WO2020143624A1 - 制剂和层 - Google Patents

制剂和层 Download PDF

Info

Publication number
WO2020143624A1
WO2020143624A1 PCT/CN2020/070696 CN2020070696W WO2020143624A1 WO 2020143624 A1 WO2020143624 A1 WO 2020143624A1 CN 2020070696 W CN2020070696 W CN 2020070696W WO 2020143624 A1 WO2020143624 A1 WO 2020143624A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
solvent
formulation
precursor
Prior art date
Application number
PCT/CN2020/070696
Other languages
English (en)
French (fr)
Inventor
冯林润
刘哲
拉杰夫凯伦·帕拉巴
潘迪亚沙希·乌尔维什
奥吉尔西蒙·多米尼克
Original Assignee
纽多维有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纽多维有限公司 filed Critical 纽多维有限公司
Priority to KR1020217025113A priority Critical patent/KR20210113309A/ko
Priority to EP20739110.3A priority patent/EP3910691A4/en
Priority to JP2021539375A priority patent/JP2022517326A/ja
Priority to US17/420,745 priority patent/US20220123241A1/en
Publication of WO2020143624A1 publication Critical patent/WO2020143624A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the present application relates, but is not limited to, for providing layers such as passivation layers and/or light patterning layers, formulations for manufacturing organic electronic devices, methods of using such formulations to manufacture organic electronic devices, and including layers provided by such formulations Organic electronic device.
  • Organic electronic (OE) devices include, for example, organic field effect transistors (OFETs) and organic photovoltaic (OPV) devices used in backplanes or logic circuits of display devices.
  • a conventional top-gate OFET includes a source and a drain, a semiconductor layer made of an organic semiconductor (OSC) material, and a dielectric material (also called a dielectric or gate dielectric) such as an organic gate insulator (OGI)
  • OGI organic gate insulator
  • a gate insulator layer, a gate electrode, and a passivation layer usually on top of the OGI layer to protect the OSC layer and OGI layer from environmental influences and/or damage from subsequent device manufacturing steps.
  • a conventional bottom-gate OFET includes a gate electrode, a gate insulator layer made of a dielectric material such as an organic gate insulator (OGI), source and drain electrodes, and a semiconductor made of an organic semiconductor (OSC) material Layers, and usually a passivation layer on top of the OSC layer, to protect the OSC layer and OGI layer from environmental influences and/or damage from subsequent device manufacturing steps.
  • the passivation layer can also be used as an interlayer dielectric so that metal traces can be routed in circuits on different layers of these OE devices without short-circuiting.
  • Solution processable passivation layers are preferred, especially for OFETs.
  • Solution processable passivation materials SPPM allow the use of solution-based deposition methods during manufacturing, such as spin coating or larger area printing methods, including flexo, gravure printing, and slot-die coating . Adhesion of the passivation material to the underlying layer may be the main conventional requirement for such solution-based passivation materials.
  • the orthogonality of the solvent used in the solution-based passivation material is also required, especially the orthogonality with the organic layer such as the OSC layer and/or the OGI layer.
  • the orthogonality of the solvent can be understood as the chemical orthogonality.
  • an orthogonal solvent is a solvent that does not adversely affect the previously provided layer when used to provide a layer of material dissolved and/or dispersed therein on the previously provided layer. Therefore, orthogonal solvents can be considered suitable (also called compatible) solvents because they do not adversely affect organic layers such as OSC layers and/or OGI layers. Conversely, non-orthogonal (also called unsuitable or incompatible) solvents may dissolve, damage, destroy or affect the long-term stability of the previously provided layer.
  • orthogonal solvents may be compatible with organic layers such as OSC layers and/or OGI layers, the dissolution and/or dispersion of the passivation material therein may be problematic.
  • FIGS. 1A and 1B schematically show a method of manufacturing an OE device, particularly a top-gate OFET, using conventional solution-processable passivation materials.
  • this manufacturing method can actually be implemented by photolithography.
  • a substrate 110 is provided.
  • the substrate 110 may include, for example, glass, metal, polymer, or an integrated circuit (IC).
  • the substrate 110 may include an optional buffer layer provided on the surface of the substrate 110.
  • the buffer layer may also be referred to as a planarization layer, which is provided by a cross-linkable polymer, which may improve surface uniformity and/or uniformity by smoothing defects in the surface of the substrate, and may be provided in the Manufacture of chemically inert surfaces on OE devices.
  • the source and drain 120 are provided on the surface of the substrate 110, for example, by sputtering and lithography (using the mask 1).
  • the source and drain 120 are usually metals, such as silver or gold or alloys thereof, or non-metals.
  • the source and drain 120 may be treated with a thiol solution to adjust the work function of the source and drain 120, as is known in the art. In this way, the injection of charge into the overlapping OSC layers can be improved. The excess thiol solution can be washed away, and the thiol only binds to the source and drain 120.
  • the OSC layer 130 is first provided on the exposed surfaces of the source and drain 120 and the substrate 110, for example, by spin coating or printing.
  • the OSC layer 130 generally has a thickness of 30 nm.
  • the OGI layer 140 is then provided on the OSC layer 130, for example by spin coating or printing.
  • the OGI layer 140 generally has a thickness of 300 nm.
  • a metal layer 150 such as silver or gold or its alloy is then deposited on the OGI layer 140, for example by evaporation.
  • a photoresist (not shown) is then patterned (eg, by photolithography) on the metal layer 150, and a portion of the metal layer 150 exposed by the patterned photoresist is removed by wet etching.
  • the patterned metal layer 150 provides a gate, such as a thin film transistor (TFT) gate.
  • the patterned metal layer 150 also provides a hard mask (mask 2) resistant to reactive ion etching (RIE) (also called dry etching, for example using O 2 and/or Ar) to mask the underlying OGI layer 140, OSC layer 130 and source and drain 120. Subsequently, RIE removes portions of the OGI layer 140 and the OSC layer 130 that are not masked by the patterned metal layer 150. In this way, a stack 100 including a patterned metal layer 150, an OGI layer 140, an OSC layer 130, and source and drain electrodes 120 is provided on the substrate 110.
  • RIE reactive ion etching
  • the stack 100 generally describes a multi-layer structure, and therefore may contain more or fewer and/or different layers.
  • the stack 100 may include these layers at an intermediate stage of OE device manufacturing.
  • the stack 100 may include all layers of the completed OE device. That is, by adding and/or by removing layers, the layers included in the stack 100 may be changed during manufacturing.
  • the side 141 of the OGI layer 140 and the side 131 of the OSC layer 130 may therefore be exposed, for example, by RIE, and may be adversely affected by an inappropriate solvent.
  • interlayer interface for example, between the substrate 110 and the OSC layer 130, between the OSC layer 130 and the OGI layer 140, and/or between the OGI layer 140 and the metal layer 150.
  • Other surfaces of OGI layer 140 and/or OSC layer 130 may be additionally and/or alternatively exposed.
  • a conventional first passivation layer 180 is provided on the exposed surfaces of the stack 100 and the substrate 110.
  • the first passivation layer 180 generally has a thickness of 100 nm.
  • Water is generally considered an orthogonal solvent and is at least fully compatible with the OGI layer 140 and/or OSC layer 130.
  • the first passivation layer 180 provided using cross-linked PVA may not be suitable for subsequent manufacturing steps and/or may not be suitable for providing environmental, chemical, and/or physical protection for the manufactured OE device. Therefore, as described below, the second passivation layer 190 is additionally required.
  • a positive photoresist mask 181 (mask 3) is provided on the first passivation layer 180.
  • a first hole 185 (also referred to as a through hole) through the first passivation layer 180 to the patterned metal layer 150 is formed through the positive photoresist mask 181 through RIE, thereby exposing at least a portion of the metal layer 150 surface.
  • the second passivation layer 190 is disposed on the first passivation layer 180 and the exposed portion of the stack, for example, the patterned metal layer 150 exposed through the hole formed through the first passivation layer 180.
  • the second is provided by coating with a solution of a second formulation such as another crosslinkable polymer (for example, SU-8 available from MicroChem Corp., Westborough, MA (USA)) and crosslinking the polymer Passivation layer 190.
  • SU-8 contains bisphenol A novolac epoxy resin dissolved in an organic solvent such as cyclopentanone, ⁇ -butyrolactone (GBL) or propylene glycol monoethyl ether acetate (PGMEA).
  • the second passivation layer 190 generally has a thickness of 300 nm, and may provide a main passivation layer for the OE device.
  • the second passivation layer 190 containing the cross-linked polymer thus covers the first passivation layer 180 containing the cross-linked PVA.
  • the second passivation layer 190 provides the robustness required to provide environmental, chemical, and/or physical protection for the manufactured OE device.
  • the organic solvent used in the second formulation is usually a non-orthogonal solvent, which is incompatible with the organic layer of the stack 100 such as the OGI layer 140 and/or the OSC layer 130.
  • robust crosslinkable polymers such as in SU-8, may not be soluble and/or dispersed in orthogonal solvents such as the water used in the first formulation, and therefore must be in these non-orthogonal solvents such as cyclic Pentone, GBL or PGMEA provide robust crosslinkable polymers. Therefore, the first passivation layer 180 serves as a protective layer that protects the organic layers of the stack 100, such as the OGI layer 140 and/or the OSC layer 130, from the non-orthogonal solvent included in the second formulation.
  • a second hole 195 or a through hole aligned with the first hole formed through the first passivation layer 180 is then formed through the second passivation layer 190 to the patterned metal layer 150 so as to expose at least the surface of the metal layer 150 A part, as similarly described with respect to the first passivation layer 190 in steps S105 to S107.
  • Another positive photoresist mask (not shown) (mask 4) is provided on the second passivation layer 190, and a hole or a through hole therethrough is formed by RIE. Subsequently, the remaining photoresist mask is removed.
  • the metal gate interconnection 170 is provided to the patterned metal layer 150 through the second hole, for example, by sputtering, masking (mask 5), and etching.
  • an OE device having a double passivation layer including the first passivation layer 180 and the second passivation layer 190 can be provided.
  • a double passivation layer including the first passivation layer 180 and the second passivation layer 190 increases OE device manufacturing complexity and/or cost.
  • a water-soluble polymer such as PVA is hygroscopic, and water such as absorbed moisture in the first passivation layer 180 may be detrimental to the long-term stability of the OE device.
  • five masks are required according to this conventional manufacturing method of the OE device.
  • the present application provides that it can be provided directly on an organic layer such as an OSC layer and/or OGI layer and/or a stack including one or more of these layers, for providing a passivation layer and/or a light patterned layer Used in the manufacture of organic electronic device preparations, and others.
  • the present application also provides methods of manufacturing organic electronic devices using such formulations with reduced complexity and/or cost.
  • the present application also provides organic electronic devices including layers provided by such formulations, which have improved long-term stability.
  • the first aspect of the present application provides a flowable formulation for depositing a passivation layer on an organic electronic (OE) device comprising an organic layer, wherein the organic layer is selected from an organic semiconductor (OSC) layer and an organic gate insulator (OGI) layer , Where the formulation contains passivating materials and solvents;
  • OSC organic semiconductor
  • OTI organic gate insulator
  • the solvent includes lactate and/or its derivatives.
  • a second aspect of the present application provides a method of manufacturing an organic electronic (OE) device including an organic layer, wherein the organic layer is selected from an organic semiconductor (OSC) layer and an organic gate insulator (OGI) layer, wherein the method includes: The formulation according to the first aspect is deposited on at least a portion of the organic layer and the solvent is removed, and a passivation layer is provided on at least a portion of the organic layer.
  • OSC organic semiconductor
  • OTI organic gate insulator
  • a third aspect of the present application provides an organic electronic (OE) device including an organic layer and a passivation layer directly on the organic layer, wherein the organic layer is selected from an organic semiconductor (OSC) layer and an organic gate insulator (OGI) layer, and wherein the passivation layer includes the crosslinked product of the crosslinkable composition provided by the first aspect.
  • OSC organic semiconductor
  • OTI organic gate insulator
  • a fourth aspect of the present application provides a product including an organic electronic (OE) device manufactured according to the second aspect and/or an OE device according to the third aspect.
  • OE organic electronic
  • the fifth aspect of the present application provides a flowable formulation comprising a photo-patterned material and a solvent
  • the solvent includes lactate and/or its derivatives.
  • the sixth aspect of the present application provides the use of a solvent including lactate and/or derivatives thereof in a method of manufacturing an organic electronic (OE) device including an organic layer, wherein the organic layer is selected from an organic semiconductor (OSC) layer and Organic gate insulator (OGI) layer.
  • OSC organic semiconductor
  • OTI Organic gate insulator
  • FIG. 1A and 1B schematically show a method of manufacturing an OE device using a conventional solution-processable passivation material
  • 2A-2C schematically depict 2D Hansen solubility parameter graphs of lactate solvents and other solvents
  • 3A and 3B schematically illustrate a method of manufacturing an OE device according to embodiments of aspects of the present application
  • FIG. 4 schematically shows another method of manufacturing an OE device according to embodiments of various aspects of the present application
  • FIG. 5A to 5F show a series of transistor source-drain designs. These include (FIG. 5A) Corbino structure, (FIG. 5B) C-shape, (FIG. 5C) W-shape, (FIG. 5D) linear, (FIG. 5E) linear cross design of source and drain. In (FIG. 5F), the gate metal layer related to the source and drain is also shown. If the solvent of the passivation layer is not properly selected, the very close proximity of the gate metal edge to the conductive channel in the OTFT will make the conductive channel sensitive to solvent erosion. As shown by the electrical results in the example section, the conductive channel region is not affected by the lactate solvent of the present application.
  • 6A and 6B show the transfer characteristics and mobility curves of a linear OE device with a W/L of 9800/12 (micrometer) after the passivation layer deposition of ethyl lactate and the deposition and patterning of metal interconnection layers, respectively data.
  • W/L is 200/12 (micrometer)
  • sub-threshold swing is 1V/decade.
  • the term “comprising” or “comprises” means including the specified components, but does not exclude the presence of other components.
  • the term “consisting essentially” or “consists essentially” means to include the specified component but not other components, In addition to materials present as impurities, unavoidable materials that exist due to the process for providing components, and components added for purposes other than achieving the technical effects of the present application.
  • the SPPM and/or formulation should preferably be compatible (ie orthogonal) with organic layers such as OSC layers and/or OGI layers, and OE device structures.
  • organic layers such as OSC layers and/or OGI layers, and OE device structures.
  • the organic layer is soluble in organic solvents, and therefore exposure of these organic layers to these solvents should be avoided.
  • interlayer bonding such as between overlapping OSC layers and/or OGI layers, is important for the function of the OE device. Because different organic layers such as OSC layers and/or OGI layers generally have different surface energies, solvents that may not dissolve a particular layer may penetrate through the interlayer interface and thus also deteriorate or destroy the function of the OE device.
  • the SPPM should preferably provide environmental, physical, and/or chemical resistance, for example, to materials and conditions applied in subsequent manufacturing steps, such as lithography, during OE device manufacturing.
  • photolithography includes one or more of the following processing steps that may involve chemical and/or physical exposure of the underlying layer: photoresist resin is usually deposited in an organic solvent; UV exposure; photoresist is usually developed using alkali Etching agents; usually using aggressive acids and redox reactions to etch metals; and/or often using aggressive organic solvents to remove photoresists.
  • the deposited passivation material should preferably be resistant to organic solvents and/or aqueous solutions.
  • the deposition of passivation materials generally requires that the passivation materials are preferably soluble and/or dispersible in organic solvents or aqueous solutions. Therefore, the passivation material can be crosslinked after deposition, for example, to meet these conflicting requirements.
  • the deposited passivation layer should preferably exhibit mechanical flexibility, good scratch resistance, thermal stability, optical transparency, uniformity, no pinholes, good adhesion to other layers, good relative to water and/or oxygen At least one of barrier properties, non-hygroscopicity, and good dielectric breakdown strength.
  • the first aspect of the present application provides a flowable formulation for depositing a passivation layer on an organic electronic (OE) device including an organic layer, wherein the organic layer is selected from an organic semiconductor (OSC) layer and an organic gate insulator (OGI) layer , Where the formulation contains passivating materials and solvents;
  • OSC organic semiconductor
  • OTI organic gate insulator
  • the solvent includes lactate and/or its derivatives.
  • An aspect of the present application provides a flowable formulation comprising a passivating material and a solvent
  • the solvent includes lactate and/or its derivatives.
  • the flowable formulation according to the first aspect of the present application may also be suitable for use in other devices such as microelectromechanical systems (MEM), microfluidic devices and/or conventional (eg, non-organic thin film transistor (OTFT)) electronic devices Provide layers.
  • MEM microelectromechanical systems
  • OTFT non-organic thin film transistor
  • a flowable formulation comprising a photo-patterned material and a solvent is also provided;
  • the solvent includes lactate and/or its derivatives.
  • OE organic electronic
  • OSC organic semiconductor
  • OGI organic gate insulator
  • a flowable formulation comprising a crosslinkable composition and a solvent
  • the solvent includes lactate and/or its derivatives.
  • flowable formulations can be provided for direct spin coating and/or printing and/or subsequent addition of additional solvents.
  • a flowable formulation for spin coating may have a dynamic viscosity or an absolute viscosity ranging from 1 centipoise to 10,000 centipoise or higher.
  • the flowable formulation has a dynamic viscosity in the range from 1 centipoise to 10,000 centipoise, preferably 1 centipoise to 1000 centipoise, more preferably 1 centipoise to 20 centipoise.
  • the dynamic viscosity of the flowable formulation may depend at least in part on the amount of solvent in the flowable formulation, so that an increased amount of solvent may reduce the dynamic viscosity.
  • the lactate and its derivatives include L-lactate and its derivatives, or D-lactate and its derivatives, or L-lactate and its derivatives Mixture of D-lactate and its derivatives, preferably, a mixture of L-lactate and its derivatives in a ratio of 1:1 and D-lactate and its derivatives (and This is called a racemic mixture).
  • lactate and/or derivatives thereof can replace conventional organic solvents such as cyclopentanone, GBL, or PGMEA in, for example, SU-8 as described above with respect to the second passivation layer.
  • lactate and/or its derivatives can also be orthogonal solvents, unlike conventional organic solvents such as cyclopentanone, GBL or PGMEA as described above.
  • lactate and/or its derivatives can be used as a solvent containing a solution of a robust crosslinkable polymer dissolved and/or dispersed therein, and can be directly These solutions are provided on layers such as OSC layers and/or OGI layers and/or stacks including one or more of these layers.
  • the formulation may be provided directly on the OGI layer, which may be part of a laminate, for example.
  • a protective layer on the OSC layer such as a fluoropolymer protective layer.
  • a protective layer is provided on the OSC layer for patterning, for example by dry etching as described above.
  • the single passivation layer provided by the first formulation replaces the first passivation layer and the second passivation layer as conventionally provided.
  • the solvent comprises at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least Lactate and/or derivatives thereof in an amount of 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97.5% or at least 99%, wherein the lactate and/or its derivatives
  • the amount of its derivative is the weight percentage of the total solvent in the preparation.
  • the solvent comprises at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most Lactate and/or derivatives thereof in an amount of 75%, at most 80%, at most 85%, at most 90%, at most 95%, at most 97.5%, at most 99% or at most 100%, wherein the lactic acid ester and/or The amount of its derivative is the weight percentage of the total solvent in the preparation.
  • the solvent comprises a mixture of lactate and/or one or more derivatives thereof.
  • the solvent includes a co-solvent such as an organic solvent and/or an aqueous solvent.
  • co-solvents may include cyclopentanone, GBL and PGMEA, propylene carbonate, diethylene glycol, isopropyl alcohol (IPA), 2-propanol, and/or ethanol.
  • the solvent comprises at most 50%, at most 45%, at most 40%, at most 35%, at most 30%, at most 25%, at most 20%, at most 15%, at most 10%, at most 5%, at most Co-solvent in an amount of 2.5% or at most 1%, where the amount of co-solvent is the weight percentage of the total amount of solvent in the formulation.
  • the solvent comprises at least 50%, at least 45%, at least 40%, at least 35%, at least 30%, at least 25%, at least 20%, at least 15%, at least 10%, at least 5%, at least A co-solvent in an amount of 2.5% or at least 1%, where the amount of co-solvent is the weight percent of the total amount of solvent in the formulation.
  • the solvent contains multiple co-solvents.
  • the solvent comprises at most 50%, at most 45%, at most 40%, at most 35%, at most 30%, at most 25%, at most 20%, at most 15%, at most 10%, at most 5%, at most Multiple co-solvents in an amount of 2.5% or at most 1%, where the amount of multiple co-solvents is the weight percent of the total amount of solvent in the formulation.
  • the solvent comprises at least 50%, at least 45%, at least 40%, at least 35%, at least 30%, at least 25%, at least 20%, at least 15%, at least 10%, at least 5%, at least Multiple co-solvents in an amount of 2.5% or at least 1%, where the amount of multiple co-solvents is the weight percent of the total amount of solvent in the formulation.
  • the formulation comprises at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least
  • the solvent is in an amount of 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97.5%, or at least 99%, where the amount of solvent is the weight percentage of the formulation.
  • the formulation comprises at most 25%, at most 30%, at most 35%, at most 40%, at most 45%, at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most
  • the amount of solvent is 75%, at most 80%, at most 85%, at most 90%, at most 95%, at most 97.5%, or at most 99%, where the amount of solvent is the weight percentage of the formulation.
  • the formulation comprises at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least
  • the amount of passivation material is 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 97.5%, or at least 99%, wherein the amount of passivation material is the weight percentage of the formulation.
  • the formulation comprises at most 80%, at most 75%, at most 70%, at most 65%, at most 60%, at most 55%, at most 50%, at most 45%, at most 40%, at most 35%, at most Passivating material in an amount of 30%, at most 25%, at most 20%, at most 15%, at most 10%, at most 5%, at most 2.5% or at most 1%, wherein the amount of passivating material is the weight percentage of the formulation.
  • the Hansen solubility parameter can be used to characterize the polarity of a solvent in terms of its dispersing power ⁇ d , the degree of polarity produced by any dipole ⁇ p , and the hydrogen bonding ability ⁇ h of the solvent.
  • the solvent can therefore be located in the Hansen space, which is a three-dimensional (3D) representation of ⁇ d , ⁇ p and ⁇ h . The closer the two solvents in Hansen space are, the more likely they are to exhibit the same dissolution properties.
  • the Hansen dispersion force ⁇ d represented by the solvent can be similar, and therefore to more simply represent the Hansen solubility parameter, ⁇ p can be plotted against ⁇ h to represent different types of solvents in a two-dimensional (2D) diagram .
  • the derivative has a Hansen solubility parameter within 6 MPa 1/2 of the Hansen solubility parameter of ethyl lactate. In one embodiment, the derivative has a Hansen solubility parameter within 3 MPa 1/2 of the Hansen solubility parameter of ethyl lactate. In one embodiment, the derivative has a Hansen solubility parameter within 1.5 MPa 1/2 of the Hansen solubility parameter of ethyl lactate.
  • Table 1 details the Hansen solubility parameters of various solvents including ethyl lactate as described above and conventional solvents cyclopentanone, GBL and PGMEA.
  • Table 1 The Hansen solubility parameters of ethyl lactate and conventional solvents cyclopentanone, GBL and PGMEA as described above are compiled from HSPiP software version 2 (https://www.hansen-solubility.com/).
  • Hansen solubility parameter may indicate that lactate and/or its derivatives can replace conventional organic solvents such as cyclopentanone, GBL, or PGMEA in SU-8 as described above, the Hansen solubility parameter does not provide these Conventional solvents can also be indicative of orthogonal solvents.
  • lactate and/or its derivatives can also be orthogonal solvents, unlike conventional organic solvents such as cyclopentanone, GBL or PGMEA as described above. That is, lactate and/or its derivatives can replace conventional organic solvents such as cyclopentanone, GBL or PGMEA in SU-8, and can be orthogonal solvents, which is different from conventional organic solvents such as cyclopentan Ketone, GBL or PGMEA.
  • Figures 2A, 2B and 2C schematically depict 2D Hansen solubility parameter graphs of lactate and other commonly used solvents, some for SU8 passivation.
  • the passivation material includes a crosslinkable composition.
  • the passivation material can be dissolved and/or dispersed in a solvent for deposition, and then crosslinked after deposition, the passivation material can be resistant to organic solvents and/or aqueous solutions. Therefore, the passivation material can meet at least some of the conflicting requirements described above.
  • the passivation material comprises at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% , An amount of at least 97.5% or at least 99% of the crosslinkable composition, wherein the amount of the crosslinkable composition is the weight percentage of the passivating material.
  • the passivation material comprises at most 50%, at most 55%, at most 60%, at most 65%, at most 70%, at most 75%, at most 80%, at most 85%, at most 90%, at most 95% , A crosslinkable composition in an amount of at most 97.5%, at most 99%, or at most 99.5%, wherein the amount of the crosslinkable composition is the weight percentage of the passivation material.
  • the crosslinkable composition includes a monomer precursor, an oligomer precursor, and/or a polymer precursor.
  • the crosslinkable composition containing a monomer precursor, an oligomer precursor and/or a polymer precursor include, for example, a crosslinkable epoxy group, a crosslinkable epoxy group and/or a crosslinkable The monomer precursor, oligomer precursor and/or polymer precursor of the siloxane-organic hybrid framework of the diacrylate or (alkyl)acrylate repeat unit.
  • crosslinking initiation examples include, for example, thermal initiation, photochemical initiation, via free radical reaction, via thiol-ene or thiol (alkyl) acrylate reaction, and/or via thermal azyne ring addition reaction (thermal azide, alkyne, cycloaddition, reaction).
  • the monomer precursor, oligomer precursor, and/or polymer precursor contain epoxy groups, which may be cross-linked.
  • the passivation layer can be formed by thermally crosslinking or photochemically crosslinking monomer precursors, oligomer precursors, or polymer precursors containing epoxy groups.
  • the passivation formulation can be applied to the surface and then subjected to thermal cross-linking or photochemical cross-linking conditions.
  • An example of a suitable oligomer precursor containing epoxy groups is the commercial product EPON TM SU-8 resin (also known as EPIKOTE TM 157) available from Hexion.
  • EPON TM resin SU-8 is a polymer solid epoxy novolac resin having a functionality of about 8 average epoxy groups.
  • Suitable monomer precursors, oligomer precursors or polymer precursors may also comprise a siloxane-organic hybrid framework containing epoxy groups.
  • Table 2 details examples of commercially available epoxy siloxane monomer precursors and oligomer precursors, including products PC-1000, PC-1035, PC-, available from Polyset Inc (Mechanicville, NY, USA) 2000, PC-2004, PC-2011, PC-2021 and PC-2026. Other epoxy siloxane monomer precursors and oligomer precursors are known.
  • cross-linked materials prepared from epoxy siloxane precursors are described in J Appl Polymer 2013, 39968, 1-7.
  • the formulation contains at least one of a cross-linking agent, a photoacid generator, a hardener, an antioxidant, a surfactant, and a filler.
  • a cross-linkable composition containing an epoxy-type monomer, oligomer or polymer may also contain a cross-linking agent and/or a catalyst.
  • the chemical reaction used provides a cross-linked, insoluble layer, which can be thermally or photochemically driven.
  • ACS Applied Materials Interfaces 2009, 1, 7, 1585 describe examples of thermally driven cross-linking reactions of film precursors containing polymers substituted with epoxy groups.
  • methyltetrahydrophthalic anhydride (MeTHPA) is used as a thermal curing agent
  • BDMA N,N-dimethylbenzylamine
  • the passivation formulation may include a photoacid generator (PAG).
  • PAG is an agent that generates an active acid catalyst when exposed to visible light or ultraviolet radiation, usually ultraviolet radiation.
  • Suitable PAGs include those commercially available from BASF (Germany) The materials in the series.
  • PAG reagents can be ionic or non-ionic in nature, and in different PAGs, the chemical structure can be designed to operate at different UV wavelengths.
  • PAG is commercially available for operation at UV wavelengths of I-line (365 nm) and g/h-line (405 nm, 436 nm), and PAG is widely used in microelectronics manufacturing processes.
  • the crosslinkable composition for example, contains the epoxy-type monomer, oligomer or polymer as described above, and may also contain a hardener (also called a hardener or hardener), which can be used to adjust the resulting The curing time and/or mechanical properties of the cross-linked passivation layer.
  • a hardener also called a hardener or hardener
  • suitable hardeners include the ARON series of oxetane hardeners available from Toagosei (Japan).
  • the crosslinkable composition for example, contains the epoxy-type monomer, oligomer or polymer as described above, and may also contain an antioxidant.
  • Antioxidants can be used to inhibit discoloration (yellowing) in crosslinkable or crosslinked films, for example due to side reactions with PAG or its chemical byproducts. Examples of suitable antioxidants are described in US 2013/225711 A1.
  • the monomer precursor, oligomer precursor, and/or polymer precursor comprise (alkyl) acrylate repeat units, such as acrylate or methacrylate repeat units.
  • Crosslinkable monomers, oligomers or polymers containing acrylate or methacrylate repeating units collectively referred to herein as (alkyl)acrylates may be very useful for forming crosslinked passivation layers.
  • Various (alkyl)acrylate film coating precursors are commercially available, for example, under the SARTOMER brand produced by Arkema (France). It is known in the art that (alkyl)acrylate precursors can be selected and formulated in different ratios to provide different properties in crosslinked film coatings.
  • the (alkyl)acrylate precursor used to produce the crosslinked film coating may be monofunctional, bifunctional, or multifunctional, and may optionally be supplemented by additional non-(alkyl)acrylic acid
  • the ester-reactive functional group substitution allows for further crosslinking by alternative chemical methods that are different from the chemical methods used to polymerize (alkyl)acrylate groups.
  • additional non-(alkyl)acrylate reactive functional groups described in WO 2013/119717 A1 are epoxy groups, or cinnamylene groups.
  • Suitable crosslinkable (alkyl)acrylate precursors for crosslinkable compositions may themselves be oligomeric or polymeric.
  • An example of such a material is SIRIUS-501, a dendritic acrylate produced by Osaka Organic Chemical Industry Ltd (Japan).
  • Alkylacrylate precursors suitable for thermally or photochemically crosslinkable films such as passivation layers can be optionally substituted with partially or fully fluorinated side chains. Films containing polymers prepared from these precursors and thus having such side chain substituents can have effectively modified properties, such as chemical resistance, hydrophobicity, or surface energy.
  • Table 3 details a series of fluorinated (alkyl) acrylate precursors that are commercially available from Sigma Aldrich, a subsidiary of Merck KGaA (Germany). Other fluorinated (alkyl) acrylate precursors are known.
  • Suitable monomer precursors, oligomer precursors or polymer precursors may also comprise siloxane-organic hybrid frameworks containing (alkyl)acrylate groups. Examples of such hybrid precursors are described in J Sol Sol Technol 2012, 61,2,321.
  • a crosslinkable composition comprising a monomer precursor, an oligomer precursor or a polymer (alkyl) acrylate precursor can be crosslinked using a free radical reaction.
  • the crosslinkable composition used to form the crosslinkable film may additionally include a free radical initiator.
  • free radical initiators are initiated under thermal or photochemical conditions. Many examples of free radical initiators suitable for thermal or photochemical initiation are known in the art.
  • Table 4 details the free-radical thermal initiators commercially available from Sigma Aldrich, a subsidiary of Merck KGaA (Germany).
  • Table 5 details free radical photoinitiators commercially available from Sigma Aldrich, a subsidiary of Merck KGaA (Germany).
  • photochemical radical initiators are available, allowing the photochemical crosslinking process to operate at different wavelengths including i-line (365nm) and g/h line (405nm, 436nm) .
  • type II initiators Some types of commercially available photochemical free radical initiators are called type II initiators. These photoinitiators usually require the presence of another agent called a co-initiator. Common examples of co-initiators for Type II systems are alcohols or amines.
  • the monomer precursor, oligomer precursor, and/or polymer precursor are crosslinkable via, for example, a thiol-ene or thiol (alkyl) acrylate reaction, as described below.
  • the thiol alkene reaction involves the reaction of an unsaturated double bond with a single precursor bearing a thiol (-SH) group.
  • the unsaturated double bond can be (alkyl)acrylate, in which case the process can be described as a thiol-(alkyl)acrylate reaction.
  • the thiol-ene or thiol-(alkyl)acrylate reaction is usually a free radical reaction, which can be thermally or photochemically initiated, as described above for the polymerization process using only (alkyl)acrylate precursors.
  • a useful property of the thiol-ene or thiol-(alkyl)acrylate reaction used to prepare crosslinked film coatings such as passivation layers is that the reaction process is less sensitive to the suppression of oxygen from the atmosphere, allowing crosslinking
  • the combined process is carried out in air rather than under an inert gas blanket.
  • the precursor suitable for the thermal cross-linking process or photochemical cross-linking process using thiol-ene or thiol-(alkyl)acrylate reaction may be a monomer, oligomer or polymer in nature.
  • An example of using a thiol-ene reaction to provide a cross-linked film is described in Chem Mater 2013, 25, 4806, which is suitable for use as an insulating layer in organic electronic devices.
  • the monomer precursor, oligomer precursor, and/or polymer precursor are crosslinkable via a thermal azyne ring addition reaction, such as described below.
  • the crosslinkable composition includes polyimide.
  • polyimide is an example of an oligomer precursor.
  • Polyimide is a useful material for forming a protective film.
  • Handbook of Polymers for Electronics: Chemistry, Technology, and Applications (Second Edition), pages 55-65 the chemistry and properties of polyimides are reviewed usefully. Efforts have been made to improve the solubility and solution processability of polyimides, and solvent-soluble polyimides are known in the art.
  • soluble polyimide oligomers One type of suitable polyimide for use in this application is soluble polyimide oligomers.
  • Soluble polyimide oligomers can be further functionalized with suitable groups other than the main chain polyimide functional groups for thermal crosslinking or photochemical crosslinking reactions.
  • Polyimide oligomers have good solvent solubility due to their low average molecular weight, and can be easily coated by solution processing methods.
  • the resulting film is then subjected to thermal cross-linking or photochemical cross-linking processes according to the nature of the further functionalizable cross-linkable groups. This results in a highly insoluble crosslinked film. Examples of thermally crosslinked films produced from polyimide oligomers are described in EP 2524947 A1.
  • the crosslinkable composition includes a cycloolefinic polymer.
  • cycloolefinic polymers are examples of oligomer precursors or polymer precursors.
  • cycloolefinic polymers Another class of materials that can be used for passivation layers in organic electronic devices are cycloolefinic polymers. After depositing a non-crosslinked film, cycloolefinic polymers with chemical substituents that allow further thermal crosslinking or photochemical crosslinking are known in the art. Examples of suitable cycloolefinic polymers with crosslinkable pendant groups are described in US9082981 and WO2013/120581.
  • the crosslinkable composition contains substituted poly(vinylphenol) derivatives, for example as described below.
  • poly(vinylphenol) may be substituted on the phenol group (eg, alkyl, aryl, aralkyl with optional additional substituents).
  • ChemMater 2015, 25, 4806 shows a possible type of substituent (O-allyl).
  • Suitable substituted poly(vinylphenol) derivatives are another type of crosslinked film coating precursor suitable for crosslinkable compositions.
  • Chem Mater 2015, 25, 4806 describes a soluble film-forming composition that contains an O-allyl derivative of poly(vinylphenol) and pentaerythritol tetrakis(3-mercaptopropionate), and then uses AIBN as a free
  • the base initiator thermally crosslinks the film through the thiol-ene reaction to form a composition.
  • WO2013/119717 describes derivatives of poly(vinylphenol), which can be crosslinked under photochemical conditions to provide insoluble films, such as passivation layers.
  • the formulation contains a surfactant to improve coating performance, such as surface wetting, leveling, and flow.
  • the formulations of the present application may optionally contain surfactants, such as fluorinated surfactants and/or silicone solvents, to improve coating properties, such as surface wetting, leveling, and flow.
  • the amount of surfactant, such as fluorosurfactant, in the formulation may range from 0% to 5% by weight of the formulation, preferably from 0% to 2% by weight of the formulation.
  • the amount of surfactant can be at least 0.001%, at least 0.01%, or at least 0.1% by weight of the formulation.
  • An exemplary fluorosurfactant is commercially available as SURFLON from AGC Seimi Chemical Co., Ltd. (Japan).
  • Table 6 details the fluorosurfactants commercially available from Cytonix LLC, Maryland (USA) as FluorN.
  • Table 7 details the fluorine-containing surfactants commercially available from DIC Corporation, Tokyo (Japan) as MEGAFACE.
  • Preferred fluorosurfactants include MEGAFACE R-41, R-40, R-40-LM, R-43, F-556, F-557, F-554, F-559, RS-72-K, F -567, F-563, F-560, F-444, F-553, F-477, F-554, F-556, F-557, F-568, F-563 and F-560.
  • Table 7 Fluorinated surfactants available from DIC Corporation.
  • the formulations of the present application may optionally contain silicone solvents, especially cyclosiloxane solvents.
  • Silicone solvents can be used to modify the wettability, leveling and fluidity of the formulation.
  • suitable silicone solvent additives include octamethylcyclotetrasiloxane (BP175°C), decamethylcyclopentasiloxane (BP210°C) and dodecylcyclohexylsiloxane (BP245) °C).
  • the loading of the silicone solvent in the composition will be 0% to 10% by weight of the passivation material, preferably 0% to 5% by weight of the passivation material, more preferably the passivation material 0% to 2% by weight.
  • the amount of silicone solvent in the formulation may range from 0% to 10% by weight of the formulation, preferably from 0% to 5% by weight of the passivation material, more preferably in the passivation material The range of 0% to 2% by weight.
  • the amount of surfactant may be at least 0.001%, at least 0.01%, or at least 0.1% by weight of the passivating material.
  • the formulation contains fillers to modify the physical and/or electrical properties of the cross-linked layer.
  • Suitable compositions for use in this application may also optionally contain fillers.
  • the filler can effectively change the physical properties and/or electrical properties of the crosslinked film coating, such as dielectric constant, mechanical strength, or dielectric breakdown strength.
  • Suitable fillers include inorganic nanoparticles, in which case the resulting crosslinked membrane can be described as a polymer nanocomposite. Examples of suitable fillers are described in Materials 2009, 2, 1697-1733; doi: 10.3390/ma2041697.
  • These described fillers include inorganic fillers such as BaTiO 3 , PMN-PT (65/35), PbNb 2 O 6 , PLZT (7/60/40), SiO 2 , Al 2 O 3 , Ta 2 O 5 , TiO 2 , SrTiO 3 , ZrO 2 , HfO 2 , HfSiO 4 , La 2 O 3 , Y 2 O 3 , ⁇ -LaAlO 3 , CaCu 3 Ti 4 O 12 and La 1.8 Sr 0.2 NiO 4 .
  • These inorganic fillers can be provided as particles such as microparticles and/or nanoparticles.
  • the organic semiconductor material (OSC) layer contains a single component or a multi-component mixture of materials that can be evaporated or solution processed.
  • the OSC layer is preferably solution processable and may be polymerizable, but preferably contains semiconductor non-polymeric polycyclic compounds, such as semiconductor non-polymeric organic polycyclic compounds, which is OSC (also known as small molecule organic semiconductors) .
  • the semiconductor non-polymeric polycyclic compound has a carrier migration of 10 -1 cm 2 /Vs or more, more preferably 0.5 cm 2 /Vs or more, even more preferably 2 cm 2 /Vs or more rate.
  • the semiconductor non-polymeric polycyclic compound has a carrier mobility of less than 100 cm 2 /Vs.
  • the charge mobility of semiconductor non-polymeric polycyclic compounds can be determined by field-effect transistor measurements on drop-cast films or thermally evaporated single crystal films.
  • Any suitable semiconductor non-polymeric polycyclic compound can be used. These can be p-type or n-type OSC materials.
  • Suitable semiconductor non-polymeric polycyclic compounds include polyacene.
  • Suitable polyacenes are disclosed in WO2012/164282.
  • a suitable polyacene can have the structural formula represented by formula (III):
  • R 54 , R 56 , R 32 and R 34 are each hydrogen;
  • R 55 and R 33 are each -C ⁇ C-SiR 35 R 36 R 37 , where R 35 , R 36 and R 37 are each independently Selected from C 1 -C 4 alkyl, C 2 -C 4 alkenyl and C 3 -C 6 cycloalkyl;
  • R 50 , R 51 , R 52 , R 53 , R 57 , R 29 , R 30 and R 31 Each independently selected from hydrogen, C 1 -C 4 alkyl, C 1 -C 6 alkoxy and C 6 -C 12 aryloxy; or wherein each pair of R51 and R52 and/or R29 and R30 can be independently exchanged Bridge to form a C 4 -C 10 saturated or unsaturated ring, the saturated or unsaturated ring may be oxygen atom, sulfur atom or formula -N(R 49 )-(where R 49 is a hydrogen atom, C 1 -C 6 alkyl group or
  • k and I are independently 0 or 1, preferably k and I are both 1, or k and I are both 0.
  • k and I are both 1;
  • R 55 and R 33 are -C ⁇ C-SiR 35 R 36 R 37 , wherein R 35 , R 36 and R 37 are each independently Selected from ethyl, n-propyl, isopropyl, 1-propenyl, 2-propenyl and C 3 -C 6 cycloalkyl; and
  • R 50 , R 51 , R 52 , R 53 , R 57 , R 29 , R 30 and R 31 are each independently selected from hydrogen, methyl, ethyl and methoxy.
  • k and I are both 0;
  • R 55 and R 33 are -C ⁇ C-SiR 35 R 36 R 37 , wherein R 35 , R 36 and R 37 are each independently Selected from ethyl, n-propyl, isopropyl, 1-propenyl, 2-propenyl and C 3 -C 6 cycloalkyl;
  • R 50 , R 53 , R 57 and R 31 are hydrogen; and
  • Particularly preferred polyacene compounds are those of formula (IV) and (V):
  • R 50 , R 53 , R 57 and R 31 are each independently selected from hydrogen, C 1 -C 6 alkyl and C 1 -C 6 alkoxy (preferably R 50 , R 53 , R 57 and R 31 are each Independently selected from hydrogen, methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl, methoxy, ethoxy, propoxy and butoxy, more preferably hydrogen, methyl , Propyl and methoxy);
  • R 51 , R 52 , R 29 and R 30 are each independently selected from hydrogen, C 1 -C 6 alkyl and C 1 -C 6 alkoxy, or each pair of R 51 and R 52 and/or R 29 and R 30 is cross-linked and bridged to form a C 4 -C 10 saturated or unsaturated ring, the saturated or unsaturated ring may be oxygen atom, sulfur atom or formula -N (R 38 )- (where R 38 is hydrogen Or C 1 -C 10 alkyl group); and wherein one or more carbon atoms of the polyacene skeleton can be optionally selected from N, P, As, O, S, Se, and Te Heteroatom substitution (preferably R 51 , R 52 , R 29 and R 30 are each independently selected from hydrogen, methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl, methoxy, ethyl Oxy, propoxy and butoxy, more preferably hydrogen, methyl,
  • R 39 , R 40 and R 41 are each independently selected from C 1 -C 6 alkyl and C 2 -C 6 alkenyl (preferably R 39 , R 40 and R 41 are each independently selected from methyl, ethyl , Propyl, isopropyl, n-butyl, isobutyl, tert-butyl, 1-propenyl and 2-propenyl, more preferably ethyl, n-propyl and isopropyl);
  • R 42 and R 43 are each independently selected from hydrogen, halogen, cyano, optionally fluorinated or perfluorinated C 1 -C 20 alkyl, fluorinated or perfluorinated C 1 -C 20 alkoxy Radical, fluorinated or perfluorinated C 6 -C 30 aryl and CO 2 R 44 , where R 44 is hydrogen, fluorinated or perfluorinated C 1 -C 20 alkyl, or fluorinated or Perfluorinated C 6 -C 30 aryl (preferably R 42 and R 43 are each independently selected from fluorinated or perfluorinated C 1 -C 8 alkyl, fluorinated or perfluorinated C 1 -C 8 alkoxy and C 6 F 5 ); and
  • polyacene compounds of the present application are those compounds of formula (VI) and (VII):
  • R 39 , R 40 and R 41 are each independently selected from methyl, ethyl and isopropyl;
  • R 50 , R 51 , R 52 , R 53 , R 57 , R 29 , R 30 and R 31 are each independently selected from C 1 -C 6 alkyl, C 1 -C 6 alkoxy and C 6 -C 20 aryloxy.
  • R 50 , R 51 , R 52 , R 53 , R 57 , R 29 , R 30 and R 31 are each independently selected from methyl, ethyl, propyl, n-butyl, isobutyl, tert-butyl , Methoxy, ethoxy, propoxy and butoxy.
  • the polyacene compound can be synthesized by any known method known to those skilled in the art. In a preferred embodiment, it can be used in US 2003/01 16755 A, US 3,557,233, US 6,690,029, WO 2007/078993, WO 2008/128618 and Organic Letters, 2004, Volume 6, No. 10, pages 1609-1612 A disclosed method to synthesize polyacene compounds.
  • the polyacene compound has a carrier mobility of 10 -1 cm 2 /Vs or more, more preferably 0.5 cm 2 /Vs or more, even more preferably 2 cm 2 /Vs or more.
  • the polyacene compound has a carrier mobility of less than 100 cm 2 /Vs.
  • the charge mobility of polyacene can be determined by field-effect transistor measurements on drop-cast films or thermally evaporated single crystal films.
  • a suitable polyacene is 1,4,8,11-tetramethyl-6,13-bis(triethylsilylethynyl)pentacene (TMTES).
  • the optional semiconductor non-polymeric polycyclic compounds used in this application may include the following materials applied via solution processing or evaporation: pentacene, 2,7-dioctyl[1]benzothieno[3,2- b][1]benzothiophene (C8-BTBT), 2,9-didecyl dinaphtho[2,3-b:2′,3′-f]thiophene[3,2-b]thiophene (C10 -DNT), 3,11-didecyl-dinaphtho[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene ( C10-DNBDT), 8,17-bis ((triisopropylsilyl) ethynyl) naphthacene (2,1,12-qra) naphthacene (8,17-bis ((triisopropylsilyl)ethynyl )te
  • Suitable n-type small molecules may include naphthalene diimide (NTCDI) or perylene tetracarboxylic acid diimide (PTCDA), [6,6]-phenyl-C61-butyrate ([60]PCBM) and [6,6]-Phenyl-C71-methyl butyrate ([70]PCBM).
  • NTCDI naphthalene diimide
  • PTCDA perylene tetracarboxylic acid diimide
  • [6,6]-phenyl-C61-butyrate [60]PCBM
  • PCBM [6,6]-Phenyl-C71-methyl butyrate
  • the OSC layer may optionally contain a polymeric binder material to help film formation and uniformity.
  • Suitable adhesive materials can be found in WO2012160383 or WO2005055248, WO2012160383 discloses high-k (dielectric constant>3.4) adhesives combined with small molecule semiconductors, and WO2005055248 discloses low-k adhesives combined with small molecule semiconductors (1.1 ⁇ k ⁇ 3.3).
  • Suitable OGI materials are polymers that can be crosslinked so that they are solvent resistant, or polymers based on insoluble lactate and/or derivatives thereof.
  • preferred polymers include polymers having greater than 30% fluorine by weight and soluble in fluorinated or perfluorinated solvents.
  • preferred soluble amorphous fluoropolymers include Cytop (Asahi), Teflon AF (DuPont), Hyflon AD (Solvay), Fluoropel (Cytonix).
  • Suitable solvents for the fluorinated OGI layer include Fluorinert (trade name) FC43 or hydrofluoroether Novec (3M) HFE7500 or HFE7700.
  • OGI materials can be vapor deposited by chemical vapor deposition such as parylene or thermal evaporation, but it is particularly preferred to deposit OGI by solution processing.
  • the passivation layer provides an interlayer dielectric, which is arranged to isolate, for example, electrically isolate a metal layer, such as a metal gate electrode, on the OE device from the source and/or drain.
  • a metal layer such as a metal gate electrode
  • the solvent includes lactate and/or derivatives thereof.
  • the solvent comprises lactate and/or derivatives thereof
  • the passivation material comprises a crosslinkable composition
  • the solvent comprises lactate and/or derivatives thereof
  • the crosslinkable composition comprises monomer precursors, oligomer precursors and/or polymer precursors.
  • the solvent comprises lactate and/or derivatives thereof, and the monomer precursor, oligomer precursor and/or polymer precursor comprise epoxy groups.
  • the solvent comprises lactate and/or derivatives thereof, and the monomer precursor, oligomer precursor and/or polymer precursor comprise acrylate or methacrylate repeat units.
  • the solvent comprises lactate and/or derivatives thereof, and the monomer precursor, oligomer precursor and/or polymer precursor are reacted via thiol-ene or mercapto (alkyl) acrylate Is crosslinkable.
  • the solvent comprises lactate and/or derivatives thereof, and the monomer precursor, oligomer precursor and/or polymer precursor are crosslinkable via a thermal azyne ring addition reaction .
  • the solvent includes lactate and/or derivatives thereof, and the crosslinkable composition includes polyimide.
  • the solvent comprises lactate and/or derivatives thereof
  • the crosslinkable composition comprises cycloolefinic polymers
  • the solvent comprises lactate and/or derivatives thereof
  • the crosslinkable composition comprises substituted poly(vinylphenol) derivatives.
  • the solvent includes lactate and/or derivatives thereof, and the formulation includes at least one of a cross-linking agent, a photoacid generator, a hardener, an antioxidant, a surfactant, and a filler.
  • the solvent comprises lactate and/or its derivatives and a co-solvent.
  • a second aspect of the present application provides a method of manufacturing an organic electronic (OE) device including an organic layer, wherein the organic layer is selected from an organic semiconductor (OSC) layer and an organic gate insulator (OGI) layer, wherein the method includes:
  • the passivation layer is provided on at least a part of the organic layer by depositing the formulation according to the first aspect and removing the solvent, for example at least a part of the solvent, substantially all the solvent and/or all the solvent.
  • the method includes providing a substrate.
  • the substrate may include, for example, glass, metal, polymer, or IC.
  • the substrate may include an optional buffer layer (also referred to as a sublayer) provided on the surface of the substrate.
  • the buffer layer may also be referred to as a polarizing layer and is provided by a cross-linkable polymer that can improve surface uniformity and/or uniformity by smoothing defects in the surface of the substrate and can be provided on the Manufacture of chemically inert surfaces on OE devices.
  • the buffer layer may include, for example, SU-8, a cross-linked acrylate polymer, or a polycyclic olefinic polymer.
  • the substrate may include, for example, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), which may be processed without a buffer layer.
  • the method includes providing a source and/or drain on the substrate surface, such as by sputtering and photolithography.
  • the source and drain are usually metals, such as silver or gold or their alloys, or non-metals.
  • the source and drain electrodes can be constructed with various potential geometries relative to each other.
  • One construction method is the Corbino structure, in which the source electrode surrounds the drain electrode, and the other is C-shaped or W-shaped.
  • the electrode may be linear. Examples of possible arrangements are shown in FIGS. 5A to 5F.
  • the electrodes are arranged in a non-Corbino arrangement because this saves more space in small areas such as pixels of the display panel.
  • the source and drain can be treated with thiol solution to adjust the work function of the source and drain. In this way, the injection of charge into the overlapping OSC layers can be improved. Excess thiol solution can be washed away, and the thiol only binds to the source and drain.
  • the method includes providing an OSC layer on the exposed surfaces of the source and drain electrodes and the substrate, such as by spin coating or printing.
  • the OSC layer usually has a thickness of 30 nm.
  • the method includes providing an OGI layer on the OSC layer, for example, by spin coating or printing.
  • the OGI layer usually has a thickness of 300 nm.
  • a metal layer for example silver or gold or an alloy thereof, can then be deposited on the OGI layer, for example by evaporation.
  • the photoresist can then be patterned on the metal layer (eg, by photolithography), and a portion of the metal layer exposed through the patterned photoresist can be removed by wet etching.
  • the patterned metal layer may provide a gate, such as a thin film transistor (TFT) gate.
  • TFT thin film transistor
  • the geometry of the gate is defined according to the geometry of the source and drain.
  • the gate dimension width is the same as the transistor channel width
  • the gate length is the same as the transistor channel length
  • the overlap value at each end of the channel is added.
  • the overlap range is 0 to 50 microns, preferably 0 to 10 microns, more preferably 0 to 2 microns, and most preferably 0 to 0.5 microns.
  • the patterned metal layer can provide a hard mask resistant to reactive ion etching (RIE) (also known as dry etching, for example using O 2 and/or Ar) to mask the underlying OGI layer, OSC layer and source and Drain.
  • RIE reactive ion etching
  • RIE may remove portions of the OGI layer and OSC layer that are not masked by the patterned metal layer.
  • a stack including a patterned metal layer, an OGI layer, an OSC layer, and source and drain electrodes can be provided on the substrate.
  • a laminate generally describes a multi-layer structure, and therefore may contain more or fewer and/or different layers.
  • the stack may contain these layers in the intermediate stages of manufacturing OE devices.
  • the stack may contain all layers of the completed OE device. That is, the layers included in the stack can be changed by adding and/or by removing layers during manufacturing.
  • the side surface of the OGI layer and the side surface of the OSC layer may be exposed, for example, by RIE, and may be adversely affected by an inappropriate solvent. Furthermore, it is also possible to expose the interlayer interface, for example between the substrate and the OSC layer, between the OSC layer and the OGI layer and/or between the OGI layer and the metal layer. As mentioned earlier, these interlayer interfaces may undergo solvent penetration, thereby providing another attack vehicle by an inappropriate solvent. Other surfaces of the OGI layer and/or OSC layer may be additionally and/or alternatively exposed.
  • the method includes providing a passivation layer on the exposed surface of the stack and the substrate, for example, by coating with the formulation according to the exemplary embodiment of the present application.
  • the method includes providing a positive photoresist mask on the passivation layer.
  • the method includes forming a first hole or via hole through the passivation layer to the patterned metal layer by RIE through the positive photoresist mask, thereby exposing at least a portion of the surface of the metal layer.
  • the method includes removing the remaining photoresist mask.
  • the method includes providing a metal gate interconnect through the first hole to the patterned metal layer, such as by sputtering, masking, and etching.
  • a third aspect of the present application provides an organic electronic (OE) device including an organic layer and a passivation layer directly thereon, wherein the organic layer is selected from an organic semiconductor (OSC) layer and an organic gate A polar insulator (OGI) layer, and wherein the passivation layer contains a crosslinked product of the crosslinkable composition according to the first aspect.
  • OSC organic semiconductor
  • OTI organic gate A polar insulator
  • the OE device is selected from the group consisting of organic field effect transistors (OFETs) such as bottom gate OFETs or preferably top gate OFETs, including organic thin film transistors (OTFT), organic light emitting diodes (OLED), organic photovoltaics (OPV) ) Devices and organic photodetectors (OPD).
  • OFETs organic field effect transistors
  • OFT organic thin film transistors
  • OLED organic light emitting diodes
  • OCV organic photovoltaics
  • OPD organic photodetectors
  • one of the source electrode or the drain electrode does not completely surround the other, and more preferably, wherein the gate metal overlaps the source and drain electrodes by less than 5 microns.
  • a fourth aspect of the present application provides a product comprising an organic electronic (OE) device manufactured according to the second aspect and/or an OE device according to the third aspect.
  • OE organic electronic
  • the product is selected from the group consisting of: integrated circuits (IC), radio frequency identification (RFID) tags, security tags or security devices containing RFID tags, flat panel displays (FPD), FPD backplanes, FPD backlights, Electrophotographic devices, electrophotographic recording devices, organic storage devices, sensors, biosensors, and biochips.
  • IC integrated circuits
  • RFID radio frequency identification
  • FPD flat panel displays
  • FPD backplanes FPD backlights
  • Electrophotographic devices electrophotographic recording devices, organic storage devices, sensors, biosensors, and biochips.
  • a fifth aspect of the present application provides a flowable formulation, the flowable formulation comprising a photo-patterned material and a solvent; wherein the solvent comprises lactate and/or derivatives thereof.
  • the solvent may be as described in relation to the first aspect.
  • the light patterned material may be similar to the passivation material described in relation to the first aspect.
  • a sixth aspect of the present application provides the use of a solvent containing lactate and/or derivatives thereof in a method of manufacturing an organic electronic (OE) device including an organic layer, wherein the organic layer is selected from an organic semiconductor (OSC) layer and Organic gate insulator (OGI) layer.
  • OSC organic semiconductor
  • OTI Organic gate insulator
  • the solvent may be as described in relation to the first aspect.
  • the manufacturing method may be as described in relation to the second aspect.
  • 3A and 3B schematically illustrate a method of manufacturing an OE device, particularly a top-gate OFET according to embodiments of aspects of the present application.
  • this manufacturing method can actually be realized by photolithography.
  • the preparation according to the exemplary embodiment of the present application is used, thereby eliminating at least one step of the prior art method. In this way, OE device manufacturing complexity and/or cost can be reduced. In addition, hygroscopic water-soluble polymers such as PVA are avoided, thereby improving the long-term stability of the OE device manufactured according to the exemplary embodiment of the present application. In addition, the formulation used contains "green" solvents, thereby improving the environmental conditions of the formulation.
  • the substrate 310 may include, for example, glass, metal, polymer, or IC.
  • the substrate 310 may include an optional buffer layer (also referred to as a sublayer) provided on the surface of the substrate 310.
  • the buffer layer can also be referred to as a planarization layer, which is provided by a cross-linkable polymer, can improve surface uniformity and/or uniformity by smoothing defects in the substrate surface, and can provide chemical inertness on which OE devices are fabricated surface.
  • the buffer layer may contain, for example, a cross-linked acrylate polymer or a polycyclic olefin polymer.
  • the substrate 310 may include, for example, polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), which may be processed without a buffer layer.
  • the source and drain 320 are provided on the surface of the substrate 310 by sputtering and lithography (using the mask 1), for example.
  • the source and drain electrodes 320 are usually metals, such as silver or gold or alloys thereof, or non-metals.
  • the source and drain 320 may be treated with a thiol solution to adjust the work function of the source and drain 320. In this way, the injection of charge into the overlapping OSC layers can be improved. The excess thiol solution can be washed away, and the thiol only binds to the source and drain 320.
  • the OSC layer 330 is first provided on the exposed surfaces of the source and drain electrodes 320 and the substrate 310, for example, by spin coating or printing.
  • the OSC layer 330 generally has a thickness of 30 nm.
  • the OGI layer 340 is then provided on the OSC layer 330, for example, by spin coating or printing.
  • the OGI layer 340 generally has a thickness of 300 nm.
  • a metal layer 350 such as silver or gold or its alloy is then deposited on the OGI layer 340, for example by evaporation.
  • a photoresist (not shown) is then patterned on the metal layer 350 (eg, by photolithography), and a portion of the metal layer 350 exposed through the patterned photoresist is removed by wet etching.
  • the patterned metal layer 350 provides a gate, such as a thin film transistor (TFT) gate.
  • the patterned metal layer 350 also provides a hard mask (mask 2) resistant to reactive ion etching (RIE) (also called dry etching, for example using O 2 and/or Ar), thereby masking the underlying OGI layer 340, OSC layer 330 and source and drain 320. Subsequently, RIE removes portions of the OGI layer 340 and the OSC layer 330 that are not masked by the patterned metal layer 350.
  • RIE reactive ion etching
  • a stack 300 including the patterned metal layer 350, the OGI layer 340, the OSC layer 330, and the source and drain 320 is provided on the substrate 310.
  • the stack 300 generally describes a multi-layer structure, and therefore may contain more or fewer and/or different layers.
  • the stack 300 may include those layers in the intermediate stages of manufacturing OE devices.
  • the stack 300 may contain all layers of the completed OE device. That is, the layers included in the stack 300 may be changed during manufacturing by adding and/or by removing layers.
  • the side 341 of the OGI layer 340 and the side 331 of the OSC layer 330 may therefore be exposed, for example, by RIE, and may be adversely affected by an inappropriate solvent.
  • interlayer interfaces for example, between the substrate 310 and the OSC layer 330, between the OSC layer 330 and the OGI layer 340, and/or between the OGI layer 340 and the metal layer 150.
  • these interlayer interfaces may undergo solvent penetration, thereby providing another attack vehicle by an inappropriate solvent.
  • Other surfaces of OGI layer 340 and/or OSC layer 330 may be additionally and/or alternatively exposed.
  • the passivation layer 360 is provided on the exposed surfaces of the stack 300 and the substrate 310, for example, by coating with the formulation according to the exemplary embodiment of the present application.
  • the formulation contains a passivating material and a solvent, where the solvent contains lactate and/or derivatives thereof.
  • the passivation material contains a crosslinkable composition, such as bisphenol A novolac epoxy resin, and the solvent contains ethyl lactate.
  • the passivation material is dissolved in the solvent.
  • the single passivation layer 360 provides the robustness required to provide environmental, chemical, and/or physical protection for the manufactured OE device, similar to the second passivation layer 190 that also requires the first passivation layer 180 as described above. In this way, OE device manufacturing complexity and/or cost can be reduced. In addition, hygroscopic water-soluble polymers such as PVA are avoided, thereby improving the long-term stability of the OE device manufactured according to the exemplary embodiment of the present application.
  • the passivation material is cross-linked by UV.
  • the passivation layer 360 generally has a thickness between 300 nm and 2000 nm.
  • a positive photoresist mask 361 (mask 3) is provided on the passivation layer 360, similar to that previously described with reference to FIGS. 1A and 1B at S105.
  • a first hole or through hole is formed through the passivation layer 360 to the patterned metal layer 350, through the positive photoresist mask 361 by RIE, thereby exposing at least a portion of the surface of the metal layer 350, similar As previously described at S106 with reference to FIGS. 1A and 1B.
  • the residual photoresist mask 381 is removed similar to that previously described at S107 with reference to FIGS. 1A and 1B.
  • OE device manufacturing complexity and/or cost can be reduced.
  • hygroscopic water-soluble polymers such as PVA are avoided, thereby improving the long-term stability of the OE device manufactured according to the exemplary embodiment of the present application.
  • the formulation used contains "green" solvents, thereby improving the environmental conditions of the formulation.
  • a metal gate interconnection is provided to the patterned metal layer 350 through the first hole 370.
  • an OE device with a single passivation layer 360 can be provided.
  • FIG. 4 schematically shows another method of manufacturing an OE device according to embodiments of aspects of the present application.
  • this manufacturing method can actually be realized by photolithography.
  • the formulation according to the exemplary embodiment of the present application is used, thereby eliminating at least one step of the prior art method. In this way, OE device manufacturing complexity and/or cost can be reduced. In addition, hygroscopic water-soluble polymers such as PVA are avoided, thereby improving the long-term stability of OE devices manufactured according to exemplary embodiments of the present application.
  • the substrate 410 may include, for example, glass, metal, polymer, or IC.
  • the substrate 410 may include an optional buffer layer provided on the surface of the substrate 410.
  • the buffer layer can also be referred to as a planarization layer, which is provided by a cross-linkable polymer, can improve surface uniformity and/or uniformity by smoothing defects in the substrate surface, and can provide chemical inertness on which OE devices are fabricated surface.
  • the OSC layer 430 is first provided on the exposed surface of the substrate 410, for example, by spin coating or printing.
  • the OSC layer 430 generally has a thickness of 30 nm.
  • the OGI layer 440 is then provided on the OSC layer 430, for example, by spin coating or printing.
  • the OGI layer 440 generally has a thickness of 300 nm.
  • the stack 400 including the OGI layer 440 and the OSC layer 430 is provided on the substrate 410.
  • the stack 400 generally describes a multi-layer structure, and therefore may contain more or fewer and/or different layers.
  • the stack 400 may include those layers in the intermediate stages of manufacturing OE devices.
  • the stack 400 may contain all layers of the completed OE device. That is, the layers included in the stack 400 may be changed by adding and/or by removing layers during manufacturing.
  • the side 441 of the OGI layer 440 and the side 431 of the OSC layer 430 may therefore be exposed, for example by RIE, and may be adversely affected by an inappropriate solvent. Furthermore, it is also possible to expose the interlayer interface, for example between the substrate 410 and the OSC layer 430 and/or between the OSC layer 430 and the OGI layer 440. As mentioned earlier, these interlayer interfaces may undergo solvent penetration, thereby providing another attack vehicle by an inappropriate solvent. Other surfaces of OGI layer 440 and/or OSC layer 430 may additionally and/or alternatively be exposed.
  • a passivation layer 460 is provided on the exposed surfaces of the stack 400 and the substrate 410, for example, by coating with the formulation according to the exemplary embodiment of the present application.
  • the passivation layer 460 may be provided as described previously with reference to S304.
  • the formulation contains a passivating material and a solvent, where the solvent contains lactate and/or derivatives thereof.
  • a single passivation layer 460 provides the robustness required to provide environmental, chemical, and/or physical protection for the fabricated OE device, similar to the second passivation layer 190 that also requires the first passivation layer 180, as described above. In this way, OE device manufacturing complexity and/or cost can be reduced. In addition, hygroscopic water-soluble polymers such as PVA are avoided, thereby improving the long-term stability of the OE device manufactured according to the exemplary embodiment of the present application.
  • an OE device having a single passivation layer 460 can be provided.
  • FIG. 5A to 5F show a series of different source and drain structures of an organic thin film transistor (OTFT).
  • FIG. 5A shows the design of the Corbino structure, in which the drain electrode 502 is surrounded by the source electrode 501 with the OTFT channel 503 in between.
  • OTI organic dielectric layer
  • OSC organic semiconductor layer
  • this special OTFT design does not expose a part of the channel to the passivation layer solvent and is therefore less sensitive to the type of passivation layer solvent .
  • the overall size of the smallest achievable OTFT is limited.
  • 5B to 5F are all designs of the linear OTFT having the source electrode 501, the drain electrode 502, and the channel 503.
  • the gate metal 504 is shown. It can be seen that when the gate metal is used to pattern the organic dielectric layer (OGI) and the organic semiconductor layer (OSC), the presence of the blunt at the end of the finger pattern of each OTFT channel in the interdigitated device The area where the coating layer solvent directly contacts. This area is labeled 505 as one of the finger patterns of the OTFT channel. In this particular design, a total of 12 regions mark the finger ends of the OTFT channel.
  • OTI organic dielectric layer
  • OSC organic semiconductor layer
  • Example 1 relates to the manufacture of OTFT devices, including the passivation formulation of SU-8 polymer in ethyl lactate solvent.
  • a 10 cm ⁇ 10 cm glass substrate (Corning Eagle XG) was treated with ultrasound in Deconex (3% w/w in water) for 20 minutes, followed by rinsing in ultrapure water for cleaning and drying with compressed air.
  • the substrate was baked in a convection oven at 70°C for 30 minutes.
  • the substrate was then spin-coated with a thermally crosslinkable polymer (P11) (from NeuDrive Ltd, available to the public) as a buffer layer (also called a sublayer). After spin coating, the substrate was first placed on a 95°C hot plate for 2 minutes for soft baking, and then baked at 150°C for 60 minutes. The final thickness of the P11 layer was measured to be 1 micrometer.
  • P11 thermally crosslinkable polymer
  • the substrate was sputter-coated with 50 nm of Au, and then the source and drain were prepared using a combination of photolithography and wet etching techniques (etchant composition: potassium iodide and iodine in water).
  • Etchant composition potassium iodide and iodine in water.
  • the linear interdigitated design is used for the source and drain electrodes and has different transistor channel widths and lengths.
  • the substrate was inspected under an optical microscope and the channel length characteristics (channel) were measured in several areas of the substrate lengthfeature).
  • the substrate Prior to the manufacture of organic thin film transistors (OTFTs), the substrate was processed in a Plasma Etch Inc. PE100 surface treatment system using Ar/O 2 plasma. Each gas was supplied at a concentration of 50 sccm and an RF power of 250 W for 65 s.
  • TM-TES 1,4,8,11-tetramethylbistriethylsilylacetylene pentacene
  • PTAA 4-isopropylcyanopolytriarylamine
  • binder 2,4-dimethylpolytriarylamine copolymer
  • the OSC formulation was applied to the SD electrode by spin coating at 1250 rpm for 60 seconds using a Suss RC12 spin coater set at 1250 rpm for 1 minute, and then baked on a hot plate at 100° C. for 60 seconds.
  • OPI organic dielectric layer
  • the substrate was then coated with 50 nm Au by thermal evaporation, and the gate was patterned by a combination of photolithography and wet etching as previously described. Thereafter, the photoresist on Au is removed by UV flash exposure and development.
  • a passivation layer formulation which contains 2.5 g of EPON-SU-8 base polymer (ie, a passivation material including a crosslinkable composition, wherein the crosslinkable composition includes polymerization of epoxy groups Precursor) and 17 g of ethyl lactate.
  • the passivation layer also contains 0.5 g of triarylsulfonium hexafluoroantimonate solution (by mass and 50% solution in propylene carbonate) as a crosslinking agent. That is, the solvent of the passivation preparation contains 17 g of ethyl lactate and 0.25 g of propylene carbonate as a co-solvent.
  • the formulation of SU-8 and photoinitiator in ethyl lactate was spin-coated at 500 rpm for 10 seconds, then at 1250 rpm for 30 seconds, and then baked at 95°C for 2 minutes on a hot plate to form a dry film.
  • the film layer was then exposed to UV (broadband g, h, I line, exposure 1000 mJ) using a Tamarak mask alignment exposure machine to expose the film to UV light. It was then baked at 115°C for 5 minutes.
  • a 1.8 micron Shipley S1805 photoresist was spin coated onto the surface and baked at 115°C for 1 minute.
  • SU8 formulation which contains 2.5g EPON-SU-8 base polymer (that is, a passivation material containing a cross-linkable composition, wherein the cross-linkable composition contains a polymeric precursor containing an epoxy group) and 15.3g Cyrene And 1.7g hexanol.
  • the passivation formula also contains 0.5 g of triarylsulfonium hexafluoroantimonate solution (by mass and 50% solution in propylene carbonate) as a crosslinking agent.
  • OTFT was tested with Wentworth Pegasus 300S semi-automatic probe station together with Keithley S4200 semiconductor parameter analyzer. This allows a statistically significant number of OTFT device measurements to be performed on each substrate.
  • the Keithley system calculates the linear mobility according to the equation shown below:
  • L is the transistor length
  • W is the transistor width
  • I DS is the drain-to-source current
  • C i is the dielectric capacitance per unit area.
  • V DS drain-source voltage
  • V GS gate voltage
  • the reported mobility value is the average of the 5 highest points accumulated per transistor.
  • the data of the channel length shown below is reported and shown as the average value of the measured devices.
  • the ratio of gate current to source-drain current is set to the highest V GS value.
  • the turn-on voltage (V to ) of the transistor is defined as the gate voltage point where the derivative of the drain current with respect to the logarithm of the gate voltage is the largest. It represents the point at which the device begins to switch from the off state to the on state.
  • the sub-threshold swing S is defined as the value of the gate voltage required to change the drain current by an order of magnitude.
  • the electrical test results of the OTFT prepared using ethyl lactate as the solvent for the passivation layer of SU8 are shown in the table below.
  • Four sets of transistors of the same design were fabricated on a 4" square substrate and tested. The transistors used a linear cross-channel design.
  • results show that the use of ethyl lactate as the solvent for the passivation layer of SU8 can produce a high-performance linear source-drain OTFT with low on-voltage.
  • 6A and 6B respectively show the transfer characteristics and mobility curves of the fourth group of devices from the substrate (the results of 11 devices are plotted on each graph).
  • the thickness of the organic dielectric layer (OGI) is 300 nm
  • the etching time of the organic dielectric layer (OGI) and organic semiconductor layer (OSC) is 60 s.
  • the present application provides a recipe for preparing a passivation layer and/or a light patterned layer for manufacturing an organic electronic device, the layer may be directly prepared on, for example, an organic layer, such as an organic dielectric layer (OGI ) And an organic semiconductor layer (OSC) and/or a stack including one or more of these layers without adversely affecting the organic layer.
  • the formulation contains a solvent of lactate and/or its derivatives.
  • the present application provides a method for manufacturing an organic electronic device using this formula, which can reduce device complexity and cost.
  • the present application provides an organic electronic device including a passivation layer and/or a light patterned layer prepared from this formulation, which has better long-term stability.
  • a square pad and frame corresponding to a square hole may be modified to a round pad and frame to correspond to a round hole.
  • the gap may be provided inside the hole instead of outside and near the hole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

描述了用于在包含有机层的有机电子(OE)器件上沉积钝化层的可流动制剂;所述有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层;所述制剂包含钝化材料和溶剂;所述溶剂包括乳酸酯和/或其衍生物。还描述了制造OE器件的方法和OE器件。

Description

制剂和层 技术领域
本申请涉及但不限于用于提供层例如钝化层和/或光图案化层、用于制造有机电子器件的制剂、使用这种制剂制造有机电子器件的方法以及包括由这类制剂提供的层的有机电子器件。
背景技术
有机电子(OE)器件包括例如用于显示器件的背板或逻辑电路中的有机场效应晶体管(OFET)和有机光伏(OPV)器件。常规的顶栅OFET包含源极和漏极、由有机半导体(OSC)材料制成的半导体层、由介电材料(也称为电介质或栅极电介质)例如有机栅极绝缘体(OGI)制成的栅极绝缘体层、栅极电极、以及通常在OGI层顶部上的钝化层,以保护OSC层和OGI层免受环境影响和/或来自后续器件制造步骤的损坏。类似地,常规的底栅OFET包含栅极电极、由介电材料例如有机栅极绝缘体(OGI)制成的栅极绝缘体层、源极和漏极、由有机半导体(OSC)材料制成的半导体层、以及通常在OSC层顶部的钝化层,以保护OSC层和OGI层免受环境影响和/或来自后续器件制造步骤的损坏。例如,在顶栅OFET和底栅OFET中,钝化层也可以用作层间电介质,使得金属迹线可以在这些OE器件的不同层上的电路中布线而不短路。
这些OE器件的常规制造技术基于例如包括热蒸发、化学或物理气相沉积、溶液涂覆或印刷和光刻的工艺。溶液可加工钝化层是优选的,对于OFET来说尤其如此。溶液可加工钝化材料(SPPM)允许在制造期间使用基于溶液的沉积方法,例如旋涂或更大面积的印刷方法,包括柔印、凹版印刷和狭缝式模具涂覆(slot-die coating)。钝化材料粘附到下层可能是对这种基于溶液的钝化材料的主要常规要求。此外,也需要在基于溶液的钝化材料中使用的溶剂的正交性,特别是与有机层例如OSC层和/或OGI层的正交性。通常,溶剂的正交性可以理解为化学正交性。例如,正交溶剂是这样一种溶剂,当用于在先前提供的层上提供溶解和/或分散在其中的材料层时,该溶剂不会对先前提供的层产生不利影响。因此,正交溶剂可以被认为是合适的(也称为相容的) 溶剂,因为它们不会不利地影响有机层例如OSC层和/或OGI层。相反,非正交(也称为不合适或不相容)溶剂可能溶解、损坏、破坏或影响先前提供的层的长期稳定性。然而,尽管正交溶剂可以与有机层例如OSC层和/或OGI层相容,但是钝化材料在其中的溶解和/或分散可能是有问题的。
图1A和图1B示意性地示出了使用常规的溶液可加工钝化材料制造OE器件特别是顶栅OFET的方法。通常,如本领域技术人员所知,这种制造方法实际上可以通过光刻处理来实现。
在S101,提供衬底110。衬底110可以包括例如玻璃、金属、聚合物或集成电路(IC)。衬底110可以包括设置在衬底110的表面上的可选缓冲层。缓冲层也可称为平坦化层,其由可交联聚合物提供,该可交联聚合物可通过平滑衬底表面中的缺陷来改善表面均匀性和/或均一性,并可提供在其上制造OE器件的化学惰性表面。
在S102,例如通过溅射和光刻(使用掩模1)在衬底110的表面上提供源极和漏极120。源极和漏极120通常是金属,例如银或金或其合金,或者非金属。源极和漏极120可以用硫醇溶液处理,以调节源极和漏极120的功函数,如本领域已知的。以这种方式,可以改进将电荷注入到重叠的OSC层中。过量的硫醇溶液可以被洗掉,且硫醇仅结合到源极和漏极120。
在S103,例如通过旋涂或印刷,首先在源极和漏极120以及衬底110的暴露表面上提供OSC层130。OSC层130通常具有30nm的厚度。随后例如通过旋涂或印刷在OSC层130上提供OGI层140。OGI层140通常具有300nm的厚度。例如银或金或其合金的金属层150随后例如通过蒸发沉积在OGI层140上。光致抗蚀剂(未示出)随后被图案化(例如通过光刻)在金属层150上,并且通过湿法蚀刻去除通过图案化光致抗蚀剂暴露的金属层150的部分。图案化金属层150提供栅极,例如薄膜晶体管(TFT)栅极。图案化金属层150还提供抗反应离子蚀刻(RIE)(也称为干蚀刻,例如使用O 2和/或Ar)的硬掩模(掩模2),从而掩蔽下面的OGI层140、OSC层130以及源极和漏极120。随后,RIE去除OGI层140和OSC层130的未被图案化金属层150掩蔽的部分。以这种方式,在衬底110上提供了包括图案化金属层150、OGI层140、OSC层130以及源极和漏极120的叠层100。应当理解,叠层100通常描述 多层结构,并因此可以包含更多的或更少的和/或不同的层。例如,叠层100可以包括处于OE器件制造的中间阶段的这些层。例如,叠层100可以包括完成的OE器件的所有层。也就是说,通过添加和/或通过去除各层,包括在叠层100中的各层可以在制造期间改变。OGI层140的侧面141和OSC层130的侧面131可能因此被暴露,例如通过RIE,并且可能受到不合适的溶剂的不利影响。此外,也可能暴露层间界面,例如在衬底110和OSC层130之间、OSC层130和OGI层140之间和/或OGI层140和金属层150之间。可能另外地和/或替代地暴露OGI层140和/或OSC层130的其他表面。
在S104,例如通过用包含水溶性聚合物制剂例如聚乙烯醇(PVA)和重铬酸铵(ADC)的水溶液的第一制剂涂覆并随后UV交联水溶性聚合物(即PVA+ADC),在叠层100和衬底110的暴露的表面上提供常规的第一钝化层180。第一钝化层180通常具有100nm的厚度。水通常被认为是正交溶剂,至少与OGI层140和/或OSC层130充分相容的。然而,使用交联的PVA提供的第一钝化层180可能不适合后续制造步骤和/或可能不适合为所制造的OE器件提供环境、化学和/或物理保护。因此,如下所述,另外需要第二钝化层190。
在S105,在第一钝化层180上提供正光致抗蚀剂掩模181(掩模3)。
在S106,通过RIE通过正光致抗蚀剂掩模181形成穿过第一钝化层180到图案化金属层150的第一孔185(也称为通孔),从而暴露金属层150的至少一部分表面。
在S107,去除残留的光致抗蚀剂掩模181。
在S108,将第二钝化层190设置在第一钝化层180和叠层的暴露部分上,例如通过穿过第一钝化层180形成的孔暴露的图案化金属层150。例如,通过用第二制剂例如另一种可交联聚合物(例如从MicroChem Corp.,Westborough,MA(USA)获得的SU-8)的溶液涂覆,并交联该聚合物来提供第二钝化层190。SU-8包含溶解在有机溶剂如环戊酮、γ-丁内酯(GBL)或丙二醇单乙醚乙酸酯(PGMEA)中的双酚A酚醛环氧树脂。SU-8还可以包括至多10wt%的光产酸剂,例如混合的三芳基锍六氟锑酸盐。第二钝化层190通常具有300nm的厚度,并且可以为OE器件提供主钝化层。包含交联的聚合 物的第二钝化层190因此覆盖包含交联的PVA的第一钝化层180。第二钝化层190提供了为所制造的OE器件提供环境、化学和/或物理保护所需的鲁棒性。
在第二制剂中使用的有机溶剂通常是非正交溶剂,其与叠层100的有机层例如OGI层140和/或OSC层130是不相容的。然而,鲁棒的可交联聚合物,例如在SU-8中,可能不溶于和/或分散于正交溶剂例如在第一制剂中使用的水中,并因此必须在这些非正交溶剂例如环戊酮、GBL或PGMEA中提供鲁棒的可交联聚合物。因此,第一钝化层180用作保护层,保护叠层100的有机层例如OGI层140和/或OSC层130免受包括在第二制剂中的非正交溶剂的影响。
与穿过第一钝化层180形成的第一孔对准的第二孔195或通孔随后穿过第二钝化层190形成到图案化金属层150,从而暴露金属层150的表面的至少一部分,如在步骤S105至S107中关于第一钝化层190类似地描述的。将另一正光致抗蚀剂掩模(未示出)(掩模4)设置在第二钝化层190上,并且通过RIE形成穿过其中的孔或通孔。随后去除残留的光致抗蚀剂掩模。
在S109,例如通过溅射、掩蔽(掩模5)和蚀刻,通过第二孔向图案化金属层150提供金属栅极互连170。
以这种方式,可以提供具有包括第一钝化层180和第二钝化层190的双钝化层的OE器件。
然而,提供包括第一钝化层180和第二钝化层190的这种双钝化层增加了OE器件制造复杂性和/或成本。此外,水溶性聚合物例如PVA是吸湿性的,并且第一钝化层180中的水例如吸收的水分可能不利于OE器件的长期稳定性。此外,根据OE器件的这种常规制造方法,需要五个掩模(掩模1到掩模5)。
因此,需要提供改进OE器件的制造,例如,关于钝化层和/或光图案化层的提供。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制本申请的保护范围。
本申请提供可以例如直接提供在有机层例如OSC层和/或OGI层和/或包括这些层中的一个或更多个的叠层上、用于提供钝化层和/或光图案化层用于制造有机电子器件的制剂,以及其他。本申请还提供使用这类制剂、具有降低的复杂性和/或成本的制造有机电子器件的方法。本申请也提供包括由这类制剂提供的层的有机电子器件,所述有机电子器件具有改进的长期稳定性。
本申请的第一方面提供用于在包含有机层的有机电子(OE)器件上沉积钝化层的可流动制剂,其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,其中制剂包含钝化材料和溶剂;
其中溶剂包括乳酸酯和/或其衍生物。
本申请的第二方面提供了制造包括有机层的有机电子(OE)器件的方法,其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,其中该方法包括:通过在有机层的至少一部分上沉积根据第一方面的制剂并去除溶剂,在有机层的至少一部分上提供钝化层。
本申请的第三方面提供了有机电子(OE)器件,所述有机电子器件包括有机层和直接在有机层上的钝化层,其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,并且其中钝化层包括由第一方面提供的可交联组合物的交联的产物。
本申请的第四方面提供了包括根据第二方面制造的有机电子(OE)器件和/或根据第三方面的OE器件的产品。
本申请的第五方面提供了包含光图案化材料和溶剂的可流动制剂;
其中溶剂包括乳酸酯和/或其衍生物。
本申请的第六方面提供了包括乳酸酯和/或其衍生物的溶剂在制造包含有机层的有机电子(OE)器件的方法中的用途,其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得更加清楚,或者通过实施本申请而了解。本申请的目的和其他优 点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图概述
为了更好地理解本申请,并且为了示出本申请的示例性实施方案可以如何被付诸实践,将仅以实施例的方式参照附图,附图中:
图1A和图1B示意性地示出了使用常规的可溶液加工钝化材料制造OE器件的方法;
图2A-图2C示意性地描绘了乳酸酯溶剂和其他溶剂的2D汉森溶解度参数图;
图3A和图3B示意性地示出了根据本申请各方面的实施方案的制造OE器件的方法;
图4示意性地示出了根据本申请各方面的实施方案的另一种制造OE器件的方法;
图5A到图5F显示了一系列晶体管源极-漏极设计。这些包括(图5A)Corbino结构,(图5B)C形,(图5C)W形,(图5D)线性,(图5E)源极和漏极的线性交叉设计。在(图5F)中,还示出了与源极和漏极相关的栅极金属层。如果钝化层溶剂选择的不合适,由于栅极金属边缘与OTFT中的导电沟道十分接近会使得导电沟道对溶剂的侵蚀敏感。如实施例部分中的电学结果所示,导电沟道区域不受本申请的乳酸酯溶剂的影响。
图6A和图6B分别示出了在乳酸乙酯的钝化层沉积和金属互连层沉积和图案化之后,W/L为9800/12(微米)的线性OE器件的转移特性和迁移率曲线数据。在转移曲线中可以看到高开/关比和低至0.3V/decade的亚阈值摆幅。图6C和图6D分别示出了线性OE器件的传输特性和迁移率曲线数据,其中W/L为200/12(微米),亚阈值摆幅为1V/decade。
图7A和图7B(对比)分别示出了在来自Cyrene的钝化层沉积和金属互连层沉积和图案化之后W/L为200/12(微米)线性OE器件的转移特性和迁移率曲线数据。在转移曲线中可以清楚地看到低开/关比以及高达15V/decade的亚阈值摆幅。
详述
下文中将对本申请的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
根据本申请,提供了如上所述的制剂、方法和有机电子(OE)器件。本申请的其他特征从下面的描述将是清楚的。
在整个本文中,术语“包括(comprising)”或“包括(comprises)”是指包括指定的组分,但不排除其他组分的存在。术语“基本上由......组成(consisting essentially of)”或“基本上由......组成(consists essentially of)”是指包括指定的组分但不包括其他组分,除了作为杂质存在的材料、由于用于提供组分的工艺而存在的不可避免的材料、以及为除了实现本申请的技术效果之外的目的而添加的组分。
术语“由......组成(consisting of)”或“由......组成(consists of)”是指包括指定的组分但不包括其他组分。
在适当的时候,视上下文而定,术语“包括(comprises)”或“包括(comprising)”的使用还可以被认为包括“基本上由......组成(consists essentially of)”或“基本上由......组成(consisting essentially of)”的含义,并且还可以被认为包括“由......组成(consists of)”或“由......组成(consisting of)”的含义。
在此阐述的可选的特征可以在适当的情况下单独使用或彼此组合使用,且特别是以所附权利要求中阐述的组合。在适当的情况下,如在此阐述的本申请的每个方面或示例性实施方案的可选的特征也适用于本申请的所有其他方面或示例性实施方案。换句话说,阅读本文的技术人员应该认为本申请的每个方面或示例性实施方案的可选特征在不同方面和示例性实施方案之间是可互换和可组合的。
如上所概述,SPPM的开发受到冲突的要求的挑战。
SPPM和/或制剂应该优选地与有机层例如OSC层和/或OGI层,以及OE器件结构相容(即正交)。然而,有机层可溶于有机溶剂,并因此应避免这些有机层暴露于这些溶剂。此外,层间粘合,例如在重叠的OSC层和/或OGI层之间的粘合,对于OE器件的功能是重要的。因为不同的有机层例如OSC 层和/或OGI层通常具有不同表面能,可能不溶解特定层的溶剂可能通过层间界面渗透,并从而也劣化或破坏OE器件的功能。
此外,SPPM应优选地提供例如针对在OE器件制造期间在后续制造步骤例如光刻中应用的材料和条件的环境、物理和/或化学抗性。通常,光刻包括以下可涉及底层的化学和/或物理曝光的加工步骤中的一个或更多个:通常在有机溶剂中沉积光致抗蚀剂树脂;UV曝光;通常使用碱显影光致抗蚀剂;通常使用侵蚀性酸和氧化还原反应蚀刻金属;和/或通常使用侵蚀性有机溶剂去除光致抗蚀剂。
因此,沉积的钝化材料应优选地耐受有机溶剂和/或水溶液。然而,作为冲突的要求,钝化材料的沉积通常要求钝化材料优选地可溶于和/或可分散于有机溶剂或水溶液中。因此,钝化材料可以在沉积之后被交联,例如,以满足这些冲突的要求。
沉积的钝化层应优选地显示机械柔性、良好的抗刮擦性、热稳定性、光学透明度、均匀性、无针孔、与其他层的良好粘附、相对于水和/或氧气的良好阻隔性、非吸湿性和良好的介电击穿强度中的至少一种。
制剂
本申请的第一方面提供用于在包括有机层的有机电子(OE)器件上沉积钝化层的可流动制剂,其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,其中制剂包含钝化材料和溶剂;
其中溶剂包括乳酸酯和/或其衍生物。
本申请的一个方面提供了包含钝化材料和溶剂的可流动制剂;
其中溶剂包括乳酸酯和/或其衍生物。
例如,根据本申请的第一方面的可流动制剂也可适用于在其他器件例如微机电系统(MEM)、微流体器件和/或常规的(例如,非有机薄膜晶体管(OTFT))电子器件中提供层。
根据本申请的一个方面,还提供了包含光图案化材料和溶剂的可流动制剂;
其中溶剂包括乳酸酯和/或其衍生物。
以这种方式,可以提供在包括有机层的有机电子(OE)器件上直接光图案化,其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层。以这种方式,可以避免RIE蚀刻,从而降低例如制造OE器件的成本和/或复杂性。
根据本申请的一个方面,还提供了包含可交联组合物和溶剂的可流动制剂;
其中溶剂包括乳酸酯和/或其衍生物。
通常,可提供可流动制剂用于直接旋涂和/或印刷和/或之后添加另外的溶剂。通常,如本领域技术人员已知的,例如用于旋涂的可流动制剂可具有从1厘泊到10,000厘泊或更高的范围内的动态粘度或绝对粘度。在一个实施例中,可流动制剂的动态粘度在从1厘泊到10,000厘泊、优选地1厘泊到1000厘泊、更优选地1厘泊到20厘泊的范围内。可流动制剂的动态粘度可以至少部分地取决于可流动制剂中溶剂的量,使得增加的量的溶剂可以降低动态粘度。
在本申请中,所述乳酸酯和或其衍生物包括了L-乳酸酯和或其衍生物、或者D-乳酸酯和或其衍生物、或者L-乳酸酯和或其衍生物与其D-乳酸酯和或其衍生物的混合物,优选地,为比例为1:1的L-乳酸酯和或其衍生物与其D-乳酸酯和或其衍生物的混合物(又称作外消旋混合物)。
发明人已经确定,乳酸酯和/或其衍生物可以替代在例如如上文关于第二钝化层描述的SU-8中的常规的有机溶剂例如环戊酮、GBL或PGMEA。
令人惊讶的是,发明人已经确定乳酸酯和/或其衍生物也可以是正交溶剂,不同于如上所述的常规有机溶剂例如环戊酮、GBL或PGMEA。
也就是说,发明人已经确定,乳酸酯和/或其衍生物可以被用作包含溶解和/或分散在其中的鲁棒的可交联聚合物的溶液的溶剂,并且可以例如直接在有机层例如OSC层和/或OGI层和/或包括这些层中的一个或更多个的叠层上提供这些溶液。
优选地,可以直接在OGI层上提供制剂,OGI层可以是例如叠层的一部分。可选择地,可以优选地直接在OSC层上的保护层例如含氟聚合物保护层 上提供制剂。通常,将这种保护层设置在OSC层上用于图案化,例如通过如前所述的干蚀刻。
以这种方式,与如上所述的常规双钝化层相比,仅需要单一钝化层。也就是说,由第一制剂提供的单一钝化层替换如常规提供的第一钝化层和第二钝化层。
以这种方式,由于需要更少的步骤和材料,所以可以降低OE器件制造复杂性和/或成本。此外,由于避免使用水溶性聚合物例如PVA,OE器件的长期稳定性可以得到改善。
在一个实施例中,溶剂包含以至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%,至少80%、至少85%、至少90%、至少95%、至少97.5%或至少99%的量的乳酸酯和/或其衍生物,其中乳酸酯和/或其衍生物的量是制剂中溶剂总量的重量百分比。
在一个实施例中,溶剂包含以至多25%、至多30%、至多35%、至多40%、至多45%、至多50%、至多55%、至多60%、至多65%、至多70%、至多75%、至多80%、至多85%、至多90%、至多95%、至多97.5%、至多99%或至多100%的量的乳酸酯和/或其衍生物,其中乳酸酯和/或其衍生物的量是制剂中溶剂总量的重量百分比。
在一个实施例中,溶剂包含乳酸酯和/或其一种或更多种衍生物的混合物。
在一个实施例中,溶剂包含助溶剂例如有机溶剂和/或水性溶剂。助溶剂的实例可包括环戊酮、GBL和PGMEA、碳酸丙烯酯、二甘醇、异丙醇(IPA)、2-丙醇和/或乙醇。在一个实施例中,溶剂包含以至多50%、至多45%、至多40%、至多35%、至多30%、至多25%、至多20%、至多15%、至多10%、至多5%、至多2.5%或至多1%的量的助溶剂,其中助溶剂的量是制剂中溶剂总量的重量百分比。在一个实施例中,溶剂包含以至少50%、至少45%、至少40%、至少35%、至少30%、至少25%、至少20%、至少15%、至少10%、至少5%、至少2.5%或至少1%的量的助溶剂,其中助溶剂的量是制剂中溶剂总量的重量百分比。
在一个实施例中,溶剂包含多种助溶剂。在一个实施例中,溶剂包含以 至多50%、至多45%、至多40%、至多35%、至多30%、至多25%、至多20%、至多15%、至多10%、至多5%、至多2.5%或至多1%的量的多种助溶剂,其中多种助溶剂的量是制剂中溶剂总量的重量百分比。在一个实施例中,溶剂包含以至少50%、至少45%、至少40%、至少35%、至少30%、至少25%、至少20%、至少15%、至少10%、至少5%、至少2.5%或至少1%的量的多种助溶剂,其中多种助溶剂的量是制剂中溶剂总量的重量百分比。
在一个实施例中,制剂包含以至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97.5%或至少99%的量的溶剂,其中溶剂的量是制剂的重量百分比。
在一个实施例中,制剂包含以至多25%、至多30%、至多35%、至多40%、至多45%、至多50%、至多55%、至多60%、至多65%、至多70%、至多75%、至多80%、至多85%、至多90%、至多95%、至多97.5%或至多99%的量的溶剂,其中溶剂的量是制剂的重量百分比。
在一个实施例中,制剂包含以至少20%、至少25%、至少30%、至少35%、至少40%、至少45%、至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97.5%或至少99%的量的钝化材料,其中钝化材料的量是制剂的重量百分比。
在一个实施例中,制剂包含以至多80%、至多75%、至多70%、至多65%、至多60%、至多55%、至多50%、至多45%、至多40%、至多35%、至多30%、至多25%、至多20%、至多15%、至多10%、至多5%、至多2.5%或至多1%的量的钝化材料,其中钝化材料的量是制剂的重量百分比。
汉森溶解度参数
通常,汉森溶解度参数可用于根据溶剂的分散力δ d、由任何偶极δ p产生的极性度、以及溶剂的氢键能力δ h来表征溶剂的极性。溶剂因此可以位于汉森空间中,所述汉森空间是δ d、δ p和δ h的三维(3D)表示。汉森空间中的两种溶剂越接近,它们就越有可能表现出相同的溶解性能。由溶剂表示的汉森分散力δ d可以是相似的,并因此为了更简单地表示汉森溶解度参数,δ p可以相 对于δ h绘制,以在二维(2D)图中表示不同类型的溶剂。
在一个实施例中,衍生物具有在乳酸乙酯的汉森溶解度参数的6MPa 1/2内的汉森溶解度参数。在一个实施例中,衍生物具有在乳酸乙酯的汉森溶解度参数的3MPa 1/2内的汉森溶解度参数。在一个实施例中,衍生物具有在乳酸乙酯的汉森溶解度参数的1.5MPa 1/2内的汉森溶解度参数。
表1详述了包括如上所述的乳酸乙酯和常规溶剂环戊酮、GBL和PGMEA的各种溶剂的汉森溶解度参数。
表1:如上所述的乳酸乙酯和常规溶剂环戊酮、GBL和PGMEA的汉森溶解度参数等数据编译自HSPiP软件第2版(https://www.hansen-solubility.com/)。
溶剂 δ dMPa 0.5 δ pMPa 0.5 δ hMPa 0.5
乳酸丁酯 15.8 6.1 16.4
乳酸乙酯 16.0 7.6 12.5
乳酸甲酯 17.6 8.59 12.95
2-乙基己基乳酸酯 16.0 2.15 8.27
环戊酮 17.9 11.9 5.2
GBL 18 16.6 7.4
PGMEA 15.6 5.9 9.8
NMP 18.0 12.3 7.2
环己酮 17.8 8.4 5.1
二甲基甲酰胺(DMF) 17.4 13.7 11.3
二甲基乙酰胺(DMAc或DMA) 16.8 11.5 10.2
二甲基亚砜(DMSO) 18.4 16.4 10.2
乳酸乙酯
尽管汉森溶解度参数可表明乳酸酯和/或其衍生物可替代在例如如上所 述的SU-8中的常规有机溶剂例如环戊酮、GBL或PGMEA,但汉森溶解度参数并未提供这些常规溶剂也可以是正交溶剂的指示。
令人惊讶的是,如上所述,发明人已经确定乳酸酯和/或其衍生物还可以是正交溶剂,不同于如上所述的常规有机溶剂例如环戊酮、GBL或PGMEA。也就是说,乳酸酯和/或其衍生物都可以替代例如SU-8中的常规有机溶剂例如环戊酮、GBL或PGMEA,并且可以是正交溶剂,这不同于常规有机溶剂例如环戊酮、GBL或PGMEA。
图2A、图2B和图2C示意性地描绘了乳酸酯和其他常用溶剂的2D汉森溶解度参数图,一些用于SU8钝化。
可交联组合物
在一个实施例中,钝化材料包括可交联组合物。以这种方式,钝化材料可溶于和/或分散于溶剂中用于沉积,且随后沉积后交联,钝化材料可耐有机溶剂和/或水溶液。因此,钝化材料可以满足如上所述的冲突的要求中的至少一些。
在一个实施例中,钝化材料包含以至少50%、至少55%、至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少97.5%或至少99%的量的可交联组合物,其中可交联组合物的量是钝化材料的重量百分比。
在一个实施例中,钝化材料包含以至多50%、至多55%、至多60%、至多65%、至多70%、至多75%、至多80%、至多85%、至多90%、至多95%、至多97.5%、至多99%或至多99.5%的量的可交联组合物,其中可交联组合物的量是钝化材料的重量百分比。
在一个实施例中,可交联组合物包含单体前体、低聚物前体和/或聚合物前体。包含单体前体、低聚物前体和/或聚合物前体的可交联组合物的实例包括包含例如可交联环氧基团、包含可交联环氧基团和/或可交联丙烯酸酯或(烷基)丙烯酸酯重复单元的硅氧烷-有机杂化框架的单体前体、低聚物前体和/或聚合物前体。交联引发的实例包括,例如,热引发、光化学引发、经由自由基反应、经由硫醇-烯或硫醇(烷基)丙烯酸酯反应、和/或经由热叠氮炔环加 成反应(thermal azide alkyne cycloaddition reaction)。
在一个实施例中,单体前体、低聚物前体和/或聚合物前体包含环氧基团,所述环氧基团可以是交联的。
钝化层可以通过热交联或光化学交联包含环氧基团的单体前体、低聚物前体或聚合物前体来形成。通常,钝化制剂可以被涂覆到表面且然后经历热交联或光化学交联条件。包含环氧基团的合适低聚物前体的实例是可从Hexion获得的商业产品EPON TM SU-8树脂(也称为EPIKOTE TM 157)。EPON TM树脂SU-8是具有约8个平均环氧基团官能度的聚合物固体环氧酚醛清漆树脂。
合适的单体前体、低聚物前体或聚合物前体还可包含含有环氧基团的硅氧烷-有机杂化框架。
表2详述了市售环氧硅氧烷单体前体和低聚物前体的实例,包括可从Polyset Inc(Mechanicville,NY,USA)获得的产品PC-1000、PC-1035、PC-2000、PC-2004、PC-2011、PC-2021和PC-2026。其他环氧硅氧烷单体前体和低聚物前体是已知的。
表2:可从Polyset Inc商购的环氧硅氧烷单体前体和低聚物前体。
单体产品 描述
PC-1000 双官能环氧封端的
PC-1035 双官能环氧封端的
低聚物产品 说明
PC-2000 多官能的20,000g/mol树脂
PC-2004 多官能的1.000g/mol树脂
PC-2011 芳香族-环氧共聚物
PC-2021 高EEW共聚物
PC-2026 氟烷基-环氧共聚物
在J Appl Polymer Sci 2013,39968,1到7中描述由环氧硅氧烷前体制备的 交联的材料的实例。
在一个实施例中,制剂包含交联剂、光产酸剂、硬化剂、抗氧化剂、表面活性剂和填料中的至少一种。
例如包含环氧型单体、低聚物或聚合物的可交联组合物还可以包含交联试剂和/或催化剂。所使用的化学反应提供交联的、不溶性层,可以是热驱动的或光化学驱动的。ACS Applied Materials Interfaces 2009,1,7,1585描述了包含被环氧基团取代的聚合物的薄膜前体的热驱动的交联反应的实例。在该实例中,甲基四氢邻苯二甲酸酐(MeTHPA)用作热固化剂,且N,N-二甲基苄胺(BDMA)用作促进热固化的催化剂。
对于包含例如用环氧基团官能化的前体的薄膜的光化学驱动的交联,钝化制剂可包含光产酸剂(PAG)。通常,PAG是在暴露于可见光或紫外辐射,通常为紫外辐射时产生活性酸催化剂的试剂。本领域已知许多不同类型的PAG。合适的PAG包括可从BASF(德国)商购的
Figure PCTCN2020070696-appb-000001
系列中的材料。PAG试剂本质上可以是离子的或非离子的,并且在不同的PAG中,化学结构可以被设计成在不同的UV波长下操作。PAG是可商购的,用于在I线(365nm)和g/h线(405nm、436nm)UV波长下操作,PAG在微电子制造工艺中被广泛地使用。
可交联组合物,例如包含如上所述的环氧型单体、低聚物或聚合物,还可包含硬化剂(也称为硬化试剂或硬化剂),所述硬化剂可用于调节所得的交联的钝化层的固化时间和/或机械性能。合适的硬化剂的实例包括可从Toagosei(日本)获得的ARON系列的氧杂环丁烷硬化剂。
可交联组合物,例如包含如上所述的环氧型单体、低聚物或聚合物,还可包含抗氧化剂。抗氧化剂可用于抑制可交联或交联的膜中的变色(黄化),例如由于与PAG或其化学副产物的副反应。在US 2013/225711 A1中描述了合适的抗氧化剂的实例。
在一个实施例中,单体前体、低聚物前体和/或聚合物前体包含(烷基)丙烯酸酯重复单元,例如丙烯酸酯或甲基丙烯酸酯重复单元。
包含本文统称为(烷基)丙烯酸酯的丙烯酸酯或甲基丙烯酸酯重复单元的可交联的单体、低聚物或聚合物,对于形成交联的钝化层可能是非常有用的。 多种(烷基)丙烯酸酯薄膜涂层前体例如在由Arkema(法国)生产的SARTOMER品牌下是可商购的。本领域已知(烷基)丙烯酸酯前体可以不同比例被选择和配制,以在交联的薄膜涂层中提供不同的性能。
用于生产交联的薄膜涂层例如钝化层的(烷基)丙烯酸酯前体可以是单官能的、双官能的或多官能的,并且可以任选地被另外的非(烷基)丙烯酸酯反应性官能团取代,从而允许通过可选择的化学方法进一步交联,可选择的化学方法不同于用于聚合(烷基)丙烯酸酯基团的化学方法。在WO 2013/119717 A1中描述的另外的非(烷基)丙烯酸酯反应性官能团的实例是环氧基团、或亚肉桂基。
适用于可交联组合物的可交联(烷基)丙烯酸酯前体本身本质上可以是低聚的或聚合的。这种材料的实例是SIRIUS-501,一种由Osaka Organic Chemical Industry Ltd(日本)生产的树枝状丙烯酸酯。
适用于热或光化学可交联膜例如钝化层的(烷基)丙烯酸酯前体可任选地被部分地或完全地氟化的侧链取代。包含由这些前体制备的聚合物并因此具有这样的侧链取代基的薄膜可具有有效地改变的性能,例如耐化学性、疏水性或表面能。
表3详述了一系列可从Merck KGaA(德国)的子公司Sigma Aldrich商购的氟化的(烷基)丙烯酸酯前体。其他氟化的(烷基)丙烯酸酯前体是已知的。
表3:氟化的(烷基)丙烯酸酯前体是可从Sigma Aldrich商购的。
Figure PCTCN2020070696-appb-000002
Figure PCTCN2020070696-appb-000003
合适的单体前体、低聚物前体或聚合物前体还可包含含有(烷基)丙烯酸酯基团的硅氧烷-有机杂化框架。在J Sol Gel Sci Technol 2012,61,2,321中描述了这种杂化前体的实例。
包含单体前体、低聚物前体或聚合物(烷基)丙烯酸酯前体的可交联组合物可使用自由基反应来交联。用于形成可交联膜的可交联组合物可另外地包含自由基引发剂。通常,自由基引发剂在热或光化学条件下被引发。适用于热引发或光化学引发的自由基引发剂的许多实例是本领域已知的。
表4详述了可从Merck KGaA(德国)的子公司Sigma Aldrich商购的自由基热引发剂。
表4:可从Sigma Aldrich获得的自由基热引发剂。
Sigma Aldrich产品编号 自由基热引发剂
441465 过氧化苯甲酸叔戊酯
118168 4,4-偶氮二(4-氰基戊酸)
380210 1,1'-偶氮二(环己烷甲腈)
441090 2,2’-偶氮二异丁腈(AIBN)
179981 过氧化苯甲酰
441694 2,2-双(叔丁基过氧)丁烷
388149 1,1-双(叔丁基过氧)环己烷
388092 2,5-双(叔丁基过氧)-2,5-二甲基己烷
329533 2,5-双(叔丁基过氧)-2,5-二甲基-3-己炔
441716 双(1-(叔丁基过氧)-1-甲基乙基)苯
388084 1,1-双(叔丁基过氧)-3,3,5-三甲基环己烷
416665 叔丁基过氧化氢
388076 过乙酸叔丁酯
168521 过氧化叔丁基
159042 过氧化苯甲酸叔丁酯
441473 碳酸叔丁基过氧异丙酯
247502 氢过氧化枯烯
289086 过氧化环己酮
329541 过氧化二异丙苯
290785 过氧化月桂酰
441821 2,4-戊二酮过氧化物
269336 过醋酸
216224 过硫酸钾
表5详述了可从Merck KGaA(德国)的子公司Sigma Aldrich商购的自由基光引发剂。
表5:可从Sigma Aldrich获得的自由基光引发剂。
Figure PCTCN2020070696-appb-000004
Figure PCTCN2020070696-appb-000005
Figure PCTCN2020070696-appb-000006
类似于用于环氧基团聚合的PAG,各种光化学自由基引发剂是可用的,允许光化学交联工艺在包括i线(365nm)和g/h线(405nm、436nm)的不同波长 下操作。
某些类型的商购光化学自由基引发剂被称为II型引发剂。这些光引发剂通常需要存在称为共引发剂的另一种试剂。用于II型体系的共引发剂的常用实例是醇或胺。
在一个实施例中,单体前体、低聚物前体和/或聚合物前体经由例如硫醇-烯或硫醇(烷基)丙烯酸酯反应是可交联的,如下所述。
适用于制备交联的薄膜例如钝化层的另一类型的有用化学反应是硫醇-烯反应。硫醇烯反应包括不饱和双键与带有硫醇(-SH)基团的单独前体的反应。不饱和双键可以是(烷基)丙烯酸酯,在这种情况下,该工艺可以描述为硫醇-(烷基)丙烯酸酯反应。硫醇-烯或硫醇-(烷基)丙烯酸酯反应通常是自由基反应,其可以被热引发或光化学引发,如上面对于仅使用(烷基)丙烯酸酯前体的聚合工艺所述的。
如用于制备交联的薄膜涂层例如钝化层的硫醇-烯或硫醇-(烷基)丙烯酸酯反应的有用性质是反应工艺对来自大气中的氧气的抑制不太敏感,允许交联工艺在空气中而不是在惰性气体包层下进行。
适用于使用硫醇-烯或硫醇-(烷基)丙烯酸酯反应的热交联工艺或光化学交联工艺的前体本质上可以是单体、低聚物或聚合物。在Chem Mater 2013,25,4806中描述了使用硫醇-烯反应以提供交联的膜的实例,该交联的膜适合用作有机电子器件中的绝缘层。
在一个实施例中,单体前体、低聚物前体和/或聚合物前体经由热叠氮炔环加成反应是可交联的,例如如下所述。
在Shengxia Li,Wei Tang,Weimin Zhang,Xiaojun Guo和Qing Zhang,Cross-linked Polymer-Blend Gate Dielectrics through Thermal Click Chemistry,Chem.Eur.J.2015,21,17762-17768DOI:10.1002/chem.201502825中描述了经由热叠氮炔环加成反应交联的实例。
在Sheng-Xia Li,Lin-Run Feng,Xiao-Jun Guo,Qing Zhang,Application of thermal azide-alkyne cycloaddition(TAAC)reaction as a low temperature cross-linking method in polymer gate dielectrics for organic field effect  transistors,J.Mater.Chem.C,2014,DOI:10.1039/C4TC00116H中描述了经由热叠氮炔环加成反应交联的另一个实例。
在一个实施例中,可交联组合物包括聚酰亚胺。通常,聚酰亚胺是低聚物前体的实例。
聚酰亚胺是用于形成保护膜的有用材料。在Handbook of Polymer Coatings for Electronics:Chemistry,Technology and Applications(第二版)第55-65页中有用地综述了聚酰亚胺的化学和性能。已经做出努力以改善聚酰亚胺的溶解性和溶液加工性,并且溶剂可溶的聚酰亚胺是本领域已知的。
用于本申请的一类合适的聚酰亚胺是可溶性聚酰亚胺低聚物。可溶性聚酰亚胺低聚物可进一步用除了主链聚酰亚胺官能团之外的合适基团官能化,用于热交联或光化学交联反应。聚酰亚胺低聚物由于其低平均分子量而具有良好的溶剂溶解性能,并且可以方便地通过溶液加工方法被涂覆。然后根据进一步官能化的可交联基团的性质,使所得膜经历热交联或光化学交联工艺。这导致高度不溶的交联的膜。在EP 2524947 A1中描述了由聚酰亚胺低聚物生产的热交联的膜的实例。
在一个实施例中,可交联组合物包含环烯属聚合物。通常,环烯属聚合物是低聚物前体或聚合物前体的实例。
可用于有机电子器件中钝化层的另一类材料是环烯属聚合物。在沉积非交联的膜之后,带有允许进一步热交联或光化学交联的化学取代基的环烯属聚合物是本领域已知的。US 9082981和WO 2013/120581中描述了具有可交联侧基的合适环烯属聚合物的实例。
在一个实施例中,可交联组合物包含取代的聚(乙烯基苯酚)衍生物,例如如下所述。例如,聚(乙烯基苯酚)可以在酚基上被取代(例如带有任选的另外的取代基的烷基、芳基、芳烷基)。Chem Mater 2015,25,4806显示了一种可能的取代基类型(O-烯丙基)。
合适取代的聚(乙烯基苯酚)衍生物是另一类适用于可交联组合物的交联的薄膜涂层前体。
Chem Mater 2015,25,4806描述了可溶的薄膜形成组合物,其包含聚(乙烯 基苯酚)的O-烯丙基衍生物和季戊四醇四(3-巯基丙酸酯),然后使用AIBN作为自由基引发剂通过硫醇-烯反应热交联薄膜形成组合物。
WO 2013/119717描述了聚(乙烯基苯酚)的衍生物,其可在光化学条件下交联以提供不溶的膜,例如钝化层。
在一个实施例中,制剂包含表面活性剂,以改善涂层性能,例如表面润湿、流平和流动。
本申请的制剂可任选地包含表面活性剂,例如氟化的表面活性剂和/或硅氧烷溶剂,以改善涂层性能,例如表面润湿、流平和流动。制剂中表面活性剂例如含氟表面活性剂的量可以在制剂的按重量计从0%到5%的范围内,优选地在制剂的按重量计从0%到2%的范围内。表面活性剂的量可以是制剂的按重量计至少0.001%、至少0.01%或至少0.1%。
一种示例性含氟表面活性剂是可从AGC Seimi Chemical Co.,Ltd.(日本)作为SURFLON商购的。
表6详述了可从Cytonix LLC,Maryland(美国)作为FluorN商购的含氟表面活性剂。
表6:可从Cytonix获得的含氟表面活性剂。
FluorN 化学说明
561 氟化的乙二醇
562 氟化的乙二醇
659 硬脂酸全氟烷基酯
1740G 氟-丙烯酸酯共聚物
S83 氟-丙烯酸酯共聚物
20158 氟-丙烯酸酯共聚物
2900N PFPE聚乙二醇
1788 PFPE-二异氰酸酯
表7详述了可从DIC Corporation,Tokyo(日本)作为MEGAFACE商购的 含氟表面活性剂。优选的含氟表面活性剂包括MEGAFACE R-41、R-40、R-40-LM、R-43、F-556、F-557、F-554、F-559、RS-72-K、F-567、F-563、F-560、F-444、F-553、F-477、F-554、F-556、F-557、F-568、F-563以及F-560。
表7:可从DIC Corporation获得的含氟表面活性剂。
Figure PCTCN2020070696-appb-000007
Figure PCTCN2020070696-appb-000008
本申请的制剂可任选地包含硅氧烷溶剂,特别是环硅氧烷溶剂。硅氧烷溶剂可被用于改变制剂的润湿性、流平性和流动性。合适的硅氧烷溶剂添加剂的实例包括八甲基环四硅氧烷(BP 175℃)、十甲基环戊硅氧烷(BP 210℃) 和十二甲基环己硅氧烷(BP 245℃)。组合物中硅氧烷溶剂的负载量将是钝化材料的按重量计0%到10%、优选地为钝化材料的按重量计0%到5%、更优选地为钝化材料的按重量计0%到2%。
制剂中硅氧烷溶剂的量可以在制剂的按重量计从0%到10%的范围、优选地在钝化材料的按重量计从0%到5%的范围、更优选地在钝化材料的按重量计从0%到2%的范围。表面活性剂的量可以是钝化材料的按重量计至少0.001%、至少0.01%或至少0.1%。
在一个实施例中,制剂包含填料,以改变交联的层的物理性能和/或电性能。
用于本申请的合适组合物还可任选地包含填料。填料可有效地改变交联的薄膜涂层的物理性能和/或电性能,例如介电常数、机械强度或介电击穿强度。合适的填料包括无机纳米颗粒,在这种情况下,所得交联的膜可以被描述为聚合物纳米复合材料。在Materials 2009,2,1697-1733;doi:10.3390/ma2041697中描述了合适的填料的实例。这些描述的填料包括无机填料,例如BaTiO 3、PMN-PT(65/35)、PbNb 2O 6、PLZT(7/60/40)、SiO 2、Al 2O 3、Ta 2O 5、TiO 2、SrTiO 3、ZrO 2、HfO 2、HfSiO 4、La 2O 3、Y 2O 3、α-LaAlO 3、CaCu 3Ti 4O 12和La 1.8Sr 0.2NiO 4。这些无机填料可以作为颗粒例如微粒和/或纳米颗粒来提供。
有机半导体(OSC)材料
有机半导体材料(OSC)层包含可被蒸发的或被溶液加工的材料的单一组分或多组分混合物。OSC层优选地是可溶液加工的,并且可以是聚合的,但是优选地包含半导体非聚合的多环化合物,例如半导体非聚合的有机多环化合物,它是OSC(也称为小分子有机半导体)。
优选地,半导体非聚合的多环化合物具有10 -1cm 2/Vs或更大、更优选地0.5cm 2/Vs或更大、甚至更优选地2cm 2/Vs或更大的载流子迁移率。优选地,半导体非聚合的多环化合物具有小于100cm 2/Vs的载流子迁移率。半导体非聚合的多环化合物电荷迁移率可以通过对滴铸膜或热蒸发的单晶膜的场效应晶体管测量来确定。
可以使用任何合适的半导体非聚合的多环化合物。这些可以是p-型或者n-型OSC材料。
合适的半导体非聚合的多环化合物的实施例包括聚并苯。在WO2012/164282中公开合适的聚并苯。例如,合适的聚并苯可以具有式(III)所示的结构式:
Figure PCTCN2020070696-appb-000009
其中R 54、R 56、R 32和R 34中的每一个为氢;R 55和R 33各自为-C≡C-SiR 35R 36R 37,其中R 35、R 36和R 37各自独立地选自C 1-C 4烷基、C 2-C 4烯基和C 3-C 6环烷基;R 50、R 51、R 52、R 53、R 57、R 29、R 30和R 31各自独立地选自氢、C 1-C 4烷基、C 1-C 6烷氧基和C 6-C 12芳氧基;或者其中每对R51和R52和/或R29和R30可以独立地交联桥接以形成C 4-C 10饱和的或不饱和的环,该饱和的或不饱和的环可以被氧原子、硫原子或式-N(R 49)-(其中R 49是氢原子、C 1-C 6烷基基团或C 1-C 10全氟烷基基团)表示的基团间隔;并且
其中k和I独立地是0或1,优选地k和I都是1,或者k和I都是0。
合适的是,在式(III)的化合物中,k和I都是1;R 55和R 33为-C≡C-SiR 35R 36R 37,其中R 35、R 36和R 37各自独立地选自乙基、正丙基、异丙基、1-丙烯基、2-丙烯基和C 3-C 6环烷基;以及R 50、R 51、R 52、R 53、R 57、R 29、R 30和R 31各自独立地选自氢、甲基、乙基和甲氧基。
合适的是,在式(III)的化合物中,k和I都是0;R 55和R 33为-C≡C-SiR 35R 36R 37,其中R 35、R 36和R 37各自独立地选自乙基、正丙基、异丙基、1-丙烯基、2-丙烯基和C 3-C 6环烷基;R 50、R 53、R 57和R 31为氢;且R 51和R 52一起以及R 29和R 30一起形成含有1个或2个氮原子、1个或2个硫原子或1个或2个氧原子的5-元杂环,其中杂环可以任选地被取代,例如被C 1-C 6 烷基和卤素取代。
特别优选的聚并苯化合物是式(IV)和(V)的那些:
Figure PCTCN2020070696-appb-000010
其中R 50、R 53、R 57和R 31各自独立地选自氢、C 1-C 6烷基和C 1-C 6烷氧基(优选地R 50、R 53、R 57和R 31各自独立地选自氢、甲基、乙基、丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基、丙氧基和丁氧基,更优选地氢、甲基、丙基和甲氧基);
R 51、R 52、R 29和R 30各自独立地选自氢、C 1-C 6烷基和C 1-C 6烷氧基,或者每对R 51和R 52和/或R 29和R 30被交联桥接以形成C 4-C 10饱和的或不饱和的环,该饱和的或不饱和的环可以被氧原子、硫原子或式-N(R 38)-(其中R 38是氢或C 1-C 10烷基)所示的基团间隔;并且其中聚并苯骨架的一个或更多个碳原子可任选被选自N、P、As、O、S、Se和Te的杂原子取代(优选地R 51、R 52、R 29和R 30各自独立地选自氢、甲基、乙基、丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基、丙氧基和丁氧基,更优选地氢、甲基、乙基、丙基和甲氧基);R 39、R 40和R 41各自独立地选自C 1-C 6烷基和C 2-C 6烯基(优选地R 39、R 40和R 41各自独立地选自甲基、乙基、丙基、异丙基、正丁基、异丁基、叔丁基、1-丙烯基和2-丙烯基,更优选地乙基、正丙基和异丙基)。
Figure PCTCN2020070696-appb-000011
其中R 39、R 40和R 41各自独立地选自C 1-C 6烷基和C 2-C 6烯基(优选地R 39、R 40和R 41各自独立地选自甲基、乙基、丙基、异丙基、正丁基、异丁基、叔丁基、1-丙烯基和2-丙烯基,更优选地乙基、正丙基和异丙基);
R 42和R 43各自独立地选自氢、卤素、氰基、任选氟化的或全氟化的C 1-C 20烷基、氟化的或全氟化的C 1-C 20烷氧基、氟化的或全氟化的C 6-C 30芳基和CO 2R 44,其中R 44是氢、氟化的或全氟化的C 1-C 20烷基、或氟化的或全氟化的C 6-C 30芳基(优选地R 42和R 43各自独立地选自氟化的或全氟化的C 1-C 8烷基、氟化的或全氟化的C 1-C 8烷氧基和C 6F 5);以及
Y 1、Y 2、Y 3和Y 4各自独立地选自-CH=、=CH-、O、S、Se或NR 45(其中R 45是氢或C 1-C 10烷基)。
在又一个优选的实施方案中,本申请的聚并苯化合物是式(VI)和(VII)的那些化合物:
Figure PCTCN2020070696-appb-000012
其中R 39、R 40和R 41各自独立地选自甲基、乙基和异丙基;
其中R 50、R 51、R 52、R 53、R 57、R 29、R 30和R 31各自独立地选自C 1-C 6烷基、C 1-C 6烷氧基和C 6-C 20芳氧基。优选地R 50、R 51、R 52、R 53、R 57、R 29、R 30和R 31各自独立地选自甲基、乙基、丙基、正丁基、异丁基、叔丁基、甲氧基、乙氧基、丙氧基和丁氧基。
聚并苯化合物可以通过本领域技术人员公知的任何已知方法来合成。在优选的实施方案中,可以采用在US 2003/01 16755 A,US 3,557,233,US 6,690,029,WO 2007/078993,WO 2008/128618和Organic Letters,2004,第6卷第10期第1609-1612页中公开的方法来合成聚并苯化合物。
优选地,聚并苯化合物具有10 -1cm 2/Vs或更大、更优选地0.5cm 2/Vs或更大、甚至更优选地2cm 2/Vs或更大的载流子迁移率。优选地,聚并苯化合物具有小于100cm 2/Vs的载流子迁移率。聚并苯电荷迁移率可以通过对滴铸膜或热蒸发的单晶膜的场效应晶体管测量来确定。
例如,合适的聚并苯是1,4,8,11-四甲基-6,13-双(三乙基甲硅烷基乙炔基)并五苯(TMTES)。
本申请中使用的可选择的半导体非聚合的多环化合物可以包括经由溶液加工或蒸发施加的以下材料:并五苯、2,7-二辛基[1]苯并噻吩并[3,2-b][1]苯并噻吩(C8-BTBT)、2,9-二癸基二萘并[2,3-b:2′,3′-f]噻吩[3,2-b]噻吩(C10-DNT)、3,11-二癸基-二萘并[2,3-d:2′,3′-d′]苯并[1,2-b:4,5-b′]二噻吩(C10-DNBDT)、8,17-双((三异丙基甲硅烷基)乙炔基)并四苯并[2,1,12-qra]并四苯(8,17-bis((triisopropylsilyl)ethynyl)tetraceno[2,1,12-qra]tetracene)(式(VIII))、8,17-双((二异丙基(辛基)甲硅烷基)乙炔基)并四苯并[2,1,12-qra]并四苯(式(IX))。
Figure PCTCN2020070696-appb-000013
Figure PCTCN2020070696-appb-000014
合适的n-型小分子可以包括萘二酰亚胺(NTCDI)或苝四甲酸二酰亚胺(PTCDA)、[6,6]-苯基-C61-丁酸酯([60]PCBM)和[6,6]-苯基-C71-丁酸甲酯([70]PCBM)。
OSC层可任选地包含聚合的粘合剂材料,以帮助成膜和均匀性。可以在WO2012160383或WO2005055248中找到合适的粘合剂材料,WO2012160383公开了与小分子半导体结合的高k(介电常数>3.4)粘合剂,WO2005055248公开了与小分子半导体结合的低k粘合剂(1.1<k<3.3)。
有机栅极绝缘体(OGI)材料
合适的OGI材料是可被交联以使得它们是耐溶剂的聚合物,或者基于不溶于乳酸酯和/或其衍生物的聚合物。优选的聚合物的实例包括具有按重量计大于30%的氟并且可溶于氟化的或全氟化的溶剂的聚合物。优选的可溶性无定形含氟聚合物的实例包括Cytop(Asahi)、Teflon AF(DuPont)、Hyflon AD(Solvay)、Fluoropel(Cytonix)。氟化的OGI层的合适溶剂包括Fluorinert(商品名)FC43或氢氟醚Novec(3M)HFE7500或HFE7700。
OGI材料可以通过化学气相沉积例如聚对二甲苯或热蒸发来气相沉积,但是特别优选的是通过溶液加工来沉积OGI。
在一个实施例中,钝化层提供层间电介质,其被布置成将OE器件上的金属层例如金属栅电极与源极和/或漏极隔离例如电隔离。
乳酸乙酯
为了避免疑问,下面的发明陈述明确地叙述了乳酸乙酯,如上面详细描述的。制剂、溶剂和/或钝化材料连同OE器件和有机层可以是如上关于该第一方面所述的。
在一个实施例中,溶剂包括乳酸酯和/或其衍生物。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且钝化材料包含可交联组合物。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且可交联组合物包含单体前体、低聚物前体和/或聚合物前体。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且单体前体、低聚物前体和/或聚合物前体包含环氧基团。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且单体前体、低聚物前体和/或聚合物前体包含丙烯酸酯或甲基丙烯酸酯重复单元。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且单体前体、低聚物前体和/或聚合物前体经由硫醇-烯或巯基(烷基)丙烯酸酯反应是可交联的。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且单体前体、低聚物前体和/或聚合物前体经由热叠氮炔环加成反应是可交联的。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且可交联组合物包含聚酰亚胺。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且可交联组合物包含环烯属聚合物。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且可交联组合物包含取代的聚(乙烯基苯酚)衍生物。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物,且制剂包含交联剂、光产酸剂、硬化剂、抗氧化剂、表面活性剂和填料中的至少一种。
在一个实施例中,溶剂包含乳酸酯和/或其衍生物和助溶剂。
本申请的第二方面提供了制造包含有机层的有机电子(OE)器件的方法, 其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,其中该方法包括:
通过沉积根据第一方面的制剂并去除溶剂,例如至少一部分溶剂、基本上所有溶剂和/或所有溶剂,在有机层的至少一部分上提供钝化层。
在一个实施例中,该方法包括提供衬底。衬底可以包含例如玻璃、金属、聚合物或IC。衬底可以包含设置在衬底表面上的可选的缓冲层(也称为亚层)。缓冲层也可称为极化层,由可交联聚合物提供,所述可交联聚合物可通过平滑衬底表面中的缺陷来改善表面均匀性和/或均一性,并可提供在其上制造OE器件的化学惰性表面。缓冲层可以包含例如SU-8、交联的丙烯酸酯聚合物或多环烯属聚合物。可选择地,衬底可以包含例如聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN),可以在没有缓冲层的情况下加工所述衬底。
在一个实施例中,该方法包括例如通过溅射和光刻在衬底表面上提供源极和/或漏极。源极和漏极通常是金属,例如银或金或其合金,或者非金属。源电极和漏电极可以相对于彼此以各种潜在的几何形状构建。一种构建方式是Corbino结构,其中源电极围绕漏电极,另一种是C形或W形。或者,电极可以是线性的。可能的布置的示例在图5A到图5F中示出。在一个示例中,电极以非Corbino布置来布置,因为这在诸如显示面板像素的小区域中更节省空间。由于在诸如显示面板像素的电子电路中电极的更紧凑的布置,非corbino电极是优选的。源极和漏极可以用硫醇溶液处理,以调节源极和漏极的功函数。以这种方式,可以改进将电荷注入到重叠的OSC层中。过量的硫醇溶液可以被洗掉,且硫醇仅结合到源极和漏极。
在一个实施例中,该方法包括例如通过旋涂或印刷在源极和漏极以及衬底的暴露表面上提供OSC层。OSC层通常具有30nm的厚度。在一个实施例中,该方法包括例如通过旋涂或印刷在OSC层上提供OGI层。OGI层通常具有300nm的厚度。金属层,例如银或金或其合金,可以随后例如通过蒸发被沉积在OGI层上。光致抗蚀剂随后可以在金属层上被图案化(例如通过光刻),并且可以通过湿法蚀刻去除穿过图案化的光致抗蚀剂暴露的部分金属层。图案化的金属层可提供栅极,例如薄膜晶体管(TFT)栅极。栅极几何形状根据 源极和漏极的几何形状来定义,栅极尺寸宽度与晶体管沟道的宽度相同,栅极长度与晶体管沟道长度相同,同时均加上沟道每端的重叠值。重叠的范围为0至50微米,优选为0至10微米,更优选为0至2微米,最优选为0至0.5微米。图案化的金属层可以提供抗反应性离子蚀刻(RIE)(也称为干法蚀刻,例如使用O 2和/或Ar)的硬掩模,从而掩蔽下面的OGI层、OSC层以及源极和漏极。随后,RIE可去除OGI层和OSC层的未被图案化的金属层掩蔽的部分。以这种方式,可以在衬底上提供包含图案化的金属层、OGI层、OSC层以及源极和漏极的叠层。应当理解,叠层通常描述多层结构,并因此可以包含更多的或更少的和/或不同的层。例如,叠层可以包含在制造OE器件的中间阶段的这些层。例如,叠层可以包含完成的OE器件的所有层。也就是说,包括在叠层中的各层可以在制造期间通过添加和/或通过去除层而改变。因此,OGI层的侧面和OSC层的侧面可能例如通过RIE被暴露,并且可以受到不合适溶剂的不利影响。此外,也可能暴露层间界面,例如在衬底和OSC层之间、OSC层和OGI层之间和/或OGI层和金属层之间。如前所述,这些层间界面可能经历溶剂渗透,从而由不合适的溶剂提供另一种攻击载体。可能另外地和/或替代地暴露OGI层和/或OSC层的其他表面。
在一个实施例中,该方法包括例如通过用根据本申请的示例性实施方案的制剂涂覆,在叠层和衬底的暴露的表面上提供钝化层。
在一个实施例中,该方法包括在钝化层上提供正光致抗蚀剂掩模。
在一个实施例中,该方法包括通过穿过正光致抗蚀剂掩模的RIE形成穿过钝化层到图案化的金属层的第一孔或通孔,从而暴露金属层的至少一部分表面。
在一个实施例中,该方法包括去除残留的光致抗蚀剂掩模。
在一个实施例中,该方法包括例如通过溅射、掩蔽和蚀刻提供穿过第一孔到图案化的金属层的金属栅极互连。
本申请的第三方面提供了有机电子(OE)器件,所述有机电子(OE)器件包含有机层和直接在其上的钝化层,其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,并且其中钝化层包含根据第一方面的可交联组合物的交联的产物。
在一个实施例中,OE器件选自由有机场效应晶体管(OFET)例如底栅OFET或优选地顶栅OFET组成的组,包括有机薄膜晶体管(OTFT)、有机发光二极管(OLED)、有机光伏(OPV)器件和有机光电检测器(OPD)。
在一个实施例中,有机场效应晶体管(OFET)器件,优选地,源电极或漏电极之一不完全包围另一个,更优选地,其中栅极金属与源极和漏极重叠小于5微米。
本申请的第四方面提供了包含根据第二方面制造的有机电子(OE)器件和/或根据第三方面的OE器件的产品。
在一个实施例中,产品选自由以下组成的组:集成电路(IC)、射频识别(RFID)标签、包含RFID标签的安全标记或安全装置、平板显示器(FPD)、FPD背板、FPD背光、电子照相装置、电子照相记录装置、有机存储装置、传感器、生物传感器和生物芯片。
本申请的第五方面提供了可流动制剂,所述可流动制剂包含光图案化材料和溶剂;其中溶剂包含乳酸酯和/或其衍生物。
溶剂可以如关于第一方面所述。光图案化材料可以类似于关于第一方面描述的钝化材料。
本申请的第六方面提供了包含乳酸酯和/或其衍生物的溶剂在制造包含有机层的有机电子(OE)器件的方法中的用途,其中有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层。
溶剂可以如关于第一方面所述。制造方法可以如关于第二方面所述。
图3A和图3B示意性地示出了根据本申请各方面的实施方案的OE器件、特别是顶栅OFET的制造方法。通常,如本领域技术人员所知,这种制造方法实际上可以通过光刻加工来实现。
与上面参照图1A和图1B描述的制造方法相反,使用根据本申请的示例性实施方案的制剂,从而消除了现有技术方法的至少一个步骤。以这种方式,可以降低OE器件制造复杂性和/或成本。此外,避免了可吸湿的水溶性聚合物,例如PVA,从而提高了根据本申请的示例性实施方案制造的OE器件的长期稳定性。此外,所使用的制剂包含“绿色”溶剂,从而改进了制剂的环境 状况。
在S301,如先前参考S101所述,提供了衬底310。衬底310可以包含例如玻璃、金属、聚合物或IC。衬底310可以包含设置在衬底310的表面上的可选的缓冲层(也称为亚层)。缓冲层也可称为平坦化层,其由可交联聚合物提供,可通过平滑衬底表面中的缺陷来改善表面均匀性和/或均一性,并可提供其上制造OE器件的化学惰性表面。缓冲层可以包含例如交联的丙烯酸酯聚合物或多环烯烃聚合物。可选择地,衬底310可以包含例如聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN),可以在没有缓冲层的情况下加工所述衬底。
在S302,如先前参考S102所述,例如通过溅射和光刻(使用掩模1)在衬底310的表面上提供源极和漏极320。源极和漏极320通常是金属,例如银或金或其合金,或者非金属。源极和漏极320可以用硫醇溶液来处理,以调节源极和漏极320的功函数。以这种方式,可以改进将电荷注入到重叠的OSC层中。过量的硫醇溶液可以被洗掉,且硫醇仅结合到源极和漏极320。
在S303,如先前参考S103所述,首先例如通过旋涂或印刷在源极和漏极320以及衬底310的暴露表面上提供OSC层330。OSC层330通常具有30nm的厚度。随后例如通过旋涂或印刷在OSC层330上提供OGI层340。OGI层340通常具有300nm的厚度。金属层350例如银或金或其合金随后例如通过蒸发被沉积在OGI层340上。光致抗蚀剂(未示出)随后在金属层350上被图案化(例如通过光刻),并且通过湿法蚀刻去除穿过图案化的光致抗蚀剂暴露的部分金属层350。图案化的金属层350提供栅极,例如薄膜晶体管(TFT)栅极。图案化的金属层350还提供抗反应性离子蚀刻(RIE)(也称为干蚀刻,例如使用O 2和/或Ar)的硬掩模(掩模2),从而掩蔽下面的OGI层340、OSC层330以及源极和漏极320。随后,RIE去除未被图案化的金属层350掩蔽的部分OGI层340和OSC层330。以这种方式,在衬底310上提供包含图案化的金属层350、OGI层340、OSC层330以及源极和漏极320的叠层300。应当理解,叠层300通常描述多层结构,并因此可以包含更多的或更少的和/或不同的层。例如,叠层300可包含在制造OE器件的中间阶段的那些层。例如,叠层300可包含完成的OE器件的所有层。也就是说,包括在叠 层300中的各层可以在制造期间通过添加和/或通过去除层而改变。OGI层340的侧面341和OSC层330的侧面331可能因此例如通过RIE被暴露,并且可能受到不合适的溶剂的不利影响。此外,也可能暴露层间界面,例如在衬底310和OSC层330之间、OSC层330和OGI层340之间和/或OGI层340和金属层150之间。如前所述,这些层间界面可能经历溶剂渗透,从而由不合适的溶剂提供另一种攻击载体。可能另外地和/或替代地暴露OGI层340和/或OSC层330的其他表面。
在S304,与先前参考S104所述的相反,钝化层360例如通过用根据本申请的示例性实施方案的制剂涂覆而被设置在叠层300和衬底310的暴露的表面上。
具体而言,该制剂包含钝化材料和溶剂,其中溶剂包含乳酸酯和/或其衍生物。在该实施例中,钝化材料包含可交联组合物,例如双酚A酚醛环氧树脂,并且溶剂包含乳酸乙酯。在该实施例中,将钝化材料溶解在溶剂中。
根据本申请的示例性实施方案,与上面参照图1A和图1B描述的其中由于上述原因需要第一钝化层180和第二钝化层190的常规制造方法相反,仅需要单个钝化层360。单个钝化层360提供了为制造的OE器件提供环境、化学和/或物理保护所需的鲁棒性,类似于上述也需要第一钝化层180的第二钝化层190。以这种方式,可以降低OE器件制造复杂性和/或成本。此外,避免了可吸湿的水溶性聚合物,例如PVA,从而提高了根据本申请的示例性实施方案制造的OE器件的长期稳定性。
在此实施例中,钝化材料通过UV而交联。钝化层360通常具有在300nm和2000nm之间的厚度。
在S305,在钝化层360上提供正光致抗蚀剂掩模361(掩模3),类似于先前参考图1A和图1B在S105所描述的。
在S306,形成穿过钝化层360到图案化的金属层350的第一孔或通孔,通过RIE穿过正光致抗蚀剂掩模361,从而暴露金属层350的表面的至少一部分,类似于先前参考图1A和图1B在S106所描述的。
在S307,类似于先前参考图1A和图1B在S107描述的,去除了残留的光致抗蚀剂掩模381。
因为可以仅需要单个钝化层360,所以不需要提供第二钝化层,例如先前参考图1A和图1B在S108所描述的。以这种方式,可以降低OE器件制造复杂性和/或成本。此外,避免了可吸湿的水溶性聚合物,例如PVA,从而提高了根据本申请的示例性实施方案制造的OE器件的长期稳定性。另外,使用的制剂包含“绿色”溶剂,从而改善制剂的环境状况。
在S309,例如,通过溅射、掩蔽(掩模4)和蚀刻,类似于先前参考图1A和图1B在S107所描述的,通过第一孔向图案化的金属层350提供金属栅极互连370。
以这种方式,可以提供具有单个钝化层360的OE器件。
因此,与参考图1A和图1B描述的常规工艺相反,可以仅需要单个钝化层360。此外,避免了水溶性聚合物。另外,使用的制剂包含“绿色”溶剂。另外,根据OE器件的该制造方法,只需要四个掩模(掩模1到掩模4),不同于需要五个掩模的常规工艺。
图4示意性地示出了根据本申请各方面的实施方案的另一OE器件的制造方法。通常,如本领域技术人员所知,这种制造方法实际上可以通过光刻加工来实现。
与上面参考图1A和图1B描述的制造方法相反,使用了根据本申请的示例性实施方案的制剂,从而消除了现有技术方法的至少一个步骤。以这种方式,可以降低OE器件制造复杂性和/或成本。此外,避免了可吸湿的水溶性聚合物,例如PVA,从而提高了根据本申请示例性实施例制造的OE器件的长期稳定性。
在S401,如先前参考S101所述,提供衬底410。衬底410可以包含例如玻璃、金属、聚合物或IC。衬底410可以包括设置在衬底410的表面上的可选的缓冲层。缓冲层也可称为平坦化层,其由可交联聚合物提供,可通过平滑衬底表面中的缺陷来改善表面均匀性和/或均一性,并可提供其上制造OE器件的化学惰性表面。
在S402,如先前参考S103所述,首先例如通过旋涂或印刷在衬底410的暴露的表面上提供OSC层430。OSC层430通常具有30nm的厚度。
在S403,例如通过旋涂或印刷,随后在OSC层430上提供OGI层440。OGI层440通常具有300nm的厚度。以这种方式,在衬底410上提供包含OGI层440和OSC层430的叠层400。应当理解,叠层400通常描述多层结构,并因此可以包含更多的或更少的和/或不同的层。例如,叠层400可包含在制造OE器件的中间阶段的那些层。例如,叠层400可包含完成的OE器件的所有层。也就是说,包括在叠层400中的各层可以在制造期间通过添加和/或通过去除层而改变。OGI层440的侧面441和OSC层430的侧面431可能因此被暴露,例如通过RIE,并且可能受到不合适的溶剂的不利影响。此外,也可能暴露层间界面,例如在衬底410和OSC层430之间和/或在OSC层430和OGI层440之间。如前所述,这些层间界面可能经历溶剂渗透,从而由不合适的溶剂提供另一种攻击载体。可能另外地和/或替代地暴露OGI层440和/或OSC层430的其他表面。
在S404,例如通过用根据本申请的示例性实施方案的制剂涂覆,在叠层400和衬底410的暴露的表面上提供钝化层460。
可如先前参考S304所描述的那样提供钝化层460。
具体而言,该制剂包含钝化材料和溶剂,其中溶剂包含乳酸酯和/或其衍生物。
根据本申请的示例性实施方案,与上面参照图1A和图1B描述的其中由于上述原因需要第一钝化层180和第二钝化层190的常规制造方法相反,仅需要单个钝化层460。单个钝化层460提供了为所制造的OE器件提供环境、化学和/或物理保护所需的鲁棒性,类似于上述也需要第一钝化层180的第二钝化层190。以这种方式,可以降低OE器件制造复杂性和/或成本。此外,避免了可吸湿的水溶性聚合物,例如PVA,从而提高了根据本申请的示例性实施方案制造的OE器件的长期稳定性。
因为可以仅需要单个钝化层460,所以不需要提供第二钝化层,例如先前参考图1A和图1B在S108所描述的。以这种方式,可以降低OE器件制造复杂性和/或成本。此外,避免了可吸湿的水溶性聚合物,例如PVA,从而提高了根据本申请示例性实施例制造的OE器件的长期稳定性。
以这种方式,可以提供具有单个钝化层460的OE器件。
图5A至图5F示出了有机薄膜晶体管(OTFT)的一系列不同的源极和漏极结构。图5A示出了Corbino结构的设计,其中漏电极502被源电极501包围,其间具有OTFT沟道503。在有机介电层(OGI)和有机半导体层(OSC)被干蚀刻之后,这种特殊的OTFT设计不会使沟道的一部分暴露于钝化层溶剂,因此对钝化层溶剂类型不那么敏感。然而,由于需要形成向下到漏电极的通孔,从而限制了可实现的最小OTFT的整体尺寸。图5B至图5F是具有源电极501,漏电极502和沟道503的线性OTFT的所有设计。在图5F中,示出了栅极金属504。可以看出,当使用栅极金属来图案化有机介电层(OGI)和有机半导体层(OSC)时,在交叉指型器件中的每个OTFT沟道指状图形的末端处存在将与钝化层溶剂直接接触的区域。该区域被标记为505为OTFT沟道指状图形之一。在该特定设计中总共有12个区域标记OTFT沟道指状末端。
实施例1
实施例1涉及OTFT器件的制造,包括SU-8聚合物在乳酸乙酯溶剂中的钝化配方。
10cm×10cm玻璃衬底(Corning Eagle XG)在Deconex(水中3%w/w)中使用超声处理持续20分钟,随后在超纯水中漂洗来清洁并使用压缩空气来干燥。将衬底在对流炉中于70℃烘烤持续30分钟。然后用作为缓冲层(也称为亚层)的可热交联聚合物(P11)(来自NeuDrive Ltd,对于公众是可用的)旋涂衬底。旋涂后,首先将衬底置于95℃的热板上持续2分钟以软烘烤,然后在150℃烘烤持续60分钟。测量P11层的最终厚度为1微米。
在制备P11亚层之后,用50nm的Au溅射涂覆衬底,然后用光刻和湿法蚀刻技术(蚀刻剂组合物:水中的碘化钾和碘)的组合制备源极和漏极。线性交叉指型设计用于源极和漏极电极,具有不同的晶体管沟道宽度和长度。在通过UV闪光曝光和旋涂显影从源极和漏极接触去除残留的光刻抗蚀剂之后,在光学显微镜下检查衬底,并在衬底的几个区域中测量沟道长度特征(channel length feature)。
在进行有机薄膜晶体管(OTFT)制造之前,使用Ar/O 2等离子体在Plasma Etch Inc.PE100表面处理系统中处理衬底。以50sccm的浓度和250W的RF 功率供应每种气体持续65s。
在旋涂有机半导体(OSC)之前,将3-氟-4-甲氧基苯硫酚在2-丙醇中的10mM溶液施加到电极表面持续1分钟,随后在2-丙醇中漂洗(2次),随后在100℃的热板上干燥持续1分钟。例如,如WO 2012/160383中实施例5所述,在1,2,3,4-四氢萘中,以按重量计1份TM-TES与2份粘合剂的比率在由9:1(重量比)1,2,3,4-四氢化萘与异丙醇组成的混合溶剂体系中配制1,4,8,11-四甲基双三乙基甲硅烷基乙炔并五苯(TM-TES)和30:70 4-异丙基氰基聚三芳胺(PTAA):2,4-二甲基聚三芳胺共聚物(粘合剂)的OSC制剂。然后,使用设定在1250rpm持续1分钟的Suss RC12旋涂器通过在1250rpm旋涂持续60秒将该OSC制剂涂布到SD电极上,然后在热板上在100℃烘烤持续60秒。对于有机介电层(OGI),在1500rpm旋涂1份Cytop 809M(Asahi Glass)和2份FC43溶剂(Acros Organics)的溶液持续20秒,并将样品在热板上在100℃烘烤持续60秒,有机介电层(OGI)的厚度为160nm。
然后通过热蒸发用50nm的Au涂覆衬底,并且如前所述通过光刻和湿法蚀刻的组合来图案化栅极。此后,通过UV闪光曝光和显影去除Au上的光致抗蚀剂。
干蚀刻以图案化OSC层
此处提供了一种钝化层制剂实例,其含有2.5g EPON-SU-8基础聚合物(即包含可交联组合物的钝化材料,其中可交联组合物包含环氧基团的聚合前体)和17g乳酸乙酯。该钝化层还含有0.5g三芳基锍六氟锑酸盐溶液(碳酸亚丙酯中按质量及50%溶液)作为交联剂。也就是说,该钝化制剂的溶剂包含17g乳酸乙酯和0.25g碳酸亚丙酯作为共溶剂。
将乳酸乙酯中的SU-8和光引发剂的配方以500rpm旋涂10秒,然后以1250rpm旋涂30秒,然后在95℃下在热板上烘烤2分钟以形成干膜。在显微镜下检查样品以确保钝化层的溶剂不影响OSC/OGI/栅极层。然后使用Tamarack掩模对位曝光机将膜层暴露于UV(宽带g,h,I线,曝光量1000mJ)以使膜暴露于UV光。然后在115℃下将其烘烤5分钟。将1.8微米Shipley S1805光阻旋涂与表面并在115℃下烘烤1分钟。将过孔掩膜版(VIA MASK, 为暗场掩模)与第一金属层对准(使用EVG6200掩模对位曝光机)以确保在下层金属图形上图案化通孔,使用84mJ的曝光量。曝光后,进行光阻显影并检查特征图形。使用Aurion RIE系统通过反应离子蚀刻(RIE)将光阻中的通孔形状转移到SU8膜中。干法刻蚀工艺压力为0.07hPa,功率730W,工艺时间260s,O 2流量100sccm,Ar流量40sccm,CF 4流量10sccm。在光学显微镜下检查过孔之后,通过泛光曝光和显影除去剩余的光刻胶。
然后用金属溅射沉积50nm的Au到上述表面,并通过光刻和湿法蚀刻将该金属层图案化,以形成通孔结构的顶部金属图形。
比较例-在Cyrene溶剂中使用SU8的钝化层
制备SU8制剂,其含有2.5g EPON-SU-8基础聚合物(即包含可交联组合物的钝化材料,其中可交联组合物包含含有环氧基团的聚合前体)和15.3g Cyrene和1.7g己醇。钝化配方还含有0.5g三芳基锍六氟锑酸盐溶液(碳酸亚丙酯中按质量及50%溶液)作为交联剂。
OTFT表征
OTFT是用Wentworth Pegasus 300S半自动探针台连同Keithley S4200半导体参数分析仪一起来测试的。这允许在每个衬底上进行统计上显著数量的OTFT器件测量。Keithley系统根据以下所示等式计算线性迁移率:
Figure PCTCN2020070696-appb-000015
其中L是晶体管长度,W是晶体管宽度,I DS是漏极到源极电流,且C i是每单位面积的介电电容。将V DS(漏源电压)设置在-2V,V GS(栅极电压)从耗尽到积累变化(+20V到-29V,以1V为步长)。报告的迁移率值为每个晶体管累积的5个最高点的平均值。报告下面显示的沟道长度的数据,并显示为测量的器件的平均值。为了排除具有栅极泄漏的器件,对于-2V的V DS,栅 极电流与源极-漏极电流的比率被设定为最高V GS值。如果该比率低于10(即栅极电流大于源漏极电流的10%),则器件被排除在结果之外。迁移率值的标准偏差报告为平均值的百分比。晶体管的开启电压(V to)被定义为漏极电流相对于栅极电压的对数的导数最大的栅极电压点。它表示器件开始从关闭状态切换到打开状态的转变点。开/关比定义为最大累积电流(V g=-29V)除以耗尽时的关断电流。亚阈值摆幅S定义为将漏极电流改变一个数量级所需的栅极电压的数值。
结果
使用乳酸乙酯作为SU8钝化层的溶剂制备的OTFT的电测试结果显示在下表中。在4“方形衬底上制作4组相同设计的晶体管,并进行测试。晶体管采用线性交叉型沟道设计。
Figure PCTCN2020070696-appb-000016
结果表明,使用乳酸乙酯作为SU8钝化层的溶剂,可以制备具有低导通电压的高性能线性源极漏极OTFT。图6A和图6B分别显示了来自该基板的第4组器件的转移特性和迁移率曲线(在每个图上绘制了11个器件的结果)。
实施例2
使用一系列具有不同沟道宽度晶体管设计,得到进一步的器件测试结果,使用乳酸乙酯作为SU8钝化层的溶剂。在这组器件中,有机介电层(OGI)厚度为300nm,有机介电层(OGI)和有机半导体层(OSC)蚀刻时间为60s。
结果如下表所示,转移特性和迁移率曲线也分别显示在图6C和图6D中。
Figure PCTCN2020070696-appb-000017
实施例3(比较实验)
获得使用含有溶剂混合物Cyrene和己醇(9:1重量比)的钝化层配方涂覆的钝化层的器件对比数据,使用与实施例2中相同的固体含量和交联配方。虽然下表中显示的迁移率和实施例2中的结果大体相当,但图7A中的转移特性曲线显示出其显著降低的性能——亚阈值斜率和低电流开/关比。
Figure PCTCN2020070696-appb-000018
总之,本申请提供了一种用于制备钝化层和/或光图案化层的配方,用于制造有机电子器件,所述层可以直接制备在例如有机层上,例如有机介电层(OGI)和有机半导体层(OSC)和/或包含一个或多个这些层的叠层上,而不会对有机层产生不利影响。该制剂包含乳酸酯和/或其衍生物的溶剂。此外,本申请提供了一种使用这种配方制造有机电子器件的方法,能够降低器件复杂性及成本。此外,本申请提供一种有机电子器件,包括由这种配方制备的 钝化层和/或光图案化层,具有更优的长期稳定性。
虽然已经示出和描述了优选的实施方案,但本领域的技术人员将理解的是,在不背离如在所附权利要求书中定义的本申请的范围的情况下,可以进行多种改变和修改。例如,对应于方形孔的方形焊盘和框架可以被修改为圆形焊盘和框架以对应于圆形孔。例如,可以将间隙设置在孔内,而不是设置在孔的外侧和附近。
把注意力指向被与本说明书同时地或在本说明书之前提交的与本申请有关的并且向对本说明书的公众查阅开放的所有的论文和文献,并且所有的这样的论文和文献的内容通过引用并入本文。
在本说明书中公开的所有特征(包括任何附随的权利要求和附图)和/或这样公开的任何方法或过程的所有步骤可以以任何组合来组合,此类特征和/或步骤中的至少某些相互排斥的组合除外。
除非另外明确陈述,否则本说明书(包括任何随附权利要求及附图)中所公开的每个特征可以被用作相同、等效或类似目的的可选择的特征所替换。因此,除非另外明确陈述,否则所公开的每个特征仅为一系列通用等效或类似特征的一个实例。
本申请不限于前述实施方案的细节。本申请扩展至在本说明书中公开特征的任何新特征或任何新组合(包括任何附随的权利要求和附图),或这样公开的任何方法或过程的步骤的任何新的步骤或任何新的组合。
本公开内容是本申请实施例的原则的示例,并非对本申请作出任何形式上或实质上的限定,或将本申请限定到具体的实施方案。对本领域的技术人员而言,很显然本申请实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上所述的本申请的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本申请的等同实施例内,这些等同实施例均包括在本申请的由权利要求界定的范围内。虽然可以许多不同形式来使本申请实施例具体化,但此处详细描述的是本申请的一些实施方案。此外,本申请的实施例包括此处所述的各种实施方案的一些或全部的任意可能的组合,也包括在本申请的由权利要求界定的范围内。在本申请中或在任一个引用的专利、引 用的专利申请或其它引用的资料中任何地方所提及的所有专利、专利申请和其它引用资料据此通过引用以其整体并入。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。
在此完成了对本申请可选择的实施方案的描述。本领域技术人员可认识到此处所述的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。

Claims (20)

  1. 一种用于在包含有机层的有机电子(OE)器件上沉积钝化层的可流动制剂,其中所述有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,其中所述制剂包含钝化材料和溶剂;
    其中所述溶剂包含乳酸酯和/或其衍生物。
  2. 根据权利要求1所述的制剂,其中所述衍生物具有在乳酸乙酯的汉森溶解度参数的6MPa 1/2内的汉森溶解度参数。
  3. 根据权利要求1所述的制剂,其中所述钝化材料包含可交联组合物。
  4. 根据权利要求3所述的制剂,其中所述可交联组合物包含单体前体、低聚物前体和/或聚合物前体。
  5. 根据权利要求4所述的制剂,其中所述单体前体、低聚物前体和/或聚合物前体包含环氧基团。
  6. 根据权利要求5所述的制剂,其中所述钝化材料包含交联剂,光产酸剂,硬化剂和抗氧化剂中的至少一种。
  7. 根据权利要求4至6中任一项所述的制剂,其中所述单体前体、低聚物前体和/或聚合物前体包含(烷基)丙烯酸酯重复单元。
  8. 根据权利要求4至6中任一项所述的制剂,其中所述单体前体、低聚物前体和/或聚合物前体经由硫醇-烯或硫醇(烷基)丙烯酸酯反应是可交联的。
  9. 根据权利要求4至6中任一项所述的制剂,其中所述单体前体、低聚物前体和/或聚合物前体经由热叠氮炔环加成反应是可交联的。
  10. 根据权利要求3至6中任一项所述的制剂,其中所述可交联组合物包含聚酰亚胺。
  11. 根据权利要求3至6中任一项所述的制剂,其中所述可交联组合物包含环烯属聚合物。
  12. 根据权利要求3至6中任一项所述的制剂,其中所述可交联组合物包含取代的聚(乙烯基苯酚)衍生物。
  13. 根据权利要求1所述的制剂,包含交联剂、光产酸剂、硬化剂、抗 氧化剂、表面活性剂和填料中的至少一种。
  14. 根据权利要求1所述的制剂,还包含助溶剂。
  15. 一种制造包含有机层的有机电子(OE)器件的方法,其中所述有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,其中所述方法包括:
    通过在所述有机层的至少一部分上沉积根据权利要求1至14中任一项所述的制剂并去除所述溶剂,在所述有机层的至少一部分上提供钝化层。
  16. 一种有机电子(OE)器件,包含有机层和直接在所述有机层上的钝化层,其中所述有机层选自有机半导体(OSC)层和有机栅极绝缘体(OGI)层,并且其中所述钝化层是由权利要求1至14中任一项所述的制剂制得的。
  17. 根据权利要求16所述的有机电子(OE)器件,其中所述的有机电子(OE)器件选自有机场效应晶体管(OFET)器件,其中源电极或漏电极之一不完全包围另一个。
  18. 根据权利要求16所述的有机电子(OE)器件,其中栅极金属与源极和漏极重叠小于5微米。
  19. 一种包括根据权利要求16至18中任一项所述的有机电子(OE)器件的产品。
  20. 一种包含光图案化材料和溶剂的可流动制剂;
    其中所述溶剂包含乳酸酯和/或其衍生物。
PCT/CN2020/070696 2019-01-07 2020-01-07 制剂和层 WO2020143624A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217025113A KR20210113309A (ko) 2019-01-07 2020-01-07 제제와 층
EP20739110.3A EP3910691A4 (en) 2019-01-07 2020-01-07 Preparation and layer
JP2021539375A JP2022517326A (ja) 2019-01-07 2020-01-07 製剤及び層
US17/420,745 US20220123241A1 (en) 2019-01-07 2020-01-07 Preparation and layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910013583.4A CN111416039A (zh) 2019-01-07 2019-01-07 制剂和层
CN201910013583.4 2019-01-07

Publications (1)

Publication Number Publication Date
WO2020143624A1 true WO2020143624A1 (zh) 2020-07-16

Family

ID=71494065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/070696 WO2020143624A1 (zh) 2019-01-07 2020-01-07 制剂和层

Country Status (6)

Country Link
US (1) US20220123241A1 (zh)
EP (1) EP3910691A4 (zh)
JP (1) JP2022517326A (zh)
KR (1) KR20210113309A (zh)
CN (1) CN111416039A (zh)
WO (1) WO2020143624A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022108710A1 (en) * 2020-10-27 2022-05-27 Applied Materials, Inc. Area-selective atomic layer deposition of passivation layers
CN115430392A (zh) * 2022-08-31 2022-12-06 江苏诺盟化工有限公司 一种苯偶酰的制备方法及专用文丘里喷射器

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557233A (en) 1968-03-14 1971-01-19 American Cyanamid Co Aromatic hydrocarbons substituted by phenylethynyl groups
US20030116755A1 (en) 2000-02-29 2003-06-26 Tamotsu Takahashi Polyacene derivatives and production thereof
US6690029B1 (en) 2001-08-24 2004-02-10 University Of Kentucky Research Foundation Substituted pentacenes and electronic devices made with substituted pentacenes
WO2005055248A2 (en) 2003-11-28 2005-06-16 Merck Patent Gmbh Organic semiconducting layer formulations comprising polyacenes and organic binder polymers
WO2007078993A1 (en) 2005-12-28 2007-07-12 3M Innovative Properties Company Bottom gate thin film transistors
WO2008124711A1 (en) * 2007-04-10 2008-10-16 Honeywell International Inc. Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
WO2008128618A1 (en) 2007-04-19 2008-10-30 Merck Patent Gmbh Process for preparing substituted pentacenes
EP2524947A1 (en) 2011-05-19 2012-11-21 Samsung Electronics Co., Ltd. Organic passivation layer composition, transistor and/or electronic device including organic passivation layer fabricated therefrom
WO2012160383A1 (en) 2011-05-26 2012-11-29 The Centre For Process Innovation Ltd Transistors and methods for making them
WO2012164282A1 (en) 2011-05-31 2012-12-06 Smartkem Limited Organic semiconductor compositions
WO2013119717A1 (en) 2012-02-07 2013-08-15 Polyera Corporation Photocurable polymeric materials and related electronic devices
WO2013120581A1 (en) 2012-02-15 2013-08-22 Merck Patent Gmbh Planarization layer for organic electronic devices
US20130225711A1 (en) 2012-02-28 2013-08-29 Korea Advanced Institute Of Science And Technology Thermally resistant optical siloxane resin composition
US8975110B2 (en) * 2010-04-26 2015-03-10 Samsung Electronics Co., Ltd. Methods of forming a passivation layer
US9082981B1 (en) 2012-01-16 2015-07-14 Polyera Corporation Curable polymeric materials and related electronic devices
CN105555822A (zh) * 2013-07-15 2016-05-04 破立纪元有限公司 可曝光成像的材料和相关的电子器件及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100555078C (zh) * 2003-06-02 2009-10-28 东丽株式会社 感光树脂组合物及用其制备的电子元件和显示装置
JP4587276B2 (ja) * 2004-02-27 2010-11-24 独立行政法人科学技術振興機構 液晶高分子からなる膜の製造方法
KR101348025B1 (ko) * 2007-04-04 2014-01-06 삼성전자주식회사 박막 트랜지스터의 제조방법
KR101249686B1 (ko) * 2009-07-16 2013-04-05 주식회사 엘지화학 폴리이미드 및 이를 포함하는 감광성 수지 조성물
US20120153285A1 (en) * 2009-09-05 2012-06-21 Merck Patent Gesellschaft Mit Beschrankter Haftung Solution processable passivation layers for organic electronic devices
US8878169B2 (en) * 2012-02-07 2014-11-04 Polyera Corporation Photocurable polymeric materials and related electronic devices
US9978944B2 (en) * 2014-03-12 2018-05-22 Promerus, Llc Organic electronic compositions and device thereof
TWI683185B (zh) * 2014-10-24 2020-01-21 美商飛利斯有限公司 可光圖案化組成物以及使用該可光圖案化組成物製造電晶體元件的方法
JP2019509638A (ja) * 2016-03-31 2019-04-04 ダウ グローバル テクノロジーズ エルエルシー 不動態化薄膜トランジスタコンポーネント
TWI705079B (zh) * 2016-06-14 2020-09-21 日商住友電木股份有限公司 負型光敏組成物
GB2564425A (en) * 2017-07-07 2019-01-16 Wuhan Xinqu Chuangrou Optoelectronics Tech Co Ltd Formulation and layer

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3557233A (en) 1968-03-14 1971-01-19 American Cyanamid Co Aromatic hydrocarbons substituted by phenylethynyl groups
US20030116755A1 (en) 2000-02-29 2003-06-26 Tamotsu Takahashi Polyacene derivatives and production thereof
US6690029B1 (en) 2001-08-24 2004-02-10 University Of Kentucky Research Foundation Substituted pentacenes and electronic devices made with substituted pentacenes
WO2005055248A2 (en) 2003-11-28 2005-06-16 Merck Patent Gmbh Organic semiconducting layer formulations comprising polyacenes and organic binder polymers
WO2007078993A1 (en) 2005-12-28 2007-07-12 3M Innovative Properties Company Bottom gate thin film transistors
WO2008124711A1 (en) * 2007-04-10 2008-10-16 Honeywell International Inc. Compositions, layers and films for optoelectronic devices, methods of production and uses thereof
WO2008128618A1 (en) 2007-04-19 2008-10-30 Merck Patent Gmbh Process for preparing substituted pentacenes
US8975110B2 (en) * 2010-04-26 2015-03-10 Samsung Electronics Co., Ltd. Methods of forming a passivation layer
EP2524947A1 (en) 2011-05-19 2012-11-21 Samsung Electronics Co., Ltd. Organic passivation layer composition, transistor and/or electronic device including organic passivation layer fabricated therefrom
WO2012160383A1 (en) 2011-05-26 2012-11-29 The Centre For Process Innovation Ltd Transistors and methods for making them
WO2012164282A1 (en) 2011-05-31 2012-12-06 Smartkem Limited Organic semiconductor compositions
US9082981B1 (en) 2012-01-16 2015-07-14 Polyera Corporation Curable polymeric materials and related electronic devices
WO2013119717A1 (en) 2012-02-07 2013-08-15 Polyera Corporation Photocurable polymeric materials and related electronic devices
CN104221177A (zh) * 2012-02-07 2014-12-17 破立纪元有限公司 可光固化聚合材料及相关电子装置
WO2013120581A1 (en) 2012-02-15 2013-08-22 Merck Patent Gmbh Planarization layer for organic electronic devices
US20130225711A1 (en) 2012-02-28 2013-08-29 Korea Advanced Institute Of Science And Technology Thermally resistant optical siloxane resin composition
CN105555822A (zh) * 2013-07-15 2016-05-04 破立纪元有限公司 可曝光成像的材料和相关的电子器件及方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
"Handbook of Polymer Coatings for Electronics: Chemistry", article "Technology and Applications", pages: 55 - 65
ACS APPLIED MATERIALS INTERFACES, vol. 1, no. 7, 2009, pages 1585
CHEM MATER, vol. 25, 2013, pages 4806
J. MATER. CHEM. C, 2014
JAPPL POLYMER SCI, vol. 39968, 2013, pages 1 - 7
MATERIALS, vol. 2, 2009, pages 1697 - 1733
ORGANIC LETTERS, vol. 6, no. 10, 2004, pages 1609 - 1612
See also references of EP3910691A4
SHENGXIA LIWEI TANGWEIMIN ZHANGXIAOJUN GUOQING ZHANG: "Cross-linked Polymer-Blend Gate Dielectrics through Thermal Click Chemistry", CHEM. EUR. J., vol. 21, 2015, pages 17762 - 17768

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022108710A1 (en) * 2020-10-27 2022-05-27 Applied Materials, Inc. Area-selective atomic layer deposition of passivation layers
US11569088B2 (en) 2020-10-27 2023-01-31 Applied Materials, Inc. Area-selective atomic layer deposition of passivation layers
CN115430392A (zh) * 2022-08-31 2022-12-06 江苏诺盟化工有限公司 一种苯偶酰的制备方法及专用文丘里喷射器
CN115430392B (zh) * 2022-08-31 2024-04-16 江苏诺盟化工有限公司 一种苯偶酰的制备方法及专用文丘里喷射器

Also Published As

Publication number Publication date
JP2022517326A (ja) 2022-03-08
CN111416039A (zh) 2020-07-14
US20220123241A1 (en) 2022-04-21
EP3910691A4 (en) 2022-06-29
KR20210113309A (ko) 2021-09-15
EP3910691A1 (en) 2021-11-17

Similar Documents

Publication Publication Date Title
TWI516510B (zh) Hardening composition and hardening film
TW201114084A (en) Solution processable passivation layers for organic electronic devices
TWI570186B (zh) A composition for an organic semiconductor insulating film, and an organic semiconductor insulating film
WO2020143624A1 (zh) 制剂和层
EP1863037A1 (en) Thin film transistors with poly(arylene ether) polymers as gate dielectrics and passivation layers
KR102121960B1 (ko) 전계 효과형 트랜지스터, 그의 제조 방법, 그것을 사용한 무선 통신 장치 및 상품 태그
US7741635B2 (en) Composition for organic polymer gate insulating layer and organic thin film transistor using the same
JP5685037B2 (ja) 有機半導体素子の製造方法および該製造方法によって得られる有機半導体素子
US10680192B2 (en) Photo-patternable gate dielectrics for OFET
JP2009076791A (ja) 有機半導体素子、有機半導体素子の製造方法、有機トランジスタアレイ、およびディスプレイ
TWI652369B (zh) 半導體元件的製造方法
TW201925382A (zh) 製劑和層
WO2013129406A1 (ja) 電子デバイス絶縁層及び電子デバイス絶縁層の製造方法
TWI573194B (zh) 半導體用絕緣膜及使用其的有機薄膜電晶體
Shi et al. High performance tetrathienoacene-DDP based polymer thin-film transistors using a photo-patternable epoxy gate insulating layer
Lee et al. Low-Voltage Organic Transistors with Carrier Mobilities over 10 cm2V–2s–1 Using Six-Branched Organic Azide
JP5811522B2 (ja) 薄膜トランジスタの製造方法
TW201015215A (en) Composition for forming photosensitive dielectric material and application thereof
JP2013258301A (ja) 有機薄膜トランジスタ絶縁層材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20739110

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025113

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020739110

Country of ref document: EP

Effective date: 20210809