WO2008056686A1 - Communication system, transmitting device, receiving device, communication method, program and communication cable - Google Patents

Communication system, transmitting device, receiving device, communication method, program and communication cable Download PDF

Info

Publication number
WO2008056686A1
WO2008056686A1 PCT/JP2007/071600 JP2007071600W WO2008056686A1 WO 2008056686 A1 WO2008056686 A1 WO 2008056686A1 JP 2007071600 W JP2007071600 W JP 2007071600W WO 2008056686 A1 WO2008056686 A1 WO 2008056686A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission
transmitted
differential
data
Prior art date
Application number
PCT/JP2007/071600
Other languages
English (en)
French (fr)
Inventor
Yasuhisa Nakajima
Hidekazu Kikuchi
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/312,428 priority Critical patent/US7936401B2/en
Priority to CA002668980A priority patent/CA2668980A1/en
Priority to BRPI0718563-4A2A priority patent/BRPI0718563A2/pt
Priority to EP07831331.9A priority patent/EP2091252B1/en
Application filed by Sony Corporation filed Critical Sony Corporation
Priority to JP2008543096A priority patent/JP5218845B2/ja
Priority to CN2007800466419A priority patent/CN101563921B/zh
Priority to ES07831331.9T priority patent/ES2553887T3/es
Priority to AU2007318585A priority patent/AU2007318585A1/en
Publication of WO2008056686A1 publication Critical patent/WO2008056686A1/ja
Priority to US12/794,115 priority patent/US8243204B2/en
Priority to US12/970,540 priority patent/US8271698B2/en
Priority to US13/546,133 priority patent/US8860887B2/en
Priority to US14/324,732 priority patent/US9013636B2/en
Priority to US14/630,831 priority patent/US9210465B2/en
Priority to US14/872,358 priority patent/US20160021422A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/43615Interfacing a Home Network, e.g. for connecting the client to a plurality of peripherals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/234Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs
    • H04N21/2343Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements
    • H04N21/234309Processing of video elementary streams, e.g. splicing of video streams, manipulating MPEG-4 scene graphs involving reformatting operations of video signals for distribution or compliance with end-user requests or end-user device requirements by transcoding between formats or standards, e.g. from MPEG-2 to MPEG-4 or from Quicktime to Realvideo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4122Peripherals receiving signals from specially adapted client devices additional display device, e.g. video projector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/4104Peripherals receiving signals from specially adapted client devices
    • H04N21/4135Peripherals receiving signals from specially adapted client devices external recorder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • H04N21/43632Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/436Interfacing a local distribution network, e.g. communicating with another STB or one or more peripheral devices inside the home
    • H04N21/4363Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network
    • H04N21/43632Adapting the video or multiplex stream to a specific local network, e.g. a IEEE 1394 or Bluetooth® network involving a wired protocol, e.g. IEEE 1394
    • H04N21/43635HDMI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/765Interface circuits between an apparatus for recording and another apparatus
    • H04N5/775Interface circuits between an apparatus for recording and another apparatus between a recording apparatus and a television receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/16Analogue secrecy systems; Analogue subscription systems
    • H04N7/162Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing
    • H04N7/163Authorising the user terminal, e.g. by paying; Registering the use of a subscription channel, e.g. billing by receiver means only

Definitions

  • Communication system transmitting apparatus, receiving apparatus, communication method, program, and communication
  • the present invention relates to a communication system, a transmitting apparatus, a receiving apparatus, a communication method, a program, and a communication cable, and in particular, can transmit pixel data of an uncompressed image at high speed in one direction, for example, HDMI (High With regard to a communication system, a transmitting device, a receiving device, a communication method, a program, and a communication cable in which high-speed communication can be performed while maintaining compatibility in a communication interface such as Definition Multimedia Interface (R). Background art
  • HDMI is becoming widespread as a communication interface for transmitting pixel data of uncompressed (baseband) images and audio data attached to the images at high speed.
  • HDMI (R) TMDS (Transition Minimized Differential Signaling) channel
  • HDMI (R) which transmits pixel data and audio data in one direction from an HDMI (R) source to an HDM I (R) sink at high speed.
  • R) A C EC line (Consumer Electronics Control Line) for bi-directional communication between a source and an HDMI (R) sink is specified in the HDMI specification.
  • a digital television receiver 11, an AV amplifier 12, and a playback device 14 are installed in the living room provided on the left side of the diagram of the user's house, and the digital television And the playback device 14 are connected by the HDMI (R) cable 13 and the HDMI (R) cable 15.
  • a hub 16 is installed, and the digital television receiver 11 and the playback device 14 are connected to the hub 16 by a LAN (Local Area Network) cable 17 and a LAN cable 18. ing. Furthermore, in the figure, a digital television receiver 19 is installed in a bedroom provided on the right side of the living room, and the digital television receiver 19 is connected to the hub 16 via a LAN cable 20.
  • LAN Local Area Network
  • the reproduction device 14 when the content recorded in the reproduction device 14 is reproduced and the image is displayed on the digital television receiver 11, the reproduction device 14 outputs pixel data and audio data for reproducing the content.
  • the decoded pixel data and audio data obtained by the decoding are supplied to the digital television receiver 11 through the HDMI (R) cable 15, the AV amplifier 12, and the HD MI (R) cable 13. Then, the digital television receiver 11 displays an image or outputs an audio based on the pixel data and the audio data supplied from the reproduction device 14.
  • the playback device 14 is compressed. Supplies pixel data and audio data for reproducing content to the digital television receiver 11 via the LAN cable 18, the hub 16 and the LAN cable 17, as well as the LAN cable 18, the hub 16 and the LAN. It is supplied to a digital television receiver 19 via a cable 20.
  • the digital television receiver 11 and the digital television receiver 19 decode the pixel data and the audio data supplied from the reproduction device 14, and obtain the uncompressed pixel data and the audio data obtained as a result. Display an image or output an audio based on it.
  • the digital television receiver 11 receives pixel data and audio data for reproducing a program being television-broadcasted
  • the received audio data is, for example, 5.1-channel surround audio data
  • the vision receiver 11 converts audio data into an optical signal and transmits the optical signal to the AV amplifier 12.
  • the AV amplifier 12 receives and photoelectrically converts an optical signal transmitted from the digital television receiver 11, and decodes audio data obtained thereby. Then, the AV amplifier 12 amplifies the decoded non-compressed audio data as needed, and reproduces the audio by the surround speaker connected to the AV amplifier 12. Thereby, the digital television receiver 11 decodes the received pixel data, displays an image with the decoded pixel data, and based on the audio data supplied to the AV amplifier 12, the AV amplifier 12 By playing back audio, 5. One channel surround program is played back.
  • HDMI (R) by switching the terminals for outputting HDMI (R) source power pixel data and audio data with a changeover switch, the HDMI (R) source and the HDMI (R) sink are connected.
  • a device capable of outputting pixel data and audio data to a desired HDMI (R) sink among a plurality of HDMI (R) sinks without replacing the cable to be connected is proposed (for example, a patent) Reference 2).
  • Patent Document 1 JP-A-2005-57714
  • Patent Document 2 Japanese Patent Application Publication No. 2006-19948
  • HDMI (R) pixel data and audio data can be transmitted in a single direction from an HDMI (R) source to an HDMI (R) sink at high speed, and HDMI (R) ) Source and HDMI (
  • the transmission rate of bi-directional communication that can be performed in the current HDMI (R) is several hundreds bps, and thus, both between the HDMI (R) source and the HDMI (R) sink.
  • connectors dedicated for HDMI (R) of HDMI (R) source and HDMI (R) sink for HDMI (R) are provided with dedicated pins for high-speed IP communication in both directions, and bidirectional pins are used using these dedicated pins. There is a conceivable way to perform IP communication at high speed.
  • the present invention has been made in view of such a situation, and can transmit pixel data of an uncompressed image at high speed in one direction, for example, a communication interface such as HDMI (R).
  • a communication interface such as HDMI (R).
  • high-speed two-way communication can be performed while maintaining compatibility.
  • the communication system is an effective image area which is an area obtained by removing a horizontal blanking interval and a vertical blanking interval from a section from one vertical synchronization signal to the next vertical synchronization signal.
  • a transmitter for transmitting pixel data of an image for one screen which is not compressed to a receiver in one direction by a first differential signal, and the first differential signal transmitted from the transmitter A communication device including a reception device for receiving the transmission data, wherein the transmission device is data to be transmitted, the data different from the pixel data being formed of a first partial signal and a second partial signal
  • First conversion means for converting the first partial signal into the second differential signal and transmitting the first partial signal to the receiving apparatus via the first signal line, and for controlling the first partial signal, and Transmission signal which is a signal, or the first conversion means Selection means for selecting any one of the output second partial signals and transmitting the selected signal to the receiving apparatus via a second signal line; and receiving the transmission signal.
  • the transmission signal is selected by the first selection means, and
  • the first control means is controlled to control the second partial signal to be selected by the first selecting means, and the signal is transmitted from the receiving device.
  • a first decoding means for receiving the third differential signal and decoding it into the original data, and the receiving apparatus is a data to be transmitted, the data different from the pixel data being the third data.
  • a second conversion means for converting the signal into a differential signal of the second signal and transmitting it to the transmitting device; and a second decoding means for receiving the second differential signal transmitted from the transmitting device and decoding it into original data Means, a second selection means for selecting one of the transmission signal and the second partial signal, and the transmission signal selected by the second selection means when the transmission signal is received.
  • the second And second control means for controlling the selection of the second partial signal so that the second partial signal is received by the second decoding means.
  • a transmitting device for transmitting pixel data of an image of one screen worth of non-compression to a receiving device in one direction by a first differential signal, and the first differential signal transmitted from the transmitting device
  • the transmitting device is a data to be transmitted, the data different from the pixel data being a first partial signal and a second partial signal.
  • First conversion means for converting into two differential signals and transmitting the first partial signal to the receiving apparatus via a first signal line, and outputting the second partial signal;
  • a transmission signal that is a signal related to First selecting means for selecting any one of the second partial signals output from the first device and transmitting the selected signal to the receiving device via the second signal line, and the receiving device
  • a first decoding means for receiving the third differential signal that has been sent and decoding it into the original data, and the receiving apparatus is data to be sent, which is different from the pixel data.
  • Converting means for converting the third differential signal into the third differential signal and transmitting the second differential signal to the transmitting device; receiving the second differential signal transmitted from the transmitting device; and decoding the original data.
  • Control is performed so that the transmission signal is selected by the first selection unit, and the second selection signal is transmitted by the first selection unit when the second differential signal is transmitted to the reception apparatus. Controlling the signal to be selected, and controlling the transmission signal to be selected and received by the second selection means when the transmission signal is received by the reception device, the second difference When the motion signal is received by the receiver, the second partial signal is selected by the second selection means so that the second partial signal is received by the second decoding means. Including controlling.
  • a second differential signal which is data to be transmitted, wherein data different from pixel data is a first partial signal and a second partial signal.
  • the first partial signal is converted to a signal, and the first partial signal is transmitted to the receiving device via a first signal line, and the second partial signal is output, and a signal relating to control.
  • Transmission signal or output One of the selected second partial signals is selected, and the selected signal is transmitted to the receiving device via a second signal line.
  • the transmission signal is transmitted to the reception device
  • the transmission signal is selected
  • the second differential signal is transmitted to the reception device
  • the second partial signal is selected. It is controlled.
  • the third differential signal transmitted from the receiving apparatus is received and decoded into the original data.
  • data to be transmitted to / from the receiving device which is different from the pixel data, is converted into the third differential signal and transmitted to the transmitting device,
  • the second differential signal transmitted from the transmission device is received and decoded into original data, and either the transmission signal or the second partial signal is selected.
  • the transmission signal is received, the transmission signal is selected and received, and when the second differential signal is received, the second partial signal is selected and received.
  • the transmitting device is a transmitting device according to a second aspect of the present invention, in an effective image area which is an area excluding a horizontal blanking interval and a vertical blanking interval from the interval from 1 vertical synchronization signal to the next vertical synchronization signal.
  • it is a transmitter that transmits pixel data of an image of one screen's worth of uncompressed data to a receiver in one direction by a first differential signal, which is data to be transmitted, said pixel data Converting data different from the first partial signal into a second differential signal consisting of a first partial signal and a second partial signal, and transmitting the first partial signal to the receiving device via a first signal line.
  • Second selection means for transmitting a selected signal to the receiving device via a second signal line, and in the case of transmitting the first transmission signal to the receiving device, the first selecting means performs the first selection means.
  • the first selection means is controlled to select the second partial signal.
  • Control means, third partial signal and fourth portion transmitted from the receiving device A decoding means for receiving a third differential signal consisting of a minute signal and decoding it into the original data;
  • the third partial signal transmitted through the second signal line and the fourth partial signal transmitted through the first signal line are transmitted to the decoding means.
  • the first selection means to select the second partial signal or the third partial signal or the first transmission signal, and In the first control means, when the third differential signal is received, the third partial signal is selected by the first selection means, and the third partial signal is received by the decoding means.
  • the ability to force wholesale is S.
  • the first selecting means may transmit from the receiving apparatus via the second partial signal or the third partial signal, the first transmission signal, or the second signal line. It is possible to select a received signal that is a signal related to control, and to receive and output the selected received signal when the received signal is selected.
  • the decoding means includes the third partial signal transmitted through a third signal line and the fourth partial signal transmitted through a fourth signal line.
  • a second selection to select either the third partial signal or the second transmission signal that is a signal related to control to be received and transmitted to the receiving device, the third differential signal. And / or any of the fourth partial signal or the third transmission signal to be transmitted to the receiving device.
  • the second transmission signal is selected by the second selection unit, and the second transmission signal is selected.
  • the second transmission signal is transmitted to the receiving apparatus via the third signal line, and the third transmission signal is selected by the third selection unit, and the third transmission signal is transmitted. Is controlled to be transmitted to the receiver via the fourth signal line, and the third partial signal is selected by the second selection means when the third differential signal is received.
  • second control means for controlling the fourth partial signal to be selected by the third selection means and received by the decoding means. .
  • the first selection means is controlled by the second partial signal, or the first transmission signal, or the control transmitted from the receiving apparatus via the second signal line. , And when the first received signal is selected, causes the selected first received signal to be received and output, and the second selection means Selecting the second reception signal that is a signal related to control transmitted from the reception device via the third partial signal, the second transmission signal, or the third signal line When the second received signal is selected, the selected second received signal can be received and output.
  • the first transmission signal and the first reception signal are CEC (Consumer Electronics Control) signals that are data for control of the transmission device or the reception device
  • the second reception signal is The data to be converted into the second differential signal, and the third differential signal, which are used as E-EDID (Enhanced Extended Display Identification Data), which is information on the performance of the receiving device, used for control.
  • the data obtained by the process is regarded as data conforming to IP (Internet Protocol), and the first control means receives the second reception signal and then the first selection means performs the first selection means. It is controlled to select two partial signals, and the second control means receives the second reception signal, and then the second selection means and the third selection means perform the control.
  • the third partial signal and the fourth partial signal are It can be controlled to be-option.
  • the communication method or program of the second aspect of the present invention From the interval up to the direct synchronization signal, the horizontal blanking interval and the vertical blanking interval are excluded, and in the effective image interval, pixel data of an image for one screen which is not compressed is divided by the first differential signal.
  • the transmitting apparatus further comprises: selecting means for transmitting, and decoding means for receiving the third differential signal transmitted from the receiving apparatus and decoding the third differential signal into original data; Control is performed such that the transmission signal is selected by the selection unit, and is controlled such that the second partial signal is selected by the selection unit when the second differential signal is transmitted to the reception device.
  • data to be transmitted which is different from pixel data, is converted into a second differential signal consisting of a first partial signal and a second partial signal.
  • the first partial signal is transmitted to the receiving apparatus via a first signal line
  • the second partial signal is output, and a first transmission signal that is a signal related to control or the output One of the second partial signals is selected, and the selected signal is transmitted to the receiver via the second signal line.
  • the first transmission signal is transmitted to the reception device
  • the second differential signal is transmitted to the reception device
  • the second partial signal is transmitted. Is controlled to be selected.
  • a third differential signal composed of the third partial signal and the fourth partial signal transmitted from the receiving apparatus is received and decoded into the original data.
  • the receiver according to the third aspect of the present invention is an effective image interval which is an interval obtained by excluding the horizontal blanking interval and the vertical blanking interval from the interval from one vertical synchronization signal to the next vertical synchronization signal.
  • a receiver that receives pixel data of a non-compressed image of one screen transmitted in one direction from the transmitter using a first differential signal, and the first signal line Through before Receiving a second differential signal composed of the first partial signal transmitted from the transmitting device and the second partial signal transmitted from the transmitting device via the second signal line; Of the first reception signal, which is a signal related to control, transmitted from the transmitting apparatus via the first partial signal or the first signal line.
  • a first control unit configured to control the first partial signal to be selected by the first selection unit and to be received by the decoding unit when receiving a signal; and data to be transmitted;
  • the third partial signal and the fourth partial signal that differ from the data It is converted into a third differential signal formed from and a conversion means to be transmitted to the transmission device.
  • the conversion means outputs the third partial signal, and transmits the fourth partial signal to the transmission device via the second signal spring, and the first selection means To select the first received signal, the first partial signal, or the third partial signal output from the converting means, and the first control means to select the third difference
  • the third selection signal can be selected by the first selection means, and can be controlled to be transmitted to the transmission device via the first signal line.
  • the first selection means causes the first partial signal or the third partial signal, or the first received signal, or a transmission signal relating to control to be selected, and the transmission is performed. When a signal is selected, the selected transmission signal can be transmitted to the transmitting apparatus via the first signal line.
  • the conversion unit is configured to output the third partial signal and the fourth partial signal, and the third partial signal output from the conversion unit or the third partial signal may be output via the third signal line.
  • the third selection means is controlled to select and receive the third received signal, and when transmitting the third differential signal, the second The third partial signal is selected by the selection means and transmitted to the transmitter through the third signal line, and the fourth partial signal is selected by the third selection means, and the third partial signal is selected.
  • a second control means may be further provided to control transmission to the transmitter via a fourth signal line.
  • the first selection means may be the first partial signal, or the first reception signal, or a first transmission signal as a control-related signal transmitted to the transmission apparatus. If the first transmission signal is selected, the transmission apparatus is caused to transmit the selected first transmission signal via the first signal line, and the second selection unit is configured to: When the third partial signal, the second received signal, or the second transmission signal to be transmitted to the transmission apparatus, which is a signal related to control, is selected, and the second transmission signal is selected. Transmitting the selected second transmission signal to the transmitter via the third signal line.
  • the horizontal blanking interval and the vertical blanking interval are excluded from the interval from the vertical synchronization signal of 1 to the next vertical synchronization signal.
  • a communication method of a receiving apparatus for receiving pixel data of an image of one non-compressed image transmitted in one direction from the transmitting apparatus in a certain effective image section, or a receiving apparatus It is a program to be executed by a controlling computer, and the receiving device is a program that transmits the first partial signal transmitted from the transmitting device via the first signal line and the transmitting device via the second signal line.
  • a decoding means for receiving a second differential signal consisting of the transmitted second partial signal and decoding it into the original data, and the first partial signal or the first signal line via the first signal line Regarding control sent from transmitter Selecting means for selecting one of the received signals which are signals, and data to be transmitted, which is different from the pixel data described above, converted to a third differential signal and transmitted to the transmitting device. Conversion means for controlling the reception signal to be selected and received by the selection means when receiving the reception signal, and receiving the second differential signal, the selection means By which the first partial signal is selected and received by the decoding means Including controlling.
  • the first partial signal transmitted from the transmitting apparatus via the first signal line and the transmitting apparatus via the second signal line A second differential signal consisting of the second partial signal that has been received is received, decoded into the original data, and transmitted from the transmitting device via the first partial signal or the first signal line Any of the first received signals, which are signals related to control, has been selected.
  • the first received signal is received, the first received signal is selected and received, and when the second differential signal is received, the first partial signal is selected and received.
  • data which is data to be transmitted and which is different from the pixel data is converted into a third partial signal and a third differential signal having a fourth partial signal power, and is transmitted to the transmission device.
  • the communication cable according to the fourth aspect of the present invention is an effective image area which is an area obtained by removing a horizontal blanking interval and a vertical blanking interval from a section from one vertical synchronization signal to the next vertical synchronization signal.
  • a transmitting device that transmits pixel data of an image of one screen worth in one direction to a receiving device by a first differential signal, which is data to be transmitted, which is different from the pixel data.
  • Data is converted into a second differential signal consisting of a first partial signal and a second partial signal, and the first partial signal is transmitted to the receiving device via a first signal line
  • the first conversion means for outputting a partial signal of 2 and the transmission signal that is a signal related to control, or V of the second partial signal output from the first conversion means is selected, Send the selected signal to the receiver via the second signal spring
  • a first selection means and when the transmission signal is transmitted to the reception device, the transmission signal is selected by the first selection means and the second differential signal is transmitted to the reception device;
  • a first control means for controlling the selection of the second partial signal by the first selection means; and a third differential signal transmitted from the receiving device;
  • a receiving device for receiving the first differential signal transmitted from the transmitting device, the data being transmitted, the pixel data being Second conversion means for converting different data into the third differential signal and transmitting it to the transmitter, and the second differential signal transmitted from the transmitter And the second selection means for selecting either the second partial signal or the transmission signal, and the transmission signal is received.
  • a communication cable for connecting to a receiving apparatus comprising a second control means for controlling the second partial signal to be received by the second decoding means, the first signal line and the first signal line
  • the first signal line and the second signal line are connected in a differential twist pair! / !.
  • a communication cable connecting a transmitter and a receiver is provided with a first signal line and a second signal line, and the first signal line, The second signal line is connected in a differential twisted pair connection.
  • a fifth aspect of the present invention is a communication including an interface for transmitting video and audio data, exchanging and checking information of connected device information, communicating device control data, and LAN communication with one cable.
  • the system includes a pair of differential transmission paths to which connection compatible devices can be connected, and LAN communication is performed by two-way communication via the pair of differential transmission paths, and the pair of differential transmission paths is performed. It has a function to notify the connection status of the interface by the DC bias potential of at least one of the transmission paths.
  • a sixth aspect of the present invention is a communication including an interface for transmitting video and audio data, exchanging and checking information of connected device information, communicating device control data, and LAN communication with one cable.
  • the system includes two pairs of differential transmission paths to which connection compatible devices can be connected, and LAN communication is performed by unidirectional communication via the two pairs of differential transmission paths, at least one of the transmission paths. It has a function to notify the connection state of the interface by the DC bias potential of one transmission line, and at least two transmission lines are used for communication of information exchange of connected equipment and authentication in time division with LAN communication.
  • bi-directional communication can be performed.
  • high-speed bi-directional communication is performed while maintaining compatibility, for example, in a communication interface which can transmit pixel data of an uncompressed image and audio data attached to the image in one direction at high speed. Is possible.
  • a circuit for LAN communication can be formed irrespective of the electrical specification defined for DDC, and stable and reliable LAN communication can be realized inexpensively.
  • FIG. 6 A diagram showing a more detailed configuration example of an HDMI (R) source and an HDMI (R) sink.
  • FIG. 7 is a diagram showing another more detailed configuration example of the HDMI (R) source and the HDMI (R) sink.
  • FIG. 8 is a diagram showing the data structure of E-EDID.
  • FIG. 9 A diagram showing a data structure of Vender Specific.
  • FIG. 10 is a flowchart illustrating communication processing by an HDMI (R) source.
  • FIG. 11 is a flowchart for explaining communication processing by an HDMI (R) sink.
  • FIG. 12 is a flowchart for explaining communication processing by an HDMI (R) source.
  • FIG. 13 is a flowchart for explaining communication processing by an HDMI (R) sink.
  • FIG. 14 is a diagram showing another more detailed configuration example of the HDMI (R) source and the HDMI (R) sink.
  • FIG. 15 is a flowchart for explaining communication processing by an HDMI (R) source.
  • FIG. 16 is a flowchart illustrating communication processing by an HDMI (R) sink.
  • FIG. 18 is a circuit diagram showing a first configuration example of a communication system in which the connection state of the interface is notified by the DC bias potential of at least one of the transmission paths.
  • FIG. 19 is a diagram showing an example of a system configuration in the case of mounting on Ethernet (registered trademark) (Ethernet (registered trademark)).
  • FIG. 20 is a circuit diagram showing a second configuration example of the communication system in which the connection state of the interface is notified by the DC bias potential of at least one of the transmission paths.
  • FIG. 2 is a diagram showing the configuration of an image transmission system according to an embodiment of the present invention.
  • the image transmission system includes a digital television receiver 31, an amplifier 32, a reproduction device 33, and a digital television receiver 34, and a digital television receiver 31 and an amplifier 32, and an amplifier 32 and a reproduction device.
  • Reference numeral 33 denotes a communication cable compliant with HDMI (R), which is connected by an HDMI (R) cable 35 and an HDMI (R) cable 36.
  • the digital television receiver 31 and the digital television receiver 34 are connected by a LAN cable 37 for LAN such as Ethernet (registered trademark).
  • the digital television receiver 31, the amplifier 32, and the playback device 33 are installed in the living room provided on the left side of the figure of the user's house, and the digital television receiver 34 is , It is installed in the bedroom provided on the right side of the living room.
  • the playback device 33 is composed of, for example, a DVD player, a hard disk recorder, etc., decodes pixel data and audio data for reproducing content, and the resultant uncompressed pixel data and audio data are transmitted to the HDMI. (R) Supply to amplifier 32 via cable 36.
  • the amplifier 32 is formed of, for example, an AV amplifier, receives pixel data and audio data from the reproduction device 33, and amplifies the supplied audio data as necessary.
  • the amplifier 32 also supplies audio data and pixel data, which are supplied from the reproduction device 33 and amplified as necessary, to the digital television receiver 31 via the HDMI (R) cable 35.
  • the digital television receiver 31 reproduces the content by displaying an image or outputting an audio based on the pixel data and the audio data supplied from the amplifier 32.
  • digital television receiver 31 and amplifier 32 can perform bidirectional communication such as IP communication at high speed using HDMI (R) cable 35, for example.
  • Amplifier 32 and playback device 33 Also, using the HDMI (R) cable 36, bidirectional communication such as IP communication can be performed at high speed.
  • the playback device 33 performs IP communication with the amplifier 32 to compress compressed pixel data and audio data as data conforming to IP to the amplifier 32 via the HDMI (R) cable 36.
  • the amplifier 32 can transmit, and can receive compressed pixel data and audio data transmitted from the reproduction device 33.
  • the amplifier 32 performs IP communication with the digital television receiver 31 to thereby compress compressed pixel data and audio data as data conforming to the IP via the HDMI (R) cable 35.
  • the digital television receiver 31 can be transmitted to the digital television receiver 31, and the digital television receiver 31 can receive the compressed pixel data and audio data transmitted from the amplifier 32.
  • the digital television receiver 31 can transmit the received pixel data and audio data to the digital television receiver 34 via the LAN cable 37. Also, the digital television receiver 31 decodes the received pixel data and audio data, and displays an image or outputs audio based on the non-compressed pixel data and audio data obtained by this. And play the content.
  • the digital television receiver 34 receives and decodes pixel data and audio data transmitted from the digital television receiver 31 via the LAN cable 37, and decodes uncompressed pixel data obtained by the decoding. And based on audio data, display images and output audio to play back content. This allows the digital television receiver 31 and the digital television receiver 34 to simultaneously reproduce the same or different content.
  • the digital television receiver 31 receives pixel data and audio data for reproducing a program as television broadcast content
  • the received audio data is, for example, 5.
  • the digital television receiver 31 transmits the received audio data to the amplifier 32 through the HDMI (R) cable 35 by performing IP communication with the amplifier 32.
  • the amplifier 32 receives and decodes audio data transmitted from the digital television receiver 31, and amplifies the decoded audio data as necessary. Then, a speaker (not shown) connected to the amplifier 32 reproduces 5 ⁇ 1 channel surround sound.
  • the digital television receiver 31 transmits audio data to the amplifier 32 via the HDMI (R) cable 35, decodes the received pixel data, and decodes an image based on the pixel data obtained by the decoding. Display and play the program.
  • the digital television receiver 31, the amplifier 32, the reproducing device 33, and the like connected by the HDMI (R) cable 35 or the HDMI (R) cable 36 are electronic. Since the device can perform IP communication at high speed using an HDMI (R) cable, a LAN cable corresponding to the LAN cable 17 in FIG. 1 is not required.
  • the digital television receiver 31 can be connected to the HDMI (R) cable 36, the amplifier 32, and the HDMI R) Since data received from the playback device 33 via the cable 35 can be further transmitted to the digital television receiver 34 via the LAN cable 37, the device corresponds to the LAN cable 18 and the hub 16 in FIG. There is no need for LAN cables or electronic devices.
  • FIG. 3 shows an HDMI (R) source and an HDMI (R) sink embedded in each of the electronic devices connected to each other by the HDMI (R) cable, for example, provided in the amplifier 32 of FIG. Et al Shows an example configuration of the HDMI (R) source and the HDMI (R) sink provided in the digital television receiver 31 !.
  • the HDMI (R) source 71 and the HDMI (R) sink 72 are connected by a single HDMI (R) cable 35, and the HDMI (R) source 71 and the HDMI (R) sink 72 are currently It is possible to perform high-speed bi-directional IP communication using the HDMI (R) cable 35 while maintaining compatibility with the HDMI (R).
  • the HDMI (R) source 71 is an effective image section (hereinafter referred to as appropriate) in which the horizontal blanking interval and the vertical blanking interval are excluded from the interval from one vertical synchronization signal to the next vertical synchronization signal.
  • the active video section differential signals corresponding to pixel data of uncompressed one screen of image are transmitted to the HDMI (R) sink 72 in one direction on a plurality of channels.
  • differential signals corresponding to at least voice data, control data, and other auxiliary data associated with an image are transmitted to the HDMI (R) sink 72 in one direction by a plurality of channels.
  • the HDMI (R) source 71 has a transmitter 81.
  • the transmitter 81 converts, for example, pixel data of an uncompressed image into corresponding differential signals, and an HDMI (R) cable 35 with three TMDS channels # 0, # 1 and # 2 which are a plurality of channels. Serial transmission in one direction to an HDMI (R) sink 72 connected thereto.
  • the transmitter 81 converts audio data accompanying uncompressed images, further necessary control data and other auxiliary data, etc. into corresponding differential signals, and the three TMDS channels # 0, Serial transmission in one direction to the HDMI (R) sink 72 connected via the HDMI (R) cable 35 in # 1 and # 2.
  • the transmitter 81 is connected to the pixel clock synchronized with the pixel data transmitted by the three TMDS channels # 0, # 1 and # 2 by the TMDS clock channel via the HDMI (R) cable 35. Transmit to the HDMI (R) sink 72.
  • the HDMI (R) sink 72 receives differential signals corresponding to pixel data transmitted in one direction from the HDMI (R) source 71 on a plurality of channels in the active video period. Also, in the horizontal blanking interval or the vertical blanking interval, a plurality of channels receive differential signals corresponding to audio data and control data, which are transmitted in one direction from the HD MI (R) source 71.
  • the HDMI (R) sink 72 has a receiver 82.
  • the receiver 82 supports pixel data that is transmitted in one direction from the HDMI® source 71 connected via the HDMI® cable 35 with TMDS CH NN sonore # 0, # 1, # 2 And differential signals corresponding to audio data and control data in synchronization with the pixel clock transmitted from the HDMI (R) source 71 through the TMDS clock channel.
  • TMDS channels # 0 and # 2 as transmission channels for serial transmission in one direction in synchronization with the pixel clock and the TMDS clock channel as a transmission channel for transmitting pixel clocks.
  • DDC Display Data Channel
  • the DDC 83 is composed of two unshown signal lines included in the HDMI (R) cable 35, and the HDMI (R) source 71 is connected to the HDMI (R) via the HDMI (R) cable 35. From the sink 72, it is used to joke out E-EDID (Enhanced Extended Display Identification Data).
  • E-EDID Enhanced Extended Display Identification Data
  • the HDMI (R) sink 72 has an EDID ROM (EDID ROM (Read Only Memory) 85) that stores E-EDID, which is information on its own settings and performance. ing.
  • the HDMI (R) source 71 is an HD MI (R) sink 72 connected via the HDMI (R) cable 35, and the E-EDID stored in the EDIDROM 85 of the HDMI (R) sink 72 is DDC 83.
  • the setting and performance of the HDMI (R) sink 72 that is, for example, the format (profile) of an image supported by the (electronic device having the HDMI (R) sink 72), For example, it recognizes RGB (Red, Green, Blue), YCbCr 4: 4: 4, YCb Cr 4: 2: 2, etc.
  • the HDMI (R) source 71 also stores the E-EDID in the same manner as the HDMI (R) sink 72, and the E-EDID is stored in the HDMI (R) sink 72 as necessary. Can be sent to
  • the CEC line 84 is composed of one unshown signal line included in the HDMI (R) cable 35, It is used to perform bi-directional communication of control data between the HDMI (R) source 71 and the HDMI (R) sink 72.
  • the HDMI® source 71 and the HDMI® sink 72 are connected via the DDC 83 or the CEC line 84 to a frame conforming to IEEE (Institute of Electrical and Electronics Engineers 802.3).
  • (R) Sending to the sink 72 and the HDMI (R) source 71 enables bi-directional IP communication.
  • the HDMI (R) cable 35 includes a signal line 86 connected to a pin called Hot Plug Detect, and the HDMI (R) source 71 and the HDMI (R) sink 72 receive this signal.
  • the line 86 can be used to detect the connection of a new electronic device, ie an HDMI® sink 72 or an HDMI® source 71.
  • FIG. 4 and FIG. 5 show the pin arrangement (not shown) of the connector (not shown) provided in the HDMI (R) source 71 or the HDMI (R) sink 72 connected to the HDMI (R) cable 35. pin assignment) is shown.
  • FIG. 4 shows a pin arrangement of a connector called HDMI (R) type A (Type-A).
  • TMDS channel #i differential signal
  • the two signal lines that are differential signal lines through which TMDS Data # i + and TMDS Data ffi-are transmitted are pins to which TMDS Data # i + is assigned (the pin number is It is connected to pins 1, 4 and 7) and pins to which TMDS Dataffi- is assigned (pins 3, 6 and 9).
  • the CEC line 84 through which the CEC signal, which is control data, is transmitted is connected to a pin whose pin number is 13.
  • the pin whose pin number is 14 is a reserved pin. If bidirectional IP communication can be performed using this free pin, compatibility with the current HDMI (R) can be maintained. Therefore, the signal line connected to the pin number 14 pin and the CEC line 84 can be transmitted so that the differential signal can be transmitted using the CEC line 84 and the signal line connected to the pin number 14 pin.
  • a signal spring for transmitting an SDA (Serial Data) signal such as E-EDID is a clock signal connected to a pin having a pin number of 16 and used for synchronization at the time of transmission and reception of the SDA signal.
  • the signal line through which the SCL (Serial Clock) signal is transmitted is connected to the pin with pin number 15.
  • the DDC 83 in FIG. 3 is composed of a signal line through which the SDA signal is transmitted and a signal line through which the SCL signal is transmitted.
  • the signal line through which the SDA signal is transmitted, and the signal line through which the SCL signal is transmitted transmit differential signals in the same manner as the signal lines connected to the CEC line 84 and pin number 14 pins.
  • the pin number is grounded to the ground wire connected to the 17th pin.
  • a signal line 86 through which a signal for detecting connection of a new electronic device is transmitted is connected to a pin whose pin number is 19.
  • FIG. 5 shows a pin arrangement of a connector called HDMI (R) Type C (Type-C) or Type Mini.
  • the differential signal line through which the differential signal of TMDS channel #i, TMDS Data # i + and TMDS Dataffi- are transmitted is the pin to which TMDS Data # i + is assigned (the pin number is It is connected to pins 2, 5, and 8) and the pin (pins 3, 6, and 9) to which TMDS Dataffi- is assigned.
  • the CEC line 84 through which the CEC signal is transmitted is connected to a pin whose pin number is 14 and a pin whose pin number is 17 is a reserved pin.
  • the signal wire connected to pin No. 17 and the CEC line 84 are differentially twisted and shielded in the same way as in type A, and connected to pin No. 13 It is grounded to the ground line of CEC line 84 and DDC 83.
  • the signal line through which the SDA signal is transmitted is connected to the pin with a pin number of 16, and the signal line through which the SCL signal is transmitted is connected to the pin with a pin number of 15.
  • the signal line through which the SDA signal is transmitted, and the signal line through which the SCL signal is transmitted are differentially twisted pair connected so that differential signals can be transmitted, as in the case of type A. It is grounded and connected to the ground wire connected to the pin No. 13 pin.
  • a signal line 86 through which a signal for detecting connection of a new electronic device is transmitted is connected to a pin whose pin number is 19.
  • FIG. 6 shows an HDMI (R) source 71 for performing IP communication by half duplex communication method using a CEC line 84 and a signal line connected to an empty pin of the connector of the HDMI (R).
  • FIG. 7 is a diagram showing a configuration of an HDMI (R) sink 72.
  • FIG. 6 shows a configuration example of a portion related to half duplex communication in the HDMI (R) source 71 and the HDMI (R) sink 72. Further, in FIG. 6, the portions corresponding to the case in FIG. 3 are assigned the same reference numerals, and the description thereof will be omitted as appropriate.
  • the HDMI (R) source 71 includes a transmitter 81, a switching control unit 121, and a timing control unit 122. Also, the transmitter 81 includes a converter 131, a decoder 132, and
  • the conversion unit 131 transmits the HDMI (R) source 71 to the HDMI (R) sink 72 by bi-directional IP communication between the HDMI (R) source 71 and the HDMI (R) sink 72.
  • Tx data is supplied, which is data to be transmitted.
  • the Tx data is, for example, compressed pixel data or audio data.
  • the conversion unit 131 is formed of, for example, a differential amplifier, and converts the supplied Tx data into a differential signal composed of two partial signals. Also, the conversion unit 131 transmits the differential signal obtained by the conversion to the receiver 82 via the CEC line 84 and a signal line 141 connected to an open pin of a connector (not shown) provided in the transmitter 81. . That is, the conversion unit 131 is a signal line provided in the CEC line 84, more specifically in the transmitter 81, for one partial signal constituting the differential signal obtained by the conversion, and the HDMI (R) cable 35 And the other partial signal constituting the differential signal is supplied to the signal line 141, more specifically, the signal line provided in the transmitter 81. A signal line connected to the signal line 141 of the HDMI (R) cable 35 and a signal line 141 are supplied to the receiver 82.
  • Decoding section 132 is formed of, for example, a differential amplifier, and its input terminal is connected to CEC line 84 and signal line 141.
  • the decoding unit 132 transmits from the receiver 82 via the CEC line 84 and the signal line 141 based on the control of the timing control unit 122.
  • the received differential signal that is, the differential signal composed of the partial signal on the CEC line 84 and the partial signal on the signal spring 141 is received, and is decoded and output as the original data Rx data.
  • Rx data is transmitted from the HDMI (R) sink 72 to the HDMI (R) source 71 by bi-directional IP communication between the HDMI (R) source 71 and the HDMI (R) sink 72.
  • the data is, for example, a command requesting transmission of pixel data or audio data.
  • the switch 133 is supplied with a CEC signal from the HDMI (R) source 71 or a partial signal forming a differential signal corresponding to Tx data from the conversion unit 131 at the timing of transmitting data, At the timing of receiving the signal, a partial signal is supplied which constitutes a differential signal corresponding to the CEC signal from the receiver 82 or the Rx data from the receiver 82.
  • the switch 133 is a part that configures a differential signal corresponding to the CEC signal from the HDMI (R) source 71, the CEC signal from the receiver 82, or Tx data under the control of the switching control unit 121. Selects and outputs partial signals that make up the differential signal corresponding to the signal or Rx data.
  • the switch 133 is supplied from the CEC signal supplied from the HDMI (R) source 71 or from the conversion unit 131.
  • the selected CEC signal or partial signal is transmitted to the receiver 82 via the CEC line 84.
  • the switch 133 is transmitted at the timing when the HDMI (R) source 71 receives the data transmitted from the HDMI (R) sink 72, and is transmitted from the receiver 82 via the CEC line 84.
  • the received CEC signal or the partial signal of the differential signal corresponding to Rx data is received, and the received CEC signal or partial signal is supplied to the HDMI (R) source 71 or the decoding unit 132.
  • the switching control unit 121 controls the switch 133 to switch the switch 133 so that one of the signals supplied to the switch 133 is selected.
  • the timing control unit 122 controls the timing of reception of the differential signal by the decoding unit 132.
  • the HDMI (R) sink 72 includes a receiver 82, a timing control unit 123, and a switching control unit 124. Furthermore, the receiver 82 is provided with a conversion unit 134, a switch 135, and a decoding unit 136.
  • Conversion unit 134 is formed of, for example, a differential amplifier, and conversion unit 134 includes Rx. Data is provided.
  • the conversion unit 134 converts the supplied Rx data into a differential signal composed of two partial signals under the control of the timing control unit 123, and the differential signal obtained by the conversion is the CEC line 84 and the signal line 141.
  • the other partial signal constituting the differential signal is supplied to the switch 135 through the signal line connected to the CEC line 84 of the bull 35, and the signal line provided in the receiver 82, more specifically, the signal line 141.
  • the signal is connected to the signal line 141 of the HDMI (R) cable 35, and is supplied to the transmitter 81 via the signal line 141.
  • the switch 135 is supplied with the CEC signal from the transmitter 81 or a partial signal forming a differential signal corresponding to Tx data from the transmitter 81 at the timing of receiving data, and the timing of transmitting data , A partial signal constituting a differential signal corresponding to the Rx data from the conversion unit 134, or a CEC signal from the HDMI (R) sink 72 is supplied.
  • the switch 135 is a CEC signal from the transmitter 81, a CEC signal from the HDMI (R) sink 72, or a partial signal forming a differential signal corresponding to Tx data, based on control from the switching control unit 124. Or Selects and outputs partial signals that make up the differential signal corresponding to Rx data.
  • the switch 135 is supplied from the CEC signal supplied from the HDMI (R) sink 72 or from the conversion unit 134. Select one of the partial signals and transmit the selected CEC signal or partial signal to the transmitter 81 via the CEC line 84.
  • switch 135 has been transmitted from transmitter 81 via CEC line 84 at the timing when HDMI (R) sink 72 receives data transmitted from HDMI (R) source 71.
  • the partial signal of the differential signal corresponding to the CEC signal or Tx data is received, and the received CEC signal or partial signal is supplied to the HDMI (R) sink 72 or the decoding unit 136
  • Decoding section 136 is formed of, for example, a differential amplifier, and its input terminal is connected to CEC line 84 and signal line 141.
  • the decoding unit 136 has a CEC line 84 and
  • the differential signal transmitted from the transmitter 81 via the signal fountain 141 that is, the differential signal composed of the partial signal on the CEC line 84 and the partial signal on the signal fountain 141, is received and converted to the original data Tx data. Decrypt and output.
  • the switching control unit 124 controls the switch 135 to switch the switch 135 so that one of the signals supplied to the switch 135 is selected.
  • the timing control unit 123 controls the timing of transmission of the differential signal by the conversion unit 134.
  • the signal line 141 connected to the HDMI (R) source 71 and the HDMI (R) sink 72 power CEC line 84 and the vacant pin, the signal line to which the SDA signal is transmitted, and the signal to which the SCL signal is transmitted
  • the HDMI (R) source 71 and the HDMI (R) sink 72 are configured as shown in FIG. 7, for example.
  • the parts corresponding to the case in FIG. 6 are assigned the same reference numerals, and the description thereof will be omitted as appropriate.
  • the HDMI (R) source 71 includes a transmitter 81, a switching control unit 121, and a switching control unit 171.
  • the transmitter 81 is provided with a conversion unit 131, a switch 133, a switch 181, a switch 182, and a decoding unit 183.
  • the switch 181 is supplied with the SDA signal from the HDMI (R) source 71 at the data transmission timing, and the SDA signal from the receiver 82 or the Rx from the receiver 82 at the data reception timing.
  • a partial signal is provided which constitutes a differential signal corresponding to the data.
  • the switch 181 selects a partial signal forming a differential signal corresponding to the SDA signal from the HDMI (R) source 71, the SDA signal from the receiver 82, or the Rx data based on the control from the switching control unit 171. Output.
  • switch 181 is a signal line through which the SDA signal is transmitted at timing when HDMI (R) source 71 receives data transmitted from HDMI (R) sink 72.
  • An HDMI (R) source 71 receives an SDA signal transmitted from the receiver 82 via the line 191 or a partial signal of a differential signal corresponding to Rx data, and receives the received SDA signal or partial signal. Alternatively, it supplies to the decoding unit 183.
  • the switch 181 transmits the SDA signal supplied from the HDMI (R) source 71 via the SDA line 191. And transmit to the receiver 82, or transmit nothing to the receiver 82.
  • the switch 182 is supplied with the SCL signal from the HDMI (R) source 71 at the timing of transmitting data, and the differential corresponding to the Rx data from the receiver 82 at the timing of receiving data.
  • the partial signals that make up the signal are provided.
  • the switch 182 selects and outputs either a SCL signal or a partial signal constituting a differential signal corresponding to Rx data based on control from the switching control unit 171.
  • switch 182 is a signal line through which an SCL signal is transmitted at timing when HDMI (R) source 71 receives data transmitted from HDMI (R) sink 72, and switch 182 is SCL
  • the partial signal of the differential signal corresponding to the Rx data transmitted from the receiver 82 via the line 192 is received, and the received partial signal is supplied to the decoding unit 183 or nothing is received.
  • the switch 182 transmits the SCL signal supplied from the HDMI (R) source 71 via the SCL line 192. And transmit to the receiver 82, or transmit nothing.
  • Decoding section 183 is formed of, for example, a differential amplifier, and its input terminal is connected to SDA line 191 and SCL line 192.
  • Decoding section 183 receives a differential signal transmitted from receiver 82 via SDA line 191 and SCL line 192, that is, a differential signal consisting of a partial signal on SDA line 191 and a partial signal on SCL line 192. Then, the original data, Rx data, is decoded and output.
  • the switching control unit 171 controls the switches 181 and 182 to switch the switches 181 and 182 so that one of the supplied signals is selected for each of the switches 181 and 182. .
  • the HDMI (R) sink 72 includes the receiver 82, the switching control unit 124, and the switching control unit 172. Furthermore, the receiver 82 is provided with a switch 135, a decoding unit 136, a conversion unit 184, a switch 185 and a switch 186.
  • Conversion unit 184 is formed of, for example, a differential amplifier, and Rx data is supplied to conversion unit 184.
  • the conversion unit 184 converts the supplied Rx data into a differential signal consisting of two partial signals, and the differential signal obtained by the conversion is applied to the SDA line 191 and the SCL line.
  • the switch 185 is supplied with a partial signal forming a differential signal corresponding to the Rx data from the conversion unit 184 or an SDA signal from the HDMI (R) sink 72 at the timing of transmitting data. At the timing of receiving data, the SDA signal from the transmitter 81 is supplied. Based on control from the switching control unit 172, the switch 185 is a SDA signal from the HD MI (R) sink 72, an SDA signal from the transmitter 81, or partial signals that form a differential signal corresponding to Rx data. Select and output.
  • switch 185 transmits the SDA signal transmitted from transmitter 81 via SDA line 191 at the timing when HDMI (R) sink 72 receives data transmitted from HDMI (R) source 71.
  • the received or received SDA signal is not supplied to the HDMI (R) sink 72, nor is it received.
  • the switch 185 transmits the SDA signal supplied from the HDMI (R) sink 72 or the conversion unit 184.
  • the supplied partial signal is transmitted to the transmitter 81 via the SDA line 191.
  • a switch 186 is supplied with a partial signal forming a differential signal corresponding to Rx data from the conversion unit 184 at the timing of transmitting data, and at the timing of receiving the data, the transmitter 81
  • the SCL signal from is supplied.
  • the switch 186 selects and outputs either a partial signal constituting the differential signal corresponding to Rx data or the SCL signal based on the control from the switching control unit 172.
  • switch 186 transmits the SCL signal transmitted from transmitter 81 via SCL line 192 at the timing when HDMI (R) sink 72 receives data transmitted from HDMI (R) source 71.
  • the received and received SCL signal is supplied to the HDMI (R) sink 72, or no signal is received.
  • the switch 186 switches the partial signal supplied from the conversion unit 184 through the SCL line 192.
  • the switching control unit 172 controls the switches 185 and 186 to switch the switches 185 and 186 so that one of the supplied signals is selected for each of the switches 185 and 186. .
  • the HDMI (R) source 71 and the HDMI (R) sink 72 perform IP communication, it is possible to determine whether half duplex communication is possible or full duplex communication is possible.
  • the E-EDID received by the HDMI (R) source 71 is, for example, a basic block and an expansion block, as shown in FIG.
  • E-EDID 1.3 Basic Structure data defined by the E-EDID 1.3 standard represented by "E-EDID 1.3 Basic Structure” is placed, and subsequently "Preferred timing" The timing information for maintaining compatibility with the conventional EDID represented by, and the timing information different from “Preferred timing” for maintaining the compatibility with the conventional EDID represented by "2nd timing” It is arranged.
  • “Speaker Allocation” is followed by “Vender Specific”. Data that is uniquely defined for each manufacturer, timing information for compatibility with the conventional EDID represented by "3rd timing”, and compatibility with the conventional EDID represented by "4th timing”. Timing information for keeping is arranged.
  • the sink device represented by "Supports-AI" corresponds to! /, A flag indicating the function, "DC_48bit”, “DC_36bit”, and “DC_30bit”, respectively.
  • DVI Digital Visual Interface
  • information indicating the maximum frequency of the pixel clock of TMDS represented by “Max-TMDS-Clock” is disposed.
  • a flag indicating presence / absence of delay information of video and audio represented by "Latency”, and full duplex indicating whether full duplex communication represented by "Full Duplex” is possible.
  • a flag and a half-duplex flag indicating whether half-duplex communication represented by "Half Duplex” is possible are arranged.
  • the full-duplex flag set (for example, set to ";!) Has a function that the HDMI (R) sink 72 performs full-duplex communication, that is, With the configuration shown in Figure 7 Indicates that it will be reset! / / (For example, set to "0"! /)
  • Full-duplex flag is a function that HDMI (R) sink 72 performs full-duplex communication Have /! Show that!
  • the half-duplex flag that is set (for example, set to ";!) Has the function of sink 72 performing half-duplex communication, that is, in FIG.
  • the half duplex flag being reset indicates that the configuration is as shown, and the H DMI (R) sink 72 has a function to perform half duplex communication. /! Show that! //!
  • the delay time data of the progressive video represented by “Video Latency” is placed, and in the tenth block “Audio Latency The audio delay time data attached to the progressive video, represented by ", is placed. Furthermore, in the 11th block, delay time data of the interlaced video represented by "Interlaced Video Latency” is arranged, and in the 12th block, an interlaced video represented by "Interlaced Au dio Latency” is arranged. The accompanying audio delay time data is placed.
  • the HDMI (R) source 71 performs half duplex communication or full duplex based on the full duplex flag and the half duplex flag included in the E-EDID received from the HDMI (R) sink 72. Do double communication
  • the HDMI (R) source 71 is configured as shown in FIG. 6, the HDMI (R) source is
  • 71 can perform half-duplex communication with the HDMI (R) sink 72 shown in FIG. 6 and can not perform half-duplex communication with the HDMI (R) sink 72 shown in FIG.
  • the HDMI (R) source 71 starts communication processing when the power of the electronic device provided with the HDMI (R) source 71 is turned on, and the HDMI (R) source 71 is connected to the HDMI (R) source 71.
  • R) Bidirectional communication according to the function of the sink 72 is performed.
  • the HDMI (R) source 71 determines whether a new electronic device is connected to the HDMI (R) source 71 or not. For example, the HDMI (R) source 71 is based on the magnitude of the voltage applied to a pin called Hot Plug Detect to which the signal line 86 is connected. It is determined whether a new electronic device provided with the HDMI (R) sink 72 is connected.
  • step S11 If it is determined in step S11 that a new electronic device is not connected, communication is not performed, and the communication process ends.
  • step S11 when it is determined in step S11 that a new electronic device is connected, the switching control unit 121 controls the switch 133 in step S12, and the HDMI (R) is transmitted when data is transmitted.
  • Switch 133 is switched so that the CEC signal from source 71 is selected and the CEC signal from receiver 82 is selected when data is received.
  • the HDMI (R) source 71 receives the E-EDID transmitted from the HDMI (R) sink 72 via the DDC 83. That is, when the HDMI (R) sink 72 detects the connection of the HDMI (R) source 71, it reads the E-EDID from the EDIDROM 85, and transmits the read E-EDID to the HDMI (R) source 71 via the DDC 83. Because the HDMI (R) source 71 receives an E-EDID that has been transmitted from the HDMI (R) sink 72, so.
  • step S14 the HDMI (R) source 71 determines whether half duplex communication with the HDMI (R) sink 72 is possible. That is, the HDMI (R) source 71 refers to the E-EDID received from the HDMI (R) sink 72 and determines whether or not the half duplex flag "Half Duplex" in FIG. 9 is set. For example, when the half duplex flag is set, the HDMI (R) source 71 determines that bi-directional IP communication by the half duplex communication method, that is, half duplex communication is possible.
  • step S15 the HDMI (R) source 71 uses the CEC line as channel information indicating a channel to be used for bidirectional communication.
  • a signal to perform IP communication by the half duplex communication method using the signal line 84 and the signal line 141 is transmitted to the receiver 82 through the switch 133 and the CEC line 84.
  • the HDMI (R) source 71 has the configuration shown in FIG. 6 for the HDMI (R) sink 72, and the CEC line 84 and the signal line 141 are used. Since it is known that half duplex communication is possible, the channel information is transmitted to the HDMI (R) sink 72 to notify that half duplex communication is to be performed.
  • step S16 switching control section 121 controls switch 133 to transmit data.
  • the switch 133 is switched so that the differential signal corresponding to the Tx data from the conversion unit 131 is selected during reception, and the differential signal corresponding to Rx data from the receiver 82 is selected when data is received.
  • each unit of the HDMI (R) source 71 performs bi-directional IP communication with the HDM I (R) sink 72 according to the half-duplex communication method, and the communication processing ends. That is, at the time of data transmission, the conversion unit 131 converts Tx data supplied from the HDMI (R) source 71 into a differential signal, and one of the partial signals constituting the differential signal obtained by the conversion. Is supplied to the switch 133, and the other partial signal is transmitted to the receiver 82 through the signal line 141. The switch 133 transmits the partial signal supplied from the conversion unit 131 to the receiver 82 via the CEC line 84. Thereby, the differential signal corresponding to the Tx data is transmitted to the HDMI (R) source 71, the HDMI (R) sink 72.
  • the decoding unit 132 receives a differential signal corresponding to the RX data transmitted from the receiver 82. That is, the switch 133 receives the partial signal of the differential signal corresponding to Rx data transmitted from the receiver 82 via the CEC line 84, and supplies the received partial signal to the decoding unit 132. Based on the control of the timing control unit 122, the decoding unit 132 generates a differential signal composed of the partial signal supplied from the switch 133 and the partial signal supplied from the receiver 82 via the signal line 141. Decode to Rx data, and output to the HDMI (R) source 71.
  • the HDMI (R) source 71 exchanges various data such as control data, pixel data, and audio data with the HDMI (R) sink 72.
  • each part of the HDMI (R) source 71 transmits and receives CEC signals in step S18, thereby performing HDMI (R). Two-way communication with the sink 72 is performed, and the communication process ends.
  • the HDMI (R) source 71 transmits a CEC signal to the receiver 82 via the switch 133 and the CE C line 84, and at the time of data reception, the H DMI (R) The source 71 receives the CEC signal transmitted from the receiver 82 via the switch 133 and the CEC line 84, and exchanges control data with the HDMI (R) sink 72 5.
  • the HDMI (R) source 71 refers to the half duplex flag, and uses the HDMI (R) sink 72 capable of half duplex communication, the CEC line 84, and the signal line 141. Do dual communication.
  • the switch 133 is switched to select the data to be transmitted and the data to be received, and half duplex communication using the HDMI (R) sink 72, the CEC line 84 and the signal line 141, ie, By performing IP communication using the half duplex communication method, high-speed two-way communication can be performed while maintaining compatibility with the conventional HDMI (R).
  • the HDMI (R) sink 72 similarly to the HDMI (R) source 71, the HDMI (R) sink 72 also starts communication processing when the power of the electronic device provided with the HDMI (R) sink 72 is turned on. (R) Two-way communication with the source 71 is performed.
  • HDMI (R) sink 72 shown in FIG. 6 The communication processing by the HDMI (R) sink 72 shown in FIG. 6 will be described below with reference to the flowchart in FIG.
  • the HDMI (R) sink 72 determines whether a new electronic device is connected to the HDMI (R) sink 72 or not.
  • the HDMI (R) sink 72 is a new electronic device provided with the HDMI (R) source 71 based on the magnitude of the voltage applied to a pin called Hot Plug Detect to which the signal line 86 is connected. It is determined whether the device is connected.
  • step S41 If it is determined in step S41 that a new electronic device is not connected, communication is not performed, and the communication process ends.
  • step S42 the switching control unit 124 controls the switch 135 so that it is turned off when data is transmitted.
  • Switch 135 switches so that the CEC signal from sink 72 is selected and the CEC signal from transmitter 81 is selected when data is received
  • step S43 the HDMI (R) sink 72 reads the E-EDID from the EDIDROM 85, and transmits the read E-EDID to the HDMI (R) source 71 via the DDC 83.
  • step S 44 the HDMI (R) sink 72 determines whether or not the channel information transmitted from the HDMI (R) source 71 has been received.
  • channel information indicating a bidirectional communication channel is transmitted according to the function of the HDMI (R) source 71 and the HDMI (R) sink 72.
  • the HDMI (R) source 71 is configured as shown in FIG. 6, the HDMI (R) source 71 and the HDMI (R) sink 72 can be connected to one another using the CEC line 84 and the signal line 141. Since heavy communication is possible, channel information to perform IP communication using the CEC line 84 and the signal line 141 is transmitted from the HDMI (R) source 71 to the HDMI (R) sink 72.
  • the HD MI (R) sink 72 receives the channel information transmitted from the HDMI (R) source 71 via the switch 135 and the CEC line 84, and determines that the channel information is received.
  • HDMI (R) source 71 does not have the function of performing half-duplex communication
  • channel information is transmitted from the H DMI (R) source 71 to the HDMI (R) sink 72 Since it has not been received, the HDMI (R) sink 72 determines that channel information has not been received.
  • step S44 If it is determined in step S44 that the channel information has been received, the process proceeds to step S45, and switching control unit 124 controls switch 135 to transmit Rx when the data is transmitted.
  • the switch 135 is switched so that the differential signal corresponding to the data is selected, and the differential signal corresponding to Tx data from the transmitter 81 is selected upon reception of the data.
  • each unit of the HDMI (R) sink 72 performs bi-directional IP communication with the HDM I (R) source 71 by the half-duplex communication method, and the communication processing ends. That is, at the time of data transmission, the conversion unit 134 converts Rx data supplied from the HDMI (R) sink 72 into a differential signal under the control of the timing control unit 123, and the differential signal obtained by the conversion. One of the partial signals constituting the signal is supplied to the switch 135 and the other partial signal is transmitted to the transmitter 81 via the signal line 141. The switch 135 transmits the partial signal supplied from the conversion unit 134 to the transmitter 81 via the CEC line 84. Thereby, the differential signal corresponding to the RX data is transmitted from the HDMI (R) sink 72 to the HDMI (R) source 71.
  • the decoding unit 136 receives a differential signal corresponding to Tx data transmitted from the transmitter 81. That is, the switch 135 receives the partial signal of the differential signal corresponding to the Tx data transmitted from the transmitter 81 via the CEC line 84, and supplies the received partial signal to the decoding unit 136.
  • the decoding unit 136 is supplied from the transmitter 81 via the partial signal supplied from the switch 135 and the signal line 141.
  • the differential signal composed of the supplied partial signal is decoded into Tx data which is the original data, and is output to the HDMI (R) sink 72.
  • the HDMI (R) sink 72 exchanges various data such as control data, pixel data, audio data, etc. with the HDMI (R) source 71.
  • each part of the HDMI (R) sink 72 performs HDMI (R) source transmission and reception in step S47. Communication is performed bi-directionally with 71, and the communication process ends.
  • the HDMI (R) sink 72 transmits the CEC signal to the transmitter 81 via the switch 135 and the CE C line 84, and at the time of data reception, the HDMI (R) sink 72 receives control data from the HDMI (R) source 71 by receiving the CEC signal transmitted from the transmitter 81 via the switch 135 and the CEC line 84.
  • the HDMI (R) sink 72 receives channel information, the HDMI (R) sink 72
  • half-duplex communication is performed using the CEC line 84 and the signal line 141.
  • the HDMI (R) sink 72 switches the switch 135 to select the data to be transmitted and the data to be received, and the HDMI (R) source 71, the CEC line 84, and the signal line 141 are used.
  • the HDMI (R) source 71, the CEC line 84, and the signal line 141 are used.
  • the HDMI (R) source 71 is configured as shown in FIG. 7, the HDMI (R) source 71 is used for communication processing, and the full-duplex flag included in E-EDID is used. Based on! /, The HDMI (R) sink 72 determines the strength with which it has a function to perform full-duplex communication, and performs bidirectional communication according to the determination result.
  • step S71 the HDMI (R) source 71 determines whether a new electronic device is connected to the HDMI (R) source 71 or not. If it is determined in step S71 that a new electronic device is not connected, communication is not performed, and the communication process ends.
  • step S71 it is determined that a new electronic device is connected.
  • the switching control unit 171 controls the switch 181 and the switch 182, and when transmitting data, the switch 181 selects the SDA signal from the HDMI (R) source 71, and the switch 182 transmits the HDMI signal.
  • R The switch 181 and the switch 182 are switched so that the SCL signal from the source 71 is selected, and when the data is received, the SDA signal from the receiver 82 is selected by the switch 181.
  • step S 73 switching control section 121 controls switch 133 so that the CEC signal from HDMI (R) source 71 is selected when transmitting data, and the CEC signal from receiver 82 is received when data is received. Toggle switch 133 so that is selected.
  • step S 74 the HDMI (R) source 71 receives the E-EDID transmitted from the HDMI (R) sink 72 via the SDA line 191 of the DDC 83. That is, when the HDMI (R) sink 72 detects the connection of the HDMI (R) source 71, the E-EDID is read from the EDIDROM 85, and the read E-EDID is transmitted to the HDMI (R) source via the SDA line 191 of the DDC 83. Since it transmits to 71, the HDMI (R) source 71 receives the E-EDID transmitted from the HDMI (R) sink 72.
  • step S75 the HDMI (R) source 71 determines whether full-duplex communication with the HDMI (R) sink 72 is possible. That is, the HDMI (R) source 71 refers to the E-EDID received from the HDMI (R) sink 72 and determines whether or not the full duplex flag "Full Duplex" in FIG. 9 is set. For example, when the full-duplex flag is set, the HDMI (R) source 71 determines that bi-directional IP communication in the full-duplex communication mode, that is, full-duplex communication is possible.
  • switching control section 171 controls switch 181 and switch 182 in step S76, and when data is received, switching control section 171 receives data from receiver 82. Switch switch 181 and switch 182 so that the differential signal corresponding to the Rx data is selected.
  • switching control section 171 transmits, via SDA line 191, among partial signals constituting a differential signal corresponding to Rx data, transmitted from receiver 82 at the time of data reception.
  • the switch 181 is selected by the incoming partial signal power S switch 181 and is selected by the incoming partial signal power switch 182 transmitted via the SCL line 192. And switch 182.
  • the SDA line 191 and the SCL line 192 that make up the DDC 83 are not used after the E-EDID is transmitted from the HDMI (R) sink 72 to the HDMI (R) source 71, that is, the SDA line 1 91 and the SCL Since transmission and reception of the SDA signal and the SCL signal via the line 192 are not performed, the switch 181 and the switch 182 are switched to use the SDA line 191 and the SCL line 192 as a transmission line of Rx data by full duplex communication. Can.
  • step S77 the HDMI (R) source 71 uses the CEC line 84 and the signal line 141, and the SDA line 191 and the SCL line 192 as channel information indicating a channel for bidirectional communication.
  • a signal to perform IP communication by the duplex communication method is transmitted to the receiver 82 through the switch 133 and the CEC line 84.
  • the HDMI (R) source 71 has the configuration shown in FIG. 7 for the HDMI (R) sink 72, and the CEC line 84 and the signal line 141 Since full-duplex communication using SDA line 191 and SCL line 192 is known to be possible, channel information is transmitted to HDMI (R) sink 72 to notify that full-duplex communication is to be performed. .
  • step S 78 the switching control unit 121 controls the switch 133 to switch the switch 133 so that the differential signal corresponding to the Tx data from the converting unit 131 is selected at the time of data transmission. That is, the switching control unit 121 switches the switch 133 so that the partial signal of the differential signal corresponding to the Tx data supplied from the conversion unit 131 to the switch 133 is selected.
  • each unit of the HDMI (R) source 71 performs bidirectional IP communication with the HDM I (R) sink 72 by the full-duplex communication method, and the communication processing ends. That is, at the time of data transmission, the conversion unit 131 converts Tx data supplied from the HDMI (R) source 71 into a differential signal, and one of the partial signals constituting the differential signal obtained by the conversion. Is supplied to the switch 133, and the other partial signal is transmitted to the receiver 82 through the signal line 141. The switch 133 transmits the partial signal supplied from the conversion unit 131 to the receiver 82 via the CEC line 84. Thereby, the differential signal corresponding to the Tx data is transmitted to the HDMI (R) source 71, the HDMI (R) sink 72.
  • decoding section 183 transmits R from receiver 82.
  • Receive a differential signal corresponding to x data That is, the switch 181 receives the partial signal of the differential signal corresponding to the Rx data transmitted from the receiver 82 via the SDA line 191 and supplies the received partial signal to the decoding unit 183.
  • the switch 182 receives the other partial signal of the differential signal corresponding to Rx data transmitted from the receiver 82 via the SCL line 192, and supplies the received partial signal to the decoding unit 183.
  • the decoding unit 183 decodes the differential signal composed of the partial signals supplied from the switch 181 and the switch 182 into Rx data which is the original data, and outputs it to the HDMI (R) source 71.
  • the HDMI (R) source 71 exchanges various data such as control data, pixel data, and audio data with the HDMI (R) sink 72.
  • each part of the HDMI (R) source 71 transmits and receives a CEC signal in step S80 to transmit an HDMI (R) sink. Two-way communication with 72 is performed, and the communication process ends.
  • the HDMI (R) source 71 transmits a CEC signal to the receiver 82 via the switch 133 and the CE C line 84, and at the time of data reception, the H DMI (R) The source 71 receives the CEC signal transmitted from the receiver 82 via the switch 133 and the CEC line 84, and exchanges control data with the HDMI (R) sink 72 5.
  • the HDMI (R) source 71 refers to the full-duplex flag
  • the HDMI (R) sink 72 capable of full-duplex communication
  • the CEC line 84 and the signal line 141, and the SDA line Perform full-duplex communication using 191 and SCL line 192.
  • the data to switch and transmit switch 133, switch 181, and switch 182, and the data to be received are selected, and the HDMI (R) sink 72, the CEC line 84, the signal line 141, and the SDA line 191 are selected. And by performing full-duplex communication using SCL line 192, high-speed bidirectional communication can be performed while maintaining compatibility with the conventional HDMI (R).
  • the HDMI (R) sink 72 is configured as shown in FIG. 7, the HDMI (R) sink 72 is the same as the case of the HDMI (R) sink 72 shown in FIG. , Perform communication processing, and perform bi-directional communication with the HDMI (R) source 71.
  • the communication processing by the HDMI (R) sink 72 shown in FIG. 7 will be described below with reference to the flowchart in FIG.
  • step S111 the HDMI (R) sink 72 determines whether a new electronic device is connected to the HDMI (R) sink 72 or not. If it is determined in step S111 that a new electronic device is not connected, communication is not performed, and the communication process ends.
  • switching control section 172 controls switch 185 and switch 186 in step S112 to transmit data.
  • the SDA signal of HDMI (R) sink 72 is selected by switch 185, and when receiving data, the SDA signal from transmitter 81 is selected by switch 185, and the SCL signal from transmitter 81 is selected by switch 186. Switch switch 185 and switch 186 so that is selected.
  • switching control section 124 controls switch 135 to select the CEC signal from HDMI / R sink 72 at the time of data transmission, and to transmit it at the time of data reception. Switch switch 135 so that the CEC signal from 81 is selected.
  • step S114 the HDMI (R) sink 72 reads the E-EDID from the EDIDROM 85, and the read E-EDID is sent to the HD MI (R) source 71 via the switch 185 and the SDA line 191 of the DDC 83. Send to
  • step S115 the HDMI (R) sink 72 determines whether or not the channel information transmitted from the HDMI (R) source 71 has been received.
  • channel information indicating a bidirectional communication channel is transmitted according to the function of the HDMI (R) source 71 and the HDMI (R) sink 72.
  • the HDMI (R) source 71 is configured as shown in FIG. 7, full-duplex communication between the HDMI (R) source 71 and the HDMI (R) sink 72 is possible.
  • HDMI (R) sink 72 From source 71 to HDMI (R) sink 72, channel information to perform IP communication by full duplex communication method using CEC line 84 and signal line 141, and SDA line 191 and SCL line 192 As it is transmitted, the HDMI (R) sink 72 receives the channel information transmitted from the HDMI (R) source 71 via the switch 135 and the CEC line 84, and determines that the channel information has been received. [0204] On the other hand, when the HDMI (R) source 71 does not have the function of performing full-duplex communication, channel information is transmitted from the H DMI (R) source 71 to the HDMI (R) sink 72 Since it has not been received, the HDMI (R) sink 72 determines that channel information has not been received.
  • step S115 If it is determined in step S115 that channel information has been received, the process proceeds to step S116, and switching control section 172 controls switch 185 and switch 186 to convert data at the time of data transmission. Switch switch 185 and switch 186 so that the differential signal corresponding to the Rx data from section 184 is selected.
  • step S117 the switching control unit 124 controls the switch 135 to switch the switch 135 so that the differential signal corresponding to the Tx data from the transmitter 81 is selected at the time of data reception.
  • each part of the HDMI (R) sink 72 performs bidirectional IP communication with the HD MI (R) source 71 by the full-duplex communication method, and the communication processing ends. That is, at the time of data transmission, the conversion unit 184 converts Rx data supplied from the HDMI (R) sink 72 into a differential signal, and one of the partial signals constituting the differential signal obtained by the conversion. Is supplied to switch 185, and the other partial signal is supplied to switch 186. The switches 185 and 186 transmit partial signals supplied from the conversion unit 184 to the transmitter 81 via the SDA line 191 and the SCL line 192. Thereby, the differential signal corresponding to the Rx data is transmitted from the HDMI (R) sink 72 to the HDMI (R) source 71.
  • the decoding unit 136 receives a differential signal corresponding to Tx data transmitted from the transmitter 81. That is, the switch 135 receives the partial signal of the differential signal corresponding to the Tx data transmitted from the transmitter 81 via the CEC line 84, and supplies the received partial signal to the decoding unit 136.
  • the decoding unit 136 decodes the differential signal composed of the partial signal supplied from the switch 135 and the partial signal supplied from the transmitter 81 via the signal line 141 into the original data Tx data, and R) Output to the sink 72.
  • the HDMI (R) sink 72 exchanges various data such as control data, pixel data, audio data, etc. with the HDMI (R) source 71.
  • each part of the HDMI (R) sink 72 performs bi-directional communication with the HDMI (R) source 71 by transmitting and receiving CEC signals, and the communication processing ends.
  • the HDMI (R) sink 72 receives channel information, the HDMI (R) sink 72
  • full-duplex communication is performed using CEC line 84 and signal line 141, and SDA line 191 and SCL line 192.
  • the HDMI (R) sink 72 switches the switch 135, the switch 185, and the switch 186 to select the data to be transmitted and the data to be received, and the HDMI (R) source 71 and the CE C line 84 and
  • the HDMI (R) source 71 and the CE C line 84 By performing full-duplex communication using signal line 141 and SDA line 191 and SCL line 192, it is possible to maintain high-speed bidirectional communication while maintaining compatibility with the conventional HDMI (R). it can.
  • the HDMI (R) source 71 has a configuration in which the conversion unit 131 is connected to the CEC line 84 and the signal line 141, and the decoding unit 183 is connected to the SDA line 191 and the SCL line 192.
  • the decoding unit 183 may be connected to the force CEC line 84 and the signal line 141, and the conversion unit 131 may be connected to the SDA line 191 and the SCL line 192.
  • the switch 181 and the switch 182 are connected to the SCEC line 84 and the signal line 141 and connected to the decoding unit 183, and the switch 133 is connected to the SDA line 191 and connected to the conversion unit 131. Ru.
  • the conversion unit 184 is connected to the CEC line 84 and the signal line 141, and the decoding unit 136 is connected to the SDA line 191 and the SCL line 192. It may be taken.
  • the switch 185 and switch 186 are connected to the SCEC line 84 and the signal line 141 and connected to the conversion unit 184, and the switch 135 is connected to the SDA line 191 and connected to the decoding unit 136.
  • the CEC line 84 and the signal line 141 may be the force S, the SDA line 191 and the SCL line 192. That is, the converter 131 and the decoder 132 of the HDMI (R) source 71, and the converter 134 and the decoder 136 of the HDMI (R) sink 72 are connected to the SDA line 191 and the SCL line 192, respectively.
  • the source 71 and the HDMI (R) sink 72 may perform IP communication by a half duplex communication method. Furthermore, in this case, the connection of the electronic device may be detected using an open pin of the connector to which the signal line 141 is connected.
  • both the function of performing half-duplex communication and the function of performing full-duplex communication of the HDMI (R) source 71 and the HDMI (R) sink 72 may be provided.
  • the HDMI (R) source 71 and the HDMI (R) sink 72 perform IP communication by half duplex communication scheme or full duplex communication scheme depending on the function of the connected electronic device. be able to
  • the HDMI (R) source 71 and the HDMI (R) sink 72 When each of the HDMI (R) source 71 and the HDMI (R) sink 72 has both a function for performing half duplex communication and a function for performing full duplex communication, the HDMI (R) source 71 and the HDM
  • the I (R) sink 72 is configured, for example, as shown in FIG. In FIG. 14, parts corresponding to those in FIG. 6 or FIG. 7 are assigned the same reference numerals, and descriptions thereof will be omitted as appropriate.
  • An HDMI (R) source 71 shown in FIG. 14 includes a transmitter 81, a switching control unit 121, a timing control unit 122, and a switching control unit 171.
  • the transmitter 81 includes a converting unit 131 and a decoding unit 132. , Switch 133, switch 181, switch 182, and decoding unit 183 are provided. That is, the HDMI (R) source 71 shown in FIG. 14 has a configuration in which the timing control unit 122 and the decoding unit 132 shown in FIG. 6 are further provided to the HDMI (R) source 71 shown in FIG.
  • the HDMI (R) sink 72 shown in FIG. 14 includes a receiver 82, a timing control unit 123, a switching control unit 124, and a switching control unit 172.
  • the receiver 82 includes a converting unit 134 and a switch.
  • a decoder 135, a converter 184, a switch 185, and a switch 186 are provided. That is, the HDMI (R) sink 72 of FIG. 14 is configured such that the timing control unit 123 and the conversion unit 134 of FIG. 6 are further provided to the HDMI (R) sink 72 shown in FIG. 7.
  • step S 155 the HDMI (R) source 71 determines whether full-duplex communication with the HDMI (R) sink 72 is possible. That is, the HDMI (R) source 71 determines whether or not the full-duplex flag "Full Duplex" in FIG. 9 is set with reference to the E-EDID received from the HDMI (R) sink 72, or the like. Do.
  • step S 155 When it is determined in step S 155 that full-duplex communication is possible, ie, as shown in FIG.
  • step S156 the switching control unit 171 controls the switch 181 and the switch 182 to transmit data. Switches 181 and 182 so that the differential signal corresponding to the Rx data from receiver 82 is selected.
  • the HDMI (R) source 71 determines whether half-duplex communication is possible in step S157. . That is, the HDMI (R) source 71 refers to the received E-EDID to determine whether or not the half duplex flag “Half Duplex” in FIG. 9 is set. In other words, the HDMI (R) source 71 determines whether the HDMI (R) sink 72 shown in FIG. 6 is connected to the HDMI (R) source 71 or not.
  • step S157 If it is determined in step S157 that half duplex communication is possible, or if switches 181 and 182 are switched in step S156, the HDMI (R) source 71 is switched in step S158. , Channel information is sent to receiver 82 via switch 133 and CEC line 84.
  • the H DMI (R) sink 72 has a function of performing full-duplex communication, and thus HDMI (R)
  • the source 71 receives a signal indicating that IP communication using the CEC line 84 and the signal line 141, and the SDA line 191 and the SCL line 192 is performed as channel information via the switch 133 and the CEC line 84. Send to 82
  • step S 157 if it is determined in step S 157 that half duplex communication is possible, the HD MI (R) sink 72 does not have the function of performing full duplex communication, Since the HDMI (R) source 71 has a function to perform dual communication, the signal to perform IP communication using the CEC line 84 and the signal line 141 as channel information is switched to the switch 133 and CEC line. 84 To the receiver 82 via
  • step S 159 switching control section 121 controls switch 133 to select a differential signal corresponding to Tx data from conversion section 131 at the time of data transmission, and from receiver 82 at the time of data reception.
  • the switch 133 is switched so that the differential signal corresponding to the Rx data to be transmitted is selected.
  • the HDMI (R) source 71 and the HDMI (R) sink 72 perform full-duplex communication
  • the CEC line 84 and the CEC line 84 and the receiver 82 are received. Since a differential signal corresponding to Rx data is not transmitted via the signal line 141, the differential signal corresponding to Rx data is not supplied to the decoding unit 132.
  • step S 160 each unit of the HDMI (R) source 71 performs bi-directional IP communication with the HDMI (R) sink 72, and the communication processing ends.
  • HDMI (R) source 71 performs full-duplex communication with HDMI (R) sink 72 and performs half-duplex communication
  • conversion unit 131 performs HDMI (R ) Convert the Tx data supplied from the source 71 into a differential signal, and convert one of the partial signals constituting the differential signal obtained by the conversion into the receiver 82 via the switch 133 and the CEC line 84.
  • the other partial signal is transmitted to the receiver 82 through the signal line 141.
  • the decoding unit 183 supports Rx data transmitted from the receiver 82 at the time of data reception. A differential signal is received, and the received differential signal is decoded into Rx data, which is the original data, and output to the H DMI (R) source 71.
  • the decoder 132 controls the timing controller 122 at the time of data reception. Based on the received differential signal corresponding to the Rx data transmitted from the receiver 82, the received differential signal is decoded into the original data Rx data, and output to the HDMI (R) source 71. Do.
  • the HDMI (R) source 71 exchanges various data such as control data, pixel data, and audio data with the HDMI (R) sink 72.
  • each part of the HDMI (R) source 71 receives the CEC signal via the CEC line 84 in step S 161. By performing transmission and reception, bi-directional communication with the HDMI (R) sink 72 is performed, and the communication processing ends.
  • the HDMI (R) source 71 refers to the full-duplex flag and the half-duplex flag, and according to the function of the HDMI (R) sink 72 that is the other party in communication, full duplex communication Or half duplex communication.
  • the data to be sent by switching between switch 133, switch 181, and switch 182, and the data to be received are selected.
  • full-duplex communication or half-duplex communication high-speed bidirectional communication can be performed by selecting a more optimal communication method while maintaining compatibility with the conventional HDMI (R).
  • step S 195 the HDMI (R) sink 72 receives the channel information transmitted from the HDMI (R) source 71 via the switch 135 and the CEC line 84. If the HDMI (R) source 71 connected to the HDMI (R) sink 72 has neither a function to perform full duplex communication nor a function to perform half duplex communication, HDMI (R Since the channel information is not transmitted from the source 71 to the HDMI (R) sink 72, the HDMI (R) sink 72 does not receive the channel information.
  • step S 196 the HDMI (R) sink 72 determines whether full duplex communication is to be performed based on the received channel information. For example, when HDMI (R) sink 72 receives channel information indicating IP communication using CEC line 84 and signal line 141, and SDA line 191 and SCL line 192, full duplex communication is performed. It is determined that
  • step S 196 When it is determined in step S 196 that full duplex communication is to be performed, switching control section 172 controls switch 185 and switch 186 in step S 197 to transmit data from conversion section 184 at the time of data transmission. Switch 185 and switch 186 so that the differential signal corresponding to the Rx data of is selected.
  • step S 198 the HDMI (R) sink 72 performs half duplex communication based on the received channel information. It is determined whether or not. For example, when the HDMI (R) sink 72 receives channel information to perform IP communication using the CEC line 84 and the signal line 141, it determines that half duplex communication is to be performed.
  • step S198 If it is determined in step S198 that half-duplex communication is to be performed, or if switches 185 and 186 are switched in step S197, switching control section 124 switches switch 135 in step S199. At the time of data transmission, the differential signal corresponding to the Rx data from the conversion unit 134 is selected, and at the time of data reception, the differential signal corresponding to the Tx data from the transmitter 81 is selected. To switch the switch 135.
  • the converter 134 converts the data to the transmitter 81 to Rx data. Since the corresponding differential signal is not transmitted, the switch 135 is not supplied with the differential signal corresponding to the Rx data.
  • each unit of the HDMI (R) sink 72 performs bi-directional IP communication with the HDMI (R) source 71, and the communication processing ends.
  • the converting unit 184 receives Rx data supplied from the HDMI (R) sink 72. Is converted to a differential signal, and one of the partial signals constituting the differential signal obtained by the conversion is sent to the transmitter 81 via the switch 185 and the SDA line 191, and the other partial signal is switched 186 and Transmit to transmitter 81 via SCL line 192.
  • the converter 134 transmits the Rx supplied from the HDMI (R) sink 72 at the time of data transmission.
  • the data is converted into a differential signal, and one of the partial signals constituting the differential signal obtained by the conversion is transmitted to the transmitter 81 through the switch 135 and the CEC line 84, and the other partial signal is transmitted. Transmit to transmitter 81 via signal fountain 141.
  • the decoding unit 136 receives the differential signal corresponding to the Tx data transmitted from the transmitter 81, and the received differential signal is the original data. The data is decoded and output to the HDMI (R) sink 72.
  • step S 198 determines whether half duplex communication is not to be performed, that is, for example, if channel information has not been transmitted.
  • each part of the H DMI (R) sink 72 in step S 201 performs bidirectional communication with the HDMI (R) source 71 by transmitting and receiving a CEC signal, and the communication processing ends.
  • the HDMI (R) sink 72 performs full-duplex communication or half-duplex communication according to the received channel information, ie, according to the function of the HDMI (R) source 71 that is the communication partner. Let's fi.
  • the data to be transmitted by switching the switch 135, the switch 185, and the switch 186, and the data to be received are selected.
  • full-duplex communication or half-duplex communication high-speed bidirectional communication can be performed by selecting a more optimal communication method while maintaining compatibility with the conventional HDMI (R).
  • CE C line 84 and the signal line 141 which are differentially twisted-paired and shielded to each other and grounded to the ground wire are mutually shielded and differentially twisted-paired and shielded to each other, and the SDA line is grounded to the ground wire.
  • HDMI (R) source 71 and HDMI (R) sink 72 with HDMI (R) cape and Nore 35, which includes 191 and SCL line 192, the conventional HDMI (R) cable and the HDMI (R) sink 72 are connected. It is possible to perform high-speed two-way IP communication by half duplex communication method or full duplex communication method while maintaining compatibility.
  • one of one or a plurality of transmission data is selected as data to be transmitted, and the selected data is transmitted to the communication partner via a predetermined signal line,
  • the HDMI (R) source 71 and the HD MI (R ) While maintaining compatibility as an HDMI (R) with the sink 72, in other words, pixel data of an uncompressed image is transferred from the HDMI (R) source 71 to the HDMI (R) sink 72 in one direction.
  • the sink device which is an electronic device such as the digital television receiver 31 shown in FIG. 2 and which incorporates the sink 72, has a communication interface for LAN such as Ethernet (registered trademark). Transmits content from the source device to the sink device via the HDMI (R) cable, for example, by bi-directional IP communication directly or via the electronic device such as the amplifier 32 connected by the HDMI (R) cable.
  • the content from the source device is transmitted from the sink device to other devices (for example, the digital television receiver 34 in FIG. 2) connected to the communication interface for the LAN of the sink device. Power to send S by S.
  • the HDMI (R) source 71 connected by the HDMI (R) cable 35 is built in Control commands and responses can be exchanged at high speed between the source device in question and the sink device incorporating the HDMI (R) sink 72, thus enabling inter-device control with quick response. .
  • the series of processes described above can be performed by dedicated hardware, or can be performed by software.
  • the series of processing is performed by software, it is installed in the program power that configures the software, for example, a microcomputer that controls the HDMI (R) source 71 or the HDMI (R) sink 72.
  • FIG. 17 shows a configuration example of an embodiment of a computer in which a program for executing the above-described series of processes is installed.
  • the program can be recorded in advance in an Electrically Programmable Read-Only Memory (EEPROM) 305 or a ROM 303 as a recording medium built in the computer.
  • EEPROM Electrically Programmable Read-Only Memory
  • the program may be temporarily stored in a removable recording medium such as a flexible disk, a compact disc read only memory (CD-ROM), a magneto optical disc (MO), a digital versatile disc (DVD), a magnetic disc, or a semiconductor memory. Or permanently It can be paid (recorded).
  • a removable recording medium such as a flexible disk, a compact disc read only memory (CD-ROM), a magneto optical disc (MO), a digital versatile disc (DVD), a magnetic disc, or a semiconductor memory. Or permanently It can be paid (recorded).
  • a removable recording medium such as a flexible disk, a compact disc read only memory (CD-ROM), a magneto optical disc (MO), a digital versatile disc (DVD), a magnetic disc, or a semiconductor memory. Or permanently It can be paid (recorded).
  • Such removable recording media can be provided as so-called package software S.
  • the program may be installed on a computer from the removable recording medium as described above, and may be wirelessly transferred from a download site to a computer via an artificial satellite for digital satellite broadcasting, a LAN, or the Internet.
  • the program is transferred by wire to the computer via the network, and the computer receives the program transferred in such a manner by the input / output interface 306 and installs it in the built-in EEPROM 305. .
  • the computer incorporates a central processing unit (CPU) 302! /.
  • An input / output interface 306 is connected to the CPU 302 via a bus 301, and the CPU 302 loads a program stored in a read only memory (ROM) 303 or an EEPROM 305 into a random access memory (RAM) 304. And run.
  • the CPU 302 performs the processing according to the above-described flowchart or the processing performed by the configuration of the above-described block diagram.
  • processing steps for describing a program for causing a computer to perform various types of processing are not necessarily parallel or not necessarily processed chronologically in the order described as the flowchart. It also includes processing (for example, parallel processing or processing by an object) to be executed individually.
  • program may be processed by one computer or may be distributed and processed by a plurality of computers.
  • an effective image period which is a period obtained by excluding the horizontal blanking period and the vertical blanking period from the interval from 1 vertical synchronization signal to the next vertical synchronization signal.
  • a differential signal corresponding to pixel data of an image for one screen which is not compressed is transmitted to the receiver in one direction to a plurality of channels, and from the transmitter on a plurality of channels.
  • the present invention can be applied to a communication interface including a receiver that receives differential signals transmitted.
  • bi-directional communication can be performed.
  • high-speed bi-directional communication is performed while maintaining compatibility, for example, in a communication interface that can transmit pixel data of an uncompressed image and audio data associated with the image in one direction at high speed. Is possible.
  • HDMI is an interface that performs video and audio data transmission, exchange of connected device information, authentication, and communication of device control data with a single cable, a LAN function is added to this and a dedicated cable and wireless etc. are used The advantage of being able to do LAN communication without it is great.
  • the differential transmission line used for the LAN communication serves both for exchange of connected device information and authentication and communication of device control data.
  • DDC which exchanges and authenticates connected device information
  • CEC which communicates device control data
  • the device DDC pin parasitic capacitance must be 50 pF or less, and the impedance is 200 ⁇ or less at LOW output and is grounded to ground GND, and 2 k at HIGH state. It is necessary to be pulled up to the power supply by ⁇ !
  • FIG. 19 shows a state in which a transmitter 404 and a transmitter 405 for LAN communication are AC-coupled by being always connected to the existing DDC line of the HDMI source device 401 and sink device 402.
  • the LAN transmission / reception circuit added to the DDC line needs to have AC coupling via a sufficiently small capacity, and the LAN signal is greatly attenuated and distorted, so this is compensated. Can be complicated and expensive.
  • transitioning HIGH and LOW states in DDC communication may interfere with LAN communication. That is, the LAN may not function during the DDC communication period.
  • one cable performs data transmission of video and audio, exchange of connected device information and authentication, communication of device control data, and LAN communication.
  • LAN communication is performed in two-way communication via a pair of differential transmission paths, and the connection state of the interface is notified by the DC bias potential of at least one of the transmission paths.
  • FIG. 18 is a circuit diagram showing a first configuration example of a communication system in which the connection state of the interface is notified by the DC bias potential of at least one of the transmission paths.
  • FIG. 19 is a diagram showing a configuration example of a system in the case of being mounted on Ethernet (registered trademark) (Ethernet (registered trademark)).
  • this communication system 400 includes a LAN function extended HDMI (hereinafter EH) source device 401, an EH sink device 402, an EH cable 403 for connecting an EH source device and an EH sink device, Ethernet
  • EH LAN function extended HDMI
  • EH sink device 402 an EH cable 403 for connecting an EH source device and an EH sink device
  • Ethernet The transmitter / receiver 404 and the Ethernet receiver 405 are configured!
  • EH source device 401 includes a LAN signal transmission circuit 411, a termination resistor 412, AC coupling capacitances 41 3 and 414, a LAN signal reception circuit 415, a subtraction circuit 416, a pull-up resistor 421, and a low pulse.
  • resistor 422 and capacitor 423 forming a filter
  • comparator 424, pull-down resistor 431, resistor 432 and capacitor 433 forming a single pass filter
  • EH sink device 402 includes LAN signal transmission circuit 441, termination resistor 442, AC coupling capacitance 44 3, 444, LAN signal reception circuit 445, subtraction circuit 446, Pnore down resistance 451, resistance 452 forming a low pulse filter, and capacitance 453, a comparator 454, a choke coil 461, and resistors 462 and 463 connected in series between the power supply potential and the reference potential.
  • the EH cable 403 has a differential transmission path consisting of the reserve line 501 and the HPD line 502, and the source side terminal 511 of the reserve line 501, the source side terminal 12 of the HPD line 502, and the reserve line 501.
  • a sink side terminal 521 and a sink side terminal 522 of the HPD line are formed.
  • the reserve line 501 and the HPD line 502 are wired as a differential twisted pair.
  • the terminal 511 and the terminal 512 are connected via the AC coupling capacitances 413 and 414 to the termination resistance 412, the LAN signal transmission circuit 411, and the LAN signal reception. Connected to circuit 415.
  • a subtraction circuit 416 is a sum signal of the transmission signal voltage generated by the current output from the LAN signal transmission circuit 411 with the termination resistor 412 and the transmission paths 501 and 502 as loads and the signal transmitted by the EH sink device 402. Receive SG 412.
  • a signal SG413 obtained by subtracting the transmission signal SG411 from the sum signal SG412 is a net signal to which the sink force is also transmitted.
  • the HPD line 502 also transmits to the source device 401 that the cable 403 is connected to the sink device 402 at the DC bias level in addition to the above-mentioned LAN communication.
  • the resistors 462, 463 and choke core 461 in the sink device 402 bias the HPD line 502 to about 4 V via terminal 522 when connected to the Cape, Nore 403 casink device 402.
  • the source device 401 extracts the DC bias of the HPD line 502 with a single pass filter consisting of a resistor 432 and a capacitor 433 and compares it with a reference potential Vref2 (for example, 1.4 V) in a comparator 434. If the cable 403 is not connected to the source device 402, the potential at the terminal 512 is high if it is connected lower than the reference potential Vref2 by the Burundan resistor 431.
  • the devices connected to both ends of the cable 403 at the DC bias potential of the reserve line 501 further recognize whether they are EH compliant devices or non-compliant HDMI devices. Have a function to
  • the EH source device 401 pulls up (+5 V) the reserve line 501 with a resistor 421, and the EH sink device 402 pulls down with a resistor 451.
  • resistors 421 and 451 do not exist in EH non-compliant devices.
  • the EH source device 401 uses the comparator 424 to compare the DC potential of the reservoir 501 that has passed through the low pass filter consisting of the resistor 422 and the capacitor 423 with the reference voltage Vref1.
  • the sink device 402 supports EH, it has a pull-down of the reserve line 501 potential of 3 ⁇ 4.5V, and when it is not supported it will be 5V. If the reference potential Vrefl is 3.75V, the sink device is not compatible Can be identified.
  • the sink device 402 uses the comparator 454 to compare the DC potential of the reserve line 501 that has passed through the low pass filter consisting of the resistor 452 and the capacitor 453 with the reference voltage Vref3.
  • the source device 402 is EH compliant and has a pull-up function, it will be 2.5 V, otherwise it will be 0 V. If the reference potential is 1.25 V, EH compliant 'non-compliant' of the source device can be identified. .
  • video and audio data transmission, connection device information exchange and authentication, device control data communication, and LAN communication are performed with one cable 403.
  • LAN communication is performed in two-way communication via a pair of differential transmission paths, and the connection status of the interface is notified by the DC bias potential of at least one of the transmission paths.
  • Use SCL line and SDA line for LAN communication V, spatial separation can be performed.
  • the division makes it possible to form a circuit for LAN communication independently of the electrical specifications specified for DDC, and stable and reliable LAN communication can be realized inexpensively.
  • the pull-up resistor 421 shown in FIG. 18 may be provided in the EH cable 403 which is the same as the EH source device 401.
  • each of the terminals of the precharge resistor 421 is connected to each of the reserve line 501 and the lines (signal lines) connected to the power supply (power supply potential) among the lines provided in the EH cable 403.
  • each of the terminals of pull-down resistor 451 is connected to each of reserve line 501 and a line (ground line) connected to the ground (reference potential) among the lines provided in EH cable 403. Be done.
  • each of the terminals of the resistor 463 is connected to each of the HPD line 502 and the lines (ground lines) connected to the ground (reference potential) among the lines provided in the EH cable 403.
  • FIG. 20 is a circuit diagram showing a second configuration example of the communication system in which the connection state of the interface is notified by the DC bias potential of at least one of the transmission paths.
  • this communication system 600 transmits video and audio data transmission, connected device information exchange, authentication, device control data communication, and LAN communication using a single cable.
  • Interface has a configuration in which LAN communication is performed in one-way communication via two pairs of differential transmission paths, and the connection state of the interface is notified by at least one DC bias potential of the transmission paths. Furthermore, it is characterized in that at least two transmission paths are used for communication of exchange of connected device information and authentication in time division with LAN communication.
  • this communication system 600 includes a LAN function extended HDMI (hereinafter EH) source device 601, an EH sink device 602, and an EH cable 603 connecting the EH source device and the EH sink device.
  • EH LAN function extended HDMI
  • the EH source device 601 includes a LAN signal transmission circuit 611, termination resistors 612 and 613, AC coupling capacities 614 to 617, a LAN signal reception circuit 618, an inverter 620, a resistor 621, and a resistor forming a low-noise filter.
  • comparator 624 pull-down resistor 631, resistor 632 and capacitance 633 forming a low-pass filter
  • comparator 634 NOR gate 640
  • analog switch 64 to 644 inverter 635
  • analog switch 646, 747 DDC tran sino 651, 652 as well as pnore up resistance 653, 654 having a resistance.
  • the sink device 602 has a LAN signal transmission circuit 661, termination resistors 662, 663, and AC coupling capacity.
  • LAN signal reception circuit 668 low-down resistor 671, resistor 672 and capacitor 673 forming low pulse filter, comparator 674, choke coil 681, resistors 682 and 683 connected in series between power supply potential and reference potential To 694, an inverter 695, an analog switch 696, 697, a DDC transino 701, 702, and a series resistor 709 !.
  • the cable 603 there are a differential transmission line consisting of the reserve line 801 and the SCL line 803, and a differential transmission line consisting of the SDA line 804 and the HPD line 802, and their source side terminals 811 and 814 , And the sink side terminals 82;! To 824 are formed.
  • the reserve line 801 and the SCL line 803, as well as the SDA line 804 and the HPD line 802 are wired as a differential twisted pair! /.
  • the terminals 81 1 and 813 in the source device 601 transmit the LAN transmission signal SG 611 to the sink via the AC coupling capacitances 614 and 615 and the analog switches 641 and 642.
  • Terminals 814 and 812 are connected to a receiving circuit 618 for receiving the LAN signal from the sink device 602 via the AC coupling capacitors 616 and 617 and the analog switches 643 and 644 and a termination resistor 613.
  • the terminals 82;! To 824 are connected to the transmission / reception circuits 668 and 661 and the termination resistors 662 and 663 through the AC coupling procedure 664, 665, 666, 667 and the analog switches 69 to 694.
  • Analog switches 64;! To 644, 69;! To 694 are on when performing LAN communication, and open when performing DDC communication.
  • the source device 601 connects the terminal 813 and the terminal 814 to the DDC transceiver 651, 652 and the shunt resistor 653, 654 through another analog switch 646, 647.
  • the sink device 602 connects the terminal 823 and the terminal 824 to the D DC transceiver 701, 702 and the pull-up resistor 703 through the analog switches 696, 697.
  • the analog switches 646, 647, 696, and 697 conduct when DDC communication is performed, and open when performing DLAN communication.
  • the recognition mechanism of the EH-compliant device by the potential of the reserve line 801 is basically the same as that in the first configuration example except that the resistor 62 of the source device 601 is driven by the inverter 620. It is.
  • the resistor 621 is a pull-down resistor, so that from the sink device 602, it becomes the same 0 V state as EH non-compliant devices are connected.
  • the signal SG623 indicating the EH correspondence identification result of the sink device 602 becomes LOW
  • the analog switch 69;! To 694 controlled by the signal SG623 is opened, and the signal SG623 is controlled by the inverted signal of the inverter 695.
  • Analog switches 696 and 697 conduct.
  • the sink device 602 disconnects the SCL line 803 and the SDA line 804 from the LAN transceiver and connects them to the DDC transceiver.
  • the input of the inverter 620 is also input to the NOR gate 640 to set its output SG 614 LOW.
  • the source device 601 also disconnects the SCL line 803 and the SDA line 804 from the LAN transceiver and connects them to the DDC transceiver.
  • both the source device 601 and the sink device 602 disconnect the SCL line 803 and the SDA line 804 from the DDC transceiver and connect them to the LAN transceiver.
  • a circuit 63 for checking connection of the HPD line 802 by the DC bias potential 63 !! to 634 and 681 to 683 have the same functions as in the first configuration example. That is, the HPD line 802 transmits to the source device 601 that the cable 803 is connected to the sink device 602 at the DC bias level in addition to the above-described LAN communication.
  • the resistors 682 and 683 and the choke core 681 in the sink device 602 bias the HPD line 802 to about 4 V via terminal 822 when connected to the Cape, Nore 603 cascin device 602.
  • the source device 601 extracts the DC bias of the HPD line 802 with a single pass filter consisting of a resistor 632 and a capacitor 633 and compares it with a reference potential Vref2 (for example, 1.4 V) in a comparator 634
  • the potential of the terminal 812 is high if it is connected lower than the reference potential Vref2 by the Burundan resistor 631.
  • LAN communication is performed by unidirectional communication through two pairs of differential transmission lines, and the connection state of the interface is notified by the DC bias potential of at least one of the transmission lines. Since one transmission line is used for communication of exchange of connected device information and authentication in time division with LAN communication, the time line for connecting SCL line and SDA line to LAN communication circuit by switch and the time band for connecting to DDC circuit Time division can be performed, and this division can form a circuit for LAN communication independently of the electrical specifications defined for DDC, and stable and reliable LAN communication is inexpensive. Can be realized.
  • each of the terminals of resistor 621 is connected to each of reserve line 801 and a line (signal line) connected to the power supply (power supply potential) among the lines provided in EH cable 603. Ru.
  • pull-down resistor 671 and resistor 683 shown in FIG. 20 are included in EH sink device 602. Alternatively, it may be provided in the EH cable 603 which is not. In such a case, each of the terminals of pull-down resistor 671 is connected to each of reserve line 801 and a line (ground line) connected to the ground (reference potential) among the lines provided in EH cable 603. Be done. Further, each of the terminals of the resistor 683 is connected to each of the HPD line 802 and the line (ground line) connected to the ground (reference potential) among the lines provided in the EH cable 603.
  • Maintaining these functions in order to have compatibility with existing HDMI may make it difficult to share the functions of a LAN that performs high-speed data communication that requires the termination of the transmission line to be matched and terminated.
  • reserved and HP D are configured as differential pairs to perform full-duplex communication by one-way bi-directional communication while avoiding use of the SDA, SCL, and CEC lines. .
  • HPD is a flag signal at DC level
  • injection of LAN signal by AC coupling and transmission of plug information at DC level are compatible.
  • Reserved a function to mutually recognize that the terminal has a LAN function by DC level is newly added in a manner similar to HPD.
  • the transmitter when the transmitter performs DDC communication, connect the SDA and SCL lines to the transceiver for DDC, and do not perform DDC communication! /, And when it is connected to the transceiver for LAN, the analog switch.
  • This switch operation signal is also transmitted to the receiver at the DC level of the Reserved line and received. Do the same sw switching on the machine side.
  • the first effect is that SCL, SDA, and CEC communication does not receive noise due to LAN communication, and stable DDC and CEC communication can always be ensured.
  • the LAN is physically separated from the lines. In the second configuration example, this is achieved by disconnecting the LAN signal from the line during DDC communication in the switch.
  • the second effect is that LAN communication is performed on a line with an ideal termination, which enables stable communication with a large margin.
  • the LAN signal is superimposed on the DC line that transmits only a bell at DC as Reserved and HPD, so the termination impedance can be maintained at an ideal value over a sufficiently wide frequency necessary for LAN communication.
  • the switch circuit for LAN that is not permitted for DDC communication is connected only when the LAN communication is performed.
  • a to E in FIG. 21 are diagrams showing bidirectional communication waveforms in the communication system of this configuration example.
  • a in FIG. 21 is a signal waveform sent from an EH sink device
  • B in FIG. 21 is an EH sink device.
  • 21C shows the signal waveform passing through the cable
  • FIG. 21D shows the signal received by the EH source device
  • FIG. 21E shows the signal waveform sent from the EH source device. It shows.

Description

明 細 書
通信システム、送信装置、受信装置、通信方法、プログラム、および通信 ケープノレ
技術分野
[0001] 本発明は通信システム、送信装置、受信装置、通信方法、プログラム、および通信 ケーブルに関し、特に、非圧縮の画像の画素データを一方向に高速伝送することが できる、たとえば、 HDMI (High Definition Multimedia Interface) (R)などの通信インタ フェースにおいて、互換性を保ちつつ、高速の通信を行うことができるようにした通信 システム、送信装置、受信装置、通信方法、プログラム、および通信ケーブルに関す 背景技術
[0002] 近年、たとえば、 DVD (Digital Versatile Disc)レコーダや、セットトップボックス、その 他の AV (Audio Visual)ソースから、テレビジョン受像機、プロジェクタ、その他のディ スプレイに対して、デジタルテレビジョン信号、すなわち、非圧縮(ベースバンド)の画 像の画素データと、その画像に付随する音声データとを、高速に伝送する通信インタ フェースとして、 HDMI(R)が普及しつつある。
[0003] HDMI(R)については、画素データと音声データを、高速で HDMI(R)ソースから HDM I(R)シンクに、一方向に伝送する TMDS(Transition Minimized Differential Signaling) チャンネルや、 HDMI(R)ソースと HDMI(R)シンクとの間で双方向の通信を行うための C ECライン (Consumer Electronics Control Line)等が、 HDMIの仕様書において規定さ れている。
[0004] たとえば、図 1に示すように、デジタルテレビジョン受像機 11と、 AVアンプリファイア
12とを HDMI(R)に準拠した HDMI(R)ケーブル 13で接続することで、画素データおよ び音声データの高速な伝送が可能となる。
[0005] 図 1では、ユーザ宅の図中、左側に設けられたリビングにデジタルテレビジョン受像 機 11、 AVアンプリファイア 12、および再生装置 14が設置されており、デジタルテレ び再生装置 14が HDMI(R)ケーブル 13および HDMI(R)ケーブル 15により接続されて いる。
[0006] また、リビングには、ハブ 16が設置されており、デジタルテレビジョン受像機 11およ び再生装置 14は、 LAN (Local Area Network)ケーブル 17および LANケーブル 18に よりハブ 16に接続されている。さらに、図中、リビングの右側に設けられた寝室には、 デジタルテレビジョン受像機 19が設置されており、デジタルテレビジョン受像機 19は 、 LANケーブル 20を介してハブ 16に接続されている。
[0007] たとえば、再生装置 14に記録されているコンテンツが再生されて、デジタルテレビ ジョン受像機 11に画像が表示される場合、再生装置 14は、コンテンツを再生させる ための画素データおよび音声データをデコードし、その結果得られた非圧縮の画素 データおよび音声データを HDMI(R)ケーブル 15、 AVアンプリファイア 12、および HD MI(R)ケーブル 13を介してデジタルテレビジョン受像機 11に供給する。そして、デジ タルテレビジョン受像機 11は、再生装置 14から供給された画素データおよび音声デ ータに基づいて、画像を表示させたり、音声を出力したりする。
[0008] また、再生装置 14に記録されているコンテンツが再生されて、デジタルテレビジョン 受像機 11およびデジタルテレビジョン受像機 19に同時に画像が表示される場合、再 生装置 14は、圧縮された、コンテンツを再生させるための画素データおよび音声デ ータを LANケーブル 18、ハブ 16、および LANケーブル 17を介してデジタルテレビジ ヨン受像機 11に供給するとともに、 LANケーブル 18、ハブ 16、および LANケーブル 2 0を介してデジタルテレビジョン受像機 19に供給する。
[0009] そして、デジタルテレビジョン受像機 11およびデジタルテレビジョン受像機 19は、 再生装置 14から供給された画素データおよび音声データをデコードし、その結果得 られた非圧縮の画素データおよび音声データに基づいて画像を表示させたり、音声 を出力したりする。
[0010] さらに、デジタルテレビジョン受像機 11が、テレビジョン放送されている番組を再生 するための画素データおよび音声データを受信した場合、受信された音声データが たとえば 5. 1チャンネルサラウンドの音声データなどであり、デジタルテレビジョン受 像機 11が受信した音声データをデコードすることができないときには、デジタルテレ ビジョン受像機 11は、音声データを光信号に変換して AVアンプリファイア 12に送信 する。
[0011] AVアンプリファイア 12は、デジタルテレビジョン受像機 11から送信されてきた光信 号を受信して光電変換し、これにより得られた音声データをデコードする。そして、 A Vアンプリファイア 12は、デコードされた非圧縮の音声データを必要に応じて増幅し 、 AVアンプリファイア 12に接続されたサラウンドスピーカにて音声を再生する。これ により、デジタルテレビジョン受像機 11は、受信した画素データをデコードし、デコー ドされた画素データで画像を表示させ、 AVアンプリファイア 12に供給した音声デー タに基づいて、 AVアンプリファイア 12で音声を出力することで 5. 1チャンネルサラウ ンド番組を再生する。
[0012] ところで、 HDMI(R)につ!/、ては、画素データと音声データを、 HDMI(R)ソース力、ら HD MI(R)シンクに伝送するときに、データの伝送をオン、オフすることにより、不要なデー タをミュートする装置が提案されている (たとえば、特許文献 1を参照)。
[0013] さらに、 HDMI(R)については、 HDMI(R)ソース力 画素データと音声データを出力 する端子を、切換スィッチによって切り換えることにより、 HDMI(R)ソースと HDMI(R)シ ンクとを接続するケーブルを差し替えることなぐ複数の HDMI(R)シンクのうちの、希 望する HDMI(R)シンクに、画素データと音声データを出力することができる装置が提 案されている(たとえば、特許文献 2を参照)。
[0014] 特許文献 1 :特開 2005— 57714号公報
特許文献 2:特開 2006— 19948号公報
発明の開示
発明が解決しょうとする課題
[0015] 上述したように、 HDMI(R)では、画素データと音声データを、高速で HDMI(R)ソース から HDMI(R)シンクに、一方向に伝送することができ、かつ、 HDMI(R)ソースと HDMI(
R)シンクとの間で双方向の通信を行うことができる。
[0016] しかしながら、現行の HDMI(R)において行うことができる双方向の通信の伝送レート は、数百 bpsであり、したがって、 HDMI(R)ソースと HDMI(R)シンクとの間で、双方向の
IP (Internet Protocol)通信などの、双方向の通信を高速に行うことはできなかった。 [0017] このため、特許文献 1や特許文献 2に記載の装置を含め、 HDMI(R)において双方 向の IP通信を行う場合には、 IP通信で伝送するデータのデータ量が制限される。ま た、データ量の多いデータを IP通信で伝送すると、大きな遅延時間が生じる。したが つて、たとえば、圧縮された画像などのデータ量の多いデータを双方向に伝送するこ とが必要なアプリケーションや、高速な応答を要求するアプリケーションにおいて、 H DMI(R)を用いることが困難であった。
[0018] そこで、たとえば、 HDMI(R)ソースと HDMI(R)シンクの HDMI(R)用のコネクタに、双方 向の高速 IP通信用の専用ピンを設け、その専用ピンを用いて双方向の IP通信を高 速に行う方法が考えられる。
[0019] しかしながら、現行の HDMI(R)のコネクタに専用ピンを設けたのでは、現行の HDMI( R)との互換 1·生が損なわれることになる。
[0020] 本発明は、このような状況に鑑みてなされたものであり、非圧縮の画像の画素デー タを一方向に高速伝送することができる、たとえば、 HDMI(R)などの通信インタフエ一 スにおいて、互換性を保ちつつ、高速の双方向通信を行うことができるようにするもの である。
課題を解決するための手段
[0021] 本発明の第 1の観点の通信システムは、 1の垂直同期信号から次の垂直同期信号 までの区間から、水平帰線区間及び垂直帰線区間を除いた区間である有効画像区 間において、非圧縮の 1画面分の画像の画素データを、第 1の差動信号により、受信 装置に一方向に送信する送信装置と、前記送信装置から送信されてくる前記第 1の 差動信号を受信する受信装置とからなる通信システムであって、前記送信装置は、 送信するデータであって、前記画素データとは異なるデータを第 1の部分信号およ び第 2の部分信号からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1の信 号線を介して前記受信装置に送信するとともに、前記第 2の部分信号を出力する第 1 の変換手段と、制御に関する信号である送信信号、または前記第 1の変換手段から 出力された前記第 2の部分信号のうちのいずれかを選択し、選択した信号を第 2の信 号線を介して前記受信装置に送信する第 1の選択手段と、前記送信信号を前記受 信装置に送信する場合、前記第 1の選択手段により前記送信信号が選択され、前記 第 2の差動信号を前記受信装置に送信する場合、前記第 1の選択手段により前記第 2の部分信号が選択されるように制御する第 1の制御手段と、前記受信装置から送信 されてきた第 3の差動信号を受信し、元のデータに復号する第 1の復号手段とを備え 、前記受信装置は、送信するデータであって、前記画素データとは異なるデータを前 記第 3の差動信号に変換して前記送信装置に送信する第 2の変換手段と、前記送信 装置から送信されてきた前記第 2の差動信号を受信し、元のデータに復号する第 2の 復号手段と、前記送信信号または前記第 2の部分信号のうちのいずれかを選択する 第 2の選択手段と、前記送信信号を受信する場合、前記第 2の選択手段により前記 送信信号が選択されて受信され、前記第 2の差動信号を受信する場合、前記第 2の 選択手段により前記第 2の部分信号が選択されて、前記第 2の部分信号が前記第 2 の復号手段により受信されるように制御する第 2の制御手段とを備える。
本発明の第 1の観点の通信方法は、 1の垂直同期信号から次の垂直同期信号まで の区間から、水平帰線区間及び垂直帰線区間を除いた区間である有効画像区間に おいて、非圧縮の 1画面分の画像の画素データを、第 1の差動信号により、受信装置 に一方向に送信する送信装置と、前記送信装置から送信されてくる前記第 1の差動 信号を受信する受信装置とからなる通信システムの通信方法であって、前記送信装 置は、送信するデータであって、前記画素データとは異なるデータを第 1の部分信号 および第 2の部分信号からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1 の信号線を介して前記受信装置に送信するとともに、前記第 2の部分信号を出力す る第 1の変換手段と、制御に関する信号である送信信号、または前記第 1の変換手 段から出力された前記第 2の部分信号のうちのいずれ力、を選択し、選択した信号を 第 2の信号線を介して前記受信装置に送信する第 1の選択手段と、前記受信装置か ら送信されてきた第 3の差動信号を受信し、元のデータに復号する第 1の復号手段と を備え、前記受信装置は、送信するデータであって、前記画素データとは異なるデ ータを前記第 3の差動信号に変換して前記送信装置に送信する第 2の変換手段と、 前記送信装置から送信されてきた前記第 2の差動信号を受信し、元のデータに復号 する第 2の復号手段と、前記送信信号または前記第 2の部分信号のうちの!/、ずれか を選択する第 2の選択手段とを備え、前記送信信号が前記受信装置に送信される場 合、前記第 1の選択手段により前記送信信号が選択されるように制御し、前記第 2の 差動信号が前記受信装置に送信される場合、前記第 1の選択手段により前記第 2の 部分信号が選択されるように制御し、前記送信信号が前記受信装置により受信され る場合、前記第 2の選択手段により前記送信信号が選択されて受信されるように制御 し、前記第 2の差動信号が前記受信装置により受信される場合、前記第 2の選択手 段により前記第 2の部分信号が選択されて、前記第 2の部分信号が前記第 2の復号 手段により受信されるように制御するステップを含む。
[0023] 本発明の第 1の観点においては、前記送信装置において、送信するデータであつ て、画素データとは異なるデータが第 1の部分信号および第 2の部分信号からなる第 2の差動信号に変換され、前記第 1の部分信号が第 1の信号線を介して前記受信装 置に送信されるとともに、前記第 2の部分信号が出力され、制御に関する信号である 送信信号、または出力された前記第 2の部分信号のうちのいずれかが選択され、選 択された信号が第 2の信号線を介して前記受信装置に送信される。ここで、前記送信 信号を前記受信装置に送信する場合、前記送信信号が選択され、前記第 2の差動 信号を前記受信装置に送信する場合、前記第 2の部分信号が選択されるように制御 される。また、前記受信装置から送信されてきた第 3の差動信号が受信され、元のデ 一タに復号される。
[0024] 一方、前記受信装置にお!/、て、送信するデータであって、前記画素データとは異 なるデータが前記第 3の差動信号に変換されて前記送信装置に送信され、前記送信 装置から送信されてきた前記第 2の差動信号が受信され、元のデータに復号され、 前記送信信号または前記第 2の部分信号のうちのいずれかが選択される。ここで、前 記送信信号を受信する場合、前記送信信号が選択されて受信され、前記第 2の差動 信号を受信する場合、前記第 2の部分信号が選択されて、受信されるように制御され
[0025] 本発明の第 2の観点の送信装置は、 1の垂直同期信号から次の垂直同期信号まで の区間から、水平帰線区間及び垂直帰線区間を除いた区間である有効画像区間に おいて、非圧縮の 1画面分の画像の画素データを、第 1の差動信号により、受信装置 に一方向に送信する送信装置であって、送信するデータであって、前記画素データ とは異なるデータを第 1の部分信号および第 2の部分信号からなる第 2の差動信号に 変換し、前記第 1の部分信号を第 1の信号線を介して前記受信装置に送信するととも に、前記第 2の部分信号を出力する変換手段と、制御に関する信号である第 1の送 信信号、または前記変換手段から出力された前記第 2の部分信号のうちのいずれか を選択し、選択した信号を第 2の信号線を介して前記受信装置に送信する第 1の選 択手段と、前記第 1の送信信号を前記受信装置に送信する場合、前記第 1の選択手 段により前記第 1の送信信号が選択され、前記第 2の差動信号を前記受信装置に送 信する場合、前記第 1の選択手段により前記第 2の部分信号が選択されるように制御 する第 1の制御手段と、前記受信装置から送信されてきた第 3の部分信号と第 4の部 分信号とからなる第 3の差動信号を受信し、元のデータに復号する復号手段とを備え
[0026] 前記復号手段には、前記第 2の信号線を介して送信されてきた前記第 3の部分信 号と、前記第 1の信号線を介して送信されてきた前記第 4の部分信号とからなる前記 第 3の差動信号を受信させ、前記第 1の選択手段には、前記第 2の部分信号若しくは 前記第 3の部分信号、または前記第 1の送信信号を選択させ、前記第 1の制御手段 には、前記第 3の差動信号を受信する場合、前記第 1の選択手段により前記第 3の 部分信号が選択されて、前記第 3の部分信号が前記復号手段により受信されるよう に制卸させること力 Sでさる。
[0027] 前記第 1の選択手段には、前記第 2の部分信号若しくは前記第 3の部分信号、また は前記第 1の送信信号、若しくは前記第 2の信号線を介して前記受信装置から送信 されてきた、制御に関する信号である受信信号を選択させ、前記受信信号が選択さ れた場合、選択された前記受信信号を受信させて出力させるようにすることができる
[0028] 前記復号手段には、第 3の信号線を介して送信されてきた前記第 3の部分信号と、 第 4の信号線を介して送信されてきた前記第 4の部分信号とからなる前記第 3の差動 信号を受信させ、前記第 3の部分信号、または前記受信装置に送信する、制御に関 する信号である第 2の送信信号のうちのいずれかを選択する第 2の選択手段と、前記 第 4の部分信号、または前記受信装置に送信する第 3の送信信号のうちの!/、ずれか を選択する第 3の選択手段と、前記第 2の送信信号および前記第 3の送信信号を前 記受信装置に送信する場合、前記第 2の選択手段により前記第 2の送信信号が選択 されて、前記第 2の送信信号が前記第 3の信号線を介して前記受信装置に送信され るとともに、前記第 3の選択手段により前記第 3の送信信号が選択されて、前記第 3の 送信信号が前記第 4の信号線を介して前記受信装置に送信されるように制御し、前 記第 3の差動信号を受信する場合、前記第 2の選択手段により前記第 3の部分信号 が選択されて前記復号手段に受信され、前記第 3の選択手段により前記第 4の部分 信号が選択されて前記復号手段に受信されるように制御する第 2の制御手段とをさら に設けることができる。
[0029] 前記第 1の選択手段には、前記第 2の部分信号、または前記第 1の送信信号、若し くは前記第 2の信号線を介して前記受信装置から送信されてきた、制御に関する信 号である第 1の受信信号を選択させ、前記第 1の受信信号が選択された場合、選択 させた前記第 1の受信信号を受信させて出力させ、前記第 2の選択手段には、前記 第 3の部分信号、または前記第 2の送信信号、若しくは前記第 3の信号線を介して前 記受信装置から送信されてきた、制御に関する信号である第 2の受信信号を選択さ せ、前記第 2の受信信号が選択された場合、選択させた前記第 2の受信信号を受信 させて出力させることができる。
[0030] 前記第 1の送信信号および前記第 1の受信信号は、前記送信装置または前記受信 装置の制御用のデータである CEC (Consumer Electronics Control)信号とされ、前記 第 2の受信信号は、制御に用いられる、前記受信装置の性能に関する情報である E- EDID (Enhanced Extended Display Identification Data)とされ、前記第 2の差動信号 に変換されるデータ、および前記第 3の差動信号が復号されて得られたデータは、 I P (Internet Protocol)に準拠したデータとされ、前記第 1の制御手段には、前記第 2 の受信信号が受信された後、前記第 1の選択手段により前記第 2の部分信号が選択 されるように制御させ、前記第 2の制御手段には、前記第 2の受信信号が受信された 後、前記第 2の選択手段および前記第 3の選択手段により、前記第 3の部分信号お よび前記第 4の部分信号が選択されるように制御させることができる。
[0031] 本発明の第 2の観点の通信方法またはプログラムは、 1の垂直同期信号から次の垂 直同期信号までの区間から、水平帰線区間及び垂直帰線区間を除レ、た区間である 有効画像区間において、非圧縮の 1画面分の画像の画素データを、第 1の差動信号 により、受信装置に一方向に送信する送信装置の通信方法または送信装置を制御 するコンピュータに実行させるプログラムであり、前記送信装置は、送信するデータで あって、前記画素データとは異なるデータを第 1の部分信号および第 2の部分信号 からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1の信号線を介して前記 受信装置に送信するとともに、前記第 2の部分信号を出力する変換手段と、制御に 関する信号である送信信号、または前記変換手段から出力された前記第 2の部分信 号のうちのいずれかを選択し、選択した信号を第 2の信号泉を介して前記受信装置 に送信する選択手段と、前記受信装置から送信されてきた第 3の差動信号を受信し 、元のデータに復号する復号手段とを備え、前記送信信号を前記受信装置に送信 する場合、前記選択手段により前記送信信号が選択されるように制御し、前記第 2の 差動信号を前記受信装置に送信する場合、前記選択手段により前記第 2の部分信 号が選択されるように制御するステップを含む。
[0032] 本発明の第 2の観点においては、送信するデータであって、画素データとは異なる データが第 1の部分信号および第 2の部分信号からなる第 2の差動信号に変換され 、前記第 1の部分信号が第 1の信号線を介して前記受信装置に送信されるとともに、 前記第 2の部分信号が出力され、制御に関する信号である第 1の送信信号、または 出力された前記第 2の部分信号のうちのいずれかが選択され、選択された信号が第 2の信号線を介して前記受信装置に送信される。ここで、前記第 1の送信信号を前記 受信装置に送信する場合、前記第 1の送信信号が選択され、前記第 2の差動信号を 前記受信装置に送信する場合、前記第 2の部分信号が選択されるように制御される 。また、前記受信装置から送信されてきた第 3の部分信号と第 4の部分信号とからな る第 3の差動信号が受信され、元のデータに復号される。
[0033] 本発明の第 3の観点の受信装置は、 1の垂直同期信号から次の垂直同期信号まで の区間から、水平帰線区間及び垂直帰線区間を除いた区間である有効画像区間に おいて、送信装置から一方向に送信されてくる、非圧縮の 1画面分の画像の画素デ ータを、第 1の差動信号により受信する受信装置であって、第 1の信号線を介して前 記送信装置から送信されてきた第 1の部分信号と、第 2の信号線を介して前記送信 装置から送信されてきた第 2の部分信号とからなる第 2の差動信号を受信し、元のデ 一タに復号する復号手段と、前記第 1の部分信号、または前記第 1の信号線を介して 前記送信装置から送信されてきた、制御に関する信号である第 1の受信信号のうち のいずれかを選択する第 1の選択手段と、前記第 1の受信信号を受信する場合、前 記第 1の選択手段により前記第 1の受信信号が選択されて受信され、前記第 2の差 動信号を受信する場合、前記第 1の選択手段により前記第 1の部分信号が選択され て前記復号手段により受信されるように制御する第 1の制御手段と、送信するデータ であって、前記画素データとは異なるデータを第 3の部分信号および第 4の部分信号 からなる第 3の差動信号に変換して前記送信装置に送信する変換手段とを備える。
[0034] 前記変換手段には、前記第 3の部分信号を出力させるとともに、前記第 4の部分信 号を前記第 2の信号泉を介して前記送信装置に送信させ、前記第 1の選択手段には 、前記第 1の受信信号、または前記第 1の部分信号、若しくは前記変換手段から出力 された前記第 3の部分信号を選択させ、前記第 1の制御手段には、前記第 3の差動 信号を送信する場合、前記第 1の選択手段により前記第 3の部分信号が選択され、 前記第 1の信号線を介して前記送信装置に送信されるように制御させることができる
[0035] 前記第 1の選択手段には、前記第 1の部分信号若しくは前記第 3の部分信号、また は前記第 1の受信信号、若しくは制御に関する信号である送信信号を選択させ、前 記送信信号が選択された場合、選択させた前記送信信号を前記第 1の信号線を介 して前記送信装置に送信させることができる。
[0036] 前記変換手段には、前記第 3の部分信号および前記第 4の部分信号を出力させ、 前記変換手段から出力された前記第 3の部分信号、または第 3の信号線を介して前 記送信装置から送信されてきた、制御に関する信号である第 2の受信信号のうちの いずれかを選択する第 2の選択手段と、前記変換手段から出力された前記第 4の部 分信号、または第 4の信号線を介して前記送信装置から送信されてきた第 3の受信 信号のうちのいずれかを選択する第 3の選択手段と、前記第 2の受信信号および前 記第 3の受信信号を受信する場合、前記第 2の選択手段により前記第 2の受信信号 が選択されて受信されるとともに、前記第 3の選択手段により前記第 3の受信信号が 選択されて受信されるように制御し、前記第 3の差動信号を送信する場合、前記第 2 の選択手段により前記第 3の部分信号が選択され、前記第 3の信号線を介して前記 送信装置に送信されるとともに、前記第 3の選択手段により前記第 4の部分信号が選 択され、前記第 4の信号線を介して前記送信装置に送信されるように制御する第 2の 制御手段とをさらに設けることができる。
[0037] 前記第 1の選択手段には、前記第 1の部分信号、または前記第 1の受信信号、若し くは前記送信装置に送信される、制御に関する信号である第 1の送信信号を選択さ せ、前記第 1の送信信号が選択された場合、選択した前記第 1の送信信号を前記第 1の信号線を介して前記送信装置に送信させ、前記第 2の選択手段には、前記第 3 の部分信号、または前記第 2の受信信号、若しくは前記送信装置に送信される、制 御に関する信号である第 2の送信信号を選択させ、前記第 2の送信信号が選択され た場合、選択させた前記第 2の送信信号を前記第 3の信号線を介して前記送信装置 に送信させること力でさる。
[0038] 本発明の第 3の観点の通信方法またはプログラムは、 1の垂直同期信号から次の垂 直同期信号までの区間から、水平帰線区間及び垂直帰線区間を除レ、た区間である 有効画像区間において、送信装置から一方向に送信されてくる、非圧縮の 1画面分 の画像の画素データを、第 1の差動信号により受信する受信装置の通信方法、また は受信装置を制御するコンピュータに実行させるプログラムであり、前記受信装置は 、第 1の信号線を介して前記送信装置から送信されてきた第 1の部分信号と、第 2の 信号線を介して前記送信装置から送信されてきた第 2の部分信号とからなる第 2の差 動信号を受信し、元のデータに復号する復号手段と、前記第 1の部分信号、または 前記第 1の信号線を介して前記送信装置から送信されてきた、制御に関する信号で ある受信信号のうちのいずれかを選択する選択手段と、送信するデータであって、前 記画素データとは異なるデータを第 3の差動信号に変換して前記送信装置に送信す る変換手段とを備え、前記受信信号を受信する場合、前記選択手段により前記受信 信号が選択されて受信されるように制御し、前記第 2の差動信号を受信する場合、前 記選択手段により前記第 1の部分信号が選択されて前記復号手段により受信される ように制御するステップを含む。
[0039] 本発明の第 3の観点においては、第 1の信号線を介して前記送信装置から送信さ れてきた第 1の部分信号と、第 2の信号線を介して前記送信装置から送信されてきた 第 2の部分信号とからなる第 2の差動信号が受信され、元のデータに復号され、前記 第 1の部分信号、または前記第 1の信号線を介して前記送信装置から送信されてき た、制御に関する信号である第 1の受信信号のうちのいずれかが選択される。ここで 、前記第 1の受信信号を受信する場合、前記第 1の受信信号が選択されて受信され 、前記第 2の差動信号を受信する場合、前記第 1の部分信号が選択されて受信され るように制御される。また、送信するデータであって、前記画素データとは異なるデー タが第 3の部分信号および第 4の部分信号力 なる第 3の差動信号に変換されて前 記送信装置に送信される。
[0040] 本発明の第 4の観点の通信ケーブルは、 1の垂直同期信号から次の垂直同期信号 までの区間から、水平帰線区間及び垂直帰線区間を除いた区間である有効画像区 間において、非圧縮の 1画面分の画像の画素データを、第 1の差動信号により、受信 装置に一方向に送信する送信装置であり、送信するデータであって、前記画素デー タとは異なるデータを第 1の部分信号および第 2の部分信号からなる第 2の差動信号 に変換し、前記第 1の部分信号を第 1の信号線を介して前記受信装置に送信すると ともに、前記第 2の部分信号を出力する第 1の変換手段と、制御に関する信号である 送信信号、または前記第 1の変換手段から出力された前記第 2の部分信号のうちの V、ずれかを選択し、選択した信号を第 2の信号泉を介して前記受信装置に送信する 第 1の選択手段と、前記送信信号を前記受信装置に送信する場合、前記第 1の選択 手段により前記送信信号が選択され、前記第 2の差動信号を前記受信装置に送信 する場合、前記第 1の選択手段により前記第 2の部分信号が選択されるように制御す る第 1の制御手段と、前記受信装置から送信されてきた第 3の差動信号を受信し、元 のデータに復号する第 1の復号手段とを備える送信装置と、前記送信装置から送信 されてくる前記第 1の差動信号を受信する受信装置であり、送信するデータであって 、前記画素データとは異なるデータを前記第 3の差動信号に変換して前記送信装置 に送信する第 2の変換手段と、前記送信装置から送信されてきた前記第 2の差動信 号を受信し、元のデータに復号する第 2の復号手段と、前記第 2の部分信号、または 前記送信信号のうちのいずれかを選択する第 2の選択手段と、前記送信信号を受信 する場合、前記第 2の選択手段により前記送信信号が選択されて受信され、前記第 2の差動信号を受信する場合、前記第 2の選択手段により前記第 2の部分信号が選 択されて、前記第 2の部分信号が前記第 2の復号手段により受信されるように制御す る第 2の制御手段とを備える受信装置とを接続する通信ケーブルであり、前記第 1の 信号線および前記第 2の信号線を備え、前記第 1の信号線と、前記第 2の信号線とが 差動ツイストペア結線されて!/、る。
[0041] 本発明の第 4の観点においては、送信装置と受信装置とを接続する通信ケーブル に、第 1の信号線および第 2の信号線が設けられ、前記第 1の信号線と、前記第 2の 信号線とが差動ツイストペア結線されてレ、る。
[0042] 本発明の第 5の観点は、 1本のケーブルで映像と音声のデータ伝送と接続機器情 報の交換および認証、機器制御データの通信、並びに LAN通信を行うインタフエ一 スを含む通信システムであって、接続対応機器を接続可能な 1対の差動伝送路を有 し、 LAN通信が前記 1対の差動伝送路を介した双方向通信で行われ、当該 1対の差 動伝送路のうちの少なくとも一方の DCバイアス電位によってインタフェースの接続状 態を通知する機能を有する。
[0043] 本発明の第 6の観点は、 1本のケーブルで映像と音声のデータ伝送と接続機器情 報の交換および認証、機器制御データの通信、並びに LAN通信を行うインタフエ一 スを含む通信システムであって、接続対応機器を接続可能な 2対の差動伝送路を有 し、 LAN通信が 2対の差動伝送路を介する単方向通信で行われ、前記伝送路のうち の少なくとも一つの伝送路の DCバイアス電位によってインタフェースの接続状態が 通知する機能を有し、少なくとも二つの伝送路が LAN通信とは時分割で接続機器情 報の交換と認証の通信に使われる。
発明の効果
[0044] 本発明によれば、双方向通信を行うことができる。特に、たとえば非圧縮の画像の 画素データと、その画像に付随する音声データとを、一方向に高速伝送することがで きる通信インタフェースにおいて、互換性を保ちつつ、高速の双方向通信を行うこと が可能となる。
また、本発明によれば、 DDCに関して規定された電気的仕様と無関係に LAN通 信のための回路を形成することができ、安定で確実な LAN通信が安価に実現できる 図面の簡単な説明
園 1]一般的な画像伝送システムの構成を示す図である。
園 2]本発明を適用した、一実施の形態の画像伝送システムの構成を示す図である。 園 3]HDMI(R)ソースおよび HDMI(R)シンクの構成例を示す図である。
園 4]HDMI(R)のタイプ Aのコネクタのピン配列を示す図である。
園 5]HDMI(R)のタイプ Cのコネクタのピン配列を示す図である。
[図 6]HDMI(R)ソースおよび HDMI(R)シンクのより詳細な構成例を示す図である。
[図 7]HDMI(R)ソースおよび HDMI(R)シンクの他のより詳細な構成例を示す図である。
[図 8]E-EDIDのデータ構造を示す図である。
[図 9]Vender Specificのデータ構造を示す図である。
[図 10]HDMI(R)ソースによる通信処理を説明するフローチャートである。
[図 11]HDMI(R)シンクによる通信処理を説明するフローチャートである。
[図 12]HDMI(R)ソースによる通信処理を説明するフローチャートである。
[図 13]HDMI(R)シンクによる通信処理を説明するフローチャートである。
[図 14]HDMI(R)ソースおよび HDMI(R)シンクの他のより詳細な構成例を示す図である
[図 15]HDMI(R)ソースによる通信処理を説明するフローチャートである。
[図 16]HDMI(R)シンクによる通信処理を説明するフローチャートである。
園 17]本発明を適用したコンピュータの一実施の形態の構成例を示すブロック図で ある。
[図 18]伝送路のうちの少なくとも片方の DCバイアス電位によってインタフェースの接 続状態が通知される通信システムの第 1の構成例を示す回路図である。
園 19]イーサネット (登録商標) (Ethernet (登録商標))にのせる場合のシステムの構成 例を示す図である。 [図 20]伝送路のうちの少なくとも片方の DCバイアス電位によってインタフェースの接 続状態が通知される通信システムの第 2の構成例を示す回路図である。
園 21]構成例の通信システムにおける双方向通信波形を示す図である。
符号の説明
35 HDMI(R)ケーブル, 71 HDMI(R)ソース, 72 HDMI(R)シンク, 81 トラン スミッタ, 82 レシーバ, 83 DDC, 84 CECライン, 85 EDIDROM, 121 切り換え制御部, 124 切り換え制御部, 131 変換部, 132 復号部, 133 スィッチ, 134 変換部, 135 スィッチ, 136 復号部, 141 信号線, 171 切り換え制御部, 172 切り換え制御部, 181 スィッチ, 182 スィッチ, 183 復号部, 184 変換部, 185 スィッチ, 186 スィッチ, 191 SDAライン, 1 92 SCLライン, 400 通信システム, 401 LAN機能拡張 HDMI (EH)ソース機 器, 411 LAN信号送信回路, 412 終端抵抗, 413, 414 AC結合容量, 4 15 LAN信号受信回路, 416 減算回路, 421 プルアップ抵抗, 422 抵抗,
423 容量, 424 比較器, 431 プルダウン抵抗, 432 抵抗, 433 容量,
434 比較器, 402 EHシンク機器, 441 LAN信号送信回路, 442 終端 抵抗, 443, 444 AC結合容量, 445 LAN信号受信回路, 446 減算回路,
451 プノレダウン抵抗, 452 抵抗, 453 容量, 454 比較器, 461 チョー クコィノレ, 462, 463 抵抗, 403 EHケープ、ノレ, 501 リザーブ、ライン, 502 HPDライン, 511 , 512 ソース側端子, 521 , 522 シンク側端子, 600 通信 システム, 601 LAN機能拡張 HDMI (EH)ソース機器, 611 LAN信号送信 回路, 612, 613 終端抵抗, 614〜617 AC結合容量, 618 LAN信号受信 回路, 620 インバータ, 621 抵抗, 622 抵抗, 623 容量, 624 比較器 , 631 プルダウン抵抗, 632 抵抗, 633 容量, 634 比較器, 640 NO Rゲート, 641 ~644 アナログスィッチ, 645 インバータ, 646, 647 アナログ スィッチ, 651 , 652 DDCトランシーバ, 653, 654 プルアップ抵抗, 602 E Hシンク機器, 661 LAN信号送信回路, 662, 663 終端抵抗, 664〜667 AC結合容量, 668 LAN信号受信回路, 671 プルダウン抵抗, 672 抵抗,
673 容量, 674 比較器, 681 チョークコイル, 682, 683 抵抗, 691—6 94 アナログスィッチ, 695 インバータ, 696, 697 アナログスィッチ, 701 , 7 02 DDCトランシーバ, 703 プルアップ抵抗, 603 EHケーブル, 801 リザ 一ブライン, 802 HPDライン, 803 SCLライン, 804 SDAライン, 81;!〜 8 14 ソース側端子, 82;!〜 824 シンク側端子
発明を実施するための最良の形態
[0047] 以下、図面を参照して、本発明を適用した実施の形態について説明する。
[0048] 図 2は、本発明を適用した一実施の形態の画像伝送システムの構成を示す図であ
[0049] 画像伝送システムは、デジタルテレビジョン受像機 31、増幅器 32、再生装置 33、 およびデジタルテレビジョン受像機 34により構成され、デジタルテレビジョン受像機 3 1および増幅器 32、並びに増幅器 32および再生装置 33は、 HDMI(R)に準拠した通 信ケーブルである HDMI(R)ケーブル 35および HDMI(R)ケーブル 36により接続されて V、る。また、デジタルテレビジョン受像機 31およびデジタルテレビジョン受像機 34は、 Ethernet (登録商標)などの LAN用の LANケーブル 37により接続されている。
[0050] 図 2の例では、デジタルテレビジョン受像機 31、増幅器 32、および再生装置 33が、 ユーザ宅の図中、左側に設けられたリビングに設置されており、デジタルテレビジョン 受像機 34が、リビングの右側に設けられた寝室に設置されている。
[0051] 再生装置 33は、たとえば DVDプレーヤ、ハードディスクレコーダなどからなり、コン テンッを再生するための画素データおよび音声データをデコードし、その結果得られ た非圧縮の画素データおよび音声データを、 HDMI(R)ケーブル 36を介して増幅器 3 2に供給する。
[0052] 増幅器 32は、たとえば AVアンプリファイアなどからなり、再生装置 33から画素デー タおよび音声データの供給を受け、供給された音声データを必要に応じて増幅する 。また、増幅器 32は、再生装置 33から供給され、必要に応じて増幅された音声デー タ、および画素データを、 HDMI(R)ケーブル 35を介してデジタルテレビジョン受像機 31に供給する。デジタルテレビジョン受像機 31は、増幅器 32から供給された画素デ ータおよび音声データに基づいて画像を表示したり、音声を出力したりして、コンテン ッを再生する。 [0053] また、デジタルテレビジョン受像機 31および増幅器 32は、 HDMI(R)ケーブル 35を 利用して、たとえば IP通信などの双方向の通信を高速に行うことができ、増幅器 32 および再生装置 33も HDMI(R)ケーブル 36を利用して、たとえば IP通信などの双方 向の通信を高速に行うことができる。
[0054] すなわち、たとえば再生装置 33は、増幅器 32と IP通信を行うことで、 IPに準拠した データとして、圧縮された画素データおよび音声データを、 HDMI(R)ケーブル 36を 介して増幅器 32に送信することができ、増幅器 32は、再生装置 33から送信されてき た、圧縮された画素データおよび音声データを受信することができる。
[0055] また、増幅器 32は、デジタルテレビジョン受像機 31と IP通信を行うことで、 IPに準 拠したデータとして、圧縮された画素データおよび音声データを、 HDMI(R)ケーブル 35を介してデジタルテレビジョン受像機 31に送信することができ、デジタルテレビジョ ン受像機 31は、増幅器 32から送信されてきた、圧縮された画素データおよび音声デ ータを受信すること力できる。
[0056] したがって、デジタルテレビジョン受像機 31は、受信した画素データおよび音声デ ータを、 LANケーブル 37を介してデジタルテレビジョン受像機 34に送信することがで きる。また、デジタルテレビジョン受像機 31は、受信した画素データおよび音声デー タをデコードし、これにより得られた非圧縮の画素データおよび音声データに基づい て、画像を表示したり、音声を出力したりしてコンテンツを再生する。
[0057] デジタルテレビジョン受像機 34は、 LANケーブル 37を介してデジタルテレビジョン 受像機 31から送信されてきた画素データおよび音声データを受信してデコードし、 デコードにより得られた非圧縮の画素データおよび音声データに基づいて、画像を 表示したり、音声を出力したりしてコンテンツを再生する。これにより、デジタルテレビ ジョン受像機 31およびデジタルテレビジョン受像機 34において、同一あるいは異な るコンテンツを同時に再生することができる。
[0058] さらに、デジタルテレビジョン受像機 31が、テレビジョン放送されているコンテンツと しての番組を再生するための画素データおよび音声データを受信した場合、受信さ れた音声データがたとえば 5· 1チャンネルサラウンドの音声データなどであり、デジタ ルテレビジョン受像機 31が受信した音声データをデコードすることができないときに は、デジタルテレビジョン受像機 31は、増幅器 32と IP通信することで、受信した音声 データを HDMI(R)ケーブル 35を介して増幅器 32に送信する。
[0059] 増幅器 32は、デジタルテレビジョン受像機 31から送信されてきた音声データを受 信してデコードするとともに、必要に応じてデコードされた音声データを増幅する。そ して、増幅器 32に接続されたスピーカ(図示せず)により 5· 1チャンネルサラウンド音 声を再生する。
[0060] デジタルテレビジョン受像機 31は、 HDMI(R)ケーブル 35を介して増幅器 32に音声 データを送信するとともに、受信した画素データをデコードし、デコードにより得られ た画素データに基づいて画像を表示させて番組を再生する。
[0061] このように、図 2の画像伝送システムにおいては、 HDMI(R)ケーブル 35や HDMI(R) ケーブル 36により接続されているデジタルテレビジョン受像機 31、増幅器 32、再生 装置 33などの電子機器は、 HDMI(R)ケーブルを用いて高速に IP通信することができ るため、図 1の LANケーブル 17に対応する LANケーブルは必要とされない。
[0062] また、デジタルテレビジョン受像機 31とデジタルテレビジョン受像機 34とを LANケー ブル 37で接続することで、デジタルテレビジョン受像機 31が HDMI(R)ケーブル 36、 増幅器 32、および HDMI(R)ケーブル 35を介して再生装置 33から受信したデータを、 さらに LANケーブル 37を介してデジタルテレビジョン受像機 34に送信することができ るので、図 1の LANケーブル 18およびハブ 16に対応する LANケーブルや電子機器 も必要ない。
[0063] 図 1に示したように、従来の画像伝送システムにおいては、送受信するデータや通 信方式によって、それぞれ異なる種類のケーブルが必要であり、電子機器同士を接 続するケーブルの配線が煩雑であった。これに対して、図 2に示した画像伝送システ ムにおいては、 HDMI(R)ケーブルにより接続された電子機器間では、高速に IP通信 などの双方向の通信を行うことができるので、電子機器の接続を簡素化することがで きる。つまり、従来は複雑であった電子機器同士を接続するケーブルの配線を、より 簡単にすることができる。
[0064] 次に、図 3は、 HDMI(R)ケーブルにより互いに接続された電子機器のそれぞれに内 蔵された HDMI(R)ソースおよび HDMI(R)シンク、たとえば図 2の増幅器 32内に設けら れた HDMI(R)ソース、およびデジタルテレビジョン受像機 31内に設けられた HDMI(R) シンクの構成例を示して!/、る。
[0065] HDMI(R)ソース 71と HDMI(R)シンク 72とは、 1本の HDMI(R)ケーブル 35で接続され ており、 HDMI(R)ソース 71および HDMI(R)シンク 72は、現行の HDMI(R)との互換性を 保ちながら、 HDMI(R)ケーブル 35を利用して、高速で双方向の IP通信を行うことがで きる。
[0066] HDMI(R)ソース 71は、 1の垂直同期信号から次の垂直同期信号までの区間から、 水平帰線区間及び垂直帰線区間を除いた区間である有効画像区間(以下、適宜、 アクティブビデオ区間ともいう)において、非圧縮の 1画面分の画像の画素データに 対応する差動信号を、複数のチャンネルで、 HDMI(R)シンク 72に一方向に送信する とともに、水平帰線区間または垂直帰線区間において、少なくとも画像に付随する音 声データや制御データ、その他の補助データ等に対応する差動信号を、複数のチヤ ンネルで、 HDMI(R)シンク 72に一方向に送信する。
[0067] すなわち、 HDMI(R)ソース 71は、トランスミッタ 81を有する。トランスミッタ 81は、たと えば、非圧縮の画像の画素データを対応する差動信号に変換し、複数のチャンネル である 3つの TMDSチャンネル # 0, # 1 , # 2で、 HDMI(R)ケーブル 35を介して接続 されている HDMI(R)シンク 72に、一方向にシリアル伝送する。
[0068] また、トランスミッタ 81は、非圧縮の画像に付随する音声データ、さらには、必要な 制御データその他の補助データ等を、対応する差動信号に変換し、 3つの TMDSチ ヤンネノレ # 0, # 1 , # 2で HDMI(R)ケーブル 35を介して接続されている HDMI(R)シン ク 72に、一方向にシリアル伝送する。
[0069] さらに、トランスミッタ 81は、 3つの TMDSチャンネル # 0, # 1 , # 2で送信する画素 データに同期したピクセルクロックを、 TMDSクロックチャンネルで、 HDMI(R)ケーブル 35を介して接続されている HDMI(R)シンク 72に送信する。ここで、 1つの TMDSチャン ネル # i (i=0, 1 , 2)では、ピクセルクロックの 1クロックの間に、 10ビットの画素データ が送信される。
[0070] HDMI(R)シンク 72は、アクティブビデオ区間において、複数のチャンネルで、 HDMI (R)ソース 71から一方向に送信されてくる、画素データに対応する差動信号を受信す るとともに、水平帰線区間または垂直帰線区間において、複数のチャンネルで、 HD MI(R)ソース 71から一方向に送信されてくる、音声データや制御データに対応する差 動信号を受信する。
[0071] すなわち、 HDMI(R)シンク 72は、レシーバ 82を有する。レシーバ 82は、 TMDSチヤ ンネノレ # 0, # 1 , # 2で、 HDMI(R)ケーブル 35を介して接続されている HDMI(R)ソー ス 71から一方向に送信されてくる、画素データに対応する差動信号と、音声データ や制御データに対応する差動信号を、同じく HDMI(R)ソース 71から TMDSクロックチ ヤンネルで送信されてくるピクセルクロックに同期して受信する。
[0072] HDMI(R)ソース 71と HDMI(R)シンク 72とからなる HDMI(R)システムの伝送チャンネ ノレには、 HDMI(R)ソース 71から HDMI(R)シンク 72に対して、画素データおよび音声 データを、ピクセルクロックに同期して、一方向にシリアル伝送するための伝送チャン ネルとしての 3つの TMDSチャンネル # 0乃至 # 2と、ピクセルクロックを伝送する伝送 チャンネルとしての TMDSクロックチャンネルとの他に、 DDC (Display Data Channel) 8 3や CECライン 84と呼ばれる伝送チャンネルがある。
[0073] DDC83は、 HDMI(R)ケーブル 35に含まれる図示せぬ 2本の信号線からなり、 HDMI (R)ソース 71が、 HDMI(R)ケーブル 35を介して接続された HDMI(R)シンク 72から、 E- EDID (Enhanced Extended Display Identification Data)を冗み出すのに使用される。
[0074] すなわち、 HDMI(R)シンク 72は、レシーバ 82の他に自身の設定や性能に関する情 報である E-EDIDを記憶している EDIDROM (EDID ROM (Read Only Memory) ) 85を 有している。 HDMI(R)ソース 71は、 HDMI(R)ケーブル 35を介して接続されている HD MI(R)シンク 72から、その HDMI(R)シンク 72の EDIDROM85が記憶している E-EDID を DDC83を介して読み出し、その E-EDIDに基づき、 HDMI(R)シンク 72の設定や性 能、すなわち、たとえば HDMI(R)シンク 72 (を有する電子機器)が対応している画像 のフォーマット(プロファイル)、たとえば RGB (Red, Green, Blue)や、 YCbCr4:4:4, YCb Cr4:2:2などを認識する。
[0075] なお、図示していないが、 HDMI(R)ソース 71も HDMI(R)シンク 72と同様に、 E-EDID を記憶し、必要に応じてその E-EDIDを HDMI(R)シンク 72に送信することができる。
[0076] CECライン 84は、 HDMI(R)ケーブル 35に含まれる図示せぬ 1本の信号線からなり、 HDMI(R)ソース 71と HDMI(R)シンク 72との間で、制御用のデータの双方向通信を行 うのに用いられる。
[0077] また、 HDMI(R)ソース 71および HDMI(R)シンク 72は、 DDC83または CECライン 84 を介して、 7ことえは、 IEEE (Institute of Electrical and Electronics Engineersリ 802.3に 準拠したフレームを HDMI(R)シンク 72および HDMI(R)ソース 71に送信することにより 、双方向の IP通信を行うことができる。
[0078] さらに、 HDMI(R)ケーブル 35には、 Hot Plug Detectと呼ばれるピンに接続される信 号線 86が含まれており、 HDMI(R)ソース 71および HDMI(R)シンク 72は、この信号線 8 6を利用して、新たな電子機器、つまり HDMI(R)シンク 72または HDMI(R)ソース 71の 接続を検出することができる。
[0079] 次に、図 4および図 5は、 HDMI(R)ケーブル 35と接続される、 HDMI(R)ソース 71また は HDMI(R)シンク 72に設けられた図示せぬコネクタのピン配列(pin assignment)を示 している。
[0080] なお、図 4および図 5においては、左欄(PINの欄)に、コネクタのピンを特定するピ ン番号を記載してあり、右欄(Signal Assignmentの欄)に、同一行の左欄に記載され てレ、るピン番号で特定されるピンに割り当てられてレ、る信号の名称を記載してある。
[0081] 図 4は、 HDMI(R)のタイプ A (Type-A)と呼ばれるコネクタのピン配列を示している。
[0082] TMDSチャンネル # iの差動信号 TMDS Data#i+と TMDS Dataffi-が伝送される差動 信号線である 2本の信号線は、 TMDS Data#i+が割り当てられているピン(ピン番号が 1 , 4, 7のピン)と、 TMDS Dataffi-が割り当てられているピン(ピン番号が 3, 6, 9のピ ン)に接続される。
[0083] また、制御用のデータである CEC信号が伝送される CECライン 84は、ピン番号が 1 3であるピンに接続され、ピン番号が 14のピンは空き(Reserved)ピンとなっている。双 方向の IP通信を、この空きピンを利用して行うことができれば、現行の HDMI(R)との互 換性を保つことができる。そこで、 CECライン 84およびピン番号が 14のピンに接続さ れる信号線を用いて差動信号を伝送することができるように、ピン番号が 14のピンに 接続される信号線と、 CECライン 84とは、差動ツイストペア結線されてシールドされ、 ピン番号が 17番のピンに接続される CECライン 84および DDC83のグランド線に接地 されている。
[0084] さらに、 E-EDIDなどの SDA (Serial Data)信号が伝送される信号泉は、ピン番号が 1 6であるピンに接続され、 SDA信号の送受信時の同期に用いられるクロック信号であ る SCL (Serial Clock)信号が伝送される信号線は、ピン番号が 15であるピンに接続さ れる。図 3の DDC83は、 SDA信号が伝送される信号線、および SCL信号が伝送され る信号線から構成される。
[0085] また、 SDA信号が伝送される信号線、および SCL信号が伝送される信号線は、 CEC ライン 84およびピン番号が 14のピンに接続される信号線と同様に、差動信号を伝送 することができるように差動ツイストペア結線されてシールドされ、ピン番号が 17番の ピンに接続されるグランド線に接地されている。
[0086] さらに、新たな電子機器の接続を検出するための信号が伝送される信号線 86は、 ピン番号が 19であるピンに接続される。
[0087] 図 5は、 HDMI(R)のタイプ C (Type-C)またはタイプミニと呼ばれるコネクタのピン配 列を示している。
[0088] TMDSチャンネル # iの差動信号 TMDS Data#i+と TMDS Dataffi-が伝送される差動 信号線である 2本の信号線は、 TMDS Data#i+が割り当てられているピン(ピン番号が 2, 5, 8のピン)と、 TMDS Dataffi-が割り当てられているピン(ピン番号が 3, 6, 9のピ ン)に接続される。
[0089] また、 CEC信号が伝送される CECライン 84は、ピン番号が 14であるピンに接続され 、ピン番号が 17のピンは空き(Reserved)ピンとなっている。ピン番号が 17のピンに接 続される信号線と、 CECライン 84とは、タイプ Aにおける場合と同様に差動ツイストぺ ァ結線されてシールドされ、ピン番号が 13番のピンに接続される CECライン 84およ び DDC83のグランド線に接地されている。
[0090] さらに、 SDA信号が伝送される信号線は、ピン番号が 16であるピンに接続され、 SC L信号が伝送される信号線は、ピン番号が 15であるピンに接続される。また、 SDA信 号が伝送される信号線、および SCL信号が伝送される信号線は、タイプ Aにおける場 合と同様に、差動信号を伝送することができるように差動ツイストペア結線されてシー ノレドされ、ピン番号が 13番のピンに接続されるグランド線に接地されている。さらに、 また、新たな電子機器の接続を検出するための信号が伝送される信号線 86は、ピン 番号が 19であるピンに接続される。
[0091] 次に図 6は、 CECライン 84、および HDMI(R)のコネクタの空きピンに接続される信号 線を用いて、半二重通信方式による IP通信を行う HDMI(R)ソース 71および HDMI(R) シンク 72の構成を示す図である。なお、図 6は、 HDMI(R)ソース 71および HDMI(R)シ ンク 72における、半二重通信に関する部分の構成例を示している。また、図 6におい て図 3における場合と対応する部分については、同一の符号を付してあり、その説明 は適宜省略する。
[0092] HDMI(R)ソース 71は、トランスミッタ 81、切り換え制御部 121、およびタイミング制御 部 122から構成される。また、トランスミッタ 81には、変換部 131、復号部 132、およ
[0093] 変換部 131には、 HDMI(R)ソース 71と HDMI(R)シンク 72との間での双方向の IP通 信により、 HDMI(R)ソース 71から HDMI(R)シンク 72に送信されるデータである、 Txデ ータが供給される。 Txデータは、たとえば圧縮された画素データや音声データなどと される。
[0094] 変換部 131は、たとえば差動アンプリファイアにより構成され、供給された Txデータ を 2つの部分信号からなる差動信号に変換する。また、変換部 131は、変換により得 られた差動信号を CECライン 84、およびトランスミッタ 81に設けられた図示せぬコネ クタの空きピンに接続される信号線 141を介してレシーバ 82に送信する。すなわち、 変換部 131は、変換により得られた差動信号を構成する一方の部分信号を CECライ ン 84、より詳細にはトランスミッタ 81に設けられた信号線であって、 HDMI(R)ケーブル 35の CECライン 84に接続される信号線を介してスィッチ 133に供給し、差動信号を 構成する他方の部分信号を信号線 141、より詳細には、トランスミッタ 81に設けられ た信号線であって、 HDMI(R)ケーブル 35の信号線 141に接続される信号線、および 信号線 141を介してレシーバ 82に供給する。
[0095] 復号部 132は、たとえば差動アンプリファイアにより構成され、その入力端子が、 CE Cライン 84および信号線 141に接続されている。復号部 132は、タイミング制御部 12 2の制御に基づいて、 CECライン 84および信号線 141を介してレシーバ 82から送信 されてきた差動信号、つまり CECライン 84上の部分信号および信号泉 141上の部分 信号からなる差動信号を受信し、元のデータである Rxデータに復号して出力する。 ここで、 Rxデータとは、 HDMI(R)ソース 71と HDMI(R)シンク 72との間での双方向の IP 通信により、 HDMI(R)シンク 72から HDMI(R)ソース 71に送信されるデータをいい、た とえば画素データや音声データの送信を要求するコマンドなどとされる。
[0096] スィッチ 133には、データを送信するタイミングにおいて、 HDMI(R)ソース 71からの CEC信号、または変換部 131からの Txデータに対応する差動信号を構成する部分 信号が供給され、データを受信するタイミングにおいて、レシーバ 82からの CEC信号 、またはレシーバ 82からの Rxデータに対応する差動信号を構成する部分信号が供 給される。スィッチ 133は、切り換え制御部 121からの制御に基づいて、 HDMI(R)ソ ース 71からの CEC信号、若しくはレシーバ 82からの CEC信号、または Txデータに対 応する差動信号を構成する部分信号、若しくは Rxデータに対応する差動信号を構 成する部分信号を選択して出力する。
[0097] すなわち、スィッチ 133は、 HDMI(R)ソース 71が HDMI(R)シンク 72にデータを送信 するタイミングにおいて、 HDMI(R)ソース 71から供給された CEC信号、または変換部 131から供給された部分信号のうちのいずれ力、を選択し、選択した CEC信号または 部分信号を、 CECライン 84を介してレシーバ 82に送信する。
[0098] また、スィッチ 133は、 HDMI(R)ソース 71が HDMI(R)シンク 72から送信されてきたデ ータを受信するタイミングにおレ、て、 CECライン 84を介してレシーバ 82から送信され てきた CEC信号、または Rxデータに対応する差動信号の部分信号を受信し、受信し た CEC信号または部分信号を、 HDMI(R)ソース 71または復号部 132に供給する。
[0099] 切り換え制御部 121はスィッチ 133を制御して、スィッチ 133に供給される信号のう ちのいずれかが選択されるようにスィッチ 133を切り換える。タイミング制御部 122は 、復号部 132による差動信号の受信のタイミングを制御する。
[0100] また、 HDMI(R)シンク 72は、レシーバ 82、タイミング制御部 123、および切り換え制 御部 124から構成される。さらに、レシーバ 82には、変換部 134、スィッチ 135、およ び復号部 136が設けられている。
[0101] 変換部 134は、たとえば差動アンプリファイアにより構成され、変換部 134には Rx データが供給される。変換部 134は、タイミング制御部 123の制御に基づいて、供給 された Rxデータを 2つの部分信号からなる差動信号に変換し、変換により得られた 差動信号を CECライン 84および信号線 141を介してトランスミッタ 81に送信する。す なわち、変換部 134は、変換により得られた差動信号を構成する一方の部分信号を CECライン 84、より詳細にはレシーバ 82に設けられた信号線であって、 HDMI(R)ケー ブル 35の CECライン 84に接続される信号線を介してスィッチ 135に供給し、差動信 号を構成する他方の部分信号を信号線 141、より詳細には、レシーバ 82に設けられ た信号線であって、 HDMI(R)ケーブル 35の信号線 141に接続される信号線、および 信号線 141を介してトランスミッタ 81に供給する。
[0102] スィッチ 135には、データを受信するタイミングにおいて、トランスミッタ 81からの CE C信号、またはトランスミッタ 81からの Txデータに対応する差動信号を構成する部分 信号が供給され、データを送信するタイミングにおいて、変換部 134からの Rxデータ に対応する差動信号を構成する部分信号、または HDMI(R)シンク 72からの CEC信号 が供給される。スィッチ 135は、切り換え制御部 124からの制御に基づいて、トランス ミッタ 81からの CEC信号、若しくは HDMI(R)シンク 72からの CEC信号、または Txデー タに対応する差動信号を構成する部分信号、若しくは Rxデータに対応する差動信 号を構成する部分信号を選択して出力する。
[0103] すなわち、スィッチ 135は、 HDMI(R)シンク 72が HDMI(R)ソース 71にデータを送信 するタイミングにおいて、 HDMI(R)シンク 72から供給された CEC信号、または変換部 134から供給された部分信号のうちのいずれ力、を選択し、選択した CEC信号または 部分信号を、 CECライン 84を介してトランスミッタ 81に送信する。
[0104] また、スィッチ 135は、 HDMI(R)シンク 72が HDMI(R)ソース 71から送信されてきたデ ータを受信するタイミングにおいて、 CECライン 84を介してトランスミッタ 81から送信さ れてきた CEC信号、または Txデータに対応する差動信号の部分信号を受信し、受 信した CEC信号または部分信号を、 HDMI(R)シンク 72または復号部 136に供給する
[0105] 復号部 136は、たとえば差動アンプリファイアにより構成され、その入力端子が、 CE Cライン 84および信号線 141に接続されている。復号部 136は、 CECライン 84および 信号泉 141を介してトランスミッタ 81から送信されてきた差動信号、つまり CECライン 84上の部分信号および信号泉 141上の部分信号からなる差動信号を受信し、元の データである Txデータに復号して出力する。
[0106] 切り換え制御部 124はスィッチ 135を制御して、スィッチ 135に供給される信号のう ちのいずれかが選択されるようにスィッチ 135を切り換える。タイミング制御部 123は 、変換部 134による差動信号の送信のタイミングを制御する。
[0107] また、 HDMI(R)ソース 71および HDMI(R)シンク 72力 CECライン 84および空きピン に接続される信号線 141と、 SDA信号が伝送される信号線および SCL信号が伝送さ れる信号線とを用いて、全二重通信方式による IP通信を行う場合、 HDMI(R)ソース 7 1および HDMI(R)シンク 72は、たとえば図 7に示すように構成される。なお、図 7にお いて、図 6における場合と対応する部分については、同一の符号を付してあり、その 説明は適宜省略する。
[0108] HDMI(R)ソース 71は、トランスミッタ 81、切り換え制御部 121、および切り換え制御 部 171から構成される。また、トランスミッタ 81には、変換部 131、スィッチ 133、スイツ チ 181、スィッチ 182、および復号部 183が設けられている。
[0109] スィッチ 181には、データを送信するタイミングにおいて、 HDMI(R)ソース 71からの S DA信号が供給され、データを受信するタイミングにおいて、レシーバ 82からの SDA 信号、またはレシーバ 82からの Rxデータに対応する差動信号を構成する部分信号 が供給される。スィッチ 181は、切り換え制御部 171からの制御に基づいて、 HDMI(R )ソース 71からの SDA信号、若しくはレシーバ 82からの SDA信号、または Rxデータに 対応する差動信号を構成する部分信号を選択して出力する。
[0110] すなわち、スィッチ 181は、 HDMI(R)ソース 71が HDMI(R)シンク 72から送信されてく るデータを受信するタイミングにお!/、て、 SDA信号が伝送される信号線である SDAライ ン 191を介してレシーバ 82から送信されてきた SDA信号、または Rxデータに対応す る差動信号の部分信号を受信し、受信した SDA信号または部分信号を、 HDMI(R)ソ ース 71または復号部 183に供給する。
[0111] また、スィッチ 181は、 HDMI(R)ソース 71が HDMI(R)シンク 72にデータを送信するタ イミングにおいて、 HDMI(R)ソース 71から供給された SDA信号を、 SDAライン 191を介 してレシーバ 82に送信する力、、またはレシーバ 82に何も送信しない。
[0112] スィッチ 182には、データを送信するタイミングにおいて、 HDMI(R)ソース 71からの S CL信号が供給され、データを受信するタイミングにおいて、レシーバ 82からの Rxデ ータに対応する差動信号を構成する部分信号が供給される。スィッチ 182は、切り換 え制御部 171からの制御に基づいて、 SCL信号または Rxデータに対応する差動信 号を構成する部分信号のうちのいずれかを選択して出力する。
[0113] すなわち、スィッチ 182は、 HDMI(R)ソース 71が HDMI(R)シンク 72から送信されてく るデータを受信するタイミングにお!/、て、 SCL信号が伝送される信号線である SCLライ ン 192を介してレシーバ 82から送信されてきた、 Rxデータに対応する差動信号の部 分信号を受信し、受信した部分信号を復号部 183に供給するか、または何も受信し ない。
[0114] また、スィッチ 182は、 HDMI(R)ソース 71が HDMI(R)シンク 72にデータを送信するタ イミングにおいて、 HDMI(R)ソース 71から供給された SCL信号を、 SCLライン 192を介 してレシーバ 82に送信する力、、または何も送信しない。
[0115] 復号部 183は、たとえば差動アンプリファイアにより構成され、その入力端子が、 SD Aライン 191および SCLライン 192に接続されている。復号部 183は、 SDAライン 191 および SCLライン 192を介してレシーバ 82から送信されてきた差動信号、つまり SDA ライン 191上の部分信号および SCLライン 192上の部分信号からなる差動信号を受 信し、元のデータである Rxデータに復号して出力する。
[0116] 切り換え制御部 171はスィッチ 181およびスィッチ 182を制御して、スィッチ 181お よびスィッチ 182のそれぞれについて、供給される信号のうちのいずれかが選択され るようにスィッチ 181およびスィッチ 182を切り換える。
[0117] また、 HDMI(R)シンク 72は、レシーバ 82、切り換え制御部 124、および切り換え制 御部 172から構成される。さらに、レシーバ 82には、スィッチ 135、復号部 136、変換 き 184、スィッチ 185、およびスィッチ 186カ設けられている。
[0118] 変換部 184は、たとえば差動アンプリファイアにより構成され、変換部 184には Rx データが供給される。変換部 184は、供給された Rxデータを 2つの部分信号からな る差動信号に変換し、変換により得られた差動信号を SDAライン 191および SCLライ ン 192を介してトランスミッタ 81に送信する。すなわち、変換部 184は、変換により得 られた差動信号を構成する一方の部分信号をスィッチ 185を介してトランスミッタ 81 に送信し、差動信号を構成する他方の部分信号をスィッチ 186を介してトランスミッタ 81に送信する。
[0119] スィッチ 185には、データを送信するタイミングにおいて、変換部 184からの Rxデ ータに対応する差動信号を構成する部分信号、または HDMI(R)シンク 72からの SDA 信号が供給され、データを受信するタイミングにおいて、トランスミッタ 81からの SDA 信号が供給される。スィッチ 185は、切り換え制御部 172からの制御に基づいて、 HD MI(R)シンク 72からの SDA信号、若しくはトランスミッタ 81からの SDA信号、または Rx データに対応する差動信号を構成する部分信号を選択して出力する。
[0120] すなわち、スィッチ 185は、 HDMI(R)シンク 72が HDMI(R)ソース 71から送信されてく るデータを受信するタイミングにおいて、 SDAライン 191を介してトランスミッタ 81から 送信されてきた SDA信号を受信し、受信した SDA信号を HDMI(R)シンク 72に供給す る力、、または ί可も受信しない。
[0121] また、スィッチ 185は、 HDMI(R)シンク 72が HDMI(R)ソース 71にデータを送信するタ イミングにおいて、 HDMI(R)シンク 72から供給された SDA信号、または変換部 184か ら供給された部分信号を、 SDAライン 191を介してトランスミッタ 81に送信する。
[0122] スィッチ 186には、データを送信するタイミングにおいて、変換部 184からの、 Rxデ ータに対応する差動信号を構成する部分信号が供給され、データを受信するタイミ ングにおいて、トランスミッタ 81からの SCL信号が供給される。スィッチ 186は、切り換 え制御部 172からの制御に基づいて、 Rxデータに対応する差動信号を構成する部 分信号、または SCL信号のうちのいずれかを選択して出力する。
[0123] すなわち、スィッチ 186は、 HDMI(R)シンク 72が HDMI(R)ソース 71から送信されてく るデータを受信するタイミングにおいて、 SCLライン 192を介してトランスミッタ 81から 送信されてきた SCL信号を受信し、受信した SCL信号を HDMI(R)シンク 72に供給する 、または ί可も受信しない。
[0124] また、スィッチ 186は、 HDMI(R)シンク 72が HDMI(R)ソース 71にデータを送信するタ イミングにおいて、変換部 184から供給された部分信号を、 SCLライン 192を介してト ランスミッタ 81に送信する力、、または何も送信しなレ、。
[0125] 切り換え制御部 172はスィッチ 185およびスィッチ 186を制御して、スィッチ 185お よびスィッチ 186のそれぞれについて、供給される信号のうちのいずれかが選択され るようにスィッチ 185およびスィッチ 186を切り換える。
[0126] ところで、 HDMI(R)ソース 71と HDMI(R)シンク 72とが IP通信を行う場合に、半二重 通信が可能であるか、全二重通信が可能であるかは、 HDMI(R)ソース 71および HDM I(R)シンク 72のそれぞれの構成によって定まる。そこで、 HDMI(R)ソース 71は、 HDMI (R)シンク 72から受信した E-EDIDを参照して、半二重通信を行うか、全二重通信を行 ぅカ または CEC信号の授受による双方向通信を行うかの判定を行う。
[0127] HDMI(R)ソース 71が受信する E-EDIDは、たとえば図 8に示すように、基本ブロックと 拡張プ'ロックとカゝらなる。
[0128] E-EDIDの基本ブロックの先頭には、 "E-EDID1.3 Basic Structure"で表される E-ED ID1.3の規格で定められたデータが配置され、続いて" Preferred timing"で表される従 来の EDIDとの互換性を保っためのタイミング情報、および" 2nd timing"で表される従 来の EDIDとの互換性を保っための" Preferred timing"とは異なるタイミング情報が配 置されている。
[0129] また、基本ブロックには、 "2nd timing"に続いて、 "Monitor NAME"で表される表示 装置の名前を示す情報、および" Monitor Range Limits"で表される、アスペクト比が 4 :3および 16:9である場合についての表示可能な画素数を示す情報が順番に配置さ れている。
[0130] これに対して、拡張ブロックの先頭には、 "Speaker Allocation"で表される左右のス ピー力に関する情報が配置され、続いて" VIDEO SHORT"で表される、表示可能な 画像サイズ、フレームレート、インターレースであるかプログレッシブであるかを示す 情報、アスペクト比などの情報が記述されたデータ、 "AUDIO SHORT"で表される、 再生可能な音声コーデック方式、サンプリング周波数、カットオフ帯域、コーデックビ ット数などの情報が記述されたデータ、および" Speaker Allocation"で表される左右 のスピーカに関する情報が順番に配置されている。
[0131] また、拡張ブロックには、 "Speaker Allocation"に続いて、 "Vender Specific"で表さ れるメーカごとに固有に定義されたデータ、 "3rd timing"で表される従来の EDIDとの 互換性を保っためのタイミング情報、および" 4th timing"で表される従来の EDIDとの 互換性を保っためのタイミング情報が配置されている。
[0132] さらに、 "Vender Specific"で表されるデータは、図 9に示すデータ構造となっている
。すなわち、 "Vender Specific"で表されるデータには、 1バイトのブロックである第 0ブ ロック乃至第 Nブロックが設けられて!/、る。
[0133] "Vender Specific"で表されるデータの先頭に配置された第 0ブロックには、 "Vendor
-Specific tag code(=3)"で表されるデータ" Vender Specific"のデータ領域を示すへッ ダ、および" Length(=N)"で表されるデータ" Vender Specific"の長さを示す情報が配 置される。
[0134] また、第 1ブロック乃至第 3ブロックには、 "24bit IEEE Registration Identifier(0x000 C03)LSB first"で表される HDMI(R)用として登録された番号" 0x000C03"を示す情報 が配置される。さらに、第 4ブロックおよび第 5ブロックには、 "A"、 "B"、 "C"、および" D"のそれぞれにより表される、 24bitのシンク機器の物理アドレスを示す情報が配置 される。
[0135] 第 6ブロックには、 "Supports-AI"で表されるシンク機器が対応して!/、る機能を示す フラグ、 "DC_48bit"、 "DC_36bit"、および" DC_30bit"のそれぞれで表される 1ピクセ ル当たりのビット数を指定する情報のそれぞれ、 "DC-Y444"で表される、シンク機器 力 SYCbCr4:4:4の画像の伝送に対応して!/、るかを示すフラグ、および" DVト Dual"で表 される、シンク機器がデュアル D VI (Digital Visual Interface)に対応しているかを示す フラグが配置されている。
[0136] また、第 7ブロックには、 "Max-TMDS-Clock"で表される TMDSのピクセルクロックの 最大の周波数を示す情報が配置される。さらに、第 8ブロックには、 "Latency"で表さ れる映像と音声の遅延情報の有無を示すフラグ、 "Full Duplex"で表される全二重通 信が可能であるかを示す全二重フラグ、および "Half Duplex"で表される半二重通信 が可能であるかを示す半二重フラグが配置されている。
[0137] ここで、たとえばセットされている(たとえば";! "に設定されている)全二重フラグは、 HDMI(R)シンク 72が全二重通信を行う機能を有している、つまり図 7に示した構成と されることを示しており、リセットされて!/、る(たとえば" 0"に設定されて!/、る)全二重フ ラグは、 HDMI(R)シンク 72が全二重通信を行う機能を有して!/、な!/、ことを示して!/、る。
[0138] 同様に、セットされている(たとえば";! "に設定されている)半二重フラグは、 HDMKR )シンク 72が半二重通信を行う機能を有している、つまり図 6に示した構成とされること を示しており、リセットされている(たとえば" 0"に設定されている)半二重フラグは、 H DMI(R)シンク 72が半二重通信を行う機能を有して!/、な!/、ことを示して!/、る。
[0139] また、 "Vender Specific"で表されるデータの第 9ブロックには、 "Video Latency"で 表されるプログレッシブの映像の遅延時間データが配置され、第 10ブロックには、 "A udio Latency"で表される、プログレッシブの映像に付随する音声の遅延時間データ が配置される。さらに、第 11ブロックには、 "Interlaced Video Latency"で表されるイン ターレースの映像の遅延時間データが配置され、第 12ブロックには、 "Interlaced Au dio Latency"で表される、インターレースの映像に付随する音声の遅延時間データが 配置される。
[0140] HDMI(R)ソース 71は、 HDMI(R)シンク 72から受信した E-EDIDに含まれている全二 重フラグおよび半二重フラグに基づいて、半二重通信を行うか、全二重通信を行うか
、または CEC信号の授受による双方向通信を行うかの判定を行い、その判定結果に したがって、 HDMI(R)シンク 72との双方向の通信を行う。
[0141] たとえば、 HDMI(R)ソース 71が図 6に示した構成とされている場合、 HDMI(R)ソース
71は、図 6に示した HDMI(R)シンク 72とは半二重通信を行うことができる力 図 7に示 した HDMI(R)シンク 72とは半二重通信を行うことができない。
[0142] そこで、 HDMI(R)ソース 71は、 HDMI(R)ソース 71が設けられた電子機器の電源が オンされると通信処理を開始し、 HDMI(R)ソース 71に接続された HDMI(R)シンク 72の 有する機能に応じた双方向の通信を行う。
[0143] 以下、図 10のフローチャートを参照して、図 6に示した HDMI(R)ソース 71による通 信処理について説明する。
[0144] ステップ S11において、 HDMI(R)ソース 71は、 HDMI(R)ソース 71に新たな電子機器 が接続されたか否かを判定する。たとえば、 HDMI(R)ソース 71は、信号線 86が接続 される Hot Plug Detectと呼ばれるピンに対して付加された電圧の大きさに基づいて、 HDMI(R)シンク 72が設けられた新たな電子機器が接続されたか否かを判定する。
[0145] ステップ S 11において、新たな電子機器が接続されていないと判定された場合、通 信は行われないので、通信処理は終了する。
[0146] これに対して、ステップ S 11において、新たな電子機器が接続されたと判定された 場合、ステップ S12において、切り換え制御部 121はスィッチ 133を制御し、データ の送信時において HDMI(R)ソース 71からの CEC信号が選択され、データの受信時 においてレシーバ 82からの CEC信号が選択されるように、スィッチ 133を切り換える。
[0147] ステップ S13において、 HDMI(R)ソース 71は、 DDC83を介して HDMI(R)シンク 72か ら送信されてきた E-EDIDを受信する。すなわち、 HDMI(R)シンク 72は、 HDMI(R)ソー ス 71の接続を検出すると EDIDROM85から E-EDIDを読み出し、読み出した E-EDID を、 DDC83を介して HDMI(R)ソース 71に送信するので、 HDMI(R)ソース 71は、 HDMI (R)シンク 72力、ら送信されてきた E-EDIDを受信する。
[0148] ステップ S14において、 HDMI(R)ソース 71は、 HDMI(R)シンク 72との半二重通信が 可能であるか否かを判定する。すなわち、 HDMI(R)ソース 71は、 HDMI(R)シンク 72か ら受信した E-EDIDを参照して、図 9の半二重フラグ" Half Duplex"がセットされている か否かを判定し、たとえば半二重フラグがセットされている場合、 HDMI(R)ソース 71は 、半二重通信方式による双方向の IP通信、つまり半二重通信が可能であると判定す
[0149] ステップ S14において、半二重通信が可能であると判定された場合、ステップ S 15 において、 HDMI(R)ソース 71は、双方向の通信に用いるチャンネルを示すチャンネ ル情報として、 CECライン 84および信号線 141を用いた半二重通信方式による IP通 信を行う旨の信号を、スィッチ 133および CECライン 84を介してレシーバ 82に送信す
[0150] すなわち、半二重フラグがセットされている場合、 HDMI(R)ソース 71は、 HDMI(R)シ ンク 72が図 6に示した構成であり、 CECライン 84および信号線 141を用いた半二重 通信が可能であることが分かるので、チャンネル情報を HDMI(R)シンク 72に送信して 、半二重通信を行う旨を通知する。
[0151] ステップ S16において、切り換え制御部 121はスィッチ 133を制御し、データの送 信時において変換部 131からの Txデータに対応する差動信号が選択され、データ の受信時においてレシーバ 82からの Rxデータに対応する差動信号が選択されるよ うに、スィッチ 133を切り換える。
[0152] ステップ S17において、 HDMI(R)ソース 71の各部は、半二重通信方式により、 HDM I(R)シンク 72との双方向の IP通信を行い、通信処理は終了する。すなわち、データの 送信時において、変換部 131は、 HDMI(R)ソース 71から供給された Txデータを差動 信号に変換し、変換により得られた差動信号を構成する部分信号のうちの一方をスィ ツチ 133に供給し、他方の部分信号を信号線 141を介してレシーバ 82に送信する。 スィッチ 133は、変換部 131から供給された部分信号を、 CECライン 84を介してレシ ーバ 82に送信する。これにより、 Txデータに対応する差動信号が HDMI(R)ソース 71 力、ら HDMI(R)シンク 72に送信される。
[0153] また、データの受信時において、復号部 132は、レシーバ 82から送信されてきた R Xデータに対応する差動信号を受信する。すなわち、スィッチ 133は、 CECライン 84 を介してレシーバ 82から送信されてきた、 Rxデータに対応する差動信号の部分信 号を受信し、受信した部分信号を復号部 132に供給する。復号部 132は、スィッチ 1 33から供給された部分信号、および信号線 141を介してレシーバ 82から供給された 部分信号からなる差動信号を、タイミング制御部 122の制御に基づいて、元のデータ である Rxデータに復号し、 HDMI(R)ソース 71に出力する。
[0154] これにより、 HDMI(R)ソース 71は、 HDMI(R)シンク 72と制御データや画素データ、 音声データなど、各種のデータの授受を行う。
[0155] また、ステップ S 14において、半二重通信が可能でないと判定された場合、ステツ プ S18において、 HDMI(R)ソース 71の各部は、 CEC信号の送受信を行うことで HDMI (R)シンク 72との双方向の通信を行い、通信処理は終了する。
[0156] すなわち、データの送信時において、 HDMI(R)ソース 71は、スィッチ 133および CE Cライン 84を介して、 CEC信号をレシーバ 82に送信し、データの受信時において、 H DMI(R)ソース 71は、スィッチ 133および CECライン 84を介してレシーバ 82から送信 されてきた CEC信号を受信することで、 HDMI(R)シンク 72との制御データの授受を行 5。 [0157] このようにして、 HDMI(R)ソース 71は、半二重フラグを参照し、半二重通信が可能な HDMI(R)シンク 72と、 CECライン 84および信号線 141を用いて半二重通信を行う。
[0158] このように、スィッチ 133を切り換えて送信するデータ、および受信するデータを選 択し、 HDMI(R)シンク 72と、 CECライン 84および信号線 141を用いた半二重通信、つ まり半二重通信方式による IP通信を行うことで、従来の HDMI(R)との互換性を保ちつ つ、高速の双方向通信を行うことができる。
[0159] また、 HDMI(R)ソース 71と同様に、 HDMI(R)シンク 72も、 HDMI(R)シンク 72が設けら れた電子機器の電源がオンされると通信処理を開始し、 HDMI(R)ソース 71との双方 向の通信を行う。
[0160] 以下、図 11のフローチャートを参照して、図 6に示した HDMI(R)シンク 72による通信 処理について説明する。
[0161] ステップ S41において、 HDMI(R)シンク 72は、 HDMI(R)シンク 72に新たな電子機器 が接続されたか否かを判定する。たとえば、 HDMI(R)シンク 72は、信号線 86が接続 された Hot Plug Detectと呼ばれるピンに対して付加された電圧の大きさに基づいて、 HDMI(R)ソース 71が設けられた新たな電子機器が接続されたか否かを判定する。
[0162] ステップ S41において、新たな電子機器が接続されていないと判定された場合、通 信は行われないので、通信処理は終了する。
[0163] これに対して、ステップ S41において、新たな電子機器が接続されたと判定された 場合、ステップ S42において、切り換え制御部 124はスィッチ 135を制御し、データ の送信時にぉレ、て HDMI(R)シンク 72からの CEC信号が選択され、データの受信時に おいてトランスミッタ 81からの CEC信号が選択されるように、スィッチ 135を切り換える
[0164] ステップ S43において、 HDMI(R)シンク 72は、 EDIDROM85から E-EDIDを読み出し 、読み出した E-EDIDを、 DDC83を介して HDMI(R)ソース 71に送信する。
[0165] ステップ S44において、 HDMI(R)シンク 72は、 HDMI(R)ソース 71から送信されてき たチャンネル情報を受信したか否力、を判定する。
[0166] すなわち、 HDMI(R)ソース 71からは、 HDMI(R)ソース 71および HDMI(R)シンク 72が 有する機能に応じて、双方向の通信のチャンネルを示すチャンネル情報が送信され てくる。たとえば、 HDMI(R)ソース 71が図 6に示すように構成される場合、 HDMI(R)ソ ース 71と HDMI(R)シンク 72とは、 CECライン 84および信号線 141を用いた半二重通 信が可能であるので、 HDMI(R)ソース 71から HDMI(R)シンク 72には、 CECライン 84 および信号線 141を用いた IP通信を行う旨のチャンネル情報が送信されてくる。 HD MI(R)シンク 72は、スィッチ 135および CECライン 84を介して HDMI(R)ソース 71から 送信されてきたチャンネル情報を受信し、チャンネル情報を受信したと判定する。
[0167] これに対して、 HDMI(R)ソース 71が半二重通信を行う機能を有していない場合、 H DMI(R)ソース 71から HDMI(R)シンク 72には、チャンネル情報が送信されてこないの で、 HDMI(R)シンク 72は、チャンネル情報を受信していないと判定する。
[0168] ステップ S44において、チャンネル情報を受信したと判定された場合、処理はステツ プ S45に進み、切り換え制御部 124は、スィッチ 135を制御し、データの送信時にお いて変換部 134からの Rxデータに対応する差動信号が選択され、データの受信時 においてトランスミッタ 81からの Txデータに対応する差動信号が選択されるように、 スィッチ 135を切り換える。
[0169] ステップ S46において、 HDMI(R)シンク 72の各部は、半二重通信方式により、 HDM I(R)ソース 71との双方向の IP通信を行い、通信処理は終了する。すなわち、データ の送信時において、変換部 134は、タイミング制御部 123の制御に基づいて HDMI(R )シンク 72から供給された Rxデータを差動信号に変換し、変換により得られた差動信 号を構成する部分信号のうちの一方をスィッチ 135に供給し、他方の部分信号を信 号線 141を介してトランスミッタ 81に送信する。スィッチ 135は、変換部 134から供給 された部分信号を、 CECライン 84を介してトランスミッタ 81に送信する。これにより、 R Xデータに対応する差動信号が HDMI(R)シンク 72から HDMI(R)ソース 71に送信され
[0170] また、データの受信時において、復号部 136は、トランスミッタ 81から送信されてき た Txデータに対応する差動信号を受信する。すなわち、スィッチ 135は、 CECライン 84を介してトランスミッタ 81から送信されてきた、 Txデータに対応する差動信号の部 分信号を受信し、受信した部分信号を復号部 136に供給する。復号部 136は、スイツ チ 135から供給された部分信号、および信号線 141を介してトランスミッタ 81から供 給された部分信号からなる差動信号を元のデータである Txデータに復号し、 HDMI( R)シンク 72に出力する。
[0171] これにより、 HDMI(R)シンク 72は、 HDMI(R)ソース 71と制御データや画素データ、 音声データなど、各種のデータの授受を行う。
[0172] また、ステップ S44において、チャンネル情報を受信していないと判定された場合、 ステップ S47において、 HDMI(R)シンク 72の各部は、 CEC信号の送受信を fiうことで HDMI(R)ソース 71との双方向の通信を行い、通信処理は終了する。
[0173] すなわち、データの送信時において、 HDMI(R)シンク 72は、スィッチ 135および CE Cライン 84を介して、 CEC信号をトランスミッタ 81に送信し、データの受信時において 、 HDMI(R)シンク 72は、スィッチ 135および CECライン 84を介してトランスミッタ 81力、 ら送信されてきた CEC信号を受信することで、 HDMI(R)ソース 71との制御データの授 受を行う。
[0174] このようにして、 HDMI(R)シンク 72は、チャンネル情報を受信すると、 HDMI(R)シンク
72と、 CECライン 84および信号線 141を用いて半二重通信を行う。
[0175] このように、 HDMI(R)シンク 72がスィッチ 135を切り換えて送信するデータ、および 受信するデータを選択し、 HDMI(R)ソース 71と CECライン 84および信号線 141を用 いた半二重通信を行うことで、従来の HDMI(R)との互換性を保ちつつ、高速の双方 向通信を行うことができる。
[0176] また、 HDMI(R)ソース 71が図 7に示す構成とされる場合、 HDMI(R)ソース 71は、通 信処理にぉレ、て、 E-EDIDに含まれる全二重フラグに基づ!/、て HDMI(R)シンク 72が 全二重通信を行う機能を有している力、を判定し、その判定結果に応じた双方向の通 信を行う。
[0177] 以下、図 12のフローチャートを参照して、図 7に示した HDMI(R)ソース 71による通 信処理について説明する。
[0178] ステップ S71において、 HDMI(R)ソース 71は、 HDMI(R)ソース 71に新たな電子機器 が接続されたか否かを判定する。ステップ S71において、新たな電子機器が接続さ れていないと判定された場合、通信は行われないので、通信処理は終了する。
[0179] これに対して、ステップ S71において、新たな電子機器が接続されたと判定された 場合、ステップ S72において、切り換え制御部 171は、スィッチ 181およびスィッチ 1 82を制御し、データの送信時において、スィッチ 181により HDMI(R)ソース 71からの S DA信号が選択され、スィッチ 182により HDMI(R)ソース 71からの SCL信号が選択され 、さらにデータの受信時において、スィッチ 181によりレシーバ 82からの SDA信号が 選択されるように、スィッチ 181およびスィッチ 182を切り換える。
[0180] ステップ S73において、切り換え制御部 121はスィッチ 133を制御し、データの送 信時において HDMI(R)ソース 71からの CEC信号が選択され、データの受信時にお いてレシーバ 82からの CEC信号が選択されるように、スィッチ 133を切り換える。
[0181] ステップ S74において、 HDMI(R)ソース 71は、 DDC83の SDAライン 191を介して H DMI(R)シンク 72から送信されてきた E-EDIDを受信する。すなわち、 HDMI(R)シンク 7 2は、 HDMI(R)ソース 71の接続を検出すると EDIDROM85から E-EDIDを読み出し、 読み出した E-EDIDを、 DDC83の SDAライン 191を介して HDMI(R)ソース 71に送信 するので、 HDMI(R)ソース 71は、 HDMI(R)シンク 72から送信されてきた E-EDIDを受 信する。
[0182] ステップ S75において、 HDMI(R)ソース 71は、 HDMI(R)シンク 72との全二重通信が 可能であるか否かを判定する。すなわち、 HDMI(R)ソース 71は、 HDMI(R)シンク 72か ら受信した E-EDIDを参照して、図 9の全二重フラグ" Full Duplex"がセットされている か否かを判定し、たとえば全二重フラグがセットされている場合、 HDMI(R)ソース 71は 、全二重通信方式による双方向の IP通信、つまり全二重通信が可能であると判定す
[0183] ステップ S75において、全二重通信が可能であると判定された場合、ステップ S76 において、切り換え制御部 171は、スィッチ 181およびスィッチ 182を制御し、データ の受信時において、レシーバ 82からの Rxデータに対応する差動信号が選択される ようにスィッチ 181およびスィッチ 182を切り換える。
[0184] すなわち、切り換え制御部 171は、データの受信時において、レシーバ 82から送 信されてくる、 Rxデータに対応した差動信号を構成する部分信号のうち、 SDAライン 191を介して送信されてくる部分信号力 Sスィッチ 181により選択され、 SCLライン 192 を介して送信されてくる部分信号力スィッチ 182により選択されるように、スィッチ 181 およびスィッチ 182を切り換える。
[0185] DDC83を構成する SDAライン 191および SCLライン 192は、 HDMI(R)シンク 72から HDMI(R)ソース 71に E-EDIDが送信された後は利用されないので、つまり SDAライン 1 91および SCLライン 192を介した SDA信号や SCL信号の送受信は行われないので、 スィッチ 181およびスィッチ 182を切り換えて、 SDAライン 191および SCLライン 192を 、全二重通信による Rxデータの伝送路として利用することができる。
[0186] ステップ S77において、 HDMI(R)ソース 71は、双方向の通信のチャンネルを示すチ ヤンネル情報として、 CECライン 84および信号線 141と、 SDAライン 191および SCLラ イン 192とを用いた全二重通信方式による IP通信を行う旨の信号を、スィッチ 133お よび CECライン 84を介してレシーバ 82に送信する。
[0187] すなわち、全二重フラグがセットされている場合、 HDMI(R)ソース 71は、 HDMI(R)シ ンク 72が図 7に示した構成であり、 CECライン 84および信号線 141と、 SDAライン 19 1および SCLライン 192とを用いた全二重通信が可能であることが分かるので、チャン ネル情報を HDMI(R)シンク 72に送信して、全二重通信を行う旨を通知する。
[0188] ステップ S78において、切り換え制御部 121はスィッチ 133を制御し、データの送 信時において変換部 131からの Txデータに対応する差動信号が選択されるように、 スィッチ 133を切り換える。すなわち、切り換え制御部 121は、変換部 131からスイツ チ 133に供給された、 Txデータに対応する差動信号の部分信号が選択されるように スィッチ 133を切り換える。
[0189] ステップ S79において、 HDMI(R)ソース 71の各部は、全二重通信方式により、 HDM I(R)シンク 72との双方向の IP通信を行い、通信処理は終了する。すなわち、データの 送信時において、変換部 131は、 HDMI(R)ソース 71から供給された Txデータを差動 信号に変換し、変換により得られた差動信号を構成する部分信号のうちの一方をスィ ツチ 133に供給し、他方の部分信号を信号線 141を介してレシーバ 82に送信する。 スィッチ 133は、変換部 131から供給された部分信号を、 CECライン 84を介してレシ ーバ 82に送信する。これにより、 Txデータに対応する差動信号が HDMI(R)ソース 71 力、ら HDMI(R)シンク 72に送信される。
[0190] また、データの受信時において、復号部 183は、レシーバ 82から送信されてきた R xデータに対応する差動信号を受信する。すなわち、スィッチ 181は、 SDAライン 191 を介してレシーバ 82から送信されてきた、 Rxデータに対応する差動信号の部分信 号を受信し、受信した部分信号を復号部 183に供給する。また、スィッチ 182は、 SC Lライン 192を介してレシーバ 82から送信されてきた、 Rxデータに対応する差動信号 の他方の部分信号を受信し、受信した部分信号を復号部 183に供給する。復号部 1 83は、スィッチ 181およびスィッチ 182から供給された部分信号からなる差動信号を 、元のデータである Rxデータに復号し、 HDMI(R)ソース 71に出力する。
[0191] これにより、 HDMI(R)ソース 71は、 HDMI(R)シンク 72と制御データや画素データ、 音声データなど、各種のデータの授受を行う。
[0192] また、ステップ S75において、全二重通信が可能でないと判定された場合、ステツ プ S80において、 HDMI(R)ソース 71の各部は、 CEC信号の送受信を行うことで HDMI (R)シンク 72との双方向の通信を行い、通信処理は終了する。
[0193] すなわち、データの送信時において、 HDMI(R)ソース 71は、スィッチ 133および CE Cライン 84を介して、 CEC信号をレシーバ 82に送信し、データの受信時において、 H DMI(R)ソース 71は、スィッチ 133および CECライン 84を介してレシーバ 82から送信 されてきた CEC信号を受信することで、 HDMI(R)シンク 72との制御データの授受を行 5。
[0194] このようにして、 HDMI(R)ソース 71は、全二重フラグを参照し、全二重通信が可能な HDMI(R)シンク 72と、 CECライン 84および信号線 141、並びに SDAライン 191および SCLライン 192を用いて全二重通信を行う。
[0195] このように、スィッチ 133、スィッチ 181、およびスィッチ 182を切り換えて送信する データ、および受信するデータを選択し、 HDMI(R)シンク 72と CECライン 84および信 号線 141、並びに SDAライン 191および SCLライン 192を用いた全二重通信を行うこ とで、従来の HDMI(R)との互換性を保ちつつ、高速の双方向通信を行うことができる
[0196] また、 HDMI(R)シンク 72が図 7に示した構成とされる場合においても、 HDMI(R)シン ク 72は、図 6に示した HDMI(R)シンク 72における場合と同様に、通信処理を行って、 HDMI(R)ソース 71との双方向の通信を行う。 [0197] 以下、図 13のフローチャートを参照して、図 7に示した HDMI(R)シンク 72による通信 処理について説明する。
[0198] ステップ S111において、 HDMI(R)シンク 72は、 HDMI(R)シンク 72に新たな電子機 器が接続されたか否かを判定する。ステップ S111において、新たな電子機器が接 続されていないと判定された場合、通信は行われないので、通信処理は終了する。
[0199] これに対して、ステップ S111において、新たな電子機器が接続されたと判定された 場合、ステップ S112において、切り換え制御部 172は、スィッチ 185およびスィッチ 186を制御し、データの送信時において、スィッチ 185により HDMI(R)シンク 72力、ら の SDA信号が選択され、さらにデータの受信時において、スィッチ 185によりトランス ミッタ 81からの SDA信号が選択され、スィッチ 186によりトランスミッタ 81からの SCL信 号が選択されるように、スィッチ 185およびスィッチ 186を切り換える。
[0200] ステップ S113において、切り換え制御部 124はスィッチ 135を制御し、データの送 信時にお!/、て HDMI(R)シンク 72からの CEC信号が選択され、データの受信時にぉレヽ てトランスミッタ 81からの CEC信号が選択されるように、スィッチ 135を切り換える。
[0201] ステップ S114において、 HDMI(R)シンク 72は、 EDIDROM85から E-EDIDを読み出 し、読み出した E-EDIDを、スィッチ 185および DDC83の SDAライン 191を介して HD MI(R)ソース 71に送信する。
[0202] ステップ S115において、 HDMI(R)シンク 72は、 HDMI(R)ソース 71から送信されてき たチャンネル情報を受信したか否力、を判定する。
[0203] すなわち、 HDMI(R)ソース 71からは、 HDMI(R)ソース 71および HDMI(R)シンク 72が 有する機能に応じて、双方向の通信のチャンネルを示すチャンネル情報が送信され てくる。たとえば、 HDMI(R)ソース 71が図 7に示すように構成される場合、 HDMI(R)ソ ース 71と HDMI(R)シンク 72とは全二重通信が可能であるので、 HDMI(R)ソース 71か ら HDMI(R)シンク 72には、 CECライン 84および信号線 141と、 SDAライン 191および S CLライン 192とを用いた全二重通信方式による IP通信を行う旨のチャンネル情報が 送信されてくるので、 HDMI(R)シンク 72は、スィッチ 135および CECライン 84を介して HDMI(R)ソース 71から送信されてきたチャンネル情報を受信し、チャンネル情報を受 信したと判定する。 [0204] これに対して、 HDMI(R)ソース 71が全二重通信を行う機能を有していない場合、 H DMI(R)ソース 71から HDMI(R)シンク 72には、チャンネル情報が送信されてこないの で、 HDMI(R)シンク 72は、チャンネル情報を受信していないと判定する。
[0205] ステップ S 115において、チャンネル情報を受信したと判定された場合、処理はステ ップ S 116に進み、切り換え制御部 172は、スィッチ 185およびスィッチ 186を制御し 、データの送信時において変換部 184からの Rxデータに対応する差動信号が選択 されるように、スィッチ 185およびスィッチ 186を切り換える。
[0206] ステップ S117において、切り換え制御部 124は、スィッチ 135を制御し、データの 受信時においてトランスミッタ 81からの Txデータに対応する差動信号が選択されるよ うに、スィッチ 135を切り換える。
[0207] ステップ S118において、 HDMI(R)シンク 72の各部は、全二重通信方式により、 HD MI(R)ソース 71との双方向の IP通信を行い、通信処理は終了する。すなわち、データ の送信時において、変換部 184は、 HDMI(R)シンク 72から供給された Rxデータを差 動信号に変換し、変換により得られた差動信号を構成する部分信号のうちの一方を スィッチ 185に供給し、他方の部分信号をスィッチ 186に供給する。スィッチ 185およ びスィッチ 186は、変換部 184から供給された部分信号を、 SDAライン 191および SC Lライン 192を介してトランスミッタ 81に送信する。これにより、 Rxデータに対応する差 動信号が HDMI(R)シンク 72から HDMI(R)ソース 71に送信される。
[0208] また、データの受信時において、復号部 136は、トランスミッタ 81から送信されてき た Txデータに対応する差動信号を受信する。すなわち、スィッチ 135は、 CECライン 84を介してトランスミッタ 81から送信されてきた、 Txデータに対応する差動信号の部 分信号を受信し、受信した部分信号を復号部 136に供給する。復号部 136は、スイツ チ 135から供給された部分信号、および信号線 141を介してトランスミッタ 81から供 給された部分信号からなる差動信号を元のデータである Txデータに復号し、 HDMI( R)シンク 72に出力する。
[0209] これにより、 HDMI(R)シンク 72は、 HDMI(R)ソース 71と制御データや画素データ、 音声データなど、各種のデータの授受を行う。
[0210] また、ステップ S 115において、チャンネル情報を受信していないと判定された場合 、ステップ SI 19において、 HDMI(R)シンク 72の各部は、 CEC信号の送受信を fiうこ とで HDMI(R)ソース 71との双方向の通信を行い、通信処理は終了する。
[0211] このようにして、 HDMI(R)シンク 72は、チャンネル情報を受信すると、 HDMI(R)シンク
72と、 CECライン 84および信号線 141、並びに SDAライン 191および SCLライン 192 を用いて全二重通信を行う。
[0212] このように、 HDMI(R)シンク 72がスィッチ 135、スィッチ 185、およびスィッチ 186を 切り換えて送信するデータ、および受信するデータを選択し、 HDMI(R)ソース 71と CE Cライン 84および信号線 141、並びに SDAライン 191および SCLライン 192を用いた 全二重通信を行うことで、従来の HDMI(R)との互換性を保ちつつ、高速の双方向通 信を fiうこと力 Sできる。
[0213] なお、図 7の例では、 HDMI(R)ソース 71は、 CECライン 84および信号線 141に変換 部 131が接続され、 SDAライン 191および SCLライン 192に復号部 183が接続された 構成とされている力 CECライン 84および信号線 141に復号部 183が接続され、 SD Aライン 191および SCLライン 192に変換部 131が接続された構成とされてもよい。
[0214] そのような場合、スィッチ 181およびスィッチ 182力 SCECライン 84および信号線 141 に接続されるとともに復号部 183に接続され、スィッチ 133が SDAライン 191に接続さ れるとともに変換部 131に接続される。
[0215] また、図 7の HDMI(R)シンク 72についても同様に、 CECライン 84および信号線 141 に変換部 184が接続され、 SDAライン 191および SCLライン 192に復号部 136が接続 された構成とされてもよい。そのような場合、スィッチ 185およびスィッチ 186力 SCECラ イン 84および信号線 141に接続されるとともに変換部 184に接続され、スィッチ 135 が SDAライン 191に接続されるとともに復号部 136に接続される。
[0216] さらに、図 6において、 CECライン 84および信号線 141力 S、 SDAライン 191および SC Lライン 192とされてもよい。つまり、 HDMI(R)ソース 71の変換部 131および復号部 13 2と、 HDMI(R)シンク 72の変換部 134および復号部 136とが SDAライン 191および SC Lライン 192に接続され、 HDMI(R)ソース 71と HDMI(R)シンク 72とが半二重通信方式 による IP通信を行うようにしてもよい。さらに、この場合、信号線 141が接続されるコネ クタの空きピンを用いて電子機器の接続を検出するようにしてもょレ、。 [0217] さらに、 HDMI(R)ソース 71および HDMI(R)シンク 72のそれぞれ力 半二重通信を行 う機能、および全二重通信を行う機能の両方を有するようにしてもよい。そのような場 合、 HDMI(R)ソース 71および HDMI(R)シンク 72は、接続された電子機器の有する機 能に応じて、半二重通信方式または全二重通信方式による IP通信を行うことができる
[0218] HDMI(R)ソース 71および HDMI(R)シンク 72のそれぞれが、半二重通信を行う機能 、および全二重通信を行う機能の両方を有する場合、 HDMI(R)ソース 71および HDM I(R)シンク 72は、たとえば図 14に示すように構成される。なお、図 14において、図 6ま たは図 7にける場合と対応する部分には、同一の符号を付してあり、その説明は適宜 省略する。
[0219] 図 14に示す HDMI(R)ソース 71は、トランスミッタ 81、切り換え制御部 121、タイミン グ制御部 122、および切り換え制御部 171から構成され、トランスミッタ 81には、変換 部 131、復号部 132、スィッチ 133、スィッチ 181、スィッチ 182、および復号部 183 が設けられている。すなわち、図 14の HDMI(R)ソース 71は、図 7に示した HDMI(R)ソ ース 71に、図 6のタイミング制御部 122および復号部 132がさらに設けられた構成と されている。
[0220] また、図 14に示す HDMI(R)シンク 72は、レシーバ 82、タイミング制御部 123、切り 換え制御部 124、および切り換え制御部 172から構成され、レシーバ 82には、変換 部 134、スィッチ 135、復号部 136、変換部 184、スィッチ 185、およびスィッチ 186 が設けられている。すなわち、図 14の HDMI(R)シンク 72は、図 7に示した HDMI(R)シ ンク 72に、図 6のタイミング制御部 123および変換部 134がさらに設けられた構成とさ れている。
[0221] 次に、図 14の HDMI(R)ソース 71および HDMI(R)シンク 72による通信処理について 説明する。
[0222] まず、図 15のフローチャートを参照して、図 14の HDMI(R)ソース 71による通信処理 について説明する。なお、ステップ S151乃至ステップ S 154の処理のそれぞれは、 図 12のステップ S71乃至ステップ S74の処理のそれぞれと同様であるので、その説 明は省略する。 [0223] ステップ S155において、 HDMI(R)ソース 71は、 HDMI(R)シンク 72との全二重通信 が可能であるか否かを判定する。すなわち、 HDMI(R)ソース 71は、 HDMI(R)シンク 72 力、ら受信した E-EDIDを参照して、図 9の全二重フラグ" Full Duplex"がセットされてい るか否かを判定する。
[0224] ステップ S155において、全二重通信が可能であると判定された場合、すなわち図
14、または図 7に示した HDMI(R)シンク 72が HDMI(R)ソース 71に接続されている場 合、ステップ S156において、切り換え制御部 171は、スィッチ 181およびスィッチ 18 2を制御し、データの受信時において、レシーバ 82からの Rxデータに対応する差動 信号が選択されるようにスィッチ 181およびスィッチ 182を切り換える。
[0225] 一方、ステップ S155において、全二重通信が可能でないと判定された場合、ステツ プ S157において、 HDMI(R)ソース 71は、半二重通信が可能であるか否かを判定す る。すなわち、 HDMI(R)ソース 71は、受信した E-EDIDを参照して、図 9の半二重フラ グ" Half Duplex"がセットされているか否かを判定する。換言すれば、 HDMI(R)ソース 71は、図 6に示した HDMI(R)シンク 72が HDMI(R)ソース 71に接続されたか否かを判 疋 。
[0226] ステップ S157において、半二重通信が可能であると判定された場合、またはステツ プ S156において、スィッチ 181およびスィッチ 182が切り換えられた場合、ステップ S 158において、 HDMI(R)ソース 71は、チャンネル情報を、スィッチ 133および CECラ イン 84を介してレシーバ 82に送信する。
[0227] ここで、ステップ S 155において全二重通信が可能であると判定された場合には、 H DMI(R)シンク 72は、全二重通信を行う機能を有しているので、 HDMI(R)ソース 71は、 チャンネル情報として、 CECライン 84および信号線 141と、 SDAライン 191および SCL ライン 192とを用いた IP通信を行う旨の信号を、スィッチ 133および CECライン 84を 介してレシーバ 82に送信する。
[0228] また、ステップ S 157において半二重通信が可能であると判定された場合には、 HD MI(R)シンク 72は、全二重通信を行う機能は有していないが、半二重通信を行う機能 を有しているので、 HDMI(R)ソース 71は、チャンネル情報として、 CECライン 84およ び信号線 141を用いた IP通信を行う旨の信号を、スィッチ 133および CECライン 84 を介してレシーバ 82に送信する。
[0229] ステップ S159において、切り換え制御部 121は、スィッチ 133を制御し、データの 送信時において変換部 131からの Txデータに対応する差動信号が選択され、デー タの受信時においてレシーバ 82から送信されてくる Rxデータに対応する差動信号 が選択されるように、スィッチ 133を切り換える。なお、 HDMI(R)ソース 71と HDMI(R)シ ンク 72とが全二重通信を行う場合には、 HDMI(R)ソース 71におけるデータの受信時 には、レシーバ 82から、 CECライン 84および信号線 141を介して Rxデータに対応す る差動信号は送信されてこないので、復号部 132には、 Rxデータに対応する差動信 号は供給されない。
[0230] ステップ S160において、 HDMI(R)ソース 71の各部は、 HDMI(R)シンク 72との双方 向の IP通信を行い、通信処理は終了する。
[0231] すなわち、 HDMI(R)ソース 71が HDMI(R)シンク 72と全二重通信を行う場合、および 半二重通信を行う場合、データの送信時において、変換部 131は、 HDMI(R)ソース 7 1から供給された Txデータを差動信号に変換し、変換により得られた差動信号を構 成する部分信号のうちの一方をスィッチ 133および CECライン 84を介してレシーバ 8 2に送信し、他方の部分信号を信号線 141を介してレシーバ 82に送信する。
[0232] また、 HDMI(R)ソース 71が HDMI(R)シンク 72と全二重通信を行う場合、データの受 信時において、復号部 183は、レシーバ 82から送信されてきた Rxデータに対応する 差動信号を受信し、受信した差動信号を、元のデータである Rxデータに復号して、 H DMI(R)ソース 71に出力する。
[0233] これに対して、 HDMI(R)ソース 71が HDMI(R)シンク 72と半二重通信を行う場合、デ ータの受信時において、復号部 132は、タイミング制御部 122の制御に基づいて、レ シーバ 82から送信されてきた Rxデータに対応する差動信号を受信し、受信した差 動信号を、元のデータである Rxデータに復号して、 HDMI(R)ソース 71に出力する。
[0234] これにより、 HDMI(R)ソース 71は、 HDMI(R)シンク 72と制御データや画素データ、 音声データなど、各種のデータの授受を行う。
[0235] また、ステップ S 157において、半二重通信が可能でないと判定された場合、ステツ プ S161において、 HDMI(R)ソース 71の各部は、 CECライン 84を介して CEC信号の 送受信を行うことで HDMI(R)シンク 72との双方向の通信を行い、通信処理は終了す
[0236] このようにして、 HDMI(R)ソース 71は、全二重フラグおよび半二重フラグを参照し、 通信相手である HDMI(R)シンク 72の有する機能に応じて、全二重通信または半二重 通信を fiう。
[0237] このように、通信相手である HDMI(R)シンク 72の有する機能に応じて、スィッチ 133 、スィッチ 181、およびスィッチ 182を切り換えて送信するデータ、および受信するデ ータを選択し、全二重通信または半二重通信を行うことで、従来の HDMI(R)との互換 性を保ちつつ、より最適な通信方法を選択して、高速の双方向通信を行うことができ
[0238] 次に、図 16のフローチャートを参照して、図 14の HDMI(R)シンク 72による通信処理 について説明する。なお、ステップ S191乃至ステップ S 194の処理のそれぞれは、 図 13のステップ S111乃至ステップ S114の処理のそれぞれと同様であるので、その 説明は省略する。
[0239] ステップ S195において、 HDMI(R)シンク 72は、スィッチ 135および CECライン 84を 介して HDMI(R)ソース 71から送信されてきたチャンネル情報を受信する。なお、 HDM I(R)シンク 72に接続されている HDMI(R)ソース 71が、全二重通信を行う機能も、半二 重通信を行う機能も有していない場合には、 HDMI(R)ソース 71から HDMI(R)シンク 7 2には、チャンネル情報は送信されてこないので、 HDMI(R)シンク 72は、チャンネル 情報を受信しない。
[0240] ステップ S 196において、 HDMI(R)シンク 72は、受信したチャンネル情報に基づい て、全二重通信を行うか否かを判定する。たとえば、 HDMI(R)シンク 72は、 CECライン 84および信号線 141と、 SDAライン 191および SCLライン 192とを用いた IP通信を行 う旨のチャンネル情報を受信した場合、全二重通信を行うと判定する。
[0241] ステップ S196において、全二重通信を行うと判定された場合、ステップ S197にお いて、切り換え制御部 172は、スィッチ 185およびスィッチ 186を制御し、データの送 信時において変換部 184からの Rxデータに対応する差動信号が選択されるように、 スィッチ 185およびスィッチ 186を切り換える。 [0242] また、ステップ S I 96において、全二重通信を行わないと判定された場合、ステップ S 198において、 HDMI(R)シンク 72は、受信したチャンネル情報に基づいて、半二重 通信を行うか否かを判定する。たとえば、 HDMI(R)シンク 72は、 CECライン 84および 信号線 141を用いた IP通信を行う旨のチャンネル情報を受信した場合、半二重通信 を行うと判定する。
[0243] ステップ S198において、半二重通信を行うと判定される力、、またはステップ S197 においてスィッチ 185およびスィッチ 186が切り換えられた場合、ステップ S199にお いて、切り換え制御部 124は、スィッチ 135を制御し、データの送信時において、変 換部 134からの Rxデータに対応する差動信号が選択され、データの受信時におい てトランスミッタ 81からの Txデータに対応する差動信号が選択されるように、スィッチ 135を切り換える。
[0244] なお、 HDMI(R)ソース 71と HDMI(R)シンク 72とが全二重通信を行う場合、 HDMI(R) シンク 72におけるデータの送信時には、変換部 134からトランスミッタ 81に Rxデータ に対応する差動信号が送信されないので、スィッチ 135には、 Rxデータに対応する 差動信号は供給されない。
[0245] ステップ S200において、 HDMI(R)シンク 72の各部は、 HDMI(R)ソース 71との双方 向の IP通信を行い、通信処理は終了する。
[0246] すなわち、 HDMI(R)シンク 72が HDMI(R)ソース 71と全二重通信を行う場合、データ の送信時において、変換部 184は、 HDMI(R)シンク 72から供給された Rxデータを差 動信号に変換し、変換により得られた差動信号を構成する部分信号のうちの一方を 、スィッチ 185および SDAライン 191を介してトランスミッタ 81に送信し、他方の部分 信号をスィッチ 186および SCLライン 192を介してトランスミッタ 81に送信する。
[0247] また、 HDMI(R)シンク 72が HDMI(R)ソース 71と半二重通信を行う場合、データの送 信時において、変換部 134は、 HDMI(R)シンク 72から供給された Rxデータを差動信 号に変換し、変換により得られた差動信号を構成する部分信号のうちの一方を、スィ ツチ 135および CECライン 84を介してトランスミッタ 81に送信し、他方の部分信号を 信号泉 141を介してトランスミッタ 81に送信する。
[0248] さらに、 HDMI(R)シンク 72が HDMI(R)ソース 71と全二重通信を行う場合、および半 二重通信を行う場合、データの受信時において、復号部 136は、トランスミッタ 81から 送信されてきた Txデータに対応する差動信号を受信し、受信した差動信号を元のデ ータである Τχデータに復号して HDMI(R)シンク 72に出力する。
[0249] また、ステップ S 198において、半二重通信を行わないと判定された場合、すなわち 、たとえばチャンネル情報が送信されてこなかった場合、ステップ S 201において、 H DMI(R)シンク 72の各部は、 CEC信号の送受信を行うことで HDMI(R)ソース 71との双 方向の通信を行い、通信処理は終了する。
[0250] このようにして、 HDMI(R)シンク 72は、受信したチャンネル情報に応じて、すなわち 通信相手である HDMI(R)ソース 71の有する機能に応じて全二重通信または半二重 通信を fiう。
[0251] このように、通信相手である HDMI(R)ソース 71の有する機能に応じて、スィッチ 135 、スィッチ 185、およびスィッチ 186を切り換えて送信するデータ、および受信するデ ータを選択し、全二重通信または半二重通信を行うことで、従来の HDMI(R)との互換 性を保ちつつ、より最適な通信方法を選択して、高速の双方向通信を行うことができ
[0252] また、互いに差動ツイストペア結線されてシールドされ、グランド線に接地された CE Cライン 84および信号線 141と、互いに差動ツイストペア結線されてシールドされ、グ ランド線に接地された SDAライン 191および SCLライン 192とが含まれている HDMI(R) ケープ、ノレ 35により、 HDMI(R)ソース 71と、 HDMI(R)シンク 72とを接続することで、従来 の HDMI(R)ケーブルとの互換性を保ちつつ、半二重通信方式または全二重通信方 式による高速の双方向の IP通信を行うことができる。
[0253] 以上のように、 1または複数の送信するデータのうちのいずれかを送信するデータと して選択し、選択したデータを所定の信号線を介して通信相手に送信し、通信相手 力、ら送信されてくる 1または複数の受信するデータのうちのいずれかを受信するデー タとして選択し、選択したデータを受信するようにすることで、 HDMI(R)ソース 71と HD MI(R)シンク 72との間では、 HDMI(R)としての互換性を保ちつつ、つまり、非圧縮の画 像の画素データを HDMI(R)ソース 71から HDMI(R)シンク 72に対して、一方向に高速 伝送すること力できるとともに、 HDMI(R)ケーブル 35を介して高速の双方向の IP通信 を fiうこと力 Sできる。
[0254] その結果、 HDMI(R)ソース 71を内蔵する、たとえば、図 2の再生装置 33などの電子 機器であるソース機器力 DLNA(Digital Living Network Alliance)等のサーバの機能 を有し、 HDMI(R)シンク 72を内蔵する、たとえば、図 2のデジタルテレビジョン受像機 31などの電子機器であるシンク機器が、 Ethernet (登録商標)などの LAN用の通信ィ ンタフェースを有している場合には、たとえば、直接または HDMI(R)ケーブルで接続 された増幅器 32などの電子機器を介した双方向の IP通信によって、ソース機器から シンク機器に、 HDMI(R)ケーブルを介してコンテンツを伝送し、さらに、シンク機器か ら、そのシンク機器の LAN用の通信インタフェースに接続されている他の機器(たとえ ば、図 2のデジタルテレビジョン受像機 34など)に、ソース機器からのコンテンツを伝 送すること力 Sでさる。
[0255] さらに、 HDMI(R)ソース 71と HDMI(R)シンク 72との間の双方向の IP通信によれば、 HDMI(R)ケーブル 35により接続された、 HDMI(R)ソース 71を内蔵するソース機器と、 HDMI(R)シンク 72を内蔵するシンク機器との間で、制御のためのコマンドやレスポン スを高速にやりとりすることができ、したがって、レスポンスの速い機器間制御が可能 となる。
[0256] 次に、上述した一連の処理は、専用のハードウェアにより行うこともできるし、ソフトゥ エアにより行うこともできる。一連の処理をソフトウェアによって行う場合には、そのソフ トウエアを構成するプログラム力 たとえば、 HDMI(R)ソース 71や HDMI(R)シンク 72を 制御するマイクロコンピュータ等にインストールされる。
[0257] そこで、図 17は、上述した一連の処理を実行するプログラムがインストールされるコ ンピュータの一実施の形態の構成例を示してレ、る。
[0258] プログラムは、コンピュータに内蔵されている記録媒体としての EEPROM (Electricall y Erasable Programmable Read-only Memory) 305や ROM303に予め記録しておくこ と力 Sできる。
[0259] あるいはまた、プログラムは、フレキシブルディスク、 CD-ROM (Compact Disc Read Only Memory) , MO (Magneto Optical)ディスク, DVD (Digital Versatile Disc)、磁気 ディスク、半導体メモリなどのリムーバブル記録媒体に、一時的あるいは永続的に格 納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケ ージソフトウェアとして提供すること力 Sできる。
[0260] なお、プログラムは、上述したようなリムーバブル記録媒体からコンピュータにインス トールする他、ダウンロードサイトから、デジタル衛星放送用の人工衛星を介して、コ ンピュータに無線で転送したり、 LAN,インターネットといったネットワークを介して、コ ンピュータに有線で転送し、コンピュータでは、そのようにして転送されてくるプロダラ ムを、入出力インタフェース 306で受信し、内蔵する EEPROM305にインスト一ノレする こと力 Sでさる。
[0261] コンピュータは、 CPU (Central Processing Unit) 302を内蔵して!/、る。 CPU302には 、バス 301を介して、入出力インタフェース 306が接続されており、 CPU302は、 ROM (Read Only Memory) 303や EEPROM305に格納されているプログラムを、 RAM (Ran dom Access Memory) 304にロードして実行する。これにより、 CPU302は、上述した フローチャートにしたがった処理、あるいは上述したブロック図の構成により行われる 処理を行う。
[0262] ここで、本明細書において、コンピュータに各種の処理を行わせるためのプログラム を記述する処理ステップは、必ずしもフローチャートとして記載された順序に沿って時 系列に処理する必要はなぐ並列的あるいは個別に実行される処理 (たとえば、並列 処理あるいはオブジェクトによる処理)も含むものである。
[0263] また、プログラムは、 1のコンピュータにより処理されるものであっても良いし、複数の コンピュータによって分散処理されるものであっても良い。
[0264] なお、本発明は、 HDMI(R)の他、 1の垂直同期信号から次の垂直同期信号までの 区間から、水平帰線区間及び垂直帰線区間を除いた区間である有効画像区間にお いて、非圧縮の 1画面分の画像の画素データに対応する差動信号を、複数のチャン ネルで、受信装置に一方向に送信する送信装置と、送信装置から、複数のチャンネ ルで送信されてくる差動信号を受信する受信装置とからなる通信インタフェースに適 用可能である。
[0265] また、本実施の形態では、 HDMI(R)ソース 71と HDMI(R)シンク 72との間で、データ の選択タイミングや、差動信号の受信タイミング、送信タイミングを必要に応じて制御 することにより、双方向の IP通信を行うようにした力 s、双方向の通信は、 IP以外のプロ トコルで行うことが可能である。
[0266] なお、本発明の実施の形態は、上述した実施の形態に限定されるものではなぐ本 発明の要旨を逸脱しなレヽ範囲におレヽて種々の変更が可能である。
[0267] 以上説明した実施形態によれば、双方向通信を行うことができる。特に、たとえば非 圧縮の画像の画素データと、その画像に付随する音声データとを、一方向に高速伝 送することができる通信インタフェースにおいて、互換性を保ちつつ、高速の双方向 通信を行うことが可能となる。
[0268] ところで、既に述べた技術と重複する部分もあるが、映像音声機器の多くが双方向 番組視聴、高度なリモートコントロール、電子番組表の受信などの目的で LAN通信 機能を実装しつつある。
[0269] 映像音声機器間にそのネットワークを形成する手段としては CAT5のような専用ケ 一ブルの敷設、無線通信、電灯線通信などの選択肢がある。
しかし、専用ケーブルは機器間の接続を煩雑にするし、無線や電灯線接続には複 雑な変調回路と送受信機が高価であるという不利益がある。
[0270] そこで、前述した実施形態においては、 HDMIに新たなコネクタ電極を追加するこ となく LAN通信機能を追加する技術が開示されている。
HDMIは 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および 認証と機器制御データの通信を行うインタフェースであることから、これに LAN機能 が追加されて専用ケーブルも無線等も用いることなく LAN通信が可能になることの 優位性は大きい。
[0271] ところで、前述した実施形態として開示された技術は、 LAN通信に用いる差動伝送 路が接続機器情報の交換および認証と機器制御データの通信をかねている。
HDMIにおいては接続機器情報の交換および認証を行う DDCにも機器制御デー タの通信を行う CECにも接続機器電気的特性が寄生容量やインピーダンスの点で 厳密に制約されている。
[0272] 具体的には、機器の DDC端子寄生容量は 50pF以下でなければならず、インピー ダンスは LOW出力時には 200 Ω以下でグランド GNDに接地され HIGH状態では 2k Ω程度で電源にプルアップされて!/、る必要がある。
一方、高速の信号を伝達する LAN通信には通信の安定のために送受信端は少な くとも高周波帯域では 100 Ω程度で終端されて!/、なければならな!/、。
図 19は既存の HDMIソース機器 401とシンク機器 402の DDCラインに常時接続 で LAN通信のための送信機 404と送信機 405を AC結合した状況を示す。
DDCの寄生容量制約を満たすためには DDCラインに追加される LAN送受信回 路は十分小さな容量を介した AC結合を持つ必要があり、 LAN信号が大きく減衰し 歪を受けることから、これを補償する送受信回路が複雑で高価になるおそれがある。 また、 DDC通信で状態が HIGHと LOWを遷移することは LAN通信を阻害するお それがある。すなわち、 DDC通信期間中は LANが機能しないおそれがある。
[0273] そこで、以下では、さらに好適な実施形態として、基本的に、 1本のケーブルで映像 と音声のデータ伝送と接続機器情報の交換および認証と機器制御データの通信と L AN通信を行うインタフェースにおいて、 LAN通信が 1対の差動伝送路を介した双方 向通信で行われ、伝送路のうちの少なくとも片方の DCバイアス電位によってインタフ エースの接続状態が通知されるという、特徴を有する通信システムについて説明する
以下に説明する技術では、前述した実施形態のように選択部を必ずしも持つ必要 がない。
[0274] 図 18は、伝送路のうちの少なくとも片方の DCバイアス電位によってインタフェース の接続状態が通知される通信システムの第 1の構成例を示す回路図である。
図 19は、イーサネット (登録商標) (Ethernet (登録商標))にのせる場合のシステムの 構成例を示す図である。
[0275] この通信システム 400は、図 18に示すように、 LAN機能拡張 HDMI (以下 EH)ソ ース機器 401、 EHシンク機器 402、 EHソース機器と EHシンク機器を接続する EH ケーブル 403、イーサネット(登録商標)トラスミッタ 404、およびイーサネット(登録商 標)レシーバ 405を含んで構成されて!/、る。
[0276] EHソース機器 401は、 LAN信号送信回路 411、終端抵抗 412、 AC結合容量 41 3, 414、 LAN信号受信回路 415、減算回路 416、プルアップ抵抗 421、ローパルス フィルタを形成する抵抗 422および容量 423、比較器 424、プルダウン抵抗 431、口 一パスフィルタを形成する抵抗 432および容量 433、並びに比較器 434を有して!/ヽ
[0277] EHシンク機器 402は、 LAN信号送信回路 441、終端抵抗 442、 AC結合容量 44 3, 444、 LAN信号受信回路 445、減算回路 446、プノレダウン抵抗 451、ローパルス フィルタを形成する抵抗 452および容量 453、比較器 454、チョークコイル 461、並 びに電源電位と基準電位間に直列接続された抵抗 462および 463を有している。
[0278] EHケーブル 403の中には、リザーブライン 501と HPDライン 502からなる差動伝送 路があり、リザーブライン 501のソース側端子 511と HPDライン 502のソース側端子 5 12、リザーブライン 501のシンク側端子 521と HPDラインのシンク側端子 522が形成 されている。リザーブライン 501と HPDライン 502は、差動ツイストペアとして結線され ている。
[0279] このような構成を有する通信システム 400においては、ソース機器 401内において 端子 511と端子 512は AC結合容量 413、 414を介して終端抵抗 412、 LAN信号送 信回路 411、および LAN信号受信回路 415に接続される。
減算回路 416は、 LAN信号送信回路 411が出力した電流が終端抵抗 412および 伝送路 501、 502を負荷として生じる送信信号電圧と、 EHシンク機器 402が送信し た信号である受信信号電圧の和信号 SG412を受信する。
減算回路 416においては、和信号 SG412から送信信号 SG411を差し引いた信号 SG413がシンク力も伝送された正味の信号である。
シンク機器 402内にも同様の回路網があり、これらの回路によりソース機器 4011と シンク機器 402が双方向の LAN通信を実行する。
[0280] また、 HPDライン 502は、上述の LAN通信の他に DCバイアスレベルでケーブル 4 03がシンク機器 402に接続されたことをソース機器 401に伝達する。
シンク機器 402内の抵抗 462、 463とチョークコィノレ 461はケープ、ノレ 403カシンク機 器 402に接続されると HPDライン 502を、端子 522を介して約 4Vにバイアスする。 ソース機器 401は HPDライン 502の DCバイアスを抵抗 432と容量 433からなる口 一パスフィルタで抽出し、比較器 434で基準電位 Vref2 (たとえば 1. 4V)と比較する ケーブル 403がソース機器 402に接続されていなければ端子 512の電位はブルダ ゥン抵抗 431で基準電位 Vref2より低ぐ接続されていれば高い。
したがって、比較器 434の出力信号 SG415が HIGHならばケーブル 403とシンク 機器 402が接続されて!/、ることを示す。
一方、比較器 434の出力信号 SG415が LOWならばケーブル 403とシンク機器 40 2が接続されて!/、な!/、ことを示す。
[0281] 本第 1の構成例ではさらに、リザーブライン 501の DCバイアス電位でケーブル 403 の両端に接続された機器が EH対応機器である力、、非対応の HDMI機器であるかを 相互に認識する機能を有する。
EHソース機器 401はリザーブライン 501を抵抗 421でプルアップ(+5V)し、 EHシ ンク機器 402は抵抗 451でプルダウンする。
これらの抵抗 421 , 451は EH非対応機器には存在しない。
EHソース機器 401は、比較器 424で、抵抗 422および容量 423からなるローパス フィルタを通過したリザ一ブライン 501の DC電位を基準電圧 Vref 1と比較する。 シンク機器 402が、 EH対応でプルダウンがあるときには、リザーブライン 501電位 力 ¾.5Vとなり、非対応で開放のときは 5Vとなるので基準電位 Vreflを 3.75Vとすれば シンク機器の対応 ·非対応が識別できる。
シンク機器 402は、比較器 454で、抵抗 452および容量 453からなるローパスフィ ルタを通過したリザーブライン 501の DC電位を基準電圧 Vref3と比較する。
ソース機器 402が、 EH対応でプルアップ機能を持てば 2.5Vとなり、非対応であれ ば 0Vとなる力、ら、基準電位を 1.25Vとすればソース機器の EH対応 '非対応が識別で きる。
[0282] このように、本第 1の構成例によれば、 1本のケーブル 403で映像と音声のデータ伝 送と接続機器情報の交換および認証と機器制御データの通信と LAN通信を行うィ ンタフェースにおいて、 LAN通信が 1対の差動伝送路を介した双方向通信で行われ 、伝送路のうちの少なくとも片方の DCバイアス電位によってインタフェースの接続状 態が通知されることから、物理的に SCLライン、 SDAラインを LAN通信につかわな V、空間的分離を行うことが可能となる。
その結果、その分割により DDCに関して規定された電気的仕様と無関係に LAN 通信のための回路を形成することができ、安定で確実な LAN通信が安価に実現で きる。
[0283] なお、図 18に示したプルアップ抵抗 421が、 EHソース機器 401内ではなぐ EHケ 一ブル 403に設けられているようにしてもよい。そのような場合、プノレアップ抵抗 421 の端子のそれぞれは、 EHケーブル 403内に設けられたラインのうち、リザーブライン 501、および電源(電源電位)に接続されるライン (信号線)のそれぞれに接続される
[0284] さらに、図 18に示したプルダウン抵抗 451および抵抗 463が EHシンク機器 402内 ではなぐ EHケーブル 403に設けられているようにしてもよい。そのような場合、プル ダウン抵抗 451の端子のそれぞれは、 EHケーブル 403内に設けられたラインのうち 、リザーブライン 501、およびグランド(基準電位)に接続されるライン (グランド線)の それぞれに接続される。また、抵抗 463の端子のそれぞれは、 EHケーブル 403内に 設けられたラインのうち、 HPDライン 502、およびグランド(基準電位)に接続されるラ イン (グランド線)のそれぞれに接続される。
[0285] 図 20は、伝送路のうちの少なくとも片方の DCバイアス電位によってインタフェース の接続状態が通知される通信システムの第 2の構成例を示す回路図である。
[0286] この通信システム 600は、基本的に第 1の構成例と同様に、 1本のケーブルで映像 と音声のデータ伝送と接続機器情報の交換および認証と機器制御データの通信と L AN通信を行うインタフェースにおいて、 LAN通信が 2対の差動伝送路を介する単方 向通信でおこなわれ、伝送路のうちの少なくともひとつの DCバイアス電位によってィ ンタフェースの接続状態が通知さてる構成を有し、さらに、少なくとも二つの伝送路が LAN通信とは時分割で接続機器情報の交換と認証の通信に使われることを特徴と する。
[0287] この通信システム 600は、図 20に示すように、 LAN機能拡張 HDMI (以下 EH)ソ ース機器 601、 EHシンク機器 602、 EHソース機器と EHシンク機器を接続する EH ケーブル 603を含んで構成されて!/、る。 [0288] EHソース機器 601は、 LAN信号送信回路 611、終端抵抗 612, 613、 AC結合容 量 614〜617、 LAN信号受信回路 618、インノ ータ 620、抵抗 621、 ローノ ノレスフィ ルタを形成する抵抗 622および容量 623、比較器 624、プノレダウン抵抗 631、ローバ スフィルタを形成する抵抗 632および容量 633、比較器 634、 NORゲート 640、アナ ログスィッチ 64 〜 644、インノ ータ 635、アナログスィッチ 646, 747、 DDCトランシ ーノ 651 , 652、並び ίこプノレアップ抵抗 653, 654を有してレヽる。
[0289] ΕΗシンク機器 602は、 LAN信号送信回路 661、終端抵抗 662, 663、 AC結合容
4664—667, LAN信号受信回路 668、プノレダウン抵抗 671、ローパルスフィルタを 形成する抵抗 672および容量 673、比較器 674、チョークコイル 681、電源電位と基 準電位間に直列接続された抵抗 682および 683、アナログスィッチ 69;!〜 694、イン ノ ータ 695、アナログスィッチ 696, 697、 DDCトランシーノ 701 , 702、並び ίこプノレ アップ抵抗 703を有して!/、る。
[0290] ΕΗケーブル 603の中には、リザーブライン 801と SCLライン 803からなる差動伝送 路と SDAライン 804と HPDライン 802からなる差動伝送路があり、それらのソース側 端子 811と〜 814、並びにシンク側端子 82;!〜 824が形成されている。
リザーブライン 801と SCLライン 803、並びに SDAライン 804と HPDライン 802は、 差動ツイストペアとして結線されて!/、る。
[0291] このような構成を有する通信システム 600においては、ソース機器 601内で端子 81 1、 813は AC結合容量 614、 615およびアナログスィッチ 641、 642を介して LAN送 信信号 SG611をシンクに送信する送信回路 611および終端抵抗 612に接続する。 端子 814, 812は、 AC結合容量 616, 617とアナログスィッチ 643、 644を介して シンク機器 602からの LAN信号を受信する受信回路 618および終端抵抗 613に接 ¾ る。
シンク機器 602内では、端子 82;!〜 824は AC結合要領 664, 665, 666, 667とァ ナログスィッチ 69 〜 694を介して送受信回路 668、 661と終端抵抗 662, 663に接 ¾ る。
アナログスィッチ 64;!〜 644、 69;!〜 694は LAN通信を行うときに導通し、 DDC通 信を行うときは開放にする。 [0292] ソース機器 601は、端子 813と端子 814を、別のアナログスィッチ 646、 647を介し て DDCトランシーバ 651、 652およびプノレアップ抵抗 653、 654に接続する。
シンク機器 602は、端子 823と端子 824を、アナログスィッチ 696、 697を介して D DCトランシーバ 701、 702およびプルアップ抵抗 703に接続する。
アナログスィッチ 646、 647, 696, 697は DDC通信を fiうときに導通し、 DLAN通 信を行うときは開放にする。
[0293] リザーブライン 801の電位による EH対応機器の認識機構は、ソース機器 601の抵 抗 62がインバータ 620に駆動されていること以外は、基本的に、第 1の構成例の場 合と同じである。
インバータ 620の入力が HIGHのとき抵抗 621はプルダウン抵抗となるのでシンク 機器 602からみると EH非対応機器がつながれたのと同じ 0V状態になる。
この結果、シンク機器 602の EH対応識別結果を示す信号 SG623は LOWとなり、 信号 SG623で制御されるアナログスィッチ 69;!〜 694は開放され、信号 SG623をィ ンバータ 695で反転した信号で制御されるアナログスィッチ 696、 697は導通する。 この結果、シンク機器 602は SCLライン 803と SDAライン 804を LAN送受信機から 切り離し、 DDC送受信機に接続した状態になる。
一方、ソース機器 601ではインバータ 620の入力が NORゲート 640にも入力されて その出力 SG614を LOWにする。
NORゲート 640の出力信号 SG614に制御されたアナログスィッチ 64;!〜 6444は 開放され、信号 SG614をインバータ 645で反転した信号で制御されるアナログスイツ チ 646、 647は導通する。
この結果、ソース機器 601も SCLライン 803と SDAライン 804を LAN送受信機から 切り離し、 DDC送受信機に接続した状態になる。
逆に、インバータ 620の入力力 SLOWのときは、ソース機器 601もシンク機器 602も ともに SCLライン 803と SDAライン 804を DDC送受信機から切り離し、 LAN送受信 機に接続した状態になる。
[0294] HPDライン 802の DCバイアス電位による接続確認のための回路 63;!〜 634、 681 〜683は第 1の構成例と同様の機能を有する。 [0295] すなわち、 HPDライン 802は、上述の LAN通信の他に DCバイアスレベルでケー ブル 803がシンク機器 602に接続されたことをソース機器 601に伝達する。
シンク機器 602内の抵抗 682、 683とチョークコィノレ 681はケープ、ノレ 603カシンク機 器 602に接続されると HPDライン 802を、端子 822を介して約 4Vにバイアスする。 ソース機器 601は HPDライン 802の DCバイアスを抵抗 632と容量 633からなる口 一パスフィルタで抽出し、比較器 634で基準電位 Vref2 (たとえば 1. 4V)と比較する
ケーブル 603がソース機器 602に接続されていなければ端子 812の電位はブルダ ゥン抵抗 631で基準電位 Vref2より低ぐ接続されていれば高い。
したがって、比較器 634の出力信号 SG613が HIGHならばケーブル 803とシンク 機器 602が接続されて!/、ることを示す。
一方、比較器 634の出力信号 SG613が LOWならばケーブル 603とシンク機器 60 2が接続されて!/、な!/、ことを示す。
[0296] このように、本第 2の構成例によれば、 1本のケーブルで映像と音声のデータ伝送と 接続機器情報の交換および認証と機器制御データの通信と LAN通信を行うインタフ エースにおいて、 LAN通信が 2対の差動伝送路を介する単方向通信でおこなわれ、 伝送路のうちの少なくともひとつの DCバイアス電位によってインタフェースの接続状 態が通知さてる構成を有し、さらに、少なくとも二つの伝送路が LAN通信とは時分割 で接続機器情報の交換と認証の通信に使われることから、 SCLライン、 SDAラインを スィッチで LAN通信回路に接続する時間帯と DDC回路に接続する時間帯に分ける 時分割を行うことができ、この分割により DDCに関して規定された電気的仕様と無関 係に LAN通信のための回路を形成することができ、安定で確実な LAN通信が安価 に実現できる。
[0297] なお、図 20に示した抵抗 621力 EHソース機器 601内ではなぐ EHケープノレ 603 に設けられているようにしてもよい。そのような場合、抵抗 621の端子のそれぞれは、 EHケーブル 603内に設けられたラインのうち、リザーブライン 801、および電源(電 源電位)に接続されるライン (信号線)のそれぞれに接続される。
[0298] さらに、図 20に示したプルダウン抵抗 671および抵抗 683が EHシンク機器 602内 ではなぐ EHケーブル 603に設けられているようにしてもよい。そのような場合、プル ダウン抵抗 671の端子のそれぞれは、 EHケーブル 603内に設けられたラインのうち 、リザーブライン 801、およびグランド(基準電位)に接続されるライン (グランド線)の それぞれに接続される。また、抵抗 683の端子のそれぞれは、 EHケーブル 603内に 設けられたラインのうち、 HPDライン 802、およびグランド(基準電位)に接続されるラ イン (グランド線)のそれぞれに接続される。
[0299] 以上説明したように、図 2〜図 17に関連付けた実施形態では、 HDMI19極の中の S DAと SCLを第 1の差動ペアとし、 CECと Reservedを第 2のペアとして各々で単方向通 信を行なう全二重通信が実現されて!/、た。
ところ力 SDAと SCLは H力 1·5Κ Ωプルアップで Lがローインピーダンスのプルダウン fiなうものである。
既存 HDMIとのコンパチビリティを持っためにそれらの機能を保持することは、伝送 線路の終端を整合終端する必要がある高速データ通信を行なう LANの機能を共有 することは困難となるおそれがある。
[0300] そこで、第 1の構成例では、 SDA、 SCL、 CECラインを使うのを避けて Reservedと HP Dを差動のペアとして 1対双方向通信による全二重通信を行うように構成した。
HPDは DCレベルによるフラグ信号であるから AC結合による LAN信号の注入と DCレ ベルによるプラグ情報の伝送は両立する。 Reservedには新たに HPDと類似の方法で DCレベルによる LAN機能を持つ端末であることを相互に認識する機能を追加する。
[0301] 第 2の構成例では、 HPDと SDAと SCLと Reservedで 2対の差動ペアをつくり各々で単 方向通信を行なう 2対全二重通信を行うように構成した。
HDMIにおいて SDAと SCLによるバースト状の DDC通信は常に送信機がマスターと なりそのタイミングを制御して!/、る。
この例では、送信機が DDC通信をするときは SDA、 SCLラインを DDC用のトランシー バに接続し、 DDC通信を行わな!/、ときはラインを LAN用のトランシーバに接続するよう にアナログスィッチを操作する。
このスィッチ操作信号は Reservedラインの DCレベルで受信機にも伝達され、受信 機側でも同様の sw切り替えを行う。
[0302] 以上の構成を採用することにより、第 1の効果としては SCL、 SDA、 CEC通信が LAN 通信によるノイズを受けることが無くなり、常に安定な DDCと CECの通信が確保できる
それは、第 1の構成例では LANを物理的にそれらのラインから分離したこと、第 2の 構成例では、スィッチにて DDC通信中は LAN信号をラインからは切断することにより 達成される。
第 2の効果としては LAN通信が理想的な終端をもつラインで行われるのでマージン の大きい安定な通信が可能になること。
これは第 1の構成例では LAN信号が Reserved,HPDという DCでベルしか伝達しな いラインに重畳されるため LAN通信に必要な十分広い周波数にわたって終端インピ 一ダンスを理想値に保つことができるのであり、第 2の構成例では LAN通信を行う時 にだけスィッチにより DDC通信には許されない LAN用の終端回路が接続されるから である。
[0303] 図 21の A〜Eは、本構成例の通信システムにおける双方向通信波形を示す図であ 図 21の Aは EHシンク機器から送った信号波形を、図 21の Bは EHシンク機器が受 けた信号波形を、図 21の Cはケーブルを通る信号波形を、図 21の Dは EHソース機 器が受けた信号を、図 21の Eは EHソース機器から送った信号波形を、それぞれ示し ている。
図 21に示すように、本構成例によれば、良好な双方向通信を実現可能である。

Claims

請求の範囲
1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、非圧縮の 1画面分の画像 の画素データを、第 1の差動信号により、受信装置に一方向に送信する送信装置と、 前記送信装置から送信されてくる前記第 1の差動信号を受信する受信装置と 力、らなる通信システムであって、
前記送信装置は、
送信するデータであって、前記画素データとは異なるデータを第 1の部分信号お よび第 2の部分信号からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1の 信号線を介して前記受信装置に送信するとともに、前記第 2の部分信号を出力する 第 1の変換手段と、
制御に関する信号である送信信号、または前記第 1の変換手段から出力された 前記第 2の部分信号のうちの!/、ずれかを選択し、選択した信号を第 2の信号線を介し て前記受信装置に送信する第 1の選択手段と、
前記送信信号を前記受信装置に送信する場合、前記第 1の選択手段により前記 送信信号が選択され、前記第 2の差動信号を前記受信装置に送信する場合、前記 第 1の選択手段により前記第 2の部分信号が選択されるように制御する第 1の制御手 段と、
前記受信装置から送信されてきた第 3の差動信号を受信し、元のデータに復号す る第 1の復号手段と
を備え、
前記受信装置は、
送信するデータであって、前記画素データとは異なるデータを前記第 3の差動信 号に変換して前記送信装置に送信する第 2の変換手段と、
前記送信装置から送信されてきた前記第 2の差動信号を受信し、元のデータに復 号する第 2の復号手段と、
前記送信信号または前記第 2の部分信号のうちのいずれかを選択する第 2の選択 手段と、 前記送信信号を受信する場合、前記第 2の選択手段により前記送信信号が選択さ れて受信され、前記第 2の差動信号を受信する場合、前記第 2の選択手段により前 記第 2の部分信号が選択されて、前記第 2の部分信号が前記第 2の復号手段により 受信されるように制御する第 2の制御手段と
を備える
通信システム。
1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、非圧縮の 1画面分の画像 の画素データを、第 1の差動信号により、受信装置に一方向に送信する送信装置と、 前記送信装置から送信されてくる前記第 1の差動信号を受信する受信装置と 力、らなる通信システムの通信方法であって、
前記送信装置は、
送信するデータであって、前記画素データとは異なるデータを第 1の部分信号お よび第 2の部分信号からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1の 信号線を介して前記受信装置に送信するとともに、前記第 2の部分信号を出力する 第 1の変換手段と、
制御に関する信号である送信信号、または前記第 1の変換手段から出力された 前記第 2の部分信号のうちの!/、ずれかを選択し、選択した信号を第 2の信号線を介し て前記受信装置に送信する第 1の選択手段と、
前記受信装置から送信されてきた第 3の差動信号を受信し、元のデータに復号す る第 1の復号手段と
を備え、
前記受信装置は、
送信するデータであって、前記画素データとは異なるデータを前記第 3の差動信 号に変換して前記送信装置に送信する第 2の変換手段と、
前記送信装置から送信されてきた前記第 2の差動信号を受信し、元のデータに復 号する第 2の復号手段と、
前記送信信号または前記第 2の部分信号のうちのいずれかを選択する第 2の選択 手段と を備え、
前記送信信号が前記受信装置に送信される場合、前記第 1の選択手段により前記 送信信号が選択されるように制御し、前記第 2の差動信号が前記受信装置に送信さ れる場合、前記第 1の選択手段により前記第 2の部分信号が選択されるように制御し 前記送信信号が前記受信装置により受信される場合、前記第 2の選択手段により 前記送信信号が選択されて受信されるように制御し、前記第 2の差動信号が前記受 信装置により受信される場合、前記第 2の選択手段により前記第 2の部分信号が選 択されて、前記第 2の部分信号が前記第 2の復号手段により受信されるように制御す る
ステップを含む通信方法。
1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、非圧縮の 1画面分の画像 の画素データを、第 1の差動信号により、受信装置に一方向に送信する送信装置で あって、
送信するデータであって、前記画素データとは異なるデータを第 1の部分信号およ び第 2の部分信号からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1の信 号線を介して前記受信装置に送信するとともに、前記第 2の部分信号を出力する変 換手段と、
制御に関する信号である第 1の送信信号、または前記変換手段から出力された前 記第 2の部分信号のうちのいずれかを選択し、選択した信号を第 2の信号線を介して 前記受信装置に送信する第 1の選択手段と、
前記第 1の送信信号を前記受信装置に送信する場合、前記第 1の選択手段により 前記第 1の送信信号が選択され、前記第 2の差動信号を前記受信装置に送信する 場合、前記第 1の選択手段により前記第 2の部分信号が選択されるように制御する第 1の制御手段と、
前記受信装置から送信されてきた第 3の部分信号と第 4の部分信号とからなる第 3 の差動信号を受信し、元のデータに復号する復号手段と を備える送信装置。
[4] 前記復号手段は、前記第 2の信号泉を介して送信されてきた前記第 3の部分信号 と、前記第 1の信号線を介して送信されてきた前記第 4の部分信号とからなる前記第 3の差動信号を受信し、
前記第 1の選択手段は、前記第 2の部分信号若しくは前記第 3の部分信号、または 前記第 1の送信信号を選択し、
前記第 1の制御手段は、前記第 3の差動信号を受信する場合、前記第 1の選択手 段により前記第 3の部分信号が選択されて、前記第 3の部分信号が前記復号手段に より受信されるように制御する
請求項 3に記載の送信装置。
[5] 前記第 1の選択手段は、前記第 2の部分信号若しくは前記第 3の部分信号、または 前記第 1の送信信号、若しくは前記第 2の信号線を介して前記受信装置から送信さ れてきた、制御に関する信号である受信信号を選択し、前記受信信号が選択された 場合、選択した前記受信信号を受信して出力する
請求項 4に記載の送信装置。
[6] 前記復号手段は、第 3の信号線を介して送信されてきた前記第 3の部分信号と、第 4の信号線を介して送信されてきた前記第 4の部分信号とからなる前記第 3の差動信 号を受信し、
前記第 3の部分信号、または前記受信装置に送信する、制御に関する信号である 第 2の送信信号のうちのいずれかを選択する第 2の選択手段と、
前記第 4の部分信号、または前記受信装置に送信する第 3の送信信号のうちの!/ヽ ずれかを選択する第 3の選択手段と、
前記第 2の送信信号および前記第 3の送信信号を前記受信装置に送信する場合、 前記第 2の選択手段により前記第 2の送信信号が選択されて、前記第 2の送信信号 が前記第 3の信号線を介して前記受信装置に送信されるとともに、前記第 3の選択手 段により前記第 3の送信信号が選択されて、前記第 3の送信信号が前記第 4の信号 線を介して前記受信装置に送信されるように制御し、前記第 3の差動信号を受信す る場合、前記第 2の選択手段により前記第 3の部分信号が選択されて前記復号手段 に受信され、前記第 3の選択手段により前記第 4の部分信号が選択されて前記復号 手段に受信されるように制御する第 2の制御手段と
をさらに備える請求項 3に記載の送信装置。
[7] 前記第 1の選択手段は、前記第 2の部分信号、または前記第 1の送信信号、若しく は前記第 2の信号線を介して前記受信装置から送信されてきた、制御に関する信号 である第 1の受信信号を選択し、前記第 1の受信信号が選択された場合、選択した 前記第 1の受信信号を受信して出力し、
前記第 2の選択手段は、前記第 3の部分信号、または前記第 2の送信信号、若しく は前記第 3の信号線を介して前記受信装置から送信されてきた、制御に関する信号 である第 2の受信信号を選択し、前記第 2の受信信号が選択された場合、選択した 前記第 2の受信信号を受信して出力する
請求項 6に記載の送信装置。
[8] 前記第 1の送信信号および前記第 1の受信信号は、前記送信装置または前記受信 装置の制御用のデータである CEC (Consumer Electronics Control)信号とされ、 前記第 2の受信信号は、制御に用いられる、前記受信装置の性能に関する情報で ある E—EDID (Enhanced Extended Display Identification Data)と れ、
前記第 2の差動信号に変換されるデータ、および前記第 3の差動信号が復号され て得られたデータは、 IP (Internet Protocol)に準拠したデータとされ、
前記第 1の制御手段は、前記第 2の受信信号が受信された後、前記第 1の選択手 段により前記第 2の部分信号が選択されるように制御し、
前記第 2の制御手段は、前記第 2の受信信号が受信された後、前記第 2の選択手 段および前記第 3の選択手段により、前記第 3の部分信号および前記第 4の部分信 号が選択されるように制御する
請求項 7に記載の送信装置。
[9] 1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、非圧縮の 1画面分の画像 の画素データを、第 1の差動信号により、受信装置に一方向に送信する送信装置の 通信方法であって、 前記送信装置は、
送信するデータであって、前記画素データとは異なるデータを第 1の部分信号お よび第 2の部分信号からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1の 信号線を介して前記受信装置に送信するとともに、前記第 2の部分信号を出力する 変換手段と、
制御に関する信号である送信信号、または前記変換手段から出力された前記第 2の部分信号のうちの!/、ずれかを選択し、選択した信号を第 2の信号線を介して前記 受信装置に送信する選択手段と、
前記受信装置から送信されてきた第 3の差動信号を受信し、元のデータに復号す る復号手段と
を備え、
前記送信信号を前記受信装置に送信する場合、前記選択手段により前記送信信 号が選択されるように制御し、前記第 2の差動信号を前記受信装置に送信する場合 、前記選択手段により前記第 2の部分信号が選択されるように制御する
ステップを含む通信方法。
1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、非圧縮の 1画面分の画像 の画素データを、第 1の差動信号により、受信装置に一方向に送信する送信装置を 制御するコンピュータに実行させるプログラムであって、
前記送信装置は、
送信するデータであって、前記画素データとは異なるデータを第 1の部分信号お よび第 2の部分信号からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1の 信号線を介して前記受信装置に送信するとともに、前記第 2の部分信号を出力する 変換手段と、
制御に関する信号である送信信号、または前記変換手段から出力された前記第 2の部分信号のうちの!/、ずれかを選択し、選択した信号を第 2の信号線を介して前記 受信装置に送信する選択手段と、
前記受信装置から送信されてきた第 3の差動信号を受信し、元のデータに復号す る復号手段と
を備え、
前記送信信号を前記受信装置に送信する場合、前記選択手段により前記送信信 号が選択されるように制御し、前記第 2の差動信号を前記受信装置に送信する場合 、前記選択手段により前記第 2の部分信号が選択されるように制御する
ステップを含む処理をコンピュータに実行させるプログラム。
[11] 1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、送信装置から一方向に送 信されてくる、非圧縮の 1画面分の画像の画素データを、第 1の差動信号により受信 する受信装置であって、
第 1の信号線を介して前記送信装置から送信されてきた第 1の部分信号と、第 2の 信号線を介して前記送信装置から送信されてきた第 2の部分信号とからなる第 2の差 動信号を受信し、元のデータに復号する復号手段と、
前記第 1の部分信号、または前記第 1の信号線を介して前記送信装置から送信さ れてきた、制御に関する信号である第 1の受信信号のうちのいずれ力、を選択する第 1 の選択手段と、
前記第 1の受信信号を受信する場合、前記第 1の選択手段により前記第 1の受信 信号が選択されて受信され、前記第 2の差動信号を受信する場合、前記第 1の選択 手段により前記第 1の部分信号が選択されて前記復号手段により受信されるように制 御する第 1の制御手段と、
送信するデータであって、前記画素データとは異なるデータを第 3の部分信号およ び第 4の部分信号からなる第 3の差動信号に変換して前記送信装置に送信する変換 手段と
を備える受信装置。
[12] 前記変換手段は、前記第 3の部分信号を出力するとともに、前記第 4の部分信号を 前記第 2の信号線を介して前記送信装置に送信し、
前記第 1の選択手段は、前記第 1の受信信号、または前記第 1の部分信号、若しく は前記変換手段から出力された前記第 3の部分信号を選択し、 前記第 1の制御手段は、前記第 3の差動信号を送信する場合、前記第 1の選択手 段により前記第 3の部分信号が選択され、前記第 1の信号線を介して前記送信装置 に送信されるように制御する
請求項 11に記載の受信装置。
[13] 前記第 1の選択手段は、前記第 1の部分信号若しくは前記第 3の部分信号、または 前記第 1の受信信号、若しくは制御に関する信号である送信信号を選択し、前記送 信信号が選択された場合、選択した前記送信信号を前記第 1の信号線を介して前記 送信装置に送信する
請求項 12に記載の受信装置。
[14] 前記変換手段は、前記第 3の部分信号および前記第 4の部分信号を出力し、 前記変換手段から出力された前記第 3の部分信号、または第 3の信号線を介して 前記送信装置から送信されてきた、制御に関する信号である第 2の受信信号のうち の!/、ずれかを選択する第 2の選択手段と、
前記変換手段から出力された前記第 4の部分信号、または第 4の信号線を介して 前記送信装置から送信されてきた第 3の受信信号のうちのいずれかを選択する第 3 の選択手段と、
前記第 2の受信信号および前記第 3の受信信号を受信する場合、前記第 2の選択 手段により前記第 2の受信信号が選択されて受信されるとともに、前記第 3の選択手 段により前記第 3の受信信号が選択されて受信されるように制御し、前記第 3の差動 信号を送信する場合、前記第 2の選択手段により前記第 3の部分信号が選択され、 前記第 3の信号線を介して前記送信装置に送信されるとともに、前記第 3の選択手段 により前記第 4の部分信号が選択され、前記第 4の信号線を介して前記送信装置に 送信されるように制御する第 2の制御手段と
をさらに備える請求項 11に記載の受信装置。
[15] 前記第 1の選択手段は、前記第 1の部分信号、または前記第 1の受信信号、若しく は前記送信装置に送信される、制御に関する信号である第 1の送信信号を選択し、 前記第 1の送信信号が選択された場合、選択した前記第 1の送信信号を前記第 1の 信号線を介して前記送信装置に送信し、 前記第 2の選択手段は、前記第 3の部分信号、または前記第 2の受信信号、若しく は前記送信装置に送信される、制御に関する信号である第 2の送信信号を選択し、 前記第 2の送信信号が選択された場合、選択した前記第 2の送信信号を前記第 3の 信号線を介して前記送信装置に送信する
請求項 14に記載の受信装置。
[16] 1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、送信装置から一方向に送 信されてくる、非圧縮の 1画面分の画像の画素データを、第 1の差動信号により受信 する受信装置の通信方法であって、
前記受信装置は、
第 1の信号線を介して前記送信装置から送信されてきた第 1の部分信号と、第 2 の信号線を介して前記送信装置から送信されてきた第 2の部分信号とからなる第 2の 差動信号を受信し、元のデータに復号する復号手段と、
前記第 1の部分信号、または前記第 1の信号線を介して前記送信装置から送信さ れてきた、制御に関する信号である受信信号のうちのいずれかを選択する選択手段 と、
送信するデータであって、前記画素データとは異なるデータを第 3の差動信号に 変換して前記送信装置に送信する変換手段と
を備え、
前記受信信号を受信する場合、前記選択手段により前記受信信号が選択されて受 信されるように制御し、前記第 2の差動信号を受信する場合、前記選択手段により前 記第 1の部分信号が選択されて前記復号手段により受信されるように制御する ステップを含む通信方法。
[17] 1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、送信装置から一方向に送 信されてくる、非圧縮の 1画面分の画像の画素データを、第 1の差動信号により受信 する受信装置を制御するコンピュータに実行させるプログラムであって、
前記受信装置は、 第 1の信号線を介して前記送信装置から送信されてきた第 1の部分信号と、第 2 の信号線を介して前記送信装置から送信されてきた第 2の部分信号とからなる第 2の 差動信号を受信し、元のデータに復号する復号手段と、
前記第 1の部分信号、または前記第 1の信号線を介して前記送信装置から送信さ れてきた、制御に関する信号である受信信号のうちのいずれかを選択する選択手段 と、
送信するデータであって、前記画素データとは異なるデータを第 3の差動信号に 変換して前記送信装置に送信する変換手段と
を備え、
前記受信信号を受信する場合、前記選択手段により前記受信信号が選択されて受 信されるように制御し、前記第 2の差動信号を受信する場合、前記選択手段により前 記第 1の部分信号が選択されて前記復号手段により受信されるように制御する ステップを含む処理をコンピュータに実行させるプログラム。
1の垂直同期信号から次の垂直同期信号までの区間から、水平帰線区間及び垂 直帰線区間を除いた区間である有効画像区間において、非圧縮の 1画面分の画像 の画素データを、第 1の差動信号により、受信装置に一方向に送信する送信装置で あり、
送信するデータであって、前記画素データとは異なるデータを第 1の部分信号お よび第 2の部分信号からなる第 2の差動信号に変換し、前記第 1の部分信号を第 1の 信号線を介して前記受信装置に送信するとともに、前記第 2の部分信号を出力する 第 1の変換手段と、
制御に関する信号である送信信号、または前記第 1の変換手段から出力された 前記第 2の部分信号のうちの!/、ずれかを選択し、選択した信号を第 2の信号線を介し て前記受信装置に送信する第 1の選択手段と、
前記送信信号を前記受信装置に送信する場合、前記第 1の選択手段により前記 送信信号が選択され、前記第 2の差動信号を前記受信装置に送信する場合、前記 第 1の選択手段により前記第 2の部分信号が選択されるように制御する第 1の制御手 段と、 前記受信装置から送信されてきた第 3の差動信号を受信し、元のデータに復号す る第 1の復号手段と
を備える送信装置と、
前記送信装置から送信されてくる前記第 1の差動信号を受信する受信装置であり、 送信するデータであって、前記画素データとは異なるデータを前記第 3の差動信 号に変換して前記送信装置に送信する第 2の変換手段と、
前記送信装置から送信されてきた前記第 2の差動信号を受信し、元のデータに復 号する第 2の復号手段と、
前記第 2の部分信号、または前記送信信号のうちの!/、ずれかを選択する第 2の選 択手段と、
前記送信信号を受信する場合、前記第 2の選択手段により前記送信信号が選択 されて受信され、前記第 2の差動信号を受信する場合、前記第 2の選択手段により前 記第 2の部分信号が選択されて、前記第 2の部分信号が前記第 2の復号手段により 受信されるように制御する第 2の制御手段と
を備える受信装置と
を接続する通信ケーブルであり、
前記第 1の信号線および前記第 2の信号線を備え、
前記第 1の信号線と、前記第 2の信号線とが差動ツイストペア結線された 通信ケーブル。
[19] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行うインタフェースを含む通信システム であって、 接続対応機器を接続可能な 1対の差動伝送路を有し、
LAN通信が前記 1対の差動伝送路を介した双方向通信で行われ、当該 1対の差 動伝送路のうちの少なくとも一方の DCバイアス電位によってインタフェースの接続状 態を通知する機能を有する
通信システム。
[20] 接続された一方の接続対応機器が、
前記一方の伝送路を所定の電位に DCバイアスし、 接続された他方の接続対応機器が、
前記 DCバイアスとあらかじめ設定された基準電位との比較により接続状態にあ るか否かを認識可能とする機能を有する
請求項 19記載の通信システム。
[21] 前記 1対の差動伝送路で接続される少なくとも一方の接続対応機器が、
他方の伝送路の DCバイアスにより接続された機器が接続対応機器であるか否 かを認識可能とする機能を有する
請求項 19記載の通信システム。
[22] 前記 1対の差動伝送路で接続される少なくとも一方の接続対応機器が、
他方の伝送路の DCバイアスにより接続された機器が接続対応機器であるか否 かを認識可能とする機能を有する
請求項 20記載の通信システム。
[23] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行うインタフェースを含む通信システム であって、 接続対応機器を接続可能な 2対の差動伝送路を有し、
LAN通信が 2対の差動伝送路を介する単方向通信で行われ、前記伝送路のう ちの少なくとも一つの伝送路の DCバイアス電位によってインタフェースの接続状態 が通知する機能を有し、
少なくとも二つの伝送路が LAN通信とは時分割で接続機器情報の交換と認証 の通信に使われる
通信システム。
[24] 接続された一方の接続対応機器が、
前記一つの伝送路を所定の電位に DCバイアスし、
接続された他方の接続対応機器が、
前記 DCバイアスとあらかじめ設定された基準電位との比較により接続状態にあ るか否かを認識可能とする機能を有する
請求項 23記載の通信システム。
[25] 前記 2対の差動伝送路で接続される少なくとも一方の接続対応機器が、 前記一つの伝送路と異なる他の伝送路の DCバイアスにより接続された機器が 接続対応機器であるか否かを認識可能とする機能を有する
請求項 23記載の通信システム。
[26] 前記 2対の差動伝送路で接続される少なくとも一方の接続対応機器が、
前記一つの伝送路と異なる他の伝送路の DCバイアスにより接続された機器が 接続対応機器であるか否かを認識可能とする機能を有する
請求項 24記載の通信システム。
[27] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行うインタフェースを含む通信システム に適用可能な送信装置であって、
1対の差動伝送路に接続され、
LAN通信が前記 1対の差動伝送路を介した双方向通信で行われ、当該 1対の差 動伝送路のうちの少なくとも一方の DCバイアス電位によってインタフェースの接続状 態を通知する機能を有する
送信装置。
[28] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行うインタフェースを含む通信システム に適用可能な受信装置であって、
1対の差動伝送路に接続され、
LAN通信が前記 1対の差動伝送路を介した双方向通信で行われ、当該 1対の差 動伝送路のうちの少なくとも一方の DCバイアス電位によってインタフェースの接続状 態を通知する機能を有する
受信装置。
[29] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行うインタフェースを含む通信システム に適用可能な送信装置であって、
2対の差動伝送路に接続され、
LAN通信が 2対の差動伝送路を介する単方向通信で行われ、前記伝送路のう ちの少なくとも一つの伝送路の DCバイアス電位によってインタフェースの接続状態 が通知する機能を有する
送信装置。
[30] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行うインタフェースを含む通信システム に適用可能な受信装置であって、
2対の差動伝送路に接続され、
LAN通信が 2対の差動伝送路を介する単方向通信で行われ、前記伝送路のう ちの少なくとも一つの伝送路の DCバイアス電位によってインタフェースの接続状態 が通知する機能を有する
受信装置。
[31] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行う通信方法であって、
差動伝送路に接続対応機器を接続し、
LAN通信を前記 1対の差動伝送路を介した双方向通信で行い、
前記 1対の差動伝送路のうちの少なくとも一方の DCバイアス電位によってインタ フェースの接続状態を通知する
通 f 方法。
[32] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行う通信方法であって、
2対の差動伝送路に接続対応機器を接続し、
LAN通信を 2対の差動伝送路を介する単方向通信で行い、
前記伝送路のうちの少なくとも一つの伝送路の DCバイアス電位によってインタフ エースの接続状態が通知し、
少なくとも二つの伝送路が LAN通信とは時分割で接続機器情報の交換と認証 の通信に使用する
通 f 方法。
[33] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行う処理をコンピュータに実行させるプ ログラムであって、
差動伝送路に接続対応機器を接続した状態で、
LAN通信を前記 1対の差動伝送路を介した双方向通信で行い、
前記 1対の差動伝送路のうちの少なくとも一方の DCバイアス電位によってインタ フェースの接続状態を通知する処理を
コンピュータに実行させるプログラム。
[34] 1本のケーブルで映像と音声のデータ伝送と接続機器情報の交換および認証、 機器制御データの通信、並びに LAN通信を行う処理をコンピュータに実行させるプ ログラムであって、
2対の差動伝送路に接続対応機器を接続した状態で、
LAN通信を 2対の差動伝送路を介する単方向通信で行い、
前記伝送路のうちの少なくとも一つの伝送路の DCバイアス電位によってインタフ エースの接続状態が通知し、
少なくとも二つの伝送路が LAN通信とは時分割で接続機器情報の交換と認証 の通信に使用する処理を
コンピュータに実行させるプログラム。
PCT/JP2007/071600 2006-11-07 2007-11-07 Communication system, transmitting device, receiving device, communication method, program and communication cable WO2008056686A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
CN2007800466419A CN101563921B (zh) 2006-11-07 2007-11-07 通信系统、发送器、接收器和通信方法
BRPI0718563-4A2A BRPI0718563A2 (pt) 2006-11-07 2007-11-07 Sistema e método de comunicação, transmissor, programa, receptor, e, cabo de conunicação.
EP07831331.9A EP2091252B1 (en) 2006-11-07 2007-11-07 Communication system, transmitting device, receiving device, communication method, program and communication cable
AU2007318585A AU2007318585A1 (en) 2006-11-07 2007-11-07 Communication system, transmitting device, receiving device, communication method, program and communication cable
JP2008543096A JP5218845B2 (ja) 2006-11-07 2007-11-07 通信システム、送信装置、受信装置、通信方法、プログラム、および通信ケーブル
CA002668980A CA2668980A1 (en) 2006-11-07 2007-11-07 Communication system, transmitter, receiver, communication method, program, and communication cable
ES07831331.9T ES2553887T3 (es) 2006-11-07 2007-11-07 Sistema de comunicación, dispositivo de transmisión, dispositivo de recepción, método de comunicación, programa y cable de comunicación
US12/312,428 US7936401B2 (en) 2006-11-07 2007-11-07 Communication system, transmitter, receiver, communication method, program, and communication cable
US12/794,115 US8243204B2 (en) 2006-11-07 2010-06-04 Communication system, transmitter, receiver, communication method, program, and communication cable
US12/970,540 US8271698B2 (en) 2006-11-07 2010-12-16 Communication system, transmitter, receiver, communication method, program, and communication cable
US13/546,133 US8860887B2 (en) 2006-11-07 2012-07-11 Communication system, transmitter, receiver, communication method, program, and communication cable
US14/324,732 US9013636B2 (en) 2006-11-07 2014-07-07 Communication system, transmitter, receiver, communication method, program, and communication cable
US14/630,831 US9210465B2 (en) 2006-11-07 2015-02-25 Communication system, transmitter, receiver, communication method, program, and communication cable
US14/872,358 US20160021422A1 (en) 2006-11-07 2015-10-01 Communication system, transmitter, receiver, communication method, program, and communication cable

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006301486 2006-11-07
JP2006-301486 2006-11-07
JP2007-050426 2007-02-28
JP2007050426 2007-02-28

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/312,428 A-371-Of-International US7936401B2 (en) 2006-11-07 2007-11-07 Communication system, transmitter, receiver, communication method, program, and communication cable
US12/794,115 Continuation US8243204B2 (en) 2006-11-07 2010-06-04 Communication system, transmitter, receiver, communication method, program, and communication cable
US12/970,540 Division US8271698B2 (en) 2006-11-07 2010-12-16 Communication system, transmitter, receiver, communication method, program, and communication cable

Publications (1)

Publication Number Publication Date
WO2008056686A1 true WO2008056686A1 (en) 2008-05-15

Family

ID=39364500

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2007/071600 WO2008056686A1 (en) 2006-11-07 2007-11-07 Communication system, transmitting device, receiving device, communication method, program and communication cable
PCT/JP2007/071665 WO2008056719A1 (en) 2006-11-07 2007-11-07 Electronic apparatus and cable device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071665 WO2008056719A1 (en) 2006-11-07 2007-11-07 Electronic apparatus and cable device

Country Status (12)

Country Link
US (8) US8456188B2 (ja)
EP (2) EP2090955B1 (ja)
JP (2) JP5239867B2 (ja)
KR (2) KR101333846B1 (ja)
CN (1) CN102111599B (ja)
AU (1) AU2007318585A1 (ja)
BR (1) BRPI0718563A2 (ja)
CA (1) CA2668980A1 (ja)
ES (1) ES2553887T3 (ja)
RU (1) RU2414090C2 (ja)
TW (3) TW200830828A (ja)
WO (2) WO2008056686A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001880A1 (ja) * 2007-06-26 2008-12-31 Sony Corporation 通信システム、送信装置、受信装置、通信方法、プログラム、および通信ケーブル
WO2009001881A1 (ja) * 2007-06-26 2008-12-31 Sony Corporation 通信システム、送信装置、受信装置、通信方法、プログラム、および通信ケーブル
WO2009044762A1 (ja) * 2007-10-02 2009-04-09 Sony Corporation 送信装置、画像データ送信方法、受信装置および受信装置における画像表示方法
WO2009066607A1 (ja) * 2007-11-22 2009-05-28 Sony Corporation インターフェース回路
GB2456604A (en) * 2008-01-17 2009-07-22 Toshiba Kk Using a hot-plug detection line as one line of a differential signal line pair, e.g. in an HMDI connector
CN101557488A (zh) * 2008-04-07 2009-10-14 联发科技股份有限公司 媒体内容提供方法、高清晰多媒体接口系统及来源装置
CN102088586A (zh) * 2009-12-03 2011-06-08 索尼公司 控制设备、控制方法和程序
JP2012142690A (ja) * 2010-12-28 2012-07-26 Sony Corp 電子機器、電子機器の制御方法、送信装置および受信装置
WO2019123837A1 (ja) * 2017-12-21 2019-06-27 ソニー株式会社 送信制御装置、送信制御方法、受信制御装置、受信制御方法および信号伝送システム

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2427733A (en) * 2005-06-29 2007-01-03 Symbian Software Ltd Remote control
TW200830828A (en) * 2006-11-07 2008-07-16 Sony Corp Communication system, transmitting device, receiving device, communication method, program and communication cable
US20100269137A1 (en) 2006-11-07 2010-10-21 Sony Corporation Transmission device, video signal transmission method for transmission device, reception device, and video signal reception method for reception device
CN102065262B (zh) 2006-11-07 2013-04-03 索尼株式会社 电子装置和控制信息接收方法
US8463881B1 (en) 2007-10-01 2013-06-11 Apple Inc. Bridging mechanism for peer-to-peer communication
JP5358931B2 (ja) * 2007-11-28 2013-12-04 ソニー株式会社 送信装置及び受信装置
CN101466009B (zh) * 2007-12-17 2010-10-06 佛山普立华科技有限公司 电子设备及其音频/视频信号共用同一传输接口的方法
JPWO2009118851A1 (ja) * 2008-03-27 2011-07-21 パイオニア株式会社 コンテンツ送信装置
JP5338166B2 (ja) * 2008-07-16 2013-11-13 ソニー株式会社 送信装置、立体画像データ送信方法、受信装置および立体画像データ受信方法
KR20160070170A (ko) * 2009-01-30 2016-06-17 인터실 아메리카스 엘엘씨 혼합 포맷 매체 전송 시스템 및 방법
US8300114B2 (en) 2009-01-30 2012-10-30 Intersil Americas, Inc. Mixed format media transmission systems and methods
US9274739B2 (en) * 2009-04-17 2016-03-01 St-Ericsson Sa Enhanced power in HDMI systems
EP2451130B1 (en) * 2009-04-30 2014-07-16 EqcoLogic N.V. Communication system including device power communication
JP5604827B2 (ja) * 2009-08-21 2014-10-15 ソニー株式会社 送信装置、受信装置、プログラム、及び通信システム
KR20110023441A (ko) * 2009-08-31 2011-03-08 삼성전자주식회사 이더넷 지원하는 디지털 인터페이스 시스템 및 그 케이블 연결 상태 표시 방법
KR101624904B1 (ko) * 2009-11-09 2016-05-27 삼성전자주식회사 휴대용 단말기에서 디엔엘에이를 이용하여 멀티 사운드 채널 컨텐츠를 재생하기 위한 장치 및 방법
TWI469636B (zh) * 2009-12-02 2015-01-11 Novatek Microelectronics Corp 多媒體裝置及多媒體系統
WO2011099295A1 (ja) 2010-02-10 2011-08-18 パナソニック株式会社 デジタルビデオ信号出力装置および表示装置、デジタルビデオ信号出力方法および受信方法
TWI419545B (zh) * 2010-03-05 2013-12-11 Aten Int Co Ltd 發送器、接收器及訊號延伸器系統
US8327536B2 (en) 2010-06-30 2012-12-11 Apple Inc. Method of manufacturing high-speed connector inserts and cables
JP5553695B2 (ja) 2010-06-30 2014-07-16 キヤノン株式会社 通信装置、及びその制御方法
US8601173B2 (en) * 2010-06-30 2013-12-03 Silicon Image, Inc. Detection of cable connections for electronic devices
BR112012030352B1 (pt) 2010-06-30 2020-12-29 Apple Inc Cabo ativo, conjunto de cabo e circuito de conector e de caminho de sinal para um dispositivo eletrônico para permitir que sinais sejam compatíveis com vários padrões e compartilhem um conector comum
US9112310B2 (en) 2010-06-30 2015-08-18 Apple Inc. Spark gap for high-speed cable connectors
JP5598220B2 (ja) * 2010-09-30 2014-10-01 ソニー株式会社 送信装置、送信方法、受信装置、受信方法および送受信システム
US20120226774A1 (en) 2011-02-23 2012-09-06 Apple Inc. Display snooping
US20130104182A1 (en) * 2011-04-12 2013-04-25 Jupiter Systems Method and Apparatus for Fast Data Delivery on a Digital Pixel Cable
JP2012222801A (ja) * 2011-04-14 2012-11-12 Funai Electric Co Ltd 電子機器
US9344669B2 (en) 2011-06-21 2016-05-17 Arris Enterprises, Inc. HDMI source/sink interoperable configuration determination process
CN103620519B (zh) 2011-07-01 2017-06-09 索尼公司 电子设备、用于传输线缆的类别确定方法和传输线缆
JP2013046123A (ja) * 2011-08-23 2013-03-04 Sony Corp 信号変換装置、信号変換方法および端末装置
US8856744B2 (en) * 2011-08-31 2014-10-07 Nvidia Corporation HDMI-muxed debug cable methods and apparatuses
US8787571B2 (en) * 2011-10-19 2014-07-22 General Electric Company Wired communications systems with improved capacity and security
US9449500B2 (en) * 2012-08-08 2016-09-20 Universal Electronics Inc. System and method for optimized appliance control
CN102572352B (zh) * 2011-12-26 2014-12-10 中兴通讯股份有限公司 Hdmi复用方法、hdmi、以及带有hdmi的设备
CN103283221B (zh) 2011-12-27 2016-03-16 松下知识产权经营株式会社 通信电缆
EP2665055A1 (en) * 2012-05-16 2013-11-20 Nxp B.V. Protection circuit for HDMI interface
JP5330574B1 (ja) * 2012-06-29 2013-10-30 株式会社東芝 伝送装置及び伝送方法
KR20140007698A (ko) * 2012-07-10 2014-01-20 삼성전자주식회사 Hdmi 신호 보정 방법, hdmi 신호 수신장치, hdmi 신호 전송장치 및 hdmi 신호 처리 시스템
TWI523531B (zh) * 2012-08-29 2016-02-21 瑞軒科技股份有限公司 訊號輸入控制系統與方法及其影音裝置
WO2014097500A1 (ja) 2012-12-17 2014-06-26 パナソニック株式会社 情報処理装置および制御方法
DE102013206723B4 (de) * 2013-04-15 2022-07-07 Marco Systemanalyse Und Entwicklung Gmbh Steuersystem
TWI556650B (zh) * 2014-02-25 2016-11-01 宏正自動科技股份有限公司 雙向傳輸裝置
JP2015162753A (ja) * 2014-02-26 2015-09-07 ソニー株式会社 回路、送受信機および通信システム
US9215491B1 (en) 2014-07-10 2015-12-15 Google Inc. Methods, systems, and media for controlling a bi-directional HDMI port
WO2016009944A1 (ja) 2014-07-18 2016-01-21 ソニー株式会社 送信装置、送信方法、受信装置および受信方法
US20160127771A1 (en) * 2014-10-30 2016-05-05 Broadcom Corporation System and method for transporting hd video over hdmi with a reduced link rate
US9934188B2 (en) * 2015-08-27 2018-04-03 Kabushiki Kaisha Toshiba Electronic device with connector for video signal interface
US10296275B2 (en) 2015-08-30 2019-05-21 EVA Automation, Inc. User interface based on device-state information
US10387095B2 (en) 2015-08-30 2019-08-20 EVA Automation, Inc. User interface based on system-state information
US10198232B2 (en) 2015-08-30 2019-02-05 EVA Automation, Inc. User interface based on system-state information
US10198231B2 (en) 2015-08-30 2019-02-05 EVA Automation, Inc. User interface based on system-state information
US10387094B2 (en) 2015-08-30 2019-08-20 EVA Automation, Inc. User interface based on device-state information
US10198230B2 (en) 2015-08-30 2019-02-05 EVA Automation, Inc. User interface based on device-state information
US10200737B2 (en) 2015-08-30 2019-02-05 EVA Automation, Inc. User interface based on device-state information
US10452332B2 (en) 2015-08-30 2019-10-22 EVA Automation, Inc. User interface based on device-state information
US10296276B2 (en) 2015-08-30 2019-05-21 EVA Automation, Inc. User interface based on device-state information
US10521177B2 (en) 2015-08-30 2019-12-31 EVA Automation, Inc. User interface based on system-state information
EP3345072A4 (en) * 2015-08-30 2018-08-08 Eva Automation, Inc. Determining device state using a state-detection circuit
US20170064368A1 (en) 2015-08-30 2017-03-02 Gaylord Yu Repeated Commands Based on Device-State Information
KR102609515B1 (ko) * 2016-03-21 2023-12-04 삼성전자주식회사 커넥터 장치 및 이를 구비한 디스플레이 장치
US11146269B1 (en) 2018-02-05 2021-10-12 Rambus Inc. Low power cryogenic switch
JP7003079B2 (ja) 2019-03-14 2022-01-20 株式会社東芝 電子機器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153886A (ja) * 1995-11-30 1997-06-10 Kenwood Corp シリアル通信回路
JP2002319855A (ja) * 2001-04-24 2002-10-31 Sony Corp 電子機器の出力信号制御回路
JP2004005283A (ja) * 2002-06-03 2004-01-08 Matsushita Electric Ind Co Ltd Usbホスト/デバイス接続機構
JP2005018312A (ja) * 2003-06-25 2005-01-20 Sony Corp 信号伝送装置および方法、ならびに情報機器
JP2005057714A (ja) 2003-07-31 2005-03-03 Toshiba Corp 送信機器及び送信方法
JP2005284672A (ja) * 2004-03-29 2005-10-13 Kawasaki Microelectronics Kk 通信装置
JP2006019948A (ja) 2004-06-30 2006-01-19 Toshiba Corp 映像信号出力機器
JP2007311884A (ja) * 2006-05-16 2007-11-29 Sony Corp 通信システム、送信装置及び受信装置、通信方法、並びにプログラム

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6275653U (ja) 1985-10-30 1987-05-14
US4697099A (en) 1986-10-30 1987-09-29 International Business Machines Corporation Open line detector circuit
JP2660422B2 (ja) * 1988-05-31 1997-10-08 株式会社日立製作所 動作モード設定可能なlan間結合装置
JPH02206249A (ja) 1989-02-06 1990-08-16 Sharp Corp ホームバスケーブルの検査装置
IT1229151B (it) 1989-04-07 1991-07-22 Hesa Spa Dispositivo di allarme o di segnalazione il cui elemento sensore e' costituito da un cavo coassiale schermato polarizzato in corrente continua
JPH04245817A (ja) * 1991-01-31 1992-09-02 Fujitsu Ltd データ受信回路
JPH0750657A (ja) 1993-08-05 1995-02-21 Tokimec Inc 全二重伝送システム
JPH0823354A (ja) * 1994-07-06 1996-01-23 Hitachi Ltd 信号入出力装置
US5719856A (en) 1995-04-07 1998-02-17 Motorola, Inc. Transmitter/receiver interface apparatus and method for a bi-directional transmission path
US6628303B1 (en) 1996-07-29 2003-09-30 Avid Technology, Inc. Graphical user interface for a motion video planning and editing system for a computer
JP2907279B2 (ja) 1996-11-26 1999-06-21 日本電気株式会社 ビデオ会議システムの音声配信方式
US6169475B1 (en) * 1998-03-30 2001-01-02 Xircom, Inc. System and method for active detection of connection to a network
JPH11338590A (ja) * 1998-05-25 1999-12-10 Fujitsu Takamisawa Component Ltd インジケータ付ターミネータ
US6618774B1 (en) * 1999-03-17 2003-09-09 Adder Technology Ltd. Computer signal transmission system
US6378025B1 (en) 1999-03-22 2002-04-23 Adaptec, Inc. Automatic multi-mode termination
US6956826B1 (en) 1999-07-07 2005-10-18 Serconet Ltd. Local area network for distributing data communication, sensing and control signals
JP3412688B2 (ja) 1999-08-18 2003-06-03 日本電気株式会社 伝送路間のブリッジシステム及び方法
US6320406B1 (en) * 1999-10-04 2001-11-20 Texas Instruments Incorporated Methods and apparatus for a terminated fail-safe circuit
MXPA02003710A (es) * 1999-10-15 2002-08-30 Thomson Licensing Sa Una interfase de usuario para un sistema de comunicacion bi-direccional.
US7574494B1 (en) 1999-10-15 2009-08-11 Thomson Licensing User interface for a bi-directional communication system
JP2001320479A (ja) 2000-05-10 2001-11-16 Nec Niigata Ltd 携帯電話機の接続装置及び接続方法、コンピュータ、並びに接続ケーブル
JP2002204272A (ja) * 2000-12-28 2002-07-19 Matsushita Electric Ind Co Ltd 信号伝送装置および信号伝送システム
JP4245817B2 (ja) 2001-02-22 2009-04-02 アルパイン株式会社 車載用ナビゲーション装置
US7631064B1 (en) * 2001-04-13 2009-12-08 Sun Microsystems, Inc. Method and apparatus for determining interconnections of network devices
TW512232B (en) 2001-05-08 2002-12-01 Prolific Technology Inc USB connection-detection circuitry and operation methods of the same
US7218635B2 (en) 2001-08-31 2007-05-15 Stmicroelectronics, Inc. Apparatus and method for indexing MPEG video data to perform special mode playback in a digital video recorder and indexed signal associated therewith
US7558326B1 (en) * 2001-09-12 2009-07-07 Silicon Image, Inc. Method and apparatus for sending auxiliary data on a TMDS-like link
JP3745279B2 (ja) 2002-01-16 2006-02-15 日本航空電子工業株式会社 Dvi光延長ケーブル接続および外部電源入力確認システム
US8605623B2 (en) * 2002-05-31 2013-12-10 Koninklijke Philips N.V. Determining and configuring a communication path in a network
JP3942986B2 (ja) 2002-08-09 2007-07-11 Necディスプレイソリューションズ株式会社 表示装置、表示システム及びケーブル
JP2004254027A (ja) 2003-02-19 2004-09-09 Toshiba Corp サーバ装置、鍵管理装置、暗号通信方法及びプログラム
US6891378B2 (en) * 2003-03-25 2005-05-10 Midtronics, Inc. Electronic battery tester
US7068686B2 (en) * 2003-05-01 2006-06-27 Genesis Microchip Inc. Method and apparatus for efficient transmission of multimedia data packets
JP2004356752A (ja) 2003-05-27 2004-12-16 Sony Corp 撮像装置、撮像システム
JP2005051558A (ja) * 2003-07-29 2005-02-24 Matsushita Electric Ind Co Ltd 送信装置、受信装置、及び送受信システム
JP4448315B2 (ja) 2003-11-10 2010-04-07 富士通株式会社 燃料電池を備えた携帯端末装置用クレイドル及び携帯端末システム
US7562379B2 (en) * 2003-12-22 2009-07-14 Sony Corporation Method and system for wireless digital multimedia presentation
US7768421B2 (en) 2003-12-26 2010-08-03 Panasonic Corporation Control signal receiving apparatus
US7449462B2 (en) * 2004-01-22 2008-11-11 Pfizer, Inc. Triazole derivatives which inhibit vasopressin antagonistic activity
US7269673B2 (en) * 2004-02-18 2007-09-11 Silicon Image, Inc. Cable with circuitry for asserting stored cable data or other information to an external device or user
US7502411B2 (en) * 2004-03-05 2009-03-10 Silicon Image, Inc. Method and circuit for adaptive equalization of multiple signals in response to a control signal generated from one of the equalized signals
JP4357356B2 (ja) * 2004-05-10 2009-11-04 株式会社東芝 映像信号受信装置及び映像信号受信方法
BRPI0511858B1 (pt) 2004-06-07 2020-12-22 Sling Media, Inc. transmissor de mídia pessoal e respectivo sistema de transmissão, métodos de provimento de acesso a fonte áudio/visual em localização remota da fonte áudio/visual e de fluxo (streaming) de sinal de mídia para local de assinante remoto
JP3962735B2 (ja) * 2004-09-07 2007-08-22 Tdk株式会社 信号伝送回路、電子機器、ケーブル、及びコネクタ
JP2006107292A (ja) * 2004-10-07 2006-04-20 Sharp Corp データ送信器、通信端末装置、データ通信システムおよびデータ通信方法
US20060089735A1 (en) 2004-10-21 2006-04-27 Atkinson Lee W Method and apparatus for configuring the audio outputs of an electronic device
JP4357406B2 (ja) 2004-11-12 2009-11-04 シャープ株式会社 通信システム
DE602005021393D1 (de) 2004-11-25 2010-07-01 Panasonic Corp Verstärkungsvorrichtung und verfahren zu ihrer steuerung
JP2006163585A (ja) 2004-12-03 2006-06-22 Fujitsu General Ltd 再生方法および装置
US20060209880A1 (en) * 2004-12-10 2006-09-21 Mediatek Incorporation Method of audio data transmission and system thereof
JP2005135433A (ja) 2004-12-13 2005-05-26 Fujitsu Ltd 鍵認証方法
JP2006186580A (ja) 2004-12-27 2006-07-13 Toshiba Corp 再生装置およびデコード制御方法
JP4660184B2 (ja) * 2004-12-27 2011-03-30 株式会社東芝 信号中継装置及び信号中継方法
JP2006191161A (ja) 2004-12-28 2006-07-20 Sony Corp 光伝送システム
JP2006203800A (ja) 2005-01-24 2006-08-03 Sumitomo Electric Ind Ltd 通信方法、通信システム及び通信装置
JP2006245949A (ja) 2005-03-02 2006-09-14 Fuji Xerox Co Ltd 画像形成装置
US20060209892A1 (en) 2005-03-15 2006-09-21 Radiospire Networks, Inc. System, method and apparatus for wirelessly providing a display data channel between a generalized content source and a generalized content sink
JP2006295822A (ja) 2005-04-14 2006-10-26 Toshiba Corp 放送受信装置及び放送受信方法
JP4869333B2 (ja) * 2005-04-19 2012-02-08 パナソニック・アビオニクス・コーポレイション 高品質映像を表示するシステムおよび方法
JP3112392U (ja) * 2005-05-10 2005-08-11 船井電機株式会社 Hdtv
US7106235B1 (en) * 2005-05-31 2006-09-12 Semiconductor Co., Ltd. Active hybrid circuit for a full duplex channel
TWM289946U (en) * 2005-08-18 2006-04-21 Cwin Technology Inc Signal processing device
TWM289945U (en) * 2005-08-18 2006-04-21 Cwin Technology Inc Multiplexing switch device
US7259589B1 (en) * 2005-09-16 2007-08-21 Pericom Semiconductor Corp. Visual or multimedia interface bus switch with level-shifted ground and input protection against non-compliant transmission-minimized differential signaling (TMDS) transmitter
US20090260043A1 (en) 2005-09-30 2009-10-15 Akihiro Tatsuta Wireless transmission system for wirelessly connecting signal source apparatus and signal sink apparatus
US20090237561A1 (en) 2005-10-26 2009-09-24 Kazuhiko Kobayashi Video and audio output device
JP4794983B2 (ja) 2005-10-31 2011-10-19 パナソニック株式会社 音声出力システムの制御方法及び音声出力システム
JP4575324B2 (ja) 2006-03-29 2010-11-04 株式会社東芝 Av装置及びその制御方法
US7540746B2 (en) * 2006-04-06 2009-06-02 Hewlett-Packard Development Company, L.P. Electrical encoding of cable types and configurations
JP4172498B2 (ja) 2006-05-16 2008-10-29 ソニー株式会社 伝送システム、伝送方法、映像出力装置及び映像入力装置
US8058918B2 (en) * 2006-11-02 2011-11-15 Redmere Technology Ltd. Programmable high-speed cable with boost device
CN102065262B (zh) 2006-11-07 2013-04-03 索尼株式会社 电子装置和控制信息接收方法
TW200830828A (en) * 2006-11-07 2008-07-16 Sony Corp Communication system, transmitting device, receiving device, communication method, program and communication cable
US20100269137A1 (en) 2006-11-07 2010-10-21 Sony Corporation Transmission device, video signal transmission method for transmission device, reception device, and video signal reception method for reception device
JP5337370B2 (ja) * 2007-11-13 2013-11-06 ソニー エスパナ,エス.エー. 表示装置、表示装置における映像信号送信方法、送信装置および映像信号の送信方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09153886A (ja) * 1995-11-30 1997-06-10 Kenwood Corp シリアル通信回路
JP2002319855A (ja) * 2001-04-24 2002-10-31 Sony Corp 電子機器の出力信号制御回路
JP2004005283A (ja) * 2002-06-03 2004-01-08 Matsushita Electric Ind Co Ltd Usbホスト/デバイス接続機構
JP2005018312A (ja) * 2003-06-25 2005-01-20 Sony Corp 信号伝送装置および方法、ならびに情報機器
JP2005057714A (ja) 2003-07-31 2005-03-03 Toshiba Corp 送信機器及び送信方法
JP2005284672A (ja) * 2004-03-29 2005-10-13 Kawasaki Microelectronics Kk 通信装置
JP2006019948A (ja) 2004-06-30 2006-01-19 Toshiba Corp 映像信号出力機器
JP2007311884A (ja) * 2006-05-16 2007-11-29 Sony Corp 通信システム、送信装置及び受信装置、通信方法、並びにプログラム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"High-Definition Multimedia Interface Specification Version 1.1", PHYSICAL LAYER, vol. 4, 20 May 2004 (2004-05-20), pages 10 - 42, XP008117021 *
24BIT IEEE REGISTRATION IDENTIFIER(OXOOOC03)LSB FIRST
INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS
See also references of EP2091252A4 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8479236B2 (en) 2007-06-26 2013-07-02 Sony Corporation Communication system, transmitter, receiver, communication method, program, and communication cable
WO2009001881A1 (ja) * 2007-06-26 2008-12-31 Sony Corporation 通信システム、送信装置、受信装置、通信方法、プログラム、および通信ケーブル
US9560346B2 (en) 2007-06-26 2017-01-31 Sony Corporation Communication system, transmission device, reception device, communication method, program, and communication cable
US9491503B2 (en) 2007-06-26 2016-11-08 Sony Corporation Communication system, transmission device, reception device, communication method, program, and communication cable
US9357258B2 (en) 2007-06-26 2016-05-31 Sony Corporation Communication system, transmission device, reception device, communication method, program, and communication cable
US9113137B2 (en) 2007-06-26 2015-08-18 Sony Corporation Communication system, transmission device, reception device, communication method, program, and communication cable
WO2009001880A1 (ja) * 2007-06-26 2008-12-31 Sony Corporation 通信システム、送信装置、受信装置、通信方法、プログラム、および通信ケーブル
US9113199B2 (en) 2007-06-26 2015-08-18 Sony Corporation Communication system, transmitter, receiver, communication method, program, and communication cable
US8704955B2 (en) 2007-06-26 2014-04-22 Sony Corporation Communication system, transmission device, reception device, communication method, program, and communication cable
US20130305298A1 (en) * 2007-06-26 2013-11-14 Sony Corporation Communication system, transmitter, receiver, communication method, program, and communication cable
WO2009044762A1 (ja) * 2007-10-02 2009-04-09 Sony Corporation 送信装置、画像データ送信方法、受信装置および受信装置における画像表示方法
JP2009089209A (ja) * 2007-10-02 2009-04-23 Sony Computer Entertainment Inc 送信装置、画像データ送信方法、受信装置および受信装置における画像表示方法
US8000355B2 (en) 2007-11-22 2011-08-16 Sony Corporation Interface circuit
US9191136B2 (en) 2007-11-22 2015-11-17 Sony Corporation Interface circuit
US8639841B2 (en) 2007-11-22 2014-01-28 Sony Corporation Interface circuit for transmitting and receiving digital signals between devices
US8260955B2 (en) 2007-11-22 2012-09-04 Sony Corporation Interface circuit for transmitting and receiving digital signals between devices
US8824512B2 (en) 2007-11-22 2014-09-02 Sony Corporation Interface circuit for receiving digital signals between devices
US9009335B2 (en) 2007-11-22 2015-04-14 Sony Corporation Interface circuit for transmitting and receiving digital signals between devices
US9036666B2 (en) 2007-11-22 2015-05-19 Sony Corporation Interface circuit for transmitting digital signals between devices
US10033553B2 (en) 2007-11-22 2018-07-24 Sony Corporation Interface circuit for transmitting and receiving digital signals between devices
US9667369B2 (en) 2007-11-22 2017-05-30 Sony Corporation Interface circuit for transmitting and receiving digital signals between devices
US8340138B2 (en) 2007-11-22 2012-12-25 Sony Corporation Interface circuit
US9231720B2 (en) 2007-11-22 2016-01-05 Sony Corporation Interface circuit for transmitting and receiving digital signals between devices
WO2009066607A1 (ja) * 2007-11-22 2009-05-28 Sony Corporation インターフェース回路
GB2456604A (en) * 2008-01-17 2009-07-22 Toshiba Kk Using a hot-plug detection line as one line of a differential signal line pair, e.g. in an HMDI connector
CN101557488A (zh) * 2008-04-07 2009-10-14 联发科技股份有限公司 媒体内容提供方法、高清晰多媒体接口系统及来源装置
CN102088586A (zh) * 2009-12-03 2011-06-08 索尼公司 控制设备、控制方法和程序
JP2012142690A (ja) * 2010-12-28 2012-07-26 Sony Corp 電子機器、電子機器の制御方法、送信装置および受信装置
WO2019123837A1 (ja) * 2017-12-21 2019-06-27 ソニー株式会社 送信制御装置、送信制御方法、受信制御装置、受信制御方法および信号伝送システム
JPWO2019123837A1 (ja) * 2017-12-21 2020-12-10 ソニー株式会社 送信制御装置、送信制御方法、受信制御装置、受信制御方法および信号伝送システム
US11245955B2 (en) 2017-12-21 2022-02-08 Sony Corporation Transmission control device, transmission control method, reception control device, reception control method, and signal transmission system
JP7136125B2 (ja) 2017-12-21 2022-09-13 ソニーグループ株式会社 送信制御装置、送信制御方法、受信制御装置、受信制御方法および信号伝送システム

Also Published As

Publication number Publication date
JPWO2008056686A1 (ja) 2010-02-25
JP5218845B2 (ja) 2013-06-26
US20110085473A1 (en) 2011-04-14
TW200830828A (en) 2008-07-16
AU2007318585A1 (en) 2008-05-15
EP2090955A1 (en) 2009-08-19
US9013636B2 (en) 2015-04-21
TWI363548B (ja) 2012-05-01
EP2090955B1 (en) 2016-01-27
KR20090079879A (ko) 2009-07-22
TWI513264B (zh) 2015-12-11
KR20090084924A (ko) 2009-08-05
TWI423640B (zh) 2014-01-11
EP2091252B1 (en) 2015-11-04
CA2668980A1 (en) 2008-05-15
RU2414090C2 (ru) 2011-03-10
US20120278832A1 (en) 2012-11-01
US9210465B2 (en) 2015-12-08
KR101333846B1 (ko) 2013-12-19
ES2553887T3 (es) 2015-12-14
JPWO2008056719A1 (ja) 2010-02-25
US20100289530A1 (en) 2010-11-18
US8456188B2 (en) 2013-06-04
US20160021422A1 (en) 2016-01-21
KR101432846B1 (ko) 2014-08-26
US20100253841A1 (en) 2010-10-07
JP5239867B2 (ja) 2013-07-17
EP2091252A1 (en) 2009-08-19
TW201212610A (en) 2012-03-16
US20140325573A1 (en) 2014-10-30
WO2008056719A1 (en) 2008-05-15
US8860887B2 (en) 2014-10-14
US7936401B2 (en) 2011-05-03
RU2009117330A (ru) 2010-11-20
US8271698B2 (en) 2012-09-18
EP2091252A4 (en) 2011-03-09
TW201415850A (zh) 2014-04-16
US8243204B2 (en) 2012-08-14
CN102111599B (zh) 2015-08-19
CN102111599A (zh) 2011-06-29
EP2090955A4 (en) 2010-12-22
US20100118188A1 (en) 2010-05-13
BRPI0718563A2 (pt) 2014-03-11
US20150181284A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP5218845B2 (ja) 通信システム、送信装置、受信装置、通信方法、プログラム、および通信ケーブル
JP5240492B2 (ja) 通信システム、および、通信方法
JP5223678B2 (ja) 電子機器、コンテンツ再生方法及びコンテンツ復号方法
JP4831081B2 (ja) 送信装置及びフレームレート変換システム
KR20100022085A (ko) 통신 시스템, 송신 장치, 수신 장치, 통신 방법, 프로그램, 및 통신 케이블
AU2011202956B2 (en) Communication system, transmitter, receiver, communication method, program and communication cable

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046641.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009117330

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2668980

Country of ref document: CA

Ref document number: 2008543096

Country of ref document: JP

Ref document number: 2591/CHENP/2009

Country of ref document: IN

Ref document number: 2007831331

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007318585

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020097011671

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007318585

Country of ref document: AU

Date of ref document: 20071107

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12312428

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0718563

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090507