WO2009084272A1 - 半導体装置及び表示装置 - Google Patents

半導体装置及び表示装置 Download PDF

Info

Publication number
WO2009084272A1
WO2009084272A1 PCT/JP2008/065183 JP2008065183W WO2009084272A1 WO 2009084272 A1 WO2009084272 A1 WO 2009084272A1 JP 2008065183 W JP2008065183 W JP 2008065183W WO 2009084272 A1 WO2009084272 A1 WO 2009084272A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transistor
circuit
signal
input
Prior art date
Application number
PCT/JP2008/065183
Other languages
English (en)
French (fr)
Inventor
Yuhichiroh Murakami
Yasushi Sasaki
Shige Furuta
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2009547929A priority Critical patent/JP4902750B2/ja
Priority to US12/734,044 priority patent/US8718223B2/en
Priority to BRPI0820225-7A priority patent/BRPI0820225A2/pt
Priority to CN200880118024XA priority patent/CN101878592B/zh
Priority to EP08792729A priority patent/EP2226938A4/en
Publication of WO2009084272A1 publication Critical patent/WO2009084272A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3674Details of drivers for scan electrodes
    • G09G3/3677Details of drivers for scan electrodes suitable for active matrices only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/18Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages
    • G11C19/182Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes
    • G11C19/184Digital stores in which the information is moved stepwise, e.g. shift registers using capacitors as main elements of the stages in combination with semiconductor elements, e.g. bipolar transistors, diodes with field-effect transistors, e.g. MOS-FET
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/28Digital stores in which the information is moved stepwise, e.g. shift registers using semiconductor elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/693Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0286Details of a shift registers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0289Details of voltage level shifters arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0291Details of output amplifiers or buffers arranged for use in a driving circuit
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/165Modifications for eliminating interference voltages or currents in field-effect transistor switches by feedback from the output circuit to the control circuit

Definitions

  • the present invention relates to a semiconductor device composed of transistors of the same conductivity type.
  • a shift register that generates a signal for sequentially driving pixels arranged in an array is used in a scanning signal line driving circuit and a data signal line driving circuit.
  • the liquid crystal display device uses a level shifter that converts the power supply voltage level and a so-called buffer that outputs a broad amplification signal with a low output impedance, such as an amplification circuit that obtains an output equal to the input signal.
  • these semiconductor devices such as a shift register and a buffer are composed of CMOS transistors, a process for forming each of the p-channel and the n-channel is required, which complicates the manufacturing process. Therefore, it is preferable to simplify the manufacturing process and to use transistors of the same conductivity type, for example, a unipolar channel such as only a p-channel.
  • a semiconductor device including such a unipolar transistor is disclosed in Patent Document 1, for example.
  • FIG. 46 is a circuit diagram showing a configuration of the semiconductor device of Patent Document 1.
  • This semiconductor device is composed of an n-type MOS transistor.
  • the semiconductor device 100 includes four n-type MOS transistors T101 to T104 and a capacitor C101.
  • the transistor T101 has a drain terminal connected to the power supply VDD and a gate terminal connected to the input terminal IN.
  • the transistor T103 has a source terminal connected to the power supply VSS and a gate terminal to which a STOP signal (control signal) is input.
  • the transistor T102 has a drain terminal connected to the clock terminal ⁇ and a gate terminal connected to the source terminal of the transistor T101 and the drain terminal of the transistor T103.
  • the transistor T104 has a drain terminal connected to the source terminal of the transistor T102, a source terminal connected to the power supply VSS, and a gate terminal connected to the gate terminal of the transistor T103.
  • a connection point between the transistors T101, T102, and T103 is a node N1
  • a connection point between the transistors T102 and T104 is a node N2.
  • a capacitor C101 is provided between the node N1 and the node N2.
  • Node N2 is connected to output terminal OUT.
  • FIG. 47 is a timing chart showing waveforms of various signals in the semiconductor device 100.
  • the transistor T101 When the input signal IN becomes high level, the transistor T101 is turned on, and the potential of the node N1 becomes VDD ⁇ Vth when the threshold voltage of the transistor T101 is Vth (precharge operation). When the potential of the node N1 rises, the transistor T102 is turned on. When the clock signal ⁇ is at a low level, a low-level signal is output from the output terminal OUT. The potential of the node N1 is held (floating state) once the charge is precharged until the STOP signal becomes active (high level). When the clock signal ⁇ becomes high level in this floating state, the potential of the node N1 is increased by the ⁇ potential by the capacitor C101 and becomes VDD ⁇ Vth + ⁇ (bootstrap operation). While this potential exceeds VDD + Vth, a signal having a potential level of VDD is output from the output terminal OUT.
  • the node N1 is discharged to VSS by the transistor T103, and the transistor T102 is turned off.
  • a signal having a potential level of VSS is output from the output terminal OUT when the transistor T104 is turned on.
  • the output signal is affected by off-leakage (a minute current that flows when the transistor is off), and the potential of the semiconductor device gradually decreases. is there. Further, since the output signal becomes high impedance when the potential is lowered and is easily affected by noise, there is a problem that malfunction occurs in a subsequent circuit that receives the output signal. Specifically, for example, when the semiconductor device is used as a scanning signal line selection circuit of a shift register in a liquid crystal display device, if the output signal of the semiconductor device becomes weak against noise, the scanning signal lines are sequentially arranged. There is a possibility that a malfunction occurs such that the selection operation is not accurately performed.
  • the precharged node N1 is discharged, and the potential of the node N1 gradually decreases (dotted line of the node N1 in FIG. 47).
  • the transistor T102 is turned off when the clock signal ⁇ is at a high level (VDD).
  • the output signal of the transistor T102 has a high impedance, and the output signal OUT is easily affected by noise.
  • the transistor T102 when the potential of the node N1 is further decreased to be lower than VDD, the transistor T102 is turned off. For example, due to off-leakage of the transistor T104, the output signal OUT itself is indicated by a dotted line in FIG. The potential level also decreases. This may cause a malfunction in the subsequent circuit.
  • the potential of the node N1 decreases due to the influence of off-leakage or the like. For example, when the frequency of the clock signal ⁇ is low or the time for holding the charge of the node N1 is long, the potential of the node N1 The potential drop is further increased. Therefore, the output signal has a high impedance and is easily affected by noise.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a semiconductor device that includes transistors of the same conductivity type and can output a stable signal while preventing a decrease in potential level. It is providing the display apparatus provided with.
  • a semiconductor device is a semiconductor device including a plurality of transistors having the same conductivity type, and an on voltage is applied to a first terminal and an input signal is applied to a control terminal. A second voltage is applied to the input first transistor and the first terminal, the second terminal is connected to the output terminal, and the control terminal is connected to the second terminal of the first transistor. And a capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal, and the frequency of the clock signal is from the output terminal. It is characterized by being higher than the frequency of the output signal to be output.
  • the transistor includes a first terminal, a second terminal, and a control terminal.
  • the transistor conducts the first terminal and the second terminal by a control signal input to the control terminal, and outputs a signal having a desired potential level.
  • the control signal here has a voltage (signal level: VDD) that turns the transistor on when supplied to the control terminal, and a voltage (signal level) that turns the transistor off when supplied to the control terminal. : VSS).
  • the potential of the node connected to the control terminal of the transistor that outputs a signal having a desired potential level gradually decreases due to the influence of off-leakage or the like.
  • a node connected to a control terminal of a transistor that outputs a signal having a desired potential level, that is, a connection point (node) between the first transistor and the second transistor via a capacitor, A clock signal having a frequency higher than that of the output signal is input.
  • the potential of the node is first increased by ⁇ potential by the clock signal and the capacitance, and then decreased by, for example, ⁇ potential by off-leakage or the like, and VDD ⁇ Vth + ⁇ .
  • the clock signal becomes low level (VSS)
  • the node potential becomes VDD ⁇ Vth ⁇ .
  • the input signal is high level (VDD)
  • the node potential becomes VDD ⁇ Vth. It is charged until.
  • the clock signal becomes high level again, the potential of the node is pushed up to VDD ⁇ Vth + ⁇ again.
  • the push-up operation is performed according to the cycle of the clock signal having a frequency higher than that of the output signal. Therefore, even when the potential of the node decreases due to off-leakage or the like, the potential can be recovered immediately by the pushing-up operation. As a result, the potential of the node can be increased in a cycle shorter than that of the conventional configuration, so that the potential level of the output signal can be stabilized and the operation of the subsequent circuit that receives the output signal can be stabilized.
  • the output signal can be maintained at VDD.
  • the output signal can maintain a low impedance and is resistant to noise.
  • the semiconductor device includes a third transistor in which the first terminal is connected to the connection point, the off voltage is input to the second terminal, and the control signal is input to the control terminal. It is desirable to have more.
  • the potential of the node can be reliably lowered to VSS.
  • the first terminal is connected to the output terminal, the off voltage is applied to the second terminal, and the control signal is input to the control terminal. It is desirable to further include.
  • the potential of the node can be reliably lowered to VSS and the potential level of the output signal is set to the low level (off voltage). : VSS).
  • the fifth transistor has an on-voltage input to the first terminal, a second terminal connected to the connection point, and a control terminal connected to the output terminal. It is desirable to further include.
  • the output signal is input to the control terminal of the fifth transistor, the input signal becomes low level while the output signal is outputting high level (ON voltage: VDD).
  • the fifth transistor is again charged to VDD-Vth even if the potential of the node is decreased due to off-leakage or the like.
  • the semiconductor device further includes a sixth transistor that outputs the input signal in the semiconductor device, and the sixth transistor has a first terminal connected to the input terminal and a second terminal connected to the input terminal.
  • the first transistor is connected to the control terminal and the output terminal, and an enable signal is input to the control terminal.
  • the control signal of the first transistor is always high level. A signal can be input. Thereby, the active state of the semiconductor device can be stably maintained.
  • the first terminal is connected to the connection point, the off voltage is input to the second terminal, and the initial state of the semiconductor device is stabilized at the control terminal. It is desirable to further include a seventh transistor to which the initialization signal is input.
  • the potential of the node can be fixed to VSS by inputting a high-level initialization signal to the seventh transistor in the initial state, so that the initial state can be stabilized.
  • the first terminal is connected to the clock terminal
  • the second terminal is connected to one end of the capacitor
  • the input signal is input to the control terminal. It is desirable to further include the transistor.
  • the clock terminal and the capacitor connected to the node can be separated by controlling on / off of the eighth transistor.
  • the load of the clock terminal can be limited to the parasitic capacitance of the eighth transistor. Therefore, it is possible to reduce power consumption by reducing the driving capability of the circuit that drives the clock terminal and the effect of reducing the capacity.
  • a semiconductor device is a semiconductor device including a plurality of transistors having the same conductivity type, and an on voltage is applied to a first terminal and an input signal is applied to a control terminal. A second voltage is applied to the input first transistor and the first terminal, the second terminal is connected to the output terminal, and the control terminal is connected to the second terminal of the first transistor. And a capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal for inputting a clock signal, and a first terminal connected to the connection point for control.
  • a tenth transistor having an on-voltage input to the terminal, a first terminal connected to the second terminal of the tenth transistor, an off-voltage input to the second terminal, and a control signal to the control terminal
  • the frequency of the clock signal input is characterized in that it is set higher than the frequency of the output signal output from the output terminal.
  • the semiconductor device includes a tenth transistor between the node and the third transistor. Accordingly, although details will be described later, for example, the potential applied to the third transistor can be lowered, so that a highly reliable circuit can be configured.
  • the clock signal has a waveform that periodically repeats a high level and a low level, and the clock signal is from a high level during one low period. It is desirable to set the period until the potential at the connection point is saturated after changing to the low level.
  • a display device includes any one of the above semiconductor devices.
  • the display device according to the present invention is preferably a liquid crystal display device.
  • FIG. 1 is a circuit diagram illustrating a configuration of a circuit according to a first embodiment.
  • 2 is a timing chart showing waveforms of various signals in the circuit shown in FIG. 2 is a timing chart showing waveforms of various signals when affected by off-leakage or the like in the circuit shown in FIG. It is a timing chart which shows the waveform of various signals at the time of being influenced by off-leak etc. in the conventional circuit.
  • 2 is a timing chart showing waveforms of various signals when a clock signal ⁇ is input to the drain terminal of a transistor T2 in the circuit shown in FIG.
  • FIG. 6 is a circuit diagram illustrating a configuration of a circuit according to a second embodiment. 7 is a timing chart showing waveforms of various signals in the circuit shown in FIG. FIG.
  • FIG. 6 is a circuit diagram illustrating a configuration of a circuit according to a third embodiment.
  • FIG. 6 is a circuit diagram showing a configuration of a circuit according to a fourth embodiment.
  • 10 is a timing chart showing waveforms of various signals in the circuit shown in FIG.
  • FIG. 10 is a circuit diagram showing another configuration of the transistor T6 in the circuit shown in FIG.
  • FIG. 10 is a circuit diagram showing another configuration of the transistor T6 in the circuit shown in FIG.
  • FIG. 10 is a circuit diagram showing a configuration of a circuit according to a fifth embodiment.
  • FIG. 10 is a circuit diagram showing a configuration of a circuit according to a sixth embodiment.
  • FIG. 15 is a circuit diagram showing another configuration of the circuit shown in FIG. 14.
  • FIG. 10 is a circuit diagram showing a configuration of a circuit according to a seventh embodiment.
  • FIG. 20 is a circuit diagram showing another configuration of the circuit according to the seventh embodiment.
  • FIG. 2 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
  • FIG. 7 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
  • FIG. 9 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
  • FIG. 10 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG. FIG.
  • FIG. 14 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
  • FIG. 15 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
  • FIG. 17 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
  • FIG. 19 is a timing chart showing waveforms of various signals in the circuit shown in FIG. 18. It is a figure which shows the waveform of the clock signal CK in each embodiment of this invention. It is a block diagram which shows the whole structure of the liquid crystal display device which concerns on this Embodiment.
  • FIG. 15 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
  • FIG. 17 is a circuit diagram showing a configuration when a transistor T1 is diode-connected in the circuit shown in FIG.
  • FIG. 19 is a timing chart showing waveforms of various signals
  • FIG. 3 is a block diagram illustrating a configuration of a memory circuit provided in the CS driver according to the first embodiment.
  • FIG. 29 is a circuit diagram showing a configuration of a memory circuit shown in FIG. 28.
  • FIG. 29 is a timing chart showing waveforms of various signals in the memory circuit shown in FIG. 28.
  • FIG. FIG. 29 is a circuit diagram showing a configuration of an inverter circuit that generates an inverted signal INB from an input signal IN in the memory circuit shown in FIG. 28.
  • FIG. 29 is a circuit diagram showing another configuration of an inverter circuit that generates an inverted signal INB from an input signal IN in the memory circuit shown in FIG. 28.
  • FIG. 6 is a block diagram illustrating a configuration of a buffer circuit according to a second embodiment.
  • FIG. 34 is a circuit diagram showing a configuration of a buffer circuit shown in FIG. 33.
  • FIG. 34 is a block diagram showing a case where the inverter is configured by a bootstrap circuit in the buffer circuit shown in FIG. 33.
  • FIG. 36 is a circuit diagram showing a configuration of a buffer circuit shown in FIG. 35.
  • FIG. 10 is a block diagram illustrating a configuration of a buffer circuit according to a third embodiment.
  • FIG. 38 is a circuit diagram showing a case where the inverter is configured by a bootstrap circuit in the buffer circuit shown in FIG. 37.
  • FIG. 10 is a block diagram illustrating a configuration of a buffer circuit according to a fourth embodiment.
  • FIG. 40 is a circuit diagram showing a configuration of a buffer circuit shown in FIG. 39.
  • FIG. 40 is a circuit diagram showing a configuration of a buffer circuit shown in FIG. 39.
  • FIG. 10 is a block diagram illustrating a configuration of a unit circuit constituting a shift register according to a fourth embodiment.
  • FIG. 42 is a block diagram showing another configuration of the unit circuit configuring the shift register shown in FIG. 41.
  • FIG. 42 is a block diagram showing another configuration of the unit circuit configuring the shift register shown in FIG. 41.
  • FIG. 2 is a circuit diagram in the case where the circuit configuration illustrated in FIG. 1 is configured by a p-channel transistor.
  • 44 is a timing chart showing waveforms of various signals in the circuit shown in FIG. 44, where (a) in the figure shows a waveform when VSS is input to the source terminal of the transistor T2 ′, and (b) in the figure shows the transistor. The waveform is shown when the clock signal ⁇ is input to the source terminal of T2 ′.
  • It is a circuit diagram which shows the structure of the conventional semiconductor device.
  • 47 is a timing chart showing waveforms of various signals in the semiconductor device shown in FIG. 46.
  • Embodiments of the present invention will be described with reference to FIGS. 1 to 45 as follows.
  • An Active signal holding circuit (hereinafter simply referred to as “circuit”) corresponding to the semiconductor device of the present invention is configured using transistors of the same conductivity type, that is, a unipolar channel (n-channel type or p-channel type). Yes.
  • a unipolar channel n-channel type or p-channel type.
  • the configuration of an n-channel transistor is described as an example, and the configuration of a p-channel transistor is only illustrated at the end of this column, and detailed description is omitted.
  • this transistor for example, a TFT and a field effect transistor formed on a silicon substrate can be used.
  • FIG. 1 is a circuit diagram showing the configuration of the circuit 10
  • FIG. 2 is a timing chart showing waveforms of various signals in the circuit 10.
  • the circuit 10 includes a transistor T1 (first transistor), a transistor T2 (second transistor), a transistor T3 (third transistor), and a capacitor C1, and the output signal OUT of the circuit 10 is connected to one end of the capacitor C1.
  • a clock signal CK having a higher frequency is input.
  • the voltage (signal level) that turns the transistor on when applied to the gate terminal (control terminal) is referred to as on-voltage (on level), and the voltage that turns the transistor off when applied to the gate terminal (signal level).
  • Signal level is called off voltage (off level).
  • a high voltage is an on voltage (high level is an on level)
  • a low voltage is an off voltage (low level is an off level)
  • vice versa for a p-channel transistor In an n-channel transistor, a high voltage is an on voltage (high level is an on level), a low voltage is an off voltage (low level is an off level), and vice versa for a p-channel transistor.
  • the transistor T1 has a drain terminal (first terminal) connected to the power supply VDD and a gate terminal (control terminal) connected to the input terminal IN.
  • the transistor T2 has a drain terminal (first terminal) connected to the power supply VDD, a gate terminal (control terminal) connected to the source terminal of the transistor T1, and a source terminal (second terminal) connected to the output terminal OUT.
  • the transistor T3 has a drain terminal (first terminal) connected to the source terminal of the transistor T1 and the gate terminal of the transistor T2, and is connected to the clock terminal CK via the capacitor C1.
  • a connection point between the transistors T1, T2, T3, and the capacitor C1 is a node n1.
  • the circuit 10 of the present embodiment receives a clock signal CK having a higher frequency than the output signal OUT at one end of the capacitor C1.
  • the other end of C1 is connected to a node n1 that holds a high level signal in a floating state.
  • the transistor T1 When the input signal IN becomes high level (VDD), the transistor T1 is turned on, and the potential of the node n1 becomes VDD ⁇ Vth when the threshold voltage of the transistor T1 is Vth (precharge operation). When the potential of the node n1 rises, the transistor T2 is turned on.
  • the input signal IN changes from a high level to a low level (VSS)
  • the node n1 When the clock signal CK becomes high level, the potential of the node n1 is increased by the ⁇ potential by the clock signal CK and becomes VDD ⁇ Vth + ⁇ .
  • this potential exceeds VDD + Vth the transistor T2 outputs VDD to the output terminal OUT.
  • the transistor T3 is turned on, the charge of the node n1 is discharged, and the transistor T2 is turned off. As a result, the output terminal OUT enters a floating state (shaded area in FIG. 2).
  • the potential decreases due to the influence of off-leakage or the like of the transistor T3 and the like until the potential of the node n1 pushed up by the clock signal CK becomes lower than VDD + Vth.
  • the VDD is normally output from the output terminal OUT.
  • FIG. 3 is a timing chart showing waveforms of various signals when the circuit 10 is affected by off-leakage or the like.
  • FIG. 4 is a timing chart showing waveforms of various signals when the conventional circuit shown in FIG. 46 is affected by off-leakage or the like.
  • VDD ⁇ Vth + ⁇ when the potential of the node n1 is pushed up by the clock signal CK and then drops by ⁇ potential due to leakage, VDD ⁇ Vth + ⁇ is obtained. After that, when the clock signal CK becomes low level, the potential of the node n1 becomes VDD ⁇ Vth ⁇ . However, if the input signal IN is high level here, the potential of the node n1 reaches VDD ⁇ Vth. Charged. Therefore, when the clock signal CK becomes high level again, the potential of the node n1 is pushed up to VDD ⁇ Vth + ⁇ (portion surrounded by a dotted line in FIG. 3).
  • the output signal OUT can maintain a low impedance and is resistant to noise.
  • the potential of the node n1 can be charged again to VDD ⁇ Vth. Since the frequency of the clock signal CK is set higher than the frequency of the output signal, the potential of the node n1 is again increased to VDD + Vth or more by the push-up operation by the clock signal CK until the STOP signal becomes high level. Can be pushed up. Accordingly, it is possible to ensure a period during which VDD can be output and a period during which the impedance is low as compared with the conventional case.
  • the amplitude of the clock signal CK and the capacitance C1 are set such that the potential (VDD ⁇ Vth + ⁇ ) of the pushed-up node n1 is equal to or higher than VDD + Vth.
  • FIG. 5 is a timing chart showing waveforms of various signals in the configuration of the circuit 10 when the clock signal ⁇ is input to the drain terminal of the transistor T2.
  • the potential level of the signal input to the transistor T2 can be output, the potential of the clock signal ⁇ is turned on when the transistor T2 is turned on. The level is output.
  • FIG. 6 is a circuit diagram showing the configuration of the circuit 20
  • FIG. 7 is a timing chart showing waveforms of various signals in the circuit 20.
  • members having the same functions as those shown in the first embodiment are given the same reference numerals, and explanation thereof is omitted.
  • the terms defined in Embodiment 1 are used in accordance with the definitions in this embodiment unless otherwise specified.
  • the output terminal OUT is in a floating state (hatched line in FIG. 2) at the timing when the STOP signal becomes high level and the node n1 becomes low level potential. Therefore, it is easily affected by noise and the like.
  • the circuit 20 of this embodiment further includes a transistor T4 (fourth transistor) in the circuit 10.
  • the transistor T4 has a drain terminal (first terminal) connected to the source terminal and the output terminal OUT of the transistor T2, a source terminal (second terminal) connected to the power supply VSS, and a gate terminal. (Control terminal) is connected to the gate terminal of the transistor T3.
  • the gate terminals of the transistors T3 and T4 are connected to the input terminal IN2, and an input signal IN2 for controlling on / off of the transistors T3 and T4 is input.
  • a connection point between the transistors T2 and T4 and the output terminal OUT is a node n2.
  • the transistors T3 and T4 are turned on by inputting the high-level input signal IN2 at the timing when the node n1 becomes the low-level potential.
  • the electric charge of n1 can be surely discharged and the potential level of the output signal OUT can be fixed to the low level (VSS).
  • the signal input to the gate terminal of the transistor T4 is not particularly limited as long as the potential level of the output signal OUT can be fixed to a low level (VSS), and another control signal may be input.
  • VSS low level
  • FIG. 8 is a circuit diagram showing a configuration of the circuit 30.
  • members having the same functions as those shown in the first and second embodiments are given the same reference numerals, and explanation thereof is omitted.
  • the terms defined in Embodiments 1 and 2 are used in accordance with the definitions in this embodiment unless otherwise specified.
  • the circuit 30 of the present embodiment further includes a transistor T5 (fifth transistor) that plays a role of a refresh function in the circuit 20 shown in FIG.
  • the transistor T5 has a drain terminal (first terminal) connected to the power supply VDD, a source terminal (second terminal) connected to the node n1, and a gate terminal (control terminal) connected to the node n2. Connected to.
  • the output signal OUT is input to the gate terminal of the transistor T5, the input signal IN1 is at a low level and the transistor T1 is off while the output signal OUT is at a high level.
  • the transistor T5 is charged again to VDD-Vth (refresh operation).
  • the potential of the node n1 can be pushed up to VDD ⁇ Vth + ⁇ during the period when the clock signal CK outputs a high level. Therefore, the output signal OUT can stably output VDD, and can operate normally without malfunction during low frequency operation.
  • FIG. 9 is a circuit diagram showing the configuration of the circuit 40
  • FIG. 10 is a timing chart showing waveforms of various signals in the circuit 40.
  • members having the same functions as those shown in the first to third embodiments are given the same reference numerals, and explanation thereof is omitted.
  • the terms defined in Embodiments 1 to 3 are used in accordance with the definitions in this embodiment unless otherwise specified.
  • a transistor T6 (sixth transistor) is further provided between the input terminal IN1 and the transistor T1.
  • the transistor T6 has a drain terminal (first terminal) connected to the input terminal IN1, a source terminal (second terminal) connected to the gate terminal of the transistor T1, and a gate terminal (control terminal). ) Is input with an enable signal EN.
  • the source terminal of the transistor T6 is also connected to a connection point (node n2) between the transistors T2 and T4.
  • the circuit 40 can be kept in the active state.
  • the transistor T1 since the output terminal OUT and the gate terminal of the transistor T1 are connected to each other, the transistor T1 is turned on when the potential of the node n1 is equal to or lower than VDD ⁇ Vth while the output signal OUT is at a high level. become. Note that when the potential of the node n1 is equal to or higher than VDD ⁇ Vth, the transistor T1 is turned off and the node n1 is in a floating state.
  • the potential of the node n1 is charged again to VDD-Vth by the transistor T1 (refresh operation) even if it drops due to off-leakage or the like.
  • the potential of the node n1 can be pushed up to VDD ⁇ Vth + ⁇ , so that the output signal OUT can stably output VDD, It can operate normally without malfunction during low frequency operation.
  • the transistor T6 is not limited to the configuration of FIG. 9 described above, and other configurations include, for example, a configuration in which the source terminal floats when the input signal IN1 becomes a low level potential. Includes the configuration shown in FIG. 11 and the configuration shown in FIG. 12.
  • the power supply VDD is connected to the drain terminal of the transistor T6, and the input signal IN1 is input to the gate terminal.
  • the input signal IN1 is input to the drain terminal and the gate terminal of the transistor T6.
  • the active state is maintained even if the input signal IN1 subsequently becomes low level. Suitable for configuration.
  • FIG. 13 is a circuit diagram showing a configuration of the circuit 50.
  • members having the same functions as those shown in Embodiments 1 to 4 are given the same reference numerals, and explanation thereof is omitted. Further, the terms defined in Embodiments 1 to 4 are used in accordance with the definitions in this embodiment unless otherwise specified.
  • the circuit 50 of the present embodiment further includes a transistor T7 (seventh transistor) in each of the circuits shown in the first to fourth embodiments.
  • the circuit 50 shown in FIG. 13 has a configuration in which the transistor T7 is provided to the circuit 10 shown in FIG. 1, and the transistor T7 receives the initialization signal INI at the gate terminal (control terminal) and the source terminal (first terminal). 2 terminal) is connected to the power supply VSS, and the drain terminal (first terminal) is connected to the node n1.
  • the potential of the node n1 can be fixed to VSS, so that the initial state can be stabilized.
  • the initial state can be stabilized for each circuit of the second to fourth embodiments by providing the transistor T7 as described above.
  • FIG. 14 is a circuit diagram showing the configuration of the circuit 60.
  • members having the same functions as those shown in the first to fifth embodiments are given the same reference numerals, and the explanation thereof is omitted. Is omitted. Further, the terms defined in Embodiments 1 to 5 are used in accordance with the definitions in this embodiment unless otherwise specified.
  • the circuit configurations shown in the first to fifth embodiments have a problem that the capacity of the clock terminal CK increases.
  • a specific example of the clock load will be described using the circuit 10 of FIG. 1 as an example.
  • the capacity of the clock terminal CK increases during the period when the node n1 is not in the floating state.
  • the capacity becomes very large.
  • the circuit 60 of this embodiment further includes a transistor T8 (eighth transistor) in each of the circuits shown in the first to fifth embodiments.
  • a circuit 60 shown in FIG. 14 has a configuration in which a transistor T8 is provided to the circuit 10 shown in FIG. 1, and the transistor T8 has a gate terminal (control terminal) connected to the input terminal IN and a drain terminal (first terminal). Terminal) is connected to the clock terminal CK, and the source terminal (second terminal) is connected to the node n1 through the capacitor C1.
  • the node T1 is not in a floating state by the transistor T8, and the clock terminal CK and the capacitor C1 can be disconnected during a period when the load on the clock terminal CK becomes very large.
  • the node n1 when the potential of the node n1 is fixed to VSS, the node n1 does not need to be pushed up from the clock signal CK. Therefore, the period between the clock terminal CK and the capacitor C1 is electrically connected by the transistor T8. As a result, the load on the clock terminal CK becomes only the parasitic capacitance of the transistor T8 and thus becomes very small.
  • an inverter 6 including a resistor R1 and a transistor T11 may be provided.
  • the transistor T9 has a drain terminal connected to the node n3, a source terminal connected to the power supply VSS, and a gate terminal connected to the input terminal IN to the inverter 6.
  • a signal input to the gate terminal is not particularly limited, and is one period during which the potential of the node n1 is fixed at VSS.
  • Other control signals that turn off the transistor T8 may be input during the period or period.
  • the inverted signal of the input terminal IN is generated by the inverter 6 and output to the input terminal INB.
  • the inverted signal of the signal input to the input terminal IN exists as another control signal.
  • the signal may be input to the input terminal INB.
  • the power consumption consumed by the capacitor is reduced.
  • the clock signal CK is present during a period in which the potential of the node n1 in the circuit 10 is fixed to VSS by an external clock operation, for example.
  • a configuration may be adopted in which the frequency is fixed to a DC level or the frequency of the clock signal CK is reduced in order to reduce power consumption.
  • FIG. 16 is a circuit diagram showing a configuration of the circuit 70.
  • members having the same functions as those shown in the first to sixth embodiments are given the same reference numerals and explanations thereof are omitted. Is omitted. Further, the terms defined in Embodiments 1 to 6 are used in accordance with the definitions in this embodiment unless otherwise specified.
  • the transistor connected to the node n1 is connected between the gate and the source.
  • a high voltage is applied between the gate and the drain and between the source and the drain. In some cases, the transistor exceeds its own withstand voltage, and there is a risk of being destroyed.
  • a high voltage is applied particularly between the gate and drain and between the source and drain of the transistor T3.
  • VDD ⁇ Vth + ⁇ the voltage between the gate and the drain and between the source and the drain of the transistor T3 is VDD ⁇ Vth + ⁇ VSS.
  • VDD 10V
  • VSS ⁇ 10V
  • 15V
  • VDD-Vth + ⁇ -VSS 35V-Vth It becomes.
  • a potential difference of 20 V between VDD and VSS is applied to other nodes.
  • a high voltage is applied to the transistor connected to the node n1.
  • the circuit 70 of this embodiment further includes a transistor T10 (tenth transistor) in each of the circuits shown in the first to sixth embodiments.
  • a circuit 70 illustrated in FIG. 16 includes a transistor T10 with respect to the circuit 10 illustrated in FIG. 1.
  • the transistor T10 includes a gate terminal (control terminal) connected to the power supply VDD and a drain terminal (first terminal). Terminal) is connected to the node n1, and the source terminal (second terminal) is connected to the drain terminal of the transistor T3.
  • a connection point between the transistors T3 and T10 is a node n4.
  • FIG. 17 is an example thereof, and shows a configuration when applied to the circuit shown in FIG. 15 of the sixth embodiment.
  • the drain terminal of the transistor T1 is connected to the power supply VDD.
  • the configuration of the circuit of the present invention is not limited to this, and may be a so-called diode-connected configuration in which the drain terminal and the gate terminal of the transistor T1 are connected to each other.
  • 18 to 24 show the circuits 11, 21, 31, 41, 51, 61, and 71 when the transistor T1 is diode-connected in the circuits 10, 20, 30, 40, 50, 60, and 70, respectively. It is a circuit diagram which shows a structure.
  • the transistor T1 is configured as in the circuit 10
  • the transistor T3 when the transistor T3 is in an on state and a low level is input to the input terminal IN and the noise is generated in the input signal, the transistor T1 is instantaneously
  • a through current flows from the power supply VDD to the power supply VSS via the transistors T1 and T3, resulting in an increase in current consumption or a malfunction.
  • the gate terminal and the drain terminal of the transistor T1 are connected, even if noise occurs in the input terminal IN and the transistor T1 is turned on, the source ⁇
  • the potential difference between the drains is only the potential of noise, and the through current is reduced because the potential difference is small compared to the case where the power supply VDD is connected to the drain terminal.
  • the transistor T3 since the transistor T3 is in the on state, even if the transistor T1 is turned on due to noise, the potential changed by the noise of the input terminal IN is pulled to the power supply VSS via the transistor T3. The action of turning off works. Therefore, malfunction of the transistor T1 due to the influence of noise can be prevented.
  • FIG. 25 is a timing chart showing waveforms of various signals in the circuit 11 shown in FIG. 18 among the circuits when the transistor T1 is diode-connected. As shown in FIG. 25, since the potential level of the signal input to the drain terminal of the transistor T2 can be output as in the configuration of the circuit 10 shown in FIG. Is output.
  • the configuration in which the clock signal ⁇ is input to the drain terminal of the transistor T2 has been described. However, this configuration can also be applied to the circuit described in each embodiment. When turned on, the potential level of the clock signal ⁇ is output.
  • the clock signal CK input to the Active signal holding circuit of the present invention has a waveform in which a high level and a low level are periodically repeated.
  • the output signal OUT of the Active signal holding circuit has a particularly low impedance when the clock signal CK is at a high level (period T). Therefore, as shown in FIG. 26, when the duty ratio of the clock signal CK is 50%, for example, the output signal OUT has a low impedance during this 50% period. That is, the low impedance period of the output signal OUT can be adjusted by adjusting the duty ratio of the clock signal CK.
  • a preferable value for the duty ratio of the clock signal CK is examined with reference to the configuration of FIG.
  • the clock signal CK becomes low level
  • the potential of the node n1 decreases due to off-leakage or the like, and becomes VDD ⁇ Vth ⁇ .
  • the high period: low period T1 ⁇ t ⁇ : t ⁇ is an ideal duty ratio.
  • the period during which the clock signal CK shifts from the high level to the low level is determined by the time constant of the load (capacitance and resistance) of the clock CK terminal.
  • the duty ratio of the clock signal is such that the low level period of one cycle of the clock signal CK is the period until the potential of the node n1 is saturated after the clock signal CK changes from the high level to the low level. It is preferable to set so as to be.
  • the duty ratio is preferably set so that the low impedance period of the transistor T2 is longer.
  • the transition time in the clock signal CK exceeds 50%, the transition to the next high level is ensured without being at the low level after the transition. Therefore, in order to obtain the push-up voltage ⁇ , the capacitance C1 is further increased. It is necessary to correct (correct). As a result, the circuit scale becomes large, or the capacity load increases, so that the transition time is further increased. In order to avoid this, the transition time is generally within 50% by slowing the frequency of the clock signal or by designing the load to be driven by the clock signal CK to be small.
  • the duty ratio is preferably 50% or more so that the period of low impedance is as long as possible.
  • the clock signal CK_H in FIG. 26 is an example of a waveform when the high-level period T is lengthened (duty ratio is increased). This makes it possible to lengthen the low impedance period of the output signal OUT of the Active signal holding circuit. And since the period of low impedance can be lengthened, it becomes more resistant to noise and the load can be driven quickly. Thus, it is preferable that the clock signal CK has a higher frequency than the output signal OUT and has a high level (active side potential) period.
  • FIG. 27 is a block diagram showing the overall configuration of the liquid crystal display device.
  • the liquid crystal display device 151 includes a pixel region 153, a source driver 154, a gate / CS driver 155, a BUFF / level shifter circuit 156, a power supply circuit 157, and a terminal 158 on the panel 152.
  • the source driver 154 includes an output circuit 154 a and outputs a data signal to each source bus line in the pixel region 153.
  • the gate / CS driver 155 includes an output circuit 155a, outputs a selection signal to the gate bus line in order to write a data signal from the source driver 154 to each pixel in the pixel region 153, and each pixel in the pixel region 153 A CS signal is output to the CS bus line in order to increase the write potential.
  • the output circuits 154a and 155a are composed of a buffer which is an amplifier circuit with a low output impedance that generates a data signal of the same magnification from the input signal.
  • the BUFF / level shifter circuit includes buffers that are low output impedance amplifier circuits such as an equal-amplifier circuit that corrects signal attenuation such as an inverter and a level shifter circuit that converts a power supply voltage level of the signal.
  • the signal passed through is supplied to the source driver 154 and the gate driver 155.
  • the power supply circuit 157 generates a logic circuit power supply, a reference voltage of the data signal, a counter voltage, an auxiliary capacitance voltage, and the like.
  • Terminals 158... Are terminals for inputting signals and power to the above-described circuits on the panel 152.
  • the liquid crystal display device may be configured by a demultiplexer instead of the source driver.
  • Each circuit shown in the first to seventh embodiments can be applied to each part in the liquid crystal display device 151.
  • a memory circuit provided in a CS driver Example 1
  • an example applied to a buffer circuit and a level shifter circuit Examples 2 to 4
  • an example applied to a shift register Example 1 Example 5
  • FIG. 28 is a block diagram showing a configuration of the memory circuit 1 provided in the CS driver in the present embodiment
  • FIG. 29 is a circuit diagram of the memory circuit 1.
  • FIG. 30 is a timing chart showing waveforms of various signals in the memory circuit 1.
  • the memory circuit 1 includes the two circuits (Active signal holding circuits) described in the above embodiments. Specifically, in the memory circuit 1, for example, the STOP terminal of one circuit 10 (denoted as the circuit 10b) shown in FIG. 1 and the output terminal OUT of the other circuit 10 (denoted as the circuit 10a) are connected. It is constituted by.
  • the memory circuit only needs to have at least the configuration of the circuit 10 shown in FIG. 1.
  • the transistor T4 in addition to the configuration of the circuit 10, the transistor T4 (transistors Ta4 and Tb4 in FIG. 28). And includes the configuration of the circuit 20 shown in FIG.
  • the circuit 10a to which a high-level signal is input is in an active state, and the node na1 holds charges while the clock signal is input. Therefore, the output signal OUT of VDD is output from the circuit 10a as described in the above embodiments. The output signal OUT is input to the STOP terminal (FIG. 29) of the other circuit 10b.
  • the circuit 10b in which the VDD signal is input to the STOP terminal becomes inactive, and VSS is output from the transistor Tb4. Since IN and INB have opposite polarities, when one outputs VDD, the other outputs VSS. Thus, while the clock signal CK is being input, the potentials of the circuits 10a and 10b are held until the next enable signal EN becomes high level.
  • the inverted signal INB of the input signal IN is input from the outside.
  • the configuration is not limited to this, and other configurations are shown in FIGS. 31 and 32, for example.
  • the inverter circuit may be configured in the memory circuit 1 to generate the inverted signal INB from the input signal IN.
  • FIG. 31 shows an inverter constituted by a resistor R1 and a transistor T11
  • FIG. 32 shows an inverter constituted by a bootstrap circuit. According to these configurations, when the input signal IN is at a high level (VDD), a low level (VSS) signal is output as the inverted signal INB, and when the input signal IN is at a low level (VSS), the high level is output.
  • the signal (VDD) is output as the inverted signal INB.
  • the transistor T7 shown in the fifth embodiment may be provided in each of the circuits 10a and 10b in order to stabilize the initial state.
  • the initialization signal INI is input to the gate terminal
  • the respective drain terminals are connected to the node na1 and the node nb1
  • the respective source terminals are the power supply VSS and the power supply Connected to each of VDD.
  • the memory circuit 1 since the memory circuit 1 has the refresh function described in the above embodiment, it is possible to normally hold a value even at low frequency driving.
  • the memory circuit 1 configured by the circuit 20 of the second embodiment has been described.
  • the memory circuit 1 according to another embodiment for example, the circuit 30, 40, or 50
  • the same effect can be obtained.
  • FIG. 33 is a block diagram showing a configuration of the buffer circuit 2 in the present embodiment
  • FIG. 34 is a circuit diagram of the buffer circuit 2.
  • the buffer circuit 2 includes the circuit (Active signal holding circuit) shown in each of the above embodiments. Specifically, the buffer circuit 2 only needs to have at least the configuration of the circuit 10 shown in FIG. 1.
  • a transistor T4 is provided in addition to the configuration of the circuit 10, and FIG. 6 includes the configuration of the circuit 20 shown in FIG.
  • the inverter that generates the signal INB input to the circuit 10 is composed of a resistor R1 and a transistor T11. Therefore, when the input signal IN of the inverter is at a high level, a steady current (through current) flows from the power supply VDD to the power supply VSS, and power consumption increases. Therefore, in order to reduce power consumption, it is conceivable to configure the resistor R to have a high resistance. However, in this case, there arises a problem that the drive capability is lowered and a new problem that the resistance becomes weak against noise. .
  • the buffer circuit 2 of the present embodiment since the output terminal INB of the inverter is connected only to the gate terminal of the transistor T1 of the circuit 10, the load becomes very small. Therefore, even if the drive capability of the inverter is reduced (even if the resistor R1 is set to a high resistance), the load at the gate terminal of the transistor T1 can be driven quickly, so that high-speed operation is possible and operation of the circuit 10 As a result, the driving capability of the buffer circuit 2 itself can be increased. Therefore, according to the above configuration, a buffer circuit with low power consumption and high driving capability can be configured.
  • buffer circuit 2 comprised by the circuit 20 of the said Embodiment 2 was demonstrated in the present Example, you may comprise by the circuit (for example, circuit 30, 40 or 50) in other embodiment. In these configurations, the same effect can be obtained.
  • the level shifter Functions as a circuit.
  • the inverter may be configured by a bootstrap circuit. Also in this configuration, when the input signal IN is at a high level, a steady current (through current) flows from the power supply VDD to the power supply VSS through the transistors T12 and T13, and power consumption increases. Therefore, in order to reduce power consumption, it is conceivable to reduce the size of the transistors T12 and T13. In this case, however, the problem is that the driving capability is reduced, as in the case of an inverter using resistors, and noise. A new problem of weakening.
  • FIG. 37 is a circuit diagram showing a configuration of the buffer circuit 3 in the present embodiment.
  • the buffer circuit 3 includes an inverter shown in FIG. 31 and a configuration obtained by modifying the circuit 20 shown in FIG. Specifically, in the circuit 20 shown in FIG. 6, the transistor T3 is omitted, and the transistor T1 has a gate terminal connected to the power supply VDD and a drain terminal connected to the output terminal INB of the inverter. The gate terminal of the transistor T3 is connected to the input terminal IN of the inverter.
  • the inverted signal INB becomes VDD.
  • the inverted signal INB of VDD is input to the transistor T1
  • the potential of the node n1 is charged to VDD ⁇ Vth
  • the potential of the node n1 rises to VDD ⁇ Vth + ⁇ by the push-up operation by the clock signal CK. Since the node n1 is connected to the gate terminal of the transistor T2, the potential of the output signal OUTB is VDD with no threshold drop.
  • the inverted signal INB becomes VSS, and the potential of the node n1 is discharged to VSS.
  • the transistor T3 is turned on, and the potential of the output signal OUTB becomes VSS.
  • the transistor T2 when the potential of the node n1 is high due to the push-up operation of the clock signal CK, the transistor T2 has low impedance, so that it is resistant to noise and can drive the load quickly.
  • the transistor T3 for discharging the node n1 is not necessary, so that the circuit scale can be reduced.
  • the buffer circuit 3 of the present embodiment when the voltage of the input signal IN is input with a voltage other than VDD / VSS (for example, when the High voltage is lower than VDD and the Low voltage is VSS), Functions as a level shifter circuit.
  • the inverter may be constituted by a bootstrap circuit as in the second embodiment.
  • FIG. 38 is a circuit diagram showing a configuration of a buffer circuit including an inverter configured by a bootstrap circuit.
  • the buffer circuit 2 of the second embodiment can operate normally even when the input signal IN becomes a DC signal.
  • the buffer 3 of the third embodiment when the input signal IN becomes a DC signal, the voltage at the gate terminal of the transistor T12 becomes VDD ⁇ Vth due to off-leakage. Therefore, since the voltage at the output terminal of the inverter is VDD-2 ⁇ Vth, the node n1 is VDD-2 ⁇ Vth. Although the potential of the node n1 becomes VDD ⁇ 2 ⁇ Vth + ⁇ due to the rising of the clock signal CK, if the capacitor C1 is set so that it becomes larger than VDD + Vth, it operates normally even if the input signal IN becomes a DC signal. Is possible.
  • FIG. 39 is a block diagram showing the configuration of the buffer circuit 4 in the present embodiment
  • FIG. 40 is a circuit diagram of the buffer circuit 4.
  • the buffer circuit 4 includes the inverter shown in FIG. 31 and the circuit 10 shown in FIG. Specifically, as shown in FIG. 40, the output terminal INB of the inverter is connected to the gate terminal of the transistor T1 and the output terminal OUTB of the buffer circuit 4, and the gate terminal of the transistor T3 is connected to the input terminal IN of the inverter. Connected.
  • the buffer circuit 4 of the present embodiment when the input signal IN of the inverter is at a low level, the inverted signal INB is output from the high resistance R1, and thus becomes the high impedance VDD, but the output signal of the circuit 10 (transistor The output signal OUTB can obtain a low impedance VDD.
  • the buffer circuit 4 since the output terminals INB and OUTB are connected to each other, even when the clock signal CK is stopped, it is possible to output a signal having a potential of VDD that does not drop the threshold value.
  • the buffer circuit 4 of this embodiment when the voltage of the input signal IN is input with a voltage other than VDD / VSS (for example, when the High voltage is lower than VDD and the Low voltage is VSS), Functions as a level shifter circuit.
  • the buffer circuit 4 of this embodiment can operate normally even when the input signal IN becomes a DC signal, like the buffer circuits 2 and 3 of the second and third embodiments.
  • the input signal IN and the inverted signal INB may be interchanged.
  • FIG. 41 is a block diagram showing the configuration of the unit circuit 5 constituting the shift register in this embodiment.
  • the shift register is configured by cascade-connecting unit circuits 5 shown in FIG. 41.
  • the unit circuit 5 is configured to include the circuit (Active signal holding circuit) 10 shown in the first embodiment.
  • a conventional configuration can be applied to the configuration excluding the circuit 10.
  • the output signal of the circuit 10 is fed back to the input side of the circuit 10. Accordingly, since the node n5 can be held at a high level that is not in a floating state, the disabled state of the shift register can be held. Therefore, the problem with respect to leakage and noise can be solved.
  • the clock signal CK1 is input to the clock terminal CK of the even-numbered unit circuit 5 among the clock signals CK1 and CK2 that do not become high level at the same time.
  • the clock signal CK2 is input to the clock terminal CK of the unit circuit 5 in the stage, the input signal On-1 is an output signal from the unit circuit 5 in the previous stage, and the input signal On + 1 is an output signal from the unit circuit 5 in the subsequent stage.
  • the transistor T1 is turned on, and electric charge is stored in the capacitor C1. Thereafter, every time the clock signal CK is input, the potential of the output signal OUT is raised to VDD through the transistor T2, so that the potential of the node n5 does not decrease due to off-leakage or the like. Then, since the output signal OUT of VDD is fed back to the input terminal IN, the potential of the node n5 is held at VDD until the input signal On-1 next becomes the high level.
  • the circuit (Active signal holding circuit) in the present embodiment to the conventional shift register, the potential of the node n5 that has been lowered due to a drop in threshold value, leakage, or the like can be reliably ensured. It can be held at VDD.
  • the shift register configured by the circuit 10 of the first embodiment has been described.
  • the shift register may be configured by a circuit in another embodiment. In these configurations, the same effect can be obtained.
  • the configuration of the shift register to which the circuit in this embodiment can be applied is not particularly limited.
  • the unit circuit of each stage in the shift register does not use the output signal of the subsequent unit circuit, that is, the A configuration in which a reset signal is generated in a unit circuit of a stage can be given.
  • the disabled state can be maintained.
  • the clock signals CK1 and CK2 that do not simultaneously become high in any unit circuit, the clock signal CK1 is input to the clock terminal CK of the even-numbered unit circuit, and the clock signal CK2 is input to the clock terminal CKB.
  • the clock signal CK2 is input to the clock terminal CK of the odd-numbered unit circuit 5, the clock signal CK1 is input to the clock terminal CKB, and the input signal On-1 is the output signal of the unit circuit 5 of the previous stage. It is.
  • the circuit 10 holds the potential of the node n5 at VDD until the next time the input signal On-1 becomes high level.
  • FIG. 44 is a circuit diagram of a circuit 10 ′ when the configuration of the circuit 10 is configured by p-channel transistors.
  • FIG. 45 is a timing chart showing waveforms of various signals in the circuit 10 ′.
  • FIG. 45A shows a waveform when VSS is input to the drain terminal of the transistor T2 ′, and FIG. ) Shows a waveform when the clock signal ⁇ is input to the drain terminal of the transistor T2 ′.
  • the output signal can be stabilized as in the case of the circuit configured by the n-channel transistor described above.
  • the semiconductor device includes a capacitor provided between a connection point between the first transistor and the second transistor and a clock terminal that inputs a clock signal, and the clock signal This frequency is higher than the frequency of the output signal output from the output terminal.
  • the display device according to the present invention includes the semiconductor device.
  • a semiconductor device that includes transistors of the same conductivity type, can output a stable signal while preventing a decrease in potential level, and a display device including the semiconductor device.
  • the present invention is a circuit that can stably output without lowering the potential level of an input signal, it can be suitably applied particularly to a display device.

Abstract

 nチャネル型の複数のトランジスタにより構成される回路(10)は、ドレイン端子にVDDが与えられ、ゲート端子に入力信号(IN)が入力されるトランジスタ(T1)と、ドレイン端子にVDDが与えられ、ソース端子が出力端子(OUT)に接続され、ゲート端子がトランジスタ(T1)のソース端子に接続されるトランジスタ(T2)と、ノード(n1)とクロック信号を入力するクロック端子(CK)との間に設けられる容量(C1)とを備えている。クロック端子(CK)に入力されるクロック信号の周波数は、出力端子(OUT)から出力される出力信号の周波数よりも高い構成である。これにより、同一導電型のトランジスタからなり、電位レベルの低下を防いで安定した信号を出力することができる半導体装置、及びそれを備えた表示装置を提供する。

Description

半導体装置及び表示装置
 本発明は、同一導電型のトランジスタで構成される半導体装置に関するものである。
 液晶表示装置では、例えば、アレイ状に配列された画素を順次駆動するための信号を生成するシフトレジスタが、走査信号線駆動回路及びデータ信号線駆動回路に用いられている。また、液晶表示装置には、電源電圧レベルを変換するレベルシフタ、及び入力信号に対して等倍の出力を得る増幅回路のように低出力インピーダンスで広義の増幅信号を出力するいわゆるバッファが用いられている。これらシフトレジスタ及びバッファ等の半導体装置をCMOSトランジスタで構成するとpチャネル及びnチャネルのそれぞれを形成するプロセスが必要になるため、製造工程が複雑化する。そこで、製造工程の簡略化を図って、同一導電型、例えばpチャネルのみなど単極性のチャネルのトランジスタで構成することが好ましい。このような単極性のトランジスタで構成された半導体装置が、例えば特許文献1に開示されている。
 図46は、特許文献1の半導体装置の構成を示す回路図である。この半導体装置は、n型MOSトランジスタで構成されている。
 具体的には、上記半導体装置100は、4個のn型MOSトランジスタT101~T104と、容量C101とを備えている。トランジスタT101は、ドレイン端子が電源VDDに接続され、ゲート端子が入力端子INに接続される。トランジスタT103は、ソース端子が電源VSSに接続され、ゲート端子にはSTOP信号(制御信号)が入力される。トランジスタT102は、ドレイン端子がクロック端子φに接続され、ゲート端子がトランジスタのT101のソース端子及びトランジスタT103のドレイン端子に接続される。トランジスタT104は、ドレイン端子がトランジスタT102のソース端子に接続され、ソース端子が電源VSSに接続され、ゲート端子がトランジスタT103のゲート端子に接続される。トランジスタT101とT102とT103との接続点をノードN1とし、トランジスタT102とT104との接続点をノードN2とする。ノードN1とノードN2との間には、容量C101が設けられる。ノードN2は、出力端子OUTに接続される。
 次に、半導体装置100の動作について説明する。図47は、半導体装置100における各種信号の波形を示すタイミングチャートである。
 入力信号INがハイレベルになると、トランジスタT101がオン状態になり、ノードN1の電位は、トランジスタT101の閾値電圧をVthとすると、VDD-Vthになる(プリチャージ動作)。ノードN1の電位が上昇すると、トランジスタT102はオン状態になり、クロック信号φがローレベルのときはローレベルの信号が出力端子OUTから出力される。ノードN1の電位は、電荷が一旦プリチャージされると、STOP信号がアクティブ(ハイレベル)になるまで保持される(フローティング状態)。このフローティング状態でクロック信号φがハイレベルになると、容量C101により、ノードN1の電位は、α電位分突き上げられ、VDD-Vth+αになる(ブートストラップ動作)。そして、この電位がVDD+Vthを超えている間は、出力端子OUTからはVDDの電位レベルの信号が出力される。
 その後、STOP信号がハイレベルになると、ノードN1はトランジスタT103によりVSSまでディスチャージされ、トランジスタT102はオフ状態になる。出力端子OUTからは、トランジスタT104がオン状態になることにより、VSSの電位レベルの信号が出力される。
 このように、従来の半導体装置の構成によれば、ブートストラップ動作を利用することにより、簡易な構成で、高電位の信号を出力することができる。そのため、このような半導体装置を液晶表示装置内の各部において好適に利用することが可能となる。
特許第3092506号公報(2000年7月28日登録)
 ところが、上記のような従来の同一導電型のトランジスタからなる半導体装置では、出力信号がオフリーク(トランジスタがオフ時に流す微小な電流)などの影響を受けて、その電位が次第に低下するという問題点がある。また、出力信号は、電位が低下すると高インピーダンスになり、ノイズの影響を受け易くなるため、この出力信号を受け取った後段の回路において、誤動作を引き起こすという問題点もある。具体的には、例えば、上記半導体装置を、液晶表示装置内のシフトレジスタの走査信号線選択回路として用いた場合に、この半導体装置の出力信号がノイズに対して弱くなると、走査信号線の順次選択動作が正確に行われなくなるといった誤動作が生じる可能性がある。
 ここで、従来の半導体装置において、出力信号が低下して、ノイズの影響を受け易くなる原理について説明する。図47には、オフリーク等の影響を受けた場合の信号の波形を点線で示している。
 上記半導体装置100において、例えば、トランジスタT103のオフリークなどの影響を受けると、プリチャージしたノードN1の電荷が放出していき、ノードN1の電位は次第に低下する(図47のノードN1の点線)。そして、ノードN1の電位がVDD+Vthまで低下すると、クロック信号φがハイレベル(VDD)の場合には、トランジスタT102がオフ状態になる。これにより、トランジスタT102の出力信号は、高インピーダンスになり、出力信号OUTがノイズの影響を受け易くなる。
 また、ノードN1の電位がさらに低下して、VDDよりも低下すると、トランジスタT102がオフ状態になっているため、例えばトランジスタT104のオフリークなどによって、図47の点線で示すように、出力信号OUT自体の電位レベルも低下する。これにより、後段の回路において誤動作を引き起こすおそれが生じる。
 このようにノードN1の電位は、オフリーク等の影響を受けて低下するため、例えばクロック信号φの周波数が低い場合や、ノードN1の電荷を保持しておく時間が長い場合には、ノードN1の電位の低下がさらに大きくなる。そのため、出力信号は、高インピーダンスになりノイズの影響を受け易くなる。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、同一導電型のトランジスタからなり、電位レベルの低下を防いで安定した信号を出力することができる半導体装置、及びそれを備えた表示装置を提供することにある。
 本発明に係る半導体装置は、上記課題を解決するために、同一導電型の複数のトランジスタにより構成される半導体装置であって、第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量とを備え、前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高いことを特徴としている。
 トランジスタは、第1の端子、第2の端子及び制御端子で構成され、制御端子に入力される制御信号により第1の端子及び第2の端子を導通し、所望の電位レベルの信号を出力する回路である。ここでの制御信号は、制御端子に与えたときにトランジスタをオン状態にする電圧(信号のレベル:VDD)を有し、制御端子に与えたときにトランジスタをオフ状態にする電圧(信号のレベル:VSS)を有する。
 ここで、従来の半導体装置では、通常、上述したとおり、所望の電位レベルの信号を出力するトランジスタの制御端子に接続されるノードの電位は、オフリークなどの影響により次第に低下する。
 そこで、上記半導体装置では、所望の電位レベルの信号を出力するトランジスタの制御端子に接続されるノード、すなわち第1のトランジスタ及び第2のトランジスタ同士の接続点(ノード)に、容量を介して、出力信号よりも高周波数のクロック信号が入力される構成としている。
 この構成によれば、第1のトランジスタの閾値電圧をVthとすると、上記ノードの電位は、まずクロック信号及び容量によってα電位分突き上げられた後、オフリークなどにより例えばβ電位分下げられ、VDD-Vth+α-βになる。その後、クロック信号がローレベル(VSS)になると、ノードの電位は、VDD-Vth-βになるが、ここで入力信号がハイレベル(VDD)の場合には、ノードの電位は、VDD-Vthまで充電される。そして、クロック信号が再びハイレベルになると、ノードの電位は、再びVDD-Vth+αまで突き上げられる。
 このように、上記半導体装置の構成によれば、出力信号よりも周波数の高いクロック信号の周期に応じて突き上げ動作が行われる。そのため、オフリークなどによりノードの電位が低下しても、突き上げ動作により、すぐに電位を回復させることができる。これにより、ノードの電位を、従来の構成よりも短い周期で高めることができるため、出力信号の電位レベルを安定させることができ、出力信号を受け取る後段の回路の動作を安定させることができる。
 また、上記突き上げられたノードの電位(VDD-Vth+α)が、VDD+Vth(Vthは第2のトランジスタの閾値電圧とする)以上になるように、クロック信号の振幅及び容量を設定することにより、出力信号の電位レベルをVDDに保つことができる。
 また、第2のトランジスタの制御端子に高電位の信号が入力されるため、出力信号は、低インピーダンスを保つことができ、ノイズに対しても強くなる。
 本発明に係る半導体装置は、上記半導体装置において、第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタをさらに備えていることが望ましい。
 上記の構成によれば、制御信号により、第3のトランジスタがオン状態になると、上記ノードの電位を確実にVSSに下げることができる。
 本発明に係る半導体装置は、上記半導体装置において、第1の端子が前記出力端子に接続され、第2の端子にオフ電圧が与えられ、制御端子に前記制御信号が入力される第4のトランジスタをさらに備えていることが望ましい。
 上記の構成によれば、制御信号により、第3及び第4のトランジスタがオン状態になると、上記ノードの電位を確実にVSSに下げることができるとともに、出力信号の電位レベルをローレベル(オフ電圧:VSS)に固定することができる。
 本発明に係る半導体装置は、上記半導体装置において、第1の端子にオン電圧が入力され、第2の端子が前記接続点に接続され、制御端子が前記出力端子に接続される第5のトランジスタをさらに備えていることが望ましい。
 上記の構成によれば、出力信号が第5のトランジスタの制御端子に入力されるため、出力信号がハイレベル(オン電圧:VDD)を出力している間は、入力信号がローレベルになり第1のトランジスタがオフ状態である場合に、上記ノードの電位が、オフリーク等により低下したとしても、第5のトランジスタにより再びVDD-Vthまでチャージされる。
 これにより、クロック信号がハイレベルを出力している期間中は、上記ノードの電位を、VDD-Vth+αまで突き上げることができる。そのため、出力信号の電位レベルをより安定させることができる。
 本発明に係る半導体装置は、上記半導体装置において、前記入力信号を出力する第6のトランジスタをさらに備え、前記第6のトランジスタは、第1の端子が入力端子に接続され、第2の端子が前記第1のトランジスタの制御端子と前記出力端子に接続され、制御端子にイネーブル信号が入力されることが望ましい。
 上記の構成によれば、イネーブル信号が一旦ハイレベルになると、その後、イネーブル信号がローレベルになっても、出力信号がハイレベルであれば、第1のトランジスタの制御端子に、常にハイレベルの信号を入力することができる。これにより、半導体装置のアクティブ状態を安定して維持することができる。
 本発明に係る半導体装置は、上記半導体装置において、第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に、当該半導体装置の初期状態を安定させるための初期化信号が入力される第7のトランジスタをさらに備えていることが望ましい。
 上記の構成によれば、初期状態において、第7のトランジスタにハイレベルの初期化信号を入力することにより、上記ノードの電位をVSSに固定することができるため、初期状態を安定させることができる。
 本発明に係る半導体装置は、上記半導体装置において、第1の端子が前記クロック端子に接続され、第2の端子が前記容量の一端に接続され、制御端子に前記入力信号が入力される第8のトランジスタをさらに備えていることが望ましい。
 上記の構成によれば、第8のトランジスタのオン/オフを制御することにより、クロック端子と、上記ノードにつながる容量とを切り離すことができる。これにより、クロック端子の負荷を、第8のトランジスタの寄生容量のみとすることができる。そのため、クロック端子を駆動する回路の駆動能力低減と容量の削減効果とにより、低消費電力化が可能となる。
 本発明に係る半導体装置は、上記課題を解決するために、同一導電型の複数のトランジスタにより構成される半導体装置であって、第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量と、第1の端子が前記接続点に接続され、制御端子にオン電圧が入力される第10のトランジスタと、第1の端子が前記第10のトランジスタの第2の端子に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタとを備え、前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高く設定されていることを特徴としている。
 上記ノードの電位は、クロック信号により突き上げられるため、上記ノードに接続される各トランジスタには高電圧が印加される。そのため、トランジスタは、自身の耐圧を越えると破壊される危険性がある。
 そこで、上記半導体装置では、上記ノードと第3のトランジスタとの間に第10のトランジスタを備えている。これにより、詳細は後述するが、例えば第3のトランジスタにかかる電位を低下させることができるため、信頼性の高い回路を構成することができる。
 本発明に係る半導体装置は、上記半導体装置において、前記クロック信号は、ハイレベルとローレベルとを周期的に繰り返す波形を示し、1周期のうちローレベルの期間が、該クロック信号がハイレベルからローレベルに変化した後に前記接続点の電位が飽和するまでの期間となるように設定されていることが望ましい。
 これにより、半導体装置のアクティブ状態を保持しながら、出力信号のインピーダンスを下げることができる。
 本発明に係る表示装置は、上記何れかの半導体装置を備えていることを特徴としている。
 これにより、電位レベルの低下を防いで安定した信号を出力することができる表示装置を提供することができる。
 なお、本発明に係る表示装置は、液晶表示装置であることが望ましい。
 本発明の他の目的、特徴、および優れた点は、以下に示す記載によって十分分かるであろう。また、本発明の利点は、添付図面を参照した次の説明で明白になるであろう。
実施の形態1に係る回路の構成を示す回路図である。 図1に示す回路における各種信号の波形を示すタイミングチャートである。 図1に示す回路において、オフリーク等の影響を受けた場合の各種信号の波形を示すタイミングチャートである。 従来の回路において、オフリーク等の影響を受けた場合の各種信号の波形を示すタイミングチャートである。 図1に示す回路において、トランジスタT2のドレイン端子にクロック信号φが入力される場合の各種信号の波形を示すタイミングチャートである。 実施の形態2に係る回路の構成を示す回路図である。 図6に示す回路における各種信号の波形を示すタイミングチャートである。 実施の形態3に係る回路の構成を示す回路図である。 実施の形態4に係る回路の構成を示す回路図である。 図9に示す回路における各種信号の波形を示すタイミングチャートである。 図9に示す回路におけるトランジスタT6の他の構成を示した回路図である。 図9に示す回路におけるトランジスタT6の他の構成を示した回路図である。 実施の形態5に係る回路の構成を示す回路図である。 実施の形態6に係る回路の構成を示す回路図である。 図14に示す回路の他の構成を示す回路図である。 実施の形態7に係る回路の構成を示す回路図である。 実施の形態7に係る回路の他の構成を示す回路図である。 図1に示す回路において、トランジスタT1をダイオード接続した場合の構成を示す回路図である。 図6に示す回路において、トランジスタT1をダイオード接続した場合の構成を示す回路図である。 図8に示す回路において、トランジスタT1をダイオード接続した場合の構成を示す回路図である。 図9に示す回路において、トランジスタT1をダイオード接続した場合の構成を示す回路図である。 図13に示す回路において、トランジスタT1をダイオード接続した場合の構成を示す回路図である。 図14に示す回路において、トランジスタT1をダイオード接続した場合の構成を示す回路図である。 図16に示す回路において、トランジスタT1をダイオード接続した場合の構成を示す回路図である。 図18に示す回路における各種信号の波形を示すタイミングチャートである。 本発明の各実施の形態におけるクロック信号CKの波形を示す図である。 本実施の形態に係る液晶表示装置の全体構成を示すブロック図である。 実施例1に係るCSドライバ内に設けられるメモリ回路の構成を示すブロック図である。 図28に示すメモリ回路の構成を示す回路図である。 図28に示すメモリ回路における各種信号の波形を示すタイミングチャートである。 図28に示すメモリ回路において、入力信号INから反転信号INBを生成するインバータ回路の構成を示す回路図である。 図28に示すメモリ回路において、入力信号INから反転信号INBを生成するインバータ回路の他の構成を示す回路図である。 実施例2に係るバッファ回路の構成を示すブロック図である。 図33に示すバッファ回路の構成を示す回路図である。 図33に示すバッファ回路において、インバータがブートストラップ回路により構成されている場合を示すブロック図である。 図35に示すバッファ回路の構成を示す回路図である。 実施例3に係るバッファ回路の構成を示すブロック図である。 図37に示すバッファ回路において、インバータがブートストラップ回路により構成されている場合を示す回路図である。 実施例4に係るバッファ回路の構成を示すブロック図である。 図39に示すバッファ回路の構成を示す回路図である。 実施例4に係るシフトレジスタを構成する単位回路の構成を示すブロック図である。 図41に示すシフトレジスタを構成する単位回路の他の構成を示すブロック図である。 図41に示すシフトレジスタを構成する単位回路の他の構成を示すブロック図である。 図1に示す回路の構成をpチャネル型のトランジスタで構成した場合の回路図である。 図44に示す回路における各種信号の波形を示すタイミングチャートであり、図中の(a)はトランジスタT2′のソース端子にVSSが入力される場合の波形を示し、図中の(b)はトランジスタT2′のソース端子にクロック信号φが入力される場合の波形を示している。 従来の半導体装置の構成を示す回路図である。 図46に示す半導体装置における各種信号の波形を示すタイミングチャートである。
符号の説明
1   メモリ回路
2,3,4   バッファ回路
5   (シフトレジスタの)単位回路
10,20,30,40,50,60,70 回路(半導体装置)
11,21,31,41,51,61,71 回路(半導体装置)
T1  トランジスタ(第1のトランジスタ)
T2  トランジスタ(第2のトランジスタ)
T3  トランジスタ(第3のトランジスタ)
T4  トランジスタ(第4のトランジスタ)
T5  トランジスタ(第5のトランジスタ)
T6  トランジスタ(第6のトランジスタ)
T7  トランジスタ(第7のトランジスタ)
T8  トランジスタ(第8のトランジスタ)
T9  トランジスタ(第9のトランジスタ)
T10 トランジスタ(第10のトランジスタ)
151 液晶表示装置(表示装置)
n1,n2,n3,n4,n5,n6  ノード
100 半導体装置
 本発明の実施の形態について図1から図45に基づいて説明すると以下の通りである。
 本発明の半導体装置に相当するActive信号保持回路(以下、単に「回路」と表す)は、同一導電型、すなわち単極性のチャネル(nチャネル型又はpチャネル型)のトランジスタを用いて構成されている。以下に示す各実施の形態では、nチャネル型のトランジスタの構成を例に挙げて説明し、pチャネル型の構成については本欄の末尾に例示するにとどめ、詳細な説明は省略する。このトランジスタには、例えば、TFT、及びシリコン基板状に形成した電界効果トランジスタを使用することが可能である。
 〔実施の形態1〕
 本実施の形態における回路10の構成について、以下に説明する。図1は回路10の構成を示す回路図であり、図2は回路10における各種信号の波形を示すタイミングチャートである。
 回路10は、トランジスタT1(第1のトランジスタ)、トランジスタT2(第2のトランジスタ)、トランジスタT3(第3のトランジスタ)、及び容量C1を備え、容量C1の一端には、回路10の出力信号OUTよりも周波数の高いクロック信号CKが入力される構成である。以下、ゲート端子(制御端子)に与えたときにトランジスタをオン状態にする電圧(信号のレベル)をオン電圧(オンレベル)といい、ゲート端子に与えたときにトランジスタをオフ状態にする電圧(信号のレベル)をオフ電圧(オフレベル)という。nチャネル型トランジスタでは、ハイ電圧がオン電圧(ハイレベルがオンレベル)、ロー電圧がオフ電圧(ローレベルがオフレベル)になり、pチャネル型トランジスタではその逆になる。
 図1に示すように、トランジスタT1は、ドレイン端子(第1の端子)が電源VDDに接続され、ゲート端子(制御端子)が入力端子INに接続される。トランジスタT2は、ドレイン端子(第1の端子)が電源VDDに接続され、ゲート端子(制御端子)がトランジスタT1のソース端子に接続され、ソース端子(第2の端子)が出力端子OUTに接続される。トランジスタT3は、ドレイン端子(第1の端子)がトランジスタT1のソース端子及びトランジスタT2のゲート端子に接続されるとともに、容量C1を介してクロック端子CKに接続される。トランジスタT1とT2とT3と容量C1との接続点をノードn1とする。
 すなわち、本実施の形態の回路10は、図46に示す従来の回路(半導体回路100)とは異なり、容量C1の一端には、出力信号OUTによりも高周波数のクロック信号CKが入力され、容量C1の他端が、ハイレベルの信号をフローティング状態で保持するノードn1に接続される構成である。この構成を有することにより、電位レベルを維持し、ノイズの影響を受け難い安定した信号を出力することが可能になる。以下、図2を用いて、回路10の動作とともに具体的に説明する。なお、回路10の内部の信号及び入出力信号の電位は、特に断わらない限り、ハイレベルのときはVDD、ローレベルのときはVSS(ゼロ)とする。
 入力信号INがハイレベル(VDD)になると、トランジスタT1がオン状態になり、ノードn1の電位は、トランジスタT1の閾値電圧をVthとするとき、VDD-Vthになる(プリチャージ動作)。ノードn1の電位が上昇すると、トランジスタT2はオン状態になる。入力信号INが、ハイレベルからローレベル(VSS)になると、ノードn1はハイレベルの電荷を保持したままフローティング状態になる。この状態で、クロック信号CKがハイレベルになると、クロック信号CKにより、ノードn1の電位は、α電位分突き上げられ、VDD-Vth+αになる。この電位がVDD+Vthを超える場合は、トランジスタT2は、出力端子OUTにVDDを出力する。
 このように、ノードn1の電位がクロック信号CKによって突き上げられているときは、トランジスタT2のゲート端子には高電位の信号が入力されるため、トランジスタT2から出力端子OUTにVDDの電位レベルの信号が出力されるとともに、出力インピーダンスが低くなる(図2のt期間)。
 その後、STOP信号がハイレベルになると、トランジスタT3がオン状態になり、ノードn1の電荷がディスチャージされ、トランジスタT2はオフ状態になる。これにより、出力端子OUTはフローティング状態になる(図2の斜線部分)。
 このように、STOP信号がハイレベルになるまでの期間において、トランジスタT3などのオフリークなどの影響により電位が低下し、クロック信号CKにより突き上げられたノードn1の電位がVDD+Vthより低くなるまでの間は、出力端子OUTからは、正常にVDDが出力される。
 また、図2に示すように、ハイレベルの入力信号INが入力され、ノードn1がプリチャージされるときに、クロック信号CKによる突き上げによりノードn1の電位が上がるため、出力信号OUTの立ち上がりが速くなり(点線で囲った部分)、駆動速度を向上させることができる。
 ここで、回路10がオフリーク等の影響を受けた場合の動作について、従来の構成と比較して説明する。図3は、回路10において、オフリーク等の影響を受けた場合の各種信号の波形を示すタイミングチャートである。図4は、図46に示す従来の回路において、オフリーク等の影響を受けた場合の各種信号の波形を示すタイミングチャートである。
 図46に示す従来の回路において、ノードN1にリーク経路がある場合、クロック信号φがハイレベルを継続している間、ノードN1の電位が次第に低下する。このとき、再び入力信号INがハイレベルになったとしても、ノードN1の電位がVDD-Vth以下にまでリークした場合には、VDD-Vthまでしか充電されない(図4の点線で囲った部分)。そのため、出力信号OUTは高インピーダンスの状態になり、ノイズに弱くなる。さらに、出力信号OUTにリークがある場合には、ノードN2の電位は、再充電されても、VDD-2×Vthまでしか上昇しないため、出力端子OUTに接続される後段の回路の動作マージンが低下する。
 これに対して、本実施の形態の回路10では、ノードn1の電位がクロック信号CKによって突き上げられた後、リークによってβ電位分下がると、VDD-Vth+α-βになる。その後、クロック信号CKがローレベルになると、ノードn1の電位は、VDD-Vth-βになるが、ここで入力信号INがハイレベルになっていれば、ノードn1の電位は、VDD-Vthまで充電される。そのため、再びクロック信号CKがハイレベルになると、ノードn1の電位は、VDD-Vth+αまで突き上げられる(図3の点線で囲った部分)。これにより、出力信号OUTにリーク等があっても、安定してVDDの電位を保持することができる。よって、出力信号OUTに接続される後段の回路は安定した動作を得ることができる。また、トランジスタT2のゲート端子に高電位の信号が入力されるため、出力信号OUTは、低インピーダンスを保つことができ、ノイズに対しても強くなる。
 このように、本実施の形態の回路10の構成によれば、出力信号OUTにリーク等が生じたとしても、ノードn1の電位を再びVDD-Vthまで充電することができる。そして、クロック信号CKの周波数が出力信号の周波数よりも高く設定されているため、STOP信号がハイレベルになるまでの間に、ノードn1の電位を、再びクロック信号CKによる突き上げ動作によりVDD+Vth以上に突き上げることができる。これにより、VDDを出力できる期間、及び低インピーダンスの期間を従来よりも長く確保することができる。
 ここで、クロック信号CKの振幅、及び容量C1は、突き上げられたノードn1の電位(VDD-Vth+α)が、VDD+Vth以上になるように設定される。
 なお、図1に示す回路10の構成では、トランジスタT2のドレイン端子が電源VDDに接続されているが、これに限定されるものではなく、例えば、ドレイン端子にクロック信号φが入力される構成であってもよい。図5は、トランジスタT2のドレイン端子にクロック信号φが入力される場合の回路10の構成における各種信号の波形を示すタイミングチャートである。この構成においても、図1に示す回路10の構成と同様、トランジスタT2に入力される信号の電位レベルを保持したまま出力することができるため、トランジスタT2がオン状態になると、クロック信号φの電位レベルが出力される。
 〔実施の形態2〕
 本実施の形態における回路20の構成について、以下に説明する。図6は回路20の構成を示す回路図であり、図7は回路20における各種信号の波形を示すタイミングチャートである。なお、説明の便宜上、上記実施の形態1において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。
 ここで、実施の形態1に示す回路10の構成(図1)では、STOP信号がハイレベルになり、ノードn1がローレベルの電位になるタイミングで、出力端子OUTはフローティング状態(図2の斜線部分)になるため、ノイズ等の影響を受け易くなる。
 そこで、このフローティング状態を解消すべく、本実施の形態の回路20では、回路10において、さらにトランジスタT4(第4のトランジスタ)を備えている。図6に示すように、トランジスタT4は、ドレイン端子(第1の端子)がトランジスタT2のソース端子及び出力端子OUTに接続され、ソース端子(第2の端子)が電源VSSに接続され、ゲート端子(制御端子)がトランジスタT3のゲート端子に接続される。トランジスタT3,T4のそれぞれのゲート端子は、入力端子IN2に接続され、トランジスタT3及びT4のオン/オフを制御する入力信号IN2が入力される。トランジスタT2とT4と出力端子OUTとの接続点をノードn2とする。
 上記の構成によれば、図7に示すように、ノードn1がローレベルの電位になるタイミングで、ハイレベルの入力信号IN2を入力することにより、トランジスタT3及びT4がオン状態になるため、ノードn1の電荷が確実にディスチャージされるとともに、出力信号OUTの電位レベルをローレベル(VSS)に固定することができる。
 なお、トランジスタT4のゲート端子に入力する信号は、特に限定されるものではなく、出力信号OUTの電位レベルをローレベル(VSS)に固定できればよく、他の制御信号を入力してもよい。
 〔実施の形態3〕
 本実施の形態における回路30の構成について、以下に説明する。図8は回路30の構成を示す回路図である。なお、説明の便宜上、上記実施の形態1及び2において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1及び2において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。
 本実施の形態の回路30では、図6に示す回路20において、さらに、リフレッシュ機能の役割を担うトランジスタT5(第5のトランジスタ)を備えている。図8に示すように、トランジスタT5は、ドレイン端子(第1の端子)が電源VDDに接続され、ソース端子(第2の端子)がノードn1に接続され、ゲート端子(制御端子)がノードn2に接続される。
 上記の構成によれば、出力信号OUTがトランジスタT5のゲート端子に入力されるため、出力信号OUTがハイレベルを出力している間は、入力信号IN1がローレベルになりトランジスタT1がオフ状態である場合に、ノードn1の電位が、オフリーク等により低下したとしても、トランジスタT5により再びVDD-Vthまでチャージされる(リフレッシュ動作)。これにより、クロック信号CKがハイレベルを出力している期間中は、ノードn1の電位を、VDD-Vth+αまで突き上げることができる。そのため、出力信号OUTは、安定してVDDを出力することができ、低周波動作時に誤動作することなく、正常に動作することができる。
 〔実施の形態4〕
 本実施の形態における回路40の構成について、以下に説明する。図9は回路40の構成を示す回路図であり、図10は回路40における各種信号の波形を示すタイミングチャートである。なお、説明の便宜上、上記実施の形態1~3において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~3において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。
 本実施の形態の回路40では、図6に示す回路20において、さらに、入力端子IN1とトランジスタT1との間にトランジスタT6(第6のトランジスタ)を備えている。図9に示すように、トランジスタT6は、ドレイン端子(第1の端子)が入力端子IN1に接続され、ソース端子(第2の端子)がトランジスタT1のゲート端子に接続され、ゲート端子(制御端子)にイネーブル信号ENが入力される構成である。また、トランジスタT6のソース端子は、トランジスタT2とT4との接続点(ノードn2)にも接続される。
 上記の構成によれば、イネーブル信号ENが一旦ハイレベルになると、その後、イネーブル信号ENがローレベルになっても、出力信号OUTがハイレベルであれば、トランジスタT1のゲート端子に、常にハイレベルの信号を入力することができる。これにより、回路40をアクティブ状態で保持し続けることができる。
 また、出力端子OUT及びトランジスタT1のゲート端子が互いに接続されているので、出力信号OUTがハイレベルを出力している間は、ノードn1の電位がVDD-Vth以下になると、トランジスタT1はオン状態になる。なお、ノードn1の電位がVDD-Vth以上の電位のときには、トランジスタT1はオフ状態になり、ノードn1はフローティング状態になる。
 これにより、出力信号OUTがハイレベルを出力している間は、ノードn1の電位は、オフリーク等により低下したとしても、トランジスタT1により再びVDD-Vthまでチャージされる(リフレッシュ動作)。これにより、クロック信号CKがハイレベルを出力している期間中は、ノードn1の電位を、VDD-Vth+αまで突き上げることができるため、出力信号OUTは、安定してVDDを出力することができ、低周波動作時に誤動作することなく、正常に動作することができる。
 ここで、トランジスタT6は、上述した図9の構成に限定されるものではなく、他の構成としては、例えば、入力信号IN1がローレベルの電位になるとソース端子がフローティングになる構成、具体的には、図11に示す構成及び図12に示す構成が挙げられる。図11に示す構成では、トランジスタT6のドレイン端子に電源VDDが接続され、ゲート端子に入力信号IN1が入力される。また、図12に示す構成では、トランジスタT6のドレイン端子及びゲート端子に入力信号IN1が入力される。これらの構成は、他の信号(例えばイネーブル信号EN)によらず、一旦、入力信号IN1がアクティブ(ハイレベル)になると、その後入力信号IN1がローレベルになっても、アクティブ状態を保持し続ける構成に好適である。
 〔実施の形態5〕
 本実施の形態における回路50の構成について、以下に説明する。図13は回路50の構成を示す回路図である。なお、説明の便宜上、上記実施の形態1~4において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~4において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。
 ここで、実施の形態1~4に示す回路の構成では、初期状態で入力信号INがローレベルの場合に、容量C1に蓄積されている電荷量が分からず、ノードn1の電位が不定状態になっている。そのため、初期状態が不安定になるという問題がある。
 そこで、初期状態を安定させるべく、本実施の形態の回路50では、実施の形態1~4に示す各回路において、さらにトランジスタT7(第7のトランジスタ)を備えている。図13に示す回路50は、図1に示した回路10に対してトランジスタT7を備えた構成であり、トランジスタT7は、ゲート端子(制御端子)に初期化信号INIが入力され、ソース端子(第2の端子)が電源VSSに接続され、ドレイン端子(第1の端子)がノードn1に接続される。
 上記の構成によれば、初期状態において、ハイレベルの初期化信号INIを入力することにより、ノードn1の電位をVSSに固定することができるため、初期状態を安定させることができる。
 なお、実施の形態2~4の各回路に対しても、上記と同様に、トランジスタT7を備えることにより、初期状態を安定させることができる。
 〔実施の形態6〕
 本実施の形態における回路60の構成について、以下に説明する。図14は回路60の構成を示す回路図であり、なお、説明の便宜上、上記実施の形態1~5において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~5において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。
 ここで、実施の形態1~5に示す回路の構成では、クロック端子CKの容量が大きくなるという問題がある。ここで、クロック負荷の具体例について、図1の回路10を例に挙げて説明する。
 ノードn1の電位がハイレベル(VDD-Vth以上)の場合、つまり、ノードn1がフローティング状態になっている期間について考えると、クロック端子CKの容量は、トランジスタT1,T2及びT3の寄生容量の合計を、Ctrとすると、
1/クロック端子CKの容量=1/C1+1/Ctr・・・(1)
となる。なお、説明の便宜上、配線負荷等は省略している。
 ここで、ノードn1の電位を大きく突き上げようとすると、C1>Ctrとなる。仮に、クロック信号CKの振幅Vpに対して、ノードn1の電圧を、2×Vp/3分突き上げようとすると、C1:Ctr=2:1となる。これを式(1)に代入すると、
クロック端子CKの容量=1/3×C1
となる。
 次に、ノードn1の電位がローレベル(VSS)の場合、つまり、ノードn1がフローティング状態でない期間について考えると、クロック端子CKの容量は、
クロック端子CKの容量=C1
となる。
 このように、ノードn1がフローティング状態でない期間に関しては、クロック端子CKの容量が大きくなることが分かる。特に、回路10を複数段使用し、クロック端子CKに同じクロック信号CKを入力する場合には、非常に大きな容量となる。
 そこで、このクロック負荷を低減すべく、本実施の形態の回路60では、実施の形態1~5に示す各回路において、さらにトランジスタT8(第8のトランジスタ)を備えている。図14に示す回路60は、図1に示した回路10に対してトランジスタT8を備えた構成であり、トランジスタT8は、ゲート端子(制御端子)が入力端子INに接続され、ドレイン端子(第1の端子)がクロック端子CKに接続され、ソース端子(第2の端子)が容量C1を介してノードn1に接続される。
 回路60では、トランジスタT8により、ノードn1がフローティング状態とはならず、クロック端子CKの負荷が非常に大きくなる期間に、クロック端子CKと容量C1とを切り離すことができる。
 具体的には、ノードn1の電位がVSSに固定される場合には、ノードn1がクロック信号CKからの突き上げを必要としないため、その期間をトランジスタT8により、クロック端子CKと容量C1とを電気的に切り離すことで、クロック端子CKの負荷は、トランジスタT8の寄生容量のみになるため、非常に小さくなる。
 そのため、クロック端子CKを駆動する回路の駆動能力低減と容量の削減効果により、低消費電力化が可能となる。
 ここで、回路60において、トランジスタT8がオフ状態である期間、トランジスタT8と容量C1との間のノードn3を安定的に電位固定するために、図15に示すように、さらに、トランジスタT9、及び、抵抗R1とトランジスタT11とを含むインバータ6を設けてもよい。この構成では、トランジスタT9は、ドレイン端子がノードn3に接続され、ソース端子が電源VSSに接続され、ゲート端子がインバータ6への入力端子INに接続される。これにより、トランジスタT1及びT8がオフ状態になる場合、トランジスタT3及びT9はオン状態になり、ノードn1及びn3の電位をVSSに固定することができる。
 また、図14のトランジスタT8のゲート端子は入力端子INに接続されているが、ゲート端子に入力する信号は、特に限定されるものではなく、ノードn1の電位がVSSに固定される期間の一部もしくは期間中に、トランジスタT8がオフするような他の制御信号を入力してもよい。
 また、図15では、入力端子INの反転信号をインバータ6で生成し、入力端子INBに出力しているが、入力端子INに入力される信号の反転信号が、別の制御信号として存在する場合には、その信号を入力端子INBに入力してもよい。
 また、回路60では、容量で消費する消費電力の低減を行っているが、外部のクロック操作により、例えば、回路10におけるノードn1の電位がVSSに固定される期間中は、クロック信号CKをあるDCレベルに固定する、もしくは、消費電力削減のためにクロック信号CKの周波数を遅くする構成としてもよい。
 なお、上述した本実施の形態の、トランジスタT8によりクロック負荷の低減を図る構成は、上記実施の形態1~5に示した各回路において、同様に適用することができる。
 〔実施の形態7〕
 本実施の形態における回路70の構成について、以下に説明する。図16は回路70の構成を示す回路図であり、なお、説明の便宜上、上記実施の形態1~6において示した部材と同一の機能を有する部材には、同一の符号を付し、その説明を省略する。また、実施の形態1~6において定義した用語については、特に断わらない限り本実施の形態においてもその定義に則って用いるものとする。
 ここで、実施の形態1~6に示す回路の構成では、ノードn1がクロック信号CKの突き上げ動作により、VDD-Vth+αという高い電位になるため、ノードn1に接続されるトランジスタは、ゲート-ソース間、ゲート-ドレイン間、ソース-ドレイン間に高電圧が印加され、場合によってはトランジスタが、自身の耐圧を超え、破壊される危険性が生じる。
 具体的には、回路10では、特にトランジスタT3のゲート-ドレイン間、ソース-ドレイン間に高電圧が印加される。入力信号INがVSSのとき、ノードn1の電位が突き上げられると、VDD-Vth+αとなるため、トランジスタT3について、ゲート-ドレイン間、及びソース-ドレイン間は、VDD-Vth+α-VSSという電圧になる。ここで、VDD=10V,VSS=-10V,α=15Vとすると、
VDD-Vth+α-VSS=35V-Vth
となる。これに対して、他のノードでは、VDDとVSSとの電位差20Vが印加される。このように、ノードn1に接続されるトランジスタには高電圧が印加される。
 そこで、トランジスタの耐圧対策として、本実施の形態の回路70では、実施の形態1~6に示す各回路において、さらにトランジスタT10(第10のトランジスタ)を備えている。図16に示す回路70は、図1に示した回路10に対してトランジスタT10を備えた構成であり、トランジスタT10は、ゲート端子(制御端子)が電源VDDに接続され、ドレイン端子(第1の端子)がノードn1に接続され、ソース端子(第2の端子)がトランジスタT3のドレイン端子に接続される。トランジスタT3とT10との接続点を、ノードn4とする。
 上記の構成によれば、入力信号INがVSSの場合に、ノードn1の電位はVDD-Vth+αまで上昇するが、ノードn4はVDD-Vthまでしか上がらない。そのため、トランジスタT3について、ゲート-ドレイン間、及びソース-ドレイン間の電圧は、
VDD-Vth-VSS=20V-Vth
となり、回路10の場合と比較して、α電位分、印加電圧が低くなる。
 また、トランジスタT10のゲート-ドレイン間の電位は、α-Vth=15V-Vth、ゲート-ソース間の電位はVth、ソース-ドレイン間の電位はα=15Vとなり、何れも低電圧となる。
 これにより、クロック信号CKによりフローティング状態のノードn1の電位が突き上げられても、ノードn1に接続されるトランジスタにかかる電圧負荷を低減することができるため、信頼性の高い回路を構成することができる。
 上述した本実施の形態の、トランジスタT10によりトランジスタの耐圧対策を図る構成は、上記実施の形態1~6に示した各回路において、同様に適用することができる。図17は、その一例であり、上記実施の形態6の図15に示した回路に適用した場合の構成を示している。
 ここで、以上の実施の形態1~7に示した各回路では、トランジスタT1のドレイン端子が電源VDDに接続されている構成である。しかしながら、本発明の回路の構成はこれに限定されるものではなく、例えば、トランジスタT1のドレイン端子とゲート端子とが互いに接続される、いわゆるダイオード接続の構成であってもよい。図18~図24は、それぞれ、上述した回路10,20,30,40,50,60及び70において、トランジスタT1をダイオード接続した場合の回路11,21,31,41,51,61及び71の構成を示す回路図である。例えばトランジスタT1が回路10のような構成の場合には、トランジスタT3がオン状態で、入力端子INにローレベルが入力されている場合に、入力される信号にノイズが発生すると、トランジスタT1が瞬間的にオン状態となり、トランジスタT1及びトランジスタT3を介して電源VDDから電源VSSへ貫通電流が流れ、消費電流の増加もしくは誤動作の原因になるという問題が生じる。この点、上記ダイオード接続の構成によれば、トランジスタT1のゲート端子とドレイン端子が接続されているので、入力端子INにノイズが発生して、トランジスタT1がオン状態になったとしても、ソース-ドレイン間の電位差がノイズの電位分だけであり、ドレイン端子に電源VDDが接続されている場合と比べ、電位差が小さいため貫通電流が小さくなる。更に、トランジスタT3がオン状態になっているため、トランジスタT1がノイズによってオンしたとしても、トランジスタT3を介して、入力端子INのノイズによって変動した電位を電源VSSへ引っ張ることになり、トランジスタT1をオフする方向の作用が働く。そのため、ノイズの影響によるトランジスタT1の誤動作を防止することができる。
 図25は、上記トランジスタT1をダイオード接続した場合の各回路のうち、図18に示す回路11における各種信号の波形を示すタイミングチャートである。図25に示すように、図1に示す回路10の構成と同様、トランジスタT2のドレイン端子に入力される信号の電位レベルを保持したまま出力することができるため、トランジスタT2がオン状態になるとVDDが出力される。
 また、上記実施の形態1において、トランジスタT2のドレイン端子にクロック信号φが入力される構成について説明したが、この構成についても、各実施の形態に示した回路に適用可能であり、トランジスタT2がオン状態になると、クロック信号φの電位レベルが出力される。
 ところで、本発明のActive信号保持回路に入力されるクロック信号CKは、図26に示すように、ハイレベルとローレベルとが周期的に繰り返される波形を示す。そして、上述したように、Active信号保持回路の出力信号OUTは、クロック信号CKがハイレベルのとき(期間T)に、特に低インピーダンスになる。そのため、クロック信号CKのデューティ比が図26に示すように、例えば50%である場合には、この50%の期間は、出力信号OUTが低インピーダンスになる。すなわち、クロック信号CKのデューティ比を調整することにより、出力信号OUTの低インピーダンスの期間を調整することができる。
 ここで、クロック信号CKのデューティ比について、好ましい値について図1の構成を参考に検討する。上述したように、クロック信号CKがローレベルになると、オフリーク等によりノードn1の電位が低下し、VDD-Vth-βになる。ここで、このノードn1の電位がVDD-Vthに再充電されるまでの時間をtβ、1周期をT1とすると、ハイ期間:ロー期間=T1-tβ:tβが理想のデューティ比となる。また、クロック信号CKがハイレベルからローレベルに移行する期間は、クロックCK端子の負荷(容量と抵抗)の時定数で決まる。このクロック信号CKがハイレベルからローレベル(もしくはその逆)に移行する期間をtckとすると、このtckの期間をパルスの幅として持っていなければ、ノードn1の突き上げに対して、所望の突き上げ電圧αを得ることができないため、時定数の点から考えると、ハイ期間:ロー期間=T1-tck:tckが理想のデューティ比となる。
 実際の動作では、オフリーク等による再充電と、クロック信号CKのハイレベルからローレベルへの移行とは同時に行われる。そのため、両者を考慮して、クロック信号CKがローレベルの時に、VDD-Vthになるまでの時間をtβ′とすると、ハイ期間:ロー期間=T1-tβ′:tβ′が理想のデューティ比となる。これにより、正常に回路のアクティブ状態を保持しながら、トランジスタT2の出力インピーダンスを下げることが可能となる。
 上記考察によれば、クロック信号のデューティ比は、クロック信号CKの1周期のうちローレベルの期間が、クロック信号CKがハイレベルからローレベルに変化した後にノードn1の電位が飽和するまでの期間となるように設定されていることが好ましい。
 また、上記デューティ比は、トランジスタT2の低インピーダンスの期間がより長くなるように設定されていることが好ましい。
 なお、クロック信号CKにおける遷移時間が50%を超える場合には、遷移後に確実にローレベルにならないまま、次のハイレベルへ遷移するため、突き上げ電圧αを得るためには、容量C1をさらに大きくする(補正する)必要がでてくる。その影響により、回路規模が大きくなってしまう、または容量負荷が増大することにより、更に遷移時間が大きくなってしまうことになる。これを回避するため、一般的にクロック信号の周波数を遅くする、もしくはクロック信号CKの駆動する負荷が小さくなるように設計するなどして、遷移時間が50%以内になっていることから、トランジスタT2が低インピーダンスの期間をできるだけ長くなるように、上記デューティ比は50%以上であることが好ましい。
 図26のクロック信号CK_Hは、ハイレベルの期間Tを長くした(デューティ比を大きくした)場合の波形の一例である。これにより、Active信号保持回路の出力信号OUTの低インピーダンスの期間を長くすることが可能になる。そして、低インピーダンスの期間を長くできるため、よりノイズに強くなり、また負荷をすばやく駆動することが可能になる。このように、クロック信号CKは、出力信号OUTよりも高周波数であるとともに、ハイレベル(アクティブ側の電位)の期間が長いことが好ましい。
 なお、pチャネル型のトランジスタで構成する場合には、ロジックが全く逆となるため、同様の理由によりクロック信号CKのローレベル期間が長いことが好ましい。
 以上の実施の形態1~7に示した各回路(Active信号保持回路)は、特に液晶表示装置(表示装置)内において好適に使用することが可能である。図27は、液晶表示装置の全体構成を示すブロック図である。
 液晶表示装置151は、パネル152上に、画素領域153、ソースドライバ154、ゲート/CSドライバ155、BUFF/レベルシフタ回路156、電源回路157、および、端子158…を備えている。ソースドライバ154は出力回路154aを備えており、画素領域153の各ソースバスラインにデータ信号を出力する。ゲート/CSドライバ155は出力回路155aを備えており、画素領域153の各画素にソースドライバ154からのデータ信号を書き込むためにゲートバスラインに選択信号を出力し、また、画素領域153の各画素への書き込み電位を大きくするためにCSバスラインにCS信号を出力する。出力回路154a及び155aは、入力信号から等倍のデータ信号を生成する低出力インピーダンスの増幅回路であるバッファからなる。BUFF/レベルシフタ回路は、インバータなどの信号の減衰を補正する等倍の増幅回路及び信号の電源電圧レベルを変換するレベルシフタ回路などの、低出力インピーダンスの増幅回路であるバッファを備えており、これらバッファを通した信号をソースドライバ154およびゲートドライバ155に供給する。電源回路157は、ロジック回路用電源及びデータ信号の基準電圧、対向電圧、並びに補助容量電圧などを生成する。端子158…は、パネル152上の上述した各回路に信号及び電源を入力するための端子である。なお、液晶表示装置は、ソースドライバに代えて、デマルチプレクサにより構成されていてもよい。
 上記実施の形態1~7に示した各回路は、上記液晶表示装置151において、各部に適用することが可能であり、特に、CSドライバ内のスイッチ、バッファ回路、レベルシフタ回路、ソースドライバ(データ信号線駆動回路)及びゲートドライバ(走査信号線駆動回路)内のシフトレジスタに好適に利用することができる。以下では、その一例として、CSドライバ内に設けられるメモリ回路に適用した例(実施例1)、バッファ回路及びレベルシフタ回路に適用した例(実施例2~4)、及びシフトレジスタに適用した例(実施例5)について説明する。
 〔実施例1〕
 図28は、本実施例におけるCSドライバ内に設けられるメモリ回路1の構成を示すブロック図であり、図29は該メモリ回路1の回路図である。図30は、メモリ回路1における各種信号の波形を示すタイミングチャートである。メモリ回路1は、上記各実施の形態に示した2つの回路(Active信号保持回路)を含んで構成される。具体的には、メモリ回路1は、例えば、図1に示した一方の回路10(回路10bと表す)のSTOP端子と、他方の回路10(回路10aと表す)の出力端子OUTとが接続されることにより構成される。なお、メモリ回路は、少なくとも図1に示した回路10の構成を備えていればよく、本実施例のメモリ回路1では、回路10の構成に加えてトランジスタT4(図28ではトランジスタTa4及びTb4)が設けられ、図6に示した回路20の構成を含んでいる。
 次に、メモリ回路1の動作について説明する。ここでは、イネーブル信号ENがハイレベルのときに、ハイレベルの入力信号INが回路10aに入力され、ローレベルの入力信号INB(INの反転信号)が、回路10bに入力される場合を例に挙げて説明する。
 ハイレベルの信号が入力された回路10aはアクティブ状態になり、ノードna1には、クロック信号が入力されている間、電荷が保持される。そのため、回路10aからは、上記各実施の形態で説明したとおり、VDDの出力信号OUTが出力される。そして、この出力信号OUTは、他方の回路10bのSTOP端子(図29)に入力される。
 VDDの信号がSTOP端子に入力される回路10bは、非アクティブ状態になり、トランジスタTb4からVSSが出力される。INとINBは、互いの極性が逆転しているため、一方がVDDを出力しているときには他方はVSSを出力することになる。これにより、クロック信号CKが入力されている間は、次のイネーブル信号ENがハイレベルになるまで、回路10a及び10bの電位が保持されることになる。
 なお、図28のメモリ回路1では、入力信号INの反転信号INBは外部から入力される構成であるが、これに限定されるものではなく、他の構成として例えば、図31及び図32に示すように、メモリ回路1内部において、インバータ回路を構成し、入力信号INから反転信号INBを生成する構成であってもよい。図31は抵抗R1及びトランジスタT11により構成されるインバータを示し、図32はブートストラップ回路により構成されるインバータを示している。これらの構成によれば、入力信号INがハイレベル(VDD)のときは、ローレベル(VSS)の信号が反転信号INBとして出力され、入力信号INがローレベル(VSS)のときは、ハイレベル(VDD)の信号が反転信号INBとして出力される。
 また、図28のメモリ回路1において、例えば初期状態を安定させるべく、上記実施の形態5において示したトランジスタT7(図13)を、回路10a及び10bのそれぞれに備えていてもよい。回路10aのトランジスタTa7、及び回路10bのトランジスタTb7は、ゲート端子に初期化信号INIが入力され、それぞれのドレイン端子がノードna1及びノードnb1のそれぞれに接続され、それぞれのソース端子が電源VSS及び電源VDDのそれぞれに接続される。これにより、初期状態において、ハイレベルの初期化信号INIを入力することにより、初期状態を決定させることができる。
 なお、メモリ回路1は、上記実施の形態において説明したリフレッシュ機能を有しているため、低周波駆動でも正常に値を保持することが可能である。
 本実施例では、上記実施の形態2の回路20により構成したメモリ回路1について説明したが、他の実施の形態における回路(例えば回路30,40又は50)により構成してもよい。これらの構成においても、同様の効果を得ることができる。
 〔実施例2〕
 図33は、本実施例におけるバッファ回路2の構成を示すブロック図であり、図34は、該バッファ回路2の回路図である。バッファ回路2は、上記各実施の形態に示した回路(Active信号保持回路)を含んで構成される。具体的には、バッファ回路2は、少なくとも図1に示した回路10の構成を備えていればよく、本実施例のバッファ回路2では、回路10の構成に加えてトランジスタT4が設けられ、図6に示した回路20の構成を含んでいる。
 ここで、回路10に入力される信号INBを生成するインバータは、抵抗R1とトランジスタT11とにより構成されている。そのため、インバータの入力信号INがハイレベルの場合には、電源VDDから電源VSSに定常的な電流(貫通電流)が流れ、消費電力が増大してしまう。そこで、消費電力を低減するために、抵抗Rを高抵抗に構成することが考えられるが、この場合には、駆動能力が低下するという問題、及びノイズに対して弱くなるという新たな問題が生じる。
 この点、本実施例のバッファ回路2では、インバータの出力端子INBが、回路10のトランジスタT1のゲート端子にのみ接続されるため、負荷が非常に小さくなる。そのため、インバータの駆動能力が低下しても(抵抗R1を高抵抗にしても)、すばやくトランジスタT1のゲート端子の負荷を駆動することができるため、高速動作が可能であると共に、回路10の動作によりバッファ回路2自体の駆動能力を高めることができる。よって、上記の構成によれば、低消費電力で駆動能力の高いバッファ回路を構成することができる。
 なお、本実施例では、上記実施の形態2の回路20により構成したバッファ回路2について説明したが、他の実施の形態における回路(例えば回路30,40又は50)により構成してもよい。これらの構成においても、同様の効果を得ることができる。
 また、本実施例のバッファ回路2において、入力信号INの電圧がVDD/VSS以外の電圧で入力される場合(例えば、High電圧がVDDよりも小さく、Low電圧がVSSの場合)には、レベルシフタ回路として機能する。
 また、上記バッファ回路及びレベルシフタ回路は、図35及び図36に示すように、上記インバータが、ブートストラップ回路により構成されていてもよい。この構成においても、入力信号INがハイレベルの場合には、トランジスタT12及びT13を通して電源VDDから電源VSSに定常的な電流(貫通電流)が流れ、消費電力が増大してしまう。そこで、消費電力を低減するために、トランジスタT12及びT13のサイズを小さくすることが考えられるが、この場合には、抵抗を用いたインバータと同様、駆動能力が低下するという問題、及びノイズに対して弱くなるという新たな問題が生じる。
 この点、図35及び図36に示すバッファ回路及びレベルシフタ回路では、インバータの出力端子INBが、回路10のトランジスタT1のゲート端子にのみ接続されるため、上述の抵抗を用いたインバータにより構成されるバッファと同様の効果が得られる。
 〔実施例3〕
 次に、バッファ回路の他の構成例について説明する。図37は、本実施例におけるバッファ回路3の構成を示す回路図である。バッファ回路3は、図31に示したインバータと、図6に示した回路20を変形した構成とを含んでいる。具体的には、図6に示す回路20において、トランジスタT3が省略され、トランジスタT1は、ゲート端子が電源VDDに接続され、ドレイン端子がインバータの出力端子INBに接続される。また、トランジスタT3のゲート端子はインバータの入力端子INに接続される。
 ここで、本実施例のバッファ回路3の動作について説明する。
 まず、インバータの入力信号INがローレベルの場合、反転信号INBはVDDとなる。VDDの反転信号INBがトランジスタT1に入力されると、ノードn1の電位は、VDD-Vthまで充電され、クロック信号CKによる突き上げ動作により、ノードn1の電位は、VDD-Vth+αまで上がる。ノードn1は、トランジスタT2のゲート端子に接続されているため、出力信号OUTBの電位は、閾値落ちのないVDDとなる。
 次に、インバータの入力信号INがハイレベルになると、反転信号INBはVSSとなり、ノードn1の電位はVSSまでディスチャージされる。このとき、入力信号INは、ハイレベルであるため、トランジスタT3はオン状態になり、出力信号OUTBの電位はVSSとなる。
 この構成によれば、ノードn1の電位がクロック信号CKの突き上げ動作により高電位になっているときは、トランジスタT2が低インピーダンスになるため、ノイズに強くまた、負荷をすばやく駆動することができる。
 また、ノードn1がリークにより電荷が抜ける場合においても、ノードn1の電位がVDD-Vthよりも低くなると、トランジスタT1がオン状態となり再充電されるため、低周波動作時の誤動作に対するマージンを確保することができる。
 また、抵抗R1を高抵抗にしても、この端子が充電する負荷はトランジスタT1及びT2の寄生容量と容量C1とだけであるため、高速駆動が可能になるとともに、低消費電力化を図ることができる。
 さらに、上記実施例2のバッファ回路2の構成と比べて、ノードn1をディスチャージするトランジスタT3が不要になるため、回路規模の縮小化を図ることができる。
 なお、本実施例のバッファ回路3においても、入力信号INの電圧がVDD/VSS以外の電圧で入力される場合(例えば、High電圧がVDDよりも小さく、Low電圧がVSSの場合)には、レベルシフタ回路として機能する。
 また、上記バッファ回路及びレベルシフタ回路は、上記実施例2と同様、上記インバータが、ブートストラップ回路により構成されていてもよい。図38は、ブートストラップ回路により構成されたインバータを備えるバッファ回路の構成を示す回路図である。
 なお、実施例2のバッファ回路2は、入力信号INがDC信号になっても、正常に動作することが可能である。
 また、実施例3のバッファ3は、入力信号INがDC信号になった場合、オフリークによりトランジスタT12のゲート端子の電圧はVDD-Vthとなる。そのため、インバータの出力端子の電圧は、VDD-2×Vthとなるため、ノードn1はVDD-2×Vthとなる。クロック信号CKの突き上げによりノードn1の電位はVDD―2×Vth+αとなるが、これがVDD+Vthより大きくなるように容量C1を設定しておけば、入力信号INがDC信号になっても、正常に動作することが可能である。
 〔実施例4〕
 さらに、バッファ回路の他の構成例について説明する。図39は、本実施例におけるバッファ回路4の構成を示すブロック図であり、図40は、該バッファ回路4の回路図である。バッファ回路4は、図31に示したインバータと、図1に示した回路10とを含んで構成されている。具体的には、図40に示すように、インバータの出力端子INBが、トランジスタT1のゲート端子と、バッファ回路4の出力端子OUTBとに接続され、トランジスタT3のゲート端子がインバータの入力端子INに接続される。
 本実施例のバッファ回路4によれば、インバータの入力信号INがローレベルの場合、反転信号INBは高抵抗R1から出力されるため、高インピーダンスのVDDとなるが、回路10の出力信号(トランジスタT2の出力信号)によって補助されるため、出力信号OUTBは低インピーダンスのVDDを得ることができる。
 なお、バッファ回路4においては、出力端子INBとOUTBとが互いに接続されているため、クロック信号CKが停止した場合でも、閾値落ちしないVDDの電位の信号を出力することが可能とある。
 また、回路10の代わりに他の実施の形態に示した回路を用いていも同様の効果を得ることできる。
 なお、本実施例のバッファ回路4においても、入力信号INの電圧がVDD/VSS以外の電圧で入力される場合(例えば、High電圧がVDDよりも小さく、Low電圧がVSSの場合)には、レベルシフタ回路として機能する。
 また、本実施例のバッファ回路4は、実施例2、3のバッファ回路2、3と同様に、入力信号INがDC信号になっても、正常に動作することが可能である。
 ここで、上記実施例1~4に示したバッファ回路においては、入力信号INと反転信号INBとを入れ替えた構成にしてもよい。
 〔実施例5〕
 図41は、本実施例におけるシフトレジスタを構成する単位回路5の構成を示すブロック図である。シフトレジスタは、図41に示す単位回路5を従属接続して構成されており、単位回路5は、上記実施の形態1に示した回路(Active信号保持回路)10を含んで構成されている。なお、回路10を除いた構成については、従来の構成を適用することができる。
 ここで、従来のシフトレジスタの単位回路の構成では、入力信号On-1とOn+1とが、ともにローレベルの場合には、ノードn5がフローティング状態となるため、リーク及びノイズに対するマージンが小さくなるという問題がある。
 この点、本実施例のシフトレジスタの単位回路5の構成では、回路10の出力信号を、回路10の入力側にフィードバックしている。これにより、ノードn5をフローティング状態でないハイレベルに保持することができるため、シフトレジスタのディセーブル状態を保持することができる。そのため、リーク及びノイズに対する問題を解決することができる。
 なお、単位回路5が従属接続されるシフトレジスタでは、同時にハイレベルになることのないクロック信号CK1及びCK2のうち、偶数段の単位回路5のクロック端子CKにはクロック信号CK1が入力され、奇数段の単位回路5のクロック端子CKにはクロック信号CK2が入力され、入力信号On-1は前段の単位回路5の出力信号であり、入力信号On+1は後段の単位回路5の出力信号である。
 上記の構成において、入力信号On-1がハイレベルになると、トランジスタT14を介してブートストラップ容量C2に電荷が蓄えられ、入力信号On-1がローレベルになった後もノードn6はハイレベル状態を保持する。また、トランジスタT16がオン状態になることにより、ノードn5はローレベルになる。クロック信号CKがハイレベルになると、ブートストラップ効果により、出力端子Onからはクロック信号CKが出力される。また、入力信号On+1がハイレベルになると、トランジスタT15を介してノードn5がハイレベルになり、トランジスタT17がオン状態になることにより出力信号Onはローレベルになる。
 また、回路10の入力信号INがハイレベルになることで、トランジスタT1がオン状態になり容量C1に電荷が蓄えられる。以降、クロック信号CKが入力されるたびに、トランジスタT2を介して出力信号OUTの電位がVDDまで引き上げられるため、ノードn5の電位が、オフリーク等により低下することがない。そして、VDDの出力信号OUTが入力端子INにフィードバックされるため、次に入力信号On-1がハイレベルになるまで、ノードn5の電位がVDDに保持される。
 このように、従来のシフトレジスタに、本実施の形態における回路(Active信号保持回路)を適用することにより、従来では閾値落ちやリーク等により電位が低下していたノードn5の電位を、確実にVDDに保持することができる。
 本実施例では、上記実施の形態1の回路10により構成したシフトレジスタについて説明したが、他の実施の形態における回路により構成してもよい。これらの構成においても、同様の効果を得ることができる。
 また、本実施の形態における回路が適用可能なシフトレジスタの構成は、特に限定されるものではない。他のシフトレジスタの構成としては、例えば、図42及び図43に示すように、シフトレジスタにおける各段の単位回路が、それぞれ、後段の単位回路の出力信号を使用しない場合の構成、つまり、自段の単位回路内でリセット信号を生成する構成が挙げられる。これらの構成においても、同様にディセーブル状態を保持することができる。なお、何れの単位回路も、同時にハイレベルになることのないクロック信号CK1及びCK2のうち、偶数段の単位回路のクロック端子CKにはクロック信号CK1が入力され、クロック端子CKBにはクロック信号CK2が入力され、奇数段の単位回路5のクロック端子CKにはクロック信号CK2、が入力され、クロック端子CKBにはクロック信号CK1が入力され、入力信号On-1は前段の単位回路5の出力信号である。
 図42に示す単位回路5では、前段の単位回路5の出力信号On-1によりブートストラップ容量C2に電荷が蓄えられ、クロック信号CKが出力端子Onに出力された後、クロック信号CKBがハイレベルになると、トランジスタT20がオン状態となることで、抵抗R2によりノードn5の電位がハイレベルになる。
 図43に示す単位回路5では、前段の単位回路5の出力信号On-1によりブートストラップ容量C2に電荷を蓄えられ、クロック信号CKが出力端子Onから出力された後、クロック信号CKとCKBとの入力ごとに容量C3の電荷が容量C4に転送され、ノードn5の電位がハイレベルになる。
 また、図42及び図43の単位回路5においても同様に、回路10は、次に入力信号On-1がハイレベルになるまでノードn5の電位をVDDに保持する。
 最後に、上記各実施の形態における回路をpチャネル型のトランジスタを用いて構成した場合の一例を示す。実施の形態1~7及び実施例1~5で説明した内容をpチャネル型のトランジスタを用いて構成するには、電源VDDを電源VSSに、電源VDDを電源VSSに、ハイレベルはローレベルにというように全てのロジックを逆転させることで可能である。図44は、回路10の構成をpチャネル型のトランジスタで構成した場合の回路10′回路図である。また、図45は回路10′における各種信号の波形を示すタイミングチャートであり、図中の(a)はトランジスタT2′のドレイン端子にVSSが入力される場合の波形を示し、図中の(b)はトランジスタT2′のドレイン端子にクロック信号φが入力される場合の波形を示している。この構成においても、上述したnチャネル型のトランジスタにより構成した回路の場合と同様、出力信号の安定化を図ることができるという効果を奏する。
 本発明に係る半導体装置は、以上のように、前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量を備え、前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高い構成である。
 また、本発明に係る表示装置は、上記半導体装置を備えている。
 したがって、同一導電型のトランジスタからなり、電位レベルの低下を防いで安定した信号を出力することができる半導体装置、及びそれを備えた表示装置を提供することができるという効果を奏する。
 発明の詳細な説明の項においてなされた具体的な実施形態または実施例は、あくまでも、本発明の技術内容を明らかにするものであって、そのような具体例にのみ限定して狭義に解釈されるべきものではなく、本発明の精神と次に記載する請求の範囲内で、いろいろと変更して実施することができるものである。
 本発明は、入力信号の電位レベルを低下させることなく安定して出力することができる回路であるため、特に表示装置において好適に適用できる。

Claims (10)

  1.  同一導電型の複数のトランジスタにより構成される半導体装置であって、
     第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、
     第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、
     前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量とを備え、
     前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高いことを特徴とする半導体装置。
  2.  第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタをさらに備えていることを特徴とする請求の範囲第1項に記載の半導体装置。
  3.  第1の端子が前記出力端子に接続され、第2の端子にオフ電圧が与えられ、制御端子に前記制御信号が入力される第4のトランジスタをさらに備えていることを特徴とする請求の範囲第2項に記載の半導体装置。
  4.  第1の端子にオン電圧が入力され、第2の端子が前記接続点に接続され、制御端子が前記出力端子に接続される第5のトランジスタをさらに備えていることを特徴とする請求の範囲第1項から第3項の何れか1項に記載の半導体装置。
  5.  前記入力信号を出力する第6のトランジスタをさらに備え、
     前記第6のトランジスタは、第1の端子が入力端子に接続され、第2の端子が前記第1のトランジスタの制御端子と前記出力端子とに接続され、制御端子にイネーブル信号が入力されることを特徴とする請求の範囲第1項から第4項の何れか1項に記載の半導体装置。
  6.  第1の端子が前記接続点に接続され、第2の端子にオフ電圧が入力され、制御端子に、当該半導体装置の初期状態を安定させるための初期化信号が入力される第7のトランジスタをさらに備えていることを特徴とする請求の範囲第1項から第5項の何れか1項に記載の半導体装置。
  7.  第1の端子が前記クロック端子に接続され、第2の端子が前記容量の一端に接続され、制御端子に前記入力信号が入力される第8のトランジスタをさらに備えていることを特徴とする請求の範囲第1項から第6項の何れか1項に記載の半導体装置。
  8.  同一導電型の複数のトランジスタにより構成される半導体装置であって、
     第1の端子にオン電圧が与えられ、制御端子に入力信号が入力される第1のトランジスタと、
     第1の端子にオン電圧が与えられ、第2の端子が出力端子に接続され、制御端子が前記第1のトランジスタの第2の端子に接続される第2のトランジスタと、
     前記第1のトランジスタ及び前記第2のトランジスタ同士の接続点と、クロック信号を入力するクロック端子との間に設けられる容量と、
     第1の端子が前記接続点に接続され、制御端子にオン電圧が入力される第10のトランジスタと、
     第1の端子が前記第10のトランジスタの第2の端子に接続され、第2の端子にオフ電圧が入力され、制御端子に制御信号が入力される第3のトランジスタとを備え、
     前記クロック信号の周波数は、前記出力端子から出力される出力信号の周波数よりも高いことを特徴とする半導体装置。
  9.  前記クロック信号は、ハイレベルとローレベルとを周期的に繰り返す波形を示し、1周期のうちローレベルの期間が、該クロック信号がハイレベルからローレベルに変化した後に前記接続点の電位が飽和するまでの期間となるように設定されていることを特徴とする請求の範囲第1項から第8項の何れか1項に記載の半導体装置。
  10.  請求の範囲第1項から第9項の何れか1項に記載の半導体装置を備えていることを特徴とする表示装置。
PCT/JP2008/065183 2007-12-28 2008-08-26 半導体装置及び表示装置 WO2009084272A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009547929A JP4902750B2 (ja) 2007-12-28 2008-08-26 半導体装置及び表示装置
US12/734,044 US8718223B2 (en) 2007-12-28 2008-08-26 Semiconductor device and display device
BRPI0820225-7A BRPI0820225A2 (pt) 2007-12-28 2008-08-26 Dispositivo semicondutor e dispositivo de monitor
CN200880118024XA CN101878592B (zh) 2007-12-28 2008-08-26 半导体装置和显示装置
EP08792729A EP2226938A4 (en) 2007-12-28 2008-08-26 SEMICONDUCTOR DEVICE AND DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-339355 2007-12-28
JP2007339355 2007-12-28

Publications (1)

Publication Number Publication Date
WO2009084272A1 true WO2009084272A1 (ja) 2009-07-09

Family

ID=40824000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065183 WO2009084272A1 (ja) 2007-12-28 2008-08-26 半導体装置及び表示装置

Country Status (7)

Country Link
US (1) US8718223B2 (ja)
EP (1) EP2226938A4 (ja)
JP (1) JP4902750B2 (ja)
CN (1) CN101878592B (ja)
BR (1) BRPI0820225A2 (ja)
RU (1) RU2458460C2 (ja)
WO (1) WO2009084272A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029671A1 (ja) * 2010-09-02 2012-03-08 シャープ株式会社 半導体装置、半導体装置ユニット、アクティブマトリクス基板、液晶パネル、および液晶表示装置
WO2012029872A1 (ja) * 2010-09-02 2012-03-08 シャープ株式会社 信号処理回路、インバータ回路、バッファ回路、レベルシフタ、フリップフロップ、ドライバ回路、表示装置
WO2012111586A1 (ja) * 2011-02-18 2012-08-23 シャープ株式会社 半導体装置及び表示装置
JPWO2012029874A1 (ja) * 2010-09-02 2013-10-31 シャープ株式会社 信号処理回路、インバータ回路、バッファ回路、ドライバ回路、レベルシフタ、表示装置
JPWO2012029915A1 (ja) * 2010-09-02 2013-10-31 シャープ株式会社 トランジスタ回路、フリップフロップ、信号処理回路、ドライバ回路、および表示装置
JP2015046872A (ja) * 2013-07-31 2015-03-12 株式会社半導体エネルギー研究所 半導体装置、及び該半導体装置を具備する信号生成装置
JP2016133813A (ja) * 2015-01-21 2016-07-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. ゲート駆動回路
JP2022064931A (ja) * 2010-09-09 2022-04-26 株式会社半導体エネルギー研究所 表示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058852A1 (en) * 2009-11-13 2011-05-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2014148170A1 (ja) * 2013-03-21 2014-09-25 シャープ株式会社 シフトレジスタ
CN104091574B (zh) * 2014-06-25 2016-03-02 京东方科技集团股份有限公司 移位寄存器、阵列基板、显示装置及其驱动方法
CN104376814B (zh) * 2014-11-25 2017-12-26 上海天马微电子有限公司 一种驱动电路及驱动方法、显示面板、显示装置
JP2018093483A (ja) * 2016-11-29 2018-06-14 株式会社半導体エネルギー研究所 半導体装置、表示装置及び電子機器
CN110521124B (zh) * 2017-04-18 2023-03-28 株式会社索思未来 输出电路
CN108053801B (zh) * 2018-02-12 2021-01-29 京东方科技集团股份有限公司 移位寄存器单元及其驱动方法、栅极驱动电路和显示装置
CN110415637B (zh) * 2019-08-29 2022-08-26 合肥鑫晟光电科技有限公司 移位寄存器单元及其驱动方法、栅极驱动电路、显示装置
CN110534053B (zh) * 2019-09-29 2023-04-21 京东方科技集团股份有限公司 移位寄存器单元、栅极驱动方法、电路和显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263028A (ja) * 1995-03-06 1996-10-11 Thomson Multimedia Sa シフトレジスタ
JP3092506B2 (ja) 1995-03-27 2000-09-25 カシオ計算機株式会社 半導体装置およびこれを用いた表示駆動装置
JP2006127751A (ja) * 1996-01-11 2006-05-18 Thales Avionics Lcd 同じ極性を有するmisトランジスタを用いるシフトレジスタの改良
JP2006148269A (ja) * 2004-11-17 2006-06-08 Nec Corp ブートストラップ回路及びその駆動方法並びにシフトレジスタ回路、論理演算回路、半導体装置

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1000000A (en) * 1910-04-25 1911-08-08 Francis H Holton Vehicle-tire.
US3675043A (en) * 1971-08-13 1972-07-04 Anthony Geoffrey Bell High speed dynamic buffer
US4716303A (en) * 1985-05-01 1987-12-29 Sharp Kabushiki Kaisha MOS IC pull-up circuit
FR2651276B1 (fr) 1989-08-28 1991-10-25 Alsthom Gec Condenseur en beton pour turbine a echappement axial et turbine munie d'un tel condenseur.
JPH07119919B2 (ja) 1991-05-15 1995-12-20 インターナショナル・ビジネス・マシーンズ・コーポレイション 液晶表示装置
JP3413281B2 (ja) 1994-02-16 2003-06-03 パイオニア株式会社 電力増幅回路
FR2720185B1 (fr) * 1994-05-17 1996-07-05 Thomson Lcd Registre à décalage utilisant des transistors M.I.S. de même polarité.
CN1136529C (zh) 1994-05-31 2004-01-28 夏普株式会社 信号放大器和图像显示装置
JP3201910B2 (ja) 1994-07-06 2001-08-27 シャープ株式会社 バッファ回路及び画像表示装置
US5694061A (en) 1995-03-27 1997-12-02 Casio Computer Co., Ltd. Semiconductor device having same conductive type MIS transistors, a simple circuit design, and a high productivity
US5974041A (en) 1995-12-27 1999-10-26 Qualcomm Incorporated Efficient parallel-stage power amplifier
US5872481A (en) 1995-12-27 1999-02-16 Qualcomm Incorporated Efficient parallel-stage power amplifier
FR2743662B1 (fr) 1996-01-11 1998-02-13 Thomson Lcd Perfectionnement aux registres a decalage utilisant des transistors mis de meme polarite
US5949398A (en) * 1996-04-12 1999-09-07 Thomson Multimedia S.A. Select line driver for a display matrix with toggling backplane
JPH1039277A (ja) 1996-07-26 1998-02-13 Matsushita Electric Ind Co Ltd 液晶表示装置およびその駆動方法
DE19725181A1 (de) 1997-06-13 1999-02-25 Siemens Ag Ansteuerschaltung für nichtflüchtige Halbleiter-Speicheranordnung
JP3554497B2 (ja) * 1998-12-08 2004-08-18 シャープ株式会社 チャージポンプ回路
RU2244715C2 (ru) 1999-06-16 2005-01-20 Зингента Партисипейшнс Аг Способ получения гербицидных производных и промежуточное соединение
JP3402277B2 (ja) 1999-09-09 2003-05-06 松下電器産業株式会社 液晶表示装置及び駆動方法
JP3555080B2 (ja) 2000-10-19 2004-08-18 Necエレクトロニクス株式会社 汎用ロジックモジュール及びこれを用いたセル
JP3832240B2 (ja) 2000-12-22 2006-10-11 セイコーエプソン株式会社 液晶表示装置の駆動方法
US6744610B2 (en) 2001-05-09 2004-06-01 Faraday Technology Corp. Electrostatic discharge protection circuit
US7176746B1 (en) * 2001-09-27 2007-02-13 Piconetics, Inc. Low power charge pump method and apparatus
JP2004165241A (ja) 2002-11-11 2004-06-10 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP4339103B2 (ja) 2002-12-25 2009-10-07 株式会社半導体エネルギー研究所 半導体装置及び表示装置
US7012794B2 (en) 2003-01-17 2006-03-14 Exar Corporation CMOS analog switch with auto over-voltage turn-off
JP4100178B2 (ja) 2003-01-24 2008-06-11 ソニー株式会社 表示装置
JP4337447B2 (ja) 2003-07-09 2009-09-30 ソニー株式会社 フラットディスプレイ装置及び集積回路
JP2005092783A (ja) 2003-09-19 2005-04-07 Rohm Co Ltd 電源装置およびそれを備える電子機器
KR100705628B1 (ko) * 2003-12-30 2007-04-11 비오이 하이디스 테크놀로지 주식회사 액정표시장치의 구동회로
US7289594B2 (en) 2004-03-31 2007-10-30 Lg.Philips Lcd Co., Ltd. Shift registrer and driving method thereof
TWI285861B (en) 2004-05-21 2007-08-21 Sanyo Electric Co Display device
TWI393093B (zh) * 2004-06-30 2013-04-11 Samsung Display Co Ltd 移位暫存器,具有該移位暫存器之顯示裝置,及其驅動方法
CN1985209B (zh) 2004-07-14 2010-04-21 夏普株式会社 有源矩阵基板及其驱动电路和显示装置
US7239179B2 (en) * 2004-08-05 2007-07-03 Sony Corporation Level conversion circuit, power supply voltage generation circuit, shift circuit, shift register circuit, and display apparatus
JP4969037B2 (ja) 2004-11-30 2012-07-04 三洋電機株式会社 表示装置
JP4093231B2 (ja) 2004-12-21 2008-06-04 セイコーエプソン株式会社 電源回路、表示ドライバ、電気光学装置、電子機器及び電源回路の制御方法
JP4969043B2 (ja) 2005-02-10 2012-07-04 シャープ株式会社 アクティブマトリクス型の表示装置およびその走査側駆動回路
KR100712118B1 (ko) 2005-02-23 2007-04-27 삼성에스디아이 주식회사 도트 반전을 수행하는 액정 표시 장치 및 액정 표시 장치의구동 방법
JP2006277789A (ja) 2005-03-28 2006-10-12 Sony Corp シフトレジスタおよび表示装置
JP4196999B2 (ja) 2005-04-07 2008-12-17 エプソンイメージングデバイス株式会社 液晶表示装置の駆動回路、液晶表示装置、液晶表示装置の駆動方法、および電子機器
EP1724784B1 (en) * 2005-05-20 2008-07-23 STMicroelectronics S.r.l. High-voltage switch with low output ripple for non-volatile floating-gate memories
JP4569413B2 (ja) 2005-08-12 2010-10-27 ソニー株式会社 表示装置
US7825885B2 (en) 2005-08-05 2010-11-02 Sony Corporation Display device
JP4912121B2 (ja) 2006-02-23 2012-04-11 三菱電機株式会社 シフトレジスタ回路
JP4912000B2 (ja) 2006-03-15 2012-04-04 三菱電機株式会社 シフトレジスタ回路およびそれを備える画像表示装置
CN101064085A (zh) * 2006-04-25 2007-10-31 三菱电机株式会社 移位寄存器电路和具备其的图像显示装置
KR101252002B1 (ko) 2006-05-23 2013-04-08 삼성디스플레이 주식회사 액정 표시 장치
TWI338275B (en) 2006-08-24 2011-03-01 Au Optronics Corp Shift register with lower coupling effect and the related lcd
TWI347577B (en) 2006-09-01 2011-08-21 Au Optronics Corp Shift register with low stress
KR100796137B1 (ko) * 2006-09-12 2008-01-21 삼성에스디아이 주식회사 쉬프트 레지스터 및 이를 이용한 유기전계발광 표시장치
TWI349908B (en) 2006-09-14 2011-10-01 Au Optronics Corp Shift register, shift register array circuit, and flat display apparatus
JP5079301B2 (ja) 2006-10-26 2012-11-21 三菱電機株式会社 シフトレジスタ回路およびそれを備える画像表示装置
CN101206318B (zh) 2006-12-22 2010-05-19 群康科技(深圳)有限公司 移位寄存器与液晶显示装置
US7929035B2 (en) 2007-03-08 2011-04-19 Imagerlabs, Inc. Ultra low noise CMOS imager
EP2189987B1 (en) 2007-09-12 2013-02-13 Sharp Kabushiki Kaisha Shift register
EP2189988B1 (en) 2007-09-12 2012-12-12 Sharp Kabushiki Kaisha Shift register
US8457272B2 (en) 2007-12-27 2013-06-04 Sharp Kabushiki Kaisha Shift register
US8223112B2 (en) 2007-12-27 2012-07-17 Sharp Kabushiki Kaisha Shift register receiving all-on signal and display device
US8314765B2 (en) * 2008-06-17 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Driver circuit, display device, and electronic device
KR101073556B1 (ko) * 2009-07-31 2011-10-17 삼성모바일디스플레이주식회사 표시 장치
JP5435481B2 (ja) * 2010-02-26 2014-03-05 株式会社ジャパンディスプレイ シフトレジスタ、走査線駆動回路、電気光学装置および電子機器
TW201133440A (en) 2010-03-19 2011-10-01 Au Optronics Corp Shift register circuit and gate driving circuit
TWI415052B (zh) 2010-12-29 2013-11-11 Au Optronics Corp 開關裝置與應用該開關裝置之移位暫存器電路
CN102646387B (zh) * 2011-05-19 2014-09-17 京东方科技集团股份有限公司 移位寄存器及行扫描驱动电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263028A (ja) * 1995-03-06 1996-10-11 Thomson Multimedia Sa シフトレジスタ
JP3092506B2 (ja) 1995-03-27 2000-09-25 カシオ計算機株式会社 半導体装置およびこれを用いた表示駆動装置
JP2006127751A (ja) * 1996-01-11 2006-05-18 Thales Avionics Lcd 同じ極性を有するmisトランジスタを用いるシフトレジスタの改良
JP2006148269A (ja) * 2004-11-17 2006-06-08 Nec Corp ブートストラップ回路及びその駆動方法並びにシフトレジスタ回路、論理演算回路、半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2226938A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8779809B2 (en) 2010-09-02 2014-07-15 Sharp Kabushiki Kaisha Signal processing circuit, inverter circuit, buffer circuit, level shifter, flip-flop, driver circuit, and display device
WO2012029671A1 (ja) * 2010-09-02 2012-03-08 シャープ株式会社 半導体装置、半導体装置ユニット、アクティブマトリクス基板、液晶パネル、および液晶表示装置
US9076756B2 (en) 2010-09-02 2015-07-07 Sharp Kabushiki Kaisha Semiconductor device, semiconductor device unit, active matrix substrate, liquid crystal panel, and liquid crystal display
JPWO2012029872A1 (ja) * 2010-09-02 2013-10-31 シャープ株式会社 信号処理回路、インバータ回路、バッファ回路、レベルシフタ、フリップフロップ、ドライバ回路、表示装置
JPWO2012029874A1 (ja) * 2010-09-02 2013-10-31 シャープ株式会社 信号処理回路、インバータ回路、バッファ回路、ドライバ回路、レベルシフタ、表示装置
JPWO2012029915A1 (ja) * 2010-09-02 2013-10-31 シャープ株式会社 トランジスタ回路、フリップフロップ、信号処理回路、ドライバ回路、および表示装置
WO2012029872A1 (ja) * 2010-09-02 2012-03-08 シャープ株式会社 信号処理回路、インバータ回路、バッファ回路、レベルシフタ、フリップフロップ、ドライバ回路、表示装置
JP5579855B2 (ja) * 2010-09-02 2014-08-27 シャープ株式会社 トランジスタ回路、フリップフロップ、信号処理回路、ドライバ回路、および表示装置
US9030237B2 (en) 2010-09-02 2015-05-12 Sharp Kabushiki Kaisha Transistor circuit, flip-flop, signal processing circuit, driver circuit, and display device
US9024681B2 (en) 2010-09-02 2015-05-05 Sharp Kabushiki Kaisha Signal processing circuit, inverter circuit, buffer circuit, driver circuit, level shifter, and display device
JP2022064931A (ja) * 2010-09-09 2022-04-26 株式会社半導体エネルギー研究所 表示装置
US11688358B2 (en) 2010-09-09 2023-06-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US11501728B2 (en) 2010-09-09 2022-11-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2012111586A1 (ja) * 2011-02-18 2012-08-23 シャープ株式会社 半導体装置及び表示装置
JP2015046872A (ja) * 2013-07-31 2015-03-12 株式会社半導体エネルギー研究所 半導体装置、及び該半導体装置を具備する信号生成装置
KR102313978B1 (ko) * 2015-01-21 2021-10-19 삼성디스플레이 주식회사 게이트 구동회로
KR20160090470A (ko) * 2015-01-21 2016-08-01 삼성디스플레이 주식회사 게이트 구동회로
JP2016133813A (ja) * 2015-01-21 2016-07-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. ゲート駆動回路

Also Published As

Publication number Publication date
EP2226938A1 (en) 2010-09-08
RU2458460C2 (ru) 2012-08-10
CN101878592B (zh) 2012-11-07
JP4902750B2 (ja) 2012-03-21
EP2226938A4 (en) 2011-07-20
JPWO2009084272A1 (ja) 2011-05-12
BRPI0820225A2 (pt) 2015-06-16
US20100244946A1 (en) 2010-09-30
RU2010121771A (ru) 2011-12-10
US8718223B2 (en) 2014-05-06
CN101878592A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
JP4902750B2 (ja) 半導体装置及び表示装置
JP4959813B2 (ja) 半導体装置及び表示装置
KR101768485B1 (ko) 쉬프트 레지스터
JP4990034B2 (ja) シフトレジスタ回路およびそれを備える画像表示装置
US8194817B2 (en) Shift register circuit
US7872499B2 (en) Level shift circuit, and driver and display system using the same
JP3851302B2 (ja) バッファー回路及びこれを利用したアクティブマトリックス表示装置
US10270363B2 (en) CMOS inverter circuit that suppresses leakage currents
US9721526B2 (en) Display driver with small-area level shift circuit
JP4993917B2 (ja) 表示装置
JP2006344306A (ja) シフトレジスタ
KR100590034B1 (ko) 레벨시프터 및 이를 이용한 표시장치
JP4869569B2 (ja) 表示装置
JP3251268B2 (ja) レベルシフト回路
JP2009168901A (ja) 画像表示装置
WO2012111586A1 (ja) 半導体装置及び表示装置
JP5174479B2 (ja) レベル変換回路
JP4357936B2 (ja) 半導体装置
JP2006135384A (ja) レベルシフタ
JP4624340B2 (ja) 半導体表示装置
JP5101669B2 (ja) 表示装置
JP2005321526A (ja) 半導体集積回路装置、表示装置及びシステム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880118024.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792729

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009547929

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12734044

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1994/CHENP/2010

Country of ref document: IN

Ref document number: 2008792729

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010121771

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0820225

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100528