WO2013099460A1 - 有機半導体絶縁膜用組成物及び有機半導体絶縁膜 - Google Patents

有機半導体絶縁膜用組成物及び有機半導体絶縁膜 Download PDF

Info

Publication number
WO2013099460A1
WO2013099460A1 PCT/JP2012/079426 JP2012079426W WO2013099460A1 WO 2013099460 A1 WO2013099460 A1 WO 2013099460A1 JP 2012079426 W JP2012079426 W JP 2012079426W WO 2013099460 A1 WO2013099460 A1 WO 2013099460A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
insulating film
composition
organic semiconductor
organic
Prior art date
Application number
PCT/JP2012/079426
Other languages
English (en)
French (fr)
Inventor
鈴木 浩
昭憲 北村
崇 濱田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Priority to KR20147012811A priority Critical patent/KR20140107194A/ko
Priority to US14/352,469 priority patent/US9136486B2/en
Priority to JP2013551528A priority patent/JP5704256B2/ja
Priority to CN201280045962.8A priority patent/CN103828062B/zh
Publication of WO2013099460A1 publication Critical patent/WO2013099460A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials

Definitions

  • the present invention relates to a composition for an organic semiconductor insulating film and an organic semiconductor insulating film. More specifically, the present invention relates to a composition for an organic semiconductor insulating film capable of forming an insulating film having excellent hydrophobicity and smoothness on the film surface and excellent electric stability, and an organic semiconductor insulating film using the same. .
  • OFETs Organic field effect transistors
  • the OFET is a basic structural unit of these, and is a principle of controlling the current between the drain electrode and the source electrode by a voltage applied to the gate electrode.
  • the gate voltage is increased, the current between the drain electrode and the source electrode is increased.
  • the amount increases.
  • Coating-type OFETs that can be produced by solution processes such as spin coating and printing are attracting attention because they have made it possible to achieve flexibility, lower costs, and larger areas that could not be achieved in the past.
  • Semiconductor development has been actively conducted.
  • the device characteristics and operational stability of OFETs are also known to be affected by the gate insulating film because charge carriers are generated and moved near the interface between the organic semiconductor and the gate insulating film.
  • the performance aspect of the insulating film is also regarded as important.
  • basic characteristics such as mobility, threshold voltage, and on / off ratio in OFETs strongly depend on the smoothness and surface state of the gate insulating film.
  • the film surface is hydrophobic.
  • Each characteristic such as (2) high smoothness of the film surface and (3) high insulation is required for the gate insulating film.
  • an insulating film made of polymethyl methacrylate (PMMA), polyvinylphenol (PVP), polyimide, or the like is known.
  • an insulating film made of PVP and poly (melamine-co-formaldehyde) is known (see Patent Document 1).
  • conventional insulating films are not necessarily optimal materials in terms of surface hydrophobicity, smoothness, and electrical stability, and there is a demand for further improvement in performance. Furthermore, there is a demand for new materials that have the above-described performance necessary for an insulating film and that can impart and control new physical properties.
  • the present invention has been made in view of the above situation, and has a composition for an organic semiconductor insulating film capable of forming an insulating film having excellent hydrophobicity and smoothness on the film surface and excellent electrical stability, and An object is to provide a used organic semiconductor insulating film.
  • the present invention is as follows. [1] An organic semiconductor insulating film composition containing (A) polysiloxane and (B) an organic polymer compound,
  • the (A) polysiloxane is at least one of a cage-type silsesquioxane having an oxetanyl group and a silicon compound having an oxetanyl group represented by the following formula (1).
  • Film composition containing (A) polysiloxane and (B) an organic polymer compound, The (A) polysiloxane is at least one of a cage-type silsesquioxane having an oxetanyl group and a silicon compound having an oxetanyl group represented by the following formula (1).
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, (meth) Represents a monovalent organic group having an acryloyl group, an epoxy group, or an oxetanyl group (provided that at least one of R 1 , R 2 and R 3 is a monovalent organic group having an oxetanyl group. ).
  • the monovalent organic group may be substituted with a halogen atom, a hydroxy group, an alkoxy group, an aryloxy group, an aralkyloxy group, or an oxy group.
  • Each R 2 may be the same or different.
  • Each R 3 may be the same or different.
  • w represents a positive number.
  • v, x, and y each independently represent 0 or a positive number (provided that at least one of v, x, and y is a positive number).
  • [2] The composition for an organic semiconductor insulating film according to the above [1], further comprising a curing catalyst.
  • An organic semiconductor insulating film comprising the organic semiconductor insulating film composition according to [1] or [2].
  • composition for an organic semiconductor insulating film of the present invention it is possible to form an insulating film having excellent hydrophobicity and smoothness on the film surface and excellent electrical stability. Furthermore, since an insulating film in which an organic polymer and an inorganic polymer are hybridized can be formed, new physical properties can be imparted and controlled. Moreover, since the organic-semiconductor insulating film of this invention is formed using the specific composition for organic-semiconductor insulating films, it is excellent in the hydrophobicity and smoothness of the film surface, and is excellent in electrical stability. Furthermore, since it has both organic and inorganic properties, new physical properties can be imparted and controlled.
  • FIG. 10 is a schematic diagram illustrating a structure of a transistor. It is a graph which shows a transistor characteristic (output characteristic). It is a graph which shows a transistor characteristic (transfer characteristic).
  • composition for an organic semiconductor insulating film of the present invention comprises a specific polysiloxane (hereinafter also referred to as “polysiloxane (A)”) and an organic polymer compound (hereinafter referred to as “organic”).
  • polysiloxane (A) a specific polysiloxane
  • organic polymer compound hereinafter referred to as “organic”.
  • Polysiloxane (A) is a cage silsesquioxane having an oxetanyl group (hereinafter also referred to as “OX group-containing cage silsesquioxane”), and an oxetanyl group represented by the above formula (1).
  • OX group-containing cage silsesquioxane At least one of silicon compounds (hereinafter also referred to as “OX group-containing silicon compound”).
  • the OX group-containing cage silsesquioxane is a known cage silsesquioxane [for example, (a) a hexahedron in which Si is present at each of eight vertices in a substantially quadrangular prism, and (b) approximately five Oxetanyl having a main skeleton consisting of a heptahedron in which Si is present at each of ten vertices in a prismatic body, and (c) an octahedron in which Si is present at each of twelve vertices of a substantially hexagonal column]. It will not specifically limit if it has group.
  • Such cage-type structures are preferred because usually no residual silanol is generated during synthesis and the smoothness and hydrophobicity of the resulting thin film are not affected.
  • it is preferable that it is a compound [main frame
  • those represented by the following formula (A1-1) are particularly preferable.
  • the resulting composition can be cured at a lower temperature (particularly 150 to 200 ° C.).
  • each R 10 independently represents an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a (meth) acryloyl group, or an epoxy group.
  • a monovalent organic group having an oxetanyl group (provided that at least one of each R 10 is a monovalent organic group having an oxetanyl group).
  • the monovalent organic group may be substituted with a halogen atom, a hydroxy group, an alkoxy group, an aryloxy group, an aralkyloxy group, or an oxy group.
  • Each R 10 may be the same or different.
  • each R 11 independently has an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an oxetanyl group.
  • Represents a monovalent organic group (provided that at least one of each R 11 is a monovalent organic group having an oxetanyl group).
  • the monovalent organic group may be substituted with a halogen atom, a hydroxy group, an alkoxy group, an aryloxy group, an aralkyloxy group, or an oxy group.
  • Each R 11 may be the same or different.
  • the monovalent organic groups in R 10 in the above formula (A1) and R 11 in the above formula (A1-1) are simply an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, and a carbon atom, respectively. It may be an aryl group of formula 6 to 10, or an oxetanyl group.
  • the alkyl group, aralkyl group, aryl group, and oxetanyl group are a halogen atom, a hydroxy group, an alkoxy group, an aryloxy group, an aralkyloxy group, and an oxy group ( May be substituted with at least one of ⁇ O).
  • the alkyl group having 1 to 6 carbon atoms and the aralkyl group having 7 to 10 carbon atoms in R 10 and R 11 may be linear, branched or have a ring structure. Good.
  • As the alkyl group having 1 to 6 carbon atoms in R 10 and R 11 an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is more preferable.
  • the aralkyl group having 7 to 10 carbon atoms in R 10 and R 11 is preferably a phenylalkyl group, and more preferably a benzyl group.
  • the aryl group having 6 to 10 carbon atoms in R 10 and R 11 is preferably a phenyl group.
  • As the monovalent organic group containing an oxetanyl group in R 10 and R 11 a group represented by the following formula (x) or a group containing this group is preferable.
  • R 13 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 14 represents an alkylene group having 1 to 6 carbon atoms.
  • R 13 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably an ethyl group.
  • R 14 is preferably an alkylene group having 2 to 6 carbon atoms, and more preferably a propylene group.
  • the OX group-containing cage silsesquioxane is a compound represented by the above formula (A1-1), wherein all R 11 are groups represented by the above formula (x). Is particularly preferred.
  • the polystyrene-reduced number average molecular weight by GPC of the OX group-containing cage-type silsesquioxane is preferably 1000 to 5000, more preferably 1000 to 3000, and still more preferably 1500 to 2500.
  • composition for organic-semiconductor insulating films of this invention only 1 type may contain OX group containing cage silsesquioxane as said polysiloxane (A), and it contains 2 or more types. May be.
  • the manufacturing method of the said OX group containing cage silsesquioxane is not specifically limited, It can manufacture by a well-known method. Specifically, the production method described in “(OX-Q 8 ) Synthesis and Physical Properties of Cage-type Silsesquioxane Having Oxetanyl Group” (Toagosei Group Research Annual Report TREND 2008 No. 11 pages 33-39) Can be applied.
  • the OX group-containing silicon compound is a compound represented by the above formula (1).
  • the SiO 4/2 unit in the formula (1) is “Q unit”
  • the R 1 —SiO 3/2 unit is “T unit”
  • the (R 2 ) 2 SiO 2/2 unit is “D units” and (R 3 ) 3 SiO 1/2 units are also referred to as “M units”.
  • R 1 , R 2 and R 3 in the above formula (1) are each independently an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, (meth) acryloyl Represents a monovalent organic group having a group, an epoxy group, or an oxetanyl group. However, at least one of R 1 , R 2 and R 3 is a monovalent organic group having an oxetanyl group.
  • the monovalent organic group is simply an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, a (meth) acryloyl group, an epoxy group, or oxetanyl. It may be a group. Further, each R 2 may be the same or different. Furthermore, each R 3 may be the same or different.
  • the alkyl group, aralkyl group, aryl group, (meth) acryloyl group, epoxy group and oxetanyl group are a halogen atom, a hydroxy group, an alkoxy group, an aryl group. It may be substituted with at least one of an oxy group, an aralkyloxy group, and an oxy group ( ⁇ O).
  • the alkyl group having 1 to 6 carbon atoms and the aralkyl group having 7 to 10 carbon atoms in R 1 , R 2 and R 3 have a ring structure, whether linear or branched. It may be.
  • alkyl group having 1 to 6 carbon atoms in R 1 , R 2 and R 3 an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is more preferable.
  • aralkyl group having 7 to 10 carbon atoms in R 1 , R 2 and R 3 a phenylalkyl group is preferable, and a benzyl group is more preferable.
  • the aryl group having 6 to 10 carbon atoms in R 1 , R 2 and R 3 is preferably a phenyl group.
  • the “(meth) acryloyl group” means both an acryloyl group and a methacryloyl group.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkylene group having 1 to 6 carbon atoms.
  • R 6 is preferably an alkylene group having 2 to 6 carbon atoms, and more preferably a propylene group.
  • a glycidyloxyalkyl group is preferable.
  • group represented by following formula (3) is preferable.
  • R 7 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • R 8 represents an alkylene group having 1 to 6 carbon atoms.
  • R 7 is preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably an ethyl group.
  • R 8 is preferably an alkylene group having 2 to 6 carbon atoms, and more preferably a propylene group.
  • R 1 , R 2 and R 3 are each independently an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, (meth) From a monovalent organic group having an acryloyl group, a monovalent organic group having an epoxy group, a monovalent organic group having an oxetanyl group, a haloalkyl group having 1 to 6 carbon atoms, and a hydroxyalkyl group having 1 to 6 carbon atoms A group selected from the group consisting of More preferably, an alkyl group having 1 to 6 carbon atoms, an aralkyl group having 7 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, a monovalent organic group having a (meth) acryloyl group, or a monovalent group having an oxetanyl group.
  • w represents a positive number. That is, the OX group-containing silicon compound represented by the formula (1) has at least T units. Furthermore, v, x, and y in Formula (1) each independently represent 0 or a positive number. However, at least one of v, x, and y is a positive number. That is, the OX group-containing silicon compound has at least one of a Q unit, a D unit, and an M unit in addition to the T unit.
  • v is preferably 0 to 5, when w is 1, more preferably 0 to 4, and still more preferably 0 to 3.
  • x is preferably 0 to 10 when w is 1, more preferably 0.1 to 5, and still more preferably 0.2 to 3.
  • y is preferably 0 to 5 when w is 1, more preferably 0 to 3, and still more preferably 0 to 1.
  • each unit of the Q unit, the T unit, the D unit, and the M unit in the OX group-containing silicon compound represented by the formula (1) may be included in two or more types.
  • the OX group-containing silicon compound represented by the formula (1) is preferably a compound composed of a carbon atom, a hydrogen atom, an oxygen atom and a silicon atom.
  • the OX group-containing silicon compound is composed of T units and D units from the viewpoint that an insulating film having excellent hydrophobicity and smoothness on the film surface and excellent electrical stability can be easily formed.
  • an insulating film having excellent hydrophobicity and smoothness on the film surface and excellent electrical stability can be easily formed.
  • the insulating film is composed of a T unit and a D unit and the T unit has an oxetanyl group.
  • the polystyrene-reduced number average molecular weight by GPC of the OX group-containing silicon compound is preferably 500 to 5000, more preferably 1000 to 3000, and still more preferably 1500 to 2500.
  • composition for an organic semiconductor insulating film of the present invention as the polysiloxane (A), only one OX group-containing silicon compound may be contained, or two or more kinds may be contained.
  • the manufacturing method of the said OX group containing silicon compound is not specifically limited, It can manufacture by a well-known method. Examples thereof include methods described in Japanese Patent No. 3653976, Japanese Patent No. 4016495, and International Publication No. 2004/076534. Specifically, as a raw material, a silicon compound having at least one hydrolyzable group such as an alkoxy group, cycloalkoxy group, aryloxy group or halogen atom, a silicone compound having at least one disiloxane compound or one hydrolyzable group And a method obtained by hydrolyzing and condensing these compounds. Further, the OX group-containing silicon compound may contain an unreacted alkoxy group or silanol derived from the monomer used in the production.
  • this alkoxy group examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group and the like.
  • the OX group-containing silicon compound may contain a group of side chain functional groups derived from the monomers used for the production, which is formed by adding an acid or the like to the oxetanyl group, and is (meth) acryloyl.
  • the monovalent organic group which has group may contain the hydroxyalkyl group produced
  • polysiloxane is used from the viewpoint that the composition can be cured at a low temperature (for example, 300 ° C. or less, particularly 150 to 250 ° C., more preferably 150 to 200 ° C.).
  • a low temperature for example, 300 ° C. or less, particularly 150 to 250 ° C., more preferably 150 to 200 ° C.
  • the OX group-containing cage silsesquioxane is contained.
  • the content of the polysiloxane (A) is preferably 10 to 90% by mass when the entire composition for the organic semiconductor insulating film is 100% by mass, More preferably, it is 20 to 80% by mass, and still more preferably 30 to 70% by mass.
  • the obtained insulating film is preferable because the hydrophobicity and smoothness of the insulating film are good.
  • Organic polymer (B) examples include polyvinyl phenol (PVP), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), and polyimide.
  • PVP polyvinyl phenol
  • PMMA polymethyl methacrylate
  • PVA polyvinyl alcohol
  • polyimide polyimide
  • PVP is preferable from the viewpoint that it has excellent solvent resistance to an organic solvent during the formation of an organic semiconductor and does not require high-temperature heat treatment during film formation.
  • an organic polymer (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the number average molecular weight in terms of polystyrene by GPC of the organic polymer (B) is preferably 500 to 200,000, more preferably 1000 to 100,000, still more preferably 1000 to 10,000.
  • the content ratio of the organic polymer (B) is, when the total content of the polysiloxane (A) and the organic polymer (B) is 100% by mass,
  • the content is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, and still more preferably 30 to 70% by mass.
  • polysiloxane having a low surface energy is liable to segregate on the surface, and an insulating film excellent in hydrophobicity and smoothness can be formed.
  • the organic semiconductor insulating film composition of the present invention may contain a curing catalyst.
  • the curing catalyst include a polymerization initiator. Of these, cationic polymerization initiators and radical polymerization initiators are preferred.
  • the cationic polymerization initiator is not particularly limited, and is a known compound (photo cationic polymerization initiator) that generates cations when irradiated with light such as ultraviolet rays, or a known compound that generates cations when heated (thermal cationic polymerization initiation) Agent).
  • Examples of the photocationic polymerization initiator include onium salts such as iodonium salts, sulfonium salts, diazonium salts, selenium salts, pyridinium salts, ferrocenium salts, and phosphonium salts. Of these, iodonium salts and sulfonium salts are preferred.
  • examples of the counter anion include BF 4 ⁇ , AsF 6 ⁇ , SbF 6 ⁇ , PF 6 ⁇ , B (C 6 F 5 ) 4 ⁇ and the like. It is done.
  • iodonium salt examples include (tricumyl) iodonium / tetrakis (pentafluorophenyl) borate, diphenyliodonium / hexafluorophosphate, diphenyliodonium / hexafluoroantimonate, diphenyliodonium / tetrafluoroborate, diphenyliodonium / tetrakis (pentafluorophenyl) Borate, bis (dodecylphenyl) iodonium / hexafluorophosphate, bis (dodecylphenyl) iodonium / hexafluoroantimonate, bis (dodecylphenyl) iodonium / tetrafluoroborate, bis (dodecylphenyl) iodonium / tetrakis (pentafluorophenyl)
  • the iodonium salt may be a commercially available product. Specifically, for example, “UV-9380C” manufactured by GE Toshiba Silicone Co., Ltd., “RHODOSIL PHOTOINITITOR 2074” manufactured by Rhodia, Wako Pure Chemical Industries, Ltd. “WPI-016”, “WPI-116”, “WPI-113”, and the like are available.
  • sulfonium salt examples include bis [4- (diphenylsulfonio) phenyl] sulfide / bishexafluorophosphate, bis [4- (diphenylsulfonio) phenyl] sulfide / bishexafluoroantimonate, bis [4- (diphenylsulfone).
  • Nio) phenyl] sulfide / bistetrafluoroborate bis [4- (diphenylsulfonio) phenyl] sulfide / tetrakis (pentafluorophenyl) borate, diphenyl-4- (phenylthio) phenylsulfonium / hexafluorophosphate, diphenyl-4- (Phenylthio) phenylsulfonium hexafluoroantimonate, diphenyl-4- (phenylthio) phenylsulfonium tetrafluoroborate, diphenyl-4- (phenylthio) Phenylsulfonium tetrakis (pentafluorophenyl) borate, triphenylsulfonium hexafluorophosphate, triphenylsulfonium hexafluoroantimonate, triphenyl
  • Examples thereof include “WPAG-593”, “WPAG-596”, “WPAG-640”, and “WPAG-641”.
  • diazonium salt examples include benzenediazonium hexafluoroantimonate, benzenediazonium hexafluorophosphate, and benzenediazonium hexafluoroborate.
  • thermal cationic polymerization initiator examples include sulfonium salts, phosphonium salts, and quaternary ammonium salts. Of these, sulfonium salts are preferred.
  • counter anion in the thermal cationic polymerization initiator examples include AsF 6 ⁇ , SbF 6 ⁇ , PF 6 ⁇ , B (C 6 F 5 ) 4 — and the like.
  • sulfonium salts examples include triphenylsulfonium boron tetrafluoride, triphenylsulfonium hexafluoride antimony, triphenylsulfonium hexafluoride arsenic, tri (4-methoxyphenyl) sulfonium hexafluoride arsenic, and diphenyl (4-phenylthiophenyl).
  • Sulfonium hexafluoroarsenide and the like Commercially available products can be used as the sulfonium salt. Specifically, for example, “ADEKA OPTON CP-66” and “ADEKA OPTON CP-77” manufactured by ADEKA Corporation, “ Sun aid SI-60L “,” Sun aid SI-80L “,” Sun aid SI-100L “and the like.
  • Examples of the phosphonium salt include ethyltriphenylphosphonium antimony hexafluoride and tetrabutylphosphonium antimony hexafluoride.
  • Examples of the quaternary ammonium salts include N, N-dimethyl-N-benzylanilinium hexafluoride antimony, N, N-diethyl-N-benzylanilinium tetrafluoride, N, N-dimethyl-N-benzyl.
  • the content ratio of the curing catalyst is not particularly limited and can be appropriately adjusted according to the type to be used. Specifically, for example, when the polysiloxane (A) is 100 parts by mass, it is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, and still more preferably 1 Is 5 parts by mass. When this content ratio is in the above-mentioned range, it is preferable because curing proceeds rapidly.
  • the organic semiconductor insulating film composition of the present invention may contain a solvent.
  • the said solvent is not specifically limited, The thing which can melt
  • the solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol, and isobutyl alcohol; alkylene glycol monoalkyl ethers such as propylene glycol monomethyl ether; aromatic compounds such as toluene and xylene; propylene glycol monomethyl ether acetate, ethyl acetate, Examples include esters such as butyl acetate; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethers such as dibutyl ether; and N-methylpyrrolidone. These solvents may be used alone or in a combination of two or more.
  • alcohols such as methanol, ethanol, isopropyl alcohol, and isobutyl alcohol
  • alkylene glycol monoalkyl ethers such as propylene glycol monomethyl ether
  • aromatic compounds such as toluene and xylene
  • the reaction solvent used in the synthesis of the polysiloxane (A) may be used as it is as the solvent for the composition. In this case, the manufacturing cost can be reduced.
  • the composition for organic semiconductor insulating films of the present invention can be a solventless composition.
  • the composition for an organic semiconductor insulating film of the present invention includes other components within the range that does not impair the effects of the present invention. Ingredients may be included. Specific examples of the other components include polymerizable unsaturated compounds, radical polymerization inhibitors, antioxidants, ultraviolet absorbers, light stabilizers, leveling agents, organic polymers, fillers, metal particles, pigments, polymerization initiators. And sensitizers. Each of these other components may be used alone or in combination of two or more.
  • composition for organic semiconductor insulating film of the present invention can be obtained by mixing raw material components.
  • a known mixer or the like may be used. Specific examples include a reaction flask, a change can mixer, a planetary mixer, a disper, a Henschel mixer, a kneader, an ink roll, an extruder, a three-roll mill, and a sand mill.
  • the organic semiconductor insulating film of the present invention is characterized by using the aforementioned composition for an organic semiconductor insulating film.
  • a method for forming the organic semiconductor insulating film will be specifically described.
  • the composition for an organic semiconductor insulating film described above is applied on a substrate.
  • the coating method in this case is not particularly limited, and examples thereof include a spin coating method, a spin casting method, a die coater method, a screen printing method, and an ink jet method.
  • an insulating film can be obtained by drying and hardening the obtained coating film.
  • the drying method in this case is not specifically limited, For example, it can carry out by heat-processing.
  • the curing method is not particularly limited, and for example, it can be performed by a high-pressure mercury lamp, exposure treatment using radiation or the like, heat treatment, or the like.
  • the organic semiconductor insulating film thus formed can be used as a gate insulating layer in an organic field effect transistor having a substrate, a gate electrode, a gate insulating layer, an organic active layer, and source / drain electrodes.
  • the structure of the transistor is not particularly limited, and can be applied to all conventionally known structures.
  • substrate is not specifically limited, For example, glass, a silicon wafer, a polyethylene terephthalate, a polycarbonate, polyether sulfone, a polyethylene naphthalate etc. can be mentioned.
  • the material for forming the organic active layer is not particularly limited. For example, pentacene, copper phthalocyanine, polythiophene, polyaniline, polyacetylene, polypyrrole, polyphenylene vinylene, and derivatives thereof can be used.
  • the gate electrode, the source electrode, and the drain electrode normally used metals or conductive polymers can be used, respectively, and are not particularly limited.
  • gold, silver, aluminum, nickel, indium tin oxide, polythiophene, polyaniline, polyacetylene, polypyrrole, polyphenylene vinylene, PEDOT / PSS, or the like can be used.
  • composition for organic semiconductor insulating film 226 mg of an OX group-containing cage-type silsesquioxane represented by the following formula (A-1) (hereinafter also referred to as “OX-Q8”. Number average molecular weight: 2000) and 224 mg of polyvinylphenol (PVP) were mixed with propylene. It was dissolved in 1.76 g of glycol monomethyl ether acetate (PGMEA) to obtain a mixed solution (solid content concentration: 20 wt%).
  • A-1 OX group-containing cage-type silsesquioxane represented by the following formula (A-1) (hereinafter also referred to as “OX-Q8”. Number average molecular weight: 2000) and 224 mg of polyvinylphenol (PVP) were mixed with propylene. It was dissolved in 1.76 g of glycol monomethyl ether acetate (PGMEA) to obtain a mixed solution (solid content concentration: 20 wt%).
  • PVP polyvinylphenol
  • Example 1 A composition for an organic semiconductor insulating film was prepared.
  • the OX group-containing cage-type silsesquioxane is “(OX-Q 8 ) synthesis and physical properties of cage-type silsesquioxane having an oxetanyl group” (Toagosei Group Research Annual Report TREND 2008 No. 11 No. 33- 39).
  • Example 2 225 mg of an OX group-containing silicon compound (hereinafter, also referred to as “OX-SQ SI-20”) of the composition represented by Table 1 [for w and x, see the above formula (1)], polyvinylphenol (PVP) 225 mg was dissolved in 1.75 g of propylene glycol monomethyl ether acetate (PGMEA) to obtain a mixed solution (solid content concentration: 20 wt%).
  • OX-SQ SI-20 an OX group-containing silicon compound of the composition represented by Table 1 [for w and x, see the above formula (1)]
  • PVP propylene glycol monomethyl ether acetate
  • OX-SQ TX-100 OX group-containing polysiloxane
  • PVP propylene glycol monomethyl ether acetate
  • the composition for organic-semiconductor insulating films of the comparative example 1 A product was prepared.
  • the OX group-containing silicon compound was obtained using the method described in Japanese Patent No. 3653976.
  • composition for an organic semiconductor insulating film is formed on a silicon wafer using a semiconductor manufacturing apparatus (model name “1H-DXII”, manufactured by Mikasa) for 10 seconds at 500 rpm. Spin coating was performed at 1500 rpm for 30 seconds. Then, after exposing for 30 seconds using a high pressure mercury lamp, the thin film (film thickness; 1.5 micrometers) was created by heating at 150 degreeC for 1 hour. At this time, a case where the thin film could be formed without any problem was indicated as “ ⁇ ”, and a case where the thin film could not be formed was indicated as “x”.
  • Example 1 and Example 2 As is clear from Table 2, it was confirmed that when the compositions of Example 1 and Example 2 were used, an insulating film excellent in thin film forming ability, pattern forming ability, solvent resistance, and transparency could be formed. did it. In particular, according to the composition of Example 1, a thin film could be formed at a low temperature of 150 ° C. Furthermore, when each composition of Example 1 and Example 2 was used, it has confirmed that the insulating film which was excellent in the hydrophobicity and smoothness of the film
  • Examples 1 and 2 which are hybrid materials of polysiloxane and PVP, this is because the hydroxyl group in PVP and the oxetanyl group in polysiloxane react with each other to reduce the hydroxyl group. I can guess.
  • Comparative Example 1 when the composition of Comparative Example 1 was used, it was inferior in hydrophobicity, but it can be presumed that this was due to a large amount of residual silanol during the condensation reaction when producing polysiloxane.
  • the polysiloxane of Example 1 since the polysiloxane of Example 1 is different from Comparative Example 1 in the synthesis method and has a complete cage structure, it is considered that the absence of residual silanol is also due to the high water contact angle.
  • a water-repellent polysiloxane skeleton D unit silicone
  • the dielectric constant (1 KHz) of each thin film obtained using each composition of Example 1, Example 2, and Comparative Example 1 is 5.9, 5.
  • the dielectric constant was 5 and 5.9, a slight increase in the dielectric constant was observed in the low frequency region, but the frequency dependence of the dielectric constant was not confirmed, and it was confirmed that the thin film had few ion impurities.
  • the thin film (insulating film) obtained using the compositions of Example 1 and Example 2 was excellent in the hydrophobicity and smoothness of the film surface and in electrical stability.
  • the composition of Comparative Example 1 when the composition of Comparative Example 1 was used, the amount of residual silanol during synthesis of the polysiloxane was large, resulting in poor hydrophobicity on the film surface.
  • an insulating film is formed using the composition of Comparative Example 1, it does not have sufficient hydrophobicity, and the polar group on the surface traps electric charges, causing problems such as hysteresis. It is considered to be.
  • the transistor 1 having the configuration shown in FIG. 2 was prepared as follows, and the transistor characteristics were evaluated. First, on the silicon wafer 2 on which a silicon oxide film having a thickness of 300 nm is formed, the organic semiconductor insulating film composition of Example 1 is used to form a thin film (film thickness: 1) in the same manner as (2-1). .5 ⁇ m). Thereafter, the thin film was exposed for 30 seconds and then cured by heating at 150 ° C. for 1 hour to form an insulating film 3.
  • a 1 wt% chloroform solution of poly-3-hexylthiophene is spin-coated on the insulating film 3 for 10 seconds at 500 rpm and further for 20 seconds at 2000 rpm, and the semiconductor layer 4 having a film thickness of 0.1 to 0.2 ⁇ m. Formed. Then, after heating at 100 ° C. for 1 hour, gold was deposited so that the channel length was 50 ⁇ m and the channel width was 3 mm to form source-drain electrodes 51 and 52, and the test transistor 1 was fabricated. In the transistor 1 having this configuration, the entire silicon wafer 2 is a gate electrode.
  • Example 1 was excellent in hydrophobicity and smoothness of the film surface and also in electrical stability, and sufficiently functioned as an insulating film in an organic semiconductor.
  • the composition of Example 2 is also excellent in the hydrophobicity and smoothness of the film surface and excellent in electrical stability, it is considered that the composition functions sufficiently as an insulating film in an organic semiconductor.
  • the insulating film obtained from each composition of Examples 1 and 2 is a hybrid of an organic polymer and an inorganic polymer, it is possible to impart and control new physical properties.
  • transistor, 2 silicon wafer, 3; insulating film, 4; semiconductor layer, 51; source electrode, 52;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

 本発明の目的は、膜表面の疎水性及び平滑性に優れており且つ電気安定性に優れる絶縁膜を形成可能な有機半導体絶縁膜用組成物、及びそれを用いた有機半導体絶縁膜を提供することである。本発明の有機半導体絶縁膜用組成物は、ポリシロキサンと、有機高分子化合物と、を含有するものであって、ポリシロキサンは、オキセタニル基を有するカゴ型シルセスキオキサン、及び下式で表されるオキセタニル基を有するケイ素化合物のうちの少なくとも一方である。尚、下式のR~Rはそれぞれ独立に、一価の有機基を表す(但し、R~Rのうちの少なくとも1つは、オキセタニル基を有する一価の有機基である。)。v、w、x及びyはそれぞれ独立に、0又は正の数を表す(但し、v、x及びyのうちの少なくとも1つと、wは正の数である。)。

Description

有機半導体絶縁膜用組成物及び有機半導体絶縁膜
 本発明は、有機半導体絶縁膜用組成物及び有機半導体絶縁膜に関する。更に詳しくは、本発明は、膜表面の疎水性及び平滑性に優れており且つ電気安定性に優れる絶縁膜を形成可能な有機半導体絶縁膜用組成物、及びそれを用いた有機半導体絶縁膜に関する。
 有機電界効果トランジスタ(OFET)は有機半導体を活性層に用いたものであり、アクティブマトリックスディスプレイや電子ペーパー等のフレキシブルエレクトロニクスへの応用が期待されている。OFETは、これらの基本的な構成単位であって、ドレイン電極とソース電極の間の電流をゲート電極にかける電圧で制御する原理であり、ゲート電圧を高くするとドレイン電極とソース電極の間の電流量が多くなる。トランジスタを高速で動作させるには、半導体の電荷キャリア移動度とオン/オフ電流比が高い必要がある。スピンコートや印刷といった溶液プロセスで作製できる塗布型OFETは、従来達成できなかったフレキシブル化、低コスト化、更には大面積化が可能となることから注目されており、OFETの性能に左右する有機半導体の開発が盛んに行われている。
 また、OFETのデバイス特性や動作安定性は、有機半導体とゲート絶縁膜の界面近傍において電荷キャリアの生成や移動が行われるために、ゲート絶縁膜によっても影響を受けることが知られており、ゲート絶縁膜の性能面も重要視されている。特に、OFETにおける移動度や閾値電圧、オンオフ比等の基本特性は、ゲート絶縁膜の平滑性や表面状態に強く依存することが知られており、(1)膜表面が疎水性を有すること、(2)膜表面の平滑性が高いこと、及び(3)絶縁性が高いこと等の各特性がゲート絶縁膜に求められている。
 従来のゲート絶縁膜としては、例えば、ポリメチルメタクリレート(PMMA)、ポリビニルフェノール(PVP)やポリイミド等からなる絶縁膜が知られている。更には、PVPとポリ(メラミン-co-ホルムアルデヒド)からなる絶縁膜等が知られている(特許文献1参照)。
特開2010-74188号公報
 しかしながら、従来の絶縁膜は、表面の疎水性、平滑性及び電気安定性において、必ずしも最適な材料とはいえず、更なる性能の向上が求められているのが現状である。更には、絶縁膜として必要な上述の性能を備えており、且つ新しい物性の付与や制御が可能となる新規材料が求められているのが現状である。
 本発明は、上記現状に鑑みてなされたものであり、膜表面の疎水性及び平滑性に優れており且つ電気安定性に優れる絶縁膜を形成可能な有機半導体絶縁膜用組成物、及びそれを用いた有機半導体絶縁膜を提供することを目的とする。
 本発明は以下の通りである。
 [1](A)ポリシロキサンと、(B)有機高分子化合物と、を含有する有機半導体絶縁膜用組成物であって、
 前記(A)ポリシロキサンは、オキセタニル基を有するカゴ型シルセスキオキサン、及び下記式(1)で表されるオキセタニル基を有するケイ素化合物のうちの少なくとも一方であることを特徴とする有機半導体絶縁膜用組成物。
Figure JPOXMLDOC01-appb-C000002
 〔式(1)において、R、R及びRはそれぞれ独立に、炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、(メタ)アクリロイル基、エポキシ基、又はオキセタニル基、を有する一価の有機基を表す(但し、R、R及びRのうちの少なくとも1つは、オキセタニル基を有する一価の有機基である。)。前記一価の有機基は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、又はオキシ基で置換されていてもよい。各Rは同一であってもよいし、異なっていてもよい。各Rは同一であってもよいし、異なっていてもよい。wは正の数を表す。v、x及びyはそれぞれ独立に、0又は正の数を表す(但し、v、x及びyのうちの少なくとも1つは正の数である。)。〕
 [2]更に、硬化触媒を含有する上記[1]に記載の有機半導体絶縁膜用組成物。
 [3]上記[1]又は[2]に記載の有機半導体絶縁膜用組成物を用いてなることを特徴とする有機半導体絶縁膜。
 本発明の有機半導体絶縁膜用組成物によれば、膜表面の疎水性及び平滑性に優れており且つ電気安定性に優れる絶縁膜を形成可能である。更には、有機高分子と無機高分子をハイブリッド化した絶縁膜を形成することができるため、新しい物性の付与や制御が可能となる。
 また、本発明の有機半導体絶縁膜は、特定の有機半導体絶縁膜用組成物を用いて形成されているため、膜表面の疎水性及び平滑性に優れており且つ電気安定性に優れる。更には、有機的性質と無機的性質を併せ持つために、新しい物性の付与や制御が可能となる。
誘電率と周波数の関係を表すグラフである。 トランジスタの構成を説明する模式図である。 トランジスタ特性(出力特性)を示すグラフである。 トランジスタ特性(伝達特性)を示すグラフである。
 以下、本発明を詳しく説明する。
[1]有機半導体絶縁膜用組成物
 本発明の有機半導体絶縁膜用組成物は、特定のポリシロキサン(以下、「ポリシロキサン(A)」ともいう)と、有機高分子化合物(以下、「有機高分子(B)」ともいう)と、を含有する。
 (1-1)ポリシロキサン(A)
 上記ポリシロキサン(A)は、オキセタニル基を有するカゴ型シルセスキオキサン(以下、「OX基含有カゴ型シルセスキオキサン」ともいう。)、及び前述の式(1)で表されるオキセタニル基を有するケイ素化合物(以下、「OX基含有ケイ素化合物」ともいう。)のうちの少なくとも一方である。
 <OX基含有カゴ型シルセスキオキサン>
 上記OX基含有カゴ型シルセスキオキサンは、公知のカゴ型シルセスキオキサン[例えば、(a)略四角柱体における8個の各頂点にSiが存在してなる六面体、(b)略五角柱体における10個の各頂点にSiが存在してなる七面体、(c)略六角柱体の12個の各頂点にSiが存在してなる八面体等]を主骨格としており、且つオキセタニル基を有するものであれば特に限定されない。このような、カゴ型の構造のものは合成時に通常残存シラノールが発生せず、得られる薄膜の平滑性や疎水性に影響を与えないため好ましい。
 なかでも、下記式(A1)で表される化合物[主骨格;上記(a)]であることが好ましい。更には、式(A1)で表される化合物のなかでも、下記式(A1-1)で表されるものが特に好ましい。
 式(A1)[特に式(A1-1)]で表される化合物を用いた場合、膜表面の疎水性及び平滑性に優れており且つ電気安定性に優れる絶縁膜を容易に形成できるため好ましい。更には、得られる組成物をより低温(特に150~200℃)で硬化させることが可能となるという観点から好ましい。
Figure JPOXMLDOC01-appb-C000003
 〔式(A1)において、R10は、それぞれ独立に、炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、(メタ)アクリロイル基、エポキシ基、又はオキセタニル基、を有する一価の有機基を表す(但し、各R10のうちの少なくとも1つは、オキセタニル基を有する一価の有機基である。)。上記一価の有機基は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、又はオキシ基で置換されていてもよい。各R10は同一であってもよいし、異なっていてもよい。〕
Figure JPOXMLDOC01-appb-C000004
 〔式(A1-1)において、R11は、それぞれ独立に、炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、又はオキセタニル基、を有する一価の有機基を表す(但し、各R11のうちの少なくとも1つは、オキセタニル基を有する一価の有機基である。)。上記一価の有機基は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、又はオキシ基で置換されていてもよい。各R11は同一であってもよいし、異なっていてもよい。〕
 上記式(A1)のR10及び上記式(A1-1)のR11における一価の有機基は、それぞれ、単に、炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、又はオキセタニル基であってもよい。
 また、R10及びR11の一価の有機基における、アルキル基、アラルキル基、アリール基、及びオキセタニル基は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、及びオキシ基(=O)のうちの少なくとも1つ以上で置換されていてもよい。
 R10及びR11における炭素数1~6のアルキル基、及び、炭素数7~10のアラルキル基は、直鎖状であっても、分岐状であっても、環構造を有していてもよい。
 R10及びR11における炭素数1~6のアルキル基としては、炭素数1~4のアルキル基が好ましく、メチル基がより好ましい。
 R10及びR11における炭素数7~10のアラルキル基としては、フェニルアルキル基が好ましく、ベンジル基がより好ましい。
 R10及びR11における炭素数6~10のアリール基としては、フェニル基が好ましい。
 R10及びR11におけるオキセタニル基を含む一価の有機基としては、下記式(x)で表される基、又はこの基を含むものが好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(x)において、R13は水素原子又は炭素数1~6のアルキル基を表し、R14は炭素数1~6のアルキレン基を表す。
 R13としては、水素原子、メチル基、又はエチル基が好ましく、エチル基がより好ましい。
 R14としては、炭素数2~6のアルキレン基が好ましく、プロピレン基がより好ましい。
 本発明において、上記OX基含有カゴ型シルセスキオキサンは、上記式(A1-1)で表される化合物であって、全てのR11が上記式(x)で表される基であるものが特に好ましい。
 OX基含有カゴ型シルセスキオキサンのGPCによるポリスチレン換算数平均分子量は、1000~5000であることが好ましく、より好ましくは1000~3000、更に好ましくは1500~2500である。
 尚、本発明の有機半導体絶縁膜用組成物には、上記ポリシロキサン(A)として、OX基含有カゴ型シルセスキオキサンが1種のみ含有されていてもよいし、2種以上含有されていてもよい。
 また、上記OX基含有カゴ型シルセスキオキサンの製造方法は特に限定されず、公知の方法により製造することができる。具体的には、「オキセタニル基を有するカゴ型シルセスキオキサンの(OX-Q)合成と物性」(東亞合成グループ研究年報 TREND 2008 第11号 第33~39ページ)に記載の製造方法を適用することができる。
 <OX基含有ケイ素化合物>
 上記OX基含有ケイ素化合物は、前述の式(1)で表される化合物である。
 尚、本明細書においては、式(1)におけるSiO4/2単位を「Q単位」、R-SiO3/2単位を「T単位」、(RSiO2/2単位を「D単位」、(RSiO1/2単位を「M単位」ともいう。
 上記式(1)におけるR、R及びRはそれぞれ独立に、炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、(メタ)アクリロイル基、エポキシ基、又はオキセタニル基、を有する一価の有機基を表す。但し、R、R及びRのうちの少なくとも1つは、オキセタニル基を有する一価の有機基である。
 尚、上記一価の有機基は、単に、炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、(メタ)アクリロイル基、エポキシ基、又はオキセタニル基であってもよい。また、各Rは同一であってもよいし、異なっていてもよい。更に、各Rは同一であってもよいし、異なっていてもよい。
 また、R、R及びRの一価の有機基における、アルキル基、アラルキル基、アリール基、(メタ)アクリロイル基、エポキシ基及びオキセタニル基は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、及びオキシ基(=O)のうちの少なくとも1つ以上で置換されていてもよい。
 R、R及びRにおける炭素数1~6のアルキル基、及び、炭素数7~10のアラルキル基は、直鎖状であっても、分岐状であっても、環構造を有していてもよい。
 R、R及びRにおける炭素数1~6のアルキル基としては、炭素数1~4のアルキル基が好ましく、メチル基がより好ましい。
 R、R及びRにおける炭素数7~10のアラルキル基としては、フェニルアルキル基が好ましく、ベンジル基がより好ましい。
 R、R及びRにおける炭素数6~10のアリール基としては、フェニル基が好ましい。
 R、R及びRにおける(メタ)アクリロイル基を含む一価の有機基としては、下記式(2)で表される基が好ましい。尚、本発明において「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の両方を意味する。
Figure JPOXMLDOC01-appb-C000006
 式(2)において、Rは水素原子又はメチル基を表し、Rは炭素数1~6のアルキレン基を表す。
 Rとしては、炭素数2~6のアルキレン基が好ましく、プロピレン基がより好ましい。
 R、R及びRにおけるエポキシ基を含む一価の有機基としては、グリシジルオキシアルキル基が好ましい。
 R、R及びRにおけるオキセタニル基を含む一価の有機基としては、下記式(3)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000007
 式(3)において、Rは水素原子又は炭素数1~6のアルキル基を表し、Rは炭素数1~6のアルキレン基を表す。
 Rとしては、水素原子、メチル基、又はエチル基が好ましく、エチル基がより好ましい。
 Rとしては、炭素数2~6のアルキレン基が好ましく、プロピレン基がより好ましい。
 また、式(1)におけるR、R及びRはそれぞれ独立に、炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、(メタ)アクリロイル基を有する一価の有機基、エポキシ基を有する一価の有機基、オキセタニル基を有する一価の有機基、炭素数1~6のハロアルキル基、及び炭素数1~6のヒドロキシアルキル基よりなる群から選ばれる基であることが好ましい。より好ましくは、炭素数1~6のアルキル基、炭素数7~8のアラルキル基、炭素数6~8のアリール基、(メタ)アクリロイル基を有する一価の有機基、オキセタニル基を有する一価の有機基、炭素数1~6のハロアルキル基、及び炭素数1~3のヒドロキシアルキル基よりなる群から選ばれる基である。更に好ましくは、炭素数1~4のアルキル基、上記式(2)で表される基、及び上記式(3)で表される基よりなる群から選ばれる基である。特に好ましくは、メチル基、上記式(2)で表される基、及び上記式(3)で表される基よりなる群から選ばれる基である。
 また、上記式(1)におけるwは正の数を表す。即ち、式(1)で表されるOX基含有ケイ素化合物は、少なくともT単位を有する。
 更に、式(1)におけるv、x及びyはそれぞれ独立に、0又は正の数を表す。但し、v、x及びyのうちの少なくとも1つは正の数である。即ち、OX基含有ケイ素化合物は、上記T単位以外に、少なくともQ単位、D単位及びM単位のうちのいずれかを有する。
 式(1)において、vは、wを1とした場合に0~5であることが好ましく、より好ましくは0~4、更に好ましくは0~3である。
 xは、wを1とした場合に0~10であることが好ましく、より好ましくは0.1~5、更に好ましくは0.2~3である。
 yは、wを1とした場合に0~5であることが好ましく、より好ましくは0~3、更に好ましくは0~1である。
 尚、式(1)で表されるOX基含有ケイ素化合物におけるQ単位、T単位、D単位及びM単位の各単位は、それぞれ2種以上含まれていてもよい。
 また、式(1)で表されるOX基含有ケイ素化合物は、炭素原子、水素原子、酸素原子及びケイ素原子からなる化合物であることが好ましい。
 本発明において、上記OX基含有ケイ素化合物は、膜表面の疎水性及び平滑性に優れており且つ電気安定性に優れる絶縁膜を容易に形成できるという観点から、T単位及びD単位からなるものが好ましい。更には、撥水性により優れる(即ち、膜表面の疎水性により優れる)絶縁膜を得られるという観点から、T単位及びD単位からなり、且つT単位がオキセタニル基を備えるものが特に好ましい。
 OX基含有ケイ素化合物のGPCによるポリスチレン換算数平均分子量は、500~5000であることが好ましく、より好ましくは1000~3000、更に好ましくは1500~2500である。
 尚、本発明の有機半導体絶縁膜用組成物には、上記ポリシロキサン(A)として、OX基含有ケイ素化合物が1種のみ含有されていてもよいし、2種以上含有されていてもよい。
 また、上記OX基含有ケイ素化合物の製造方法は特に限定されず、公知の方法により製造することができる。例えば、特許第3653976号公報、特許第4016495号公報、及び国際公開第2004/076534号パンフレットに記載されている方法等が挙げられる。
 具体的には、原料として、アルコキシ基、シクロアルコキシ基、アリールオキシ基、ハロゲン原子等の加水分解性基を1つ以上有するケイ素化合物、ジシロキサン化合物や加水分解性基を1つ以上有するシリコーン化合物を用い、これらの化合物を加水分解及び縮合して得る方法等が挙げられる。
 また、OX基含有ケイ素化合物は、製造に使用したモノマー由来の未反応のアルコキシ基やシラノールを含んでいてもよい。このアルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基等が挙げられる。
 更に、OX基含有ケイ素化合物は、製造に使用したモノマー由来の側鎖官能基のうち、オキセタニル基に酸等が付加して開環した基を含んでいてもよく、また、(メタ)アクリルロイル基を有する一価の有機基が分解して生成したヒドロキシアルキル基を含んでいてもよい。
 また、本発明の有機半導体絶縁膜用組成物においては、組成物の低温硬化(例えば、300℃以下、特に150~250℃、更には150~200℃)が可能となるという観点から、ポリシロキサン(A)として、上記OX基含有カゴ型シルセスキオキサンが含有されていることが好ましい。
 本発明の有機半導体絶縁膜用組成物において、ポリシロキサン(A)の含有割合は、有機半導体絶縁膜用組成物全体を100質量%とした場合に、10~90質量%であることが好ましく、より好ましくは20~80質量%、更に好ましくは30~70質量%である。この含有割合が、上述の範囲である場合には、得られる絶縁膜の疎水性と平滑性が良好であるため好ましい。
 (1-2)有機高分子(B)
 上記有機高分子(B)としては、例えば、ポリビニルフェノール(PVP)、ポリメチルメタクリレート(PMMA)、ポリビニルアルコール(PVA)、ポリイミド等が挙げられる。
 これらのなかでも、有機半導体の製膜時における有機溶剤に対する耐溶剤性に優れており、且つ製膜の際に高温の熱処理を必要としないという観点から、PVPが好ましい。
 尚、有機高分子(B)は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 有機高分子(B)のGPCによるポリスチレン換算数平均分子量は、500~200000であることが好ましく、より好ましくは1000~100000、更に好ましくは1000~10000である。
 本発明の有機半導体絶縁膜用組成物において、有機高分子(B)の含有割合は、上記ポリシロキサン(A)及び有機高分子(B)の含有割合の合計を100質量%とした場合に、10~90質量%であることが好ましく、より好ましくは20~80質量%、更に好ましくは30~70質量%である。この含有割合が、上述の範囲である場合には、表面エネルギーの低いポリシロキサンが表面に偏析しやすく、疎水性及び平滑性により優れた絶縁膜を形成できるため好ましい。
 (1-3)硬化触媒
 本発明の有機半導体絶縁膜用組成物には、上記ポリシロキサン(A)及び有機高分子(B)以外に、硬化触媒が含有されていてもよい。
 上記硬化触媒としては、例えば、重合開始剤等が挙げられる。なかでも、カチオン重合開始剤、ラジカル重合開始剤が好ましい。
 上記カチオン重合開始剤は特に限定されず、紫外線等の光が照射されてカチオンを生成する公知の化合物(光カチオン重合開始剤)や、加熱されてカチオンを生成する公知の化合物(熱カチオン重合開始剤)を用いることができる。
 上記光カチオン重合開始剤としては、ヨードニウム塩、スルホニウム塩、ジアゾニウム塩、セレニウム塩、ピリジニウム塩、フェロセニウム塩、ホスホニウム塩等のオニウム塩が挙げられる。これらのなかでも、ヨードニウム塩及びスルホニウム塩が好ましい。
 光カチオン重合開始剤がヨードニウム塩又はスルホニウム塩である場合、対アニオンとしては、例えば、BF 、AsF 、SbF 、PF 、B(C 等が挙げられる。
 上記ヨードニウム塩としては、(トリクミル)ヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニルヨードニウム・ヘキサフルオロホスフェート、ジフェニルヨードニウム・ヘキサフルオロアンチモネート、ジフェニルヨードニウム・テトラフルオロボレート、ジフェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロホスフェート、ビス(ドデシルフェニル)ヨードニウム・ヘキサフルオロアンチモネート、ビス(ドデシルフェニル)ヨードニウム・テトラフルオロボレート、ビス(ドデシルフェニル)ヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・ヘキサフルオロホスフェート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・ヘキサフルオロアンチモネート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・テトラフルオロボレート、4-メチルフェニル-4-(1-メチルエチル)フェニルヨードニウム・テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 また、上記ヨードニウム塩は、市販品を用いることもでき、具体的には、例えば、GE東芝シリコーン(株)製「UV-9380C」、ローディア社製「RHODOSIL PHOTOINITIATOR2074」、和光純薬工業(株)製「WPI-016」、「WPI-116」及び「WPI-113」等が挙げられる。
 上記スルホニウム塩としては、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロホスフェート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロアンチモネート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・ビステトラフルオロボレート、ビス[4-(ジフェニルスルホニオ)フェニル]スルフィド・テトラキス(ペンタフルオロフェニル)ボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・ヘキサフルオロホスフェート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・ヘキサフルオロアンチモネート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・テトラフルオロボレート、ジフェニル-4-(フェニルチオ)フェニルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウム・ヘキサフルオロアンチモネート、トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウム・テトラキス(ペンタフルオロフェニル)ボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロホスフェート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビスヘキサフルオロアンチモネート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・ビステトラフルオロボレート、ビス[4-(ジ(4-(2-ヒドロキシエトキシ))フェニルスルホニオ)フェニル]スルフィド・テトラキス(ペンタフルオロフェニル)ボレート等が挙げられる。
 また、上記スルホニウム塩は、市販品を用いることもでき、具体的には、例えば、ダウ・ケミカル日本(株)製「サイラキュアUVI-6990」、「サイラキュアUVI-6992」及び「サイラキュアUVI-6974」、(株)ADEKA製「アデカオプトマーSP-150」、「アデカオプトマーSP-152」、「アデカオプトマーSP-170」及び「アデカオプトマーSP-172」、和光純薬工業(株)製「WPAG-593」、「WPAG-596」、「WPAG-640」及び「WPAG-641」等が挙げられる。
 上記ジアゾニウム塩としては、ベンゼンジアゾニウムヘキサフルオロアンチモネート、ベンゼンジアゾニウムヘキサフルオロホスフェート、ベンゼンジアゾニウムヘキサフルオロボーレート等が挙げられる。
 また、上記熱カチオン重合開始剤としては、スルホニウム塩、ホスホニウム塩、第四級アンモニウム塩等が挙げられる。これらのなかでも、スルホニウム塩が好ましい。
 熱カチオン重合開始剤における対アニオンとしては、例えば、AsF 、SbF 、PF 、B(C 等が挙げられる。
 上記スルホニウム塩としては、トリフェニルスルホニウム四フッ化ホウ素、トリフェニルスルホニウム六フッ化アンチモン、トリフェニルスルホニウム六フッ化ヒ素、トリ(4-メトキシフェニル)スルホニウム六フッ化ヒ素、ジフェニル(4-フェニルチオフェニル)スルホニウム六フッ化ヒ素等が挙げられる。
 また、上記スルホニウム塩は、市販品を用いることもでき、具体的には、例えば、(株)ADEKA製「アデカオプトンCP-66」及び「アデカオプトンCP-77」、三新化学工業(株)製「サンエイドSI-60L」、「サンエイドSI-80L」及び「サンエイドSI-100L」等が挙げられる。
 上記ホスホニウム塩としては、エチルトリフェニルホスホニウム六フッ化アンチモン、テトラブチルホスホニウム六フッ化アンチモン等が挙げられる。
 上記第四級アンモニウム塩としては、N,N-ジメチル-N-ベンジルアニリニウム六フッ化アンチモン、N,N-ジエチル-N-ベンジルアニリニウム四フッ化ホウ素、N,N-ジメチル-N-ベンジルピリジニウム六フッ化アンチモン、N,N-ジエチル-N-ベンジルピリジニウムトリフルオロメタンスルホン酸、N,N-ジメチル-N-(4-メトキシベンジル)ピリジニウム六フッ化アンチモン、N,N-ジエチル-N-(4-メトキシベンジル)ピリジニウム六フッ化アンチモン、N,N-ジエチル-N-(4-メトキシベンジル)トルイジニウム六フッ化アンチモン、N,N-ジメチル-N-(4-メトキシベンジル)トルイジニウム六フッ化アンチモン等が挙げられる。
 硬化触媒の含有割合は特に限定されず、使用する種類に応じて適宜調整することができる。具体的には、例えば、上記ポリシロキサン(A)を100質量部とした場合に、0.1~20質量部であることが好ましく、より好ましくは0.5~10質量部、更に好ましくは1~5質量部である。この含有割合が、上述の範囲である場合には、硬化が速やかに進行するため好ましい。
 (1-4)溶剤
 本発明の有機半導体絶縁膜用組成物には、上記ポリシロキサン(A)及び有機高分子(B)以外に、溶剤が含有されていてもよい。
 上記溶剤は特に限定されないが、ポリシロキサン(A)、有機高分子(B)及びその他の成分を溶解可能なものが好ましい。
 上記溶剤としては、例えば、メタノール、エタノール、イソプロピルアルコール、イソブチルアルコール等のアルコール;プロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;トルエン及びキシレン等の芳香族化合物;プロピレングリコールモノメチルエーテルアセテート、酢酸エチル、酢酸ブチル等のエステル;アセトン、メチルエチルケトン及びメチルイソブチルケトン等のケトン;ジブチルエーテル等のエーテル;並びにN-メチルピロリドン等が挙げられる。これらの溶剤は1種単独で用いてもよいし、2種以上を混合して用いてもよい。
 上記溶剤としては、ポリシロキサン(A)の合成の際における反応溶媒を、そのまま組成物の溶剤として用いてもよい。この場合、製造コストを低減できるという長所がある。
 また、有機半導体絶縁膜用組成物に溶剤が含まれる場合、ポリシロキサン(A)及び有機高分子(B)の固形分濃度の合計は、0.1質量%以上であることが好ましい。
 尚、本発明の有機半導体絶縁膜用組成物は、無溶剤系の組成物とすることもできる。
 (1-5)他の成分
 本発明の有機半導体絶縁膜用組成物には、上記ポリシロキサン(A)及び有機高分子(B)以外に、本発明の効果を阻害しない範囲内で、他の成分を含有させてもよい。
 具体的な他の成分としては、例えば、重合性不飽和化合物、ラジカル重合禁止剤、酸化防止剤、紫外線吸収剤、光安定剤、レベリング剤、有機ポリマー、フィラー、金属粒子、顔料、重合開始剤、増感剤等が挙げられる。これらの他の成分は、それぞれ、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (1-6)有機半導体絶縁膜用組成物の調製
 本発明の有機半導体絶縁膜用組成物は、原料成分を混合することにより得ることができる。混合の際には、公知の混合機等を用いればよい。具体的には、反応用フラスコ、チェンジ缶式ミキサー、プラネタリーミキサー、ディスパー、ヘンシェルミキサー、ニーダー、インクロール、押出機、3本ロールミル、サンドミル等が挙げられる。
[2]有機半導体絶縁膜
 本発明の有機半導体絶縁膜は、前述の有機半導体絶縁膜用組成物を用いてなることを特徴とする。
 以下、有機半導体絶縁膜を形成する方法について、具体的に説明する。
 まず、上述の有機半導体絶縁膜用組成物を、基板上に塗布する。この際における塗布方法は特に限定されないが、例えば、スピンコーティング法、回転成形(spin casting)法、ダイコーター法、スクリーン印刷法、インクジェット法等の方法を挙げることができる。
 次いで、得られた塗膜を乾燥させ、硬化させることにより絶縁膜を得ることができる。この際における乾燥方法は特に限定されないが、例えば、加熱処理することにより行うことができる。また、硬化方法も特に限定されないが、例えば、高圧水銀ランプや放射線等による露光処理や加熱処理等により行うことができる。
 このように形成された有機半導体絶縁膜は、基板、ゲート電極、ゲート絶縁層、有機活性層、ソース・ドレイン電極を備える有機電界効果トランジスタ等において、ゲート絶縁層として用いることができる。
 上記トランジスタの構造は特に限定されず、従来から知られている全ての構造に適用可能である。
 上記基板は特に限定されないが、例えば、ガラス、シリコンウェハ、ポリエチレンテレフタレート、ポリカーボネート、ポリエーテルサルホン、ポリエチレンナフタレート等を挙げることができる。
 また、上記有機活性層を形成する材料は特に限定されないが、例えば、ペンタセン、銅フタロシアニン、ポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリフェニレンビニレン、及びこれらの誘導体等を用いることができる。
 更に、上記ゲート電極、ソース電極及びドレイン電極としては、それぞれ、通常、用いられる金属又は伝導性高分子を使用することができ、特に限定されない。具体的には、例えば、金、銀、アルミニウム、ニッケル、インジウム錫酸化物、ポリチオフェン、ポリアニリン、ポリアセチレン、ポリピロール、ポリフェニレンビニレン、PEDOT/PSS等を用いることができる。
 以下、本発明を実施例により具体的に説明する。但し、本発明は、この実施例に何ら限定されるものではない。
[1]有機半導体絶縁膜用組成物の調製
<実施例1>
 下記式(A-1)で表されるOX基含有カゴ型シルセスキオキサン(以下、「OX-Q8」ともいう。数平均分子量;2000)226mgと、ポリビニルフェノール(PVP)224mgと、をプロピレングリコールモノメチルエーテルアセテート(PGMEA)1.76gに溶解させ、混合溶液を得た(固形分濃度;20wt%)。更に、この溶液に、光酸発生剤(光重合開始剤、トリルクミルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート)45mgを混合した後、フィルター(孔径;450nm)でろ過することにより、実施例1の有機半導体絶縁膜用組成物を調製した。
 尚、上記OX基含有カゴ型シルセスキオキサンは、「オキセタニル基を有するカゴ型シルセスキオキサンの(OX-Q)合成と物性」(東亞合成グループ研究年報 TREND 2008 第11号 第33~39ページ)に記載の製造方法を用いて得た。
Figure JPOXMLDOC01-appb-C000008
<実施例2>
 表1で表される組成[w及びxについては、前述の式(1)参照]のOX基含有ケイ素化合物(以下、「OX-SQ SI-20」ともいう)225mgと、ポリビニルフェノール(PVP)225mgと、をプロピレングリコールモノメチルエーテルアセテート(PGMEA)1.75gに溶解させ、混合溶液を得た(固形分濃度;20wt%)。更に、この溶液に、光酸発生剤(トリルクミルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート)45mgを混合した後、フィルター(孔径;450nm)でろ過することにより、実施例2の有機半導体絶縁膜用組成物を調製した。
 尚、上記OX基含有ケイ素化合物は、特許第3843575号公報に記載されている方法を用いて得た。
<比較例1>
 表1で表される組成[w及びxについては、前述の式(1)参照]のOX基含有ポリシロキサン(以下、「OX-SQ TX-100」ともいう)226mgと、ポリビニルフェノール(PVP)225mgと、をプロピレングリコールモノメチルエーテルアセテート(PGMEA)1.76gに溶解させ、混合溶液を得た(固形分濃度;20wt%)。更に、この溶液に、光酸発生剤(トリルクミルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート)44mg混合した後、フィルター(孔径;450nm)でろ過することにより、比較例1の有機半導体絶縁膜用組成物を調製した。
 尚、上記OX基含有ケイ素化合物は、特許第3653976号公報に記載されている方法を用いて得た。
Figure JPOXMLDOC01-appb-T000009
 尚、表1に記載のポリシロキサン構造における略記は、以下の通りである。
Figure JPOXMLDOC01-appb-C000010
[2]有機半導体絶縁膜用組成物の評価
 実施例1~2及び比較例1の各有機半導体絶縁膜用組成物を用いて以下の性能試験及び性能評価を行った。その結果を表2に示す。
 (2-1)薄膜形成能
 シリコンウェハ上に、各有機半導体絶縁膜用組成物を、半導体製造装置(型式名「1H-DXII」、ミカサ社製)を使用して、500rpmで10秒間、更に1500rpmで30秒間の条件でスピンコートした。その後、高圧水銀ランプを用いて、30秒間露光した後、150℃で1時間加熱を行うことにより、薄膜(膜厚;1.5μm)を作成した。
 この際、薄膜を問題なく形成できた場合を「○」とし、形成できなかった場合を「×」とした。
 (2-2)パターン形成能
 上記(2-1)と同様にして、各有機半導体絶縁膜用組成物をシリコンウェハ上にスピンコートした。その後、250μmのライン・アンド・スペースパターンが得られるようにフォトマスクを介して、高圧水銀ランプを用いて、30秒間露光した後、150℃で2分間加熱を行った。冷却後、酢酸ブチルを現像液として現像を行い、リンスした。その後、150℃で1時間加熱することで、ライン・アンド・スペースパターンを得た。
 この際、250μmのライン・アンド・スペースパターンを問題なく形成できた場合を「○」とし、形成できなかった場合を「×」とした。
 (2-3)耐溶剤性
 上記(2-1)と同様に、各有機半導体絶縁膜用組成物を用いて、薄膜(膜厚;1.5μm)を作成した。
 そして、下記のようにして耐溶剤性を評価した。
 評価方法;有機溶剤として、アセトン及び酢酸ブチルを用い、薄膜上に有機溶媒を滴下し、目視により確認した。
 この際、両者の溶剤に不溶であった場合を「○」とし、可溶であった場合を「×」とした。
 (2-4)透明性
 上記(2-1)と同様に、各有機半導体絶縁膜用組成物を用いて、薄膜(膜厚;1.5μm)を作成した。
 そして、下記のようにして透明性を評価した。
 評価方法;石英基板ごと紫外可視吸収スペクトルにより透過率を測定した。
 この際、可視領域全体での透過率が95%以上の場合を「○」とし、95%未満であった場合を「×」とした。
 (2-5)撥水性(疎水性)
 上記(2-1)と同様に、各有機半導体絶縁膜用組成物を用いて、薄膜(膜厚;1.5μm)を作成した。
 そして、下記のようにして薄膜の水接触角を測定し、撥水性を評価した。
 評価方法;純水を滴下し5回測定を行い、その平均値とした。
 この際、水接触角が90度以上の場合を「○」とし、90度未満であった場合を「×」とした。
 尚、参考までに、従来の絶縁膜に用いられているPVPのみからなる薄膜の同条件による水接触角は59度であった(参考例1)。
 (2-6)平滑性
 上記(2-1)と同様に、各有機半導体絶縁膜用組成物を用いて、薄膜(膜厚;1.5μm)を作成した。
 そして、下記のように、原子間力顕微鏡(島津製作所社製、型名「SPM-9600」)を用いて薄膜の平滑性を評価した。
 この際、最大凹凸差が10nm以下であり、且つ平均面粗さが0.5nm以下の場合を「○」とし、最大凹凸差が10nmを超える場合、又は平均面粗さが0.5nmを超える場合を「×」とした。
 (2-7)電気的性質
 ガラス基板(寸法;30×30×1.8mm)の表面にアルミニウムを蒸着し(膜厚;0.1~0.3μm)、その後、上記(2-1)と同様にして、各有機半導体絶縁膜用組成物を用いて、薄膜(膜厚;1.5μm)を作成した。次いで、薄膜上にアルミニウムを更に蒸着(膜厚;0.1~0.3μm)することで、サンドイッチ電極を作製した。
 そして、得られた各電極を用いて、インピーダンスアナライザー(HEWLETT PACKARD社製、型名「4284A PRECISION LCR METER」)により誘電率測定を行った。その結果を表1及び図1に示す。
 この際、低周波数領域から高周波数領域において、誘電率の周波数依存が少ない場合を「○」とし、周波数依存が認められる場合を「×」とした。
Figure JPOXMLDOC01-appb-T000011
 表2から明らかなように、実施例1及び実施例2の各組成物を用いた場合には、薄膜形成能、パターン形成能、耐溶剤性、及び透明性に優れる絶縁膜を形成できることが確認できた。特に、実施例1の組成物によれば、150℃という低温で薄膜を形成することができた。
 更に、実施例1及び実施例2の各組成物を用いた場合には、膜表面の疎水性及び平滑性優れる絶縁膜を形成できることが確認できた。
 特に、従来の絶縁膜に用いられているPVPのみからなる薄膜(参考例1)の同条件による水接触角が59度であることを考慮すると、各実施例の組成物を用いた絶縁膜が非常に疎水性に優れていることが分かる。これは、ポリシロキサンとPVPのハイブリット材料である実施例1及び2において、PVPにおけるヒドロキシル基と、ポリシロキサンにおけるオキセタニル基とが反応することにより、上記ヒドロキシル基が減少することに起因していると推測できる。
 また、比較例1の組成物を用いた場合には疎水性に劣っていたが、これは、ポリシロキサンを製造する際における縮合反応時の残存シラノール量が多かったためと推測できる。
 尚、実施例1のポリシロキサンは、比較例1と合成方法が異なり、完全なカゴ型構造であるために残存シラノールが無いことも水接触角が高いことに起因していると考えられる。また、実施例2のように、撥水的なポリシロキサン骨格(D単位シリコーン)が導入されている場合には、表面エネルギーの低い官能基が表面偏析することにより、高い水接触角が得られていると考えられる。
 更に、表2及び図1によれば、実施例1、実施例2及び比較例1の各組成物を用いて得られた各薄膜の誘電率(1KHz)は、それぞれ、5.9、5.5及び5.9であり、低周波数領域で若干の誘電率の増加は見られたものの、誘電率の周波数依存性はなく、イオン不純物が少ない薄膜であることが確認できた。
 以上より、実施例1及び実施例2の組成物を用いて得られる薄膜(絶縁膜)は、膜表面の疎水性及び平滑性に優れており且つ電気安定性に優れることが確認できた。
 これに対して、比較例1の組成物を用いた場合は、ポリシロキサン合成時における残存シラノール量が多いために、膜表面の疎水性が劣る結果となった。尚、比較例1の組成物を用いて絶縁膜を形成した場合には、十分な疎水性を有しておらず、表面の極性基が電荷をトラップしてしまい、ヒステリシス等の不具合の原因となると考えられる。
[3]トランジスタ特性
 実施例1の有機半導体絶縁膜用組成物を用いて、図2に示す構成のトランジスタ1を下記のように作製し、トランジスタ特性を評価した。
 まず、厚み300nmのシリコン酸化膜が形成されたシリコンウェハ2上に、上記(2-1)と同様にして、実施例1の有機半導体絶縁膜用組成物を用いて、薄膜(膜厚;1.5μm)を作成した。その後、薄膜を30秒間露光した後、150℃で1時間加熱することにより硬化させ、絶縁膜3を形成した。
 次いで、絶縁膜3上に、ポリ3-ヘキシルチオフェンの1wt%クロロホルム溶液を、500rpmで10秒間、更に2000rpmで20秒間の条件でスピンコートし、膜厚0.1~0.2μmの半導体層4を形成した。
 その後、100℃で1時間加熱した後、チャネル長50μm、チャネル幅が3mmとなるように金を蒸着することにより、ソース-ドレイン電極51,52を形成し、試験用のトランジスタ1を作製した。
 尚、この構成のトランジスタ1においては、シリコンウェハ2全体がゲート電極となっている。
 <トランジスタの出力特性>
 測定方法;ゲート電圧を0から-30V、ドレイン電圧を10から-30Vと変えることでソース・ドレイン間の電流値を測定した。
 尚、この結果を図3に示す。
 <トランジスタの伝達特性>
 測定方法;ドレイン電圧を-30Vとし、ゲート電圧を0から-30Vと変え、電流値を測定した。
 尚、この結果を図4に示す。
 図3(出力特性)に示すように、ゲート電圧を0から-30Vに変えたところ加電圧の増加に伴い、ソース・ドレイン間に流れる電力が増加し、トランジスタとして機能していることが確認できた。
 更に、図4(伝達特性)に示すように、電圧を加えた時と加えていないときで電流の変化が確認でき、スイッチングとして機能していることが確認できた。
 尚、電圧を10Vから-30Vと変化させた場合と、-30Vから0Vへと変化させた場合での電流の変化は見られず、ヒステリシスは見られなかった。このことは、実施例1の組成物から得られる薄膜(絶縁膜)の誘電率の周波数依存性から確認したように、イオン不純物が少ないことが起因していると考えられる。更には、接触角測定から確認したように絶縁膜表面には電荷をトラップする極性基が、カゴ型構造であるために極めて少ないことが起因していると考えられる。
 また、以上のトランジスタ特性の測定データから算出した電界効果型移動度は6.2×10-4cm-1-1、閾値が5.9V、オンオフ比は2×10となった。
 以上のように、実施例1の組成物は、膜表面の疎水性及び平滑性に優れており且つ電気安定性にも優れており、有機半導体における絶縁膜として十分に機能することが確認できた。
 また、実施例2の組成物も、膜表面の疎水性及び平滑性に優れており且つ電気安定性にも優れているため、有機半導体における絶縁膜として十分に機能すると考えられる。
 また、実施例1及び2の各組成物から得られる絶縁膜は、有機高分子と無機高分子をハイブリッド化したものであるため、新しい物性の付与や制御が可能となる。
 1;トランジスタ、2;シリコンウェハ、3;絶縁膜、4;半導体層、51;ソース電極、52;ドレイン電極。

Claims (3)

  1.  (A)ポリシロキサンと、(B)有機高分子化合物と、を含有する有機半導体絶縁膜用組成物であって、
     前記(A)ポリシロキサンは、オキセタニル基を有するカゴ型シルセスキオキサン、及び、下記式(1)で表されるオキセタニル基を有するケイ素化合物のうちの少なくとも一方であることを特徴とする有機半導体絶縁膜用組成物。
    Figure JPOXMLDOC01-appb-C000001
     〔式(1)において、R、R及びRはそれぞれ独立に、炭素数1~6のアルキル基、炭素数7~10のアラルキル基、炭素数6~10のアリール基、(メタ)アクリロイル基、エポキシ基、又はオキセタニル基、を有する一価の有機基を表す(但し、R、R及びRのうちの少なくとも1つは、オキセタニル基を有する一価の有機基である。)。前記一価の有機基は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、又はオキシ基で置換されていてもよい。各Rは同一であってもよいし、異なっていてもよい。各Rは同一であってもよいし、異なっていてもよい。wは正の数を表す。v、x及びyはそれぞれ独立に、0又は正の数を表す(但し、v、x及びyのうちの少なくとも1つは正の数である。)。〕
  2.  更に、硬化触媒を含有する請求項1に記載の有機半導体絶縁膜用組成物。
  3.  請求項1又は2に記載の有機半導体絶縁膜用組成物を用いてなることを特徴とする有機半導体絶縁膜。
PCT/JP2012/079426 2011-12-26 2012-11-13 有機半導体絶縁膜用組成物及び有機半導体絶縁膜 WO2013099460A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR20147012811A KR20140107194A (ko) 2011-12-26 2012-11-13 유기 반도체 절연막용 조성물 및 유기 반도체 절연막
US14/352,469 US9136486B2 (en) 2011-12-26 2012-11-13 Composition for organic semiconductor insulating films, and organic semiconductor insulating film
JP2013551528A JP5704256B2 (ja) 2011-12-26 2012-11-13 絶縁膜用組成物及び絶縁膜
CN201280045962.8A CN103828062B (zh) 2011-12-26 2012-11-13 有机半导体绝缘膜用组合物及有机半导体绝缘膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011284363 2011-12-26
JP2011-284363 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099460A1 true WO2013099460A1 (ja) 2013-07-04

Family

ID=48696959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079426 WO2013099460A1 (ja) 2011-12-26 2012-11-13 有機半導体絶縁膜用組成物及び有機半導体絶縁膜

Country Status (6)

Country Link
US (1) US9136486B2 (ja)
JP (1) JP5704256B2 (ja)
KR (1) KR20140107194A (ja)
CN (1) CN103828062B (ja)
TW (1) TWI570186B (ja)
WO (1) WO2013099460A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150042028A (ko) * 2013-10-10 2015-04-20 제일모직주식회사 절연막용 조성물, 절연막 및 전자 소자
KR20160136290A (ko) * 2014-03-24 2016-11-29 인텔 코포레이션 나노와이어 디바이스들을 위한 내부 스페이서들을 제조하는 집적 방법들
US10510460B2 (en) * 2013-01-07 2019-12-17 Nikon Corporation Composition, laminate, method of manufacturing laminate, transistor, and method of manufacturing transistor
JP2020183538A (ja) * 2015-12-31 2020-11-12 エルティーシー カンパニー リミテッド フレキシブル基板用ポリシルセスキノキサン樹脂組成物{poly silsesquinoxane resin composition for flexible substrate}
WO2022103004A1 (ko) * 2020-11-10 2022-05-19 한국전기연구원 유무기 하이브리드 액상절연소재 및 그 제조방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6317978B2 (ja) 2014-03-31 2018-04-25 株式会社ダイセル 硬化性組成物及び成形体
KR102487472B1 (ko) * 2015-08-03 2023-01-12 나믹스 가부시끼가이샤 고성능, 열 전도성 표면 실장 (다이 부착) 접착제
KR20210084531A (ko) * 2018-10-30 2021-07-07 다우 실리콘즈 코포레이션 자외선 경화성 오가노폴리실록산 조성물 및 그 용도
JP7401878B2 (ja) * 2020-01-28 2023-12-20 東亞合成株式会社 シルセスキオキサン誘導体及びその利用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219448A (ja) * 1996-02-09 1997-08-19 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2009209358A (ja) * 2008-02-06 2009-09-17 Toagosei Co Ltd カチオン硬化性組成物
JP2009260346A (ja) * 2008-04-11 2009-11-05 Xerox Corp 有機薄膜トランジスタ
JP2010083917A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 膜形成用組成物、膜形成用組成物から得られた絶縁膜、および絶縁膜を有する電子デバイス
JP2011233884A (ja) * 2010-04-27 2011-11-17 Xerox Corp 薄膜トランジスタ用誘電性組成物

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463084A (en) * 1992-02-18 1995-10-31 Rensselaer Polytechnic Institute Photocurable silicone oxetanes
US6121342A (en) * 1998-01-13 2000-09-19 Toagosei Co., Ltd. Photocationically curable compositions and process for producing the same
JP2010074188A (ja) 2002-07-31 2010-04-02 Mitsubishi Chemicals Corp 電界効果トランジスタ
WO2006013863A1 (ja) * 2004-08-04 2006-02-09 Toagosei Co., Ltd. ポリオルガノシロキサン及びそれを含む硬化性組成物
WO2008090719A1 (ja) * 2007-01-24 2008-07-31 Sony Chemical & Information Device Corporation 潜在性硬化剤
KR101471232B1 (ko) * 2007-09-19 2014-12-09 도레이 카부시키가이샤 전자 부품용 접착제 조성물 및 이를 이용한 전자 부품용 접착제 시트
EP2185621A1 (en) * 2007-09-27 2010-05-19 Nippon Shokubai Co., Ltd. Curable resin composition for molded bodies, molded body, and production method thereof
US8329774B2 (en) 2008-01-15 2012-12-11 Toagosei Co., Ltd. Organosilicon compounds which have oxetanyl groups, and a method for the production and curable compositions of the same
WO2010047386A1 (ja) * 2008-10-24 2010-04-29 チェイル インダストリーズ インコーポレイテッド 接着剤組成物および光学部材
JP5215833B2 (ja) * 2008-12-11 2013-06-19 株式会社日立ハイテクノロジーズ 微細パターン転写用スタンパ及びその製造方法
WO2010110204A1 (ja) * 2009-03-27 2010-09-30 コニカミノルタオプト株式会社 蛍光体部材、蛍光体部材の製造方法、及び照明装置
KR101395705B1 (ko) * 2009-04-14 2014-05-15 제이엔씨 주식회사 유리 섬유 복합화 실세스퀴옥산 성형체와 그 제조 방법
EP2530098A4 (en) * 2010-01-26 2015-09-09 Nissan Chemical Ind Ltd HARDENABLE EPOXY RESIN COMPOSITION WITH LOW-CHAIN ALKYLENE
JP5555025B2 (ja) * 2010-03-25 2014-07-23 株式会社日立ハイテクノロジーズ 微細パターン転写用スタンパ及びその製造方法
EP2602274A4 (en) * 2010-08-05 2017-05-03 Nissan Chemical Industries, Ltd. Epoxy resin composition having monocyclic aliphatic hydrocarbon ring

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09219448A (ja) * 1996-02-09 1997-08-19 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JP2009209358A (ja) * 2008-02-06 2009-09-17 Toagosei Co Ltd カチオン硬化性組成物
JP2009260346A (ja) * 2008-04-11 2009-11-05 Xerox Corp 有機薄膜トランジスタ
JP2010083917A (ja) * 2008-09-29 2010-04-15 Fujifilm Corp 膜形成用組成物、膜形成用組成物から得られた絶縁膜、および絶縁膜を有する電子デバイス
JP2011233884A (ja) * 2010-04-27 2011-11-17 Xerox Corp 薄膜トランジスタ用誘電性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NAOMASA FURUTA ET AL.: "Silsesquioxane Yudotai 'Hikari Kokagata SQ Series'", TOA GOSEI GROUP KENKYU NENPO TREND, 2009, pages 27 - 30, Retrieved from the Internet <URL:http://www2.toagosei.co.jp/develop/trend/Nol2/nol25.pdf> [retrieved on 20120108] *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10510460B2 (en) * 2013-01-07 2019-12-17 Nikon Corporation Composition, laminate, method of manufacturing laminate, transistor, and method of manufacturing transistor
KR20150042028A (ko) * 2013-10-10 2015-04-20 제일모직주식회사 절연막용 조성물, 절연막 및 전자 소자
KR101711923B1 (ko) * 2013-10-10 2017-03-03 제일모직 주식회사 절연막용 조성물, 절연막 및 전자 소자
KR20160136290A (ko) * 2014-03-24 2016-11-29 인텔 코포레이션 나노와이어 디바이스들을 위한 내부 스페이서들을 제조하는 집적 방법들
KR102168475B1 (ko) * 2014-03-24 2020-10-21 인텔 코포레이션 나노와이어 디바이스들을 위한 내부 스페이서들을 제조하는 집적 방법들
JP2020183538A (ja) * 2015-12-31 2020-11-12 エルティーシー カンパニー リミテッド フレキシブル基板用ポリシルセスキノキサン樹脂組成物{poly silsesquinoxane resin composition for flexible substrate}
WO2022103004A1 (ko) * 2020-11-10 2022-05-19 한국전기연구원 유무기 하이브리드 액상절연소재 및 그 제조방법

Also Published As

Publication number Publication date
KR20140107194A (ko) 2014-09-04
CN103828062B (zh) 2016-08-17
CN103828062A (zh) 2014-05-28
US9136486B2 (en) 2015-09-15
TWI570186B (zh) 2017-02-11
JPWO2013099460A1 (ja) 2015-04-30
US20140326980A1 (en) 2014-11-06
TW201339246A (zh) 2013-10-01
JP5704256B2 (ja) 2015-04-22

Similar Documents

Publication Publication Date Title
JP5704256B2 (ja) 絶縁膜用組成物及び絶縁膜
US11634610B2 (en) Siloxane polymer compositions and their use
EP2975649A1 (en) Field effect transistor
EP2259289A1 (en) Gate insulating material, gate insulating film, and organic field effect transistor
KR102082019B1 (ko) 유기 전자 소자용 뱅크 구조체
Chen et al. A comprehensive nano-interpenetrating semiconducting photoresist toward all-photolithography organic electronics
TW200940605A (en) Alkali-developable curable composition, insulating thin film using the same, and thin film transistor
KR102121960B1 (ko) 전계 효과형 트랜지스터, 그의 제조 방법, 그것을 사용한 무선 통신 장치 및 상품 태그
JP5685037B2 (ja) 有機半導体素子の製造方法および該製造方法によって得られる有機半導体素子
KR20200060347A (ko) 전계 효과형 트랜지스터, 그의 제조 방법, 그것을 사용한 무선 통신 장치 및 상품 태그
JP2016128559A (ja) 組成物並びにその硬化物を含む電子装置及び薄膜トランジスター
Zhang et al. High-resolution inkjet-printed oxide thin-film transistors with a self-aligned fine channel bank structure
WO2020143624A1 (zh) 制剂和层
TWI573194B (zh) 半導體用絕緣膜及使用其的有機薄膜電晶體
JP6442049B2 (ja) 有機薄膜トランジスタ、有機半導体層形成用組成物
JP5813341B2 (ja) 膜形成用組成物および該組成物を用いた薄膜トランジスタ
JP2010098308A (ja) 有機薄膜トランジスタ
TW201015215A (en) Composition for forming photosensitive dielectric material and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013551528

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14352469

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147012811

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862787

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12862787

Country of ref document: EP

Kind code of ref document: A1