltd 硬化性組成物
JP2008150404A (ja) * 2006-12-14 2008-07-03 Shin Etsu Chem Co Ltd 高分子量オルガノポリシロキサンの製造方法
JP2008231333A (ja) * 2007-03-23 2008-10-02 Asahi Kasei Corp 硬化性シリコーン合成法、及び該合成法により得られる硬化性シリコーンとその硬化物
JP2009024176A (ja) * 2008-08-01 2009-02-05 Shin Etsu Chem Co Ltd 光記録媒体用硬化性樹脂組成物

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073933A1 (ja) * 2008-12-26 2010-07-01 東亞合成株式会社 オキセタニル基を有するケイ素化合物の製造方法
JP2011053682A (ja) * 2009-08-31 2011-03-17 Xerox Corp Possメラミンでオーバーコートした光導電体
CN102566281A (zh) * 2010-12-16 2012-07-11 第一毛织株式会社 硬掩模组合物和形成图案的方法以及包括该图案的半导体集成电路器件
US9018776B2 (en) 2010-12-16 2015-04-28 Cheil Industries, Inc. Hardmask composition including aromatic ring-containing compound, method of forming patterns, and semiconductor integrated circuit device including the patterns
WO2015087686A1 (ja) * 2013-12-13 2015-06-18 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
JP2015212353A (ja) * 2013-12-13 2015-11-26 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
JP2018070863A (ja) * 2013-12-13 2018-05-10 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
US11111337B2 (en) 2013-12-13 2021-09-07 Daicel Corporation Polyorganosilsesquioxane, hard coat film, adhesive sheet, and laminate
US11560453B2 (en) 2013-12-13 2023-01-24 Daicel Corporation Polyorganosilsesquioxane, hard coat film, adhesive sheet, and laminate
WO2022168804A1 (ja) 2021-02-05 2022-08-11 東亞合成株式会社 無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法

Also Published As

Publication number Publication date
CN101970539B (zh) 2013-03-27
US8329774B2 (en) 2012-12-11
TW200940604A (en) 2009-10-01
US20110054063A1 (en) 2011-03-03
CN101970539A (zh) 2011-02-09
KR101587297B1 (ko) 2016-01-20
TWI498357B (zh) 2015-09-01
KR20100120288A (ko) 2010-11-15

Similar Documents

Publication Publication Date Title
KR101587297B1 (ko) 옥세타닐기를 갖는 유기 규소 화합물 및 그의 제조 방법 및 경화성 조성물
JP5454762B2 (ja) カチオン硬化性組成物
JP5223194B2 (ja) ポリオルガノシロキサン及びそれを含む硬化性組成物
JP4548415B2 (ja) 紫外線硬化型組成物
JP4723272B2 (ja) 光重合性樹脂組成物およびその硬化物
CN107849222B (zh) 固化性组合物及其固化物
WO2008044618A1 (fr) Composition de résine durcissable, matériau optique et procédé de régulation d'un matériau optique
JP6530316B2 (ja) 光カチオン硬化性塗料組成物及び塗膜形成方法、その塗装物品
CN107922586B (zh) 固化性组合物及其固化物
TWI628235B (zh) 可固化組合物、製備固化物品之方法及由其所形成之固化物品
WO2013054771A1 (ja) シラン系組成物およびその硬化膜、並びにそれを用いたネガ型レジストパターンの形成方法
CN109963912A (zh) 复制模具形成用树脂组合物、复制模具、以及使用了该复制模具的图案形成方法
TWI625223B (zh) 製備物品之方法及由其所製得之物品
JP2005089697A (ja) 活性エネルギー線硬化型組成物
JP2001342194A (ja) 多官能オキセタン化合物およびその製造方法、ならびに該オキセタン化合物からなるカチオン硬化性組成物
JP2005023256A (ja) カチオン硬化性組成物
JP2005336349A (ja) カチオン重合型組成物
JP4103702B2 (ja) 硬化性組成物及び反射防止膜
WO2005085922A1 (ja) 光導波路チップの製造方法
JP2002053659A (ja) カチオン硬化性シリカ分散液およびその製造方法、ならびに該シリカ分散液からなるカチオン硬化性組成物
TW202405057A (zh) 倍半矽氧烷衍生物及其製造方法、硬化性組成物、硬塗劑、硬化物、硬塗層、以及基材
JP5454761B2 (ja) オキセタニル基を有するケイ素化合物の製造方法
KR100725143B1 (ko) 감광성 조성물 및 그 제조 방법
JP2004238484A (ja) シラン変性エポキシ樹脂組成物、硬化膜および積層体
JP2006152085A (ja) 硬化性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980102245.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09701832

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107017675

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12812808

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09701832

Country of ref document: EP

Kind code of ref document: A1