WO2006085421A1 - オキセタン化合物およびそれを含む硬化性組成物 - Google Patents

オキセタン化合物およびそれを含む硬化性組成物 Download PDF

Info

Publication number
WO2006085421A1
WO2006085421A1 PCT/JP2005/023271 JP2005023271W WO2006085421A1 WO 2006085421 A1 WO2006085421 A1 WO 2006085421A1 JP 2005023271 W JP2005023271 W JP 2005023271W WO 2006085421 A1 WO2006085421 A1 WO 2006085421A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
oxetane
epoxy
active hydrogen
Prior art date
Application number
PCT/JP2005/023271
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Hatanaka
Original Assignee
The Yokohama Rubber Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Yokohama Rubber Co., Ltd. filed Critical The Yokohama Rubber Co., Ltd.
Priority to US11/571,029 priority Critical patent/US20080293875A1/en
Priority to JP2006520484A priority patent/JP3976778B2/ja
Priority to EP05816490A priority patent/EP1752483A1/en
Publication of WO2006085421A1 publication Critical patent/WO2006085421A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/16Cyclic ethers having four or more ring atoms
    • C08G65/18Oxetanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds

Definitions

  • the present invention relates to an oxetane compound and a curable composition containing the same.
  • Oxetane compounds are used in the field of active energy ray-curable resins that are cured by ultraviolet rays or electron beams. Since this oxetane compound has an oxetane ring which is a 4-membered cyclic ether, the compound has an epoxy ring which is a 3-membered cyclic ether (hereinafter referred to as “epoxy compound”). As a result, the carbon-oxygen bond becomes more polarized as a result of the reaction. As a result, it is known that the ring-opening reaction proceeds when Lewis acid or the like is used as an initiator for cationic polymerization.
  • the oxetane compound has an oxetane ring whose ring distortion is smaller than that of the epoxy ring, the oxetane compound is more energetically stable than the epoxy compound. Although it is slow, it is known that oxetane compounds are faster in terms of growth reaction.
  • Patent Documents 1 to 5 disclose resins having an epoxy ring and an oxetane ring in one molecule, and having both characteristics of the epoxy ring and the oxetane ring.
  • these resins are formed by radical polymerization, a structure having a functional group in the side chain of a chain polymer (specifically, a resin in which a main chain is formed by a carbon-carbon bond).
  • the heat resistance is insufficient, and there are problems in workability, reactivity, painting workability, etc.
  • Patent Document 6 describes a silane coupling agent having an oxetane ring and the silane coupling agent.
  • Patent Document 7 discloses a polyfunctional oxetane compound having a silicon atom and a cationic curable composition containing the polyfunctional oxetane compound. ing. However, all of these compositions had problems with reactivity. [0004] Patent Document 1: Japanese Patent Laid-Open No. 9 208674
  • Patent Document 2 JP-A-9 221625
  • Patent Document 3 Japanese Patent Laid-Open No. 9-278866
  • Patent Document 4 Japanese Patent Laid-Open No. 10-330652
  • Patent Document 5 Japanese Patent Laid-Open No. 11-148045
  • Patent Document 6 Japanese Patent Laid-Open No. 2001-329112
  • Patent Document 7 Japanese Patent Laid-Open No. 2001-342194
  • an object of the present invention is to provide a curable composition that is excellent in reactivity, particularly cationic polymerization with respect to light and heat, and also has good heat resistance.
  • the present inventor has made a reaction between a specific silane compound having an epoxy group and an alkoxysilyl group and a specific compound having an oxetane ring and an active hydrogen group.
  • the curable composition using a specific oxetane compound such as the obtained oxetane compound is found to be a curable composition having excellent reactivity, particularly cationic polymerization with respect to light and heat, and good heat resistance.
  • the present invention has been completed.
  • the present invention provides an oxetane compound according to the following (1) to (5) and the following (6) to (6)
  • the curable composition as described in (13) is provided.
  • Oxetane obtained by reacting a silane compound having an epoxy group and an alkoxysilyl group with a compound having an oxetane ring and an active hydrogen group hereinafter also referred to as an “active hydrogen group-containing oxetane compound”;.
  • a curable composition containing at least one oxetane compound according to the above (1) to (5) and a cationic polymerization initiator containing at least one oxetane compound according to the above (1) to (5) and a cationic polymerization initiator.
  • the curable composition containing the oxetane compound of the present invention is excellent in workability because the particle size of the curable composition can be controlled by the degree of condensation of the silane compound used. This is useful because there is no need to consider workability and compatibility when mixing without the need to mix epoxy resin as in the case of using a compound.
  • the reactivity of a general-purpose epoxy compound can be improved by using it together with a filler, and the viscosity is adjusted by the amount of the filler. be able to.
  • the curable composition containing the oxetane compound of the present invention can be cured by either heat or light, various heat-light curing resins, specifically, fibers. It is useful because it can be applied to hardened materials such as reinforced composite materials, adhesives, sealants, paints, coating agents, and resin for optical modeling; printed materials such as ink and toner; sealants.
  • FIG. 1 is a chart of the 1 H-NMR (heavy chromatoform) spectrum of oxetane compound 1 obtained in Example 1-1.
  • FIG. 2 is an optical DSC chart of the compositions of Example 2 and Comparative Example 1.
  • FIG. 3 is a DSC chart of the compositions of Example 3 and Comparative Example 2.
  • FIG. 4 is an optical DSC chart of yarns and composites of Examples 41 to 44.
  • FIG. 5 is a spectrum of the storage elastic modulus of the cured product of the compositions of Examples 4 2 to 44.
  • the oxetane compound of the first aspect of the present invention is an oxetane compound obtained by reacting a silane compound having an epoxy group and an alkoxysilyl group with an active hydrogen group-containing oxetane compound.
  • the oxetane compound of the second aspect of the present invention is an oxetane compound obtained by reacting a silane compound having an epoxy group and an alkoxysilyl group, an active hydrogen group-containing oxetane compound, and an active hydrogen group-containing epoxy compound. It is a compound.
  • the oxetane compound of the third aspect of the present invention is an oxetane compound obtained by reacting a silanic compound having an alkoxysilyl group, an active hydrogen group-containing oxetane compound, and an active hydrogen group-containing epoxy compound.
  • the oxetane compound of the fourth aspect of the present invention is an oxetane compound obtained by reacting a silane compound having an oxetane ring and an alkoxysilyl group with an active hydrogen group-containing epoxy compound.
  • the oxetane compound of the fifth aspect of the present invention is an oxetane compound obtained by reacting a silane compound having an oxetane ring and an alkoxysilyl group, an active hydrogen group-containing oxetane compound, and an active hydrogen group-containing epoxy compound. It is a compound.
  • silane compound having an epoxy group and an alkoxysilyl group a silane compound having an oxetane ring and an alkoxysilyl group, a silane compound having an alkoxysilyl group, an active hydrogen group-containing oxetane compound and an active hydrogen
  • the group-containing epoxy compound will be described.
  • the silanic compound having an epoxy group and an alkoxysilyl group is not particularly limited, and specific examples thereof include a compound represented by the following general formula (1) having a crosslinkable silyl group.
  • n and n each independently represent an integer of 1 to 3 (where m + n ⁇ 4).
  • R 1 represents an alkyl group having 1 to 3 carbon atoms, more preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, and more preferably a methyl group or an ethyl group.
  • R 1 is more than the plurality of R 1 may each be the same or different.
  • R 2 represents a monovalent organic group having an epoxy group, and includes a nitrogen atom or an oxygen atom! Or may be an organic group (for example, an oxygen atom may be included, and a carbon number of 2 to 6 A divalent non-cyclic aliphatic group, a bivalent cyclic aliphatic group having 6 to 10 carbon atoms, etc.), and an epoxy group is preferably a group bonded to a carbon atom. If the R 2 there is more than one, more than one R 2 is, their respective different be the same, even! /.
  • R 3 represents an alkyl group having 1 to 6 carbon atoms, and is preferably a methyl group, an ethyl group, an n-propyl group, or an isopropyl group, more preferably a methyl group or an ethyl group.
  • R 3 is multiple, the plurality of R 3 may each be the same or different.
  • silane compounds include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropinoremethinoresimethoxysilane, 3-glycidoxypro 3-glycidoxypropyltrialkoxysilane such as pyrmethyljetoxysilane, 3-glycidoxypropyltriethoxysilane or 3-glycidoxypropylalkyldialkoxysilane; 2- (3,4-epoxycyclohexyl) Tiltrimethoxysilane, 2 -— (3,4 Epoxycyclohexenole) ethinolemethinoresimethoxymethoxy, 2- (3,4 Epoxy Cyclohexyl) Ethylmethyljetoxysilane, 2 -— (3,4 Epoxycyclo) 2- (3,4-epoxycyclohexyl) ethyltrioxysilane or 2- (3,4 epoxycyclohexyl) ethylalkyldialk
  • these condensates are a silane compound having an epoxy group and an alkoxysilyl group in a chain, ladder or cage siloxane skeleton, or a siloxane skeleton in which these are mixed, and specific examples thereof are as follows. May be one in which a part of the alkoxysilyl group of 3-glycidoxypropyltrialkoxysilane is condensed.
  • such a condensate is, for example, a force that can be obtained by condensing the compound represented by the general formula (1) by hydrolysis, and is not particularly limited thereto, and forms a siloxane skeleton. Then, it may be synthesized by introducing a compound having an epoxy group and an alkoxysilyl group into the siloxane skeleton. Also, silane compounds having functional groups such as bur group, acrylic group, methacryl group and isocyanate group in the molecule, or condensed using tetraalkoxy silane such as tetramethoxy silane and tetraethoxy silane. But you can.
  • the Silane compound a commercially available product can be used.
  • the silane compound having an oxetane ring and an alkoxysilyl group is not particularly limited, and specific examples thereof include a compound represented by the following general formula (la) having a crosslinkable silyl group.
  • R 21 represents a monovalent organic group having an oxetane ring, and may contain a nitrogen atom or an oxygen atom, or may be an organic group (for example, an oxygen atom or a C 2-6 carbon atom). It is preferable that the oxetane ring is bonded to a silicon atom via a divalent acyclic aliphatic group, a C 6-10 divalent cycloaliphatic group, or the like.
  • silane compounds include, for example, silane coupling agents containing an oxetane ring described in Patent Document 6; and condensates thereof. Can be used alone or in combination of two or more.
  • the condensate is a silane compound having an oxetane ring and an alkoxysilyl group in a chain, ladder, or cage siloxane skeleton or a siloxane skeleton mixed with these skeletons.
  • Examples include those obtained by condensing a part of the alkoxysilyl group of the silane coupling agent containing an oxetane ring described in Patent Document 6.
  • such a condensate is, for example, a force that can be obtained by condensing the compound represented by the general formula (la) by hydrolysis, and is not particularly limited thereto, and forms a siloxane skeleton.
  • the siloxane skeleton has an oxetane ring and an alkoxysilyl group It may be synthesized by introducing a compound having
  • condensation was performed using a silane compound having a functional group such as a bur group, an acrylic group, a methacryl group or an isocyanate group in the molecule, or a tetraalkoxysilane such as tetramethoxysilane or tetraethoxysilane. It may be a thing.
  • the silanic compound having an alkoxysilyl group is not particularly limited as long as it does not have an epoxy group and an oxetane ring. Specific examples thereof include a crosslinkable silyl group represented by the following general formula (lb). And the like.
  • p represents an integer of 2 to 4.
  • R 1 and R 3 are the same as in general formula (1).
  • silane compounds include tetraalkoxysilanes such as tetramethoxysilane and tetraethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, and phenyltrimethoxysilane.
  • Trialkoxyalkyl silanes or trialkoxyalkyl silanes such as ethoxysilane; These condensates may be used, and these may be used alone or in combination of two or more.
  • the condensate is a silane skeleton having a chain, ladder, or cage siloxane skeleton or a siloxane skeleton mixed with these, and specific examples thereof include tetraalkoxysilanes. And those obtained by condensing a part of the alkoxysilyl group.
  • such a condensate can be obtained, for example, by condensing the compound represented by the general formula (lb) by hydrolysis.
  • Vinyl group, acrylic group, meta group It may be a product condensed with a silane compound having a functional group such as a silyl group or an isocyanate group in the molecule.
  • silane compound a commercially available product can be used. Specifically, for example, tetramethoxysilane (KBM-04, manufactured by Shin-Etsu Chemical Co., Ltd.), tetraethoxy Sisilane (KBE-04, manufactured by Shin-Etsu Chemical Co., Ltd.) can be used.
  • KBM-04 manufactured by Shin-Etsu Chemical Co., Ltd.
  • KBE-04 manufactured by Shin-Etsu Chemical Co., Ltd.
  • the active hydrogen group-containing oxetane compound is not particularly limited as long as it is a compound having an oxetane ring and an active hydrogen group. Specific examples thereof include a compound represented by the following general formula (2), etc. Is mentioned.
  • R 4 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, preferably a methyl group having 1 to 6 carbon atoms, an ethyl group, or an n-propyl group.
  • An isopropyl group is more preferably a methyl group or an ethyl group.
  • R 5 represents a single bond or a divalent hydrocarbon group having 1 to 16 carbon atoms which may contain a nitrogen atom or an oxygen atom, and contains a nitrogen atom or an oxygen atom!
  • a divalent hydrocarbon group of 1 to 16 is more preferably an alkylene group which may contain a nitrogen atom or an oxygen atom, such as a methylene group or an ethylene group.
  • X represents a nitrogen atom, an oxygen atom or a sulfur atom.
  • V and other viewpoint powers oxetane alcohol are preferably exemplified.
  • the above active hydrogen group-containing oxetane compound a commercially available product can be used. Specifically, for example, 3-ethyl-3- (hydroxymethyl) oxeta (OXT-101, manufactured by Toagosei Co., Ltd.) can be used.
  • the active hydrogen group-containing epoxy compound is not particularly limited as long as it is a compound having an epoxy group and an active hydrogen group. Specific examples thereof include a compound represented by the following general formula (2a), a general formula (2b) ) And the like.
  • R is the same as R 4 in the general formula (2).
  • R 23 and R 25 are the same as R 5 in the general formula (2), respectively.
  • R 24 may contain a nitrogen atom or an oxygen atom, or may represent a trivalent hydrocarbon group having 2 or more carbon atoms, and may contain a nitrogen atom or an oxygen atom!
  • the trivalent straight chain hydrocarbon group is preferably an alkylene group such as an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, etc., with one hydrogen atom removed.
  • a trivalent group obtained by the above method is preferable. Of these, a trivalent group obtained by removing one hydrogen atom on the carbon atom at the 2-position of the tetramethylene group is preferred.
  • X is the same as in general formula (2).
  • epoxy alcohol is also preferably exemplified from the viewpoint of easy reaction.
  • 2, 3 epoxy 1 propanol also known as glycidol
  • 1, 2 epoxy 4-hydroxy And methyl-cyclohexane 1, 2 epoxy 4-hydroxy And methyl-cyclohexane.
  • the above active hydrogen group-containing epoxy compound a commercially available product can also be used. Specifically, for example, 2, 3-epoxy-1-propanol (GD, Daicel) Chemical Industry Co., Ltd.), 1,2-epoxy-4-hydroxymethyl-cyclohexane (ETH B, manufactured by Daicel Chemical Industries) can be used.
  • GD Daicel
  • ETH B 1,2-epoxy-4-hydroxymethyl-cyclohexane
  • the oxetane compound of the first aspect of the present invention can be obtained by reacting the silane compound having an epoxy group and an alkoxysilyl group with the active hydrogen group-containing oxetane compound.
  • the oxetane compound of the second aspect of the present invention is obtained by reacting a silane compound having an epoxy group and an alkoxysilyl group, the active hydrogen group-containing oxetane compound, and the active hydrogen group-containing epoxy compound. be able to.
  • the oxetane compound of the third aspect of the present invention is obtained by reacting the silane compound having an alkoxysilyl group, the active hydrogen group-containing oxetane compound, and the active hydrogen group-containing epoxy compound. be able to.
  • the oxetane compound of the fourth aspect of the present invention can be obtained by reacting the silane compound having an oxetane ring and an alkoxysilyl group with the active hydrogen group-containing epoxy compound.
  • the oxetane compound of the fifth aspect of the present invention is obtained by reacting the silane compound having the oxetane ring and the alkoxysilyl group, the active hydrogen group-containing oxetane compound, and the active hydrogen group-containing epoxy compound. Can be obtained.
  • the oxetane compound of the first aspect of the present invention is obtained, for example, by reducing the above-mentioned silane compound having an epoxy group and an alkoxysilyl group and the above active hydrogen group-containing oxetane compound at 50 to 200 ° C. under reduced pressure. It can be obtained by stroking under the temperature of
  • the silanic compound represented by the general formula (1) and the active hydrogen group-containing oxetane compound represented by the general formula (2) are combined as shown below.
  • the oxetane compound represented by the following general formula (3) is produced by reacting the alkoxy group of the active hydrogen group and the active hydrogen group of the active hydrogen group-containing oxetane compound so as to be equivalent.
  • the formula (3) m, n, R 2 , R 4 and R 5 are the same as those in the above general formulas (1) and (2), respectively, and the silanic compound represented by the above general formula (1) is a part of alkoxysilyl in advance. It may be a condensed condensate.
  • oxetane compounds for example, reaction products obtained by reacting various types of silane compounds having epoxy groups and alkoxysilyl groups exemplified above and oxetane compounds containing active hydrogen compounds are reacted.
  • the reaction product of 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and oxetane alcohol (the following formula (4)) is Preferably exemplified.
  • the oxetane compound of the second to fifth embodiments of the present invention is prepared, for example, by reducing the above-mentioned compounds as the respective raw materials under reduced pressure. It can be obtained by vigorous stirring at a temperature of ⁇ 200 ° C.
  • the compound represented by the general formula (1), the compound represented by the general formula (2), and the general formula (1) in the oxetane compound of the second aspect of the present invention, the compound represented by the general formula (1), the compound represented by the general formula (2), and the general formula (1)
  • the compound represented by the above general formula (lb) and the compound represented by 2a) and Z or the compound represented by the above general formula (2b) in the oxetane compound of the third aspect of the present invention, the compound represented by the above general formula (lb) and the compound represented by 2a) and Z or the compound represented by the above general formula (2b)
  • a compound represented by the above general formula (2), a compound represented by the above general formula (2a), and a compound represented by Z or the above general formula (2b in the oxetane compound of the second aspect of the present invention, the compound represented by the general formula (1), the compound represented by the general formula (2), and the general formula (1)
  • the oxetani compound of the embodiment A compound represented by the general formula (la), a compound represented by the general formula (2a) and a compound represented by Z or the general formula (2b)
  • the compound represented by the general formula (la), the compound represented by the general formula (2), the compound represented by the general formula (2a), and Z Alternatively, by reacting the compound represented by the general formula (2b) with an alkoxy group and an active hydrogen group in an equivalent amount as shown below, the following general formulas (3a) to (3d) Each oxetane compound represented by each is produced (the embodiment using the compound represented by the general formula (2b) is omitted).
  • each symbol is the same as that in the general formulas (1), (la), (2), (2a) and (2b), and q is 1 represents an integer of 1 to (m-1), and the compound represented by the above general formula (1) and the compound represented by the above general formula (la) are each preliminarily condensed with a part of alkoxysilyl. It may be a condensed product.
  • the curable composition of the present invention (hereinafter simply referred to as "the composition of the present invention") contains at least one of the above oxetane compounds and a cationic polymerization initiator. It is a curable composition.
  • the oxetane compound may be used alone or in combination of two or more.
  • the cationic polymerization initiator used in the composition of the present invention is a compound capable of generating a Lewis acid or a proton acid, and specific examples thereof include a photopower thione polymerization initiator, a photothermal cation polymerization initiator, And cationic polymerization initiators and protonic acid (Bronsted acid) initiators.
  • the photopower thione polymerization initiator is a compound capable of generating a Lewis acid or a protonic acid by light (for example, ultraviolet rays, ultraviolet laser beams, visible light rays, infrared rays, etc.).
  • Such a light-powered thione polymerization initiator include, for example, sodium salt types such as diazoum salt type, odonium salt type, phospho-um salt type, and sulfo-um salt type. ; Pyridium salt type; iron arene compound type; sulfonic acid ester type; boron compound, etc. These may be used alone or in combination of two or more.
  • the iron / arene complex system represented by the following general formulas (5) to (7) is a cationic polymerization initiator having absorption in the visible light region (400 to 500 nm), and undergoes epoxy polymerization via ligand exchange. It is preferably used because of the reason for performing.
  • X— represents BF—, PF—, AsF— or SbF—, and R 6 represents alkyl.
  • the photo / thermal cationic polymerization initiator is a compound that can be decomposed by light or heat to generate a Lewis acid or proto acid.
  • photo and thermal cationic polymerization initiators include the following formula (8). Or a compound containing at least one sulfonium salt represented by the formula (9), a compound containing at least one kind of onium salt represented by the following formula (10) or the following formula (11), (14), and the like. These may be used alone or in combination of two or more.
  • R 8 represents H CH C (O) or CH OC (O).
  • X— is the same as in the above formulas (5) and (7), R 9 is H 2 CH, acetyl group or methoxycarbon group, and R 1 () is independently , H, halogen or carbon R 11 is an H, halogen or methoxy group, and R 12 is an alkyl group having 1 to 4 carbon atoms.
  • R 13 is an aliphatic group having 1 to 18 carbon atoms
  • R ′′ is an aliphatic group having 1 to 18 carbon atoms or a substituted or unsubstituted aromatic group having 6 to 18 carbon atoms.
  • R 13 and R ′′ may combine with each other to form a ring.
  • Y is a sulfo group represented by the following formula (15), H, halogen, nitro group, alkoxy group, aliphatic group having 1 to 18 carbon atoms, substituted or unsubstituted phenyl group having 6 to 18 carbon atoms. Group, a phenoxy group or a thiophenoxy group.
  • formula MQ formula MQ
  • MQ ⁇ ( ⁇ is B, P, As or Sb, Q is a halogen atom, p is 4 or 6
  • r and s are each independently 1 or 2.
  • R 13 and R ′′ are the same as in the above formula (13).
  • X— is the same as in the above formulas (5) to (7), and R 15 is independently H or an alkyl group having 1 to 4 carbon atoms.
  • the photo / thermal cationic polymerization initiator may be any photo / thermal cationic polymerization initiator.
  • an arbitrary salt such as a benzylsulfum salt or a phosphonium salt can be used.
  • the ability to use a pyrenylphosphonium salt is preferred because of its good production efficiency of the pyrenylmethyl cation.
  • the thermal cationic polymerization initiator is a compound that can be decomposed by heat to generate a Lewis acid or a protonic acid.
  • thermal cationic polymerization initiator examples include compounds represented by the following formulas (16) to (19), and two or more of these may be used alone. Use together.
  • proton acid (Bronsted acid) initiator examples include inorganic acids and organic acids.
  • the inorganic acid include, for example, sulfuric acid, hydrochloric acid, nitric acid, CF SO H,
  • Examples include super strong acids such as C1SO H, FSO H, HCIO, etc.
  • organic acid examples include CF COOH and CC1 COOH.
  • the content of the cationic polymerization initiator is preferably 1 to 5 parts by mass, more preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the oxetane compound. . This is because if the content is within this range, the reactivity of the resulting composition of the present invention will be good.
  • a photothion polymerization initiator When a photothion polymerization initiator is used alone as a cationic polymerization initiator in the composition of the present invention, it reacts with the cationic force generated by light and the oxetane compound. In addition, when a photo-thermal cation polymerization initiator is used alone, a cationic generated by light or heat reacts with the oxetane compound, and when a thermal cation polymerization initiator is used alone, a cation generated by heat Reacts with the oxetane compound.
  • the composition of the present invention when a photothion polymerization initiator and a photothermal cation polymerization initiator are used in combination with the composition of the present invention, a part of the photothion polymerization initiator and the photo'thermal cation polymerization initiator are cationized by light. Is generated and reacts with the oxetane compound. The reaction heat causes the heat / light power thione polymerization initiator to decompose and generate cations, resulting in a chain reaction. Therefore, the obtained composition of the present invention has excellent reactivity, and can be cured even when an energy ray shielding such as a filler (filler) is present in the composition. Therefore, the composition of the present invention preferably contains both a photopower thione polymerization initiator and a photo'thermal cationic polymerization initiator.
  • the composition of the present invention has excellent reactivity, particularly cationic polymerization with respect to light and heat, and good heat resistance. Specifically, the glass transition point is not observed below 300 ° C). This is because the curing reaction proceeds by both the oxetane compound light and heat of the present invention to be used, and the reactivity (particularly, at the initial stage of polymerization) since it has an oxetane ring and an epoxy ring in one molecule.
  • the oxetane compound of the present invention to be used is a low molecular weight (molecular weight of about 600 or less) or a silane condensate
  • the functional group reacts between molecules and the siloxane bond is formed by a crosslinking reaction at the time of curing. This is thought to be due to the formation of many.
  • composition of the present invention contains the above oxetane compound, it is not necessary to mix the epoxy resin as in the case of using the conventional oxetane compound, and when mixing, It is necessary to consider workability and compatibility.
  • the composition of the present invention contains a Lewis acid compound in addition to the oxetane compound and the cationic polymerization initiator, and the reason why the reaction rate can be controlled is also preferable.
  • a Lewis acid a conventionally known Lewis acid can be used, and specific examples thereof include ZnCl
  • Zinc compounds such as Znl, ZnBr; tin compounds such as SnCl; TiCl, Ti (OC H), Ti
  • Titanium compounds such as (OCH (CH)) and Ti (OC H); Boron compounds such as BC1 and BF
  • Aluminum compounds such as C H A1C1; zirconium compounds such as ZrCl and Zr (OC H)
  • zinc compounds because the ability to stabilize cations is high and the reaction rate can be controlled with a small amount. It is also preferable to use zinc compounds because they are easy to mix in liquid form. I prefer to use things.
  • the content of the Lewis acid compound relative to 100 parts by mass of the oxetane compound is 0.01 to The amount is preferably 10 parts by mass.
  • the reaction rate can be controlled more appropriately.
  • the content of the Lewis acid compound is 0.1 to 3 mass relative to 100 mass parts of the oxetane compound. More preferred is 0.1 to 1 part by mass.
  • composition of the present invention may further contain other reactive compounds.
  • Other reactive compounds include, for example, oxetane compounds other than the oxetane compounds of the first to fifth aspects of the present invention, butyl ether compounds, a, ⁇ -unsaturated carbole compounds, and epoxy compounds. Preferably mentioned.
  • the oxetane compound other than the oxetane compound of the first to fifth aspects of the present invention is a compound having one or more, preferably two or more oxetane rings.
  • Specific examples include polyfunctional oxetane compounds and oxetane resins. These can be conventionally used alone or in combination of two or more.
  • composition of the present invention contains an oxetane compound other than the oxetane compound of the first to fifth aspects of the present invention
  • oxetane other than the oxetane compound of the first to fifth aspects of the present invention is an oxetane compound other than the oxetane compound of the first to fifth aspects of the present invention.
  • the reactivity of the compound and the reactivity of the compound can be improved, and the viscosity can be adjusted to a desired range.
  • the content of the oxetane compound other than the oxetane compound of the first to fifth aspects of the present invention is preferably 0.1 to 99.9% by mass with respect to the total amount of the oxetane compound.
  • the elastic modulus of the cured product can be controlled within a desired range.
  • the content of the bull ether compound is 0.1 to 99.9% by mass with respect to the total amount of the oxetane compound and the bule ether compound of the first to fifth aspects of the present invention. It is more preferably 30 to 97% by mass.
  • the a, j8 unsaturated carbon compound is composed of carbon-carbon double bonds and forces conjugated to each other. It is a compound having one or more, preferably two or more, ruponyl groups. A conventionally well-known thing can be used individually or in combination of 2 or more types.
  • composition of the present invention contains an a, ⁇ -unsaturated carbonyl compound, it can be cured by radical polymerization and cationic polymerization, and the elastic modulus of the cured product can be controlled within a desired range. Monkey.
  • the content of the a, ⁇ -unsaturated carbonyl compound is 0.1% with respect to the total amount of the oxetane compound and the a, j8 unsaturated carbocompound of the first to fifth aspects of the present invention. It is preferably 30 to 97% by mass, more preferably 30 to 97% by mass.
  • the epoxy compound is a compound containing one or more, preferably two or more epoxy groups.
  • an epoxy resin and a low molecular polyfunctional epoxy group-containing compound are preferable.
  • the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, Epoxy resin having a fluorene skeleton, epoxy resin based on a copolymer of phenolic compound and dicyclopentagen, diglycidyl resorcinol, tetrakis (glycidyloxyphenyl) ethane, tris (glycidyl) Oxyphenyl) methane, glycidylamine type epoxy resin (for example, trisglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylenediamine), cycloaliphatic epoxy resin (for
  • the epoxy compound is used in combination with a filler to be described later.
  • composition of the present invention contains an epoxy compound and a filler
  • the reactivity of the epoxy compound can be improved, the viscosity can be adjusted by the amount of the filler, and the physical properties of the cured product are further improved. Can be improved.
  • the content of the epoxy compound is preferably 0.1 to 99.9% by mass with respect to the total amount of the oxetane compound and the epoxy compound of the first to fifth aspects of the present invention. More preferably, it is 30 to 97% by mass.
  • the composition of the present invention may be a thermoplastic resin other than the above-mentioned cationically polymerizable compound, a filler, a reaction retarder, an anti-aging agent, as long as it does not impair the purpose of the present invention.
  • Antioxidants pigments (dyes), plasticizers, thixotropic agents, UV absorbers, flame retardants, solvents, surfactants (including leveling agents), dispersants, dehydrating agents, adhesion-imparting agents, Various additives such as an antistatic agent can be contained.
  • thermoplastic resin examples include polyethersulfone, polyetherimide, polyetheretherketone, polyphenylene sulfide, and nylon.
  • Examples of the filler include organic or inorganic fillers of various shapes. Specifically, for example, various silicas such as fumed silica, calcined silica, precipitated silica, pulverized silica, and fused silica; diatomaceous earth; iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide; calcium carbonate, Magnesium carbonate, zinc carbonate; wax stone clay, kaolin clay, calcined clay; carbon black; these fatty acid treated products, oxalic acid treated products, urethane compound treated products, and fatty acid ester treated products.
  • various silicas such as fumed silica, calcined silica, precipitated silica, pulverized silica, and fused silica
  • diatomaceous earth iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide
  • calcium carbonate Magnesium carbonate, zinc carbonate
  • wax stone clay kaolin clay, calcined clay
  • carbon black these fatty acid
  • silica is preferable because the elastic modulus can be effectively improved.
  • the content of the filler is not particularly limited!
  • the filler is silica, it is preferably 1 to 95% by mass with respect to the entire curable composition. More preferably, it is 95% by mass.
  • reaction retarding agent examples include alcohol-based compounds.
  • anti-aging agent examples include hindered phenol compounds.
  • antioxidants are, for example, butylhydroxytoluene (BHT), butyhydroxydiamine (BHA) and the like.
  • the pigment include inorganic pigments such as titanium oxide, zinc oxide, ultramarine, bengara, lithopone, lead, cadmium, iron, cobalt, aluminum, hydrochloride, sulfate, etc .; Material, phthalocyanine pigment, quinacridone pigment, quinacridone quinone pigment, dioxazine face Pigments, anthrapyrimidine pigments, ansanthrone pigments, indanthrone pigments, furano-kuslon pigments, perylene pigments, perinone pigments, diketopyrrolopyrrole pigments, quinonaphthalone pigments, anthraquinone pigments, thioindigo pigments, benzimidazolone pigments, isoindoline pigments And organic pigments such as bonbon black.
  • inorganic pigments such as titanium oxide, zinc oxide, ultramarine, bengara, lithopone, lead, cadmium, iron, cobalt, aluminum, hydro
  • plasticizer examples include, for example, dioctyl phthalate (DOP), dibutyl phthalate (DBP); dioctyl adipate, isodecyl succinate; diethylene glycol dibenzoate, pentaerythritol ester; butyl oleate, Examples include methyl acetyl ricinoleate; tricresyl phosphate, trioctyl phosphate; propylene glycol adipate polyester, butylene glycol adipate polyester, and the like. These may be used alone or as a mixture of two or more.
  • DOP dioctyl phthalate
  • DBP dibutyl phthalate
  • dioctyl adipate isodecyl succinate
  • diethylene glycol dibenzoate pentaerythritol ester
  • butyl oleate examples include methyl acetyl ricinoleate; tricresyl
  • the wrinkle modification-imparting agent examples include aerosil (manufactured by Nippon Air Port Jil Co., Ltd.), disparon (manufactured by Enomoto Kasei Co., Ltd.), and the like.
  • adhesion-imparting agent examples include terpene resin, phenol resin, terpene resin, rosin resin, and xylene resin.
  • flame retardant examples include, for example, black mouth alkyl phosphate, dimethyl 'methyl phosphonate, bromine' phosphorus compound, ammonium polyphosphate, neopentyl bromide polyether, brominated polyether. Etc.
  • antistatic agent examples include quaternary ammonium salts; hydrophilic compounds such as polydaricol and ethylene oxide derivatives.
  • the method for producing the composition of the present invention is not particularly limited! However, for example, the above-mentioned essential components and optional components are placed in a reaction vessel, and the mixture is mixed in a mixing mixer or the like under reduced pressure. A method of sufficiently kneading using a machine can be used.
  • composition of the present invention can be used in a wide range of applications by taking advantage of the properties of the composition of the present invention.
  • various kinds of heat and light curing resins specifically, fiber reinforced composite materials, adhesives, sealants, paints, coating agents, cured products such as optical modeling resin; printing of ink, toner, etc. It can be applied to sealants.
  • Tetraethoxysilane (KBE—04, manufactured by Shin-Etsu Chemical Co., Ltd.) 84.6 g (0. 406 mol) and 3-ethyl-3- (hydroxymethyl) oxetane (OXT-101, manufactured by Toagosei Co., Ltd.) 141. 48 g (1.22 mol) and 30.0 g (0. 406 mol) of glycidol (GD, manufactured by Daicel Chemical Industries, Ltd.) were reacted at 120 ° C for 3 hours under reduced pressure. The reaction rate was 89.3% from 1 H-NMR measurement, and the oxetane compound 3 of the third aspect of the present invention represented by the above formula (4b) was obtained.
  • Tetraethoxysilane (KBE—04, manufactured by Shin-Etsu Chemical Co., Ltd.) 84.6 g (0. 406 mol) and 3-ethyl-3- (hydroxymethyl) oxetane (OXT-101, manufactured by Toagosei Co., Ltd.) 141. 48 g (1.22 mol) and 1,2 epoxy 1-4 hydroxymethyl monocyclohexane (ETHB, manufactured by Daicel Engineering Co., Ltd.) 52.0 g (0. 406 mol) at 120 ° C under reduced pressure for 3 hours. Reacted. The reaction rate was 91.3% from 1 H-NMR measurement, and the oxetane compound of the third aspect of the present invention represented by the above formula (41 /) was obtained.
  • optical DSC optical differential scanning calorimetry
  • Example 2 The composition obtained in Example 2 is filled into a mold and placed on a belt conveyor of a belt conveyor type light irradiation device (S-250 — Cl, manufactured by Nippon Battery Co., Ltd., lamp: MAN250NL (HAN250NL) 3000W), and the peak illuminance Ultraviolet rays of 516 mWZcm 2 and accumulated light intensity of 1988 mjZcm 2 were irradiated twice each on the front and back sides. Thereafter, it was cured at 100 ° C. for 2 hours and further at 180 ° C. for 3 hours to obtain a sheet-like test piece having a length of 32 mm ⁇ width 12 mm ⁇ thickness 1 mm.
  • S-250 — Cl manufactured by Nippon Battery Co., Ltd., lamp: MAN250NL (HAN250NL) 3000W
  • Multifunctional oxetane compound represented by the following formula (20), OX—SC, manufactured by Toagosei Co., Ltd., number average molecular weight 1575
  • Light power thione polymerization initiator 1 Compound represented by the following formula (21), SP-170, manufactured by Asahi Denka Kogyo Co., Ltd.
  • Light 'thermal cationic polymerization initiator 1 compound represented by the following formula (22), SI-60L, manufactured by Sanshin Engineering Co., Ltd.
  • the composition containing oxetane compound 1 is a composition containing polyfunctional oxetane having no epoxy ring ( Compared with Comparative Example 1), the reactivity to ultraviolet rays (particularly the reactivity of the initiation reaction) was excellent.
  • the cured product of the composition containing oxetane compound 1 loses its glass transition point Tg in a temperature range of 300 ° C or lower. It was a component that it had excellent heat resistance.
  • DSC differential scanning calorific value
  • Multifunctional oxetane compound represented by the above formula (20), OX—SC, manufactured by Toagosei Co., Ltd., number average molecular weight 1575
  • Thermal cationic polymerization initiator 1 CP-77, manufactured by Asahi Denka Kogyo Co., Ltd.
  • the composition containing the oxetane compound 1 is a composition containing a polyfunctional oxetane having no epoxy ring (Example 3). Compared to Comparative Example 2), it was found that the reactivity to heat at a low reaction initiation temperature was excellent.
  • Light power thione polymerization initiator 1 Compound represented by the above formula (21), SP-170, manufactured by Asahi Denka Kogyo Co., Ltd.
  • Light 'thermal cationic polymerization initiator 2 compound represented by the above formula (22), SI-80L, manufactured by Sanshin Engineering Co., Ltd.
  • the dynamic viscoelasticity (DMA) spectrum of the cured product was measured by the same method as in Example 2.
  • Table 4 shows the storage modulus (G ') at 50 ° C.
  • Epoxy compounds compounds represented by the following formula (23), CY—179, Huntsman Adva need Materials
  • Epoxy resin Bisphenol A type epoxy resin represented by the following formula (24), YD-128, manufactured by Tohto Kasei Co., Ltd.
  • Oxetane resin Oxetane resin represented by the following formula (25), OXT-121, manufactured by Toagosei Co., Ltd.
  • Multifunctional oxetane compound represented by the above formula (20), OX—SC, manufactured by Toagosei Co., Ltd., number average molecular weight 1575
  • Light power thione polymerization initiator 1 Compound represented by the above formula (21), SP-170, manufactured by Asahi Denka Kogyo Co., Ltd.
  • Light 'thermal cationic polymerization initiator 1 compound represented by the above formula (22), SI-60L, manufactured by Sanshin Engineering Co., Ltd.
  • n is an integer of 1 to 3.
  • Vinyl ether compound 1 Compound represented by the following formula (26), CHDVE, manufactured by Nippon Carbide Industries, Ltd.
  • Light power thione polymerization initiator 1 Compound represented by the above formula (21), SP-170, manufactured by Asahi Denka Kogyo Co., Ltd.
  • Light 'thermal cationic polymerization initiator 1 compound represented by the above formula (22), SI-60L, manufactured by Sanshin Engineering Co., Ltd.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)
  • Epoxy Resins (AREA)

Abstract

 反応性、特に光・熱に対するカチオン重合性に優れ、耐熱性も良好な硬化性組成物を提供することを課題とする。エポキシ基およびアルコキシシリル基を有するシラン化合物と、オキセタン環および活性水素基を有する化合物との反応により得られるオキセタン化合物により、上記課題が達成される。

Description

明 細 書
ォキセタンィヒ合物およびそれを含む硬化性組成物
技術分野
[0001] 本発明は、ォキセタン化合物およびそれを含む硬化性組成物に関する。
背景技術
[0002] 紫外線や電子線で硬化する活性エネルギー線硬化性榭脂の分野でォキセタン化 合物が用いられている。このォキセタンィ匕合物は、 4員環の環状エーテルであるォキ セタン環を有して 、るため、 3員環の環状エーテルであるエポキシ環を有する化合物 (以下「エポキシィ匕合物」という。)に比べ、炭素—酸素間の結合がより分極した状態と なる結果、高い反応性を示し、ルイス酸等をカチオン重合の開始剤に用いると開環 反応が進行することが知られている。また、ォキセタンィ匕合物は、エポキシ環よりも環 の歪が小さいォキセタン環を有しているため、エポキシ化合物に比べ、エネルギー的 に安定となる結果、開始反応についてはォキセタンィ匕合物の方が遅いが、成長反応 につ ヽてはォキセタン化合物の方が速 ヽと 、うことも知られて 、る。
[0003] 最近、このようなォキセタン化合物を用いた硬化性組成物が多数報告されて 、る ( 例えば、特許文献 1〜7参照。 )0
具体的には、特許文献 1〜5には、一分子中にエポキシ環とォキセタン環を有し、 エポキシ環とォキセタン環の両方の特性を併せ持った樹脂が開示されて 、る。しかし ながら、これらの榭脂は、ラジカル重合により生成しているため鎖状高分子 (具体的 には、炭素 炭素結合により主鎖が形成された榭脂)の側鎖に官能基を有した構造 であり、耐熱性が不十分であったり、加工性、反応性、塗装作業性等に問題があった また、特許文献 6には、ォキセタン環を有するシランカップリング剤および該シラン力 ップリング剤を含有する硬化性榭脂溶液組成物が開示されており、特許文献 7には、 珪素原子を有する多官能ォキセタンィ匕合物および該多官能ォキセタンィ匕合物を含 むカチオン硬化性組成物が開示されている。し力しながら、これらの組成物は、いず れも反応性に問題があった。 [0004] 特許文献 1 :特開平 9 208674号公報
特許文献 2 :特開平 9 221625号公報
特許文献 3:特開平 9 - 278866号公報
特許文献 4:特開平 10— 330652号公報
特許文献 5:特開平 11― 148045号公報
特許文献 6:特開 2001— 329112号公報
特許文献 7:特開 2001— 342194号公報
発明の開示
発明が解決しょうとする課題
[0005] そこで、本発明は、反応性、特に光'熱に対するカチオン重合性に優れ、耐熱性も 良好な硬化性組成物を提供することを課題とする。
課題を解決するための手段
[0006] 本発明者は、上記課題を解決すべく鋭意検討した結果、エポキシ基およびアルコ キシシリル基を有する特定のシラン化合物と、ォキセタン環および活性水素基を有す る特定の化合物との反応により得られるォキセタン化合物等の特定のォキセタン化 合物を用いた硬化性組成物が、反応性、特に光 ·熱に対するカチオン重合性に優れ 、耐熱性も良好な硬化性組成物となることを見出し、本発明を完成させた。
[0007] すなわち、本発明は、下記(1)〜(5)に記載のォキセタンィ匕合物および下記(6)〜
(13)に記載の硬化性組成物を提供するものである。
(1)エポキシ基およびアルコキシシリル基を有するシランィ匕合物と、ォキセタン環お よび活性水素基を有する化合物(以下「活性水素基含有ォキセタン化合物」とも ヽぅ 。;)との反応により得られるォキセタンィ匕合物。
(2)エポキシ基およびアルコキシシリル基を有するシランィ匕合物と、ォキセタン環お よび活性水素基を有する化合物と、エポキシ基および活性水素基を有する化合物( 以下「活性水素基含有エポキシ化合物」とも 、う。)との反応により得られるォキセタン 化合物。
(3)アルコキシシリル基を有するシランィ匕合物と、ォキセタン環および活性水素基を 有する化合物と、エポキシ基および活性水素基を有する化合物との反応により得ら れるォキセタン化合物。
(4)ォキセタン環およびアルコキシシリル基を有するシラン化合物と、エポキシ基お よび活性水素基を有する化合物との反応により得られるォキセタン化合物。
(5)ォキセタン環およびアルコキシシリル基を有するシラン化合物と、ォキセタン環 および活性水素基を有する化合物と、エポキシ基および活性水素基を有する化合物 との反応により得られるォキセタンィ匕合物。
(6)上記(1)〜(5)に記載のォキセタンィ匕合物の少なくとも 1種と、カチオン重合開 始剤とを含有する硬化性組成物。
(7)更に、充填剤を含有する上記 (6)に記載の硬化性組成物。
(8)前記充填剤がシリカである上記(7)に記載の硬化性組成物。
(9)前記シリカの含有量が、 1〜95質量%である上記(8)に記載の硬化性組成物。
(10)更に、上記(1)〜(5)に記載のォキセタンィ匕合物以外のォキセタン化合物を 含有する上記(6)〜(9)の 、ずれかに記載の硬化性組成物。
(11)更に、ビニルエーテルィ匕合物を含有する上記(6)〜(10)のいずれかに記載 の硬化性組成物。
(12)更に、 a , j8不飽和カルボ-ル化合物を含有する上記(6)〜(11)のいずれ かに記載の硬化性組成物。
(13)更に、エポキシィ匕合物を含有する上記(7)〜(12)のいずれかに記載の硬化 性組成物。
発明の効果
以下に示すように、本発明によれば、反応性、特に光'熱に対するカチオン重合性 に優れ、耐熱性も良好な硬化性組成物を提供することができる。
また、本発明のォキセタン化合物を含有する硬化性組成物は、用いるシランィ匕合 物の縮合度により、硬化性組成物の粒度を制御することが可能であるため加工性に も優れ、従来のォキセタン化合物を用いた場合のようにエポキシ榭脂を混合させる必 要がなぐ混合する際の作業性や相溶性等を考慮する必要がなくなるため有用であ る。エポキシ化合物を混合させる場合は、充填剤と併用することにより、汎用のェポキ シ化合物の反応性を向上させることができ、また、充填剤の量により粘度を調整する ことができる。
更に、本発明のォキセタン化合物を含有する硬化性組成物は、熱および光のいず れでも硬化することが可能であることから、各種の熱'光硬化榭脂、具体的には、繊 維強化複合材料、接着剤、封止剤、塗料、コーティング剤、光造形用榭脂などの硬 化物;インキ、トナーなどの印刷物;シーラント等に応用することができるため有用であ る。
図面の簡単な説明
[0009] [図 1]図 1は、実施例 1—1で得られたォキセタン化合物 1の1 H—NMR (重クロ口ホル ム)スペクトルのチャートである。
[図 2]図 2は、実施例 2および比較例 1の組成物の光 DSCチャートである。
[図 3]図 3は、実施例 3および比較例 2の組成物の DSCチャートである。
[図 4]図 4は、実施例 4 1〜4 4の糸且成物の光 DSCチャートである。
[図 5]図 5は、実施例 4 2〜4 4の組成物の硬化物の貯蔵弾性率のスペクトルであ る。
発明を実施するための最良の形態
[0010] 以下、本発明をより詳細に説明する。
本発明の第 1の態様のォキセタンィ匕合物は、エポキシ基およびアルコキシシリル基 を有するシランィ匕合物と、活性水素基含有ォキセタンィ匕合物との反応により得られる ォキセタンィ匕合物である。
本発明の第 2の態様のォキセタンィ匕合物は、エポキシ基およびアルコキシシリル基 を有するシラン化合物と、活性水素基含有ォキセタン化合物と、活性水素基含有ェ ポキシィ匕合物との反応により得られるォキセタンィ匕合物である。
本発明の第 3の態様のォキセタンィ匕合物は、アルコキシシリル基を有するシランィ匕 合物と、活性水素基含有ォキセタン化合物と、活性水素基含有エポキシ化合物との 反応により得られるォキセタン化合物である。
本発明の第 4の態様のォキセタンィ匕合物は、ォキセタン環およびアルコキシシリル 基を有するシランィ匕合物と、活性水素基含有エポキシィ匕合物との反応により得られる ォキセタンィ匕合物である。 本発明の第 5の態様のォキセタンィ匕合物は、ォキセタン環およびアルコキシシリル 基を有するシラン化合物と、活性水素基含有ォキセタン化合物と、活性水素基含有 エポキシィ匕合物との反応により得られるォキセタンィ匕合物である。
以下、エポキシ基およびアルコキシシリル基を有するシランィ匕合物、ォキセタン環お よびアルコキシシリル基を有するシランィ匕合物、アルコキシシリル基を有するシランィ匕 合物、活性水素基含有ォキセタンィ匕合物および活性水素基含有エポキシィ匕合物に ついて説明する。
[0011] <エポキシ基およびアルコキシシリル基を有するシラン化合物 >
エポキシ基およびアルコキシシリル基を有するシランィ匕合物は、特に限定されず、 その具体例としては、架橋性のシリル基を有する下記一般式(1)で表される化合物 等が挙げられる。
[0012] [化 1]
Figure imgf000006_0001
[0013] 式中、 mおよび nはそれぞれ独立に 1〜3の整数 (ただし、 m+n≤4)を表す。
R1は、炭素数 1〜3のアルキル基を表し、メチル基、ェチル基、 n—プロピル基、イソ プロピル基であるのが好ましぐメチル基、ェチル基であるのがより好ましい。 R1が複 数ある場合は、複数の R1は、それぞれ同一であっても異なっていてもよい。
R2は、エポキシ基を有する一価の有機基を表し、窒素原子もしくは酸素原子を含ん で!、てもよ 、有機基 (例えば、酸素原子を含んで 、てもよ 、炭素数 2〜6の 2価の非 環状脂肪族基、炭素数 6〜10の 2価の環状脂肪族基等)を介してエポキシ基がケィ 素原子に結合する基であるのが好ましい。 R2が複数ある場合は、複数の R2は、それ ぞれ同一であっても異なって 、てもよ!/、。
R3は、炭素数 1〜6のアルキル基を表し、メチル基、ェチル基、 n—プロピル基、イソ プロピル基であるのが好ましぐメチル基、ェチル基であるのがより好ましい。 R3が複 数ある場合は、複数の R3は、それぞれ同一であっても異なっていてもよい。
[0014] このようなシラン化合物としては、具体的には、例えば、 3—グリシドキシプロピルトリ メトキシシラン、 3—グリシドキシプロピノレメチノレジメトキシシラン、 3—グリシドキシプロ ピルメチルジェトキシシラン、 3 -グリシドキシプロピルトリエトキシシランなどの 3—グリ シドキシプロピルトリアルコキシシランもしくは 3—グリシドキシプロピルアルキルジアル コキシシラン; 2— (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン、 2— (3, 4 エポキシシクロへキシノレ)ェチノレメチノレジメトキシシラン、 2- (3, 4 エポキシシク 口へキシル)ェチルメチルジェトキシシラン、 2—(3, 4 エポキシシクロへキシル)ェ チルトリエトキシシランなどの 2— (3, 4—エポキシシクロへキシル)ェチルトリアルコキ シシランもしくは 2— (3, 4 エポキシシクロへキシル)ェチルアルキルジアルコキシシ ラン;およびこれらの縮合物等が挙げられ、これらを 1種単独で用いても 2種以上を併 用してちょい。
[0015] ここで、これらの縮合物とは、鎖状、ラダー状もしくはかご状のシロキサン骨格または これらが混在するシロキサン骨格に、エポキシ基およびアルコキシシリル基を有する シラン化合物であり、その具体例としては、 3—グリシドキシプロピルトリアルコキシシラ ンのアルコキシシリル基の一部を縮合させたもの等が挙げられる。
本発明においては、このような縮合物は、例えば、上記一般式(1)で表される化合 物を加水分解により縮合させて得ることができる力 特にこれに限定されず、シロキサ ン骨格を形成した後に、該シロキサン骨格にエポキシ基およびアルコキシシリル基を 有する化合物を導入することにより合成してもよい。また、ビュル基、アクリル基、メタ クリル基、イソシァネート基等の官能基を分子内に有するシランィ匕合物、または、テト ラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランを併用して縮合した ものでもよい。
なお、加水分解および縮合反応によるシロキサン結合( Si— O )の形成時にァ ルコールが生成するため、シランィ匕合物の縮合物の製造時には、該アルコールを減 圧除去するのが好ましい。
[0016] これらシラン化合物の例示のうち、 2— (3, 4 エポキシシクロへキシル)ェチルトリメ トキシシラン、 3—グリシドキシプロピルトリメトキシシラン、 3—グリシドキシプロピルトリ エトキシシラン、 3—グリシドキシプロピルメチルジェトキシシランであるのが入手しや す 、と 、う理由力 好まし!/、。
[0017] 本発明においては、上記シランィ匕合物としては、市販品を使用することもでき、具体 的には、例えば、 2- (3, 4—エポキシシクロへキシル)ェチルトリメトキシシラン (A18 6、 日本ュ-カー社製)、 3—グリシドキシプロピルトリメトキシシラン (A187、 日本ュ- カー社製)、 3—グリシドキシプロピルメチルジェトキシシラン (KBE— 402、信越化学 工業社製)、 3—グリシドキシプロピルトリエトキシシラン (KBE— 403、信越化学工業 社製)等を用いることができる。
[0018] <ォキセタン環およびアルコキシシリル基を有するシランィ匕合物 >
ォキセタン環およびアルコキシシリル基を有するシランィ匕合物は、特に限定されず、 その具体例としては、架橋性のシリル基を有する下記一般式(la)で表される化合物 等が挙げられる。
[0019]
Figure imgf000008_0001
[0020] 式中、 m、 n、 R1および R3は、それぞれ一般式(1)におけるのと同様である。
R21は、ォキセタン環を有する一価の有機基を表し、窒素原子もしくは酸素原子を含 んで 、てもよ 、有機基 (例えば、酸素原子を含んで 、てもよ 、炭素数 2〜6の 2価の 非環状脂肪族基、炭素数 6〜10の 2価の環状脂肪族基等)を介してォキセタン環が ケィ素原子に結合する基であるのが好まし 、。
[0021] このようなシラン化合物としては、具体的には、例えば、特許文献 6に記載されてい るォキセタン環を含有するシランカップリング剤;およびこれらの縮合物等が挙げられ 、これらを 1種単独で用いても 2種以上を併用してもよ 、。
[0022] ここで、これらの縮合物とは、鎖状、ラダー状もしくはかご状のシロキサン骨格または これらが混在するシロキサン骨格に、ォキセタン環およびアルコキシシリル基を有す るシラン化合物であり、その具体例としては、特許文献 6に記載されているォキセタン 環を含有するシランカップリング剤のアルコキシシリル基の一部を縮合させたもの等 が挙げられる。
本発明においては、このような縮合物は、例えば、上記一般式(la)で表される化合 物を加水分解により縮合させて得ることができる力 特にこれに限定されず、シロキサ ン骨格を形成した後に、該シロキサン骨格にォキセタン環およびアルコキシシリル基 を有する化合物を導入することにより合成してもよい。また、ビュル基、アクリル基、メ タクリル基、イソシァネート基等の官能基を分子内に有するシランィ匕合物、または、テ トラメトキシシラン、テトラエトキシシラン等のテトラアルコキシシランを併用して縮合し たものでもよい。
なお、加水分解および縮合反応によるシロキサン結合(— Si— o— )の形成時にァ ルコールが生成するため、シランィ匕合物の縮合物の製造時には、該アルコールを減 圧除去するのが好ましい。
[0023] <アルコキシシリル基を有するシラン化合物 >
アルコキシシリル基を有するシランィ匕合物は、エポキシ基およびォキセタン環を有し ないものであれば特に限定されず、その具体例としては、架橋性のシリル基を有する 下記一般式(lb)で表される化合物等が挙げられる。
[0024] [化 3]
( R^^Si— R3 4.p d )
[0025] 式中、 pは 2〜4の整数を表す。
R1および R3は、それぞれ一般式(1)におけるのと同様である。
[0026] このようなシラン化合物としては、具体的には、例えば、テトラメトキシシラン、テトラ エトキシシラン等のテトラアルコキシシラン;メチルトリメトキシシラン、メチルトリエトキシ シラン、フエニルトリメトキシシラン、フエニルトリエトキシシラン等のトリアルコキシアル キルシランまたはトリアルコキシァリルシラン;ジメチルジメトキシシラン、ジメチルジェト キシシラン、ジフエ二ルジメトキシシラン、ジフエ二ルジェトキシシラン等のジアルコキ シジアルキルシランまたはジアルコキシジァリルシラン;およびこれらの縮合物等が挙 げられ、これらを 1種単独で用いても 2種以上を併用してもよ 、。
[0027] ここで、これらの縮合物とは、鎖状、ラダー状もしくはかご状のシロキサン骨格または これらが混在するシロキサン骨格を有するシランィ匕合物であり、その具体例としては、 テトラアルコキシシランのアルコキシシリル基の一部を縮合させたもの等が挙げられる
本発明においては、このような縮合物は、例えば、上記一般式(lb)で表される化 合物を加水分解により縮合させて得ることができる。また、ビニル基、アクリル基、メタ クリル基、イソシァネート基等の官能基を分子内に有するシランィ匕合物を併用して縮 合したものでもよ ヽ。
なお、加水分解および縮合反応によるシロキサン結合(— Si— o— )の形成時にァ ルコールが生成するため、シランィ匕合物の縮合物の製造時には、該アルコールを減 圧除去するのが好ましい。
[0028] これらシランィ匕合物の例示のうち、テトラメトキシシラン、テトラエトキシシランであるの が入手しやす ヽと 、う理由力 好まし!/、。
[0029] 本発明においては、上記シランィ匕合物としては、市販品を使用することもでき、具体 的には、例えば、テトラメトキシシラン (KBM— 04、信越ィ匕学工業社製)、テトラエトキ シシラン (KBE— 04、信越ィ匕学工業社製)等を用いることができる。
[0030] く活性水素基含有ォキセタン化合物 >
活性水素基含有ォキセタンィ匕合物は、ォキセタン環および活性水素基を有するィ匕 合物であれば特に限定されず、その具体例としては、下記一般式 (2)で表される化 合物等が挙げられる。
[0031] [化 4]
Figure imgf000010_0001
[0032] 式中、 R4は、水素原子または炭素数 1〜6のアルキル基を表し、炭素数 1〜6のアル キル基であるのが好ましぐメチル基、ェチル基、 n—プロピル基、イソプロピル基であ るのがより好ましぐメチル基、ェチル基であるのが更に好ましい。
R5は、単結合または窒素原子もしくは酸素原子を含んでいてもよい炭素数 1〜16 の二価の炭化水素基を表し、窒素原子もしくは酸素原子を含んで!/ヽてもよ ヽ炭素数 1〜16の二価の炭化水素基であるのが好ましぐ窒素原子もしくは酸素原子を含ん でいてもよいアルキレン基であるのがより好ましぐ具体的には、例えば、メチレン基、 エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ブチレン基、ペンタメチ レン基、へキサメチレン基、オタタメチレン基、ノナメチレン基、デカメチレン基、ゥンデ カメチレン基、ドデカメチレン基、トリデカメチレン基、テトラデカメチレン基、ペンタデ カメチレン基、へキサデカメチレン基等が好適に挙げられる。 Xは、窒素原子、酸素原子または硫黄原子を表す。
[0033] このような活性水素基含有ォキセタンィ匕合物としては、具体的には、反応させやす
V、と 、う観点力 ォキセタンアルコールが好適に例示される。
[0034] 本発明にお ヽては、上記活性水素基含有ォキセタンィ匕合物としては、市販品を使 用することもでき、具体的には、例えば、 3—ェチルー 3—(ヒドロキシメチル)ォキセタ ン (OXT— 101、東亞合成社製)を用いることができる。
[0035] <活性水素基含有エポキシ化合物 >
活性水素基含有エポキシ化合物は、エポキシ基および活性水素基を有する化合 物であれば特に限定されず、その具体例としては、下記一般式(2a)で表される化合 物、下記一般式 (2b)で表される化合物等が挙げられる。
[0036] [化 5]
Figure imgf000011_0001
[0037] 式中、 R ま、一般式(2)における R4と同様である。
R23および R25は、それぞれ一般式(2)における R5と同様である。
R24は窒素原子もしくは酸素原子を含んで 、てもよ 、炭素数 2以上の 3価の炭化水 素基を表し、窒素原子もしくは酸素原子を含んで!/ヽてもよ ヽ炭素数 2以上の 3価の直 鎖状炭化水素基であるのが好ましぐ具体的には、例えば、エチレン基、トリメチレン 基、テトラメチレン基、ペンタメチレン基等のアルキレン基から、水素原子を 1個を除い て得られる 3価の基が好適に挙げられる。中でも、テトラメチレン基の 2位の炭素原子 上の水素原子を 1個を除 、て得られる 3価の基が好ま U、。
Xは、一般式(2)におけるのと同様である。
[0038] このような活性水素基含有エポキシィ匕合物としては、具体的には、反応させやすい という観点力もエポキシアルコールが好適に例示される。具体的には、例えば、 2, 3 エポキシ 1 プロパノール(別名グリシドール)、 1, 2 エポキシー4ーヒドロキシ メチルーシクロへキサンが挙げられる。
[0039] 本発明においては、上記活性水素基含有エポキシィ匕合物としては、市販品を使用 することもでき、具体的には、例えば、 2, 3—エポキシ— 1—プロパノール (GD、ダイ セル化学工業社製)、 1, 2—エポキシ— 4—ヒドロキシメチル—シクロへキサン(ETH B、ダイセルィ匕学工業社製)を用いることができる。
[0040] 本発明の第 1の態様のォキセタンィ匕合物は、上記エポキシ基およびアルコキシシリ ル基を有するシラン化合物と、上記活性水素基含有ォキセタン化合物とを反応させ て得ることができる。
本発明の第 2の態様のォキセタンィ匕合物は、エポキシ基およびアルコキシシリル基 を有するシラン化合物と、上記活性水素基含有ォキセタン化合物と、上記活性水素 基含有エポキシィ匕合物とを反応させて得ることができる。
本発明の第 3の態様のォキセタンィ匕合物は、上記アルコキシシリル基を有するシラ ン化合物と、上記活性水素基含有ォキセタンィ匕合物と、上記活性水素基含有ェポキ シ化合物とを反応させて得ることができる。
本発明の第 4の態様のォキセタンィ匕合物は、上記ォキセタン環およびアルコキシシ リル基を有するシラン化合物と、上記活性水素基含有エポキシ化合物とを反応させ て得ることができる。
本発明の第 5の態様のォキセタンィ匕合物は、上記ォキセタン環およびアルコキシシ リル基を有するシラン化合物と、上記活性水素基含有ォキセタン化合物と、上記活性 水素基含有エポキシィ匕合物とを反応させて得ることができる。
[0041] これらの反応は、一般的な縮合反応であって、その反応条件は特に限定されない。
本発明の第 1の態様のォキセタンィ匕合物は、例えば、上記エポキシ基およびアルコ キシシリル基を有するシランィ匕合物と上記活性水素基含有ォキセタンィ匕合物とを、減 圧下、 50〜200°Cの温度下で力べはんすることによって得ることができる。
具体的には、上記一般式(1)で表されるシランィ匕合物と、上記一般式 (2)で表され る活性水素基含有ォキセタン化合物とを、以下に示すように、シランィ匕合物のアルコ キシ基と活性水素基含有ォキセタン化合物の活性水素基とが当量となるように反応 させることにより、下記一般式 (3)で表されるォキセタン化合物が生成する。なお、式 (3)中、 m、 n、 R2
Figure imgf000013_0001
R4および R5は、それぞれ、上記一般式(1)および(2)中のも のと同様であり、上記一般式(1)で表されるシランィ匕合物は予めアルコキシシリルの 一部を縮合させた縮合物であってもよ 、。
[0042] [化 6]
Figure imgf000013_0002
(1 ) (2) (3)
[0043] このようなォキセタンィ匕合物としては、例えば、上記で例示したエポキシ基およびァ ルコキシシリル基を有するシランィ匕合物および活性水素機含有ォキセタンィ匕合物の 各種を反応させて得られる反応生成物が挙げられるが、これらのうち、具体的には、 2- (3, 4—エポキシシクロへキシル)ェチルトリメトキシシランとォキセタンアルコール との反応生成物(下記式 (4) )が好適に例示される。
[0044] [化 7]
Figure imgf000013_0003
(4)
[0045] 本発明の第 2〜第 5の態様のォキセタンィ匕合物も、本発明の第 1の態様のォキセタ ン化合物と同様に、例えば、それぞれの原料となる上記化合物を、減圧下、 50〜20 0°Cの温度下で力べはんすることによって得ることができる。
具体的には、本発明の第 2の態様のォキセタンィ匕合物においては、上記一般式(1 )で表される化合物と、上記一般式 (2)で表される化合物と、上記一般式 (2a)で表さ れる化合物および Zまたは上記一般式 (2b)で表される化合物とを、本発明の第 3の 態様のォキセタンィ匕合物においては、上記一般式(lb)で表される化合物と、上記一 般式(2)で表される化合物と、上記一般式(2a)で表される化合物および Zまたは上 記一般式 (2b)で表される化合物とを、本発明の第 4の態様のォキセタンィ匕合物にお いては、上記一般式(la)で表される化合物と、上記一般式(2a)で表される化合物 および Zまたは上記一般式(2b)で表される化合物とを、本発明の第 5の態様のォキ セタンィ匕合物においては、上記一般式(la)で表される化合物と、上記一般式(2)で 表される化合物と、上記一般式(2a)で表される化合物および Zまたは上記一般式( 2b)で表される化合物とを、以下に示すように、アルコキシ基と活性水素基とが当量と なるように反応させることにより、下記一般式(3a)〜(3d)のそれぞれで表される各ォ キセタン化合物が生成する(上記一般式 (2b)で表される化合物を用いる態様は、省 略する。)。なお、式(3a)〜(3d)中、各記号は、それぞれ、上記一般式(1)、 (la) , ( 2)、 (2a)および(2b)中のものと同様であり、 qは 1以上 (m— 1)以下の整数を表し、 上記一般式(1)で表される化合物および上記一般式(la)で表される化合物は、そ れぞれ予めアルコキシシリルの一部を縮合させた縮合物であってもよい。
[化 8]
Figure imgf000015_0001
(3a)
R10ト
Figure imgf000015_0002
(3b)
Figure imgf000015_0003
(1 a) (2a) (3c)
Figure imgf000015_0004
(3d)
[0047] より具体的には、例えば、下記各反応式により、下記式 (4)で表される本発明の第 1 の態様のォキセタンィ匕合物、下記式 (4a)および (4 )のそれぞれで表される本発 明の第 2の態様のォキセタンィ匕合物、ならびに、下記式 (4b)および (41/ )のそれぞ れで表される本発明の第 3の態様のォキセタンィ匕合物を得ることができる。
[0048] [化 9]
Figure imgf000016_0001
Figure imgf000016_0002
[0049] 本発明の硬化性組成物(以下、単に「本発明の組成物」とも 、う。)は、上記各ォキ セタンィ匕合物の少なくとも 1種と、カチオン重合開始剤とを含有する硬化性組成物で ある。
本発明の組成物においては、上記ォキセタンィ匕合物は、 1種単独で用いてもよぐ 2種以上を併用してもよい。
次に、上記カチオン重合開始剤について詳述する。
[0050] <カチオン重合開始剤 > 本発明の組成物に用いられるカチオン重合開始剤は、ルイス酸またはプロトン酸を 発生しうる化合物であり、その具体例としては、光力チオン重合開始剤、光'熱カチォ ン重合開始剤、熱カチオン重合開始剤、プロトン酸 (ブレンステッド酸)開始剤等が挙 げられる。
[0051] (光力チオン重合開始剤)
上記光力チオン重合開始剤は、光 (例えば、紫外線、紫外線レーザー光、可視光 線、赤外線等)によりルイス酸またはプロトン酸を発生しうる化合物である。
このような光力チオン重合開始剤としては、具体的には、例えば、ジァゾユウム塩タ ィプ、ョードニゥム塩タイプ、ホスホ-ゥム塩タイプ、スルホ -ゥム塩タイプなどのォ- ゥム塩タイプ;ピリ-ジゥム塩タイプ;鉄 ァレーン化合物タイプ;スルホン酸エステル タイプ;ホウ素化合物等が挙げられ、これらを 1種単独で用いても 2種以上を併用して ちょい。
これらのうち、下記一般式 (5)〜(7)で表される鉄 ·アレーン錯体系は可視光領域( 400〜500nm)に吸収を持つカチオン重合開始剤力 配位子交換を経てエポキシ 重合を行うという理由カゝら好適に用いられる。
[0052] [化 10]
Figure imgf000017_0001
[0053] 上記式(5)〜(7)中、 X—は、 BF―、 PF―、 AsF—または SbF—を表し、 R6はアルキル
4 6 6 6
基を表す。
[0054] (光 ·熱カチオン重合開始剤)
上記光 ·熱カチオン重合開始剤は、光または熱により分解し、ルイス酸またはプロト ン酸を発生しうる化合物である。
このような光,熱カチオン重合開始剤としては、具体的には、例えば、下記式 (8)ま たは(9)で表されるスルホニゥム塩の少なくとも 1種を含む化合物、下記式(10)また は下記式 (11)で表されるォニゥム塩の少なくとも 1種を含む化合物、下記式( 12) (14)のいずれかで表される化合物等が挙げられ、これらを 1種単独で用いても 2種 以上を併用してもよい。
[0055] [化 11]
Figure imgf000018_0001
(8) 0)
rZ
Figure imgf000018_0002
(12) ( 13)
Figure imgf000018_0003
(H)
[0056] 上記式(8) (11)中、 X—は上記式(5) (7)と同様であり、 R7は、 H CH、ハロゲ
3 ンまたは NOを表し、 R8は、 H CH C (O)または CH OC (O)を表す。
2 3 3
上記式(12)中、 X—は上記式(5) (7)と同様であり、 R9は、 H CH、ァセチル基 またはメトキシカルボ-ル基であり、 R1()は、それぞれ独立に、 H、ハロゲンまたは炭素 数 1〜4のアルキル基であり、 R11は、 H、ハロゲンまたはメトキシ基であり、 R12は、炭素 数 1〜4のアルキル基である。
上記式(13)中、 R13は、炭素数 1〜18の脂肪族基、 R"は、炭素数 1〜18の脂肪族 基または炭素数 6〜18の置換もしくは非置換の芳香族基であり、 R13と R"は互いに結 合して環を形成してもよい。 Yは、下記式(15)で表されるスルホ-ォ基、 H、ハロゲン 、ニトロ基、アルコキシ基、炭素数 1〜18の脂肪族基、炭素数 6〜18の置換もしくは 非置換のフエ-ル基、フエノキシ基またはチオフエノキシ基である。 ΖΊま、式 MQま
Ρ
たは MQ ΟΗ (Μは B、 P、 Asまたは Sbであり、 Qはハロゲン原子、 pは 4または 6の
P-1
整数である)で示される陰イオンである。 r、 sは、それぞれ独立に、 1または 2である。
[0057] [化 12]
Figure imgf000019_0001
[0058] 上記式(15)中、 R13および R"は、上記式(13)と同様である。
[0059] 上記式(14)中、 X—は上記式(5)〜(7)と同様であり、 R15は、それぞれ独立に、 Hま たは炭素数 1〜4のアルキル基である。
[0060] また、上記光 ·熱カチオン重合開始剤としては、上記式 (8)〜(14)の化合物の他に
、ベンジルスルホ-ゥム塩やホスホ-ゥム塩等の任意のォ-ゥム塩を用いることがで きる。具体的には、ピレニルホスホ-ゥム塩を用いること力 ピレニルメチルカチオン 生成効率が良好であるため好ま 、。
[0061] (熱カチオン重合開始剤)
上記熱カチオン重合開始剤は、熱により分解し、ルイス酸またはプロトン酸を発生し うる化合物である。
このような熱カチオン重合開始剤としては、具体的には、例えば、下記式(16)〜(1 9)で表される化合物等が挙げられ、これらを 1種単独で用いても 2種以上を併用して ちょい。
[0062] [化 13]
Figure imgf000020_0001
[0063] (プロトン酸 (ブレンステッド酸)開始剤)
上記プロトン酸 (ブレンステッド酸)開始剤としては、具体的には、例えば、無機酸お よび有機酸が挙げられる。
上記無機酸としては、具体的には、例えば、硫酸、塩酸、硝酸等の他、 CF SO H、
3 3
C1SO H、 FSO H、 HCIO等の超強酸が挙げられ、これらを 1種単独で用いても 2種
3 3 4
以上を併用してもよい。
上記有機酸としては、具体的には、例えば、 CF COOH、 CC1 COOH
3 3 等が挙げら れ、これらを 1種単独で用いても 2種以上を併用してもよい。
[0064] 上記カチオン重合開始剤の含有量は、上記ォキセタンィ匕合物 100質量部に対して 、 0. 01〜20質量部であるのが好ましぐ 1〜5質量部であるのがより好ましい。含有 量がこの範囲であると、得られる本発明の組成物の反応性が良好となるためである。
[0065] 本発明の組成物に、カチオン重合開始剤として光力チオン重合開始剤を単独で使 用した場合、光により発生したカチオン力 上記ォキセタンィ匕合物と反応する。また、 光'熱カチオン重合開始剤を単独で使用した場合、光または熱により発生したカチォ ンが、上記ォキセタン化合物と反応し、熱カチオン重合開始剤を単独で用いた場合 、熱により発生したカチオンが、上記ォキセタンィ匕合物と反応する。
一方、本発明の組成物に、光力チオン重合開始剤および光 ·熱カチオン重合開始 剤を併用した場合、光により、光力チオン重合開始剤および光'熱カチオン重合開始 剤の一部からカチオンが発生し、上記ォキセタンィ匕合物と反応し、更にその反応によ る反応熱により熱 ·光力チオン重合開始剤が分解してカチオンを発生し、連鎖反応が 生起する。そのため、得られる本発明の組成物は、反応性に優れ、該組成物内に充 填剤(フイラ一)等のエネルギー線遮蔽物が存在する場合でも硬化できる。したがつ て、本発明の組成物においては、光力チオン重合開始剤および光'熱カチオン重合 開始剤の両方を含有するのが好ま 、。
[0066] 本発明の組成物は、上記ォキセタンィ匕合物と上記カチオン重合開始剤とを含有す ることにより、反応性、特に光 ·熱に対するカチオン重合性に優れ、耐熱性も良好 (具 体的には、 300°C以下でガラス転移点が観測されない結果)となる。これは、用いる 本発明のォキセタンィ匕合物力 光および熱のいずれによっても硬化反応が進行する ものであり、また、一分子内にォキセタン環およびエポキシ環を有することから反応性 (特に、重合初期の反応性)が良好になり、更に、用いる本発明のォキセタン化合物 が低分子 (分子量 600程度以下)またはシラン縮合物であるため官能基が分子間で 反応しやすぐ硬化時の架橋反応によりシロキサン結合が数多く形成するためである と考えられる。
また、本発明の組成物は、上記ォキセタンィ匕合物を含有しているため、従来のォキ セタンィ匕合物を用いた場合のようにエポキシ榭脂を混合させる必要がなく、混合する 際の作業性や相溶性等を考慮する必要がな 、。
[0067] 本発明の組成物は、上記ォキセタンィ匕合物および上記カチオン重合開始剤の他 に、ルイス酸ィ匕合物を含有しているのが、反応速度を制御できる理由力も好ましい。 ルイス酸は、従来公知のルイス酸を用いることができ、その具体例としては、 ZnCl
2
、 Znl、 ZnBrなどの亜鉛化合物; SnClなどのスズィ匕合物; TiCl、 Ti (OC H ) 、 Ti
2 2 2 4 2 5 4
(OCH (CH ) ) 、 Ti (OC H )などのチタン化合物; BC1、 BFなどのホウ素化合物
3 2 4 4 9 4 3 3
; C H A1C1などのアルミニウム化合物; ZrCl、 Zr(OC H )などのジルコニウム化合
2 5 2 4 4 9 4
物等が挙げられ、これらを 1種単独で用いてもよぐ 2種以上を併用してもよい。
これらのうち、カチオンを安定ィ匕する能力が高ぐ少量で反応速度を制御できる理 由から、亜鉛ィ匕合物を用いるのが好ましぐまた、液状で混合しやすいという理由から チタンィ匕合物を用いるのが好まし 、。
[0068] ルイス酸化合物の含有量は、上記ォキセタンィ匕合物 100質量部に対して、 0. 01〜 10質量部であるのが好ましい。含有量の範囲がこの範囲であると、反応速度をより適 切に制御できる。また、均一で透明な硬化物が得られ、かつ、ある程度の反応速度を 維持できる理由から、ルイス酸化合物の含有量は、上記ォキセタンィ匕合物 100質量 部に対して、 0. 1〜3質量部がより好ましぐ 0. 1〜1質量部が更に好ましい。
[0069] 本発明の組成物は、更に、その他の反応性ィ匕合物を含有することができる。
その他の反応性ィ匕合物としては、例えば、本発明の第 1〜第 5の態様のォキセタン 化合物以外のォキセタン化合物、ビュルエーテル化合物、 a , β不飽和カルボ-ル 化合物、エポキシィ匕合物が好適に挙げられる。
[0070] 本発明の第 1〜第 5の態様のォキセタンィ匕合物以外のォキセタンィ匕合物は、ォキセ タン環を 1個以上、好ましくは 2個以上有する化合物である。具体的には、例えば、多 官能ォキセタンィ匕合物、ォキセタン樹脂が挙げられる。これらは、従来公知のものを、 単独でまたは 2種以上組み合わせて用いることができる。
本発明の組成物が本発明の第 1〜第 5の態様のォキセタンィ匕合物以外のォキセタ ン化合物を含有すると、本発明の第 1〜第 5の態様のォキセタンィ匕合物以外のォキ セタンィ匕合物の反応性や、配合物の反応性を向上させることができ、また、粘度を所 望の範囲に調整することができる。
本発明の第 1〜第 5の態様のォキセタンィ匕合物以外のォキセタンィ匕合物の含有量 は、ォキセタン化合物全量に対して、 0. 1〜99. 9質量%であるのが好ましぐ 30〜
97質量%であるのがより好ましい。
[0071] ビュルエーテルィ匕合物は、ビュルエーテル基 (CH =CH Ο )を 1個以上、好ま
2
しくは 2個以上有する化合物である。従来公知のものを、単独でまたは 2種以上組み 合わせて用いることができる。
本発明の組成物がビニルエーテル化合物を含有すると、硬化物の弾性率を所望の 範囲に制御することができる。
ビュルエーテルィ匕合物の含有量は、本発明の第 1〜第 5の態様のォキセタンィ匕合 物およびビュルエーテル化合物の合計量に対して、 0. 1〜99. 9質量%であるのが 好ましぐ 30〜97質量%であるのがより好ましい。
[0072] a , j8不飽和カルボ二ルイ匕合物は、互いに共役している炭素 炭素二重結合と力 ルポニル基とを 1組以上、好ましくは 2組以上有する化合物である。従来公知のもの を、単独でまたは 2種以上組み合わせて用いることができる。
本発明の組成物が a , β不飽和カルボ二ルイ匕合物を含有すると、ラジカル重合お よびカチオン重合で硬化可能となり、また、硬化物の弾性率を所望の範囲に制御す ることがでさる。
a , β不飽和カルボ二ルイ匕合物の含有量は、本発明の第 1〜第 5の態様のォキセ タン化合物および a , j8不飽和カルボ-ル化合物の合計量に対して、 0. 1〜99. 9 質量%であるのが好ましぐ 30〜97質量%であるのがより好ましい。
[0073] エポキシ化合物は、エポキシ基を 1個以上、好ましくは 2個以上含有する化合物で ある。具体的には、例えば、エポキシ榭脂、低分子多官能エポキシ基含有ィ匕合物が 好適に挙げられる。エポキシ榭脂としては、例えば、ビスフエノール A型エポキシ榭脂 、ビスフエノール F型エポキシ榭脂、ビスフエノール S型エポキシ榭脂、ビフエニル型 エポキシ榭脂、ナフタレン型エポキシ榭脂、ノボラック型エポキシ榭脂、フルオレン骨 格を有するエポキシ榭脂、フエノールイ匕合物とジシクロペンタジェンの共重合体を原 料とするエポキシ榭脂、ジグリシジルレゾルシノール、テトラキス (グリシジルォキシフ ェ -ル)ェタン、トリス(グリシジルォキシフエ-ル)メタン、グリシジルァミン型エポキシ 榭脂(例えば、トリスグリシジルァミノフエノール、トリグリシジルァミノクレゾール、テトラ グリシジルキシレンジァミン)、脂環式エポキシ榭脂(例えば、ビュルシクロへキセンジ エポキシド等)が挙げられる。これらは、単独でまたは 2種以上組み合わせて用いるこ とがでさる。
[0074] 本発明にお 、て、エポキシ化合物は、後述する充填剤との組み合わせで用いられ る。
本発明の組成物がエポキシ化合物と充填剤とを含有すると、エポキシ化合物の反 応性を向上させることができ、また、充填剤の量により粘度を調整することができ、更 に、硬化物の物性を向上させることができる。
エポキシィ匕合物の含有量は、本発明の第 1〜第 5の態様のォキセタンィ匕合物およ びエポキシ化合物の合計量に対して、 0. 1〜99. 9質量%であるのが好ましぐ 30 〜97質量%であるのがより好ましい。 [0075] 本発明の組成物は、必要に応じて、本発明の目的を損わない範囲で、上記カチォ ン重合性化合物以外の熱可塑性榭脂、充填剤、反応遅延剤、老化防止剤、酸化防 止剤、顔料 (染料)、可塑剤、揺変性付与剤、紫外線吸収剤、難燃剤、溶剤、界面活 性剤 (レべリング剤を含む)、分散剤、脱水剤、接着付与剤、帯電防止剤などの各種 添加剤等を含有することができる。
[0076] 上記熱可塑性榭脂としては、具体的には、例えば、ポリエーテルスルホン、ポリエー テルイミド、ポリエーテルエーテルケトン、ポリフエ-レンスルフイド、ナイロン等が挙げ られる。
[0077] 充填剤としては、各種形状の有機または無機の充填剤が挙げられる。具体的には 、例えば、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ等の各種 シリカ;ケイソゥ土;酸ィ匕鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム; 炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛;ろう石クレー、カオリンクレー、焼成ク レー;カーボンブラック;これらの脂肪酸処理物、榭脂酸処理物、ウレタン化合物処理 物、脂肪酸エステル処理物が挙げられる。
中でも、弾性率を効果的に向上させることができる点で、シリカが好ましい。
[0078] 充填剤の含有量は、特に限定されな!ヽが、充填剤がシリカである場合、硬化性組 成物全体に対して、 1〜95質量%であるのが好ましぐ 30〜95質量%であるのがよ り好ましい。上記範囲でシリカを含有させることにより、優れた硬化性を維持しつつ、 弾性率を所望の範囲に調整することが容易にできる。
[0079] 反応遅延剤としては、具体的には、例えば、アルコール系等の化合物が挙げられる
[0080] 老化防止剤としては、具体的には、例えば、ヒンダードフ ノール系等の化合物が 挙げられる。
酸ィ匕防止剤としては、具体的には、例えば、ブチルヒドロキシトルエン (BHT)、ブチ ルヒドロキシァ二ソール(BHA)等が挙げられる。
[0081] 顔料としては、具体的には、例えば、酸化チタン、酸化亜鉛、群青、ベンガラ、リトポ ン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料;ァゾ顔 料、フタロシアニン顔料、キナクリドン顔料、キナクリドンキノン顔料、ジォキサジン顔 料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラノくンスロン 顔料、ペリレン顔料、ペリノン顔料、ジケトピロロピロール顔料、キノナフタロン顔料、ァ ントラキノン顔料、チォインジゴ顔料、ベンズイミダゾロン顔料、イソインドリン顔料、力 一ボンブラック等の有機顔料等が挙げられる。
[0082] 可塑剤としては、具体的には、例えば、ジォクチルフタレート(DOP)、ジブチルフタ レート(DBP);アジピン酸ジォクチル、コハク酸イソデシル;ジエチレングリコールジべ ンゾエート、ペンタエリスリトールエステル;ォレイン酸ブチル、ァセチルリシノール酸メ チル;リン酸トリクレジル、リン酸トリオクチル;アジピン酸プロピレングリコールポリエス テル、アジピン酸ブチレングリコールポリエステル等が挙げられる。これらは、単独で 用いてもよぐ 2種以上を混合して用いてもよい。
[0083] 摇変性付与剤としては、具体的には、例えば、エアロジル (日本エア口ジル社製)、 ディスパロン (楠本化成社製)等が挙げられる。
接着付与剤としては、具体的には、例えば、テルペン榭脂、フエノール榭脂、テル ペン フエノール榭脂、ロジン榭脂、キシレン榭脂等が挙げられる。
[0084] 難燃剤としては、具体的には、例えば、クロ口アルキルホスフェート、ジメチル 'メチ ルホスホネート、臭素'リン化合物、アンモ-ゥムポリホスフェート、ネオペンチルブロ マイドーポリエーテル、臭素化ポリエーテル等が挙げられる。
帯電防止剤としては、具体的には、例えば、第四級アンモ-ゥム塩;ポリダリコール 、エチレンオキサイド誘導体等の親水性ィ匕合物等が挙げられる。
[0085] 本発明の組成物の製造方法は、特に限定されな!、が、例えば、反応容器に上記の 各必須成分と任意成分とを入れ、減圧下で混合ミキサー等のカゝくはん機を用いて十 分に混練する方法を用いることができる。
[0086] 本発明の組成物は、本発明の組成物が有する特性を活かして広範な用途に用い られる。例えば、各種の熱'光硬化榭脂、具体的には、繊維強化複合材料、接着剤、 封止剤、塗料、コーティング剤、光造形用榭脂などの硬化物;インキ、トナーなどの印 刷物;シーラント等に応用することができる。
実施例
[0087] 以下、実施例を示して、本発明を具体的に説明する。ただし、本発明はこれらに限 定されるものではない。
1.ォキセタンィ匕合物の合成
(実施例 1 1)
2- (3, 4 エポキシシクロへキシル)ェチルトリメトキシシラン (A186、日本ュ-カ 一社製) 50g (0. 203mol)と、 3 ェチルー 3—(ヒドロキシメチル)ォキセタン(OXT — 101、東亞合成社製) 70. 74g (0. 609mol)とを、酸性触媒としてテトラ n—プチ ルチタン 0. 34gを使用し、減圧下で反応させた。反応は、 60°Cから 160°Cまで徐々 に温度を上げ、 15時間力べはんすることにより行った。反応率は1 H— NMR測定より 88. 5%で、上記式 (4)で表される本発明の第 1の態様のォキセタン化合物 1を得た 。ォキセタン化合物 1の分子量は、 FAB Massの測定結果が mZz=499. 3 [M + H]+であった。
得られたォキセタン化合物 1の1 H— NMR (重クロ口ホルム)スペクトルのチャートを 図 1に示す。
[0088] (実施例 1 2)
2- (3, 4 エポキシシクロへキシル)ェチルトリメトキシシラン (A186、日本ュ-カ 一社製) 100g (0. 406mol)と、 3 ェチル 3— (ヒドロキシメチル)ォキセタン(OX T— 101、東亞合成社製) 141. 48g (l. 22mol)とを、減圧下、 100°Cで 3時間反応 させた。反応率は1 H— NMR測定より 88. 2%で、実施例 1と同様、本発明の第 1の 態様のォキセタンィ匕合物 1を得た。
[0089] (実施例 1 3)
2- (3, 4 エポキシシクロへキシル)ェチルトリメトキシシラン (A186、日本ュ-カ 一社製) 100g (0. 406mol)と、 3 ェチル 3— (ヒドロキシメチル)ォキセタン(OX T— 101、東亞合成社製) 94. 32g (0. 812mol)と、グリシドール(GD、ダイセル化 学工業社製) 30. 0g (0. 406mol)とを、減圧下、 120°Cで 3時間反応させた。反応 率は1 H— NMR測定より 85. 2%で、上記式 (4a)で表される本発明の第 2の態様の ォキセタンィ匕合物 2を得た。
[0090] (実施例 1 4)
2- (3, 4 エポキシシクロへキシル)ェチルトリメトキシシラン (A186、日本ュ-カ 一社製) 100g (0. 406mol)と、 3 ェチル 3— (ヒドロキシメチル)ォキセタン(OX T— 101、東亞合成社製) 94. 32g (0. 812mol)と、 1, 2 エポキシ— 4 ヒドロキシ メチル—シクロへキサン(ETHB、ダイセル化学工業社製) 52. 0g (0. 406mol)とを 、減圧下、 120°Cで 3時間反応させた。反応率は1 H— NMR測定より 89. 5%で、上 記式 (4 )で表される本発明の第 2の態様のォキセタンィ匕合物 ^ を得た。
[0091] (実施例 1 5)
テトラエトキシシラン (KBE— 04、信越ィ匕学工業社製) 84. 6g (0. 406mol)と、 3— ェチル—3— (ヒドロキシメチル)ォキセタン(OXT— 101、東亞合成社製) 141. 48g (1. 22mol)と、グリシドール(GD、ダイセル化学工業社製) 30. 0g (0. 406mol)と を、減圧下、 120°Cで 3時間反応させた。反応率は1 H— NMR測定より 89. 3%で、 上記式 (4b)で表される本発明の第 3の態様のォキセタン化合物 3を得た。
[0092] (実施例 1 6)
テトラエトキシシラン (KBE— 04、信越ィ匕学工業社製) 84. 6g (0. 406mol)と、 3— ェチル—3— (ヒドロキシメチル)ォキセタン(OXT— 101、東亞合成社製) 141. 48g (1. 22mol)と、 1, 2 エポキシ一 4 ヒドロキシメチル一シクロへキサン(ETHB、ダ イセルイ匕学工業社製) 52. 0g (0. 406mol)とを、減圧下、 120°Cで 3時間反応させ た。反応率は1 H— NMR測定より 91. 3%で、上記式 (41/ )で表される本発明の第 3の態様のォキセタンィ匕合物 を得た。
[0093] 2.ォキセタン化合物を含有する硬化性組成物の調製および性状
(実施例 2および比較例 1)
下記第 1表の各成分を、第 1表に示す組成 (質量部)で、力べはん機を用いて混合し 、第 1表に示される各組成物を得た。
得られた各組成物について、下記の方法により、光示差走査熱量 (光 DSC)を測定 し、実施例 2で得られた組成物につ 、ては硬化物の動的粘弾性 (DMA)スペクトル を測定した。
[0094] く光 DSC>
光化学反応熱熱量計 (PDC 121、エスアイアイ ·ナノテクノロジ一社製)を用いて、 Hg— Xeランプ(200W)により照度 10mW/cm2で紫外線(365nm)を照射して、 2 5°C下で光示差走査熱量測定を行った。得られたチャートを図 2に示す。また、照射 後 0〜8分の熱流 (WZg)の積分値 α/g)を算出した。その結果を第 1表に示す。
[0095] < DMA>
実施例 2で得られた組成物を型に充填し、ベルトコンベア式光照射装置(S— 250 — Cl、日本電池社製、ランプ: MAN250NL (HAN250NL) 3000W)のベルトコン ベアに乗せて、ピーク照度 516mWZcm2、積算光量 1988mjZcm2の紫外線を表裏各 2回ずつ照射した。その後、 100°Cで 2時間、更に 180°Cで 3時間硬化し、縦 32 mm X横 12mm X厚さ 1mmのシート状試験片を得た。
得られた試験片について、動的粘弾性スぺクトロメータ (ARES、ティー'エイ'イン スツルメント社製)を用いて、ねじれモードで歪 ±0. 01%の振動を振動数 1Hzで与 え、昇温速度 5°CZ分で室温から 300°Cの範囲で動的粘弾性測定を行い、弾性率( G' )を調べた。ここで、 G' (ジープライム)は貯蔵弾性率 (Pa)のことである。
[0096] [表 1]
第 1表
Figure imgf000028_0001
[0097] 上記第 1表中の各成分は、下記のとおりである。
•ォキセタンィ匕合物 1:実施例 1 1で得られたォキセタンィ匕合物 1
•多官能ォキセタン:下記式(20)で表される化合物、 OX— SC、東亞合成社製、数 平均分子量 1575
•光力チオン重合開始剤 1 :下記式(21)で表される化合物、 SP— 170、旭電化工 業社製
•光'熱カチオン重合開始剤 1 :下記式(22)で表される化合物、 SI— 60L、三新ィ匕 学工業社製
[0098] [化 14]
Figure imgf000029_0001
[0099] 図 2および第 1表に示す結果から明らかなように、ォキセタンィ匕合物 1を含有する組 成物(実施例 2)は、エポキシ環を有しない多官能ォキセタンを含有する組成物(比較 例 1)に比べて、紫外線に対する反応性 (特に、開始反応の反応性)が優れているこ とが分力つた。
また、硬化物の動的粘弾性 (DMA)スペクトルから、ォキセタン化合物 1を含有する 組成物(実施例 2)の硬化物は、 300°C以下の温度範囲において、ガラス転移点 Tg が消失しており、耐熱性に優れていることが分力つた。
[0100] (実施例 3および比較例 2)
下記第 2表の各成分を、第 2表に示す組成 (質量部)で、力べはん機を用いて混合し 、第 2表に示される各組成物を得た。得られた各組成物について、下記の方法により 、示差走査熱量 (DSC)を測定した。
[0101] < DSC>
DSC (2920 Modulated DSC、ティ一'エイ'インスツルメント社製)を用いて、昇 温速度 10°CZ分で室温から 350°Cの範囲で示差走査熱量測定を行った。得られた チャートを図 3に示す。また、室温から 350°Cの範囲の熱流 (WZg)の積分値 (j/g) を算出した。その結果を第 2表に示す。
[表 2]
第 2表
Figure imgf000030_0001
[0103] 第 2表に示す各成分は、下記に示すとおりである。
•ォキセタンィ匕合物 1:実施例 1 1で得られたォキセタンィ匕合物 1
•多官能ォキセタン:上記式(20)で表される化合物、 OX— SC、東亞合成社製、数 平均分子量 1575
'熱カチオン重合開始剤 1 : CP— 77、旭電化工業社製
[0104] 図 3および第 2表に示す結果から明らかなように、ォキセタンィ匕合物 1を含有する組 成物(実施例 3)は、エポキシ環を有しない多官能ォキセタンを含有する組成物(比較 例 2)に比べて、反応開始温度が低ぐ熱に対する反応性が優れていることが分かつ た。
[0105] (実施例 4 1 4 4)
下記第 3表の各成分を、第 3表に示す組成 (質量部)で、力べはん機を用いて混合し 、第 3表に示される各組成物を得た。
得られた各組成物について、下記の方法により、光示差走査熱量 (光 DSC)を測定 し、硬化物の動的粘弾性 (DMA)スペクトルを測定した。
[0106] <光 DSC>
実施例 2および比較例 1の場合と同様の方法で行った。得られたチャートを図 4に 示す。
[0107] < DMA>
紫外線照射後において、 100°Cで 2時間、更に 180°Cで 3時間のポストキュアの代 わりに、 100°Cで 2時間、更に 180°Cで 2時間のポストキュアを行った以外は、実施例 2の場合と同様の方法で行った。実施例 4— 2 4— 4について、得られた貯蔵弾性 率(G' )のスペクトルを図 5に示す,
[0108] [表 3] 第 3表
Figure imgf000031_0001
[0109] 第 3表に示す各成分は、下記に示すとおりである。
•ォキセタンィ匕合物 1:実施例 1 2で得られたォキセタンィ匕合物 1
•シリカ: FUSELEX、龍森社製
•光力チオン重合開始剤 1 :上記式(21)で表される化合物、 SP— 170、旭電化工 業社製
•光'熱カチオン重合開始剤 2 :上記式(22)で表される化合物、 SI— 80L、三新ィ匕 学工業社製
[0110] 図 4および図 5に示す結果から明らかなように、ォキセタンィ匕合物 1とシリカとを含有 する組成物(実施例 4 1〜4 3)は、ォキセタンィ匕合物 1を含有しシリカを含有しな い場合 (実施例 4 4)と比べて、ォキセタンィ匕合物 1の反応性が同等であり、かつ、 貯蔵弾性率が高カゝつた。
[0111] (実施例 5— 1〜5— 6)
下記第 4表の各成分を、第 4表に示す組成 (質量部)で、力べはん機を用いて混合し 、第 4表に示される各組成物を得た。
得られた各組成物について、実施例 2の場合と同様の方法により、硬化物の動的 粘弾性 (DMA)スペクトルを測定した。 50°Cにおける貯蔵弾性率 (G' )の値を第 4 表に示す。
[0112] [表 4] 第 4表
Figure imgf000032_0001
[0113] 第 4表に示す各成分は、下記に示すとおりである。
•ォキセタンィ匕合物 1:実施例 1 2で得られたォキセタンィ匕合物 1
•シリカ: FUSELEX、龍森社製
•エポキシ化合物:下記式(23)で表される化合物、 CY— 179、 Huntsman Adva need Materials社
•エポキシ榭脂:下記式(24)で表されるビスフエノール A型エポキシ榭脂、 YD— 1 28、東都化成社製
•ォキセタン榭脂:下記式(25)で表されるォキセタン榭脂、 OXT- 121,東亞合成 社製
•多官能ォキセタン:上記式(20)で表される化合物、 OX— SC、東亞合成社製、数 平均分子量 1575
•光力チオン重合開始剤 1 :上記式(21)で表される化合物、 SP— 170、旭電化工 業社製
•光'熱カチオン重合開始剤 1 :上記式(22)で表される化合物、 SI— 60L、三新ィ匕 学工業社製
[0114] [化 15]
Figure imgf000033_0001
[0115] 式中、 nは 1〜3の整数である。
[0116] 第 4表に示す結果から明らかなように、ォキセタンィ匕合物 1にカ卩えて、エポキシ化合 物、エポキシ榭脂、ォキセタン榭脂またはォキセタンィ匕合物を配合することによって、 硬化物の弾性率を向上させることができた (エポキシィ匕合物等を配合しな 、実施例 4 —4の組成物の硬化物の 50°Cにおける貯蔵弾性率(G' )は 5. 83 X 108Paであつ た (なお、ポストキュアの時間は異なる。 ) o図 5参照。 )0中でも、更にシリカを含有す る場合 (実施例 5— 1〜5—4)は、硬化物の弾性率に優れていた。
[0117] (実施例 6— 1〜6— 3)
下記第 5表の各成分を、第 5表に示す組成 (質量部)で、力べはん機を用いて混合し 、第 5表に示される各組成物を得た。
得られた各組成物について、実施例 2および比較例 1の場合と同様の方法により、 硬化物の動的粘弾性 (DMA)スペクトルを測定した。 50°Cにおける貯蔵弾性率 (G ' )の値を第 5表に示す。
[0118] [表 5]
第 5表
Figure imgf000034_0001
[0119] 第 5表に示す各成分は、下記に示すとおりである。
•ォキセタンィ匕合物 1:実施例 1 2で得られたォキセタンィ匕合物 1
.ビ -ルエーテル化合物 1 :下記式(26)で表される化合物、 CHDVE、日本カーバ イド工業社製
• a , j8不飽和カルボ二ルイ匕合物 1 :下記式(27)で表される化合物、 M— 309、東 亞合成社製
•光力チオン重合開始剤 1 :上記式(21)で表される化合物、 SP— 170、旭電化工 業社製
•光'熱カチオン重合開始剤 1 :上記式(22)で表される化合物、 SI— 60L、三新ィ匕 学工業社製
[0120] [化 16]
Figure imgf000035_0001
第 5表に示す結果から明らかなように、ォキセタンィ匕合物 1にカ卩えて、ビニルエーテ ル化合物または α, β不飽和カルボニル化合物を配合することにより、硬化物の弹 性率を向上させることができた。

Claims

請求の範囲
[I] エポキシ基およびアルコキシシリル基を有するシランィ匕合物と、ォキセタン環および 活性水素基を有する化合物との反応により得られるォキセタン化合物。
[2] エポキシ基およびアルコキシシリル基を有するシランィ匕合物と、ォキセタン環および 活性水素基を有する化合物と、エポキシ基および活性水素基を有する化合物との反 応により得られるォキセタン化合物。
[3] アルコキシシリル基を有するシランィ匕合物と、ォキセタン環および活性水素基を有 する化合物と、エポキシ基および活性水素基を有する化合物との反応により得られる ォキセタン化合物。
[4] ォキセタン環およびアルコキシシリル基を有するシランィ匕合物と、エポキシ基および 活性水素基を有する化合物との反応により得られるォキセタン化合物。
[5] ォキセタン環およびアルコキシシリル基を有するシランィ匕合物と、ォキセタン環およ び活性水素基を有する化合物と、エポキシ基および活性水素基を有する化合物との 反応により得られるォキセタン化合物。
[6] 請求項 1〜5に記載のォキセタンィ匕合物の少なくとも 1種と、カチオン重合開始剤と を含有する硬化性組成物。
[7] 更に、充填剤を含有する請求項 6に記載の硬化性組成物。
[8] 前記充填剤がシリカである請求項 7に記載の硬化性組成物。
[9] 前記シリカの含有量が、 1〜95質量%である請求項 8に記載の硬化性組成物。
[10] 更に、請求項 1〜5に記載のォキセタン化合物以外のォキセタンィ匕合物を含有する 請求項 6〜9のいずれかに記載の硬化性組成物。
[II] 更に、ビニルエーテルィ匕合物を含有する請求項 6〜10のいずれかに記載の硬化 性組成物。
[12] 更に、 a , j8不飽和カルボニル化合物を含有する請求項 6〜: L 1のいずれかに記載 の硬化性組成物。
[13] 更に、エポキシ化合物を含有する請求項 7〜 12のいずれかに記載の硬化性組成 物。
PCT/JP2005/023271 2005-02-08 2005-12-19 オキセタン化合物およびそれを含む硬化性組成物 WO2006085421A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/571,029 US20080293875A1 (en) 2005-02-08 2005-12-19 Oxetane Compound and Curable Composition Containing the Same
JP2006520484A JP3976778B2 (ja) 2005-02-08 2005-12-19 オキセタン化合物およびそれを含む硬化性組成物
EP05816490A EP1752483A1 (en) 2005-02-08 2005-12-19 Oxetane compound and hardenable composition containing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-031988 2005-02-08
JP2005031988 2005-02-08
JP2005181969 2005-06-22
JP2005-181969 2005-06-22

Publications (1)

Publication Number Publication Date
WO2006085421A1 true WO2006085421A1 (ja) 2006-08-17

Family

ID=36792999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023271 WO2006085421A1 (ja) 2005-02-08 2005-12-19 オキセタン化合物およびそれを含む硬化性組成物

Country Status (4)

Country Link
US (1) US20080293875A1 (ja)
EP (1) EP1752483A1 (ja)
JP (1) JP3976778B2 (ja)
WO (1) WO2006085421A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017820A (ja) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd 偏光板及びそれを含む積層光学部材
JP2017008306A (ja) * 2015-06-25 2017-01-12 東洋インキScホールディングス株式会社 活性エネルギー線重合性樹脂組成物
TWI734042B (zh) * 2017-10-23 2021-07-21 日商四國化成工業股份有限公司 環氧基氧環丁烷化合物、其合成方法及該化合物之利用
WO2022092080A1 (ja) * 2020-10-30 2022-05-05 株式会社Adeka 重合性組成物、硬化物及び硬化物の製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090916A1 (ja) * 2008-01-15 2009-07-23 Toagosei Co., Ltd. オキセタニル基を有する有機ケイ素化合物およびその製造方法ならびに硬化性組成物
JP5382000B2 (ja) * 2008-12-26 2014-01-08 東亞合成株式会社 オキセタニル基を有するケイ素化合物の製造方法
KR101339772B1 (ko) * 2011-02-28 2014-02-05 한국과학기술원 광경화 투명 수지 조성물
KR101321302B1 (ko) * 2011-11-15 2013-10-28 삼성전기주식회사 인쇄회로기판 형성용 에폭시 수지 조성물, 이로 제조된 인쇄회로기판, 및 상기 인쇄회로기판의 제조 방법
WO2015027393A1 (en) * 2013-08-27 2015-03-05 Ablestik (Shanghai) Limited. Curable composition and use for electronic device
TWI519560B (zh) 2014-11-24 2016-02-01 財團法人工業技術研究院 含氧雜環丁烷基與環氧基之樹脂與樹脂組成物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130945A (ja) * 1997-08-21 1999-05-18 Espe Dental Ag 光誘導されたカチオン硬化を起こす組成物及びそれらの使用
WO2001062835A1 (fr) * 2000-02-18 2001-08-30 Rhodia Chimie Traitement de surface de materiau plastique avec une composition organique a fonctions reactives polymerisable et/ou reticulable
WO2001062834A1 (fr) * 2000-02-18 2001-08-30 Rhodia Chimie Traitement de surface de materiau plastique avec une composition organique a fonctions reactives polymerisable et/ou reticulable
JP2001329112A (ja) * 2000-05-23 2001-11-27 Toray Ind Inc シランカップリング剤、硬化性樹脂溶液組成物、及びそれからなる機能性硬化物
JP2001342194A (ja) * 2000-06-01 2001-12-11 Toagosei Co Ltd 多官能オキセタン化合物およびその製造方法、ならびに該オキセタン化合物からなるカチオン硬化性組成物
GB2393444A (en) * 2002-09-25 2004-03-31 Coates Brothers Plc Compositions comprising photoinitiator and oxetane compound
JP2004217938A (ja) * 2004-03-16 2004-08-05 Toagosei Co Ltd プラスチック被覆物
JP2005089697A (ja) * 2003-09-19 2005-04-07 Toagosei Co Ltd 活性エネルギー線硬化型組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096903A (en) * 1997-03-25 2000-08-01 Ivoclar Ag Hydrolysable and polymerizable oxetane silanes
FR2801600B1 (fr) * 1999-11-26 2002-03-01 Rhodia Chimie Sa Complexe silicone reticulable par voie cationique / adhesif dont l'interface possede une force de decollement modulable

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130945A (ja) * 1997-08-21 1999-05-18 Espe Dental Ag 光誘導されたカチオン硬化を起こす組成物及びそれらの使用
WO2001062835A1 (fr) * 2000-02-18 2001-08-30 Rhodia Chimie Traitement de surface de materiau plastique avec une composition organique a fonctions reactives polymerisable et/ou reticulable
WO2001062834A1 (fr) * 2000-02-18 2001-08-30 Rhodia Chimie Traitement de surface de materiau plastique avec une composition organique a fonctions reactives polymerisable et/ou reticulable
JP2001329112A (ja) * 2000-05-23 2001-11-27 Toray Ind Inc シランカップリング剤、硬化性樹脂溶液組成物、及びそれからなる機能性硬化物
JP2001342194A (ja) * 2000-06-01 2001-12-11 Toagosei Co Ltd 多官能オキセタン化合物およびその製造方法、ならびに該オキセタン化合物からなるカチオン硬化性組成物
GB2393444A (en) * 2002-09-25 2004-03-31 Coates Brothers Plc Compositions comprising photoinitiator and oxetane compound
JP2005089697A (ja) * 2003-09-19 2005-04-07 Toagosei Co Ltd 活性エネルギー線硬化型組成物
JP2004217938A (ja) * 2004-03-16 2004-08-05 Toagosei Co Ltd プラスチック被覆物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017820A (ja) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd 偏光板及びそれを含む積層光学部材
JP2017008306A (ja) * 2015-06-25 2017-01-12 東洋インキScホールディングス株式会社 活性エネルギー線重合性樹脂組成物
TWI734042B (zh) * 2017-10-23 2021-07-21 日商四國化成工業股份有限公司 環氧基氧環丁烷化合物、其合成方法及該化合物之利用
WO2022092080A1 (ja) * 2020-10-30 2022-05-05 株式会社Adeka 重合性組成物、硬化物及び硬化物の製造方法

Also Published As

Publication number Publication date
US20080293875A1 (en) 2008-11-27
EP1752483A1 (en) 2007-02-14
JPWO2006085421A1 (ja) 2008-06-26
JP3976778B2 (ja) 2007-09-19

Similar Documents

Publication Publication Date Title
WO2006085421A1 (ja) オキセタン化合物およびそれを含む硬化性組成物
EP1775317B1 (en) Polyorganosiloxane and curable composition containing same
JP4548415B2 (ja) 紫外線硬化型組成物
JP3876630B2 (ja) 硬化性組成物
JP2006131850A (ja) 熱硬化性組成物
EP1795550A1 (en) Epoxy resin composition for optical semiconductor encapsulation
JP4265039B2 (ja) 光硬化性組成物および硬化膜
JPH0320374A (ja) 光重合性脂環式エポキシ組成物の硬化促進法
JP2005089697A (ja) 活性エネルギー線硬化型組成物
JP5301997B2 (ja) 液状エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP4251138B2 (ja) カチオン重合型組成物用硬化促進剤
WO2022131132A1 (ja) ジエポキシ化合物、硬化性組成物、硬化物及び光学部材
JP4701846B2 (ja) 硬化性組成物
JP4967660B2 (ja) シクロヘキシル基または長鎖アルキル基を有するシクロヘキセンオキサイド化合物とその用途
JP3991667B2 (ja) 硬化性組成物、硬化方法および硬化物
JP4352862B2 (ja) オキセタン環を有する脂環式化合物
JP4365772B2 (ja) 硬化性組成物
JP2008297271A (ja) オキセタン化合物及び硬化性組成物
JP2002053659A (ja) カチオン硬化性シリカ分散液およびその製造方法、ならびに該シリカ分散液からなるカチオン硬化性組成物
JPWO2006104167A1 (ja) オキセタン環を有する1,3−プロパンジオール誘導体
JP2005132886A (ja) ジシクロペンタジエンとフェノールとの重付加反応物からなるオキセタン樹脂
JP2001172368A (ja) 硬化性樹脂組成物、それを用いた塗装物
JP2006206762A (ja) オキセタン環を有するジヒドロキシベンゼン誘導体混合物
JP2005336333A (ja) 活性エネルギー線硬化型組成物
JP2006063154A (ja) 重合性組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006520484

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580007397.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005816490

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11571029

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005816490

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE