WO2022168804A1 - 無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法 - Google Patents

無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法 Download PDF

Info

Publication number
WO2022168804A1
WO2022168804A1 PCT/JP2022/003675 JP2022003675W WO2022168804A1 WO 2022168804 A1 WO2022168804 A1 WO 2022168804A1 JP 2022003675 W JP2022003675 W JP 2022003675W WO 2022168804 A1 WO2022168804 A1 WO 2022168804A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
inorganic substance
substance layer
polysiloxane compound
meth
Prior art date
Application number
PCT/JP2022/003675
Other languages
English (en)
French (fr)
Inventor
賢明 岩瀬
尚正 古田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to US18/263,902 priority Critical patent/US20240158904A1/en
Priority to CN202280013135.4A priority patent/CN116897195A/zh
Priority to EP22749676.7A priority patent/EP4289618A1/en
Priority to KR1020237029981A priority patent/KR20230145100A/ko
Priority to JP2022579539A priority patent/JPWO2022168804A1/ja
Publication of WO2022168804A1 publication Critical patent/WO2022168804A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • C08J7/0423Coating with two or more layers, where at least one layer of a composition contains a polymer binder with at least one layer of inorganic material and at least one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/06Coating with compositions not containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • C08J2483/06Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present disclosure relates to an undercoat agent composition for laminating an inorganic material layer, a cured product thereof, and a method for producing the same, and relates to a laminate including a cured product for laminating an inorganic material layer, a resin base material, and an inorganic material layer. More specifically, the present disclosure relates to an undercoat agent composition for lamination of inorganic material layers containing a polysiloxane compound and a polymerization initiator.
  • the cured product of the undercoat agent composition for lamination of an inorganic substance layer is useful as an undercoat for lamination of an inorganic substance layer, for example, when producing display substrates, touch panels, films with electrodes, lenses and the like.
  • Japanese Patent Application Laid-Open No. 2009-178904 discloses a method of curing a photocurable resin composition containing a plastic film having a glass transition temperature of 70° C. or higher and a photocurable cage-type silsesquioxane resin thereon. and a surface modification film layer laminated on the surface thereof by a sputtering method.
  • Japanese Patent Application Laid-Open No. 2010-274562 discloses an organic compound layer, a layer containing polysilsesquioxane formed thereon, and an oxide inorganic compound layer formed thereon by a chemical vapor deposition method.
  • a gas barrier laminate characterized by having one or more combinations is disclosed.
  • JP-A-2013-035274 describes an active energy ray containing a silsesquioxane compound having a (meth)acryloyloxy group, a photopolymerization initiator and an unsaturated group-containing silicon-based surface conditioner on a polycarbonate resin base material.
  • a laminate is disclosed which comprises a cured coating film layer formed from a curable primer composition and an inorganic material layer formed from a silicon oxide compound and formed by a dry film-forming method, which are sequentially laminated.
  • an undercoat agent composition for laminating an inorganic material layer that can provide a cured product (primer layer) having good adhesion to an inorganic material layer laminated by a dry film-forming method. , a cured product thereof, a laminate using the same, and methods for producing them are provided.
  • An undercoat agent composition for laminating an inorganic substance layer which is applied onto a resin substrate in order to laminate an inorganic substance layer on the resin substrate by a dry film-forming method, and is represented by the following formula (1):
  • An undercoat agent composition for lamination of inorganic material layers comprising a polysiloxane compound, and a radical polymerization initiator and/or a cationic polymerization initiator.
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, 8 unsaturated hydrocarbon group, or a monovalent organic group having a (meth)acryloyl group, epoxy group or oxetanyl group, the alkyl group, aralkyl group, aryl group, unsaturated hydrocarbon group, (meth) ) acryloyl group, epoxy group and oxetanyl group may be substituted with at least one selected from the group consisting of halogen atoms, hydroxy groups, alkoxy groups, aryloxy groups, aralkyloxy groups, and oxy groups; , R 2 and R 3 , at least one is a monovalent organic group having a (meth)acryloyl group, an epoxy group or an oxe
  • a laminate comprising the cured product for laminating an inorganic substance layer according to [7], a resin base material, and an inorganic substance layer.
  • a method for producing a cured product for laminating an inorganic substance layer comprising a step of irradiating the undercoat agent composition for inorganic substance layer lamination according to any one of [1] to [6] with an active energy ray to cure it.
  • an undercoat agent composition for laminating an inorganic material layer that can provide a cured product (primer layer) having good adhesion to an inorganic material layer laminated by a dry film-forming method. , a cured product thereof, a laminate using the same, and methods for producing them are provided.
  • % means “% by weight”
  • parts means “parts by weight”
  • ppm means “ppm by weight”.
  • the description of "lower limit to upper limit” representing a numerical range represents “lower limit or more, upper limit or less”
  • upper limit to lower limit represents “upper limit or less, lower limit or more”. That is, it represents a numerical range including upper and lower limits.
  • a combination of two or more of the preferable aspects described later is also a preferable aspect.
  • the polysiloxane compound, the polymerization initiator, the undercoat agent composition for laminating an inorganic material layer, the cured product, the laminate, and the method for producing the cured product and the laminate will be described below.
  • Polysiloxane compound The polysiloxane compound according to the present disclosure has at least a (meth)acryloyl group, an epoxy group or an oxetanyl group represented by the following formula (1), and w is a positive number of 1 or less Polysiloxane is a compound.
  • the (meth)acryloyl group means an acryloyl group or a methacryloyl group, and the same applies below.
  • the polysiloxane compound according to the present disclosure can contain structural units (a) to (d) described above.
  • v, w, x and y mean the proportion in the total amount of v, w, x and y respectively, w represents a positive number of 1 or less, v, x and y respectively Independently represents 0 or a positive number less than 1. That is, v, w, x and y in formula (1) represent the molar ratio of each structural unit in structural units (a) to (d). In other words, it is as follows.
  • v / (v + w + x + y) represents the molar ratio of the structural unit (a) to the structural units (a) to (d)
  • w / (v + w + x + y) represents the molar ratio of the structural unit (b) to the structural units (a) to (d)
  • x / (v + w + x + y) represents the molar ratio of the structural unit (c) to the structural units (a) to (d)
  • y/(v+w+x+y) represents the molar ratio of structural unit (d) to structural units (a) to (d).
  • v, w, x and y represent the relative molar ratios of the structural units contained in the polysiloxane compound according to the present disclosure represented by formula (1). That is, the molar ratio is the relative ratio of the number of repetitions of each structural unit represented by formula (1).
  • the molar ratio can be obtained from NMR analysis values of the polysiloxane compound according to the present disclosure. Further, when the reaction rate of each raw material of the polysiloxane compound according to the present disclosure is known, or when the yield is 100%, it can be determined from the charged amount of the raw material.
  • each of the structural units (a), (b), (c) and (d) in formula (1) there may be only one type of applicable structural unit, or there may be two or more types.
  • one type of structural unit corresponding to the structural unit (a) may be present, or two or more types may be present.
  • the order of arrangement in formula (1) indicates the composition of the constituent units, and does not mean the order of arrangement. Therefore, the condensed form of the structural units in the polysiloxane compound according to the present disclosure does not necessarily have to follow the order of the formula (1).
  • the structural unit (a) is a so-called Q unit having four O 1/2 atoms (two oxygen atoms) per one silicon atom.
  • the Q unit means a unit having 4 O 1/2 atoms per silicon atom.
  • the proportion of the structural unit (a) in the polysiloxane compound according to the present disclosure, ie, (v/(v+w+x+y)) is 0 or a positive number less than 1.
  • the molar ratio (v / (v + w + x + y)) in the structural units (a) to (d) is preferably 0.6 or less. , more preferably 0.3 or less, and still more preferably 0.
  • a molar ratio of 0 means that the structural unit is not included, and the same applies hereinafter.
  • Structural unit (b) (R 1 SiO 3/2 ) w
  • Structural unit (b) is a T unit having 3 O 1/2 (1.5 oxygen atoms) per silicon atom, and has R 1 bonded to the silicon atom.
  • R 1 is an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an unsaturated hydrocarbon group having 2 to 8 carbon atoms, or a (meth)acryloyl group , represents a monovalent organic group having an epoxy group or an oxetanyl group.
  • the alkyl group, aralkyl group, aryl group, unsaturated hydrocarbon group, (meth)acryloyl group, epoxy group and oxetanyl group are selected from halogen atoms, hydroxy groups, alkoxy groups, aryloxy groups, aralkyloxy groups and oxy groups.
  • At least one of R 1 , R 2 and R 3 in the polysiloxane compound represented by formula (1) is a monovalent organic group having a (meth)acryloyl group, an epoxy group or an oxetanyl group, and R 1 , R 2 and R 3 may be the same or different, and when a plurality of groups corresponding to R 1 are present in one molecule, the plurality of R 1 may be the same or different.
  • At least one of R 1 , R 2 and R 3 in the polysiloxane compound represented by formula (1) is a monovalent organic group having a (meth)acryloyl group, an epoxy group, or an oxetanyl group.
  • At least one is preferably a monovalent organic group having a (meth)acryloyl group or an oxetanyl group, and at least one is more preferably a monovalent organic group having an acryloyl group or an oxetanyl group, More preferably, at least one is a monovalent organic group having an acryloyl group.
  • the alkyl group having 1 to 10 carbon atoms, the aralkyl group having 7 to 10 carbon atoms, and the unsaturated hydrocarbon group having 2 to 8 carbon atoms in R 1 may be linear or branched, It may have a ring structure.
  • the alkyl group having 1 to 10 carbon atoms in R 1 is not particularly limited, but is preferably an alkyl group having 1 to 4 carbon atoms, more preferably a methyl group.
  • the aralkyl group having 7 to 10 carbon atoms in R 1 is not particularly limited, but is preferably a phenylalkyl group, more preferably a benzyl group.
  • the aryl group having 6 to 10 carbon atoms for R 1 is not particularly limited, but is preferably a phenyl group.
  • the unsaturated hydrocarbon group having 2 to 8 carbon atoms in R 1 is not particularly limited, but is preferably a vinyl group, an allyl group, an ethynyl group or a styryl group, more preferably a vinyl group.
  • the monovalent organic group containing a (meth)acryloyl group for R 1 is not particularly limited, but is preferably a group represented by the following formula (2).
  • "(meth)acryloyl group” means both acryloyl group and methacryloyl group.
  • R 4 represents a hydrogen atom or a methyl group
  • R 5 represents an alkylene group having 1 to 10 carbon atoms
  • * represents a bonding site.
  • R 5 in formula (2) is not particularly limited, it is preferably an alkylene group having 2 to 8 carbon atoms, more preferably a propylene group.
  • the monovalent organic group containing an epoxy group for R 1 is not particularly limited, but is preferably a glycidyloxyalkyl group, more preferably a glycidyloxypropyl group.
  • the monovalent organic group containing an oxetanyl group for R 1 is not particularly limited, but is preferably a group represented by the following formula (3).
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 7 represents an alkylene group having 1 to 10 carbon atoms
  • * represents a bonding site.
  • R 6 in formula (3) is not particularly limited, it is preferably a hydrogen atom, a methyl group or an ethyl group, more preferably an ethyl group.
  • R 7 in formula (3) is not particularly limited, it is preferably an alkylene group having 2 to 8 carbon atoms, more preferably a propylene group.
  • the ratio of the structural unit (b) in the polysiloxane compound according to the present disclosure is not particularly limited, but the polysiloxane compound according to the present disclosure and its cured product have weather resistance, chemical resistance, hardness, scratch resistance, and durability.
  • the molar ratio (w / (v + w + x + y)) in the structural units (a) to (d) is a positive number of 1 or less, preferably 0.3 to It is 1.0, more preferably 0.5 to 0.95, still more preferably 0.6 to 0.9.
  • the structural unit (c) is a so-called D unit having two O 1/2 atoms (one oxygen atom) per silicon atom.
  • the D unit means a unit having two O 1/2 atoms per one silicon atom.
  • Each R 2 is independently an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an unsaturated hydrocarbon group having 2 to 8 carbon atoms, or (meth ) represents a monovalent organic group having an acryloyl group, an epoxy group or an oxetanyl group.
  • the alkyl group, aralkyl group, aryl group, unsaturated hydrocarbon, (meth)acryloyl group, epoxy group and oxetanyl group are the group consisting of a halogen atom, a hydroxy group, an alkoxy group, an aryloxy group, an aralkyloxy group and an oxy group. It may be substituted with at least one more selected one.
  • At least one of R 1 , R 2 and R 3 in the polysiloxane compound represented by formula (1) is a monovalent organic group having a (meth)acryloyl group, an epoxy group or an oxetanyl group, and R 1 , R 2 and R 3 may be the same or different, and R 2 in one molecule may be the same or different. Examples of each of these substituents include the same substituents as those exemplified for R 1 of the structural unit (b) described above. Since the structural unit (c) is a D unit, it contributes to lowering the viscosity of the polysiloxane compound according to the present disclosure and improving the flexibility, heat resistance and/or oxidation resistance of the cured product thereof.
  • Each R 2 is independently preferably a methyl group or a phenyl group, more preferably a methyl group, from the viewpoints of heat resistance, availability of raw materials, and imparting flexibility to the cured product.
  • the ratio of the structural unit (c), ie, (x/(v+w+x+y)), in the polysiloxane compound according to the present disclosure is 0 or a positive number less than 1.
  • the molar ratio of the structural units (a) to (d) (x / ( v+w+x+y)) is preferably 0 ⁇ x/(v+w+x+y) ⁇ 0.7, more preferably 0.05 to 0.6, still more preferably 0.1 to 0.5.
  • R 1 in the structural unit (b) described above and R 3 in the structural unit (d) described later has a (meth)acryloyl group, an epoxy group, or a monovalent group having an oxetanyl group is an organic group of
  • the adhesiveness of the cured product to the inorganic substance layer is particularly good, and the resulting laminate has an inorganic substance
  • the layer also exhibits good scratch resistance and can satisfy both of these physical properties, which is preferable.
  • Structural unit (d) is a so-called M unit having one O 1/2 (0.5 oxygen atom) per one silicon atom.
  • the M unit means a unit having one O 1/2 per one silicon atom.
  • Each R 3 is independently an alkyl group having 1 to 10 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, an unsaturated hydrocarbon group having 2 to 8 carbon atoms, or (meth ) represents a monovalent organic group having an acryloyl group, an epoxy group or an oxetanyl group.
  • the alkyl group, aralkyl group, aryl group, unsaturated hydrocarbon group, (meth)acryloyl group, epoxy group and oxetanyl group consist of a halogen atom, a hydroxy group, an alkoxy group, an aryloxy group, an aralkyloxy group and an oxy group. It may be substituted with at least one selected from the group.
  • At least one of R 1 , R 2 and R 3 in the polysiloxane represented by formula (1) is a monovalent organic group having a (meth)acryloyl group, an epoxy group or an oxetanyl group, and R 1 , R 2 and R 3 may be the same or different, and R 3 in one molecule may be the same or different. Examples of each of these substituents include the same substituents as those exemplified for R 1 of the structural unit (b) described above. Since the structural unit (d) is an M unit, it contributes to lowering the viscosity of the polysiloxane compound according to the present disclosure and improving the flexibility of its cured product.
  • Each R 3 is independently preferably a methyl group, a phenyl group or a vinyl group from the viewpoint of heat resistance, availability of raw materials, curability of the undercoating agent composition, and/or imparting flexibility to the cured product.
  • group more preferably a methyl group or a vinyl group.
  • the ratio of the structural unit (d), ie, (y/(v+w+x+y)), in the polysiloxane compound according to the present disclosure is 0 or a positive number less than 1.
  • the molar ratio (y / (v + w + x + y)) occupying the structural units (a) to (d) is , preferably 0 ⁇ y/(v+w+x+y) ⁇ 0.5, more preferably 0 to 0.4, still more preferably 0 to 0.3.
  • the polysiloxane compound according to the present disclosure can further include (R 8 O 1/2 ) as a structural unit that does not contain Si (hereinafter referred to as structural unit (e)).
  • R 8 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and may be either an aliphatic group or an alicyclic group, and may be linear or branched. Specific examples of alkyl groups include methyl, ethyl, propyl, butyl, pentyl, and hexyl groups.
  • This structural unit is an alkoxy group that is a hydrolyzable group contained in the raw material monomer to be described later, or an alkoxy group generated by substituting the hydrolyzable group of the raw material monomer with an alcohol contained in the reaction solvent. , the hydroxyl group remaining in the molecule without hydrolysis/polycondensation, or the hydroxyl group remaining in the molecule without polycondensation after hydrolysis.
  • the weight average molecular weight (hereinafter also referred to as “Mw”) of the polysiloxane compound according to the present disclosure is not particularly limited, it is preferably in the range of 300 to 10,000.
  • Mw is more preferably 500 to 8,000, still more preferably 600 to 7,000, and particularly preferably 700 to 6,000.
  • Mw in the present disclosure means a value obtained by converting the molecular weight measured by GPC (gel permeation chromatography) using polystyrene as a standard substance. Mw can be obtained, for example, under the measurement conditions in [Examples] described later.
  • the state of the polysiloxane compound according to the present disclosure is not particularly limited, and examples thereof include liquid, solid and semi-solid.
  • the polysiloxane compound according to the present disclosure is preferably liquid, and its viscosity is not particularly limited. up to 100,000 mPa ⁇ s, more preferably 300 to 30,000 mPa ⁇ s, still more preferably 400 to 10,000 mPa ⁇ s, and particularly preferably 500 to 5,000 mPa ⁇ s .
  • the viscosity is 10,000 mPa ⁇ s or less, workability such as coating is excellent even in a non-solvent system, and organic solvents are not discharged into the environment, so environmental resistance is also excellent, which is preferable.
  • viscosity means a value measured at 25° C. using an E-type viscometer (cone-plate type viscometer; for example, Toki Sangyo Co., Ltd. TVE22H-type viscometer).
  • the polysiloxane compound according to the present disclosure can be produced by a known method.
  • the method for producing the polysiloxane compound is not particularly limited. 131038 International Publication Pamphlet, WO2012/090707 International Publication Pamphlet, WO2013/031798 International Publication Pamphlet and the like disclose in detail as a method for producing polysiloxane.
  • a polysiloxane compound according to the present disclosure can be produced, for example, by the following method. That is, the method for producing a polysiloxane compound according to the present disclosure comprises, in a suitable reaction solvent, condensation using a suitable acid or base as a reaction catalyst, and hydrolysis of a raw material monomer that gives the structural unit in the formula (1). A condensation step for carrying out decomposition/polycondensation reaction can be provided.
  • a silicon compound having four siloxane bond forming groups (hereinafter referred to as "Q monomer") forming the structural unit (a) (Q unit) and the structural unit (b) (T
  • a silicon compound having three siloxane bond-forming groups (hereinafter referred to as "T monomer”) forming a unit) and a silicon having two siloxane bond-forming groups forming a structural unit (c) (D unit)
  • D monomer a compound having two siloxane bond-forming groups
  • M monomer silicon compound that forms a structural unit (d) (M unit) having one siloxane bond forming group
  • a raw material monomer is subjected to a hydrolysis/polycondensation reaction in the presence of a reaction solvent, and then the reaction solvent, by-products, residual monomers, water, etc. in the reaction solution are distilled off. It is preferable to provide a distillation step to remove. Moreover, a washing step of washing the reaction solution or reaction concentrate with water or the like can be provided as appropriate.
  • the siloxane bond forming groups contained in the Q monomer, T monomer, D monomer and M monomer which are raw material monomers are hydroxyl groups and/or hydrolyzable groups.
  • the hydrolyzable group includes a halogeno group, an alkoxy group, a siloxy group, and the like.
  • the hydrolyzable group is preferably an alkoxy group, more preferably an alkoxy group having 1 to 3 carbon atoms, since it has good hydrolyzability and does not produce acid as a by-product in the condensation step.
  • a siloxy group is preferable as the hydrolyzable group because of the availability of raw materials, and a disiloxane consisting of two structural units (d) can be used.
  • the siloxane bond forming group of the Q monomer, T monomer and D monomer corresponding to each structural unit is preferably an alkoxy group, and the siloxane bond forming group contained in the M monomer is an alkoxy group or a siloxy group. is preferred.
  • Monomers corresponding to each structural unit may be used alone, or two or more of them may be used in combination.
  • Examples of the Q monomer that gives the structural unit (a) include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and the like.
  • T monomers that provide the structural unit (b) include trimethoxyvinylsilane, triethoxyvinylsilane, trichlorovinylsilane, trimethoxyallylsilane, triethoxyethynylsilane, (p-styryl)trimethoxysilane, (p-styryl)triethoxysilane, (3-Methacryloyloxypropyl)trimethoxysilane, (3-methacryloyloxypropyl)triethoxysilane, (3-acryloyloxypropyl)trimethoxysilane, (3-acryloyloxypropyl)triethoxysilane, (8-methacryloyloxyoctyl) ) trimethoxysilane, (8-acryloyloxyoctyl)trimethoxysilane, 3-ethyl-3-[ ⁇ 3-(trimethoxysilyl)propoxy ⁇ methyl]
  • Examples of the D monomer that provides the structural unit (c) include dimethoxymethylvinylsilane, dimethoxyethylvinylsilane, diethoxymethylvinylsilane, dichloromethylvinylsilane, dimethoxyallylmethylsilane, dimethoxyallylethylsilane, diethoxyethynylmethylsilane, and diethoxyethynylethylsilane.
  • a D unit oligomer having a silanol group and/or an alkoxysilyl group capable of hydrolysis/condensation reaction is also represented by formula (1) as a D monomer that provides the structural unit (c) in the present disclosure. It can be used as a raw material for producing a polysiloxane compound.
  • silanol-terminated dimethylsilicone, methoxy-terminated dimethylsilicone, dimethylsilicone having both a silanol and a methoxy group at the terminal silanol-terminated methylphenylsilicone, methoxy-terminated methylphenylsilicone, and methyl having both a silanol and a methoxy group at the terminal
  • examples thereof include phenyl silicone, etc., and the molecular weight thereof is arbitrarily selected.
  • these raw material silicones may contain cyclic siloxanes.
  • Examples of the M monomer that gives the structural unit (d) include hexamethyldisiloxane, hexaethyldisiloxane, hexapropyldisiloxane, and 1,3-divinyl-1,1,3 that give two structural units (d) by hydrolysis.
  • 3-tetramethyldisiloxane methoxytrimethylsilane, ethoxytrimethylsilane, propoxytrimethylsilane, isopropoxytrimethylsilane, ethoxydimethylethylsilane, methoxydimethylphenylsilane, ethoxydimethylphenylsilane, chlorodimethylvinylsilane, chlorotrimethylsilane, Dimethylvinylsilanol, trimethylsilanol, triethylsilanol, tripropylsilanol, tributylsilanol, ethoxydimethylpropylsilane, methoxybutyldimethylsilane, ethoxyoctyldimethylsilane, methoxydecyldimethylsilane, methoxycyclohexyldimethylsilane, methoxybenzyldimethylsilane, chlorobenzyl
  • Examples of the compound that reacts with the raw material monomer to give the structural unit (e) include water and alcohols such as methanol, ethanol, 1-propanol, 2-propanol and 2-butanol.
  • the charging ratio of the Q monomer, T monomer, D monomer, and M monomer, which are raw material monomers, may be appropriately set according to the desired values of v to y in formula (1) in the polysiloxane compound according to the present disclosure.
  • the polysiloxane compound represented by the formula (1) may contain a ring-opening group obtained by addition of an acid or the like to an oxetanyl group and an epoxy group among the side chain functional groups derived from the monomer used for production, It may contain a hydroxyalkyl group formed by decomposition of a monovalent organic group having a (meth)acryloyl group, or may contain a group obtained by adding an acid or the like to an unsaturated hydrocarbon group or the like.
  • a part of formula (1) includes a structure represented by the following formula (A) and/or a structure represented by formula (B), and the content thereof is , 50 mol% or less, preferably 30 mol% or less, of the original monovalent organic group having an oxetanyl group derived from the raw material or the monovalent organic group having a (meth)acryloyl group, More preferably, it is 10 mol % or less.
  • Formulas (A) and (B) both exemplify T units, but D units and M units may also be used.
  • Alcohol can be used as a reaction solvent.
  • Alcohol is a narrowly defined alcohol represented by the general formula R--OH, and is a compound having no functional group other than an alcoholic hydroxyl group.
  • Alcohol is not particularly limited, but specific examples include methanol, ethanol, 1-propanol, 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 2-methyl-2-butanol.
  • 2-propanol, 2-butanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, cyclopentanol, 2-hexanol, 3-hexanol, 3-methyl-2-pentanol and secondary alcohols such as cyclohexanol are preferably used.
  • these alcohols can be used singly or in combination of two or more.
  • More preferred alcohols are compounds capable of dissolving the required concentration of water in the condensation step.
  • Alcohols of such properties are compounds having a water solubility of 10 g or more per 100 g of alcohol at 20°C.
  • the alcohol used in the condensation step including additional input during the hydrolysis / polycondensation reaction, is used by using 0.5% by mass or more with respect to the total amount of all reaction solvents, so that the poly according to the present disclosure is generated. Gelation of the siloxane compound can be suppressed.
  • the amount used is preferably 1% by mass or more and 60% by mass or less, more preferably 3% by mass or more and 40% by mass or less.
  • the reaction solvent used in the condensation step may be alcohol alone, or may be a mixed solvent with at least one sub-solvent.
  • the co-solvent may be either a polar solvent, a non-polar solvent, or a combination of both.
  • Preferred polar solvents include diols, ethers, amides, ketones, esters, cellosolves, and the like having 2 to 20 carbon atoms.
  • Non-polar solvents include, but are not limited to, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, chlorinated hydrocarbons, and the like.
  • Such non-polar solvents are not particularly limited, but for example, n-hexane, isohexane, cyclohexane, heptane, toluene, xylene, methylene chloride and the like are preferable because they azeotrope with water, and when these compounds are used together, After the condensation step, water can be efficiently distilled off when the reaction solvent is removed from the reaction mixture containing the polysiloxane compound by distillation.
  • xylene which is an aromatic hydrocarbon, is particularly preferred because it has a relatively high boiling point.
  • Water for hydrolysis reaction and hydrolysis/polycondensation reaction in the catalytic condensation step are carried out in the presence of water.
  • the amount of water used for hydrolyzing the hydrolyzable groups contained in the raw material monomer is preferably 0.5 to 5 mol, more preferably 1 to 2 mol, relative to the hydrolyzable groups.
  • the hydrolysis/polycondensation reaction of the raw material monomer may be carried out without a catalyst, or may be carried out using a catalyst. When using a catalyst, usually an acid catalyst or a base catalyst can be used.
  • acid catalysts include, but are not limited to, inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid and phosphoric acid; and organic acids such as formic acid, acetic acid, oxalic acid and p-toluenesulfonic acid.
  • the base catalyst is not particularly limited, and examples thereof include ammonia, tetramethylammonium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate and potassium carbonate.
  • the amount of the catalyst used is preferably an amount corresponding to 0.01 to 20 mol%, and an amount corresponding to 0.1 to 10 mol%, relative to the total amount of silicon atoms contained in the raw material monomer. is more preferable.
  • auxiliary agent can be added to the reaction system.
  • auxiliary agents include antifoaming agents for suppressing foaming of the reaction solution, scale control agents for preventing scale from adhering to reaction vessels and stirring shafts, polymerization inhibitors, and the like.
  • the amount of these auxiliaries to be used is arbitrary, but is preferably about 1 to 100% by weight relative to the concentration of the polysiloxane compound according to the present disclosure in the reaction mixture.
  • reaction solution or the reaction solution after neutralization may be washed with water and then the solvent may be distilled off, or the reaction solution or the reaction solution after neutralization may be concentrated and then washed with water.
  • aqueous media such as pure water and saturated saline can be used for washing with water.
  • the polymerization initiator contained in the undercoat agent composition for laminating an inorganic material layer of the present disclosure is not particularly limited, and a known polymerization initiator used during the polymerization reaction can be used.
  • An active energy ray polymerization initiator and/or a thermal polymerization initiator can be arbitrarily selected and used according to usage conditions. Active energy ray polymerization initiators are more preferable from the viewpoint of productivity because the polysiloxane compound represented by formula (1) is cured in a relatively short time.
  • the polymerizable group is a radically polymerizable group such as a (meth)acryloyl group
  • a radical polymerization initiator is preferably used
  • the polymerizable group is a cationic polymerizable group such as an oxetanyl group and an epoxy group
  • a cation A polymerization initiator is preferably used.
  • the amount of the polymerization initiator contained in the undercoat agent composition for laminating an inorganic material layer of the present disclosure is 0.01 to 20 parts by weight with respect to 100 parts by weight of the polysiloxane compound represented by formula (1). preferably 0.1 to 10 parts by weight, and even more preferably 1 to 5 parts by weight.
  • Active energy ray radical polymerization initiator The active energy ray radical polymerization initiator used in the present disclosure is not particularly limited. -1-one, 1-[4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1-one, oligo[2-hydroxy-2-methyl-1-[4- 1-(methylvinyl)phenyl]propanone, 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)benzyl]phenyl ⁇ -2-methylpropan-1-one, 2-methyl -1-[4-(methylthio)]phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)butan-1-one and 2-dimethyl Acetophenone compounds such as amino-2-(4-methylbenzyl)-1-(4-morpholin-4-yl-phenyl)butan-1-one; benzoin, benzoin ethyl ether, be
  • benzoin compounds such as benzophenone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2,4,6-trimethylbenzophenone, 4-phenylbenzophenone, methyl-2-benzophenone, 1-[4-(4-benzoyl phenylsulfanyl)phenyl]-2-methyl-2-(4-methylphenylsulfonyl)propan-1-one, 4,4′-bis(dimethylamino)benzophenone, 4,4′-bis(diethylamino)benzophenone and 4- Benzophenone compounds such as methoxy-4'-dimethylaminobenzophenone; bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and bis(2,6-dimethoxybenzoyl) )-acylphosphine oxide compounds such as 2,4,4-trimethylpentylpho
  • Compounds other than those mentioned above include benzyl, ethyl (2,4,6-trimethylbenzoyl)phenylphosphinate, methyl phenylglyoxylate, ethylanthraquinone, phenanthrenequinone and camphorquinone. These may be used alone or in combination of two or more.
  • thermal radical polymerization initiator used in the present disclosure is not particularly limited and includes, for example, peroxides and azo initiators.
  • peroxides include hydrogen peroxide; inorganic peroxides such as sodium persulfate, ammonium persulfate and potassium persulfate; 1,1-bis(t-butylperoxy)2-methylcyclohexane, 1,1 -bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1-bis(t-butylperoxy)-3,3, 5-trimethylcyclohexane, 1,1-bis(t-butylperoxy)cyclohexane, 2,2-bis(4,4-di-butylperoxycyclohexyl)propane, 1,1-bis(t-butylperoxy) Cyclododecane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethyl
  • azo initiators include 2,2′-azobisisobutyronitrile, 1,1′-azobis(cyclohexane-1-carbonitrile), 2-(carbamoyl azo) isobutyronitrile, 2- Azo compounds such as phenylazo-4-methoxy-2,4-dimethylvaleronitrile, azodi-t-octane, and azodi-t-butane may be used alone, or two or more of them may be used in combination.
  • a redox reaction can be achieved by combining with a redox polymerization initiation system using a reducing agent such as iron.
  • Active energy ray cationic polymerization initiator The active energy ray cationic polymerization initiator used in the present disclosure is not particularly limited. salt. Among these, iodonium salts and sulfonium salts are preferred. When the active energy ray cationic polymerization initiator is an iodonium salt or a sulfonium salt, counter anions include, for example, BF 4 - , AsF 6 - , SbF 6 - , PF 6 - and B(C 6 F 5 ) 4 - . are mentioned.
  • iodonium salts examples include (tricumyl)iodonium tetrakis(pentafluorophenyl)borate, diphenyliodonium hexafluorophosphate, diphenyliodonium hexafluoroantimonate, diphenyliodonium tetrafluoroborate, diphenyliodonium tetrakis(pentafluorophenyl) Borate, bis(dodecylphenyl)iodonium hexafluorophosphate, bis(dodecylphenyl)iodonium hexafluoroantimonate, bis(dodecylphenyl)iodonium tetrafluoroborate, bis(dodecylphenyl)iodonium tetrakis(pentafluorophenyl)borate , 4-methylphenyl-4-(1-methylethyl)phen
  • the iodonium salt can also be used as a commercial product.
  • "UV-9380C” (trade name) manufactured by GE Toshiba Silicone Co., Ltd.
  • "RHODOSIL PHOTOINITIATOR2074" (trade name) manufactured by Rhodia
  • Fuji Examples include "WPI-116” (trade name) and “WPI-113” (trade name) manufactured by Film Wako Pure Chemical Industries, Ltd. These may be used alone or in combination of two or more.
  • sulfonium salts include bis[4-(diphenylsulfonio)phenyl]sulfide/bishexafluorophosphate, bis[4-(diphenylsulfonio)phenyl]sulfide/bishexafluoroantimonate, bis[4-(diphenylsulfonio) nio)phenyl]sulfide bistetrafluoroborate, bis[4-(diphenylsulfonio)phenyl]sulfide tetrakis(pentafluorophenyl)borate, diphenyl-4-(phenylthio)phenylsulfonium hexafluorophosphate, diphenyl-4- (phenylthio)phenylsulfonium hexafluoroantimonate, diphenyl-4-(phenylthio)phenylsulfonium tetrafluorobo
  • diazonium salt examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate. These may be used alone or in combination of two or more.
  • thermal cationic Polymerization Initiators used in the present disclosure are not particularly limited and include, for example, sulfonium salts, phosphonium salts and quaternary ammonium salts. Among these, sulfonium salts are preferred.
  • Counter anions in the thermal cationic polymerization initiator include, for example, AsF 6 ⁇ , SbF 6 ⁇ , PF 6 ⁇ , B(C 6 F 5 ) 4 ⁇ and the like.
  • sulfonium salts examples include triphenylsulfonium boron tetrafluoride, triphenylsulfonium antimony hexafluoride, triphenylsulfonium arsenic hexafluoride, tri(4-methoxyphenyl)sulfonium arsenic hexafluoride, diphenyl(4-phenylthiophenyl ) sulfonium arsenic hexafluoride and the like.
  • the sulfonium salt can also be used as a commercial product.
  • Examples of the phosphonium salts include ethyltriphenylphosphonium antimony hexafluoride and tetrabutylphosphonium antimony hexafluoride.
  • Examples of the quaternary ammonium salts include N,N-dimethyl-N-benzylanilinium antimony hexafluoride, N,N-diethyl-N-benzylanilinium boron tetrafluoride, N,N-dimethyl-N-benzyl pyridinium antimony hexafluoride, N,N-diethyl-N-benzylpyridinium trifluoromethanesulfonate, N,N-dimethyl-N-(4-methoxybenzyl)pyridinium antimony hexafluoride, N,N-diethyl-N-( 4-methoxybenzyl)pyridinium antimony hexafluoride, N,N-diethy
  • the undercoating agent composition for inorganic substance layer lamination of the present disclosure (hereinafter also referred to as the “composition of the present disclosure”) comprises a polysiloxane compound according to the present disclosure and radical polymerization. an initiator and/or a cationic polymerization initiator.
  • the polysiloxane compound according to the present disclosure has excellent fluidity and curability, and as described later, the inorganic substance layer laminated on the surface of the cured product by a dry film-forming method has excellent adhesion, and the cured product has heat resistance, Excellent scratch resistance and/or hardness.
  • the composition of the present disclosure can be used as an undercoat agent to be applied onto a resin substrate in order to laminate an inorganic material layer on the resin substrate by a dry film-forming method.
  • the composition of the present disclosure contains the polysiloxane compound, a radical polymerization initiator and/or a cationic polymerization initiator, and optionally various components (hereinafter referred to as "other components"). can be compounded.
  • Other components include a (meth)acrylate compound that is a polymerizable compound that can be polymerized with the polysiloxane compound, a cationically polymerizable compound, a compound having an ethylenically unsaturated group, a radical polymerization inhibitor, an antioxidant, a solvent, Heat resistance improvers, silicones, and the like are preferred.
  • a (meth)acrylate compound that is a polymerizable compound that can be polymerized with the polysiloxane compound
  • a cationically polymerizable compound a compound having an ethylenically unsaturated group
  • a radical polymerization inhibitor an antioxidant
  • a solvent heat resistance improvers, silicones, and the like
  • composition of the present disclosure contains a polysiloxane compound represented by the formula (1), and further physical properties such as scratch resistance and hardness of a cured product formed from the composition of the present disclosure Or, for the purpose of adjusting the viscosity and curability of the composition of the present disclosure, a compound having an acryloyl group or a methacryloyl group (hereinafter referred to as a (meth) acrylate compound), etc. can be done.
  • a polysiloxane compound represented by the formula (1) and further physical properties such as scratch resistance and hardness of a cured product formed from the composition of the present disclosure
  • a compound having an acryloyl group or a methacryloyl group hereinafter referred to as a (meth) acrylate compound
  • the (meth)acrylate compound is not particularly limited, and a compound having one (meth)acryloyl group (hereinafter referred to as "monofunctional (meth)acrylate”) and a compound having two or more (meth)acryloyl groups (hereinafter referred to as “polyfunctional (meth)acrylate”).
  • Examples of monofunctional (meth)acrylates include alkyl (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, and 2-ethylhexyl (meth)acrylate; Monofunctional (meth)acrylates having an alicyclic group such as cyclohexyl (meth)acrylate, tert-butylcyclohexyl (meth)acrylate, isobornyl (meth)acrylate, and tricyclodecanemethylol (meth)acrylate; Monofunctional (meth)acrylates having aromatic groups of benzyl (meth)acrylate and phenyl (meth)acrylate; (Meth)acrylates of phenol ethylene oxide adducts, (meth) acrylates of phenol propylene oxide adducts, (meth) acrylates of modified nonylphenol ethylene oxide adducts, and (meth) acrylates of non
  • Polyfunctional (meth)acrylates include diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate.
  • acrylate tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, ethylene oxide-modified neopentyl glycol di(meth) ) acrylate, di(meth)acrylate of ethylene oxide-modified bisphenol A, di(meth)acrylate of propylene oxide-modified bisphenol A, di(meth)acrylate of ethylene oxide-modified hydrogenated bisphenol A, trimethylolpropane di(meth)acrylate, Trimethylolpropane allyl ether di(meth)acrylate, trimethylolpropane tri(meth)acrylate, ethylene oxide-modified trimethylolpropane tri(meth)acrylate, propylene oxide-modified trimethylolpropane tri(meth)acrylate, pentaerythritol
  • Urethane (meth)acrylates can also be used as polyfunctional (meth)acrylates.
  • urethane (meth)acrylate include compounds obtained by addition reaction of organic polyisocyanate and hydroxyl group-containing (meth)acrylate, and compounds obtained by addition reaction of organic polyisocyanate, polyol and hydroxyl group-containing (meth)acrylate. These may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
  • polyols examples include low-molecular-weight polyols, polyether polyols, polyester polyols, polycarbonate polyols, and the like.
  • Low molecular weight polyols include ethylene glycol, propylene glycol, neopentyl glycol, cyclohexanedimethylol, 3-methyl-1,5-pentanediol, and the like.
  • polyether polyols include polypropylene glycol and polytetramethylene glycol.
  • polyester polyols reaction products of these low molecular weight polyols and/or polyether polyols with dibasic acids such as adipic acid, succinic acid, phthalic acid, hexahydrophthalic acid and terephthalic acid, or acid components such as anhydrides thereof is mentioned. These may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
  • dibasic acids such as adipic acid, succinic acid, phthalic acid, hexahydrophthalic acid and terephthalic acid, or acid components such as anhydrides thereof.
  • Organic polyisocyanates include tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, hexamethylene diisocyanate, and isophorone diisocyanate.
  • hydroxyl group-containing (meth)acrylates examples include hydroxyalkyl (meth)acrylates such as 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate, and pentaerythritol tri( Examples include meth)acrylates, di(meth)acrylates of isocyanuric acid alkylene oxide 3-mol adducts, and hydroxyl group-containing polyfunctional (meth)acrylates such as dipentaerythritol pentaacrylate. These may be used alone, or two or more of them may be used in combination, or different types may be used in combination.
  • the mixing ratio is not particularly limited, but relative to 100 parts by weight of the polysiloxane compound represented by the formula (1)
  • the mixing ratio of the (meth)acrylate compound is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, and even more preferably 20 parts by weight or less.
  • the mixing ratio of the (meth)acrylate compound is preferably low, preferably 10% by weight or less, more preferably 5% by weight or less, More preferably, the content is 1% by weight or less.
  • a compound having an ethylenically unsaturated group other than a (meth)acrylate compound is added to the composition of the present disclosure for the purpose of reducing viscosity when used without a solvent, for the purpose of improving adhesion to an adherend, and the like.
  • a compound having one ethylenically unsaturated group in one molecule other than the (meth)acrylate compound may be added.
  • the ethylenically unsaturated group is preferably a (meth)acryloyl group, a maleimide group, a (meth)acrylamide group, or a vinyl group.
  • the compound having an ethylenically unsaturated group include (meth)acrylic acid, a Michael addition type dimer of acrylic acid, N-(2-hydroxyethyl)citraconimide, N,N-dimethylacrylamide, acryloylmorpho Phosphorus, N-vinylpyrrolidone, N-vinylcaprolactam and the like. These may be used alone or in combination of two or more.
  • the total amount of the polysiloxane compound represented by the formula (1) is preferably 10% by weight or less, more preferably 5% by weight or less, and even more preferably 1% by weight or less.
  • the polysiloxane represented by formula (1) has a monovalent organic group having an epoxy group or an oxetanyl group in order to increase the hardness of the cured product and the adhesion to the adherend.
  • the polysiloxane it is preferable to contain other cationically polymerizable compounds.
  • This cationically polymerizable compound is a compound having cationically polymerizable properties other than the polysiloxane compound represented by the formula (1).
  • epoxy compounds compounds having an epoxy group
  • other compounds having an oxetanyl group other oxetanyl group-containing compounds
  • compounds having a vinyl ether group vinyl ether compounds
  • these compounds may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the epoxy compound represented by the formula (1) has at least an oxetanyl group
  • the epoxy compound has the effect of facilitating the cationic polymerization of the oxetanyl groups in the polysiloxane compound represented by the formula (1). , is particularly preferred.
  • Examples of the epoxy compounds include monofunctional epoxy compounds and polyfunctional epoxy compounds.
  • Examples of polyfunctional epoxy compounds include dicyclopentadiene dioxide, limonene dioxide, 4-vinylcyclohexene dioxide, (3,4-epoxycyclohexyl)methyl-3,4-epoxycyclohexyl carboxylate (for example, Daicel Co., Ltd.
  • Carbonate 2021P (trade name)), di(3,4-epoxycyclohexyl) adipate, bisphenol A type epoxy resin, halogenated bisphenol A type epoxy resin, hydrogenated bisphenol A type epoxy resin, bisphenol S diglycidyl ether, bisphenol F-type epoxy resin, 1,6-hexanediol diglycidyl ether, polytetramethylene glycol diglycidyl ether, both ends of polybutadiene glycidyl-etherified compound, o-cresol novolak type epoxy resin, m-cresol novolac type epoxy resin , p-cresol novolak type epoxy resin, phenol novolac type epoxy resin, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, internal epoxidized polybutadiene, Daicel Co., Ltd.
  • Epofriend (trade name), etc.
  • a block comprising an ethylene-butylene copolymer portion and an isoprene polymer portion, such as a styrene-butadiene copolymer compound in which double bonds are partially epoxidized, and "L-207” (trade name) manufactured by KRATON Co., Ltd.
  • a compound in which a part of the isoprene polymer portion in the copolymer is epoxidized, and a ring-opening polymer of 4-vinylcyclohexene oxide such as “EHPE3150” (trade name) manufactured by Daicel Co., Ltd., in which the vinyl group is replaced by epoxy.
  • Cage-shaped silsesquioxane having a glycidyl group such as "Q-4" in the "Q8 series” manufactured by Maya Materials
  • epoxies such as "Q-5" in the "Q8 series” manufactured by Maya Materials
  • alicyclic-type cage-like silsesquioxane having a group, an epoxy group-containing silsesquioxane compound, an epoxidized vegetable oil, and the like from the viewpoint of weather resistance, the composition of the present disclosure more preferably contains a polyfunctional epoxy compound.
  • monofunctional epoxy compounds include ⁇ -olefin epoxides such as 1,2-epoxyhexadecane, phenyl glycidyl ether, 2-ethylhexyl glycidyl ether, dodecyl glycidyl ether and glycidyl methacrylate.
  • oxetanyl group-containing compounds include monofunctional oxetane compounds and polyfunctional oxetane compounds.
  • Polyfunctional oxetane compounds include 1,4-bis ⁇ [(3-ethyl-3-oxetanyl)methoxy]methyl ⁇ benzene (XDO), di[2-(3-oxetanyl)butyl]ether (DOX), 1, 4-bis[(3-ethyloxetan-3-yl)methoxy]benzene (HQOX), 1,3-bis[(3-ethyloxetan-3-yl)methoxy]benzene (RSOX), 1,2-bis[ (3-ethyloxetan-3-yl)methoxy]benzene (CTOX), 4,4′-bis[(3-ethyloxetan-3-yl)methoxy]biphenyl (4,4′-BPOX), 2,2′ -bis[(3-ethyl-3-ox
  • oxetane compounds 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane (EHOX), 3-ethyl-3-(dodecyloxymethyl)oxetane (OXR-12), 3-ethyl -3-(octadecyloxymethyl)oxetane (OXR-18), 3-ethyl-3-(phenoxymethyl)oxetane (POX) and 3-ethyl-3-hydroxymethyloxetane (OXA).
  • EHOX 3-ethyl-3-(2-ethylhexyloxymethyl)oxetane
  • OXR-12 3-ethyl-3-(dodecyloxymethyl)oxetane
  • OXR-18 3-ethyl -3-(octadecyloxymethyl)oxetane
  • POX 3-ethyl-3-(phenoxymethyl)oxe
  • dicyclopentadiene dioxide, limonene dioxide, 4-vinylcyclohexene dioxide, 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexanecarboxylate, di(3,4-epoxycyclohexyl)adipate , and epoxy group-containing silsesquioxane compounds are preferred, and 3,4-epoxycyclohexylmethyl-3′,4′-epoxycyclohexane carboxylate and the following epoxy group-containing silsesquioxane compounds are more preferred.
  • organic-inorganic hybrid compounds having epoxy groups such as epoxy group-containing silsesquioxane compounds and epoxy group-containing silicone compounds, are particularly preferred.
  • Examples of the vinyl ether compound include monofunctional vinyl ether compounds and polyfunctional vinyl ether compounds.
  • Examples of polyfunctional vinyl ether compounds include cyclohexanedimethanol divinyl ether, triethylene glycol divinyl ether, and novolac type divinyl ether.
  • Monofunctional vinyl ether compounds include hydroxyethyl vinyl ether, hydroxybutyl vinyl ether, dodecyl vinyl ether, propenyl ether propylene carbonate and cyclohexyl vinyl ether.
  • the content of the cationic polymerizable compound is not particularly limited, but the polysiloxane compound represented by the formula (1) With respect to 100 parts by weight, it is preferably 0.1 to 100 parts by weight, more preferably 0.1 to 50 parts by weight, and still more preferably 1 to 25 parts by weight.
  • the content of the cationic polymerizable compound is within this range, the curability of the composition of the present disclosure and the hardness of the resulting cured product are excellent.
  • composition of the present disclosure contains a cationic polymerizable compound other than the polysiloxane compound represented by the formula (1), from the viewpoint of the adhesion of the inorganic material layer, the composition represented by the formula (1)
  • the content is preferably 25% by weight or less, more preferably 10% by weight or less, and even more preferably 5% by weight or less, relative to the total weight of the polysiloxane compound. .
  • Organic polymer The composition of the present disclosure can also contain an organic polymer for the purpose of reducing cure shrinkage using an inexpensive component.
  • Suitable polymers include (meth)acrylic polymers, and suitable constituent monomers include methyl methacrylate, cyclohexyl (meth)acrylate and N-(2-(meth)acryloxyethyl)tetrahydrophthalimide, and the like. .
  • composition of the present disclosure when the organic polymer is contained, from the viewpoint of the adhesion and weather resistance of the inorganic substance layer, 10 weight with respect to the total weight of the polysiloxane compound represented by the formula (1) % or less, more preferably 5 wt % or less, and even more preferably 1 wt % or less.
  • Radical Polymerization Inhibitor and Antioxidant A radical polymerization inhibitor and antioxidant may be added to the composition of the present disclosure for the purpose of enhancing storage stability and thermal stability.
  • Polymerization inhibitors and antioxidants to be used are not particularly limited, and known radical scavengers can be used.
  • Specific examples of radical polymerization inhibitors include phenolic compounds such as hydroquinone and hydroquinone monomethyl ether.
  • antioxidants include 2,6-di-tert-butyl-4-methylphenol, 2,4-dimethyl-6-tert-butylphenol, pentaerythritol tetrakis(3-(3,5-di-tert -Butyl-4-hydroxyphenyl)propionate) and other hindered phenol antioxidants, and 3-hydroxythiophenol. Also included are ⁇ -nitroso- ⁇ -naphthol, p-benzoquinone and copper salts.
  • N-nitrosophenylhydroxylamine aluminum salt available from Fujifilm Wako Pure Chemical Industries, Ltd.
  • 2-[1-(2-hydroxy-3,5-di-tert-pentylphenyl)ethyl] available from Sumitomo Chemical Co., Ltd. -4,6-di-tert-pentylphenyl acrylate and the like can also be used. These may be used alone or in combination of two or more.
  • a sulfur-based secondary antioxidant such as 4,6-bis(octylthiomethyl)-O-cresol or a phosphorus-based secondary antioxidant may be added in combination.
  • solvent When the composition of the present disclosure is liquid, it can be applied to the substrate surface as it is, but if necessary, it can be diluted with a solvent before use.
  • a solvent it is preferably a solvent that dissolves the polysiloxane compound according to the present disclosure, such as aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, chlorinated hydrocarbon solvents, alcohol solvents, ether solvents, amide solvents. , ketone solvents, ester solvents and cellosolve solvents.
  • the organic solvent is not particularly limited, and examples include alcohols such as methanol, ethanol, isopropyl alcohol and isobutyl alcohol; alkylene glycol monoalkyl ethers such as propylene glycol monomethyl ether; aromatic compounds such as toluene and xylene; esters such as acetate, ethyl acetate and butyl acetate; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethers such as dibutyl ether; These may be used alone or in combination of two or more. If a solvent is used, it is preferred to volatilize the solvent contained in the applied film prior to curing the composition of the present disclosure. Volatilization of the solvent may be performed in air or in an inert gas atmosphere. Heating may be used to volatilize the solvent, but the heating temperature in that case is preferably less than 100°C.
  • the composition of the present disclosure can include a heat resistance enhancer.
  • the heat resistance improver is not particularly limited, and known ones can be used.
  • cerium 2-ethylhexanoate such as cerium (III)
  • zirconium 2-ethylhexanoate such as zirconium (IV) tetra(2-ethylhexanoate) and zirconium (IV) bis(2-ethylhexanoate) oxide
  • metal oxides such as iron oxide, cerium oxide and zirconium oxide.
  • the proportion of the heat resistance improver used is not particularly limited, but is, for example, 0 to 10,000 ppm by weight, such as 1 to 1,000 ppm by weight, relative to 100 parts by weight of the total amount of the polysiloxane compound according to the present disclosure. , for example 5 to 500 ppm by weight, for example 10 to 300 ppm by weight.
  • Addition of a heat resistance improver suppresses the increase or decrease of the heat weight loss temperature, suppresses the decrease in dielectric constant, suppresses the decrease in insulation properties, and suppresses the occurrence of cracks during use and storage under heating and at room temperature. , and coloring suppression, etc. can be performed.
  • Silicones Compositions of the present disclosure can include silicones. There are no particular restrictions on the silicone, and known silicones can be used. can be The functional group is not particularly limited, and examples thereof include (meth)acryloyl group, epoxy group, oxetanyl group, vinyl group, hydroxyl group, carboxyl group, amino group and thiol group. Although there is no particular limitation on the proportion of silicone used, it is, for example, 0 to 100 parts by weight, for example 1 to 50 parts by weight, for example 5 to 40 parts by weight, per 100 parts by weight of the total amount of the polysiloxane compound according to the present disclosure. and, for example, 5 to 30 parts by weight.
  • composition of the present disclosure can optionally contain ingredients other than the above-described ingredients as other ingredients.
  • surfactants e.g., conductive polymers
  • leveling agents such as silicone-based polymers and fluorine atom-containing polymers, photosensitizers, ultraviolet absorbers, stabilizers , lubricants, pigments, dyes, plasticizers, suspending agents, nanoparticles, nanofibers, nanosheets and various fillers such as silica and alumina.
  • Silane-based reactive diluents such as tetraalkoxysilanes, trialkoxysilanes, dialkoxysilanes, monoalkoxysilanes and disiloxanes can also be contained.
  • Resin substrate The resin substrate used for laminating the inorganic material layer according to the present disclosure is not particularly limited. Polyester resins such as vinylidene resin, polycarbonate resin (PC), polyurethane resin, epoxy resin, polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and polybutylene phthalate (PBT), polystyrene resin, polyvinyl chloride resin, polyacrylonitrile Resins, polyimide resins, acrylic resins such as polyacrylates and polymethacrylates such as polymethyl methacrylate (PMMA), cycloolefin polymers (COP), cycloolefin copolymers (COC), acetate resins, vinyl fluoride resins, polyarylates, Examples include resins such as cellophane, polyethersulfone, norbornene-based resins, and acetylcellulose resins such as triacetylcellulose (TAC), and plastic materials such as various fiber reinforced resins (FRP).
  • PC
  • the resin base material it is preferable to use one having appropriate physical properties depending on the intended use.
  • the melting point is preferably 150° C. or higher, more preferably 200° C. or higher.
  • turbidity (haze), birefringence, refractive index and the like can be mentioned.
  • the haze (ASTM D1003) is preferably 2% or less, more preferably 0.5% or less.
  • the retardation (parallel Nicols rotation method) is preferably 30 or less, more preferably 20 or less, and even more preferably 5 or less.
  • the refractive index is preferably 1.48 or more.
  • polycarbonate resin and polymethyl methacrylate are suitable.
  • polyethylene terephthalate is suitable.
  • a resin substrate it is desirable to use a resin substrate that has excellent coating properties with the undercoating agent composition of the present disclosure and adhesion with the cured product thereof.
  • the surface of the resin substrate may be subjected to surface activation treatment such as corona discharge treatment, ultraviolet irradiation treatment and plasma treatment.
  • the shape of the resin base material used in the present disclosure is not particularly limited, and may be arbitrarily selected according to the application, such as film, sheet, lens, or plate.
  • the inorganic material layer in the present disclosure is not particularly limited as long as it is formed by a dry film-forming method.
  • examples include Si, Ti, Zn, Al, Ga, In, Ce, Bi, Layers mainly composed of at least one of various metals containing elements such as Sb, B, Zr, Sn, Ta, Ag and Pt, or metal oxides, nitrides and sulfides can be mentioned.
  • Specific examples of materials for forming the inorganic substance layer include, for example, low refractive index materials such as sodium fluoride, cryolite, thiolite, lithium fluoride, magnesium fluoride, aluminum fluoride, calcium fluoride, and fluoride.
  • medium refractive index materials include OL-B, lanthanum fluoride, neodymium fluoride, gadolinium fluoride, cerium fluoride, oxide aluminum, tungsten oxide, magnesium oxide, lead fluoride, silicon monoxide, lanthanum oxide, yttrium oxide, scandium oxide, europium oxide, molybdenum oxide, samarium fluoride, praseodymium oxide, etc.; Indium, tin oxide, hafnium oxide, tantalum oxide, zirconium oxide, antimony oxide, zinc oxide, cerium oxide, OS-5, neodymium oxide, niobium oxide, zinc sulfide, dititanium trioxide, trititanium pentoxide, titanium monoxide, Examples include titanium dioxide, silicon, germanium, etc.
  • Metals include silver, aluminum, gold, chromium, copper, hafnium, indium, molybdenum, nickel, platinum, tantalum, titanium, tungsten, etc., and other functions.
  • the agent include germanium oxide, ITO, MS-DC100, MS-SY, etc.
  • a diamond-like carbon (hereinafter referred to as DLC) film layer having high hardness and excellent insulating properties can be used.
  • the DLC film is a carbon film with an amorphous structure mainly composed of sp 3 bonds between carbon atoms. It is a diamond-like carbon film that is extremely hard, has a low coefficient of friction, wear resistance, corrosion resistance, gas barrier properties, and excellent insulating properties. is.
  • the inorganic substance layer in the present disclosure may be at least one layer or more, and may be multiple layers.
  • the order of lamination and the type of the inorganic material layer are not particularly limited.
  • various functional layers such as an ultraviolet absorption layer and a functional layer may be used as the inorganic material layer.
  • one layer of the inorganic substance layer is a DLC layer
  • the method for laminating the inorganic material layer in the present disclosure is not particularly limited as long as it is a dry film formation method.
  • Positional, ion plating, sputtering, laser ablation, and other physical vapor deposition methods (hereinafter also referred to as "PVD” or physical vapor deposition methods), thermal CVD, plasma CVD, optical CVD, epitaxial CVD, atomic layer CVD, catCVD , chemical vapor deposition (hereinafter also referred to as "CVD” or chemical vapor deposition) such as organic metal CVD, etc., but preferably physical vapor deposition.
  • PVD physical vapor deposition
  • thermal CVD plasma CVD
  • optical CVD epitaxial CVD
  • atomic layer CVD atomic layer
  • catCVD catCVD
  • chemical vapor deposition (hereinafter also referred to as "CVD” or chemical vapor deposition) such as organic metal CVD, etc., but preferably physical vapor deposition.
  • CVD chemical vapor
  • the thickness of the inorganic substance layer is not particularly limited, and can be arbitrarily set according to the purpose and application. It is more preferably 100 nm or more, even more preferably 150 nm or more. Although the upper limit of the thickness of the inorganic substance layer is not particularly limited, it is preferably 25 ⁇ m or less, more preferably 15 ⁇ m or less, and still more preferably 10 ⁇ m or less. In order to adjust the thickness of the inorganic substance layer, the processing time and the like may be adjusted in the physical vapor deposition.
  • the laminate according to the present disclosure has excellent appearance, weather resistance, and scratch resistance not found in organic coatings. It can be said that the adhesiveness to the cured product for lamination is excellent, and the weather resistance, water resistance and scratch resistance are extremely excellent.
  • the curable composition of the present disclosure can be obtained by mixing raw ingredients.
  • a known mixer or the like may be used. Specific examples include reaction flasks, change can type mixers, planetary mixers, dispersers, Henschel mixers, kneaders, ink rolls, extruders, three-roll mills, sand mills, and the like.
  • the composition of the present disclosure is usually a method of irradiating an active energy ray, a method of heating, a method of combining active energy ray irradiation and heating, etc.
  • the reaction of the polymerizable group is advanced by the method of and cured.
  • the compositions of the present disclosure may or may not contain solvent, and if they do contain solvent, the solvent is generally removed prior to curing, as described above.
  • composition of the present disclosure contains the polysiloxane compound represented by formula (1) and the radical polymerization initiator and/or cationic polymerization initiator. Furthermore, the above-mentioned other components may also be included.
  • a solvent is included as another component, the solvent is usually removed by drying or the like before the composition of the present disclosure is cured, and then a cured product is obtained to form an undercoat. Therefore, in the composition of the present disclosure, the proportion of the polysiloxane compound represented by the formula (1) out of all the components other than the solvent is preferably 50 parts by weight or more, more preferably 70 parts by weight or more, More preferably 90 parts by weight or more.
  • a cured product having good adhesion to the inorganic substance layer can be obtained by setting the amount within the above preferable range.
  • the amount used is arbitrarily set according to the purpose and is not particularly limited. 000 parts by weight, more preferably 10 to 1,000 parts by weight, and even more preferably 50 to 500 parts by weight.
  • the method for applying the composition of the present disclosure to a resin substrate is not particularly limited, and is appropriately selected according to the constituent material, shape, and the like of the substrate.
  • ordinary coating methods such as casting, spin coating, bar coating, dip coating, spray coating, roll coating, flow coating and gravure coating can be used.
  • the thickness to which the composition of the present disclosure is applied is not particularly limited, and can be set arbitrarily according to the purpose. is 1-10 ⁇ m.
  • the curing method and curing conditions are selected depending on whether the curable composition is active energy ray-curable and/or thermosetting.
  • the curing conditions in the case of active energy ray curing, for example, the type of light source and the amount of light irradiation, and in the case of heat curing, heating temperature, heating time, etc.
  • the composition of the present disclosure It is appropriately selected depending on the type and amount of the polymerization initiator to be contained, the type of other polymerizable compound, and the like.
  • the curing method may be irradiation with an active energy ray using a known active energy ray irradiation device or the like.
  • active energy rays include electron beams and light such as ultraviolet rays, visible rays, and X-rays. Light is preferable, and ultraviolet rays are more preferable because inexpensive devices can be used.
  • Ultraviolet irradiation devices include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, ultraviolet (UV) electrodeless lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and light-emitting diodes (LEDs).
  • the intensity of light irradiation to the film coated with the composition of the present disclosure may be selected according to the purpose, application, etc.
  • the light irradiation intensity in the light wavelength range effective for activation (light with a wavelength of 220 to 460 nm is preferably used, although it varies depending on the type of photopolymerization initiator) is preferably 0.1 to 1000 mW/cm 2 . be.
  • the irradiation energy should be appropriately set according to the type of active energy ray and composition, and the light irradiation time to the coating may be selected according to the purpose and application.
  • the integrated amount of light which is the product of the light irradiation intensity and the light irradiation time, is set to be 10 to 7,000 mJ/cm 2 . More preferably 200 to 5,000 mJ/cm 2 , still more preferably 500 to 3500 mJ/cm 2 .
  • the integrated amount of light is within the above range, curing of the composition proceeds smoothly, and a uniform cured product can be easily obtained.
  • heat curing can be appropriately combined before and/or after photocuring.
  • the composition of the present disclosure is first cured by irradiating with light.
  • a two-stage cure can also be performed, followed by the application of heat to cure the composition of the present disclosure in the areas not exposed to light.
  • substrates are not particularly limited, and examples thereof include substrates having complex shapes such as cloth-like, fibrous, powdery, porous, and uneven shapes, and two or more of these shapes. may be combined.
  • Thermosetting method When the composition of the present disclosure is a thermosetting composition, its curing method and curing conditions are not particularly limited.
  • the curing temperature is preferably 80°C to 200°C, more preferably 100°C to 180°C, still more preferably 110°C to 150°C.
  • the curing temperature may be constant or may be increased.
  • temperature increase and temperature decrease may be combined.
  • the curing time is appropriately selected depending on the type of thermal polymerization initiator and the content of other components, etc., but is preferably 10 to 360 minutes, more preferably 30 to 300 minutes, and still more preferably 60 to 300 minutes. 240 minutes.
  • a cured product obtained by curing the composition of the present disclosure (herein also simply referred to as “the cured product of the present disclosure”) has adhesion to the resin substrate and adhesion to the inorganic material layer. Excellent in nature.
  • the index of adhesion is not particularly limited, and a known index is applied.
  • adhesion to the inorganic substance layer of the laminate can be evaluated according to JIS K5600-5-6 (ISO-2409).
  • the cured product of the present disclosure is excellent in hardness.
  • the index of hardness is not particularly limited, and a known index is applied. Examples include evaluation indices such as a pencil hardness test and an abrasion resistance test (scratch test).
  • the cured product of the present disclosure is excellent in transparency, color resistance, UV resistance, flexibility, conformability to resin substrates, weather resistance, chemical resistance, scratch resistance, durability, heat resistance, and the like.
  • the cured product of the present disclosure is obtained by curing a composition containing the polysiloxane compound represented by the formula (1) as a main component, and the polysiloxane compound of the present disclosure contains a T unit, preferably Since it further contains D units and/or M units, the content of SiO in the cured product, that is, the content of inorganic components contained in the cured product is high. Excellent in nature. Cured products of the present disclosure containing D units and/or M units are preferable because they are superior in flexibility or conformability to resin substrates.
  • the cured product of the present disclosure containing D units and/or M units is preferable because it has superior surface smoothness.
  • the ratio of each constituent component of the polysiloxane according to the present disclosure particularly the composition ratio of the structural unit (b) and the structural unit (c), according to the purpose and application, the polysiloxane according to the present disclosure
  • the cured product of the present disclosure obtained by curing the compound can exhibit well-balanced physical properties such as adhesion to the resin substrate, adhesion to the inorganic layer, hardness, flexibility, and conformability to the resin substrate. can.
  • the laminate of the present disclosure includes the above cured product of the present disclosure, a resin substrate and an inorganic material layer.
  • the laminate of the present disclosure comprises at least one resin base material, a cured product for laminating an inorganic substance layer obtained by curing the undercoat agent composition for laminating an inorganic substance layer of the present disclosure laminated thereon, and It is preferable that the laminated body includes at least one inorganic material layer laminated on.
  • the configuration is not particularly limited, and is arbitrarily selected according to the purpose, application, and the like.
  • the resin substrate is a film
  • the cured product of the present disclosure and an inorganic substance layer may be sequentially laminated on one side thereof, or the cured product of the present disclosure and an inorganic substance layer may be laminated on both sides of the film. may be sequentially laminated.
  • the use of the laminate of the present disclosure is not particularly limited, and examples include exterior panels of automobile bodies such as passenger cars, trucks, motorcycles, and buses; automobile parts; exterior panels of household electrical appliances such as mobile phones and audio equipment. and the like, and among them, outer plate parts of automobile bodies and automobile parts are preferable.
  • it is used for packaging parts and parts that require moisture resistance in various devices such as optical elements, liquid crystal displays and organic EL displays, semiconductor devices, thin film solar cells, food, clothing, electronic parts, etc. It can be used for packaging materials that can be used. It can also be used as a decorative printed film laminate useful as a decorative film for display substrates, touch panels, films with transparent electrodes, lens sheets, optical waveguides, solar cell substrates, optical discs, and various transparent substrates.
  • inorganic layer or laminate There are no particular restrictions on the functions of the inorganic layer or laminate, and examples include antireflection, antifogging, gas barrier, hard coat, scratch resistance, wear resistance, design, antistatic, conductivity, moisture resistance, weather resistance, light resistance, water resistance, and water resistance. Oil, antifouling, antibacterial, antiviral, antibiotic activity, UV resistance, cosmic ray resistance, oxygen resistance plasma, atomic oxygen resistance and the like.
  • the weight-average molecular weight (hereinafter also referred to as Mw) was determined by gel permeation chromatography (hereinafter referred to as "GPC") in an isopropyl alcohol solvent at 40°C using a coupled GPC column "TSK gel G4000HX”. and “TSK gel G2000HX” (manufactured by Tosoh Corporation), and the retention time was calculated using standard polystyrene.
  • GPC gel permeation chromatography
  • the molar ratio of each structural unit of the obtained polysiloxane compound was calculated by dissolving the sample in deuterated chloroform, performing 1 H-NMR analysis, and, if necessary, further performing 29 Si-NMR analysis.
  • the alkoxysilane monomer reacted quantitatively and was introduced into the polysiloxane compound, but the introduction rate of M units derived from the disiloxane monomer was not quantitatively introduced depending on the composition of the polysiloxane compound.
  • Viscosity was measured using a cone plate at 25° C. using TVE22H manufactured by Toki Sangyo Co., Ltd.
  • ⁇ Synthesis Example 8> (3-Acryloyloxypropyl)trimethoxysilane as a raw material silane monomer, 1,1,3,3-tetramethyl-1,3-divinyldisiloxane as a M monomer, isopropyl alcohol as a reaction solvent, and a catalyst Hydrolysis and polycondensation reactions were allowed to proceed according to known methods using hydrochloric acid as each, and then the solvent and the like were removed to obtain polysiloxane compound 8 as a colorless transparent liquid. 1,1,3,3-Tetramethyl-1,3-divinyldisiloxane reacted quantitatively and introduced into polysiloxane compound 8. Table 1 shows the composition ratio, Mw and viscosity (25° C.) of polysiloxane compound 8.
  • ⁇ Synthesis Example 12> A known method using 3-ethyl-3-[ ⁇ 3-(trimethoxysilyl)propoxy ⁇ methyl]oxetane, which is a T monomer, as a starting silane monomer, isopropyl alcohol as a reaction solvent, and tetramethylammonium hydroxide as a catalyst, respectively. After the hydrolysis/polycondensation reaction was allowed to proceed according to , the solvent and the like were removed to obtain polysiloxane compound 12 as a colorless and transparent liquid. Table 1 shows the composition ratio, Mw and viscosity (25° C.) of polysiloxane compound 12.
  • Table 1 summarizes the composition, molar ratio of each structural unit, Mw and viscosity (25°C) of each polysiloxane compound obtained in Synthesis Examples 1-14.
  • Example 1 (1) Preparation of photocurable undercoating agent composition 10 g of the polysiloxane compound 1 obtained in Synthesis Example 1, 1-hydroxycyclohexylphenyl ketone (IGM RESINS B.V. Omnirad 184, manufactured by IGM RESINS B.V., 0.3 g of propylene glycol monobutyl ether acetate (hereinafter also referred to as PGB) as a solvent, and 10 g of propylene glycol monobutyl ether acetate (hereinafter also referred to as PGB) are each weighed into a 50 mL vial and dissolved by stirring with a rotation/revolution mixer. A photocurable undercoating agent composition was prepared.
  • IGM RESINS B.V. Omnirad 184 1-hydroxycyclohexylphenyl ketone
  • PGB propylene glycol monobutyl ether acetate
  • PGB propylene glycol monobutyl ether acetate
  • Example 2 Lamination was carried out in the same manner as in Example 1, except that a polymethyl methacrylate (hereinafter also referred to as PMMA) plate (Acrylite L manufactured by Mitsubishi Chemical Corporation, thickness 1 mm) was used instead of polycarbonate as the resin substrate. A body was produced and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • PMMA polymethyl methacrylate
  • Example 3 A laminate was produced in the same manner as in Example 1 except that SiO 2 was laminated by an ion plating method instead of platinum as the inorganic substance layer, and the adhesion of the inorganic substance layer was evaluated.
  • the thickness of the SiO2 layer was about 200 nm. Table 2 shows the results.
  • Example 4 A laminate was produced in the same manner as in Example 1 except that ZrO 2 was laminated by an ion plating method instead of platinum as the inorganic substance layer, and the adhesion of the inorganic substance layer was evaluated.
  • the thickness of the ZrO2 layer was about 200 nm. Table 2 shows the results.
  • Example 5 A laminate was prepared in the same manner as in Example 1 except that the polysiloxane compound 2 obtained in Synthesis Example 2 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 6 A laminate was prepared in the same manner as in Example 4 except that the polysiloxane compound 2 obtained in Synthesis Example 2 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 7 A laminate was prepared in the same manner as in Example 3 except that the polysiloxane compound 2 obtained in Synthesis Example 2 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 8 A laminate was prepared in the same manner as in Example 1 except that the polysiloxane compound 3 obtained in Synthesis Example 3 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 9 A laminate was prepared in the same manner as in Example 1 except that the polysiloxane compound 4 obtained in Synthesis Example 4 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 10 A laminate was prepared in the same manner as in Example 1 except that the polysiloxane compound 5 obtained in Synthesis Example 5 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 11 A laminate was produced in the same manner as in Example 10, except that a polyethylene terephthalate (hereinafter also referred to as PET) plate (manufactured by Takiron C.I. Co., Ltd., thickness 1 mm) was used instead of polycarbonate as the resin substrate. , the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • PET polyethylene terephthalate
  • Example 12 A laminate was produced in the same manner as in Example 10, except that a plate made of nylon 6 (hereinafter also referred to as Nylon 6) (manufactured by TP Giken Co., Ltd., thickness 1 mm) was used instead of polycarbonate as the resin substrate. , the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 13 A laminate was prepared in the same manner as in Example 3 except that the polysiloxane compound 5 obtained in Synthesis Example 5 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 14 A laminate was prepared in the same manner as in Example 4 except that the polysiloxane compound 5 obtained in Synthesis Example 5 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 15 A laminate was prepared in the same manner as in Example 1 except that the polysiloxane compound 6 obtained in Synthesis Example 6 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 16> A laminate was produced in the same manner as in Example 1 except that the polysiloxane compound 7 obtained in Synthesis Example 7 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 17 A laminate was produced in the same manner as in Example 1 except that the polysiloxane compound 8 obtained in Synthesis Example 8 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 18 A laminate was prepared in the same manner as in Example 1 except that polysiloxane compound 9 obtained in Synthesis Example 9 was used instead of polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 19 A laminate was produced in the same manner as in Example 18 except that polymethyl methacrylate was used instead of polycarbonate as the resin substrate, and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 20 A laminate was prepared in the same manner as in Example 4 except that the polysiloxane compound 9 obtained in Synthesis Example 9 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 21 A laminate was produced in the same manner as in Example 1 except that the polysiloxane compound 10 obtained in Synthesis Example 10 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 22 A laminate was prepared in the same manner as in Example 3 except that the polysiloxane compound 10 obtained in Synthesis Example 10 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 23 A laminate was prepared in the same manner as in Example 4 except that the polysiloxane compound 10 obtained in Synthesis Example 10 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 24 A laminate was produced in the same manner as in Example 1 except that the polysiloxane compound 11 obtained in Synthesis Example 11 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 25 A laminate was produced in the same manner as in Example 24 except that polyethylene terephthalate was used as the resin substrate instead of polycarbonate, and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 26 A laminate was produced in the same manner as in Example 24 except that nylon 6 was used instead of polycarbonate as the resin substrate, and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 27 A laminate was prepared in the same manner as in Example 3 except that the polysiloxane compound 11 obtained in Synthesis Example 11 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 28 A laminate was prepared in the same manner as in Example 4 except that the polysiloxane compound 11 obtained in Synthesis Example 11 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 29 9 g of the polysiloxane compound 12 obtained in Synthesis Example 12, Celoxide 2021P (3′,4′-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, hereinafter also referred to as CEL2021P) manufactured by Daicel Corporation, 1 g, light 0.2 g of PHOTO INITIATOR 2074 (manufactured by Solvay Japan Co., Ltd., hereinafter also referred to as PI2074), which is a cationic polymerization initiator, and 10 g of PGB, which is a solvent, were each weighed into a 50 mL vial and dissolved by stirring with a rotation/revolution mixer. Then, a photocurable undercoating agent composition was prepared. Using this composition, a laminate was produced in the same manner as in (2) to (4) of Example 1, and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 30 A laminate was prepared in the same manner as in Example 29 except that the polysiloxane compound 13 obtained in Synthesis Example 13 was used instead of the polysiloxane compound 12 obtained in Synthesis Example 12, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 31 A laminate was prepared in the same manner as in Example 3 except that the polysiloxane compound 9 obtained in Synthesis Example 9 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • Example 32> A laminate was produced in the same manner as in Example 29 except that SiO 2 was laminated by an ion plating method instead of platinum as the inorganic substance layer, and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 33 A laminate was prepared in the same manner as in Example 3 except that the polysiloxane compound 14 obtained in Synthesis Example 14 was used instead of the polysiloxane compound 1 obtained in Synthesis Example 1, and the adhesion of the inorganic substance layer was evaluated. evaluated. Table 2 shows the results.
  • thermosetting undercoating agent composition 10 g of polysiloxane compound 11 obtained in Synthesis Example 11, t-butyl 2-ethylperoxyhexanoate (NOF Corporation), which is a thermal radical polymerization initiator, ) manufactured by Perbutyl O, hereinafter also referred to as PBO.) and 10 g of PGB as a solvent are each weighed into a 50 mL vial and dissolved by stirring with a rotation/revolution mixer to form a thermosetting undercoating agent composition. prepared.
  • thermosetting undercoating agent composition 10 g of polysiloxane compound 11 obtained in Synthesis Example 11, t-butyl 2-ethylperoxyhexanoate (NOF Corporation), which is a thermal radical polymerization initiator, ) manufactured by Perbutyl O, hereinafter also referred to as PBO.
  • PBO t-butyl 2-ethylperoxyhexanoate
  • PGB a thermal radical polymerization initiator
  • Iupilon NF-2000, thickness 1 mm was coated with a bar coater.
  • the thermosetting composition prepared in (1) above was applied to form a coating having a thickness of about 5 ⁇ m, and then heated at 65° C. for 5 minutes to dry the solvent. Then, it was heated at 120° C. for 1 hour in a constant temperature machine to prepare a cured product.
  • (3) Lamination of inorganic substance layer ZrO 2 was laminated on the thermoset material prepared in (2) above by an ion plating method.
  • Inorganic substance layer adhesion test adhesion (cross-cut method) Adhesion was evaluated according to JIS K5600-5-6 (ISO-2409) with respect to the inorganic substance layer of the laminate produced by the above (1) to (3).
  • Example 34 there were no delaminated squares, ie, 0 squares. In this evaluation, there was no peeling between the resin substrate and the thermoset of the undercoating agent composition. Table 2 summarizes the results of this example.
  • Example 35 9 g of the polysiloxane compound 13 obtained in Synthesis Example 13, 1 g of CEL2021P, and 0.1 g of San-Aid SI-100L (manufactured by Sanshin Chemical Industry Co., Ltd., hereinafter also referred to as SI100L), which is a thermal cationic polymerization initiator.
  • SI100L San-Aid SI-100L
  • 10 g of PGB as a solvent were each weighed into a 50 mL vial and dissolved by stirring with a rotation/revolution mixer to prepare a thermosetting undercoating agent composition.
  • a laminate was produced in the same manner as in (2) to (4) of Example 34 except that the inorganic substance layer was made of SiO 2 , and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 7 A laminate was produced in the same manner as in Example 1, except that polycarbonate, polymethyl methacrylate, polyethylene terephthalate, or nylon 6 was used as the resin base material, and the undercoat layer for laminating an inorganic substance was not provided. The adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 11 A laminate was produced in the same manner as in Example 3 except that the undercoat layer for laminating the inorganic substance was not provided, and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Example 12 A laminate was produced in the same manner as in Example 4 except that the undercoat layer for laminating the inorganic substance was not provided, and the adhesion of the inorganic substance layer was evaluated. Table 2 shows the results.
  • Adhesion test of inorganic substance layer after hot water treatment adhesion (cross-cut method) ⁇ Examples 36 to 41>
  • the laminates produced in Examples 3, 31, 22, 27, 32 and 33 were immersed in hot water at 90°C for 2 hours and then dried at room temperature for 17 hours. After that (hereinafter also referred to as "after hot water treatment"), the adhesion of each inorganic substance layer was evaluated in the same manner as in Example 1 (4). Table 3 shows the results.
  • Example 43 to 56> A laminate was produced in the same manner as in Example 42 except that polysiloxane compound 1, 5, 9 or 11 was used, PC, PMMA or PET was used as the resin base material, and SiO 2 or ZrO 2 was used as the inorganic substance layer. The scratch resistance of each inorganic substance layer was evaluated. Table 4 shows the results.
  • Example 57 Polysiloxane compound 12 was used, PC was used as the resin base material, and after forming a cured product for laminating an inorganic substance on PC in the same manner as in Example 29, SiO 2 was laminated by an ion plating method. The scratch resistance of the inorganic substance layer was evaluated in the same manner as in Example 42 with respect to the produced laminate. As a result, the critical load value was 51.1 mN. Table 4 shows the results.
  • Example 58 The scratch resistance of the inorganic substance layer was evaluated in the same manner as in Example 57, except that polysiloxane compound 13 was used. The result was a critical load value of 69.3 mN. Table 4 shows the results.
  • Example 59 Polysiloxane compound 11 was used, PC was used as the resin base material, and after forming a cured product for laminating an inorganic substance on PC in the same manner as in Example 34, ZrO 2 was laminated by an ion plating method. The scratch resistance of the inorganic substance layer was evaluated in the same manner as in Example 42 with respect to the produced laminate. As a result, the critical load value was 63.9 mN. Table 4 shows the results.
  • Example 60 Polysiloxane compound 13 was used, PC was used as the resin base material, and after forming a cured product for laminating an inorganic substance on PC in the same manner as in Example 35, SiO 2 was laminated by an ion plating method. The scratch resistance of the inorganic substance layer was evaluated in the same manner as in Example 42 with respect to the produced laminate. As a result, the critical load value was 68.7 mN. Table 4 shows the results.
  • an undercoat containing a polysiloxane compound having T units and D units as structural units is more excellent in adhesion to an inorganic material layer than an undercoat containing a polysiloxane compound consisting only of T units.
  • This is done by comparing all conditions other than the polysiloxane compound, e.g., comparing Examples 1, 3 and 4 with Examples 5-10 and 13-15, Examples 18 and 20 with Example It can be seen more clearly when comparing Examples 29 and 30, which compares 21, 23 and 24.
  • the adhesion to the inorganic substance layer of Example 16 was also "3", which was excellent, but the adhesion was slightly inferior to those having other T units and D units. It can be seen that a certain value of x/(v+w+x+y) is preferably less than 0.69 for polysiloxane compound 7 contained in Example 16.
  • the undercoat for laminating an inorganic substance layer of the present disclosure has both good adhesion to the resin substrate and the inorganic substance layer and scratch resistance of the inorganic substance layer of the laminate. It can be used and is highly practical.
  • Example 42 which is a laminate similar to Example 3 in Table 2, and Examples 43 to 60, which are modifications thereof.
  • Comparative Examples 15 to 19 in Table 4 are obtained by curing a curable composition containing a polyfunctional monomer that does not contain a polysiloxane compound, and the scratch resistance may be high. , the adhesion to the inorganic substance layer is insufficient, and it is not practical.
  • an undercoat containing a polysiloxane compound having T units and D units as structural units is more effective in the scratch resistance of an inorganic substance layer laminated thereon than an undercoat containing a polysiloxane compound consisting only of T units. It can be seen from Table 4 that it is excellent. This is done by comparing all conditions other than the polysiloxane compound, for example comparing Examples 42-44 with Examples 45-47, comparing Examples 49-51 with Examples 52-54. can be seen more clearly when comparing Examples 57 and 58.
  • an undercoat containing a polysiloxane compound having a T unit and a D unit as structural units is particularly excellent in both physical properties of adhesion to an inorganic substance layer and scratch resistance of a laminated inorganic substance layer, and is more excellent. Excellent practicality.
  • inventions of the laminate of the present disclosure include, for example, outer panel parts of automobile bodies such as passenger cars, trucks, motorcycles and buses; automobile parts; outer panel parts of home electric appliances such as mobile phones and audio equipment.
  • it is used for packaging parts and parts that require moisture resistance in various devices such as optical elements, liquid crystal displays and organic EL displays, semiconductor devices, thin film solar cells, food, clothing, electronic parts, etc.
  • It can be used for packaging materials that can be used.
  • It can also be used as a decorative printed film laminate useful as a decorative film for display substrates, touch panels, films with transparent electrodes, lens sheets, optical waveguides, solar cell substrates, optical discs, and various transparent substrates.
  • inorganic material layers and laminates are antireflection, antifogging, gas barrier, hard coat, scratch resistance, wear resistance, design, antistatic, conductivity, moisture resistance, weather resistance, light resistance, waterproof, oil resistance, antifouling, and antibacterial. , antivirus, antibiotic activity, ultraviolet resistance, cosmic ray resistance, oxygen resistance to plasma, atomic oxygen resistance, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Paints Or Removers (AREA)

Abstract

樹脂基材に無機物質層を乾式成膜法により積層するために樹脂基材上に塗布する無機物質層積層用アンダーコート剤組成物であって、下記式(1)で表されるポリシロキサン化合物と、ラジカル重合開始剤及び/又はカチオン重合開始剤と、を含むことを特徴とする無機物質層積層用アンダーコート剤組成物。

Description

無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法
 本開示は、無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法に関し、無機物質層積層用硬化物、樹脂基材及び無機物質層を含む積層体に関する。更に詳しくは、本開示は、ポリシロキサン化合物と重合開始剤とを含む無機物質層積層用アンダーコート剤組成物に関するものである。前記の無機物質層積層用アンダーコート剤組成物の硬化物は、例えば、ディスプレイ基板、タッチパネル、電極付きフィルム及びレンズ等を作製する場合の無機物質層積層用アンダーコートとして有用である。
 近年、樹脂基材の表面に、耐候性、耐薬品性、硬度、耐擦傷性、耐久性、耐熱性、導電性、ガスバリア性、防汚性及び反射防止性等の様々な機能を付与又は向上させるために、乾式成膜法等により無機物質層を積層することが提案されている。
 特開2009-178904号公報には、ガラス転移温度が70℃以上であるプラスチックフィルムと、その上に光硬化性を有する籠型シルセスキオキサン樹脂を含有する光硬化性樹脂組成物を硬化させてなる透明樹脂層と、更にその表面にスパッタ法で積層された表面修飾膜層とを備えることを特徴とする加飾印刷フィルム積層体が開示されている。
 特開2010-274562号公報には、有機化合物層と、その上に形成されたポリシルセスキオキサンを含有する層と、更にその上に化学蒸着法で形成された酸化物無機化合物層との組み合わせを、1以上有することを特徴とするガスバリア積層体が開示されている。
 特開2013-035274号公報には、ポリカーボネート樹脂基材に、(メタ)アクリロイルオキシ基を有するシルセスキオキサン化合物、光重合開始剤及び不飽和基含有シリコン系表面調整剤を含有する活性エネルギー線硬化型プライマー組成物による硬化塗膜層、及び乾式成膜工法によって形成された酸化珪素化合物からなる無機物質層が順次積層されてなることを特徴とする積層体が開示されている。
 しかしながら、特開2009-178904号公報、特開2010-274562号公報、及び特開2013-035274号公報に開示されたシルセスキオキサンを含む組成物の硬化物をプライマー層としたものでは、その上に積層した無機物質層との密着性が依然として不十分であり、実用上の問題があった。
 本開示の一実施形態によれば、乾式成膜法により積層される無機物質層との密着性が良好な硬化物(プライマー層)を与えることが可能な無機物質層積層用アンダーコート剤組成物、その硬化物、それを用いた積層体、及びそれらの製造方法が提供される。
 本開示は、下記[1]~[11]の態様を含む。
[1]樹脂基材に無機物質層を乾式成膜法により積層するために樹脂基材上に塗布する無機物質層積層用アンダーコート剤組成物であって、下記式(1)で表されるポリシロキサン化合物と、ラジカル重合開始剤及び/又はカチオン重合開始剤と、を含むことを特徴とする無機物質層積層用アンダーコート剤組成物。
Figure JPOXMLDOC01-appb-C000002

 
〔式(1)中、R、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、炭素数2~8の不飽和炭化水素基、又は、(メタ)アクリロイル基、エポキシ基若しくはオキセタニル基を有する一価の有機基を表し、前記アルキル基、アラルキル基、アリール基、不飽和炭化水素基、(メタ)アクリロイル基、エポキシ基及びオキセタニル基はハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、及びオキシ基からなる群より選択される少なくとも1種で置換されていてもよく、R、R及びRのうち、少なくとも1つは(メタ)アクリロイル基、エポキシ基又はオキセタニル基を有する一価の有機基であり、R、R及びRは互いに同一であっても異なってもよい。式(1)中、v、w、x及びyは、それぞれv、w、x及びy合計量中の割合を意味し、wは1以下の正の数を表し、v、x及びyはそれぞれ独立に、0又は1未満の正の数を表す。〕
[2]前記式(1)におけるxが正の数である、前記[1]に記載の無機物質層積層用アンダーコート剤組成物。
[3]前記乾式成膜法が物理蒸着法である、前記[1]又は[2]に記載の無機物質層積層用アンダーコート剤組成物。
[4]0.3≦{w/(v+w+x+y)}≦1.0、かつ、0≦{x/(v+w+x+y)}≦0.7を満たす、前記[1]~[3]のいずれか1つに記載の無機物質層積層用アンダーコート剤組成物。
[5]0.5≦{w/(v+w+x+y)}≦1.0、かつ、0≦{y/(v+w+x+y)}≦0.5を満たす、前記[1]~[3]のいずれか1つに記載の無機物質層積層用アンダーコート剤組成物。
[6]前記ポリシロキサン化合物の25℃における粘度が10~1,000,000mPa・sである、前記[1]~[5]のいずれか1つに記載の無機物質層積層用アンダーコート剤組成物。
[7]前記[1]~[6]のいずれか1つに記載の無機物質層積層用アンダーコート剤組成物を硬化した無機物質層積層用硬化物。
[8]前記[7]に記載の無機物質層積層用硬化物、樹脂基材及び無機物質層とを含む積層体。
[9]碁盤目剥離試験における前記無機物質層の前記無機物質層積層用硬化物に対する密着性評価において、剥離が25マス中、5以下である、前記[8]に記載の積層体。
[10]前記[1]~[6]のいずれか1つに記載の無機物質層積層用アンダーコート剤組成物に活性エネルギー線を照射して硬化させる工程を含む、前記[7]に記載の無機物質層積層用硬化物の製造方法。
[11]前記[1]~[6]のいずれか1つに記載の無機物質層積層用アンダーコート剤組成物に活性エネルギー線を照射して硬化させる工程を含む、前記[8]又は[9]に記載の積層体の製造方法。
 本開示の一実施形態によれば、乾式成膜法により積層される無機物質層との密着性が良好な硬化物(プライマー層)を与えることが可能な無機物質層積層用アンダーコート剤組成物、その硬化物、それを用いた積層体、及びそれらの製造方法が提供される。
 以下、本開示について詳細に説明する。
 尚、「%」は特に明記しない限り「重量%」を意味し、「部」は「重量部」、「ppm」は「重量ppm」を意味する。又、本開示において、数値範囲を表す「下限~上限」の記載は、「下限以上、上限以下」を表し、「上限~下限」の記載は、「上限以下、下限以上」を表す。即ち、上限及び下限を含む数値範囲を表す。更に、本開示においては、後述する好ましい態様の2以上の組み合わせも又、好ましい態様である。
 以下、ポリシロキサン化合物、重合開始剤、無機物質層積層用アンダーコート剤組成物、硬化物、積層体、並びに、硬化物及び積層体の製造方法について説明する。
1.ポリシロキサン化合物
 本開示に係るポリシロキサン化合物は、下記式(1)で表される、少なくとも(メタ)アクリロイル基、エポキシ基又はオキセタニル基を有し、wが1以下の正の数であるポリシロキサン化合物である。
 ここで、(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基を意味し、以下も同様のことを意味する。
Figure JPOXMLDOC01-appb-C000003
 本開示に係るポリシロキサン化合物の有することができる各構成単位をそれぞれ構成単位(a)~(d)と称するものとし、以下に説明する。
構成単位(a):(SiO4/2
Figure JPOXMLDOC01-appb-C000004
構成単位(b):(RSiO3/2
Figure JPOXMLDOC01-appb-C000005
構成単位(c):(R SiO2/2
Figure JPOXMLDOC01-appb-C000006
構成単位(d):(R SiO1/2
Figure JPOXMLDOC01-appb-C000007
 本開示に係るポリシロキサン化合物は、前記した構成単位(a)~(d)を含むことができる。
 式(1)中、v、w、x及びyは、それぞれv、w、x及びy合計量中の割合を意味し、wは1以下の正の数を表し、v、x及びyはそれぞれ独立に、0又は1未満の正の数を表す。
 即ち、式(1)におけるv、w、x及びyは、構成単位(a)~(d)に占めるそれぞれの構成単位のモル比を表す。換言すれば、以下の通りである。
 v/(v+w+x+y)は構成単位(a)~(d)に占める構成単位(a)のモル比率を表し、
 w/(v+w+x+y)は構成単位(a)~(d)に占める構成単位(b)のモル比率を表し、
 x/(v+w+x+y)は構成単位(a)~(d)に占める構成単位(c)のモル比率を表し、
 y/(v+w+x+y)は構成単位(a)~(d)に占める構成単位(d)のモル比率を表す。
 尚、式(1)において、v、w、x及びyは、式(1)で表される本開示に係るポリシロキサン化合物が含有する各構成単位の相対的なモル比を表す。即ち、モル比は、式(1)で表される各構成単位の反復数の相対比である。モル比は、本開示に係るポリシロキサン化合物のNMR分析値から求めることができる。又、本開示に係るポリシロキサン化合物の各原料の反応率が明らかなとき、又は、収率が100%のときには、その原料の仕込み量から求めることができる。
 式(1)における構成単位(a)、(b)、(c)及び(d)のそれぞれについては、該当する構成単位が1種のみであってよいし、2種以上であってもよい。例えば、構成単位(a)に該当する構成単位が1種存在していてもよいし、2種以上存在していてもよい。又、式(1)における配列順序は、構成単位の組成を示すものであって、その配列順序を意味するものではない。したがって、本開示に係るポリシロキサン化合物における構成単位の縮合形態は、必ずしも式(1)の配列順通りでなくてよい。
1-1.構成単位(a):(SiO 4/2
 構成単位(a)は、ケイ素原子1個に対してO1/2を4個(酸素原子として2個)備える、いわゆるQ単位である。尚、Q単位とは、ケイ素原子1個に対してO1/2を4個有する単位を意味する。
 本開示に係るポリシロキサン化合物における構成単位(a)の割合、即ち、(v/(v+w+x+y))は、0又は1未満の正の数である。本開示に係るポリシロキサン化合物の粘度及びその硬化物の柔軟性を考慮すると、構成単位(a)~(d)に占めるモル比率(v/(v+w+x+y))は、好ましくは0.6以下であり、より好ましくは0.3以下であり、更に好ましくは0である。ここで、モル比が0であることは、その構成単位を含んでいないことを意味しており、以下、同様のことを意味する。
1-2.構成単位(b):(R SiO 3/2
 構成単位(b)は、ケイ素原子1個に対してO1/2を3個(酸素原子として1.5個)備えるT単位であり、ケイ素原子に結合するRを備えている。
 Rは、炭素数1~10のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、炭素数2~8の不飽和炭化水素基、又は、(メタ)アクリロイル基、エポキシ基若しくはオキセタニル基を有する一価の有機基を表す。
 前記アルキル基、アラルキル基、アリール基、不飽和炭化水素基、(メタ)アクリロイル基、エポキシ基及びオキセタニル基は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、及びオキシ基からなる群より選択される少なくとも1種で置換されていてもよい。
 式(1)で表されるポリシロキサン化合物中のR、R及びRのうち、少なくとも1つは(メタ)アクリロイル基、エポキシ基又はオキセタニル基を有する一価の有機基であり、R、R及びRは互いに同一であっても異なってもよく、1分子中にRに該当する基が複数存在する場合、複数のRは互いに同一でも異なっていてもよい。
 又、式(1)で表されるポリシロキサン化合物中のR、R及びRのうち、少なくとも1つは(メタ)アクリロイル基、エポキシ基、又はオキセタニル基を有する一価の有機基であり、少なくとも1つは(メタ)アクリロイル基又はオキセタニル基を有する一価の有機基であることが好ましく、少なくとも1つはアクリロイル基又はオキセタニル基を有する一価の有機基であることがより好ましく、少なくとも1つはアクリロイル基を有する一価の有機基であることが更に好ましい。
 Rにおける炭素数1~10のアルキル基、炭素数7~10のアラルキル基、及び炭素数2~8の不飽和炭化水素基は、直鎖状であっても、分岐状であっても、環構造を有していてもよい。
 Rにおける炭素数1~10のアルキル基としては、特に制限はないが、炭素数1~4のアルキル基であることが好ましく、メチル基であることがより好ましい。
 Rにおける炭素数7~10のアラルキル基としては、特に制限はないが、フェニルアルキル基であることが好ましく、ベンジル基であることがより好ましい。
 Rにおける炭素数6~10のアリール基としては、特に制限はないが、フェニル基であることが好ましい。
 Rにおける炭素数2~8の不飽和炭化水素基としては、特に制限はないが、ビニル基、アリル基、エチニル基又はスチリル基であることが好ましく、ビニル基がより好ましい。
 Rにおける(メタ)アクリロイル基を含む一価の有機基としては、特に制限はないが、下記式(2)で表される基であることが好ましい。尚、本開示において「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の両方を意味する。
Figure JPOXMLDOC01-appb-C000008
〔式(2)中、Rは水素原子又はメチル基を表し、Rは炭素数1~10のアルキレン基を表し、※は結合部位を表す。〕
 式(2)におけるRとしては、特に制限はないが、炭素数2~8のアルキレン基であることが好ましく、プロピレン基であることがより好ましい。
 Rにおけるエポキシ基を含む一価の有機基としては、特に制限はないが、グリシジルオキシアルキル基であることが好ましく、グリシジルオキシプロピル基であることがより好ましい。
 Rにおけるオキセタニル基を含む一価の有機基としては、特に制限はないが、下記式(3)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
〔式(3)中、Rは水素原子又は炭素数1~6のアルキル基を表し、Rは炭素数1~10のアルキレン基を表し、※は結合部位を表す。〕
 式(3)におけるRとしては、特に制限はないが、水素原子、メチル基又はエチル基であることが好ましく、エチル基であることがより好ましい。
 式(3)におけるRとしては、特に制限はないが、炭素数2~8のアルキレン基であることが好ましく、プロピレン基であることがより好ましい。
 本開示に係るポリシロキサン化合物における構成単位(b)の割合は、特に制限はないが、本開示に係るポリシロキサン化合物及びその硬化物の耐候性、耐薬品性、硬度、耐擦傷性、耐久性、耐熱性及び/又は耐酸化性を考慮すると、構成単位(a)~(d)に占めるモル比(w/(v+w+x+y))は、1以下の正の数であり、好ましくは0.3~1.0であり、より好ましくは0.5~0.95であり、更に好ましくは0.6~0.9である。
1-3.構成単位(c):(R SiO 2/2
 構成単位(c)は、ケイ素原子1個に対してO1/2を2個(酸素原子として1個)備える、いわゆるD単位である。尚、D単位とは、ケイ素原子1個に対してO1/2を2個有する単位を意味する。
 Rはそれぞれ独立に、炭素数1~10のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、炭素数2~8の不飽和炭化水素基、又は、(メタ)アクリロイル基、エポキシ基若しくはオキセタニル基を有する一価の有機基を表す。
 前記アルキル基、アラルキル基、アリール基、不飽和炭化水素、(メタ)アクリロイル基、エポキシ基及びオキセタニル基はハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、及びオキシ基からなる群より選択される少なくとも1種で置換されていてもよい。
 式(1)で表されるポリシロキサン化合物中のR、R及びRのうち、少なくとも1つは(メタ)アクリロイル基、エポキシ基又はオキセタニル基を有する一価の有機基であり、R、R及びRは互いに同一であっても異なってもよく、1分子中のRは互いに同一でも異なっていてもよい。これらの各置換基は、前述の構成単位(b)のRについて例示したものと同様の置換基が挙げられる。
 構成単位(c)は、D単位であることから、本開示に係るポリシロキサン化合物の低粘度化及びその硬化物の柔軟性、耐熱性及び/又は耐酸化性の向上に貢献する。
 Rはそれぞれ独立に、耐熱性、原料の入手し易さ、及び硬化物への柔軟性付与の観点からは、好ましくはメチル基又はフェニル基であり、より好ましくはメチル基である。
 本開示に係るポリシロキサン化合物における構成単位(c)の割合、即ち、(x/(v+w+x+y))は、0又は1未満の正の数である。本開示に係るポリシロキサン化合物の低粘度化及びその硬化物の硬度、耐擦傷性、耐候性並びに/又は柔軟性を考慮すると、構成単位(a)~(d)に占めるモル比(x/(v+w+x+y))は、好ましくは、0≦{x/(v+w+x+y)}≦0.7であり、より好ましくは0.05~0.6であり、更に好ましくは0.1~0.5である。但し、x=0のとき、前述の構成単位(b)におけるR及び後述の構成単位(d)におけるRの少なくとも1つは(メタ)アクリロイル基、エポキシ基、又はオキセタニル基を有する一価の有機基である。
 特に、x/(v+w+x+y)の値が前記0.05~0.6の範囲にある場合には、硬化物の無機物質層との密着性が特に良好で、かつ、得られる積層体の無機物質層も良好な耐擦傷性を示し、これらの両物性を両立できるため、好ましい。
1-4.構成単位(d):(R SiO 1/2
 構成単位(d)は、ケイ素原子1個に対してO1/2を1個(酸素原子として0.5個)備える、いわゆるM単位である。尚、M単位とは、ケイ素原子1個に対してO1/2を1個有する単位を意味する。
 Rはそれぞれ独立に、炭素数1~10のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、炭素数2~8の不飽和炭化水素基、又は、(メタ)アクリロイル基、エポキシ基若しくはオキセタニル基を有する一価の有機基を表す。
 前記アルキル基、アラルキル基、アリール基、不飽和炭化水素基、(メタ)アクリロイル基、エポキシ基及びオキセタニル基はハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、及びオキシ基からなる群より選択される少なくとも1種で置換されていてもよい。
 式(1)で表されるポリシロキサン中のR、R及びRのうち、少なくとも1つは(メタ)アクリロイル基、エポキシ基又はオキセタニル基を有する一価の有機基であり、R、R及びRは互いに同一であっても異なってもよく、1分子中のRは互いに同一でも異なっていてもよい。これらの各置換基は、前述の構成単位(b)のRについて例示したものと同様の置換基が挙げられる。
 構成単位(d)は、M単位であることから、本開示に係るポリシロキサン化合物の低粘度化及びその硬化物の柔軟性の向上に貢献する。
 Rはそれぞれ独立に、耐熱性、原料の入手し易さ、アンダーコート剤組成物の硬化性、及び/又は硬化物への柔軟性付与の観点からは、好ましくはメチル基、フェニル基又はビニル基であり、更に好ましくはメチル基又はビニル基である。
 本開示に係るポリシロキサン化合物における構成単位(d)の割合、即ち、(y/(v+w+x+y))は、0又は1未満の正の数である。本開示に係るポリシロキサン化合物の低粘度化及びその硬化物の硬度、耐候性及び/又は柔軟性を考慮すると、構成単位(a)~(d)に占めるモル比(y/(v+w+x+y))は、好ましくは、0≦{y/(v+w+x+y)}≦0.5であり、より好ましくは0~0.4であり、更に好ましくは0~0.3ある。但し、y=0のとき、前述の構成単位(b)におけるR及び前述の構成単位(c)におけるRの少なくとも1つは(メタ)アクリロイル基、エポキシ基、又はオキセタニル基を有する一価の有機基である。
1-5.その他の構成単位(e)
 本開示に係るポリシロキサン化合物は、更に、Siを含まない構成単位として(R1/2)を備えることができる(以下、構成単位(e)と称する)。
 ここで、Rは水素原子又は炭素原子数1~6のアルキル基であり、脂肪族基及び脂環族基のいずれでもよく、又、直鎖状及び分岐状のいずれでもよい。アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、及びヘキシル基等が挙げられる。
 この構成単位は、後述する原料モノマーに含まれる加水分解性基であるアルコキシ基、若しくは、反応溶媒に含まれたアルコールが、原料モノマーの加水分解性基と置換して生成したアルコキシ基であって、加水分解・重縮合せずに分子内に残存したものであるか、又は、加水分解後、重縮合せずに分子内に残存した水酸基である。
1-6.分子量等
 本開示に係るポリシロキサン化合物の重量平均分子量(以下、「Mw」とも称する。)に特に制限はないが、300~10,000の範囲にあることが好ましい。かかるポリシロキサン化合物は、それ自体が液体で、取り扱いに適した低粘性であり、有機溶剤に溶け易く、その溶液の粘度も扱い易く、保存安定性に優れる。Mwは、より好ましくは500~8,000であり、更に好ましくは600~7,000であり、特に好ましくは700~6,000である。
 尚、本開示におけるMwは、GPC(ゲル浸透クロマトグラフィー)により測定した分子量を、標準物質としてポリスチレンを使用して換算した値を意味する。Mwは、例えば、後述の〔実施例〕における測定条件で、求めることができる。
 本開示に係るポリシロキサン化合物の状態に特に制限はなく、例えば、液体、固体及び半固体等が挙げられる。本開示に係るポリシロキサン化合物は、好ましくは液体であり、その粘度に特に制限はないが、例えば、25℃における粘度が、好ましくは10~1,000,000mPa・sであり、より好ましくは100~100,000mPa・sであり、更に好ましくは300~30,000mPa・sであり、更により好ましくは400~10,000mPa・sであり、又、特に好ましくは500~5,000mPa・sである。特に、10,000mPa・s以下の場合には、無溶剤系においても塗布などの施工性に優れる上、有機溶剤の環境への排出がなく、耐環境性にも優れるため、好ましい。又、低粘度であれば、塗布し、硬化した無機物質積層用アンダーコートの表面が平滑になりやすく、無機物質層の積層にも好ましい。
 尚、本開示において粘度とは、E型粘度計(コーンプレート型粘度計。例えば、東機産業(株)TVE22H形粘度計)を使用し、25℃で測定した値を意味する。
2.本開示に係るポリシロキサン化合物の製造方法
 本開示に係るポリシロキサン化合物は、公知の方法で製造することができる。ポリシロキサン化合物の製造方法は、特に制限はないが、例えば、特開平11-116682号公報、特開2000-044689号公報、WO2004/076534号国際公開パンフレット、WO2009/090916号国際公開パンフレット、WO2009/131038号国際公開パンフレット、WO2012/090707号国際公開パンフレット、WO2013/031798号国際公開パンフレット等においてポリシロキサンの製造方法として詳細に開示されている。
 本開示に係るポリシロキサン化合物は、例えば、以下の方法で製造することができる。
 即ち、本開示に係るポリシロキサン化合物の製造方法は、適当な反応溶媒中で、適当な酸又は塩基を反応触媒として用いた縮合により、前記式(1)中の構成単位を与える原料モノマーの加水分解・重縮合反応を行う縮合工程を備えることができる。この縮合工程においては、例えば、構成単位(a)(Q単位)を形成する、シロキサン結合生成基を4個有するケイ素化合物(以下、「Qモノマー」という。)と、構成単位(b)(T単位)を形成する、シロキサン結合生成基を3個有するケイ素化合物(以下、「Tモノマー」という。)と、構成単位(c)(D単位)を形成する、シロキサン結合生成基を2個有するケイ素化合物(以下、「Dモノマー」という。)と、シロキサン結合生成基を1個有する構成単位(d)(M単位)を形成する、ケイ素化合物(以下、「Mモノマー」という。)とを用いることができる。
 本開示に係るポリシロキサン化合物の製造方法は、原料モノマーを、反応溶媒の存在下に、加水分解・重縮合反応させた後に、反応液中の反応溶媒、副生物、残留モノマー及び水等を留去させる留去工程を備えることが好ましい。又、適宜、反応溶液や反応濃縮液を水等で洗浄する洗浄工程を備えることもできる。
2-1.原料モノマー
 原料モノマーであるQモノマー、Tモノマー、Dモノマー及びMモノマーに含まれるシロキサン結合生成基は、水酸基及び/又は加水分解性基である。このうち、加水分解性基としては、ハロゲノ基、アルコキシ基及びシロキシ基等が挙げられる。縮合工程において、加水分解性が良好であり、酸を副生しないことから、加水分解性基としては、アルコキシ基が好ましく、炭素原子数1~3のアルコキシ基がより好ましい。又、Mモノマーでは、原料の入手のし易さから、加水分解性基としてシロキシ基が好ましく、構成単位(d)2個分からなるジシロキサンを用いることができる。
 縮合工程において、各々の構成単位に対応するQモノマー、Tモノマー及びDモノマーのシロキサン結合生成基はアルコキシ基であることが好ましく、Mモノマーに含まれるシロキサン結合生成基はアルコキシ基又はシロキシ基であることが好ましい。又、各々の構成単位に対応するモノマーは、単独で用いてよいし、2種以上を組み合わせて用いることもできる。
 構成単位(a)を与えるQモノマーとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン及びテトラブトキシシラン等が挙げられる。
 構成単位(b)を与えるTモノマーとしては、トリメトキシビニルシラン、トリエトキシビニルシラン、トリクロロビニルシラン、トリメトキシアリルシラン、トリエトキシエチニルシラン、(p-スチリル)トリメトキシシラン、(p-スチリル)トリエトキシシラン、(3-メタクリロイルオキシプロピル)トリメトキシシラン、(3-メタクリロイルオキシプロピル)トリエトキシシラン、(3-アクリロイルオキシプロピル)トリメトキシシラン、(3-アクリロイルオキシプロピル)トリエトキシシラン、(8-メタクリロイルオキシオクチル)トリメトキシシラン、(8-アクリロイルオキシオクチル)トリメトキシシラン、3-エチル-3-[{3-(トリメトキシシリル)プロポキシ}メチル]オキセタン、3-エチル-3-[{3-(トリエトキシシリル)プロポキシ}メチル]オキセタン、3-{3-(トリエトキシシリル)プロポキシ}オキセタン、(3-グリシジルオキシプロピル)トリメトキシシラン、(3-グリシジルオキシプロピル)トリエトキシシラン、{2-(3,4-エポキシシクロヘキシル)エチル}トリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、メチルトリクロロシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン、ベンジルトリエトキシシラン及びベンジルトリクロロシラン等が挙げられる。
 構成単位(c)を与えるDモノマーとしては、ジメトキシメチルビニルシラン、ジメトキシエチルビニルシラン、ジエトキシメチルビニルシラン、ジクロロメチルビニルシラン、ジメトキシアリルメチルシラン、ジメトキシアリルエチルシラン、ジエトキシエチニルメチルシラン、ジエトキシエチニルエチルシラン、(p-スチリル)ジメトキシメチルシラン、(p-スチリル)ジメトキエチルシラン、(p-スチリル)ジエトキシメチルシラン、(3-メタクリロイルオキシプロピル)ジメトキメチルシシラン、(3-メタクリロイルオキシプロピル)ジエトキシメチルシシラン、(3-メタクリロイルオキシプロピル)ジエトキシメチルシラン、(3-メタクリロイルオキシプロピル)ジエトキシエチルシラン、(3-アクリロイルオキシプロピル)ジメトキシメチルシラン、(3-アクリロイルオキシプロピル)ジエトキシメチルシラン、(8-メタクリロイルオキシオクチル)ジメトキシメチルシラン、(8-アクリロイルオキシオクチル)ジメトキシメチルシラン、3-エチル-3-[{3-(ジメトキシメチルシリル)プロポキシ}メチル]オキセタン、3-エチル-3-[{3-(ジエトキシメチルシリル)プロポキシ}メチル]オキセタン、3-{3-(ジエトキシメチルシリル)プロポキシ}オキセタン、(3-グリシジルオキシプロピル)ジメトキシメチルシラン、(3-グリシジルオキシプロピル)ジメトキシエチルシラン、(3-グリシジルオキシプロピル)ジエトキシメチルシラン、{2-(3,4-エポキシシクロヘキシル)エチル}ジメトキメチルシシラン、ジメトキシジメチルシラン、ジメトキシジエチルシラン、ジエトキシジメチルシラン、ジエトキシジエチルシラン、ジプロポキシジメチルシラン、ジプロポキシジエチルシラン、ジイソプロポキシジメチルシラン、ジクロロジメチルシラン、ジエトキシメチルプロピルシラン、ジメトキシブチルメチルシラン、ジエトキシオクチルメチルシラン、ジメトキシデシルメチルシラン、ジメトキシシクロヘキシルメチルシラン、ジエトキシシクロヘキシルメチルシラン、ジメトキシメチルフェニルシラン、ジエトキシメチルフェニルシラン、ジクロロメチルフェニルシラン、ジメトキシベンジルメチルシラン、ジエトキシベンジルメチルシラン及びジクロロベンジルメチルシラン等が挙げられる。
 更に、加水分解・縮合反応をし得るシラノール基及び/又はアルコキシシリル基を有するD単位オリゴマー、いわゆるシリコーンも、本開示における構成単位(c)を与えるDモノマーとして、式(1)で表されるポリシロキサン化合物の製造原料として用いることができる。例えば、末端シラノール型ジメチルシリコーン、末端メトキシ型ジメチルシリコーン、末端にシラノールとメトキシ基を共に有するジメチルシリコーン、末端シラノール型メチルフェニルシリコーン、末端メトキシ型メチルフェニルシリコーン及び末端にシラノールとメトキシ基を共に有するメチルフェニルシリコーン等が挙げられ、その分子量は任意に選択される。又、これらの原料シリコーンには環状シロキサンが含まれていても良い。
 構成単位(d)を与えるMモノマーとしては、加水分解により2つの構成単位(d)を与えるヘキサメチルジシロキサン、ヘキサエチルジシロキサン、ヘキサプロピルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの他、メトキシトリメチルシラン、エトキシトリメチルシラン、プロポキシトリメチルシラン、イソプロポキシトリメチルシラン、エトキシジメチルエチルシラン、メトキシジメチルフェニルシラン、エトキシジメチルフェニルシラン、クロロジメチルビニルシラン、クロロトリメチルシラン、ジメチルビニルシラノール、トリメチルシラノール、トリエチルシラノール、トリプロピルシラノール、トリブチルシラノール、エトキシジメチルプロピルシラン、メトキシブチルジメチルシラン、エトキシオクチルジメチルシラン、メトキシデシルジメチルシラン、メトキシシクロヘキシルジメチルシラン、メトキシベンジルジメチルシラン、クロロベンジルジメチルシ、メトキシジメチルビニルシラン、メトキシジエチルビニルシラン、エトキシジメチルビニルシラン、クロロジメチルビニルシラン、メトキシアリルジメチルシラン、エトキシエチニルジメチルシラン、(p-スチリル)メトキシジメチルシラン、(p-スチリル)エトキシジメチルシラン、(3-メタクリロイルオキシプロピル)メトキジメチルシシラン、(3-メタクリロイルオキシプロピル)エトキシジメチルシラン、(3-アクリロイルオキシプロピル)メトキシジメチルシラン、(3-アクリロイルオキシプロピル)エトキシジメチルシラン、(8-メタクリロイルオキシオクチル)メトキシジメチルシラン、(8-アクリロイルオキシオクチル)メトキシジメチルシラン、3-エチル-3-[{3-(メトキシジメチルシリル)プロポキシ}メチル]オキセタン、3-エチル-3-[{3-(エトキシジメチルシリル)プロポキシ}メチル]オキセタン、3-{3-(エトキシジメチルシリル)プロポキシ}オキセタン、(3-グリシジルオキシプロピル)メトキシジメチルシラン、(3-グリシジルオキシプロピル)エトキシジメチルシラン及び{2-(3,4-エポキシシクロヘキシル)エチル}メトキジメチルシシラン等が挙げられる。
 原料モノマーと反応して構成単位(e)を与える化合物としては、水、並びに、メタノール、エタノール、1-プロパノール、2-プロパノール及び2-ブタノール等のアルコールが挙げられる。
 原料モノマーであるQモノマー、Tモノマー、Dモノマー及びMモノマーの仕込み割合は、本開示に係るポリシロキサン化合物における目的とする式(1)のv~yの値に応じて適宜設定すれば良い。
 又、式(1)で表されるポリシロキサン化合物は、製造に使用したモノマー由来の側鎖官能基のうち、オキセタニル基及びエポキシ基に酸等が付加して開環した基を含んでも良く、(メタ)アクリルロイル基を有する一価の有機基が分解して生成したヒドロキシアルキル基を含んでも良く、不飽和炭化水素基等に酸等が付加した基を含んでも良い。その具体例としては、例えば、式(1)の一部に下記式(A)で表される構造及び/又は式(B)で表される構造が含まれるものであり、その含有量としては、原料由来の元のオキセタニル基を有する一価の有機基、又は(メタ)アクリロイル基を有する一価の有機基のうちの50モル%以下であればよく、好ましくは30モル%以下であり、より好ましくは10モル%以下である。式(A)及び式(B)は、いずれもT単位を例示したが、同様にD単位及びM単位であっても良い。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
2-2.反応溶媒
 縮合工程においては、反応溶媒としてアルコールを用いることができる。アルコールは、一般式R-OHで表される、狭義のアルコールであり、アルコール性水酸基の他には官能基を有さない化合物である。
 アルコールとしては特に限定するものではないが、かかる具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、2-メチル-2-ブタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、2-メチル-2-ペンタノール、3-メチル-2-ペンタノール、2-メチル-3-ペンタノール、3-メチル-3-ペンタノール、2-エチル-2-ブタノール、2,3-ジメチル-2-ブタノール、シクロヘキサノール、及び、炭素原子数7~10の第2級若しくは第3級アルコール等が例示できる。これらの中でも、2-プロパノール、2-ブタノール、2-ペンタノール、3-ペンタノール、3-メチル-2-ブタノール、シクロペンタノール、2-ヘキサノール、3-ヘキサノール、3-メチル-2-ペンタノール及びシクロヘキサノール等の第2級アルコールが好ましく用いられる。
 縮合工程においては、これらのアルコールを1種又は2種以上組み合わせて用いることができる。より好ましいアルコールは、縮合工程で必要な濃度の水を溶解できる化合物である。このような性質のアルコールは、20℃におけるアルコールの100gあたりの水の溶解度が10g以上の化合物である。
 縮合工程で用いるアルコールは、加水分解・重縮合反応の途中における追加投入分も含めて、全ての反応溶媒の合計量に対して0.5質量%以上用いることで、生成する本開示に係るポリシロキサン化合物のゲル化を抑制することができる。好ましい使用量は1質量%以上60質量%以下であり、更に好ましくは3質量%以上40質量%以下である。
 縮合工程で用いる反応溶媒は、アルコールのみであってよいし、更に、少なくとも1種類の副溶媒との混合溶媒としても良い。副溶媒は、極性溶剤及び非極性溶剤のいずれでもよいし、両者の組み合わせでもよい。極性溶剤として好ましいものは、炭素原子数2~20のジオール、エーテル、アミド、ケトン、エステル、及びセロソルブ等である。
 非極性溶剤としては、特に限定するものではないが、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、塩素化炭化水素等が挙げられる。こうした非極性溶媒としては、特に限定するものではないが、例えば、n-ヘキサン、イソヘキサン、シクロヘキサン、ヘプタン、トルエン、キシレン及び塩化メチレン等が、水と共沸するので好ましく、これらの化合物を併用すると、縮合工程後、ポリシロキサン化合物を含む反応混合物から、蒸留によって反応溶媒を除く際に、水分を効率よく留去することができる。非極性溶剤としては、比較的沸点が高いことから、芳香族炭化水素であるキシレンが特に好ましい。
2-3.加水分解反応に供する水及び触媒
 縮合工程における加水分解・重縮合反応は、水の存在下に進められる。
 原料モノマーに含まれる加水分解性基を加水分解させるために用いられる水の量は、加水分解性基に対して好ましくは0.5~5倍モル、より好ましくは1~2倍モルである。
 又、原料モノマーの加水分解・重縮合反応は、無触媒で行ってもよいし、触媒を使用して行ってもよい。触媒を用いる場合は、通常は、酸触媒又は塩基触媒を用いることができる。酸触媒としては、特に制限はないが、例えば、硫酸、硝酸、塩酸及びリン酸等の無機酸;ギ酸、酢酸、シュウ酸及びパラトルエンスルホン酸等の有機酸が挙げられる。塩基触媒としては、特に制限はないが、例えば、アンモニア、水酸化テトラメチルアンモニウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム及び炭酸カリウム等が挙げられる。
 触媒の使用量は、原料モノマーに含まれるケイ素原子の合計量に対して、0.01~20モル%に相当する量であることが好ましく、0.1~10モル%に相当する量であることがより好ましい。
2-4.その他の添加剤
 縮合工程における加水分解・重縮合反応の終了は、各種公報等に記載される方法で適宜検出することができる。尚、本開示に係るポリシロキサン化合物の製造の縮合工程においては、反応系に助剤を添加することができる。
 助剤としては、例えば、反応液の泡立ちを抑える消泡剤、反応罐や撹拌軸へのスケール付着を防ぐスケールコントロール剤及び重合防止剤等が挙げられる。これらの助剤の使用量は、任意であるが、好ましくは反応混合物中の本開示に係るポリシロキサン化合物濃度に対して1~100重量%程度である。
2-5.反応溶媒等の留去
 本開示に係るポリシロキサン化合物の製造における縮合工程後、縮合工程より得られた反応液に含まれる反応溶媒及び副生物、残留モノマー、水、並びに触媒等を留去させる留去工程を備えることにより、生成した本開示に係るポリシロキサン化合物の安定性を向上させることができる。留去は、通常は常圧又は減圧下で行うことができ、通常は常温下又は加熱下で行うことができ、冷却下で行うこともできる。
 又、反応溶媒等を留去させる前に、残留した触媒を中和しても良い。反応液又は中和後の反応液を水洗してから溶媒等を留去させても良く、あるいは、反応液又は中和後の反応液を濃縮してから水洗しても良い。水洗には純水及び飽和食塩水等、通常用いられる水媒体を用いることができる。
3.重合開始剤
 本開示の無機物質層積層用アンダーコート剤組成物に含まれる重合開始剤としては、特に制限されることはなく、重合反応時に用いられる公知の重合開始剤を使用することができ、活性エネルギー線重合開始剤及び/又は熱重合開始剤を使用状況に合わせて任意に選択して使用することができる。式(1)で表されるポリシロキサン化合物が比較的短時間で硬化されることから、生産性の観点からは、活性エネルギー線重合開始剤がより好ましい。
 重合性基が(メタ)アクリロイル基等のラジカル重合性基の場合には、ラジカル重合開始剤が好ましく用いられ、重合性基がオキセタニル基及びエポキシ基等のカチオン重合性基の場合には、カチオン重合開始剤が好ましく用いられる。
 本開示の無機物質層積層用アンダーコート剤組成物に含まれる重合開始剤の量は、式(1)で表されるポリシロキサン化合物100重量部に対して、0.01~20重量部であることが好ましく、0.1~10重量部であることがより好ましく、1~5重量部であることが更に好ましい。
3-1.活性エネルギー線ラジカル重合開始剤
 本開示で用いられる活性エネルギー線ラジカル重合開始剤に特に制限はなく、例えば、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、オリゴ[2-ヒドロキシ-2-メチル-1-[4-1-(メチルビニル)フェニル]プロパノン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)ベンジル]フェニル}-2-メチルプロパン-1-オン、2-メチル-1-[4-(メチルチオ)]フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン及び2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン等のアセトフェノン系化合物;ベンゾイン、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル及びベンゾインイソブチルエーテル等のベンゾイン化合物;ベンゾフェノン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-フェニルベンゾフェノン、メチル-2-ベンゾフェノン、1-[4-(4-ベンゾイルフェニルスルファニル)フェニル]-2-メチル-2-(4-メチルフェニルスルフォニル)プロパン-1-オン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン及び4-メトキシ-4’-ジメチルアミノベンゾフェノン等のベンゾフェノン系化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、及びビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド等のアシルホスフィンオキサイド化合物;ならびにチオキサントン、2-クロロチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、1-クロロ-4-プロピルチオキサントン、3-[3,4-ジメチル-9-オキソ-9H-チオキサントン-2-イル-オキシ]-2-ヒドロキシプロピル-N,N,N-トリメチルアンモニウムクロライド及びフルオロチオキサントン等のチオキサントン系化合物等が挙げられる。
 前記以外の化合物としては、ベンジル、エチル(2,4,6-トリメチルベンゾイル)フェニルフォスフィネート、フェニルグリオキシ酸メチル、エチルアントラキノン、フェナントレンキノン及びカンファーキノン等が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
3-2.熱ラジカル重合開始剤
 本開示で用いられる熱ラジカル重合開始剤に特に制限はなく、例えば、過酸化物及びアゾ系開始剤が挙げられる。
 過酸化物の具体例としては、過酸化水素;過硫酸ナトリウム、過硫酸アンモニウム、過硫酸カリウム等の無機過酸化物;1,1-ビス(t-ブチルパーオキシ)2-メチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(4,4-ジ-ブチルパーオキシシクロヘキシル)プロパン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(m-トルオイルパーオキシ)ヘキサン、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアセテート、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルパーオキシベンゾエート、n-ブチル-4,4-ビス(t-ブチルパーオキシ)バレレート、ジ-t-ブチルパーオキシイソフタレート、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、p-メンタンハイドロパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン-3、ジイソプロピルベンゼンハイドロパーオキサイド、t-ブチルトリメチルシリルパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド等の有機過酸化物が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
 アゾ系開始剤の具体例としては、2,2’-アゾビスイソブチロニトリル、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、アゾジ-t-オクタン、アゾジ-t-ブタン等のアゾ化合物が挙げられ、これらは1種のみ用いてもよく、2種以上を併用することもできる。
 又、過酸化物と、アスコルビン酸、アスコルビン酸ナトリウム、エリソルビン酸ナトリウム、酒石酸、クエン酸、ホルムアルデヒドスルホキシラートの金属塩、チオ硫酸ナトリウム、亜硫酸ナトリウム、重亜硫酸ナトリウム、メタ重亜硫酸ナトリウム、塩化第二鉄等の還元剤とを併用したレドックス重合開始系と組み合わせることによりレドックス反応とすることも可能である。
3-3.活性エネルギー線カチオン重合開始剤
 本開示で用いられる活性エネルギー線カチオン重合開始剤に特に制限はなく、例えば、ヨードニウム塩、スルホニウム塩、ジアゾニウム塩、セレニウム塩、ピリジニウム塩、フェロセニウム塩及びホスホニウム塩等のオニウム塩が挙げられる。これらの中でも、ヨードニウム塩及びスルホニウム塩が好ましい。
 活性エネルギー線カチオン重合開始剤がヨードニウム塩又はスルホニウム塩である場合、対アニオンとしては、例えば、BF 、AsF 、SbF 、PF 及びB(C 等が挙げられる。
 前記ヨードニウム塩としては、(トリクミル)ヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム・ヘキサフルオロホスフェート、ジフェニルヨードニウム・ヘキサフルオロアンチモネート、ジフェニルヨードニウム・テトラフルオロボレート、ジフェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウム・テトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・ヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・ヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・テトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 又、前記ヨードニウム塩は、市販品を用いることもでき、具体的には、例えば、GE東芝シリコーン社製「UV-9380C」(商品名)、ローディア社製「RHODOSIL PHOTOINITIATOR2074」(商品名)、富士フイルム和光純薬社製「WPI-116」(商品名)及び「WPI-113」(商品名)等が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
 前記スルホニウム塩としては、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビステトラフルオロボレート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・ヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・ヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・テトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウム・ヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロホスフェート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロアンチモネート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビステトラフルオロボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 又、スルホニウム塩は、市販品を用いることもでき、具体的には、例えば、ダウ・ケミカル日本社製「サイラキュアUVI-6990」(商品名)、「サイラキュアUVI-6992」(商品名)及び「サイラキュアUVI-6974」、ADEKA社製「アデカオプトマーSP-150」(商品名)、「アデカオプトマーSP-152」(商品名)、「アデカオプトマーSP-170」(商品名)及び「アデカオプトマーSP-172」(商品名)等が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
 前記ジアゾニウム塩としては、ベンゼンジアゾニウムヘキサフルオロアンチモネート、ベンゼンジアゾニウムヘキサフルオロホスフェート及びベンゼンジアゾニウムヘキサフルオロボーレート等が挙げられる。これらは1種のみ用いてもよく、2種以上を併用することもできる。
3-4.熱カチオン重合開始剤
 本開示で用いられる熱カチオン重合開始剤に特に制限はなく、例えば、スルホニウム塩、ホスホニウム塩及び第四級アンモニウム塩等が挙げられる。これらの中でも、スルホニウム塩が好ましい。
 熱カチオン重合開始剤における対アニオンとしては、例えば、AsF 、SbF 、PF 、B(C 等が挙げられる。
 前記スルホニウム塩としては、トリフェニルスルホニウム四フッ化ホウ素、トリフェニルスルホニウム六フッ化アンチモン、トリフェニルスルホニウム六フッ化ヒ素、トリ(4-メトキシフェニル)スルホニウム六フッ化ヒ素、ジフェニル(4-フェニルチオフェニル)スルホニウム六フッ化ヒ素等が挙げられる。
 又、前記スルホニウム塩は、市販品を用いることもでき、具体的には、例えば、ADEKA社製「アデカオプトンCP-66」(商品名)及び「アデカオプトンCP-77」(商品名)、三新化学工業社製「サンエイドSI-60L」(商品名)、「サンエイドSI-80L」(商品名)及び「サンエイドSI-100L」(商品名)等が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
 前記ホスホニウム塩としては、エチルトリフェニルホスホニウム六フッ化アンチモン、テトラブチルホスホニウム六フッ化アンチモン等が挙げられる。
 前記第四級アンモニウム塩としては、N,N-ジメチル-N-ベンジルアニリニウム六フッ化アンチモン、N,N-ジエチル-N-ベンジルアニリニウム四フッ化ホウ素、N,N-ジメチル-N-ベンジルピリジニウム六フッ化アンチモン、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸、N,N-ジメチル-N-(4-メトキシベンジル)ピリジニウム六フッ化アンチモン、N,N-ジエチル-N-(4-メトキシベンジル)ピリジニウム六フッ化アンチモン、N,N-ジエチル-N-(4-メトキシベンジル)トルイジニウム六フッ化アンチモン、N,N-ジメチル-N-(4-メトキシベンジル)トルイジニウム六フッ化アンチモン等が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
4.無機物質層積層用アンダーコート剤組成物
 本開示の無機物質層積層用アンダーコート剤組成物(以下、「本開示の組成物」ともいう。)は、本開示に係るポリシロキサン化合物と、ラジカル重合開始剤及び/又はカチオン重合開始剤と、を含んでいる。
 本開示に係るポリシロキサン化合物は、流動性及び硬化性に優れるとともに、後述するように硬化物の表面に乾式成膜法により積層した無機物質層の密着性が優れる上、硬化物の耐熱性、耐擦傷性及び/又は硬度に優れる。そのため、本開示の組成物は、樹脂基材に無機物質層を乾式成膜法により積層するために樹脂基材上に塗布するアンダーコート剤として用いられ得る。
 本開示の組成物は、前記ポリシロキサン化合物と、ラジカル重合開始剤及び/又はカチオン重合開始剤と、を含むものであるが、必要に応じて種々の成分(以下、「その他の成分」という。)を配合することができる。
 その他の成分としては、ポリシロキサン化合物とともに重合し得る重合性化合物である(メタ)アクリレート化合物、カチオン重合性化合物、及びエチレン性不飽和基を有する化合物、ラジカル重合禁止剤、酸化防止剤、溶剤、耐熱性向上剤、並びにシリコーン等が好ましい。
 以下、その他の成分について説明する。
4-1.(メタ)アクリレート化合物
 本開示の組成物は、前記式(1)で表されるポリシロキサン化合物を含有し、更に、本開示の組成物から形成される硬化物の耐擦傷性及び硬度等の物性を調整すること、又は、本開示の組成物の粘度及び硬化性等を調整することを目的として、アクリロイル基又はメタクリロイル基を有する化合物(以下、(メタ)アクリレート化合物という。)等を配合することができる。
 前記(メタ)アクリレート化合物に特に制限はなく、1個の(メタ)アクリロイル基を有する化合物(以下、「単官能(メタ)アクリレート」という)、及び2個以上の(メタ)アクリロイル基を有する化合物(以下、「多官能(メタ)アクリレート」という)が挙げられる。
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、及び2-エチルヘキシル(メタ)アクリレート等のアルキル(メタ)アクリレート;
 シクロヘキシル(メタ)アクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、及びトリシクロデカンメチロール(メタ)アクリレート等の脂環式基を有する単官能(メタ)アクリレート;
 ベンジル(メタ)アクリレート、及びフェニル(メタ)アクリレートの芳香族基を有する単官能(メタ)アクリレート;
 フェノールエチレンオキサイド付加物の(メタ)アクリレート、フェノールプロピレンオキサイド付加物の(メタ)アクリレート、変性ノニルフェノールエチレンオキサイド付加物の(メタ)アクリレート、及びノニルフェノールプロピレンオキサイド付加物の(メタ)アクリレート、パラクミルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート、オルトフェニルフェノール(メタ)アクリレート、及びオルトフェニルフェノールのアルキレンオキサイド付加物の(メタ)アクリレート等のフェノール誘導体のアルキレンオキサイド付加物の(メタ)アクリレート;
 2-エチルヘキシルカルビトール(メタ)アクリレート等のアルコキシアルキル基を有する単官能(メタ)アクリレート;
 テトラヒドロフルフリル(メタ)アクリレート、及びN-(2-(メタ)アクリロキシエチル)ヘキサヒドロフタルイミド等の複素環を有する単官能(メタ)アクリレート;
 ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、及びヒドロキシヘキシル(メタ)アクリレート等のヒドロキシルアルキル(メタ)アクリレート;
 2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等のヒドロキシル基及び芳香族基を有する単官能(メタ)アクリレート;
ジエチレングリコールモノ(メタ)アクリレート、ジプロピレングリコールモノ(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、トリプロピレングリコールモノ(メタ)アクリレート等のアルキレングルコールモノ(メタ)アクリレート;並びに
 ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート、及びフタル酸モノヒドロキシエチル(メタ)アクリレート等のカルボキシル基を有する単官能(メタ)アクリレート等が挙げられる。
 多官能(メタ)アクリレートとしては、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキサイド変性ネオペンチルグリコールのジ(メタ)アクリレート、エチレンオキサイド変性ビスフェノールAのジ(メタ)アクリレート、プロピレンオキサイド変性ビスフェノールAのジ(メタ)アクリレート、エチレンオキサイド変性水添ビスフェノールAのジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパンアリルエーテルジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート及びジペンタエリスリトールヘキサアクリレート等が挙げられる。
 多官能(メタ)アクリレートとしては、ウレタン(メタ)アクリレートを使用することもできる。
 ウレタン(メタ)アクリレートとしては、有機ポリイソシアネートとヒドロキシル基含有(メタ)アクリレートを付加反応させた化合物や、有機ポリイソシアネートとポリオールとヒドロキシル基含有(メタ)アクリレートを付加反応させた化合物が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもでき、異なる種類のものを併用することもできる。
 ここで、ポリオールとしては、低分子量ポリオール、ポリエーテルポリオール、ポリエステルポリオール及びポリカーボネートポリオール等が挙げられる。
 低分子量ポリオールとしては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、シクロヘキサンジメチロール、及び3-メチル-1,5-ペンタンジオール等が挙げられる。
 ポリエーテルポリオールとしては、ポリプロピレングリコールやポリテトラメチレングリコール等が挙げられる。
 ポリエステルポリオールとしては、これら低分子量ポリオール及び/又はポリエーテルポリオールと、アジピン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸及びテレフタル酸等の二塩基酸又はその無水物等の酸成分との反応物が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもでき、異なる種類のものを併用することもできる。
 有機ポリイソシアネートとしては、トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、ヘキサメチレンジイソシアネート、及イソホロンジイソシアネート等が挙げられる。
 ヒドロキシル基含有(メタ)アクリレートとしては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレートや、ペンタエリスリトールトリ(メタ)アクリレート、イソシアヌル酸のアルキレンオキサイド3モル付加物のジ(メタ)アクリレート及びジペンタエリスリトールペンタアクリレート等のヒドロキシル基含有多官能(メタ)アクリレート等が挙げられる。これらは1種のみ用いてもよく、2種以上を併用することもでき、異なる種類のものを併用することもできる。
 本開示の組成物において、(メタ)アクリレート化合物が更に含まれる場合には、その配合割合は、特に制限されるものではないが、前記式(1)で表されるポリシロキサン化合物100重量部に対する(メタ)アクリレート化合物の配合割合が、好ましくは100重量部以下、より好ましくは50重量部以下、更に好ましくは20重量部以下である。無機物質層との密着性の観点からは、(メタ)アクリレート化合物の配合割合は低い方が好ましく、10重量%以下の含有量であることが好ましく、5重量%以下であることがより好ましく、1重量%以下の含有量であることが更に好ましい。
4-2.(メタ)アクリレート化合物以外のエチレン性不飽和基を有する化合物
 本開示の組成物には、無溶剤で使用する場合に粘度を低下させる目的や、被着体との密着性を高める目的等で、前記(メタ)アクリレート化合物以外の1分子中に1個のエチレン性不飽和基を有する化合物を加えてもよい。
 前記エチレン性不飽和基としては、(メタ)アクリロイル基、マレイミド基、(メタ)アクリルアミド基、又はビニル基が好ましい。
 前記エチレン性不飽和基を有する化合物の具体例としては、(メタ)アクリル酸、アクリル酸のマイケル付加型のダイマー、N-(2-ヒドロキシエチル)シトラコンイミド、N,N-ジメチルアクリルアミド、アクリロイルモルフォリン、N-ビニルピロリドン及びN-ビニルカプロラクタム等が挙げられる。
 これらは1種のみ用いてもよく、2種以上を併用することもできる。
 又、本開示の組成物において、前記エチレン性不飽和基を有する化合物が含まれる場合、無機物質層の密着性及び耐候性の観点では、前記式(1)で表されるポリシロキサン化合物の総重量に対するエチレン性不飽和基を有する化合物の配合割合が10重量%以下であることが好ましく、5重量%以下であることがより好ましく、1重量%以下であることが更に好ましい。
4-3.カチオン重合性化合物
 本開示の組成物は、硬化物の硬度や被着物との密着力を高めるために、式(1)で表されるポリシロキサンがエポキシ基又はオキセタニル基を有する一価の有機基を有するポリシロキサンである場合には、それ以外のカチオン重合性化合物を含有することが好ましい。
 このカチオン重合性化合物は、前記式(1)で表されるポリシロキサン化合物以外のカチオン重合性を有する化合物であり、例えば、エポキシ化合物(エポキシ基を有する化合物)、他のオキセタニル基を有する化合物(他のオキセタニル基含有化合物)、ビニルエーテル基を有する化合物(ビニルエーテル化合物)等が挙げられる。これらの化合物は、1種単独で用いてよいし、2種以上を組み合わせて用いてもよい。
 エポキシ化合物は、前記式(1)で表されるポリシロキサン化合物が少なくともオキセタニル基を有する場合、前記式(1)で表されるポリシロキサン化合物におけるオキセタニル基のカチオン重合を円滑に進める効果を奏するため、特に好ましい。
 前記エポキシ化合物としては、単官能エポキシ化合物、多官能エポキシ化合物等が挙げられる。
 多官能エポキシ化合物としては、ジシクロペンタジエンジオキサイド、リモネンジオキサイド、4-ビニルシクロヘキセンジオキサイド、(3,4-エポキシシクロヘキシル)メチル-3,4-エポキシシクロヘキシルカルボキシレート(例えば、(株)ダイセル製「セロキサイド2021P」(商品名))、ジ(3,4-エポキシシクロヘキシル)アジペート、ビスフェノールA型エポキシ樹脂、ハロゲン化ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、ビスフェノールSジグリシジルエーテル、ビスフェノールF型エポキシ樹脂、1,6-ヘキサンジオールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ポリブタジエンの両末端がグリシジルエーテル化された化合物、o-クレゾールノボラック型エポキシ樹脂、m-クレゾールノボラック型エポキシ樹脂、p-クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、ポリブタジエンの内部エポキシ化物、(株)ダイセル製「エポフレンド」(商品名)等の、スチレン-ブタジエン共重合体における、二重結合が一部エポキシ化された化合物、KRATON社製「L-207」(商品名)等の、エチレン-ブチレン共重合体部及びイソプレン重合体部を備えるブロック共重合体における、イソプレン重合体部の一部がエポキシ化された化合物、(株)ダイセル製「EHPE3150」(商品名)等の、4-ビニルシクロヘキセンオキサイドの開環重合体において、ビニル基をエポキシ化した構造の化合物、Mayaterials社製「Q8シリーズ」における「Q-4」等の、グリシジル基を有するかご状シルセスキオキサン、Mayaterials社製「Q8シリーズ」における「Q-5」等の、エポキシ基を有する脂環タイプのかご状シルセスキオキサン、エポキシ基含有シルセスキオキサン化合物及びエポキシ化植物油等が挙げられる。
 本開示の組成物は、耐候性の観点から、多官能エポキシ化合物を含有することがより好ましい。
 又、単官能エポキシ化合物としては、1,2-エポキシヘキサデカン等のα-オレフィンエポキサイド、フェニルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、ドデシルグリシジルエーテル及びグリシジルメタクリレート等が挙げられる。
 他のオキセタニル基含有化合物としては、単官能オキセタン化合物及び多官能オキセタン化合物等が挙げられる。
 多官能オキセタン化合物としては、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン(XDO)、ジ[2-(3-オキセタニル)ブチル]エーテル(DOX)、1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(HQOX)、1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(RSOX)、1,2-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼン(CTOX)、4,4’-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ビフェニル(4,4’-BPOX)、2,2’-ビス〔(3-エチル-3-オキセタニル)メトキシ〕ビフェニル(2,2’-BPOX)、3,3’,5,5’-テトラメチル〔4,4’-ビス(3-エチルオキセタン-3-イル)メトキシ〕ビフェニル(TM-BPOX)、2,7-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ナフタレン(2,7-NpDOX)、1,6-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕-2,2,3,3,4,4,5,5-オクタフルオロヘキサン(OFH-DOX)、3(4),8(9)-ビス[(1-エチル-3-オキセタニル)メトキシメチル]-トリシクロ[5.2.1.02.6]デカン、1,2-ビス[2-[(1-エチル-3-オキセタニル)メトキシ]エチルチオ]エタン、4,4’-ビス[(1-エチル-3-オキセタニル)メチル]チオジベンゼンチオエーテル、2,3-ビス[(3-エチルオキセタン-3-イル)メトキシメチル]ノルボルナン(NDMOX)、2-エチル-2-[(3-エチルオキセタン-3-イル)メトキシメチル]-1,3-0-ビス[(1-エチル-3-オキセタニル)メチル]-プロパン-1,3-ジオール(TMPTOX)、2,2-ジメチル-1,3-0-ビス[(3-エチルオキセタン-3-イル)メチル]-プロパン-1,3-ジオール(NPGOX)、2-ブチル-2-エチル-1,3-0-ビス[(3-エチルオキセタン-3-イル)メチル]-プロパン-1,3-ジオール、1,4-0-ビス[(3-エチルオキセタン-3-イル)メチル]-ブタン-1,4-ジオール、2,4,6-0-トリス[(3-エチルオキセタン-3-イル)メチル]シアヌル酸、ビスフェノールA及び3-エチル-3-クロロメチルオキセタン(以下、「OXC」と略す。)のエーテル化物(BisAOX)、ビスフェノールF及びOXCのエーテル化物(BisFOX)、フェノールノボラック及びOXCのエーテル化物(PNOX)、クレゾールノボラック及びOXCのエーテル化物(CNOX)、オキセタニルシルセスキオキサン(OX-SQ)及び3-エチル-3-ヒドロキシメチルオキセタンのシリコンアルコキサイド(OX-SC)等が挙げられる。
 又、単官能オキセタン化合物としては、3-エチル-3-(2-エチルヘキシロキシメチル)オキセタン(EHOX)、3-エチル-3-(ドデシロキシメチル)オキセタン(OXR-12)、3-エチル-3-(オクタデシロキシメチル)オキセタン(OXR-18)、3-エチル-3-(フェノキシメチル)オキセタン(POX)及び3-エチル-3-ヒドロキシメチルオキセタン(OXA)等が挙げられる。
 これらの中でも、ジシクロペンタジエンジオキサイド、リモネンジオキサイド、4-ビニルシクロヘキセンジオキサイド、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、ジ(3,4-エポキシシクロヘキシル)アジペート、及びエポキシ基含有シルセスキオキサン化合物が好ましく、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキサンカルボキシレート、及び下記エポキシ基含有シルセスキオキサン化合物がより好ましい。又、無機物質層の密着性向上の観点では、エポキシ基含有シルセスキオキサン化合物及びエポキシ基含有シリコーン化合物等のエポキシ基を有する有機-無機ハイブリッド化合物が特に好ましい。
Figure JPOXMLDOC01-appb-C000012
 前記ビニルエーテル化合物としては、単官能ビニルエーテル化合物及び多官能ビニルエーテル化合物等が挙げられる。
 多官能ビニルエーテル化合物としては、シクロヘキサンジメタノールジビニルエーテル、トリエチレングリコールジビニルエーテル及びノボラック型ジビニルエーテル等が挙げられる。
 又、単官能ビニルエーテル化合物としては、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、ドデシルビニルエーテル、プロペニルエーテルプロピレンカーボネート及びシクロヘキシルビニルエーテル等が挙げられる。
 本開示のカチオン硬化性組成物が、前記カチオン重合性化合物を含有する場合、このカチオン重合性化合物の含有量は特に限定されるものではないが、前記式(1)で表されるポリシロキサン化合物100重量部に対して、好ましくは0.1~100重量部、より好ましくは0.1~50重量部、更に好ましくは1~25重量部である。カチオン重合性化合物の含有量がこの範囲にあると、本開示の組成物の硬化性及び得られる硬化物の硬度等に優れる。
 又、本開示の組成物において、前記式(1)で表されるポリシロキサン化合物以外のカチオン重合性化合物が含まれる場合、無機物質層の密着性の観点では、前記式(1)で表されるポリシロキサン化合物の総重量に対して25重量%以下の含有量であることが好ましく、10重量%以下の含有量であることがより好ましく、5重量%以下の含有量であることが更に好ましい。
4-4.有機ポリマー
 本開示の組成物には、安価な成分で硬化収縮率を低減させる目的等で、有機ポリマーを配合することもできる。
 好適なポリマーとしては、(メタ)アクリル系ポリマーが挙げられ、好適な構成モノマーとしては、メチルメタクリレート、シクロヘキシル(メタ)アクリレート及びN-(2-(メタ)アクリロキシエチル)テトラヒドロフタルイミド等が挙げられる。
 又、本開示の組成物において、前記有機ポリマーが含まれる場合、無機物質層の密着性及び耐候性の観点では、前記式(1)で表されるポリシロキサン化合物の総重量に対して10重量%以下の含有量であることが好ましく、5重量%以下の含有量であることがより好ましく、1重量%以下の含有量であることが更に好ましい。
4-5.ラジカル重合禁止剤及び酸化防止剤
 本開示の組成物には、保存安定性や熱安定性を高める目的で、ラジカル重合禁止剤や酸化防止剤を添加してもよい。
 使用する重合禁止剤や酸化防止剤は、特に限定されず、公知のラジカル捕捉剤を使用することができる。
 ラジカル重合禁止剤の具体例としては、ハイドロキノンやハイドロキノンモノメチルエーテル等のフェノール系化合物が挙げられる。
 酸化防止剤の具体例としては、2,6-ジ-tert-ブチル-4-メチルフェノールや2,4-ジメチル-6-tert-ブチルフェノール、ペンタエリスリトールテトラキス(3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート)等のヒンダードフェノール系酸化防止剤、及び3-ヒドロキシチオフェノール等が挙げられる。又、α-ニトロソ-β-ナフトール、p-ベンゾキノン及び銅塩等が挙げられる。更に、富士フイルム和光純薬(株)のN-ニトロソフェニルヒドロキシルアミンアルミニウム塩や、住友化学(株)の2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート等も使用できる。これらは1種のみ用いてもよく、2種以上を混合して用いてもよい。
 又、4,6-ビス(オクチルチオメチル)-O-クレゾール等のイオウ系二次酸化防止剤や、リン系二次酸化防止剤等を併用して添加してもよい。
4-6.溶剤
 本開示の組成物は、液状である場合、基材表面にそのまま塗布することができるが、必要に応じて溶剤で希釈して使用することもできる。溶剤を使用する場合、本開示に係るポリシロキサン化合物を溶解する溶剤が好ましく、例えば、脂肪族系炭化水素溶剤、芳香族系炭化水素溶剤、塩素化炭化水素溶剤、アルコール溶剤、エーテル溶剤、アミド溶剤、ケトン溶剤、エステル溶剤及びセロソルブ溶剤等の各種有機溶剤を挙げることができる。
 有機溶剤としては、特に制限はなく、例えば、メタノール、エタノール、イソプロピルアルコール、イソブチルアルコール等のアルコール;プロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;トルエン及びキシレン等の芳香族化合物;プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸ブチル等のエステル;アセトン、メチルエチルケトン及びメチルイソブチルケトン等のケトン;ジブチルエーテル等のエーテル;並びにN-メチルピロリドン等が挙げられる。これらは1種のみ用いてもよく、2種以上を併用することもできる。
 溶剤が使用された場合は、本開示の組成物の硬化に先立って、塗布された膜に含まれる溶剤を揮発させることが好ましい。溶剤の揮発は空気中でなされてもよく、不活性ガス雰囲気中でなされてもよい。溶剤の揮発のため加熱してもよいが、その場合の加熱温度は、100℃未満が好ましい。
4-7.耐熱性向上剤
 本開示の組成物は、耐熱性向上剤を含むことができる。
 耐熱性向上剤としては、特に制限はなく、公知のものが使用できるが、例えば、トリス(2-エチルヘキサン酸)鉄(III)等の2-エチルヘキサン酸鉄、トリス(2-エチルヘキサン酸)セリウム(III)等の2-エチルヘキサン酸セリウム、並びにテトラ(2-エチルヘキサン酸)ジルコニウム(IV)及びビス(2-エチルヘキサン酸)酸化ジルコニウム(IV)等の2-エチルヘキサン酸ジルコニウム、等の有機カルボン酸金属塩、及び、酸化鉄、酸化セリウム並びに酸化ジルコニウム等の金属酸化物等が挙げられる。
 耐熱性向上剤の使用割合に特に制限はないが、本開示に係るポリシロキサン化合物の合計量100重量部に対して、例えば0~10,000重量ppmであり、例えば1~1,000重量ppmであり、例えば5~500重量ppmであり、例えば10~300重量ppmである。
 耐熱性向上剤を添加することにより、熱重量減少温度の上昇又は低下抑制、加熱下及び常温での使用並びに保管下での、比誘電率の低下抑制、絶縁性の低下抑制、クラックの発生抑制、及び着色抑制等を行うことができる。
4-8.シリコーン
 本開示の組成物は、シリコーンを含むことができる。
 シリコーンとしては、特に制限はなく、公知のものが使用できるが、例えば、ポリジメチルシリコーン、ポリジフェニルシリコーン、ポリメチルフェニルシリコーン等が挙げられ、その末端及び/又は側鎖に官能基を有していても良い。前記官能基としては、特に制限はなく、例えば、(メタ)アクリロイル基、エポキシ基、オキセタニル基、ビニル基、水酸基、カルボキシル基、アミノ基、チオール基等が挙げられる。
 シリコーンの使用割合に特に制限はないが、本開示に係るポリシロキサン化合物の合計量100重量部に、例えば0~100重量部であり、例えば1~50重量部であり、例えば5~40重量部であり、例えば5~30重量部である。
4-9.前記以外のその他の成分
 本開示の組成物は、その他の成分として、前記した成分以外の成分も必要に応じて配合できる。
 具体的には、界面活性剤類、帯電防止剤類(例えば導電性ポリマー類)、シリコーン系ポリマー及びフッ素原子含有ポリマー等のレベリング剤類、光増感剤類、紫外線吸収剤類、安定剤類、潤滑剤類、顔料類、染料類、可塑剤類、懸濁剤類、ナノ粒子、ナノファイバー、ナノシート及びシリカやアルミナ等の各種フィラー等の任意の他の補助剤を含有することができる。又、テトラアルコキシシラン類、トリアルコキシシラン類、ジアルコキシシラン類、モノアルコキシシラン類及びジシロキサン類等のシラン系反応性希釈剤等を含有することもできる。
5.樹脂基材
 本開示に係る無機物質層を積層するために用いる樹脂基材は特に制限はなく、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、アクリロニトリル-ブタジエン-スチレン(ABS)樹脂、ポリアミド樹脂、アクリル樹脂、塩化ビニリデン樹脂、ポリカーボネート樹脂(PC)、ポリウレタン樹脂、エポキシ樹脂、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)及びポリブチレンフタレート(PBT)、等のポリエステル樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリアクリレート及びポリメチルメタクリレート(PMMA)などのポリメタクリレート等のアクリル樹脂、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、アセテート系樹脂、フッ化ビニル系樹脂、ポリアリレート、セロファン、ポリエーテルスルホン、ノルボルネン系樹脂、及びトリアセチルセルロース(TAC)等のアセチルセルロース樹脂等の樹脂や各種の繊維強強化樹脂(FRP)等のプラスチック材料等が挙げられる。
 又、樹脂基材としては、使用用途に応じて、適宜、適切な物性を有するものが好ましい。例えば、耐熱性の観点からは融点が挙げられ、好ましくは150℃以上であり、より好ましくは200℃以上であるものが好ましい。例えば、光学特性の観点から、濁度(曇り度)、複屈折率、屈折率等が挙げられる。例えば、曇り度(ASTM D1003)は、好ましくは2%以下であり、より好ましくは0.5%以下である。例えば、リタデーション(平行ニコル回転法)は、好ましくは30以下であり、より好ましくは20以下であり、更に好ましくは5以下である。例えば、屈折率は1.48以上が好ましい。
 例えば、光学特性の観点から、ポリカーボネート樹脂及びポリメチルメタクリレートが好適である。ガスバリア性の観点から、ポリエチレンテレフタレートが好適である。
 更に、このような樹脂基材としては、本開示のアンダーコート剤組成物との塗布性およびその硬化物との密着性に優れた樹脂基材を使用することが望ましいが、本開示の無機物質層積層用硬化物の密着性をより向上させるために、例えば、樹脂基材の表面にコロナ放電処理、紫外線照射処理及びラズマ処理等の表面活性処理を施したものを用いることができる。
 又、本開示で用いる樹脂基材の形状は特に制限はなく、例えば、フィルム、シート、レンズ及び板等、用途に応じて任意に選択される。
6.無機物質層
 本開示における無機物質層としては、乾式成膜工法で形成されたものであれば特に制限されるものではなく、例えば、Si、Ti、Zn、Al、Ga、In、Ce、Bi、Sb、B、Zr、Sn、Ta、Ag及びPt等の元素を有する少なくとも1種以上の各種金属又は金属酸化物、窒化物及び硫化物等を主成分とする層が挙げられる。
 無機物質層を形成する材料としては、具体的には、例えば、低屈折率材料としては、フッ化ナトリウム、クリオライト、チオライト、フッ化リチウム、フッ化マグネシウム、フッ化アルミニウム、フッ化カルシウム、フッ化ストロンチウム、フッ化ジルコニウム、二酸化ケイ素、フッ化バリウム、フッ化イットリウム等が挙げられ、中屈折率材料としては、OL-B、フッ化ランタン、フッ化ネオジム、フッ化ガドリニウム、フッ化セリウム、酸化アルミニウム、酸化タングステン、酸化マグネシウム、フッ化鉛、一酸化ケイ素、酸化ランタン、酸化イットリウム、酸化スカンジウム、酸化ユーロピウム、酸化モリブデン、フッ化サマリウム、酸化プラセオジム等が挙げられ、高屈折率材料としては、酸化インジウム、酸化スズ、酸化ハフニウム、酸化タンタル、酸化ジルコニウム、酸化アンチモン、酸化亜鉛、酸化セリウム、OS-5、酸化ネオジム、酸化ニオブ、硫化亜鉛、三酸化二チタン、五酸化三チタン、一酸化チタン、二酸化チタン、シリコン、ゲルマニウム等が挙げられ、金属としては、銀、アルミニウム、金、クロム、銅、ハフニウム、インジウム、モリブデン、ニッケル、白金、タンタル、チタニウム、タングステン等が挙げられ、又、その他の機能剤としては、酸化ゲルマニウム、ITO、MS-DC100、MS-SY等が挙げられる
 又、例えば、高硬度で絶縁性に優れたダイヤモンドライクカーボン(以下DLC)膜層も挙げられる。DLC膜は、炭素間のsp結合を主体としたアモルファス構造の炭素膜で、非常に硬く、低摩擦係数、耐摩耗性、耐食性及びガスバリア性を有し、絶縁性に優れたダイヤモンド状炭素膜である。
 本開示における無機物質層としては、少なくとも1層以上であればよく、複層であっても良い。無機物質層が複層である場合、それらの積層順や無機物質層の種類も特に制限されない。又、無機物質層としては、紫外線吸収層や機能性層等の種々の機能層であっても良い。
 無機物質層の一層をDLC層とする場合には、前記性能を有している点から、前記金属酸化物層を積層した上に、最表層として積層することが好ましい。
 これらの無機物質層は用途に応じて任意に選択される。
 本開示における無機物質層の積層方法は、乾式成膜工法であれば特に制限されず、例えば、抵抗加熱蒸着、電子ビーム加熱蒸着、高周波誘導加熱蒸着といった真空蒸着、分子線エピタキシー法、イオンビームデポジション、イオンプレーティング、スパッタリング、レーザーアブレーション等の物理気相成長法(以下、「PVD」又は物理蒸着法ともいう。)や、熱CVD、プラズマCVD、光CVD、エピタキシャルCVD、アトミックレイヤーCVD、catCVD、有機金属CVD等の化学気相成長法(以下、「CVD」又は化学蒸着法ともいう。)等の乾式成膜工法が挙げられるが、好ましくは物理蒸着法である。
 ここでいう、乾式成膜工法とは材料表面を気相または融解状態を用いて処理することで、一般にドライプロセスと呼ばれることもある。
 無機物質層の厚さに特に制限はなく、目的や用途に応じて任意に設定されるが、例えば、無機物質層の耐擦傷性の観点からは、5nm以上であることが好ましく、50nm以上であることがより好ましく、100nm以上であることが更に好ましく、150nm以上であることが更に好ましい。無機物質層の厚さの上限は特に限定されないが、好ましくは25μm以下であり、より好ましくは15μm以下であり、更に好ましく10μm以下である。無機物質層の厚さを調整するには、物理蒸着において、処理時間等を調整すればよい。
 本開示による積層体は、前記のようにして積層した無機物質層が無機物であることから、有機物被膜にない優れた外観、耐候性及び耐擦傷性を有しており、又、該無機物質層積層用硬化物との密着性に優れ、耐候性、耐水性及び耐擦傷性に非常に優れたものであるとすることができる。
8.無機物質層積層用アンダーコート剤組成物及びその硬化物の製造方法
 本開示の硬化性組成物は、原料成分を混合することにより得ることができる。混合の際には、公知の混合機等を用いればよい。具体的には、反応用フラスコ、チェンジ缶式ミキサー、プラネタリーミキサー、ディスパー、ヘンシェルミキサー、ニーダー、インクロール、押出機、3本ロールミル、サンドミル等が挙げられる。
 本開示の組成物は、本開示の組成物を適切な樹脂基材に塗布するなどした後、通常は活性エネルギー線を照射する方法、加熱する方法、活性エネルギー線照射及び加熱を併用する方法等の方法によって重合性基の反応を進行させて硬化する。
 本開示の組成物は溶剤を含んでも、含まなくても良く、溶剤を含む場合には、前記のとおり、通常は溶剤を除去してから硬化に供する。
8-1.硬化性組成物
 本開示の組成物は前記式(1)で表されるポリシロキサン化合物と、前記ラジカル重合開始剤及び/又はカチオン重合開始剤と、を含む。更に、前記その他の成分を含んでも良い。その他の成分として溶媒が含まれる場合には、通常は本開示の組成物の硬化前に溶媒を乾燥するなどして除去してから硬化物を得、アンダーコートとする。したがって、本開示の組成物において、溶媒を除く全ての成分のうち、前記式(1)で表されるポリシロキサン化合物の占める割合は、50重量部以上が好ましく、70重量部以上がより好ましく、90重量部以上が更に好ましい。前記好ましい範囲とすることにより、無機物質層との密着性が良好な硬化物を得ることができる。
 溶媒を混合する場合、その使用量は、目的に応じて任意に設定され、特に制限はないが、例えば、前記式(1)で表されるポリシロキサン化合物100重量部に対し、1~20,000重量部とすることができ、より好ましくは10~1,000重量であり、更に好ましくは50~500重量部である。
8-2.塗布方法
 本開示の組成物を樹脂基材に塗布する方法に特に制限はなく、基材の構成材料及び形状等に応じて、適宜、選択される。例えば、キャスト法、スピンコート法、バーコート法、ディップコート法、スプレーコート法、ロールコート法、フローコート法及びグラビアコート法等の通常の塗工方法を用いることができる。
 本開示の組成物を塗布する厚さに特に制限はなく、目的に応じて任意に設定されるが、好ましくは0.1~100μmであり、より好ましくは0.5~50μmであり、更に好ましくは1~10μmである。
8-3.硬化方法
 本開示において、硬化性組成物が、活性エネルギー線硬化性であるか、及び/又は熱硬化性であるかにより、その硬化方法及び硬化条件が選択される。又、硬化条件(活性エネルギー線硬化の場合は、例えば、光源の種類及び光照射量等であり、熱硬化の場合は、加熱温度及び加熱時間等である。)は、本開示の組成物に含有される重合開始剤の種類、量及び他の重合性化合物の種類等によって、適宜、選択される。
(1)活性エネルギー線硬化方法
 本開示の組成物が、活性エネルギー線硬化性組成物である場合、その硬化方法としては、公知の活性エネルギー線照射装置等によって活性エネルギー線照射を行えばよい。活性エネルギー線としては、電子線、及び、紫外線、可視光線並びにX線等の光等が挙げられるが、好ましくは光であり、安価な装置を使用することができるため、紫外線がより好ましい。
 紫外線照射装置としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、紫外線(UV)無電極ランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯及び発光ダイオード(LED)等が挙げられる。
 本開示の組成物を塗布した被膜への光照射強度は、目的や用途等に応じて選択すればよく、活性エネルギー線重合開始剤(光硬化の場合は、光重合開始剤と称する。)の活性化に有効な光波長領域(光重合開始剤の種類によって異なるが、好ましくは220~460nmの波長の光が用いられる。)における光照射強度は、好ましくは0.1~1000mW/cmである。
 又、照射エネルギーは、活性エネルギー線の種類や配合組成に応じて適宜設定すべきものであるが、前記被膜への光照射時間も、目的や用途等に応じて選択すればよく、前記光波長領域における光照射強度及び光照射時間の積として表される積算光量が、10~7,000mJ/cmとなるように設定されることが好ましい。より好ましくは200~5,000mJ/cmであり、更に好ましくは500~3500mJ/cmである。積算光量が前記範囲にあれば、組成物の硬化が円滑に進行し、均一な硬化物を容易に得ることができる。
 又、光硬化の前及び/又は後に、適宜、加熱硬化を組み合わせることもできる。
 例えば、光を照射した際に、陰となる部位を持つ基材に、本開示の組成物を染み込ませる等した後に、光を照射して、光が当たる部位の本開示の組成物をまず硬化し、その後、熱を加えて光の当たらない部位の本開示の組成物を硬化させる、二段階硬化を行うこともできる。このような基材に特に制限はなく、例えば、布帛状、繊維状、粉末状、多孔質状及び凹凸状等の複雑な形状である基材が挙げられ、これらの形状のうちの2つ以上が組み合わせられた形状であってもよい。
(2)熱硬化方法
 本開示の組成物が、熱硬化性組成物である場合、その硬化方法及び硬化条件は、特に限定されない。
 硬化温度は、好ましくは80℃~200℃であり、より好ましくは100℃~180℃であり、更に好ましくは110℃~150℃である。又、硬化温度は、温度を一定としてもよいし、昇温させてもよい。更には、昇温と降温とを組み合わせてもよい。
 硬化時間は、熱重合開始剤の種類及び他の成分の含有割合等により適宜、選択されるが、好ましくは10~360分であり、より好ましくは30~300分であり、更に好ましくは60~240分である。前記の好ましい条件で被膜を硬化させることにより、膨れ、クラック等のない均一な硬化膜を形成することができる。
8-4.硬化物物性
 本開示の組成物を硬化して得られる硬化物(本明細書では、単に「本開示の硬化物」とも称する。)は、樹脂基材との密着性及び無機物質層との密着性に優れる。密着性の指標に特に制限はなく公知の指標が適用されるが、例えば、碁盤目剥離試験(クロスカット法)等による評価指標が挙げられる。碁盤目剥離試験を採用する場合、積層体の無機物質層に対し、JIS K5600-5-6(ISO-2409)に準じて密着性を評価することができる。
 又、本開示の硬化物は、硬度に優れる。硬度の指標に特に制限はなく公知の指標が適用されるが、例えば、鉛筆硬度試験及び耐擦傷性試験(スクラッチ試験)等による評価指標が挙げられる。
 又、本開示の硬化物は、透明性、耐着色性、耐紫外線性、柔軟性、樹脂基材追随性、耐候性、耐薬品性、耐擦傷性、耐久性及び耐熱性等に優れる。
 本開示の硬化物は前記式(1)で表されるポリシロキサン化合物を主成分とする組成物を硬化させて得られるものであり、本開示に係るポリシロキサン化合物はT単位を含み、好ましくはD単位及び/又はM単位を更に含むものであることから、硬化物中のSiO含有率、すなわち硬化物中に含まれる無機成分の含有率が高いため、その上に積層される無機物質層との密着性に優れる。D単位及び/又はM単位を含む本開示の硬化物は柔軟性又は樹脂基材追随性に、より優れるため、好ましい。又、D単位及び/又はM単位を含む本開示の硬化物は表面平滑性に、より優れるため、好ましい。
 本開示に係るポリシロキサンの各構成成分比、特に構成単位(b)及び構成単位(c)の組成比、を目的や用途に合わせて適切にバランスよく調節することにより、本開示に係るポリシロキサン化合物を硬化して得られる本開示の硬化物は、樹脂基材との密着性、無機物質層との密着性、硬度、柔軟性及び樹脂基材追随性等の物性をバランスよく発現することができる。
9.積層体
 本開示の積層体は、上述の本開示の硬化物、樹脂基材及び無機物質層を含む。本開示の積層体は、少なくとも1つの前記樹脂基材と、その上に積層された本開示の無機物質層積層用アンダーコート剤組成物を硬化した無機物質層積層用硬化物と、更にその上に少なくとも1つの積層された前記無機物質層を含む積層体であることが好ましい。その構成に特に制限はなく、目的や用途等に応じて、任意に選択される。例えば、樹脂基材がフィルムの場合は、その片面に本開示の硬化物と無機物質層が順次積層されたものであってもよく、又、フィルムの両面に本開示の硬化物と無機物質層がそれぞれ順次積層されたものであってもよい。
10.用途
 本開示の積層体の用途としては、特に制限されず、例えば、乗用車、トラック、オートバイ、バス等の自動車車体の外板部;自動車部品;携帯電話、オーディオ機器等の家庭電気製品の外板部等が挙げられ、なかでも、自動車車体の外板部及び自動車部品が好ましい。
 又、光学素子、液晶ディスプレイや有機ELディスプレイなどの表示装置、半導体装置、薄膜太陽電池等の各種の装置における防湿性を要求される部位や部品、食品、衣料品、電子部品等の包装に用いられる包装材料に用いることができる。
 又、ディスプレイ基板、タッチパネル、透明電極付きフィルム、レンズシート、光導波路、太陽電池基板、光ディスク、各種透明基板等の加飾フィルムとして有用な加飾印刷フィルム積層体として用いることができる。
 無機物質層や積層体が有する機能は特に制限はなく、例えば、反射防止、防曇、ガスバリア、ハードコート、耐擦傷、耐摩耗、意匠、帯電防止、導電、耐湿、耐候、耐光、防水、防油、防汚、抗菌、抗ウイルス、抗生物活性、耐紫外線、耐宇宙線、耐酸素プラズマ、耐原子状酸素等が挙げられる。
 次に、本開示を実施例及び比較例に基づいて具体的に説明するが、本開示は、以下の実施例に限定されるものではない。
 尚、重量平均分子量(以下、Mwとも称する。)は、ゲル浸透クロマトグラフィー法(以下、「GPC」と称す。)により、イソプロピルアルコール溶媒中、40℃において、連結したGPCカラム「TSK gel G4000HX」及び「TSK gel G2000HX」(東ソー(株)製)を用いて分離し、リテンションタイムから標準ポリスチレンを用いて算出した。
 又、得られたポリシロキサン化合物の各構成単位のモル比は、試料を重クロロホルムに溶解し、H-NMR分析を行い、必要に応じて更に29Si-NMR分析も行うことにより算出した。アルコキシシランモノマーは定量的に反応し、ポリシロキサン化合物に導入されたが、ジシロキサンモノマーに由来するM単位の導入率は、ポリシロキサン化合物の組成によっては定量的には導入されなかった。
 粘度は、東機産業(株)製TVE22Hを用い、25℃でコーンプレートを用い測定した。
〔ポリシロキサン化合物の合成〕
<合成例1>
 原料シランモノマーとして、Tモノマーである(3-アクリロイルオキシプロピル)トリメトキシシラン、反応溶媒としてイソプロピルアルコール、触媒として塩酸をそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物1を得た。ポリシロキサン化合物1の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例2>
 原料シランモノマーとして、Tモノマーである(3-アクリロイルオキシプロピル)トリメトキシシラン、Dモノマーである両末端シラノール型ポリジメチルシロキサン、反応溶媒としてイソプロピルアルコール、触媒として水酸化テトラメチルアンモニウムをそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物2を得た。ポリシロキサン化合物2の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例3~7>
 原料シランモノマーとして、Tモノマーである(3-アクリロイルオキシプロピル)トリメトキシシラン、Dモノマーであるジメトキシジメチルシラン、反応溶媒としてイソプロピルアルコール、触媒として塩酸をそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物3~7を得た。いずれも生成したポリシロキサン化合物の各構成単位のモル比は原料モノマーの仕込み比どおりであった。各ポリシロキサン化合物の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例8>
 原料シランモノマーとして、Tモノマーである(3-アクリロイルオキシプロピル)トリメトキシシラン、Mモノマーである1,1,3,3-テトラメチル-1,3-ジビニルジシロキサン、反応溶媒としてイソプロピルアルコール、触媒として塩酸をそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物8を得た。1,1,3,3-テトラメチル-1,3-ジビニルジシロキサンは定量的に反応し、ポリシロキサン化合物8に導入された。ポリシロキサン化合物8の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例9>
 原料シランモノマーとして、Tモノマーである(3-メタクリロイルオキシプロピル)トリメトキシシラン、反応溶媒としてイソプロピルアルコール、触媒として塩酸をそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物9を得た。ポリシロキサン化合物9の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例10>
 原料シランモノマーとして、Tモノマーである(3-メタクリロイルオキシプロピル)トリメトキシシラン、Dモノマーである両末端シラノール型ポリジメチルシロキサン、反応溶媒としてイソプロピルアルコール、触媒として水酸化テトラメチルアンモニウムをそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物10を得た。ポリシロキサン化合物10の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例11>
 原料シランモノマーとして、Tモノマーである(3-メタクリロイルオキシプロピル)トリメトキシシラン、Dモノマーであるジメトキシジメチルシラン、反応溶媒としてイソプロピルアルコール、触媒として塩酸をそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物11を得た。ポリシロキサン化合物11の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例12>
 原料シランモノマーとして、Tモノマーである3-エチル-3-[{3-(トリメトキシシリル)プロポキシ}メチル]オキセタン、反応溶媒としてイソプロピルアルコール、触媒として水酸化テトラメチルアンモニウムをそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物12を得た。ポリシロキサン化合物12の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例13>
 原料シランモノマーとして、Tモノマーである3-エチル-3-[{3-(トリメトキシシリル)プロポキシ}メチル]オキセタン、Dモノマーである両末端シラノール型ポリジメチルシロキサン、反応溶媒としてイソプロピルアルコール、触媒として水酸化テトラメチルアンモニウムをそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、溶媒等を除去して無色透明の液体としてポリシロキサン化合物13を得た。ポリシロキサン化合物13の組成比、Mwおよび粘度(25℃)の結果を表1に示す。
<合成例14>
 原料シランモノマーとして、Qモノマーであるテトラメトキシシラン、Tモノマーである(3-メタクリロイルオキシプロピル)トリメトキシシラン、反応溶媒として1-プロパノール、触媒として水酸化テトラメチルアンモニウムをそれぞれ用い、公知の方法に準じて加水分解・重縮合反応を進行させた後、反応液を中和し、生成物を分液抽出し、溶媒等を除去して無色の固体としてポリシロキサン化合物14を得た。ポリシロキサン化合物14の組成比およびMwの結果を表1に示す。尚、固体であるため、粘度は測定しなかった。
 合成例1~14で得られた各ポリシロキサン化合物の組成、各構成単位のモル比、Mw及び粘度(25℃)を表1にまとめた。
Figure JPOXMLDOC01-appb-T000013

 
<参考例1>
 東亞合成(株)製アロニックスM-405(ジペンタエリストールペンタ及びヘキサアクリレート)をそのまま使用した。
<実施例1>
(1)光硬化性アンダーコート剤組成物の調製
 合成例1で得られたポリシロキサン化合物1を10g、光ラジカル重合開始剤である1-ヒドロキシシクロヘキシルフェニルケトン(IGM RESINS B.V.製Omnirad184、以下Om184とも称する。)を0.3g及び溶媒であるプロピレングリコールモノブチルエーテルアセタート(以下、PGBとも称する。)10gをそれぞれ50mLバイアルに秤取し、自転・公転ミキサーでかき混ぜて溶解することによって、光硬化性アンダーコート剤組成物を調製した。
(2)樹脂基材上への塗布と光硬化
 樹脂基材としてポリカーボネート(以下、PCとも称する。)製の板(三菱ガス化学(株)製ユーピロンNF-2000、厚さ1mm)にバーコーターを用いて前記(1)で調製した光硬化性組成物を塗布し、約5μm厚さの被膜を形成させた後、65℃で5分間加熱して溶媒を乾燥させた。そして、下記の条件により紫外線照射を行い、硬化物を作製した。
[紫外線照射条件]
ランプ:80W/cm高圧水銀ランプ
ランプ高さ:10cm
コンベアスピード:5.7m/min
光照射強度:700mW/cm
1パスあたりの積算光量:360 mJ/cm
雰囲気:大気中
パス回数:9回 
(3)無機物質層の積層
 前記(2)で作製した光硬化物上に、下記の装置と条件で白金をスパッタリングにより積層した。白金層の厚さは約10nmであった。
[白金スパッタリング条件]
(株)真空デバイス製MSP-1S Magnetron Sputter
Discharge Current:30 mA、 Process Time:20sec.
(4)無機物質層の密着性試験:付着性(クロスカット法)
 前記(1)~(3)によって作製した積層体の無機物質層に対し、JIS K5600-5-6(ISO-2409)に準じて密着性を評価した。25マスのうち、剥離したマスの個数で評価し、剥離数の少ないものほど密着性が高いことを意味する。実施例1では、剥離したマスは2マスであった。
 尚、本評価において、樹脂基材とアンダーコート剤組成物の光硬化物との間で剥離したものはなかった。
 本実施例の結果を表2にまとめた。
<実施例2>
 樹脂基材としてポリカーボネートの代わりにポリメチルメタクリレート(以下、PMMAとも称する。)製の板(三菱ケミカル(株)製アクリライトL、厚さ1mm)を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例3>
 無機物質層として白金の代わりにイオンプレーティング法によりSiOを積層した以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。SiO層の厚さは約200nmであった。結果を表2に示す。
<実施例4>
 無機物質層として白金の代わりにイオンプレーティング法によりZrOを積層した以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。ZrO層の厚さは約200nmであった。結果を表2に示す。
<実施例5>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例2で得られたポリシロキサン化合物2を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例6>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例2で得られたポリシロキサン化合物2を用いた以外は実施例4と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例7>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例2で得られたポリシロキサン化合物2を用いた以外は実施例3と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例8>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例3で得られたポリシロキサン化合物3を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例9>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例4で得られたポリシロキサン化合物4を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例10>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例5で得られたポリシロキサン化合物5を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例11>
 樹脂基材としてポリカーボネートの代わりにポリエチレンテレフタレート(以下、PETとも称する。)製の板(タキロンシーアイ(株)製、厚さ1mm)を用いた以外は実施例10と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例12>
 樹脂基材としてポリカーボネートの代わりに6ナイロン(以下、Nylon6とも称する。)製の板(TP技研(株)製、厚さ1mm)を用いた以外は実施例10と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例13>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例5で得られたポリシロキサン化合物5を用いた以外は実施例3と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例14>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例5で得られたポリシロキサン化合物5を用いた以外は実施例4と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例15>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例6で得られたポリシロキサン化合物6を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例16>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例7で得られたポリシロキサン化合物7を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例17>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例8で得られたポリシロキサン化合物8を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例18>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例9で得られたポリシロキサン化合物9を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例19>
 樹脂基材としてポリカーボネートの代わりにポリメチルメタクリレートを用いた以外は実施例18と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例20>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例9で得られたポリシロキサン化合物9を用いた以外は実施例4と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例21>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例10で得られたポリシロキサン化合物10を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例22>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例10で得られたポリシロキサン化合物10を用いた以外は実施例3と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例23>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例10で得られたポリシロキサン化合物10を用いた以外は実施例4と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例24>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例11で得られたポリシロキサン化合物11を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例25>
 樹脂基材としてポリカーボネートの代わりにポリエチレンテレフタレートを用いた以外は実施例24と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例26>
 樹脂基材としてポリカーボネートの代わりに6ナイロンを用いた以外は実施例24と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例27>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例11で得られたポリシロキサン化合物11を用いた以外は実施例3と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例28>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例11で得られたポリシロキサン化合物11を用いた以外は実施例4と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例29>
 合成例12で得られたポリシロキサン化合物12を9g、(株)ダイセル製セロキサイド2021P(3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシラート、以下、CEL2021Pとも称する。)1g、光カチオン重合開始剤であるPHOTO INITIATOR 2074(ソルベイジャパン(株)製、以下、PI2074とも称する。)を0.2g及び溶剤であるPGB10gをそれぞれ50mLバイアルに秤取し、自転・公転ミキサーでかき混ぜて溶解し、光硬化性アンダーコート剤組成物を調製した。
 この組成物を用い、実施例1の(2)~(4)と同様にして、積層体を作製し、無機物質層の密着性を評価した。その結果を表2に示す。
<実施例30>
 合成例12で得られたポリシロキサン化合物12の代わりに合成例13で得られたポリシロキサン化合物13を用いた以外は実施例29と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例31>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例9で得られたポリシロキサン化合物9を用いた以外は実施例3と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例32>
 無機物質層として白金の代わりにイオンプレーティング法によりSiOを積層した以外は実施例29と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例33>
 合成例1で得られたポリシロキサン化合物1の代わりに合成例14で得られたポリシロキサン化合物14を用いた以外は実施例3と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<実施例34>
(1)熱硬化性アンダーコート剤組成物の調製
 合成例11で得られたポリシロキサン化合物11を10g、熱ラジカル重合開始剤であるt-ブチル=2-エチルペルオキシヘキサノアート(日油(株)製パーブチルO、以下PBOとも称する。)を0.1g及び溶剤であるPGB10gをそれぞれ50mLバイアルに秤取し、自転・公転ミキサーでかき混ぜて溶解することによって、熱硬化性アンダーコート剤組成物を調製した。
(2)樹脂基材上への塗布と熱硬化
 樹脂基材としてポリカーボネート(以下、PCとも称する。)製の板(三菱ガス化学(株)製ユーピロンNF-2000、厚さ1mm)にバーコーターを用いて前記(1)で調製した熱硬化性組成物を塗布し、約5μm厚さの被膜を形成させた後、65℃で5分間加熱して溶媒を乾燥させた。そして、恒温機内で、120℃で1時間加熱し、硬化物を作製した。
(3)無機物質層の積層
 前記(2)で作製した熱硬化物上に、イオンプレーティング法によりZrOを積層した。
(4)無機物質層の密着性試験:付着性(クロスカット法)
 前記(1)~(3)によって作製した積層体の無機物質層に対し、JIS K5600-5-6(ISO-2409)に準じて密着性を評価した。25マスのうち、剥離したマスの個数で評価し、剥離数の少ないものほど密着性が高いことを意味する。実施例34では、剥離したマスはなかった、即ち、0マスであった。
 尚、本評価において、樹脂基材とアンダーコート剤組成物の熱硬化物との間で剥離したものはなかった。
 本実施例の結果を表2にまとめた。
<実施例35>
 合成例13で得られたポリシロキサン化合物13を9g、CEL2021Pを1g、熱カチオン重合開始剤であるサンエイドSI-100L(三新化学工業(株)製、以下、SI100Lとも称する。)を0.1g及び溶剤であるPGB10gをそれぞれ50mLバイアルに秤取し、自転・公転ミキサーでかき混ぜて溶解し、熱硬化性アンダーコート剤組成物を調製した。
 この組成物を用い、無機物質層をSiOとした以外は、実施例34の(2)~(4)と同様にして、積層体を作製し、無機物質層の密着性を評価した。その結果を表2に示す。
<比較例1>
 合成例1で得られたポリシロキサン化合物1の代わりに参考例1に記載のM-405を用いた以外は実施例1と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<比較例2~4>
 樹脂基材としてポリカーボネートの代わりにポリメチルメタクリレート、ポリエチレンテレフタレート又は6ナイロンを用いた以外は比較例1と同様にして積層体を作製し、ぞれぞれの無機物質層の密着性を評価した。結果を表2に示す。
<比較例5>
 合成例1で得られたポリシロキサン化合物1の代わりに参考例1に記載のM-405を用いた以外は実施例3と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<比較例6>
 合成例1で得られたポリシロキサン化合物1の代わりに参考例1に記載のM-405を用いた以外は実施例4と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<比較例7~10>
 樹脂基材としてポリカーボネート、ポリメチルメタクリレート、ポリエチレンテレフタレート又は6ナイロンを用い、無機物質積層用アンダーコート層を設けなかったこと以外は実施例1と同様にして積層体を作製し、ぞれぞれの無機物質層の密着性を評価した。結果を表2に示す。
<比較例11>
 無機物質積層用アンダーコート層を設けなかったこと以外は実施例3と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
<比較例12>
 無機物質積層用アンダーコート層を設けなかったこと以外は実施例4と同様にして積層体を作製し、無機物質層の密着性を評価した。結果を表2に示す。
(5)温水処理後の無機物質層の密着性試験:付着性(クロスカット法)
<実施例36~41>
 実施例3、実施例31、実施例22、実施例27、実施例32及び実施例33のようにして作製した積層体を、90℃の温水に2時間浸漬した後、室温で17時間乾燥させてから(以後、「温水処理後」とも称する。)、それぞれの無機物質層の密着性を実施例1(4)と同様にして評価した。結果を表3に示す。
<比較例13及び14>
 比較例5及び比較例11のようにして作製した積層体を、90℃の温水に2時間浸漬した後、室温で17時間乾燥させてから、それぞれの無機物質層の密着性を実施例1(4)と同様にして評価した。結果を表3に示す。
(6)無機物質層の耐擦傷性試験:スクラッチ試験
<実施例42>
 ポリシロキサン化合物1、樹脂基材としてPC及び無機物質層としてSiOを用いて、前記実施例3のようにして作製した積層体の無機物質層に対し、下記の条件に従ってスクラッチ試験を実施して臨界荷重値を測定し、無機物質層の耐擦傷性を評価した。
使用装置;(株)レスカ製マイクロスクラッチ試験機(CSR-5000)
スタイラス(先端針)径:25μm
スクラッチ速度:10μm/sec
振幅幅:100μm
印荷重:10mN/sec
 その結果、臨界荷重値は42.1mNであった。結果を表4に示す。この値が大きいほど、耐擦傷性が高いことを意味する。
<実施例43~56>
 ポリシロキサン化合物1、5、9又は11を用い、樹脂基材としてPC、PMMA又はPETを用い、無機物質層としてSiO又はZrOを用いた以外は、実施例42と同様にして積層体を作製し、それぞれの無機物質層の耐擦傷性を評価した。結果を表4に示す。
<実施例57>
 ポリシロキサン化合物12を用い、樹脂基材としてPCを用い、前記実施例29のようにしてPC上に無機物質積層用硬化物を形成した後、イオンプレーティング法によりSiOを積層した。作製した積層体に対し、実施例42と同様にして無機物質層の耐擦傷性を評価した。その結果、臨界荷重値は51.1mNであった。結果を表4に示す。
<実施例58>
 ポリシロキサン化合物13を用いた以外は、実施例57と同様にして、作製した積層体に対し、無機物質層の耐擦傷性を評価した。その結果は、臨界荷重値は69.3mNであった。結果を表4に示す。
<実施例59>
 ポリシロキサン化合物11を用い、樹脂基材としてPCを用い、前記実施例34のようにしてPC上に無機物質積層用硬化物を形成した後、イオンプレーティング法によりZrOを積層した。作製した積層体に対し、実施例42と同様にして無機物質層の耐擦傷性を評価した。その結果、臨界荷重値は63.9mNであった。結果を表4に示す。
<実施例60>
 ポリシロキサン化合物13を用い、樹脂基材としてPCを用い、前記実施例35のようにしてPC上に無機物質積層用硬化物を形成した後、イオンプレーティング法によりSiOを積層した。作製した積層体に対し、実施例42と同様にして無機物質層の耐擦傷性を評価した。その結果、臨界荷重値は68.7mNであった。結果を表4に示す。
<比較例15~19>
 ポリシロキサン化合物の代わりに参考例1に記載のM-405を用い、樹脂基材としてPMMA又はPETを用いた以外は、前記比較例5又は6と同様にして、PC、PMMA又はPETを樹脂基材とし、SiO又はZrOを無機物質層とした積層体を作製し、前記実施例42と同様にして、それぞれの無機物質層の耐擦傷性を評価した。結果を表4に示す。
<比較例20~24>
 参考例1に記載のM-405を用いなかったこと以外は、比較例15~19と同様にして、それぞれの無機物質層の耐擦傷性を評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000014

 
Figure JPOXMLDOC01-appb-T000015

 
Figure JPOXMLDOC01-appb-T000016

 
 表2から明らかなように、本開示の無機物質層積層用アンダーコートは、いずれも樹脂基材及び無機物質層と良好な密着性を有する。実施例1~35の無機物質層との密着性(0~5)は、ポリシロキサンを含まないアンダーコートを用いた場合の比較例1~6の密着性(6~12)及びアンダーコートを用いない比較例7~12の密着性(9~17)のいずれと比べても、様々な樹脂基材及び様々な無機物質層に対していずれも優れた密着性を示している。
 又、構成単位としてT単位及びD単位を有するポリシロキサン化合物を含むアンダーコートは、T単位のみからなるポリシロキサン化合物を含むアンダーコートよりも無機物質層との密着性に更に優れることが表2から分かる。このことは、ポリシロキサン化合物以外の条件を全て揃えた場合を比較する、例えば、実施例1、3及び4と実施例5~10及び13~15を比較する、実施例18及び20と実施例21、23及び24を比較する、実施例29と実施例30を比較すると、より明確に分かる。
 尚、実施例16も無機物質層との密着性は「3」であり、優れるが、他のT単位及びD単位を有するものに比べてやや密着性に劣ることから、D単位の占める割合であるx/(v+w+x+y)の値は、実施例16に含まれるポリシロキサン化合物7の場合の0.69よりも小さい方が好ましいことが分かる。
 表3から明らかなように、本開示の無機物質層積層用アンダーコートはいずれも、温水処理後であっても樹脂基材及び無機物質層と良好な密着性を有する。実施例36~41の無機物質層との密着性(0~5)は、ポリシロキサンを含まないアンダーコートを用いた場合の比較例13の密着性(25)及びアンダーコートを用いない比較例14の密着性(25)のいずれと比べても、温水処理後の密着性に優れている。
 表2~表4より明らかなように、本開示の無機物質層積層用アンダーコートは、いずれも樹脂基材及び無機物質層と良好な密着性と積層体の無機物質層の耐擦傷性を両立することができ、実用性に優れる。このことは、例えば、表2の実施例3と同様の積層体である実施例42、及びその変形例である実施例43~60の結果から明らかである。これに対して、表4の比較例15~19は、いずれもポリシロキサン化合物を含まない多官能性モノマーを含む硬化性組成物を硬化させたものであり、耐擦傷性は高い場合があるが、無機物質層との密着性が不十分であり、実用的ではない。このことは、例えば、表2の比較例5及び6と同様の積層体である比較例15及び18の結果から明らかである。
 又、構成単位としてT単位及びD単位を有するポリシロキサン化合物を含むアンダーコートは、T単位のみからなるポリシロキサン化合物を含むアンダーコートよりも、その上に積層した無機物質層の耐擦傷性に更に優れることが表4から分かる。このことは、ポリシロキサン化合物以外の条件を全て揃えた場合を比較する、例えば、実施例42~44と実施例45~47を比較する、実施例49~51と実施例52~54を比較する、実施例57と実施例58を比較すると、より明確に分かる。
 したがって、構成単位としてT単位及びD単位を有するポリシロキサン化合物を含むアンダーコートは、特に無機物質層との密着性と積層した無機物質層の耐擦傷性の両方の物性を両立して優れ、より実用性に優れる。
 本開示の積層体の用途としては、例えば、乗用車、トラック、オートバイ、バス等の自動車車体の外板部;自動車部品;携帯電話、オーディオ機器等の家庭電気製品の外板部等が挙げられる。
 又、光学素子、液晶ディスプレイや有機ELディスプレイなどの表示装置、半導体装置、薄膜太陽電池等の各種の装置における防湿性を要求される部位や部品、食品、衣料品、電子部品等の包装に用いられる包装材料に用いることができる。
 又、ディスプレイ基板、タッチパネル、透明電極付きフィルム、レンズシート、光導波路、太陽電池基板、光ディスク、各種透明基板等の加飾フィルムとして有用な加飾印刷フィルム積層体として用いることができる。
 無機物質層や積層体が有する機能は、反射防止、防曇、ガスバリア、ハードコート、耐擦傷、耐摩耗、意匠、帯電防止、導電、耐湿、耐候、耐光、防水、防油、防汚、抗菌、抗ウイルス、抗生物活性、耐紫外線、耐宇宙線、耐酸素プラズマ、耐原子状酸素等が挙げられる。
 2021年2月5日に出願された日本国特許出願2021-017829号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  樹脂基材に無機物質層を乾式成膜法により積層するために樹脂基材上に塗布する無機物質層積層用アンダーコート剤組成物であって、下記式(1)で表されるポリシロキサン化合物と、ラジカル重合開始剤及び/又はカチオン重合開始剤と、を含むことを特徴とする無機物質層積層用アンダーコート剤組成物。
    Figure JPOXMLDOC01-appb-C000001

    〔式(1)中、R、R及びRはそれぞれ独立に、炭素数1~10のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、炭素数2~8の不飽和炭化水素基、又は、(メタ)アクリロイル基、エポキシ基若しくはオキセタニル基を有する一価の有機基を表し、前記アルキル基、アラルキル基、アリール基、不飽和炭化水素基、(メタ)アクリロイル基、エポキシ基及びオキセタニル基はハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、及びオキシ基からなる群より選択される少なくとも1種で置換されていてもよく、R、R及びRのうち、少なくとも1つは(メタ)アクリロイル基、エポキシ基又はオキセタニル基を有する一価の有機基であり、R、R及びRは互いに同一であっても異なってもよい。式(1)中、v、w、x及びyは、それぞれv、w、x及びy合計量中の割合を意味し、wは1以下の正の数を表し、v、x及びyはそれぞれ独立に、0又は1未満の正の数を表す。〕
  2.  前記式(1)におけるxが1未満の正の数である、請求項1に記載の無機物質層積層用アンダーコート剤組成物。
  3.  前記乾式成膜法が物理蒸着法である、請求項1又は2に記載の無機物質層積層用アンダーコート剤組成物。
  4.  0.3≦{w/(v+w+x+y)}≦1.0、かつ、0≦{x/(v+w+x+y)}≦0.7を満たす、請求項1~3のいずれか1項に記載の無機物質層積層用アンダーコート剤組成物。
  5.  0.5≦{w/(v+w+x+y)}≦1.0、かつ、0≦{y/(v+w+x+y)}≦0.5を満たす、請求項1~3のいずれか1項に記載の無機物質層積層用アンダーコート剤組成物。
  6.  前記ポリシロキサン化合物の25℃における粘度が10~1,000,000mPa・sである、請求項1~5のいずれか1項に記載の無機物質層積層用アンダーコート剤組成物。
  7.  請求項1~6のいずれか1項に記載の無機物質層積層用アンダーコート剤組成物を硬化した無機物質層積層用硬化物。
  8.  請求項7に記載の無機物質層積層用硬化物、樹脂基材及び無機物質層を含む積層体。
  9.  碁盤目剥離試験における前記無機物質層の前記無機物質層積層用硬化物に対する密着性評価において、剥離が25マス中、5以下である、請求項8に記載の積層体。
  10.  請求項1~6のいずれか1項に記載の無機物質層積層用アンダーコート剤組成物に活性エネルギー線を照射して硬化させる工程を含む、請求項7に記載の無機物質層積層用硬化物の製造方法。
  11.  請求項1~6のいずれか1項に記載の無機物質層積層用アンダーコート剤組成物に活性エネルギー線を照射して硬化させる工程を含む、請求項8又は9に記載の積層体の製造方法。
PCT/JP2022/003675 2021-02-05 2022-01-31 無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法 WO2022168804A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/263,902 US20240158904A1 (en) 2021-02-05 2022-01-31 Undercoat agent composition for layering inorganic material layer, cured product thereof and production method thereof
CN202280013135.4A CN116897195A (zh) 2021-02-05 2022-01-31 无机物质层层叠用底涂层剂组合物、其固化物及其制造方法
EP22749676.7A EP4289618A1 (en) 2021-02-05 2022-01-31 Undercoat agent composition for inorganic substance layer lamination, cured product thereof, and method for producing same
KR1020237029981A KR20230145100A (ko) 2021-02-05 2022-01-31 무기물질층 적층용 언더코트제 조성물, 그 경화물 및 그 제조 방법
JP2022579539A JPWO2022168804A1 (ja) 2021-02-05 2022-01-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-017829 2021-02-05
JP2021017829 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168804A1 true WO2022168804A1 (ja) 2022-08-11

Family

ID=82741373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/003675 WO2022168804A1 (ja) 2021-02-05 2022-01-31 無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法

Country Status (7)

Country Link
US (1) US20240158904A1 (ja)
EP (1) EP4289618A1 (ja)
JP (1) JPWO2022168804A1 (ja)
KR (1) KR20230145100A (ja)
CN (1) CN116897195A (ja)
TW (1) TW202248300A (ja)
WO (1) WO2022168804A1 (ja)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116682A (ja) 1997-08-11 1999-04-27 Toagosei Co Ltd 光カチオン硬化性樹脂組成物
JP2000044689A (ja) 1998-07-30 2000-02-15 Toagosei Co Ltd 硬化性樹脂の製造方法及び硬化性樹脂組成物
WO2004076534A1 (ja) 2003-02-27 2004-09-10 Toagosei Co., Ltd カチオン硬化性含ケイ素化合物の製造方法
WO2009090916A1 (ja) 2008-01-15 2009-07-23 Toagosei Co., Ltd. オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物
JP2009178904A (ja) 2008-01-30 2009-08-13 Nippon Steel Chem Co Ltd 加飾印刷フィルム積層体
WO2009131038A1 (ja) 2008-04-22 2009-10-29 東亞合成株式会社 硬化性組成物及び有機ケイ素化合物の製造方法
JP2010274562A (ja) 2009-05-29 2010-12-09 Fujifilm Corp ガスバリア積層体およびガスバリア積層体の製造方法
WO2012090707A1 (ja) 2010-12-28 2012-07-05 東亞合成株式会社 溶剤可溶型反応性ポリシロキサンの製造方法
JP2013035274A (ja) 2011-07-13 2013-02-21 Kansai Paint Co Ltd 積層体及び積層体の製造方法
JP2013035275A (ja) * 2011-07-13 2013-02-21 Kansai Paint Co Ltd 積層体及び積層体の製造方法
WO2013031798A1 (ja) 2011-09-01 2013-03-07 東亞合成株式会社 耐熱衝撃性硬化物及びその製造方法
JP2014180837A (ja) * 2013-03-21 2014-09-29 Dainippon Printing Co Ltd ガスバリア性フィルム及びその製造方法
WO2016068236A1 (ja) * 2014-10-30 2016-05-06 Dic株式会社 積層体
JP2019131664A (ja) * 2018-01-30 2019-08-08 中国塗料株式会社 活性エネルギー線硬化性樹脂組成物およびその用途
WO2020080081A1 (ja) * 2018-10-18 2020-04-23 東亞合成株式会社 シルセスキオキサン誘導体組成物及びその利用
JP2021017829A (ja) 2019-07-18 2021-02-15 いすゞ自動車株式会社 バルブ構造および内燃機関

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0307717A (pt) * 2002-02-15 2005-01-11 Ppg Ind Ohio Inc Composição composta de um copolìmero contendo flúor, revestimentos compostos multicamada e substratos
JP2011001456A (ja) * 2009-06-18 2011-01-06 Mitsubishi Rayon Co Ltd ポリオルガノシロキサンの製造方法、組成物の製造方法、組成物の硬化方法および積層体の製造方法
JP2013119553A (ja) * 2011-12-06 2013-06-17 Mitsubishi Chemicals Corp ハードコート層の下地として使用する下層形成用塗料、及び該下層形成用塗料を塗布して形成した積層体
JP6219250B2 (ja) * 2013-12-13 2017-10-25 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
WO2015137438A1 (ja) * 2014-03-14 2015-09-17 Dic株式会社 酸素プラズマエッチング用レジスト材料、レジスト膜、及びそれを用いた積層体
JP7027886B2 (ja) * 2016-04-25 2022-03-02 東レ株式会社 樹脂組成物、その硬化膜およびその製造方法ならびに固体撮像素子
JP6799283B2 (ja) * 2016-10-12 2020-12-16 日産化学株式会社 防眩性ハードコート積層体
WO2018212257A1 (ja) * 2017-05-17 2018-11-22 株式会社ダイセル 接着剤組成物、硬化物、積層体、及び装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116682A (ja) 1997-08-11 1999-04-27 Toagosei Co Ltd 光カチオン硬化性樹脂組成物
JP2000044689A (ja) 1998-07-30 2000-02-15 Toagosei Co Ltd 硬化性樹脂の製造方法及び硬化性樹脂組成物
WO2004076534A1 (ja) 2003-02-27 2004-09-10 Toagosei Co., Ltd カチオン硬化性含ケイ素化合物の製造方法
WO2009090916A1 (ja) 2008-01-15 2009-07-23 Toagosei Co., Ltd. オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物
JP2009178904A (ja) 2008-01-30 2009-08-13 Nippon Steel Chem Co Ltd 加飾印刷フィルム積層体
WO2009131038A1 (ja) 2008-04-22 2009-10-29 東亞合成株式会社 硬化性組成物及び有機ケイ素化合物の製造方法
JP2010274562A (ja) 2009-05-29 2010-12-09 Fujifilm Corp ガスバリア積層体およびガスバリア積層体の製造方法
WO2012090707A1 (ja) 2010-12-28 2012-07-05 東亞合成株式会社 溶剤可溶型反応性ポリシロキサンの製造方法
JP2013035274A (ja) 2011-07-13 2013-02-21 Kansai Paint Co Ltd 積層体及び積層体の製造方法
JP2013035275A (ja) * 2011-07-13 2013-02-21 Kansai Paint Co Ltd 積層体及び積層体の製造方法
WO2013031798A1 (ja) 2011-09-01 2013-03-07 東亞合成株式会社 耐熱衝撃性硬化物及びその製造方法
JP2014180837A (ja) * 2013-03-21 2014-09-29 Dainippon Printing Co Ltd ガスバリア性フィルム及びその製造方法
WO2016068236A1 (ja) * 2014-10-30 2016-05-06 Dic株式会社 積層体
JP2019131664A (ja) * 2018-01-30 2019-08-08 中国塗料株式会社 活性エネルギー線硬化性樹脂組成物およびその用途
WO2020080081A1 (ja) * 2018-10-18 2020-04-23 東亞合成株式会社 シルセスキオキサン誘導体組成物及びその利用
JP2021017829A (ja) 2019-07-18 2021-02-15 いすゞ自動車株式会社 バルブ構造および内燃機関

Also Published As

Publication number Publication date
KR20230145100A (ko) 2023-10-17
EP4289618A1 (en) 2023-12-13
JPWO2022168804A1 (ja) 2022-08-11
TW202248300A (zh) 2022-12-16
CN116897195A (zh) 2023-10-17
US20240158904A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
KR102244400B1 (ko) 경화성 조성물 및 성형체
US6743510B2 (en) Composition comprising a cationic polymerization compound and coating obtained from the same
JP5050473B2 (ja) フッ素系重合体および樹脂組成物
CN107001635B (zh) 窗膜用组成物、其形成的柔性窗膜及含其的柔性显示装置
JP7193050B2 (ja) 光学積層体
US20200062996A1 (en) Laminate
JP5083444B2 (ja) フッ素系重合体および樹脂組成物
KR101965682B1 (ko) 유기 금속을 가지는 실록산 올리고머, 실록산 올리고머의 제조 방법, 실록산 올리고머를 포함하는 하드 코팅 조성물, 하드 코팅 필름 및 디스플레이 장치
JP2016027400A (ja) 積層用樹脂組成物及びその用途
JP2011006610A (ja) 透明複合体
WO2013094585A1 (ja) ガラス繊維複合化樹脂基板
CN107108935B (zh) 窗膜用组成物、柔性窗膜以及柔性显示器装置
KR20160057221A (ko) 하드코팅층 형성용 조성물
JP2011042755A (ja) 宇宙空間用硬化性組成物、宇宙空間用硬化物、及び、宇宙空間用複合膜
JP2017170827A (ja) 積層体、タッチパネル、タッチパネル表示装置、及び積層体の製造方法
KR101930729B1 (ko) 유기 금속을 가지는 실록산 올리고머, 실록산 올리고머의 제조 방법, 실록산 올리고머를 포함하는 하드 코팅 조성물, 하드 코팅 필름 및 디스플레이 장치
CN111989378B (zh) 显示元件用密封剂及其固化物
JP2004314468A (ja) 硬化被膜が形成された透明基材及びそのための硬化性組成物
JP5409276B2 (ja) 透明複合材料
WO2022168804A1 (ja) 無機物質層積層用アンダーコート剤組成物、その硬化物及びその製造方法
JP4736387B2 (ja) 耐擦傷性及び反射防止性を有する積層体
JP2013138158A (ja) 撮像素子、色素含有レンズ及びレンズ成型用樹脂組成物
KR101976525B1 (ko) 유기 금속을 가지는 실록산 올리고머, 실록산 올리고머의 제조 방법, 실록산 올리고머를 포함하는 하드 코팅 조성물, 하드 코팅 필름 및 디스플레이 장치
WO2019003991A1 (ja) 有機el素子の封止用のカチオン重合硬化型インクジェット用樹脂組成物
WO2022239674A1 (ja) 表示素子用封止剤、その硬化物および表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749676

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022579539

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18263902

Country of ref document: US

Ref document number: 202280013135.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237029981

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237029981

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022749676

Country of ref document: EP

Effective date: 20230905