WO2008029796A1 - Roulement à rouleaux, segment d'arrêt pour roulement à rouleaux de support d'arbre d'aéromoteur, et une structure de support d'arbre d'aéromoteur - Google Patents

Roulement à rouleaux, segment d'arrêt pour roulement à rouleaux de support d'arbre d'aéromoteur, et une structure de support d'arbre d'aéromoteur Download PDF

Info

Publication number
WO2008029796A1
WO2008029796A1 PCT/JP2007/067199 JP2007067199W WO2008029796A1 WO 2008029796 A1 WO2008029796 A1 WO 2008029796A1 JP 2007067199 W JP2007067199 W JP 2007067199W WO 2008029796 A1 WO2008029796 A1 WO 2008029796A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller bearing
cage segment
cage
main shaft
roller
Prior art date
Application number
PCT/JP2007/067199
Other languages
English (en)
French (fr)
Inventor
Tatsuya Omoto
Eiichi Nakamizo
Tomoya Sakaguchi
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39157223&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008029796(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2006244396A external-priority patent/JP5354849B2/ja
Priority claimed from JP2006244397A external-priority patent/JP4308234B2/ja
Priority claimed from JP2006352462A external-priority patent/JP2008163999A/ja
Priority claimed from JP2007148352A external-priority patent/JP4231082B2/ja
Priority claimed from JP2007148353A external-priority patent/JP4105750B1/ja
Priority to CN2007800333120A priority Critical patent/CN101512169B/zh
Priority to US12/310,798 priority patent/US8764304B2/en
Priority to EP12175578.9A priority patent/EP2511544B2/en
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to EP07806654.5A priority patent/EP2060806B1/en
Priority to DK07806654.5T priority patent/DK2060806T3/da
Priority to ES07806654.5T priority patent/ES2455015T3/es
Publication of WO2008029796A1 publication Critical patent/WO2008029796A1/ja
Priority to US14/692,840 priority patent/US9664231B2/en
Priority to US15/712,278 priority patent/US10408267B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/51Cages for rollers or needles formed of unconnected members
    • F16C33/513Cages for rollers or needles formed of unconnected members formed of arcuate segments for carrying one or more rollers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/56Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/04Preventing damage to bearings during storage or transport thereof or when otherwise out of use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • F05B2250/23Geometry three-dimensional prismatic
    • F05B2250/232Geometry three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/50Intrinsic material properties or characteristics
    • F05B2280/5003Expansivity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6015Resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/042Expansivity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/20Resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/36Polyarylene ether ketones [PAEK], e.g. PEK, PEEK
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/46Gap sizes or clearances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/467Details of individual pockets, e.g. shape or roller retaining means
    • F16C33/4676Details of individual pockets, e.g. shape or roller retaining means of the stays separating adjacent cage pockets, e.g. guide means for the bearing-surface of the rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • Roller bearing cage segment for wind turbine main shaft support roller bearing, and main shaft support structure for wind power generator
  • the present invention relates to a roller bearing, a cage segment of a wind turbine main shaft support roller bearing, and a main shaft support structure of a wind power generator, and in particular, wind power generation arranged in the circumferential direction to form one cage.
  • the present invention relates to a cage segment of a roller bearing for machine main shaft support, a roller bearing including the cage segment of such a roller bearing for main shaft support of a wind power generator, and a main shaft support structure of a wind power generator.
  • a roller bearing is composed of an outer ring, an inner ring, a plurality of rollers disposed between the outer ring and the inner ring, and a cage that holds the plurality of rollers.
  • the cage is usually made of a single piece, that is, an annular part.
  • a roller bearing that supports a main shaft of a wind power generator to which a blade for receiving wind is attached needs to receive a large load, so that the roller bearing itself is also large.
  • each component member constituting the roller bearing such as a roller and a cage becomes large, and it becomes difficult to produce and assemble the member. In such a case, if each member can be divided, production and assembly are facilitated.
  • FIG. 39 is a perspective view showing a cage segment which is a split type cage disclosed in European Patent Publication 1408248A2.
  • the cage segment 101a has a plurality of pillars 103a, 103b, 103c, 103d, 103e extending in the direction toward the rotating vehicle spring of the bearing so as to form a plurality of pockets 104 for accommodating the rollers.
  • FIG. 40 shows a part of a tapered roller bearing including the cage segment 101a shown in FIG. It is sectional drawing. 39 and 40, the configuration of the tapered roller bearing 11 1 including the cage segment 101a will be described.
  • the tapered roller bearing 111 includes an outer ring 112, an inner ring 113, a plurality of tapered rollers 114, and a plurality of tapered rollers 114.
  • a plurality of cage segments 101a, 101b, 101c, etc. for holding the tapered rollers 114 are provided.
  • the plurality of tapered rollers 114 are held by a plurality of cage segments 1 Ol a or the like in the vicinity of the PCD (Pitch Circle Diameter) 105 where the roller behavior is most stable.
  • PCD Peak Circle Diameter
  • the cage segment 10 la that holds the plurality of tapered rollers 114 is connected so that the cage segments 101b and 101c having the same shape adjacent in the circumferential direction and the outermost column portions 103a and 103e abut on each other. Are arranged.
  • a plurality of cage segments 101a, 101b, 101c and the like are connected to each other and incorporated in the tapered roller bearing 111 to form one annular cage included in the tapered roller bearing 111.
  • the dimensions of the last gap formed between the first cage segment and the last cage segment when the resin cage segments are arranged in the circumferential direction are as follows. , 0.15% or more and less than 1% of the circumference of the circle passing through the center of the cage segment.
  • the cage segment is produced from polysulfide sulfide (hereinafter referred to as “PPS”) or polyether ether ketone (hereinafter referred to as “PEEK”) force! /,
  • PPS polysulfide sulfide
  • PEEK polyether ether ketone
  • FIG. 41 is a schematic sectional view showing a part of the tapered roller bearing 111 when the tapered roller bearing 111 is used as a bearing for supporting the main shaft of the wind power generator.
  • the gap 115 generated between the cage segments 101a and 101c is exaggerated and greatly illustrated.
  • main shaft 110 of the wind power generator supported by tapered roller bearing 111 is used on the horizontal axis.
  • the cage segments 101a to 101c revolve in a direction indicated by an arrow in FIG.
  • the revolving motion of the cage segments 101a to 101c is performed so that each cage segment 101a to 101c sequentially pushes the adjacent cage segments 101a to 101c in the direction of the arrows.
  • FIG. The tapered roller and cage segment 101a will fall freely at the part indicated by XXXXI.
  • the cage segments 101a and 101c collide with each other to cause deformation of the cage segments 101a and 101c, wear of the end surfaces, collision noise, and the like, which may greatly reduce the function of the tapered roller bearing 111.
  • the tapered roller bearing 11 1 When the tapered roller bearing 11 1 is used as a bearing for supporting the main shaft 110 of the wind power generator, the cage segments 101a to 101c themselves are also large, so that the problem caused by the collision during free fall is great. Therefore, the gap size specified above is insufficient, and the circumferential gap needs to be further reduced. However, resin cage segments are also affected by thermal expansion, and there is a limit to reducing the circumferential clearance.
  • An object of the present invention is to provide a roller bearing capable of preventing a decrease in function.
  • Another object of the present invention is to provide a roller wheel bearing that can reduce the risk of breakage of the cage segment and can smoothly roll the rollers.
  • Still another object of the present invention is to provide a cage segment of a roller bearing for supporting a main shaft of a wind power generator that can prevent a decrease in the function of the bearing.
  • Still another object of the present invention is to provide a cage segment for a roller bearing for supporting a main shaft of a wind power generator capable of reducing the risk of breakage and allowing the rollers to roll smoothly.
  • Still another object of the present invention is to provide a main shaft support structure of a wind power generator that can prevent a decrease in function.
  • Still another object of the present invention is to provide a main shaft support structure for a wind power generator capable of extending the life.
  • a roller bearing according to the present invention has an outer ring, an inner ring, a plurality of rollers disposed between the outer ring and the inner ring, and a pocket that accommodates the roller, and is provided between the outer ring and the inner ring in the circumferential direction.
  • the cage segment is made of resin containing a filler that reduces the coefficient of linear expansion due to heat. Further, when the plurality of cage segments are arranged without gaps in the circumferential direction, there is a gap between the cage segment arranged first and the cage segment arranged last. Here, at room temperature, the gap
  • the circumferential dimension is greater than 0.075% and less than 0.12% of the circumference of the circle passing through the center of the cage segment.
  • the cage segment is made of resin including a filler that reduces the coefficient of linear expansion due to heat, thereby reducing the dimensional change due to thermal expansion of the cage segment. . Then, the circumferential clearance generated between the cage segments can be made smaller than the range specified in European Patent Publication 1408248A2.
  • bearing components such as an outer ring, an inner ring, and a tapered roller provided in a tapered roller bearing are generally made of steel such as case-hardened steel.
  • Such a bearing component such as an outer ring also thermally expands due to temperature change.
  • the force S can be reduced to 0.075% of the circumference of the circle. That is, by making the circumferential gap larger than 0.075% of the circumference, it is possible to avoid a state in which the circumferential dimension of the gap becomes negative and the cage segments are stuck and stuck together.
  • the cage constituted by a plurality of cage segments has a high safety factor from the viewpoint of improving durability and reliability.
  • the safety factor of the cage increases as the circumferential clearance decreases.
  • the safety factor of the cage is required to be 4.0 or higher from the viewpoint of the fatigue strength of the cage segment material and the stress generated in the cage segment.
  • a safety factor of 4.0 or more can be secured. Then, including the above-mentioned problems, it is possible to avoid strength problems due to collisions between the cage segments.
  • the cage segment is made of resin containing a filler that reduces the coefficient of linear expansion due to heat, and the circumferential clearance between the cage segments is set within the above range. It is possible to prevent strength problems caused by the collision between the cage segments and deformation due to the circumferential tension between the cage segments. Therefore, it is possible to prevent a decrease in the function of the roller bearing having such a cage segment.
  • the cage segment is a unit body in which one annular cage is divided by a dividing line extending in a direction along the rotation axis of the bearing so as to have at least one pocket for accommodating the rollers. It is.
  • the first cage segment is the cage segment that is placed first when the cage segments are sequentially arranged in the circumferential direction.
  • the last cage segment is the adjacent cage segment. This is the cage segment that is placed last when they are in contact with each other and placed one after another in the circumferential direction.
  • a plurality of cage segments are connected to the roller bearing in a circumferential direction to form one annular cage.
  • the filler contains at least carbon fiber or glass fiber! /. Since such a filler is fibrous, it can efficiently reduce the linear expansion coefficient due to heat, that is, the thermal expansion coefficient.
  • the resin is PEEK.
  • PEEK has a low thermal expansion coefficient compared to other resins, and can easily include a filler to lower the thermal expansion coefficient.
  • the coefficient of linear expansion due to heat of the resin is 1 ⁇ 3 ⁇ 10_ 5 / ° C or more and 1 ⁇ 7 ⁇ 10 ”5 / ° C or less.
  • the thermal expansion coefficient of such steel is about 1.12 X 10_ 5 / ° C.
  • the linear expansion coefficient due to PPS heat is about 5. 0 X 10_ 5 / ° C .
  • the filling ratio of the filler in the resin is 20 wt% or more and 40 wt% or less.
  • the roller is a tapered roller.
  • the roller bearings used for the main shafts of the wind power generators described above must receive a large moment load, thrust load, radial load, and the like.
  • a large moment load or the like can be received.
  • the cage segment has a shaft so as to form a pocket for accommodating the rollers.
  • a plurality of column portions extending in a direction along the rotation axis of the support, and a connecting portion extending in the circumferential direction so as to connect the plurality of column portions.
  • the cage segment is a roller guide.
  • On the side wall surface of the column portion there are provided one guide claw having a contact portion that comes into contact with the roller, and a recess formed at a position on the inner side in the circumferential direction of the contact portion.
  • the cage segment disclosed in European Patent Publication 1408248A2 is a raceway guide.
  • a split cage segment as a roller guide, it is possible to reduce damage, collision noise, and the like during contact with the raceway.
  • FIG. 42 is a cross-sectional view showing a part of the cage segment provided with guide claws, and shows a state seen from the inside of the pocket.
  • the cage segment 121 includes a pillar portion 122 that forms a pocket, and a pair of connecting portions 123a and 123b that connect the pillar portion 122.
  • Two guide claws 124 a and 124 b are provided on the side wall surface of the column portion 122.
  • the guide claws 124a and 124b are arranged at intervals in the roller length direction. With such a configuration, the lubricating oil can be passed through the gap 125 provided between the guide claws 124a and 124b.
  • the cage segment 121 is preferably made of resin and manufactured by injection molding or the like.
  • FIG. 43 is a diagram showing a part of the cage segment 121 in this case.
  • FIG. 43 is a view of the cage segment shown in FIG. 42 as seen from the direction indicated by arrow ⁇ in FIG.
  • center portions 127a and 127b in the roller length direction are recessed due to shrinkage sinks during injection molding.
  • the edge hooks 126a, 126b, 126c, 126d located at both ends of the guide claws 124a, 124b in the roller length direction are in contact with 131. Then, the wear of the edge portions 126a to 126d is promoted, and the rollers 131 and the cage segments are accelerated. 121 cannot stabilize the posture.
  • the cage segment 121 having the above-described shape is provided with a plurality of guide claws 124a and 124b, the edges 126a to 126d of the guide claws 124a and 124b are increased. If it does so, the fluidity
  • the cage segment shown in European Patent Publication No. 1408248A2 if the guide claw is provided only on the roller large diameter side and a part of the column protrudes in the radial direction, the resin contracts or expands. In addition to the above problems, deformation may occur and the shape as designed may not be obtained.
  • the cage segment is connected to the plurality of column portions extending in the direction along the rotation axis of the bearing so as to form a pocket for accommodating the rollers, and the plurality of column portions.
  • the retainer segment is a roller guide, and the side wall surface of the column portion has one guide claw having a contact portion that contacts the roller, and the circumferential direction of the contact portion. Since the roller guide retainer segment has a single guide claw provided on the side wall surface of the column portion by forming the recess formed at the inner side position, the edge portion of the guide claw Can be reduced. Since the cage segment having such a shape has a simple shape, it is possible to reduce the thickness difference and suppress the occurrence of internal defects or deformation during injection molding.
  • the contact area with the tip of the guide claw can be increased to reduce the surface pressure during contact.
  • the rigidity of the column part, and hence the cage segment can be increased.
  • a roller bearing provided with such a cage segment can stabilize the posture of the roller and the cage segment.
  • the concave portion is formed on the inner side in the circumferential direction of the contact portion, the force S for storing the lubricating oil using the concave portion can be obtained. If it does so, lubricating oil can be supplied to a contact part from a recessed part, and power S can be improved. Therefore, the cage segment is prevented from being damaged and the rollers are smoothly Roll with force S.
  • the guide claw is provided at the center in the roller length direction on the side wall surface of the column portion.
  • the rollers and guide claws accommodated in the pockets contact each other at the center in the roller length direction, so that the postures of the rollers and the cage segments can be further stabilized. Therefore, the rollers can be rolled more smoothly.
  • the length of the guide claw in the roller length direction is substantially the entire length of the length of the pocket in the roller length direction.
  • the contact portion between the roller and the guide claw can be increased, so that the posture of the roller and the cage segment can be further stabilized. Therefore, the rollers can be rolled smoothly.
  • substantially full length should be interpreted as at least 50% or more, preferably 75% or more, with respect to the length of the pocket in the roller length direction.
  • the concave portion is formed by shrinkage sink marks generated when the cage segment is molded.
  • Such a recess is smoothly connected to the surface of the guide claw, so that the lubricant can easily flow in and out.
  • the recess having such a shape is less likely to cause stress concentration, the risk of breakage can be reduced.
  • the angle of the corner portion positioned at the tip of the guide claw is an obtuse angle.
  • the corner is chamfered. By doing so, it is possible to further reduce the amount that the corners scrub the lubricating oil. Therefore, the force S makes the rollers roll more smoothly.
  • the chamfering is R chamfering.
  • the corners can be formed with smooth surfaces, and therefore the force S for further reducing the amount of lubricating oil can be reduced. Therefore, the rollers can be rolled more smoothly.
  • a cage segment for a roller bearing for supporting a main shaft of a wind power generator is a cage segment of a roller bearing for supporting a wind power generator main shaft that is provided in a roller bearing that supports the main shaft of the wind power generator, has pockets for accommodating the rollers, and is arranged in series in the circumferential direction. And made of a resin containing a filler that reduces the coefficient of linear expansion due to heat.
  • Such a cage segment of a wind power generator main shaft support roller bearing reduces the difference in coefficient of linear expansion due to heat from a bearing constituent member such as an outer ring constituting the wind power generator main shaft support roller bearing. Because the force S can be reduced, it is possible to reduce the change in the circumferential clearance due to temperature changes. Then, the circumferential clearance between the cage segments can be reduced and maintained within the set range. Therefore, it is possible to prevent the deterioration of the function of the roller bearing having such a cage segment.
  • the filler includes at least carbon fiber or glass fiber! /.
  • the thermal expansion coefficient can be efficiently reduced.
  • the resin is polyetheretherketone.
  • the thermal expansion coefficient can be easily reduced by including a filler.
  • the thermal expansion coefficient of the resin is 1. a 1. 7 X 10_ 5 / ° C or less under 3 X 10_ 5 / ° C or more.
  • the filling ratio of the filler in the resin is 20 wt% or more and 40 wt% or less. By doing so, the coefficient of linear expansion due to the heat of the resin can be greatly reduced without causing other problems due to the filling of the filler.
  • a plurality of column portions extending in a direction along the rotation axis of the bearing so as to form a pocket for accommodating the rollers, and a connecting portion extending in the circumferential direction so as to connect the plurality of column portions.
  • It is a roller guide.
  • the edge part of the guide claw can be reduced. Since the cage segment having such a shape is a simple shape, the thickness difference can be reduced to suppress the occurrence of internal defects or deformation during injection molding. Also, the contact area with the tip of the guide claw The surface pressure at the time of contact can be reduced by increasing the number. Furthermore, the rigidity of the column part, and hence the cage segment, can be increased. A roller bearing provided with such a cage segment can stabilize the posture of the roller and the cage segment.
  • the concave portion is formed on the inner side in the circumferential direction of the contact portion, the force S for storing the lubricating oil using the concave portion can be obtained. If it does so, lubricating oil can be supplied to a contact part from a recessed part, and power S can be improved. Therefore, damage can be prevented and the roller can roll smoothly.
  • the concave portion is formed by shrinkage sink marks generated when the cage segment is molded. Since such a recess is smoothly connected to the surface of the guide claw, the lubricating oil can easily flow in and out. In addition, since the recess having such a shape is less likely to cause stress concentration, the risk of breakage can be reduced.
  • the main shaft support structure of the wind power generator is incorporated in a blade that receives wind power, a main shaft that is fixed to the blade and rotated together with the blade, and a fixing member.
  • a roller bearing that rotatably supports the main shaft.
  • the roller bearing has an outer ring, an inner ring, a plurality of rollers arranged between the outer ring and the inner ring, and a pocket for accommodating the rollers, and a plurality of rollers arranged sequentially in the circumferential direction between the outer ring and the inner ring.
  • a cage segment is made of resin containing a filler that reduces the coefficient of thermal expansion due to heat.
  • the circumferential dimension of the gap is greater than 0.075% and less than 0.12% of the circumference of the circle passing through the center of the cage segment.
  • the main shaft support structure of the wind power generator includes a roller bearing that prevents the deterioration of the function of the bearing, it is possible to prevent the function of the main shaft support structure itself of the wind power generator from being deteriorated.
  • the cage segment has a plurality of pillar portions extending in a direction along the rotation axis of the bearing so as to form a pocket for accommodating the rollers, and a circumferential direction so as to connect the plurality of pillar portions.
  • the cage segment is a roller guide, and the side wall surface of the column portion has one guide claw having a contact portion that contacts the roller, and the inner circumferential side of the contact portion. There is a recess formed in the position!
  • Such a main shaft support structure of a wind power generator includes a roller bearing that can reduce the risk of breakage of the cage segment and can smoothly roll the rollers, so that the service life can be extended. it can.
  • the material of the cage segment is made of resin including a filler that reduces the coefficient of linear expansion due to heat, and the circumferential clearance between the cage segments is within the above range. It is possible to prevent strength problems caused by the collision between the cage segments and deformation due to the circumferential tension between the cage segments. Therefore, it is possible to prevent deterioration of the function of the roller bearing having such a cage segment.
  • such a cage segment of a wind power generator main shaft support roller bearing reduces a difference in coefficient of linear expansion due to heat with a bearing constituent member such as an outer ring constituting the wind power generator main shaft support roller bearing. Therefore, it is possible to reduce the change in the circumferential clearance due to temperature changes. Then, the circumferential clearance between the cage segments can be reduced and maintained within the set range. Therefore, it is possible to prevent a decrease in the function of the roller bearing having such a cage segment.
  • the main shaft support structure of the wind power generator includes a roller bearing that prevents the function from being deteriorated, it is possible to prevent the function of the main shaft support structure itself of the wind power generator from being deteriorated.
  • FIG. 1 is an enlarged cross-sectional view showing a gap between a first cage segment and a last cage segment in a tapered roller bearing according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a cage segment included in a tapered roller bearing according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the cage segment shown in FIG. 2 taken along a plane that includes line III III in FIG. 2 and that is perpendicular to the rotation axis of the bearing.
  • FIG. 4 is a cross-sectional view of the cage segment shown in FIG. 2 cut along a plane that passes through the center of the column and is orthogonal to the circumferential direction.
  • FIG.5 Schematic cross section of tapered roller bearing with multiple cage segments arranged in the circumferential direction
  • FIG. 8 A view showing an example of a main shaft support structure of a wind power generator using a tapered roller bearing according to the present invention.
  • FIG. 9 is a schematic side view of the main shaft support structure of the wind power generator shown in FIG.
  • FIG. 10 A perspective view of a cage segment included in a tapered roller bearing according to another embodiment of the present invention.
  • FIG. 12 is a cross-sectional view of the cage segment shown in FIG. 10 taken along a plane that includes line XI-XI in FIG. 10 and that is perpendicular to the axis.
  • FIG. 13 is a cross-sectional view of the cage segment shown in FIG. 10 taken along a plane that passes through the center of the column and is orthogonal to the circumferential direction.
  • FIG. 15 is an enlarged sectional view showing a corner portion of a guide claw provided in the cage segment.
  • FIG. 16 is a schematic sectional view of a tapered roller bearing when a plurality of cage segments are arranged in the circumferential direction.
  • Fig. 17 is an enlarged sectional view showing adjacent cage segments.
  • FIG. 19] is a cross-sectional view showing a double row tapered roller bearing according to still another embodiment of the present invention.
  • FIG. 20] is an enlarged cross-sectional view showing a part of the double row tapered roller bearing shown in FIG.
  • FIG. 21 is a flowchart showing an outline of a method for assembling the double row tapered roller bearing shown in FIG.
  • FIG. 23 is a cross-sectional view showing a state in which the tapered rollers and the cage segments are arranged.
  • FIG. 24 is a cross-sectional view showing a state where the inner ring spacer is arranged.
  • FIG. 25 is a cross-sectional view showing a state where an outer ring is arranged.
  • FIG. 26 is a sectional view showing a state in which the other tapered roller and the cage segment are arranged.
  • FIG. 27 is an enlarged cross-sectional view showing a part of an inner ring included in a double row tapered roller bearing according to another embodiment of the present invention.
  • FIG. 28 is an enlarged sectional view showing a part of an inner ring included in a double row tapered roller bearing according to still another embodiment of the present invention.
  • FIG. 30 is an enlarged view of the tapered roller shown in FIG. 29.
  • FIG. 31 is a view showing a state before one of the inner ring members of the tapered roller bearing is assembled into the main shaft.
  • FIG. 32 is a view showing a state after the tapered roller bearing is assembled into the main shaft.
  • FIG. 33 is a flowchart showing a main method of incorporating one of the inner ring members of the tapered roller bearing into the main shaft.
  • FIG. 34 A view showing a tapered roller bearing that supports the main shaft of the wind power generator.
  • FIG. 35 is an enlarged view of the tapered roller shown in FIG. 34.
  • Fig. 36 is a diagram showing a state before one of the inner ring members of the tapered roller bearing is assembled into the main shaft.
  • Fig. 37 is a diagram showing a state after the tapered roller bearing is assembled into the main shaft.
  • FIG. 38 is a flowchart showing a main method of incorporating one of the inner ring members of the tapered roller bearing into the main shaft.
  • FIG. 39 is a perspective view of a conventional cage segment.
  • FIG. 40 A sectional view of a part of the tapered roller bearing including the cage segment shown in FIG. 39 cut along a plane orthogonal to the rolling axis of the bearing.
  • FIG. 41 is a schematic cross-sectional view of a tapered roller bearing provided with a cage segment shown in FIG. 40, taken along a plane perpendicular to the rolling axis of the bearing.
  • FIG. 42 A view showing a part of a cage segment provided with a split type guide claw.
  • FIG. 43 is a view of the cage segment shown in FIG. 42 as viewed from the radial direction.
  • FIG. 44 is a view of the cage segment as viewed from the radial direction when it contacts the roller at one edge portion of the guide claw.
  • FIG. 2 is a perspective view showing a cage segment 11a of a roller bearing for supporting a main shaft of a wind power generator provided in a tapered roller bearing according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the cage segment 11a shown in FIG. 2 taken along a plane including line III III in FIG. 2 and perpendicular to the rotation axis of the bearing.
  • FIG. 4 is a cross-sectional view of the cage segment 11a shown in FIG. 2 taken along a plane that passes through the center of the column 14a and is orthogonal to the circumferential direction. From the viewpoint of easy understanding, in FIGS. 3 and 4, the plurality of tapered rollers 12a, 12b, 12c held by the cage segment 11a are indicated by dotted lines. PCD22a is indicated by a one-dot chain line.
  • the cage segment 11a has a shape in which one annular cage is divided by a dividing line extending in a direction along the rotation axis of the bearing so as to have at least one pocket for accommodating the rollers.
  • the cage segment 11a includes four pillars 14a, 14b, 14c, 14d extending in the direction along the rotation axis of the bearing so as to form pockets 13a, 13b, 13c for receiving the tapered rollers 12a, 12b, 12c.
  • the cage segment 11a is configured such that the column portions 14a and 14d are located at the outer end in the circumferential direction.
  • the pair of connecting portions 15a and 15b are arranged in the circumferential direction so that when the plurality of cage segments 11a are assembled in the tapered roller bearing, they form a single annular cage in the circumferential direction. It has a predetermined radius of curvature.
  • the radius of curvature of the connecting portion 15a located on the small diameter side of the tapered rollers 12a to 12c is smaller than the radius of curvature of the connecting portion 15b located on the large diameter side of the tapered rollers 12a to 12c. It is configured.
  • the outer diameter side of the side wall surface of the pillar portions 14b and 14c is an outer diameter that restricts the movement of the cage segment 11a inward in the radial direction.
  • Side guide claws 18b and 18c are provided. The guide claws 18b and 18c come into contact with the tapered roller 12b accommodated in the pocket 13b on the outer diameter side.
  • Each guide claw 17a-; 17d, 18b, 18c is the shape which protruded in the pocket 13a-; 13c side. Further, in the cross section shown in FIG.
  • the guide surfaces of the guide claws 17a to 17d, 18b and 18c have a circular arc cross section and a shape along the rolling surfaces of the tapered rollers 12a to 12c.
  • the cage segment 1 la is brought into contact with the guide surfaces of the inner claws 17a ⁇ ; 17d, 18b, 18c, The ability to use roller guidance is possible.
  • end surfaces 21a and 21b on the outer sides in the circumferential direction of the column portions 14a and 14d located on the outer sides in the circumferential direction are flat.
  • the cage segment 1la is made of a resin containing a filler that reduces the coefficient of linear expansion due to heat. By doing so, the difference in coefficient of linear expansion due to heat from the bearing components such as the outer ring constituting the roller bearing for supporting the main shaft of the wind power generator can be reduced, as will be described later. The change in the dimension of the gap can be reduced.
  • the resin is preferably PEEK.
  • the coefficient of linear expansion due to heat of PEEK itself is
  • the filler is preferably configured to include at least carbon fiber or glass fiber! /. Since such a filler is fibrous, it can efficiently reduce the linear expansion coefficient due to heat, that is, the thermal expansion coefficient.
  • the linear expansion coefficient of a resin of heat it is preferable 1. 3X 10- 5 / ° C or higher 1. 7X 10- 5 / ° is C or less.
  • steel such as case hardened steel is used as a bearing constituent member such as an outer ring constituting the bearing. Heat from the linear expansion coefficient of such steel is 1. 12X 10_ 5 / ° about C. Therefore, by making the linear expansion coefficient due to the heat of the resin within the above range, the difference S in the linear expansion coefficient due to the heat with the bearing constituent member such as the outer ring can be allowed in the actual use situation.
  • the filling ratio of the filler in the resin is preferably 20% by weight or more and 40% by weight or less. By doing so, it is possible to greatly reduce the thermal expansion coefficient of the resin without causing other problems due to filling of the filler, for example, insufficient strength due to excessive filling amount.
  • the retainer segment 11a specifically, comprises 30 wt% of carbon fiber as a filler, it is preferable coefficient of linear expansion is made of PEEK is 1. 5 X 10_ 5 / ° C .
  • Such retainer segment 11 a is the thermal linear expansion coefficient is PEEK steel and the retainer segment is 4. 7 X 10- 5 / ° C , the thermal linear expansion coefficient is 5. 0 X 10_ 5 / °
  • the linear expansion coefficient due to heat is significantly different from the cage segment made of PPS, which is C.
  • FIG. 5 is a schematic cross-sectional view of a tapered roller bearing 31a in which a plurality of cage segments l la, l ib, 11 c, l id and the like are arranged in the circumferential direction, as viewed from the axial direction.
  • FIG. 6 is an enlarged cross-sectional view of a portion indicated by VI in FIG.
  • the cage segments l lb, 11c, and l id are the same shape and material as the cage segment 11a, and thus the description thereof is omitted.
  • the tapered rollers held by the cage segment 11a and the like are omitted.
  • the cage segment arranged first is the cage segment 1 la
  • the cage segment arranged last is the cage segment l id. .
  • tapered roller bearing 31a includes an outer ring 32a, an inner ring 33a, a plurality of tapered rollers 34a, and a plurality of cage segments 11a to 11d.
  • the cage segments 11a to; the lids are sequentially arranged in the circumferential direction and arranged without gaps.
  • the cage segment 11a is first arranged, and then the cage segment l ib contacts the cage segment 11a.
  • the end surface 21a of the cage segment 11a and the cage It is arranged so that it contacts the end face 21c of the segment l ib.
  • the end face of the cage segment l ib is adjusted so that the cage segment 11c contacts the cage segment l ib.
  • the cage segments lla to l Id are arranged in the circumferential direction. In this case, there is a circumferential clearance 39a between the first cage segment 11a and the last cage segment 11d.
  • FIG. 1 is an enlarged cross-sectional view of a portion indicated by I in FIG.
  • the circumferential dimension R of the gap 39a is set to be larger than 0 ⁇ 075% and smaller than 0 ⁇ 12% of the circumference of the circle passing through the center of the cage segments lla to l Id.
  • the circumferential lengths of the cage segments lla to lld may be adjusted so that the circumferential dimension R of the gap 39a is within the above range, or the cage segments 1 la ⁇ l lc may be arranged sequentially, and when the last cage segment lid is arranged, the end face 21f may be trimmed to adjust the dimensions so that it falls within the above range.
  • FIG. 7 is a graph showing the relationship between the ratio of the gap 39a and the safety factor of the cage.
  • the safety factor of the cage constituted by a plurality of cage segments lla to l Id is the fatigue strength of the material of cage segment 1 la to l Id and the cage segment 1 From the viewpoint of the stress generated in la ⁇ l Id, 4.0 or more is required.
  • the safety factor can be kept at 4.0 or more by making the circumferential dimension of the clearance 39a smaller than 0.12% of the circumference. In this case, it is possible to avoid a strong problem due to a collision between the cage segments lla to l Id.
  • the linear expansion coefficient Kb of the retainer segment 11a mentioned above is 1. 5X 10_ 5 / ° about C.
  • the outer ring or the like is bearing part is hardened steel, its linear expansion coefficient Ka is 1. 12X10_ 5 / ° about C.
  • the difference in expansion amount ⁇ is expressed by the equation (1).
  • the cage segments l la to l ld are made of resin containing a filler that reduces the coefficient of linear expansion due to heat, and the circumferential gap 39a between the cage segments 11a and l id is obtained.
  • the strength failure caused by the collision between the cage segments l la to l Id and the deformation due to the circumferential tension between the cage segments l la to l Id it can. Accordingly, it is possible to prevent the function of the tapered roller bearing 31a having the cage segments 11a to 11 id from being deteriorated.
  • cage segments 11a-; l id can reduce the difference in coefficient of linear expansion due to heat from the bearing constituent members such as the outer ring 32a constituting the tapered roller bearing 31a, so that the temperature The change in the dimension of the circumferential clearance 39a due to the change can be reduced. Then, the force S can be maintained to maintain the circumferential clearance 39a between the cage segments 11a to 11d within the set range. Therefore, it is possible to prevent the function of the tapered roller bearing 31a including the cage segments lla to lld from being deteriorated.
  • the circumferential dimension of such a spacer is the same material as the cage segment l la to l Id because the circumferential dimension of the cage segments l la to l Id is very small. It may be made of metal, or it may be made of simple resin There may be.
  • FIG. 8 and FIG. 9 show an example of a main shaft support structure of a wind power generator in which the tapered roller bearing according to one embodiment of the present invention is applied as the main shaft support bearing 75.
  • the casing 63 of the nacelle 62 that supports the main components of the spindle support structure is installed on the support base 60 via a swivel bearing 61 at a high position so as to be horizontally rotatable.
  • the main shaft 66 that fixes the blade 67 that receives wind force to one end is rotatably supported in the casing 63 of the nacelle 62 via the main shaft support bearing 65 incorporated in the bearing housing 64.
  • the other end is connected to the speed increaser 68, and the output shaft of the speed increaser 68 is coupled to the rotor shaft of the generator 69.
  • the nacelle 62 is turned at an arbitrary angle by the turning motor 70 via the speed reducer 71.
  • Main shaft support bearing 65 incorporated in bearing housing 64 is a tapered roller bearing according to an embodiment of the present invention, and includes a plurality of tapered rollers arranged between an outer ring, an inner ring, and an outer ring and an inner ring. And a plurality of cage segments which have pockets for accommodating the tapered rollers and are successively arranged in the circumferential direction between the outer ring and the inner ring.
  • the cage segment is made of resin containing a filler that reduces the coefficient of thermal expansion due to heat.
  • the main shaft support bearing 65 supports the main shaft 66 that fixes the blade 67 that receives a large wind force at one end, it is necessary to receive a large moment load, a thrust load, a radial load, or the like.
  • a large moment load or the like can be received.
  • the main shaft support structure of the wind power generator includes the tapered roller bearing that prevents the function from being deteriorated, it is possible to prevent the function of the main shaft support structure itself of the wind power generator from being deteriorated. .
  • the circumferential dimension of the gap is larger than 0.075% of the circumference of a circle passing through the center of the cage segment, and larger than 0.12%. small Furthermore, it may be set to be larger than 0.075% and smaller than 0 ⁇ 10% of the circumference of a circle passing through the center of the cage segment. By doing this, the safety factor of the cage can be made 6.0 or more, and deformation due to collision can be further reduced.
  • the cage segment material is a force in which the filler contained in the resin is composed of only carbon fiber, and the filler is only glass fiber. Also good.
  • the filler may be configured to include either carbon fiber or glass fiber.
  • a powdery filler such as carbon black may include a granular filler.
  • the cage segment connects a plurality of column portions extending in a direction along the rotation axis of the bearing so as to form a pocket for accommodating the rollers, and the plurality of column portions.
  • the cage segment is a roller guide, and a guide claw having a contact portion that contacts the roller is provided on the side wall surface of the column portion, and the contact portion is provided in the circumferential direction of the contact portion. You may comprise so that the recessed part formed in the position of the side may be provided.
  • FIG. 10 is a perspective view showing a cage segment l lg of a tapered roller bearing provided in a tapered roller bearing according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of the cage segment l lg shown in FIG. 10 cut along XI-XI in FIG.
  • FIG. 12 is a cross-sectional view of the cage segment l lg shown in FIG. 10 taken along a plane that includes the line XII-XII in FIG. 10 and that is perpendicular to the rotation axis of the bearing.
  • FIG. 13 is a cross-sectional view of the cage segment l lg shown in FIG.
  • FIG. 14 is an enlarged cross-sectional view of the pocket portion of the cage segment l lg shown in FIG.
  • the plurality of tapered rollers 12g, 12h, and 12i held by the cage segment llg are indicated by dotted lines, and in FIG. 14, they are indicated by solid lines.
  • PCD22g is indicated by a one-dot chain line.
  • the cage segment l lg is a segment extending in the direction along the axis of rotation of the bearing so that one annular cage has at least one pocket for accommodating the cage.
  • the shape is divided by a secant line.
  • the cage segment l lg has four pillars 14g, 14h, 14i, 14j extending in the direction along the axis of rotation of the bearing so as to form pockets 13g, 13h, 13i for holding the tapered rollers 12g, 12h, 12i.
  • the cage segment l lg is configured such that the column portions 14g and 14j are positioned at the outer end in the circumferential direction.
  • the pair of connecting portions 15g and 15h are arranged in the circumferential direction so that when the plurality of cage segments llg are assembled into the tapered roller bearing, they form a single annular cage in the circumferential direction. In this case, it has a predetermined radius of curvature.
  • the radius of curvature of the connecting portion 15g located on the small diameter side of the tapered rollers 12g to 12i is smaller than the radius of curvature of the connecting portion 15h located on the large diameter side of the tapered rollers 12g to 12i. It is configured.
  • the inner side of the side wall surface of the column portions 14g to 14j is held there are provided guide claws 17g, 17h, 17i, 17j on the inner diameter side for restricting the movement of the container segment llg radially outward.
  • the guide claws 17g to 17j are in contact with the cones 12g and 12i accommodated in the pockets 13g and 13i on the inner diameter side.
  • the outer side of the side wall of the pillars 14h and 14i is restricted from moving inward in the radial direction of the cage segment llg.
  • the guide claws 18h and 18i on the outer diameter side are provided.
  • the guide claws 18 h and 18 i are in contact with the tapered rollers 12 h accommodated in the pockets 13 h on the outer diameter side.
  • One guide claw 17g-17j, 18h, 18i is provided on each side wall surface of the pillar portions 14g-14j.
  • Each plan inner claw 17g-; 17j, 18h, 18i is the shape which protruded in the pocket 13g-; 13i side.
  • the guide surfaces of the guide claws 17g to 17j, 18h, and 18i have a circular arc cross section, and have shapes that follow the rolling surfaces of the tapered rollers 12g to 12i.
  • Guide claw 17g-Roller length of 17j, 18h, 18i is slightly shorter than the length of roller 13g-13i in the roller length direction, and the length in the roller length direction of pockets 13g-13i It is almost full length.
  • the guide claws 17g to 17j, 18h, and 18i are not provided on the side wall surfaces of the pillar portions 14g to 14j, and are not provided at positions offset to one side of the connecting portion 15g or the connecting portion 15h. It is provided in the center of the direction.
  • circumferentially outer end faces 21g, 2 of the column parts 14g, 14j located on the outer circumferential side lh is flat.
  • the cage segment l lg can be connected to the guide surface contact portion 28g of the guide claws 17g-17j, 18h, 18i. It can be used as a roller guide.
  • a contact portion that contacts the tapered roller 12h is provided on a side wall surface of the column portion 14h provided with the guide claw 18h.
  • a recess 29g is provided which is located on the inner side in the circumferential direction of 28g and is formed by shrinkage marks generated when the cage segment llg is formed (see FIGS. 11 and 14).
  • Such a recess 29 g can be formed easily in injection molding, that is, without post-processing or the like.
  • the mold shape corresponding to the contact portion 28g is a concave shape considering shrinkage sink marks. By doing so, the contact portion 28g is flattened due to shrinkage sink, and a concave portion 29g due to shrinkage sink is formed on the inner side in the circumferential direction of the contact portion 28g. In this way, the cage segment l lg is manufactured.
  • the force S can be formed by forming the recess 29g due to shrinkage sink at the above-mentioned position.
  • the recessed portion 29g formed in this way is different from the recessed portion formed by cutting after injection molding or the like in its surface roughness.
  • the side wall surfaces of the pillar portions 14g to 14j provided with the guide claw 17g to 17j on the inner diameter side and the guide claw 18i on the outer diameter side are also located on the inner side in the circumferential direction of the contact portion in contact with the tapered roller.
  • a recess 29g is provided. Since their configuration is the same, description thereof is omitted. From the viewpoint of easy understanding, in FIG. 14, the amount of the recess 29g is exaggerated and greatly illustrated.
  • roller cage segment llg has one guide claw 17g ⁇ 17j, 18h, 18i provided on the side wall surface of the column part 14g-14j
  • the guide claw 17g ⁇ ; 17j, 18h Can reduce the edge of 18i.
  • the cage segment l lg having such a shape has a simple shape, it is possible to reduce the thickness difference and suppress the occurrence of internal defects and deformation during injection molding. Further, the contact area between the guide claws 17g to 17j, 18h, and 18i and the tapered rollers 12g to 12i can be increased to reduce the surface pressure at the time of contact. Furthermore, the pillar portions 14g to 14j can be pulled to increase the rigidity of the cage segment llg.
  • the roller bearing provided with such a cage segment l lg can stabilize the posture of the tapered rollers 12g to 12i and the cage segment 1 lg. Moreover, it is located in the circumferential direction inner side of the contact part 28g. Since the recess 29g is formed, lubricating oil can be stored using the recess 29g. Then, the lubricating oil can be supplied from the concave portion 29g to the contact portion, and the lubricity can be improved. Therefore, breakage of the cage segment l lg can be prevented, and the tapered rollers 12g to 12i can be smoothly rolled.
  • the concave portion 29g is smoothly connected to the surfaces of the guide claws 17g to 17j, 18h, and 18i, the lubricating oil can easily flow in and out. Further, the concave portion 29g having such a shape is less likely to cause stress concentration, so that the risk of breakage can be reduced.
  • the length of the guide claws 17g to 17j, 18h, and 18i in the roller length direction is almost the entire length in the pocket length direction of the pocket 13g to 13i.
  • the contact portion 28g between 12i and the guide claws 17g-17j, 18h, 18i can be increased, and the postures of the tapered rollers 12g-12i and the cage segment llg can be further stabilized. Therefore, it is possible to force the tapered rollers 12g to 12i to roll smoothly.
  • the guide claws 17g to 17j, 18h, and 18i are provided in the center in the roller length direction on the side wall surfaces of the pillar portions 14g to 14j, and therefore are conicals that can be accommodated in the pockets 13g to 13i.
  • the rollers 12g to 12i are in contact with the center in the roller length direction, and the postures of the tapered rollers 12g to 12i and the cage segment llg can be further stabilized. Accordingly, the tapered rollers 1 2 g to 12 i can be smoothly rolled.
  • the angle of corner portion 23g located on the pocket 13h side of guide claw 18h is configured to be an obtuse angle.
  • the outer diameter surface 24g of the pillar portion 14h to the corner portion 23g.
  • the formed angle ⁇ is configured to be larger than 90 °.
  • the angle of the corner 23g is an acute angle
  • a large amount of lubricating oil in the vicinity of the tapered roller 12h and the guide claw 18h is scraped off when the tapered roller 12h rolls.
  • the lubricating oil is supplied into the pocket 13h from the outside of the cage segment llg, causing poor lubrication and hindering smooth rolling of the tapered roller 12h.
  • the corner 23g located at the tip of the guide claw 18h is an obtuse angle, when the tapered roller 12h rolls, the amount of lubricating oil near the tapered roller 12h and the guide claw 18h is reduced. That power S.
  • the lubricating oil in the vicinity of the tapered roller 12h and the guide claw 18h is easily supplied into the pocket 13h, and the risk of poor lubrication is reduced. Therefore, it is possible to smoothly roll the tapered roller 12h.
  • the shapes of the guide claws 17g to 17j on the inner diameter side and the guide claws 18i on the outer diameter side have the same configuration, and thus the description thereof is omitted.
  • FIG. 16 is a schematic cross-sectional view of a tapered roller bearing 31g in which a plurality of cage segments l lg, l lh, l li, l lj and the like are arranged in the circumferential direction, as viewed from the axial direction.
  • FIG. 17 is an enlarged cross-sectional view of a portion indicated by XVII in FIG.
  • the cage segments l lh, l li, and l lj have the same shape as the cage segment l lg, and thus the description thereof is omitted.
  • FIG. 16 is a schematic cross-sectional view of a tapered roller bearing 31g in which a plurality of cage segments l lg, l lh, l li, l lj and the like are arranged in the circumferential direction, as viewed from the axial direction.
  • FIG. 17 is an enlarged cross-sectional view of a portion indicated by XVII in FIG.
  • the tapered rollers held by the cage segments l lg and the like are omitted, and in FIG. 16 and FIG. 17, the concave portions provided on the side wall surfaces of the column portions are omitted.
  • the cage segment arranged first is the cage segment l lg, and the cage segment arranged last is the cage segment l lj. To do.
  • tapered roller bearing 31g includes an outer ring 32g, an inner ring 33g, a plurality of tapered rollers 34g, and a plurality of cage segments l lg.
  • the cage segments 1 lg to l lj are sequentially connected in the circumferential direction and arranged without gaps.
  • the cage segment l lg is first arranged, and then the cage segment l lh is in contact with the cage segment l lg, specifically, the end face 21g of the cage segment l lg And the retainer segment l lh are arranged so as to abut against the end face 21i.
  • the cage segment 1 li is placed in contact with the cage segment l lh, specifically, the end surface 21j of the cage segment l lh and the end surface 21k of the cage segment l li are placed in contact.
  • the cage segments are sequentially arranged, and finally the cage segment l lj is arranged.
  • the cage segments l lg to l lj are arranged in the circumferential direction.
  • Such a gap 39g is provided in consideration of the thermal expansion of the cage segments llg to llj.
  • the tips of the guide claws 36g and 37g provided on the side wall surface of the column part have less shrinkage shrinkage, so that the rigidity of the column part is high. Further, the guide claws 36g and 37g By increasing the contact area between the tip and the tapered roller 34g, the surface pressure at the time of contact can be reduced. Further, the lubricating oil can be supplied to the contact portion from the concave portion located on the inner side in the circumferential direction of the contact portion, and the lubricity can be improved. Such a recess is smoothly connected to the surfaces of the guide claws 36g and 37g, so that the lubricant can easily flow in and out. In addition, since the concave portion having such a shape is unlikely to cause stress concentration, the risk of breakage can be reduced. Therefore, breakage of the cage segment l lh can be prevented, and the tapered roller 34g can be smoothly rolled.
  • the angle of the corners located at the tips of the guide claws 36g and 37g provided in the cage segment lh is an obtuse angle. Then, at the time of rolling of the tapered roller 34g, the corner portion located at the tip of the guide claw 36g, 37g can reduce the amount of lubricating oil in the vicinity of the tapered roller 34g, the guide claw 36g, 37g. . Therefore, the lubricating oil in the vicinity of the tapered rollers 34g and the guide claws 36g and 37g is easily supplied into the pocket, and the risk of poor lubrication is reduced.
  • Chamfering may be provided at the corners of the guide claws 36g and 37g. By doing so, the amount of the corner portion scooping up the lubricating oil can be further reduced. Therefore, the tapered roller 34g can be smoothly rolled.
  • the chamfering provided at the corner 42g of the guide claw 41g may be an R chamfering.
  • the corner 42g becomes a smoother surface, so that the amount of lubricating oil can be further reduced.
  • one guide claw provided at the center in the roller length direction is provided on the side wall surface of the column portion, and is located on the inner side in the circumferential direction of the contact portion of the guide claw.
  • the recess may be formed by shrinkage sink.
  • one guide claw that is substantially the entire length of the pocket in the roller length direction is formed on the side wall surface of the column portion, and the guide claw contact portion is arranged in the circumferential direction.
  • the concave portion located on the side may be formed by shrinkage sink marks.
  • one guide claw with an obtuse angle of the corner located at the tip of the side wall surface of the column is one, and the inner side in the circumferential direction of the contact portion of the guide claw It is good also as a structure which forms the recessed part located in by shrinkage sink marks.
  • a configuration in which chamfers are provided at such corners, or a configuration in which the chamfers are R chamfers. May be.
  • the force that is provided by using the shrinkage sink to provide the concave portion formed at the inner side in the circumferential direction of the contact portion may be provided by shelling or the like.
  • tapered roller bearing may be applied as a main shaft support bearing of the main shaft support structure of the wind power generator shown in FIG. 8 and FIG. 9 described above.
  • the main shaft support bearing incorporated in the bearing housing is a tapered roller bearing according to another embodiment of the present invention, and includes a plurality of conical rollers arranged between the outer ring, the inner ring, and the outer ring and the inner ring.
  • An outer ring having a roller, a plurality of pillars extending in a direction along the rotation axis of the bearing so as to form a pocket for accommodating the tapered roller, and a connecting part extending in the circumferential direction so as to connect the plurality of pillars
  • a plurality of cage segments having the above-described configuration, which are sequentially arranged in the circumferential direction between the inner rings.
  • the cage segment is a roller guide.
  • one guide claw having a contact portion that comes into contact with the tapered roller, and a recess formed at a position on the inner side in the circumferential direction of the contact portion.
  • the main shaft support bearing needs to receive a large moment load, a thrust load, a radial load, etc. in order to support a main shaft that fixes a blade that receives a large wind force at one end.
  • a large moment load or the like can be received.
  • such a main shaft support structure of a wind power generator includes a tapered roller bearing that can reduce the risk of breakage of the cage segment and can smoothly roll the tapered roller. The power S is measured.
  • the inner ring is arranged with the end face on the large diameter side facing downward, and the tapered rollers and the cage are arranged on the raceway surface of the inner ring. Then, the inner ring on which the tapered rollers and the cage are arranged is lifted by a crane or the like and incorporated into the rotating shaft.
  • the inner ring and the cage can be connected and fixed to prevent the tapered roller or the like from falling off.
  • the cage segments described above are divided in the circumferential direction, and each is an independent member. Then, in order to prevent the tapered rollers and the like from falling off, the inner ring and each cage segment must be connected and fixed, resulting in great labor. As a result, it becomes difficult to incorporate the inner ring on which the tapered roller and the cage are arranged into the rotating shaft, and the productivity of the tapered roller bearing is deteriorated.
  • a double row tapered roller bearing according to still another embodiment of the present invention may be configured as follows.
  • FIG. 19 is a cross-sectional view showing a double row tapered roller bearing according to still another embodiment of the present invention.
  • FIG. 20 is an enlarged cross-sectional view of a portion indicated by XX in FIG.
  • double row tapered roller bearing 41 includes outer ring 42, two inner rings 43a, 43b arranged so that small diameter side ends 48a, 48b face each other, outer ring 42, and A plurality of tapered rollers 44a, 44b disposed between the inner rings 43a, 43b, and the above-described plurality of cage segments 45a, 45b and spacers (not shown) holding the respective tapered rollers 44a, 44b And an inner ring spacer 46 disposed between the inner ring 43a and the inner ring 43b.
  • the outer race 42 is provided with two raceway surfaces 51a and 51b.
  • the inner rings 43a and 43b have raceway surfaces 51c and 51d, respectively.
  • the tapered roller 44a is disposed between the outer ring 42 and the inner ring 43a so that the rolling surface 52a abuts against the raceway surfaces 51a and 51c.
  • the tapered roller 44b is disposed between the outer ring 42 and the inner ring 43b so as to abut on the rolling surface 52b and the raceway surfaces 51b and 51d.
  • the outer ring 42 has small flanges 49a, 49b at the small diameter side ends of the tapered rollers 44a, 44b.
  • the guide surfaces 50a and 50b of the small flanges 49a and 49b can contact the small end surfaces 53a and 53b of the tapered rollers 44a and 44b, respectively.
  • the guide surface 5 Oa is preferably substantially perpendicular to the raceway surface 51a or substantially parallel to the small end surface 53a in a state where the tapered rollers 44a are disposed.
  • the guide surface 50b is preferably substantially perpendicular to the raceway surface 51b or substantially parallel to the small end surface 53b in a state where the tapered rollers 44b are disposed.
  • the inner ring 43a does not have a force S having a large flange 55a at the large-diameter end of the tapered roller 44a and does not have a small flange at the small-diameter end 48a. That is, the force provided with the large flange 55a at the large diameter end of the inner ring 43a The small ring is not provided at the small diameter end 48a of the inner ring 43a.
  • the maximum outer diameter L of the small-diameter end 48a of the inner ring 43a is equal to or less than the roller inscribed circle diameter L of the tapered roller 44a (Fig. 20).
  • the inner ring 43b has a large flange 55b at the large-diameter end of the tapered roller 44b, but does not have a small flange at the small-diameter end 48b.
  • FIG. 21 is a flowchart showing an outline of a procedure for incorporating the double row tapered roller bearing 41 shown in FIGS. 19 and 20 into the rotating shaft 47.
  • 22 to 26 are cross-sectional views showing the arrangement of each member in each process. With reference to FIG. 19 to FIG. 26, a description will be given of an assembling method when the double row tapered roller bearing 41 having the above-described configuration is incorporated into the rotating shaft 47.
  • the large-diameter side end face 56b of one inner ring 43b is faced downward and assembled into the rotating shaft 47 (FIGS. 21A and 22). Thereafter, the raceway surface 51d of the inner ring 43b and the rolling surface 52b of one of the tapered rollers 44b are in contact with each other, and the guide surface 50d of the large collar 55b of the inner ring 43b is in contact with the large end surface 54b of the tapered roller 44b. Rollers 44b and cage segments 45b are arranged (Fig. 21 (B), Fig. 23).
  • the plurality of cage segments 45b are arranged on the raceway surface 51d of the inner ring 43b so as to be connected in the circumferential direction. Further, a spacer is disposed between the first cage segment 45b and the last cage segment 45b. In this case, since the large end surface 54b of the tapered roller 44b is disposed so as to contact the proposed inner surface 50d of the large collar 55b of the inner ring 43b, the large end surface 54b is caught by the large collar 55b. The arrangement of the cage segments 45b will not collapse.
  • the inner ring spacer 46 is assembled to the rotary shaft 47 from above so as to come into contact with the small-diameter end 48b of the inner ring 43b (FIGS. 21C and 24).
  • the raceway surface 51a of the outer ring 42 and the rolling surface 52a of the other tapered roller 44a come into contact with each other.
  • the tapered roller 44a and the cage segment 45a are arranged so that the guide surface 50a of 9a and the small end surface 53a of the tapered roller 44a abut (FIG. 21 (E), FIG. 26).
  • the cage segments 45a and the like are arranged so as to be connected in the circumferential direction.
  • the small end surface 53a of the tapered roller 44a is hooked on the small flange 49a, and the arrangement of the tapered roller 44a and the cage segment 45a is not broken.
  • the inner ring 43a is assembled into the rotating shaft 47 from above so that the contact surface 52a and the raceway surface 51c of the inner ring 43a abut (FIG. 21 (F), FIG. 19, FIG. 20).
  • the small diameter side end portion 48a of the inner ring 43a is not provided with a small flange, so that the tapered roller 44a and the inner ring 43a do not interfere with each other.
  • the maximum outer diameter L of the small-diameter end 48a of the inner ring 43a is equal to or smaller than the roller inscribed circle diameter L of the tapered roller 44a, the small-diameter end 48a of the inner ring 43a interferes with the tapered roller 44a.
  • the ring 43a can be incorporated in the rotating shaft 47.
  • the outer diameter of the outer diameter surface of the end portion on the small diameter side of the inner ring is preferably smaller toward the tip.
  • the angle between the line indicating the outer diameter surface constituting the small diameter side end portion and the rotation center axis is larger than 0 °.
  • FIG. 27 is an enlarged cross-sectional view showing the vicinity of the end portion on the small diameter side of the inner ring included in the double row tapered roller bearing. The cross section shown in FIG. 27 passes through the rotation center axis.
  • the angle ⁇ between the line 57a indicating the outer diameter surface constituting the small-diameter end 48c and the line 57b parallel to the rotation center axis of the rotation shaft 47 is
  • a force greater than S is preferable.
  • the outer diameter surface is composed of a plurality of flat surfaces and curved surfaces, and the outer diameter size of the outer diameter surface is reduced toward the tip.
  • a chamfer may be provided at the corner of the outer diameter surface of the end portion on the small diameter side of the inner ring.
  • FIG. 28 is an enlarged sectional view showing a part of the inner ring in this case, and corresponds to FIG. Referring to FIG. 28, a corner portion 58 of the outer diameter surface of the small diameter side end portion 48d of the inner ring 43d is provided with a chamfer having a R-shaped cross section. By doing so, when the inner ring 43d is assembled to the rotating shaft 47, the handling property is improved and the assembling property is improved.
  • the chamfering may be C chamfering.
  • tapered roller bearing may be applied as a main shaft support bearing of the main shaft support structure of the wind power generator shown in FIGS. 8 and 9 described above.
  • the main shaft support bearing 65 incorporated in the bearing housing 64 is a tapered roller bearing according to still another embodiment of the present invention, and a small roller is provided at the tapered roller and the small diameter side end of the tapered roller. And a plurality of cage segments divided in the circumferential direction, having at least one pocket for holding the tapered roller.
  • the main shaft support bearing 65 supports the main shaft 66 that fixes the blade 67 that receives large wind force at one end, a large load force S is applied, and the bearing itself needs to be large.
  • the cage is a split type and configured as described above, the tapered roller bearing is assembled to the main shaft 66. When incorporating, it can be easily incorporated. Therefore, the productivity of the main shaft support structure of the wind power generator can be improved.
  • the tapered roller bearing is not limited to the force that includes the spacer, but is also applied to a tapered roller bearing of a type that does not include such a spacer.
  • the cage segment included in the tapered roller bearing is not limited to the force divided by a dividing line extending in the direction along the axis, and is applied to cage segments of various shapes divided in the circumferential direction. .
  • a tapered roller bearing forms an inner ring, an outer ring, a plurality of tapered rollers having rolling surfaces in contact with the inner ring and the outer ring, and a pocket for holding the tapered rollers.
  • a plurality of column portions extending in the direction along the axis, and a connecting portion extending in the circumferential direction so as to connect the plurality of column portions, and sequentially arranged in the circumferential direction between the inner ring and the outer ring.
  • roller diameter at any position on the rolling surface of the tapered roller is D
  • the distance between the raceway surfaces of the inner and outer rings at the measuring position of the roller diameter of the tapered roller is d
  • all It may be configured to satisfy D> d at at least one of the rolling surfaces of each of the tapered rollers.
  • the conical roller bearing distance d is made smaller than the roller diameter D at any position in the circumferential direction of the tapered roller bearing (hereinafter, this relationship is referred to as a "negative gap"). This prevents slipping and makes the rotation and revolution smooth. As a result, collision between adjacent cage segments can be suppressed, so that generation of noise due to collision, wear of the collision portion, and deformation or breakage of the cage can be prevented.
  • FIG. 29 and 30 show a conical roller bearing 81 applied as the main shaft support bearing of the wind power generator described above, and Figs. 31 to 33 show a method of incorporating the tapered roller bearing 81 into the main shaft 86.
  • FIG. 29 and 30 show a conical roller bearing 81 applied as the main shaft support bearing of the wind power generator described above, and Figs. 31 to 33 show a method of incorporating the tapered roller bearing 81 into the main shaft 86.
  • tapered roller bearing 81 includes an inner ring 82 including left and right inner ring members 82a and 82b, an outer ring 83, a plurality of tapered rollers 84, and a cage including a plurality of cage segments 91. And an inner ring spacer 85.
  • the cage segment 91a is shown in Fig. 2 above. Since the cage segment and its configuration are the same, the description thereof is omitted.
  • the inner ring member 82a has a raceway surface 86a on the outer diameter surface, a small flange 87a on one end of the raceway surface 86a, a large collar 88a on the other end, and an axial direction on the end surface on the large collar 88a side. And a plurality of bolt holes 89 a extending in the direction.
  • the inner ring member 82b has the same configuration.
  • the inner ring members 82a and 82b constitute the inner ring 82 by arranging the small collars 87a and 87b facing each other with the inner ring spacer 85 interposed therebetween.
  • the outer ring 83 includes double row raceway surfaces 83a and 83b corresponding to the raceway surfaces 86a and 86b of the inner ring members 82a and 82b, and a plurality of through holes 83c penetrating in the axial direction.
  • tapered roller 84 has a small end surface 84a, a large end surface 84b, and a rolling surface 84c, and / J ⁇ end surface 84a is used as an inner ring bearing 82a, 82b / J ⁇ . i ⁇ Located between inner ring 82 and outer ring 83 toward 87a and 87b b.
  • a crowning is formed on the rolling surface 84c, and the top is located at the center of the roller length.
  • the “rolling surface” is the length of the portion excluding the chamfered portions at both ends, and can be in contact with the raceway surfaces 86a, 86b, 83a, 83b of the inner ring 82 and the outer ring 83 when assembled in the bearing. Point to the surface.
  • the tapered roller bearing 81 having the above-described configuration is a back combination bearing in which the tapered rollers 84 are arranged in double rows in the axial direction and the small end surfaces 84a of the tapered rollers 84 in the left and right rows are butted together. Further, if the roller diameter at an arbitrary position of the rolling surface 84c of the tapered roller 84 is D and the distance between the raceway surfaces of the inner ring 82 and the outer ring 83 at the measurement position of the roller diameter of the tapered roller 84 is d, all the tapered rollers 84 At least one point on each raceway surface 84c satisfies D> d. In other words, the distance between the raceway surfaces is a negative gap.
  • the tapered rollers 84 can slip sideways, etc. Rotating and revolving motions are smoothed. As a result, collision between adjacent cage segments can be suppressed, so that generation of noise due to collision, wear of the collision portion, and deformation or breakage of the cage can be prevented.
  • the “load region” refers to a region where a load is applied in the circumferential direction of the main shaft, and the “non-load region” refers to a region where no load is applied. This load region and non-load region appear in an environment where a load that is biased in a predetermined direction acts during rotation, like the main shaft of a wind power generator.
  • tapered roller bearing 81 configured as described above as a bearing for supporting the main shaft of the wind power generator, a long-life and highly reliable main shaft support structure for the wind power generator can be obtained.
  • top of the crowning is located at the center of the length of the tapered roller 84 in the above-described embodiment, it is not limited to this, and it can be set at an arbitrary position. S can.
  • the tapered roller bearing 81 in the above embodiment has shown an example of a double row.
  • the present invention is not limited to this, and may be a single row or a multi-row bearing having three or more raceway surfaces. It may be.
  • the tapered roller bearing 81 has been shown as an example of the combination of the rear surfaces, but is not limited thereto, and may be a front combination bearing in which the large end surfaces 84b of the tapered rollers 84 are butted together.
  • the cage used for the tapered roller bearing having the above-described configuration includes a split-type cage having any configuration cut at an arbitrary position in the circumferential direction.
  • FIG. 33 is a flowchart showing a main process of incorporating one inner ring member 82b of the tapered roller bearing 81 into the main shaft 86.
  • the tapered roller bearing 81 When the tapered roller bearing 81 is incorporated into the main shaft 86 of a large wind power generator, the main shaft 86 is fixed vertically on the ground. First, the inner ring member 82a is threaded through the main shaft 86 with the large bush 88a facing downward. Next, the cage segment 91 and the spacer (not shown) that house the tapered roller 84 in the pocket are sequentially arranged on the raceway surface 86a of the inner ring member 82a.
  • the tapered roller bearing 81 that supports the main shaft 86 of the wind power generator generally has a large taper angle, the tapered roller 84 must be caught by the big collar 88a even if it is not restrained on the raceway surface 86a. There is no. Further, the inner ring spacer 85 is passed through the main shaft 86.
  • the inner ring member 82b and the outer ring 83 are assembled before being assembled to the main shaft 86 (Sll). Specifically, the inner ring member 82b is placed with the large spear 88b facing downward. Next, the cage segment 91 in which the tapered rollers 84 are accommodated in the pockets is sequentially arranged on the raceway surface 86b of the inner ring member 82b. Next, the outer ring 83 is assembled so that the raceway surface 83b of the outer ring 83 and the rolling surface 84c of the tapered roller 84 are in proper contact with each other.
  • the inner ring member 82b and the outer ring 83 are fixedly connected (S12). Specifically, one end of the L-shaped fixing jig 92 and the bolt hole 89b of the inner ring member 82b are fixed by the bolt 93, and the other end and the through hole 83c of the outer ring 83 are fixed by the fixing rod 94. As a result, the tapered roller 84 is restrained between the raceway surfaces 86b and 83b! /, So it will not fall out! /.
  • the fixedly connected inner ring member 82b and the outer ring 83 are lifted (S 13), and are assembled into the main shaft 86 with the raceway surface 83a of the outer ring 83 facing downward (S 14 ). Further, as shown in FIG. 32, after confirming that the raceway surface 83a of the outer ring 83 is in proper contact with the tapered roller 84 incorporated in the inner ring member 82a, the fixing jig 92 is removed.
  • the distance d between the raceways of the inner ring 82 and the outer ring 83 is adjusted (S15). Specifically, the width of the inner ring spacer 85 is adjusted in advance, and the distance between the raceway surfaces is set to a predetermined value by applying preload between the inner ring members 82a and 82b.
  • the tapered roller bearing 81 can be easily incorporated into the main shaft 86.
  • the present invention can obtain the effect even when applied to other types of bearings such as a self-aligning roller bearing.
  • the tapered roller bearing can easily adjust the distance between the raceway surfaces as described above, it can be said that the present invention is particularly suitable for the tapered roller bearing.
  • the force shows an example in which both inner ring members 82a and 82b are provided with borehole holes 89a and 89b. From the point of view of the assembling work, the inner ring member 82b is assembled with the facet 87b facing downward. Bolt holes 89b only need to be provided in
  • the main shaft support structure of the wind power generator according to the present invention includes a blade for receiving wind, a main shaft whose one end is fixed to the blade and rotates together with the blade, and a tapered roller that rotatably supports the main shaft. And a bearing.
  • the rolling surface of each tapered roller At least one location may be configured to satisfy D> d! /.
  • the main shaft support structure of the wind power generator according to the present invention may be a main shaft support structure of the wind power generator having the following configuration. That is, a spindle support structure for a wind power generator comprising a blade that receives wind, a spindle that has one end fixed to the blade and that rotates together with the blade, and a tapered roller bearing that rotatably supports the spindle.
  • a spindle support structure for a wind power generator comprising a blade that receives wind, a spindle that has one end fixed to the blade and that rotates together with the blade, and a tapered roller bearing that rotatably supports the spindle.
  • a tapered roller bearing that rotatably supports the spindle.
  • it comprises an inner ring and an outer ring having raceway surfaces, and a plurality of tapered rollers having rolling surfaces in contact with the raceway surfaces.
  • this tapered roller bearing has a position where adjacent tapered rollers can contact each other. It is a full-roller type bearing
  • FIG. 34 and FIG. 35 are views showing a tapered roller bearing 95 that supports the main shaft 86 of the wind power generator
  • FIGS. 36 to 38 are views showing a method of incorporating the tapered roller bearing 95 into the main shaft 86.
  • FIG. 34 and FIG. 35 are views showing a tapered roller bearing 95 that supports the main shaft 86 of the wind power generator
  • FIGS. 36 to 38 are views showing a method of incorporating the tapered roller bearing 95 into the main shaft 86.
  • tapered roller bearing 95 includes an inner ring 96 including left and right inner ring members 82e and 82f, an outer ring 97, a plurality of tapered rollers 98, and an inner ring spacer 85.
  • the inner ring member 82e has a raceway surface 86e on the outer diameter surface, a small hook 87e on one end of the raceway surface 86e, a large spear 88e on the other end, and an axial direction on the end face on the large sputum 88e side. And a plurality of bolt holes 89 e extending in the direction.
  • the inner ring member 82f has the same configuration.
  • the inner ring members 82e and 82f constitute an inner ring 96 by arranging the small collars 87e and 87f facing each other across the inner ring spacer 85.
  • the outer ring 97 has double-row raceway surfaces 83e and 83f corresponding to the raceway surfaces 86e and 86f of the inner ring members 82e and 82f, and a plurality of through holes 83g penetrating in the axial direction.
  • tapered roller 98 has a small end surface 84e, a large end surface 84f, and a rolling surface 84g, and small end surface 84e is on the side of small collars 87e and 87f of inner ring members 82e and 82f. It is arranged between the inner ring 96 and the outer ring 97 toward the front. In addition, a crowning is formed on the rolling surface 84g, and the top is located at the center of the roller length.
  • the tapered roller bearing 95 configured as described above is a back combination bearing in which the tapered rollers 98 are arranged in double rows in the axial direction, and the small end surfaces 84e of the tapered rollers 98 in the left and right rows are butted together.
  • each raceway surface is a full-roller type bearing in which adjacent tapered rollers 98 are arranged at positions where they can contact each other.
  • the number of the tapered rollers 98 that can be accommodated is increased as compared with a tapered roller bearing of the same size including the cage.
  • the load capacity of the entire bearing can be increased.
  • a load is applied to all the tapered rollers 98 via the inner and outer rings 96, 97. As a result, a large load can be supported even when used in an environment including a load region and a non-load region, and the rigidity of the tapered roller bearing 95 is improved.
  • the tapered roller 98 in the above embodiment is located at the center of the length of the tapered roller 98 is shown in the above embodiment, the tapered roller 98 is not limited to this. S can.
  • the force shown in the example in which the crowning is formed on the rolling surface 84g. This invention is applied to the tapered roller bearing that employs a tapered roller that does not have a crowning formed by the force S.
  • the tapered roller bearing 95 in the above embodiment has shown an example of a double row, but it may be a single row that is not limited to this, or a multi-row bearing having three or more raceway surfaces. There may be.
  • Ma The tapered roller bearing 95 has been shown as an example of the combination of the rear surfaces, but is not limited thereto, and may be a front combination bearing in which the large end surfaces 84f of the tapered rollers 98 are butted together.
  • FIGS. 36 and 37 are views showing the state before and after the tapered roller bearing 95 is assembled to the main shaft 86
  • FIG. 38 is a flowchart showing the main steps of incorporating one inner ring member 82f of the tapered roller bearing 95 into the main shaft 86. is there.
  • the tapered roller bearing 95 When the tapered roller bearing 95 is incorporated into the main shaft 86 of a large wind power generator, the main shaft 86 is fixed vertically on the ground. First, the inner ring member 82e is threaded through the main shaft 86 with the large flange 88e facing downward. Next, the tapered roller 98 is assembled on the raceway surface 86e of the inner ring member 82e. Here, since the center of gravity G of the tapered roller 98 is located radially inward from the outer diameter surface of the large collar 88e, the tapered roller 98 is not caught on the raceway surface 86e and is not caught by the large collar 88e. Absent. Further, the inner ring spacer 85 is passed through the main shaft 86.
  • the tapered roller bearing 95 that supports the main shaft 86 of the wind power generator is subjected to a thrust load caused by the blade receiving wind, etc., and a radial load and a moment load caused by the blade's own weight, etc. . Therefore, in order to properly support these loads, the conical roller bearing 95 is located at a position in contact with the rotation center line 1 of the tapered roller bearing 95 and the raceway surface 83e of the outer ring 97.
  • the angle ⁇ (hereinafter referred to as the “contact angle”) between the outer diameter surface of 98 and the imaginary line 1 of the raceway surface 83e of the outer ring 97
  • the inner ring member 82f and the outer ring 97 are assembled before being assembled to the main shaft 86 (S21). Specifically, the inner ring member 82f is placed with the large spear 88e facing downward. Next, the tapered roller 98 is assembled on the raceway surface 86f of the inner ring member 82f. Next, the outer ring 97 is assembled so that the raceway surface 83f of the outer ring 97 and the rolling surface 84g of the tapered roller 98 are in proper contact with each other.
  • the inner ring member 82f and the outer ring 97 are fixedly connected (S22). Specifically, one end of the L-shaped fixing jig 92 and the bolt hole 89f of the inner ring member 82f are fixed by the bolt 93, and the other end is fixed. Fix the through hole 83g of the outer ring 97 with the fixing rod 94. As a result, the tapered roller 98 is restrained between the raceway surfaces 86f and 83f! /, So it will not fall out! /.
  • the raceway surface 83e of the outer ring 97 is mounted on the main shaft 86 with the track surface 83e facing down (S24). Furthermore, as shown in FIG. 37, after confirming that the raceway surface 83e of the outer ring 97 is in proper contact with the tapered roller 98 incorporated in the inner ring member 82e, the fixing jig 92 is removed.
  • the distance d between the raceways of the inner ring 96 and the outer ring 97 is adjusted (S25). Specifically, the distance between the raceway surfaces is set to a predetermined value by adjusting the width of the inner ring spacer 85 and applying a preload between the inner ring members 82e and 82f. More specifically, all tapered rollers 9
  • the fixing jig 92 includes an inner ring member 8
  • the present invention can obtain the effect even when applied to other types of bearings, for example, self-aligning roller bearings.
  • the tapered roller bearing can easily adjust the distance between the raceway surfaces as described above, it can be said that the present invention is particularly suitable for the tapered roller bearing.
  • the position of the center of gravity of the tapered roller 98 corresponds to the tapered roller bearing 9 as the contact angle ⁇ increases.
  • the above-described incorporation method is suitable for a bearing having a large contact angle ⁇ , such as a tapered roller bearing 95 that supports the main shaft 86 of the wind power generator.
  • both inner ring members 82e and 82f are provided with borehole holes 89e and 89f.
  • borehole holes 89e and 89f are provided.
  • the tapered roller is used as the roller accommodated in the cage segment.
  • the present invention is not limited to this, and a cylindrical roller, a needle roller, a rod roller, or the like may be used. Good.
  • the roller bearing according to the present invention is effectively used for a main shaft support structure of a wind power generator that is required to prevent deterioration in function.
  • the cage segment of the roller bearing for supporting a main shaft of a wind power generator according to the present invention is effectively used when a reduction in the function of the bearing is required.
  • the main shaft support structure of a wind power generator according to the present invention can be effectively used when it is required to prevent the function from being deteriorated.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Rolling Contact Bearings (AREA)
  • Wind Motors (AREA)

Description

明 細 書
ころ軸受、風力発電機主軸支持用ころ軸受の保持器セグメントおよび風 力発電機の主軸支持構造
技術分野
[0001] この発明は、ころ軸受、風力発電機主軸支持用ころ軸受の保持器セグメントおよび 風力発電機の主軸支持構造に関し、特に、周方向に配置されて一つの保持器を形 成する風力発電機主軸支持用ころ軸受の保持器セグメント、このような風力発電機 主軸支持用ころ軸受の保持器セグメントを含むころ軸受および風力発電機の主軸支 持構造に関するものである。
背景技術
[0002] ころ軸受は、一般的には、外輪と、内輪と、外輪および内輪の間に配置される複数 のころと、複数のころを保持する保持器とから構成される。保持器は通常、一体型、 すなわち、環状の一つの部品で構成されている。
[0003] 風を受けるためのブレードが取り付けられた風力発電機の主軸を支持するころ軸受 については、大きな荷重を受ける必要があるため、ころ軸受自体も大型となる。そうす ると、ころや保持器等、ころ軸受を構成する各構成部材も大型となり、部材の生産や 組み立てが困難となる。このような場合、各部材を分割可能とすると、生産や組み立 てが容易となる。
[0004] ここで、ころ軸受に含まれる保持器を軸受の回転軸線に沿う方向に延びる分割線 によって分割した分割型の保持器に関する技術力、ヨーロッパ特許公報 1408248A 2に開示されている。図 39は、ヨーロッパ特許公報 1408248A2に開示された分割 型の保持器である保持器セグメントを示す斜視図である。図 39を参照して、保持器 セグメント 101aは、ころを収容する複数のポケット 104を形成するように軸受の回転 車由泉に う方向に延びる複数の柱き 103a、 103b, 103c, 103d, 103eと、複数の 柱部 103a〜; 103eを連結するように周方向に延びる連結部 102a、 102bとを有する
[0005] 図 40は、図 39に示した保持器セグメント 101aを含む円錐ころ軸受の一部を示す 断面図である。図 39および図 40を参照して、保持器セグメント 101aを含む円錐ころ 軸受 11 1の構成を説明すると、円錐ころ軸受 111は、外輪 112と、内輪 113と、複数 の円錐ころ 114と、複数の円錐ころ 114を保持する複数の保持器セグメント 101a、 1 01b、 101c等とを有する。複数の円錐ころ 114は、最もころの挙動が安定する位置で ある PCD (Pitch Circle Diameter) 105付近において、複数の保持器セグメント 1 Ol a等によって保持されている。複数の円錐ころ 114を保持する保持器セグメント 10 laは、周方向において隣接する同一形状の保持器セグメント 101b、 101cと、周方 向のもっとも外側にある柱部 103a、 103eが当接するように連なって配置されている。 複数の保持器セグメント 101a、 101b, 101c等が連なって、円錐ころ軸受 111に組 み込まれ、円錐ころ軸受 111に含まれる一つの環状の保持器が形成される。
[0006] ヨーロッパ特許公報 1408248A2によると、樹脂製の各保持器セグメントを周方向 に連ねて配置したときに、最初の保持器セグメントと最後の保持器セグメントとの間に 生じる最後のすき間の寸法を、保持器セグメントの中央を通る円の円周の 0. 15%以 上、かつ、 1 %未満としている。このように構成することにより、保持器セグメント同士が 衝突した際の衝突音等を防止すると共に、熱膨張時における保持器セグメント同士 の膠着を防止することにしている。なお、ヨーロッパ特許公報 1408248A2において は、保持器セグメントを、ポリフエ二ルサルファイド(以下、「PPS」と称する)やポリエー テルエーテルケトン(以下、「PEEK」と称する)力、ら製造して!/、る。
[0007] ここで、周方向のすき間をこのような数値範囲としても、発明者が着眼した下記問題 点に対応することはできない。図 41は、円錐ころ軸受 111を、風力発電機の主軸を 支持する軸受として使用する場合の円錐ころ軸受 111の一部を示す概略断面図で ある。なお、理解の容易の観点から、保持器セグメント 101a、 101c間に生ずるすき 間 115を、誇張して大きく図示している。
[0008] 図 41を参照して、円錐ころ軸受 11 1に支持される風力発電機の主軸 110は、横軸 で使用される。円錐ころ軸受 111の使用時において、保持器セグメント 101a〜; 101c は、例えば、図 41中の矢印で示す方向に公転運動を行なう。保持器セグメント 101a 〜; 101 cの公転運動は、各保持器セグメント 101 a〜; 101 cが隣接する保持器セグメン ト 101a〜; 101cを矢印の方向に順次押すように行われる。この場合、例えば、図 41 中の XXXXIで示す部分において円錐ころや保持器セグメント 101aが自由落下して しまうことになる。そうすると、保持器セグメント 101a、 101c同士が衝突して、保持器 セグメント 101a、 101cの変形や端面の摩耗、衝突音等が発生し、円錐ころ軸受 111 の機能を大きく低下させる恐れがある。
[0009] 円錐ころ軸受 11 1を風力発電機の主軸 110を支持する軸受として使用する場合、 保持器セグメント 101a〜; 101c自体も大型となるため、 自由落下時の衝突による問題 は大きい。したがって、上記に規定したすき間の寸法では不十分であり、周方向のす き間をさらに小さくする必要がある。しかし、樹脂製の保持器セグメントでは、熱膨張 の影響もあり、周方向のすき間の寸法を小さくするにも限界がある。
発明の開示
[0010] この発明の目的は、機能の低下を防止することができるころ軸受を提供することで ある。
[0011] この発明の他の目的は、保持器セグメントの破損の恐れを低減し、ころを円滑に転 動させること力 Sできるころ車由受を提供することである。
[0012] この発明のさらに他の目的は、軸受の機能の低下を防止することができる風力発電 機主軸支持用ころ軸受の保持器セグメントを提供することである。
[0013] この発明のさらに他の目的は、破損の恐れを低減し、ころを円滑に転動させること ができる風力発電機主軸支持用ころ軸受の保持器セグメントを提供することである。
[0014] この発明のさらに他の目的は、機能の低下を防止することができる風力発電機の主 軸支持構造を提供することである。
[0015] この発明のさらに他の目的は、長寿命化を図ることができる風力発電機の主軸支持 構造を提供することである。
[0016] この発明に係るころ軸受は、外輪と、内輪と、外輪および内輪の間に配置される複 数のころと、ころを収容するポケットを有し、外輪および内輪の間で周方向に順次連 ねて配置される複数の保持器セグメントとを備える。保持器セグメントは、熱による線 膨張係数を低下させる充填材を含む樹脂製である。また、複数の保持器セグメントを 周方向に無間隙に配置した場合に、最初に配置される保持器セグメントと最後に配 置される保持器セグメントとの間にすき間を有する。ここで、室温において、すき間の 周方向の寸法は、保持器セグメントの中央を通る円の円周の 0. 075%よりも大きく、 0. 12%よりも小さい。
[0017] このように、保持器セグメントの材質を、熱による線膨張係数を低下させる充填材を 含む樹脂製とすることにより、保持器セグメントの熱膨張による寸法変化を小さくする こと力 Sでさる。そうすると、保持器セグメント間に生ずる周方向のすき間を、ヨーロッパ 特許公報 1408248A2に規定する範囲よりも小さくすることができる。
[0018] ここで、円錐ころ軸受に備えられる外輪や内輪、円錐ころ等の軸受構成部材は、一 般的には肌焼鋼等のような鋼製である。このような外輪等の軸受構成部材も、温度変 化により熱膨張する。ここで、保持器セグメントの熱による線膨張係数と軸受構成部 材の熱による線膨張係数とを考慮すると、実使用状況において、室温における周方 向のすき間の寸法を保持器セグメントの中央を通る円の円周の 0. 075%まで小さく すること力 Sできる。すなわち、周方向のすき間を円周の 0. 075%よりも大きくすること により、すき間の周方向の寸法が負になって保持器セグメント同士が突っ張りあい、 膠着する状態を回避することができる。
[0019] また、上記した用途に使用される円錐ころ軸受において、複数の保持器セグメント によって構成される保持器は、耐久性、信頼性向上の観点から安全率を大きくするこ とが好ましい。保持器の安全率は、周方向のすき間の寸法を小さくするほどその値が 大きくなる。保持器の安全率は、保持器セグメントの材質の疲労強度および保持器セ グメントに発生する応力等の観点から、 4. 0以上が要求される。ここで、室温における すき間の周方向の寸法を保持器セグメントの中央を通る円の円周の 0. 12%よりも小 さくすることにより、安全率を 4. 0以上に確保することができる。そうすると、上記した 問題も含め、保持器セグメント同士の衝突等による強度的な不具合を回避することが できる。
[0020] このように保持器セグメントの材質を、熱による線膨張係数を低下させる充填材を含 む樹脂製として、保持器セグメント間の周方向のすき間を上記した範囲とすることによ り、保持器セグメント同士の衝突による強度的な不具合等や、保持器セグメント同士 の周方向の突っ張りあいによる変形等を防止することができる。したがって、このよう な保持器セグメントを備えるころ軸受の機能の低下を防止することができる。 [0021] ここで、保持器セグメントとは、一つの環状の保持器を、少なくともころを収容する 1 つのポケットを有するように、軸受の回転軸線に沿う方向に延びる分割線によって分 割した単位体である。また、最初の保持器セグメントとは、保持器セグメントを周方向 に順次連ねて配置する際に、最初に配置される保持器セグメントをいい、最後の保 持器セグメントとは、隣接する保持器セグメントを当接させ、周方向に順次連ねて配 置していった際に、最後に配置される保持器セグメントをいう。複数の保持器セグメン トが周方向に連なってころ軸受に組み込まれ、一つの環状の保持器を構成する。
[0022] 好ましくは、充填材は、少なくとも炭素繊維またはガラス繊維の!/、ずれかを含む。こ のような充填材は、繊維状であるため、効率的に熱による線膨張係数、すなわち、熱 膨張係数を低下させることができる。
[0023] さらに好ましくは、樹脂は、 PEEKである。 PEEKは、他の樹脂と比較して熱膨張係 数が低ぐ容易に充填材を含ませて熱膨張係数を低下させることができる。
[0024] さらに好ましくは、樹脂の熱による線膨張係数は、 1 · 3 X 10_5/°C以上 1 · 7 X 10" 5/°C以下である。軸受を構成する外輪等の部材には、一般的には肌焼鋼等の鋼が 使用される。このような鋼の熱による線膨張係数は、 1. 12 X 10_5/°C程度である。 したがって、樹脂の熱による線膨張係数を上記範囲とすることにより、実使用状況に おいて外輪等の軸受構成部材との熱による線膨張係数の差を許容することができる 。なお、上記した PEEKの熱による線膨張係数は、約 4. 7 X 10_5/°Cであり、 PPS の熱による線膨張係数は、約 5. 0 X 10_5/°Cである。
[0025] さらに好ましくは、樹脂中の充填材の充填比率は、 20重量%以上 40重量%以下 である。樹脂中の充填材の充填比率を上記範囲とすることにより、充填材の充填によ る他の不具合を発生させることなく、樹脂の熱膨張係数を大きく低下させることができ
[0026] さらに好ましくは、ころは、円錐ころである。上記した風力発電機の主軸等に使用さ れるころ軸受は、大きなモーメント荷重ゃスラスト荷重、ラジアル荷重等を受ける必要 がある。ここで、ころを円錐ころとすることにより、大きなモーメント荷重等を受けること ができる。
[0027] さらに好ましくは、保持器セグメントは、ころを収容するポケットを形成するように軸 受の回転軸線に沿う方向に延びる複数の柱部、およびこの複数の柱部を連結するよ うに周方向に延びる連結部を有する。保持器セグメントは、ころ案内である。柱部の 側壁面には、ころと接触する接触部を有する一つの案内爪、および接触部の周方向 内方側の位置に形成される凹部が設けられている。
[0028] ヨーロッパ特許公報 1408248A2に開示された保持器セグメントは、軌道輪案内で ある。これに対し、このような分割型の保持器セグメントをころ案内とすることにより、軌 道輪との接触時における破損や衝突音等を低減することができる。
[0029] ここで、保持器セグメントをころ案内とするには、柱部の側壁面にころと接触する案 内爪を設ける。図 42は、案内爪を設けた保持器セグメントの一部を示す断面図であ り、ポケットの内方側から見た状態を示している。図 42を参照して、保持器セグメント 1 21は、ポケットを形成する柱部 122と、柱部 122を連結する一対の連結部 123a、 12 3bとを備える。柱部 122の側壁面には、二つの案内爪 124a、 124bが設けられてい る。各案内爪 124a、 124bは、ころ長さ方向に間隔を開けて配置されている。このよう な構成とすることにより、案内爪 124a、 124b間に設けられるすき間 125を利用して 潤滑油を通油させることができる。
[0030] 一方、このような保持器セグメント 121は、ころ軸受に複数備えられるため、大量に 製造する必要がある。したがって、保持器セグメント 121を樹脂製とし、射出成形等に より製造することが好ましい。
[0031] しかし、上記した形状の保持器セグメント 121を射出成形により製造すると、各案内 爪 124a、 124bの先端において収縮ひけが発生し、案内爪 124a、 124bの中央部が 凹んだ形状となる。これを、図 43を用いて説明する。図 43は、この場合の保持器セグ メント 121の一部を示す図である。なお、図 43は、図 42に示す保持器セグメントを、 図 42中の矢印 ΧΧΧΧΠΙで示す方向から見た図である。
[0032] 図 42および図 43を参照して、保持器セグメント 121の案内爪 124a、 124bのうち、 ころ長さ方向の中央部 127a、 127bは射出成形時における収縮ひけにより凹んでい る。ここで、ころ 131が転動を始める時には、案内爪 124a、 124bのうち、ころ長さ方 向の両端に位置するエッジ咅 126a、 126b, 126c, 126dところ 131と力接角虫する。 そうすると、エッジ部 126a〜; 126dの摩耗が促進され、ころ 131および保持器セグメ ント 121の姿勢を安定させることができない。また、強化繊維が充填された樹脂製の 保持器セグメント 121の場合、樹脂部分の摩耗により強化繊維がその表面に露出し、 これにより、ころ 131が摩耗してしまう恐れもある。このような保持器セグメント 121を備 えるころ軸受は、ころを円滑に転動させることができない。なお、図 44に示すように、 各案内爪 124c、 124dにおける一方のエッジ部 126e、 126fが、ころ 131と接触する 場合も同様である。
[0033] また、上記した形状の保持器セグメント 121は、複数の案内爪 124a、 124bが設け られているため、案内爪 124a、 124bのエッジき 126a〜; 126dカ多くなる。そうすると 、射出成形時において、樹脂材料の流動性が悪化し、内部欠陥が発生しやすい。ま た、ヨーロッパ特許公報 1408248A2に示す保持器セグメントのようにころ大径側に のみ案内爪を有し、柱部の一部が径方向に突出する複雑な形状であれば、樹脂の 収縮や膨張における問題のみならず、変形が発生し、設計寸法通りの形状を得られ ない恐れもある。
[0034] しかし、上記したように、すなわち、保持器セグメントは、ころを収容するポケットを形 成するように軸受の回転軸線に沿う方向に延びる複数の柱部、およびこの複数の柱 部を連結するように周方向に延びる連結部を有し、保持器セグメントは、ころ案内で あり、柱部の側壁面には、ころと接触する接触部を有する一つの案内爪、および接触 部の周方向内方側の位置に形成される凹部が設けられているよう構成することにより 、ころ案内の保持器セグメントにおいて、柱部の側壁面に設ける案内爪を一つとして いるため、案内爪のエッジ部を少なくすることができる。このような形状の保持器セグ メントは、単純な形状であるため、肉厚差を小さくして、射出成形時における内部欠 陥や変形の発生を抑制することができる。また、案内爪の先端ところとの接触面積を 多くして、接触時における面圧を低下させることができる。さらに、柱部、引いては保 持器セグメントの剛性を高くすることができる。このような保持器セグメントを備えるころ 軸受は、ころおよび保持器セグメントの姿勢を安定させることができる。また、接触部 の周方向内方側に位置する凹部を形成しているため、凹部を利用して潤滑油を溜め ること力 Sできる。そうすると、凹部から接触部に潤滑油を供給することができ、潤滑性 を向上すること力 Sできる。したがって、保持器セグメントの破損を防止し、ころを円滑に 転動させること力 Sでさる。
[0035] 好ましくは、案内爪は、柱部の側壁面のうち、ころ長さ方向の中央に設けられている 。こうすることにより、ポケットに収容されるころと案内爪が、ころ長さ方向の中央で接 するため、ころおよび保持器セグメントの姿勢をより安定させることができる。したがつ て、さらにころを円滑に転動させることができる。
[0036] さらに好ましくは、案内爪のころ長さ方向の長さは、ポケットのころ長さ方向の長さの ほぼ全長である。こうすることにより、ころと案内爪との接触部を多くすることができるた め、ころおよび保持器セグメントの姿勢をより安定させることができる。したがって、さら にころを円滑に転動させることができる。ここで、「ほぼ全長」とは、ポケットのころ長さ 方向の長さに対して、少なくとも 50 %以上であると解釈すべきであり、好ましくは、 75 %以上とする。
[0037] さらに好ましくは、凹部は、保持器セグメントを成形する際に生ずる収縮ひけにより 形成される。このような凹部は、案内爪の表面と滑らかに連なっているため、潤滑油 の流出入が容易となる。また、このような形状の凹部は、応力集中が発生しにくいた め、破損の恐れを低減することができる。
[0038] さらに好ましくは、案内爪を含み、軸受の回転軸線に直交する平面で保持器セグメ ントを切断した断面において、案内爪の先端に位置する角部の角度は、鈍角である 。こうすることにより、ころの転動時において、案内爪の先端に位置する角部が、ころ や保持器セグメントの案内爪付近の潤滑油を搔き取る量を低減することができる。そ うすると、ころや案内爪付近の潤滑油はポケット内へ供給されやすくなり、潤滑不良を 低減して、ころを円滑に転動させることができる。
[0039] さらに好ましくは、角部には、面取りが設けられている。こうすることにより、角部が潤 滑油を搔き取る量をさらに低減すること力できる。したがって、さらにころを円滑に転 動させること力 Sでさる。
[0040] さらに好ましくは、面取りは、 R面取りである。こうすることにより、角部を滑らかな面 で構成することができるため、さらに潤滑油を搔き取る量を低減すること力 Sできる。し たがって、さらにころを円滑に転動させることができる。
[0041] この発明の他の局面においては、風力発電機主軸支持用ころ軸受の保持器セグメ ントは、風力発電機の主軸を支持するころ軸受に備えられ、ころを収容するポケットを 有し、周方向に順次連ねて配置される風力発電機主軸支持用ころ軸受の保持器セ グメントであって、熱による線膨張係数を低下させる充填材を含む樹脂製である。
[0042] このような風力発電機主軸支持用ころ軸受の保持器セグメントは、風力発電機主軸 支持用ころ軸受を構成する外輪等の軸受構成部材との熱による線膨張係数の差を 小さくすること力 Sできるため、温度変化による周方向のすき間の寸法の変化を小さく すること力 Sできる。そうすると、保持器セグメント間の周方向のすき間を小さくし、設定 した範囲内に維持することができる。したがって、このような保持器セグメントを備える ころ軸受の機能の低下を防止することができる。
[0043] 好ましくは、充填材は、少なくとも炭素繊維またはガラス繊維の!/、ずれかを含む。こ うすることにより、効率的に熱膨張係数を低下させることができる。
[0044] さらに好ましくは、樹脂は、ポリエーテルエーテルケトンである。こうすることにより、 容易に、充填材を含ませて熱膨張係数を低下させることができる。
[0045] さらに好ましくは、樹脂の熱膨張係数は、 1. 3 X 10_5/°C以上 1. 7 X 10_5/°C以 下である。こうすることにより、実使用状況において外輪等の軸受構成部材との熱に よる線膨張係数の差を許容することができる。
[0046] さらに好ましくは、樹脂中の充填材の充填比率は、 20重量%以上 40重量%以下 である。こうすることにより、充填材の充填による他の不具合を発生させることなぐ樹 脂の熱による線膨張係数を大きく低下させることができる。
[0047] さらに好ましくは、ころを収容するポケットを形成するように軸受の回転軸線に沿う方 向に延びる複数の柱部、およびこの複数の柱部を連結するように周方向に延びる連 結部を有し、ころ案内である。柱部の側壁面には、ころと接触する接触部を有する一 つの案内爪、および接触部の周方向内方側の位置に形成される凹部が設けられて いる。
[0048] このようなころ軸受の保持器セグメントは、柱部の側壁面に設ける案内爪を一つとし ているため、案内爪のエッジ部を少なくすることができる。このような形状の保持器セ グメントは、単純な形状であるため、肉厚差を小さくして、射出成形時における内部欠 陥や変形の発生を抑制することができる。また、案内爪の先端ところとの接触面積を 多くして、接触時における面圧を低下させることができる。さらに、柱部、引いては保 持器セグメントの剛性を高くすることができる。このような保持器セグメントを備えるころ 軸受は、ころおよび保持器セグメントの姿勢を安定させることができる。また、接触部 の周方向内方側に位置する凹部を形成しているため、凹部を利用して潤滑油を溜め ること力 Sできる。そうすると、凹部から接触部に潤滑油を供給することができ、潤滑性 を向上すること力 Sできる。したがって、破損を防止し、ころを円滑に転動させることがで きる。
[0049] 好ましくは、凹部は、保持器セグメントを成形する際に生ずる収縮ひけにより形成さ れる。このような凹部は、案内爪の表面と滑らかに連なっているため、潤滑油の流出 入が容易となる。また、このような形状の凹部は、応力集中が発生しにくいため、破損 の恐れを低減することができる。
[0050] この発明のさらに他の局面においては、風力発電機の主軸支持構造は、風力を受 けるブレードと、その一端がブレードに固定され、ブレードとともに回転する主軸と、 固定部材に組み込まれ、主軸を回転自在に支持するころ軸受とを含む。ころ軸受は 、外輪と、内輪と、外輪および内輪の間に配置される複数のころと、ころを収容するポ ケットを有し、外輪および内輪の間で周方向に順次連ねて配置される複数の保持器 セグメントとを備える。保持器セグメントは、熱による線膨張係数を低下させる充填材 を含む樹脂製である。複数の保持器セグメントを周方向に無間隙に配置した場合に 、最初に配置される保持器セグメントと最後に配置される保持器セグメントとの間にす き間を有する。ここで、室温において、すき間の周方向の寸法は、保持器セグメントの 中央を通る円の円周の 0. 075%よりも大きく、 0. 12%よりも小さい。
[0051] このような風力発電機の主軸支持構造は、軸受の機能の低下を防止したころ軸受 を含むため、風力発電機の主軸支持構造自体の機能の低下を防止することができる
[0052] 好ましくは、保持器セグメントは、ころを収容するポケットを形成するように軸受の回 転軸線に沿う方向に延びる複数の柱部、およびこの複数の柱部を連結するように周 方向に延びる連結部を有し、保持器セグメントは、ころ案内であり、柱部の側壁面に は、ころと接触する接触部を有する一つの案内爪、および接触部の周方向内方側の 位置に形成される凹部が設けられて!/、る。
[0053] このような風力発電機の主軸支持構造は、保持器セグメントの破損の恐れが低減さ れ、ころを円滑に転動させることができるころ軸受を含むため、長寿命化を図ることが できる。
[0054] この発明によれば、保持器セグメントの材質を、熱による線膨張係数を低下させる 充填材を含む樹脂製として、保持器セグメント間の周方向のすき間を上記した範囲と することにより、保持器セグメント同士の衝突による強度的な不具合等や、保持器セ グメント同士の周方向の突っ張りあいによる変形等を防止することができる。したがつ て、このような保持器セグメントを備えるころ軸受の機能の低下を防止することができ
[0055] また、このような風力発電機主軸支持用ころ軸受の保持器セグメントは、風力発電 機主軸支持用ころ軸受を構成する外輪等の軸受構成部材との熱による線膨張係数 の差を小さくすることができるため、温度変化による周方向のすき間の寸法の変化を 小さくすること力 Sできる。そうすると、保持器セグメント間の周方向のすき間を小さくし、 設定した範囲内に維持することができる。したがって、このような保持器セグメントを備 えるころ軸受の機能の低下を防止することができる。
[0056] また、このような風力発電機の主軸支持構造は、機能の低下を防止したころ軸受を 含むため、風力発電機の主軸支持構造自体の機能の低下を防止することができる。 図面の簡単な説明
[0057] [図 1]この発明の一実施形態に係る円錐ころ軸受のうち、最初の保持器セグメントと最 後の保持器セグメントの間のすき間を示す拡大断面図である。
[図 2]この発明の一実施形態に係る円錐ころ軸受に含まれる保持器セグメントの斜視 図である。
[図 3]図 2に示す保持器セグメントを、図 2中の線 III IIIを含み、軸受の回転軸線に 直交する平面で切断した場合の断面図である。
[図 4]図 2に示す保持器セグメントを、柱部の中央を通り、円周方向に直交する平面 で切断した場合の断面図である。
[図 5]複数の保持器セグメントを周方向に配置した場合の円錐ころ軸受の概略断面 図である。
園 6]隣接する保持器セグメントを示す拡大断面図である。
園 7]保持器安全率と周方向のすき間との関係を示すグラフである。
園 8]この発明に係る円錐ころ軸受を用いた風力発電機の主軸支持構造の一例を示 す図である。
園 9]図 8に示す風力発電機の主軸支持構造の図解的側面図である。
園 10]この発明の他の実施形態に係る円錐ころ軸受に含まれる保持器セグメントの 斜視図である。
園 11]この発明の他の実施形態に係る円錐ころ軸受に含まれる保持器セグメントの 一部をポケットの内方側から見た断面図である。
[図 12]図 10に示す保持器セグメントを、図 10中の線 XI— XIを含み、軸に直交する平 面で切断した場合の断面図である。
[図 13]図 10に示す保持器セグメントを、柱部の中央を通り、円周方向に直交する平 面で切断した場合の断面図である。
園 14]図 12に示す保持器セグメントのポケット部分の拡大断面図である。
園 15]保持器セグメントに設けられた案内爪の角部を示す拡大断面図である。
園 16]複数の保持器セグメントを周方向に配置した場合の円錐ころ軸受の概略断面 図である。
園 17]隣接する保持器セグメントを示す拡大断面図である。
園 18]この発明の他の実施形態に係る保持器セグメントに備えられる案内爪の角部 を示す拡大断面図である。
園 19]この発明のさらに他の実施形態に係る複列円錐ころ軸受を示す断面図である 園 20]図 19に示す複列円錐ころ軸受の一部を示す拡大断面図である。
園 21]図 19に示す複列円錐ころ軸受の組み込み方法の概略を示すフローチャート である。
園 22]回転軸に一方の内輪を組み込んだ状態を示す断面図である。
園 23]—方の円錐ころおよび保持器セグメントを配置した状態を示す断面図である。 園 24]内輪間座を配置した状態を示す断面図である。
[図 25]外輪を配置した状態を示す断面図である。
園 26]他方の円錐ころおよび保持器セグメントを配置した状態を示す断面図である。 園 27]この発明の他の実施形態に係る複列円錐ころ軸受に含まれる内輪の一部を 示す拡大断面図である。
園 28]この発明のさらに他の実施形態に係る複列円錐ころ軸受に含まれる内輪の一 部を示す拡大断面図である。
園 29]風力発電機の主軸を支持する円錐ころ軸受を示す図である。
[図 30]図 29に示す円錐ころの拡大図である。
園 31]円錐ころ軸受の内輪部材の一方を主軸に組み込む前の状態を示す図である 園 32]円錐ころ軸受を主軸に組み込む後の状態を示す図である。
園 33]円錐ころ軸受の内輪部材の一方を主軸に組み込む主な方法を示すフロー図 である。
園 34]風力発電機の主軸を支持する円錐ころ軸受を示す図である。
[図 35]図 34に示す円錐ころの拡大図である。
園 36]円錐ころ軸受の内輪部材の一方を主軸に組み込む前の状態を示す図である 園 37]円錐ころ軸受を主軸に組み込む後の状態を示す図である。
園 38]円錐ころ軸受の内輪部材の一方を主軸に組み込む主な方法を示すフロー図 である。
園 39]従来における保持器セグメントの斜視図である。
園 40]図 39に示す保持器セグメントを備える円錐ころ軸受の一部を、軸受の転動軸 線に直交する平面で切断した場合の断面図である。
園 41]図 40に示す保持器セグメントを備える円錐ころ軸受を、軸受の転動軸線に直 交する平面で切断した場合の概略断面図である。
園 42]分割型の案内爪を設けた保持器セグメントの一部を示す図である。
[図 43]図 42に示す保持器セグメントを径方向から見た図である。 [図 44]案内爪の一方のエッジ部でころと接触する場合の保持器セグメントを径方向か ら見た図である。
発明を実施するための最良の形態
[0058] 以下、この発明の実施の形態を、図面を参照して説明する。図 2は、この発明の一 実施形態に係る円錐ころ軸受に備えられる風力発電機主軸支持用ころ軸受の保持 器セグメント 11aを示す斜視図である。図 3は、図 2に示す保持器セグメント 11 aを、図 2中の線 III IIIを含み、軸受の回転軸線に直交する平面で切断した場合の断面図 である。図 4は、図 2に示す保持器セグメント 11 aを、柱部 14aの中央を通り、円周方 向に直交する平面で切断した場合の断面図である。なお、理解の容易の観点から、 図 3および図 4において、保持器セグメント 11aが保持する複数の円錐ころ 12a、 12b 、 12cを点線で示している。また、一点鎖線で PCD22aを示す。
[0059] 図 2〜図 4を参照して、まず、円錐ころ軸受に含まれる保持器セグメント 11aの構成 について説明する。保持器セグメント 11aは、一つの環状の保持器を、少なくともころ を収容する一つのポケットを有するように、軸受の回転軸線に沿う方向に延びる分割 線によって分割した形状である。保持器セグメント 11aは、円錐ころ 12a、 12b、 12cを 収容するポケット 13a、 13b、 13cを形成するように、軸受の回転軸線に沿う方向に延 びる 4つの柱部 14a、 14b、 14c, 14dと、軸方向の両端に位置し、 4つの柱部 14a〜 14dを連結するように周方向に延びる一対の連結部 15a、 15bとを含む。ここで、保 持器セグメント 11aは、その周方向外側の端部に柱部 14a、 14dが位置するよう構成 されている。
[0060] 一対の連結部 15a、 15bは、複数の保持器セグメント 11aが円錐ころ軸受に組み込 まれた際に、周方向に連なって一つの環状の保持器を形成するように、周方向にお いて所定の曲率半径を有している。一対の連結部 15a、 15bのうち、円錐ころ 12a〜 12cの小径側に位置する連結部 15aの曲率半径は、円錐ころ 12a〜 12cの大径側に 位置する連結部 15bの曲率半径よりも小さく構成されている。
[0061] ポケット 13aの周方向両側に位置する柱部 14a、 14bおよびポケット 13cの周方向 両側に位置する柱部 14c、 14dのうち、柱部 14a〜; 14dの側壁面の内径側には、保 持器セグメント 11aの径方向外側への移動を規制する内径側の案内爪 17a、 17b、 1 7c、 17dカ設けられている。案内爪 17a〜; 17dは、ポケット 13a、 13cに収容された円 錐ころ 12a、 12cと内径側で接触する。また、ポケット 13bの周方向両側に位置する柱 部 14b、 14cのうち、柱部 14b、 14cの側壁面の外径側には、保持器セグメント 11aの 径方向内側への移動を規制する外径側の案内爪 18b、 18cが設けられている。案内 爪 18b、 18cは、ポケット 13bに収容された円錐ころ 12bと外径側で接触する。各案内 爪 17a〜; 17d、 18b, 18cは、ポケッ卜 13a〜; 13c側に突出した形状である。また、図 3 に示す断面において、各案内爪 17a〜; 17d、 18b, 18cの案内面は、断面円弧状で あって、円錐ころ 12a〜12cの転動面に沿う形状である。このように内径側および外 径側の案内爪 17a〜; 17d、 18b、 18cを設けることにより、保持器セグメント 1 laを案 内爪 17a〜; 17d、 18b、 18cの案内面に接触させて、ころ案内とすること力 Sできる。な お、周方向外側に位置する柱部 14a、 14dの周方向外側の端面 21a、 21bは、平ら である。
[0062] ここで、保持器セグメント 1 laは、熱による線膨張係数を低下させる充填材を含む樹 脂製である。こうすることにより、後述するように風力発電機主軸支持用ころ軸受を構 成する外輪等の軸受構成部材との熱による線膨張係数の差を小さくすることができる ため、温度変化による周方向のすき間の寸法の変化を小さくすることができる。
[0063] なお、樹脂は、 PEEKとすることが好ましい。 PEEK自体の熱による線膨張係数は、
4. 7X 10— 5/°C程度であり、他の樹脂素材と比較して熱による線膨張係数が低いた め、充填材を含ませて熱による線膨張係数を低下させることが容易になる。
[0064] また、充填材は、少なくとも炭素繊維またはガラス繊維の!/、ずれかを含むよう構成 することが好ましい。このような充填材は、繊維状であるため、効率的に熱による線膨 張係数、すなわち、熱膨張係数を低下させることができる。
[0065] なお、樹脂の熱による線膨張係数は、 1. 3X 10— 5/°C以上 1. 7X 10— 5/°C以下 であることが好ましい。軸受を構成する外輪等の軸受構成部材には、一般的には肌 焼鋼等の鋼が使用される。このような鋼の熱による線膨張係数は、 1. 12X 10_5/°C 程度である。したがって、樹脂の熱による線膨張係数を上記範囲とすることにより、実 使用状況において外輪等の軸受構成部材との熱による線膨張係数の差を許容する こと力 Sでさる。 [0066] また、樹脂中の充填材の充填比率は、 20重量%以上 40重量%以下であることが 好ましい。こうすることにより、充填材の充填による他の不具合、例えば、充填量過多 による強度不足を発生させることなぐ樹脂の熱膨張係数を大きく低下させることがで きる。
[0067] なお、保持器セグメント 11aは、一つの円錐ころ軸受に複数備えられるため、生産 性の向上が要求されるが、このように構成することにより、射出成形等によって、大量 に同形状の保持器セグメントを製造することが容易になる。
[0068] ここで、保持器セグメント 11aは、具体的には、充填材として炭素繊維を 30重量% 含み、線膨張係数が 1. 5 X 10_5/°Cである PEEK製であることが好ましい。このよう な保持器セグメント 11 aは、熱による線膨張係数が 4. 7 X 10— 5/°Cである PEEK製 の保持器セグメントや、熱による線膨張係数が 5. 0 X 10_5/°Cである PPS製の保持 器セグメントと、熱による線膨張係数にお!/、て大きく異なるものである。
[0069] 次に、上記した保持器セグメント 11aを含む円錐ころ軸受の構成について説明する 。図 5は、複数の保持器セグメント l la、 l ib, 1 1c, l id等を周方向に配置させた円 錐ころ軸受 31aを、軸方向から見た概略断面図である。また、図 6は、図 5中において VIで示す部分の拡大断面図である。ここで、保持器セグメント l lb、 11c, l idは、保 持器セグメント 11aと同一形状および同一素材であるため、その説明を省略する。な お、図 5においては、保持器セグメント 11a等に保持される円錐ころを省略している。 また、ここでは、複数の保持器セグメント l l a〜l Idのうち、最初に配置される保持器 セグメントを保持器セグメント 1 laとし、最後に配置される保持器セグメントを保持器セ グメント l idとする。
[0070] 図 5および図 6を参照して、円錐ころ軸受 31aは、外輪 32aと、内輪 33aと、複数の 円錐ころ 34aと、複数の保持器セグメント 11a〜; l idとを備える。保持器セグメント 1 1a 〜; l i dは、周方向において、順次連ねられて無間隙に配置される。ここでは、まず、 最初に保持器セグメント 11aが配置され、次に、保持器セグメント l ibが保持器セグメ ント 11aと当接するように、具体的には、保持器セグメント 11aの端面 21aと保持器セ グメント l ibの端面 21cとが当接するように配置される。その後、保持器セグメント 11c が保持器セグメント l ibと当接するように、具体的には、保持器セグメント l ibの端面 21dと保持器セグメント lieの端面 21eとが当接するように配置され、順次、保持器セ グメントが配置されていき、最後に、保持器セグメント lidが配置される。このようにし て、周方向に連ねられて、保持器セグメント lla〜l Idが配置される。この場合、最初 の保持器セグメント 11 aと最後の保持器セグメント 11 dとの間には、周方向のすき間 3 9aを有する。
[0071] 次に、最初の保持器セグメント 11aと最後の保持器セグメント lidとの間の周方向の すき間について説明する。図 1は、図 5において Iで示す部分の拡大断面図である。 ここで、すき間 39aの周方向の寸法 Rを、保持器セグメント lla〜l Idの中央を通る円 の円周の 0· 075%よりも大きく、かつ、 0· 12%よりも小さくする。この場合、すき間 39 aの周方向の寸法 Rが上記範囲となるように、各保持器セグメント lla〜lldの周方 向の長さをそれぞれ調整することにしてもよいし、保持器セグメント 1 la〜l lcを順次 配置していき、最後の保持器セグメント lidを配置する際に、その端面 21fを削って 寸法を調整し、上記範囲となるようにしてもよい。
[0072] 図 7は、すき間 39aの比率と保持器の安全率の関係を示すグラフである。図 1およ び図 7を参照して、複数の保持器セグメント lla〜l Idによって構成される保持器の 安全率は、保持器セグメント 1 la〜l Idの材質の疲労強度および保持器セグメント 1 la〜l Idに発生する応力等の観点から、 4. 0以上が要求される。ここで、すき間 39a の周方向の寸法を円周の 0. 12%よりも小さくすることにより、安全率を 4. 0以上に確 保することカできる。そうすると、保持器セグメント lla〜l Id同士の衝突等による強 度的な不具合を回避することができる。
[0073] ここで、上記した保持器セグメント 11aの線膨張係数 Kbは、 1. 5X 10_5/°C程度 である。一方、軸受構成部材である外輪等は肌焼鋼であり、その線膨張係数 Kaは、 1. 12X10_5/°C程度である。ここで、温度上昇を Atとし、温度上昇時における各 部材の膨張量の差を δとすると、膨張量の差 δは、数 1の式によって表される。
[0074] 國 d=2m--(Kb-Ka)-At
[0075] この場合、仮に保持器セグメント 11aのみが 50°C上昇していた場合であっても、膨 張量の差 δは、 0. 075%となる。また、焼き嵌めで円錐ころ軸受を A t= 100°Cに加 熱した場合であっても、膨張量の差 δは、 0. 035%となる。したがって、実使用状況 において、 0. 075%よりも大きくすることにより、外輪 32aや内輪 33a等の軸受構成 部材と保持器セグメント 1 1a〜; l idとの熱膨張の差を許容することができる。そうする と、すき間 39aの周方向の寸法が負になって保持器セグメント l la〜l ld同士が突つ 張る状態を回避することができる。そうすると、保持器セグメント l la〜l I dの突っ張り あいによる変形を防止することができる。
[0076] 以上より、保持器セグメント l la〜l ldの材質を、熱による線膨張係数を低下させる 充填材を含む樹脂製として、保持器セグメント 11a〜; l id間の周方向のすき間 39aを 上記した範囲とすることにより、保持器セグメント l la〜l Id同士の衝突による強度的 な不具合等や、保持器セグメント l la〜l Id同士の周方向の突っ張りあいによる変形 等を防止すること力できる。したがって、このような保持器セグメント 11a〜; l idを備え る円錐ころ軸受 31aの機能の低下を防止することができる。
[0077] また、このような保持器セグメント 11a〜; l idは、円錐ころ軸受 31aを構成する外輪 3 2a等の軸受構成部材と熱による線膨張係数の差を小さくすることができるため、温度 変化による周方向のすき間 39aの寸法の変化を小さくすることができる。そうすると、 保持器セグメント 11 a〜 11 d間の周方向のすき間 39aを設定した範囲内に維持する こと力 Sできる。したがって、このような保持器セグメント l la〜l ldを備える円錐ころ軸 受 31 aの機能の低下を防止することができる。
[0078] なお、上記の実施の形態にお!/、て、最初の保持器セグメント 1 laと最後の保持器セ グメント l idとの間に、周方向のすき間 39aの寸法 Rを調整する間座を、最後の保持 器セグメント l idに当接するように配置することにしてもよい。この場合、間座と最初の 保持器セグメント 11aとの間にすき間 39aが生ずることになる。このように構成すること により、最初の保持器セグメント 11aと最後の保持器セグメント l idと周方向のすき間 39aの寸法を上記範囲とすることが、より容易になる。なお、この場合、間座は保持器 セグメントと解釈すべきである。また、このような間座の周方向の寸法は、各保持器セ グメント l la〜l Idが連なる周方向の寸法において微小であるため、保持器セグメン ト l la〜l Idと同じ素材であってもよいし、金属製であってもよいし、単なる樹脂製で あってもよい。
[0079] 図 8および図 9は、この発明の一実施形態に係る円錐ころ軸受を主軸支持軸受 75 として適用した、風力発電機の主軸支持構造の一例を示している。主軸支持構造の 主要部品を支持するナセル 62のケーシング 63は、高い位置で、旋回座軸受 61を介 して支持台 60上に水平旋回自在に設置されている。風力を受けるブレード 67を一 端に固定する主軸 66は、ナセル 62のケーシング 63内で、軸受ハウジング 64に組み 込まれた主軸支持軸受 65を介して、回転自在に支持されている、主軸 66の他端は 増速機 68に接続され、この増速機 68の出力軸が発電機 69のロータ軸に結合されて いる。ナセル 62は、旋回用モータ 70により、減速機 71を介して任意の角度に旋回さ せられる。
[0080] 軸受ハウジング 64に組み込まれた主軸支持軸受 65は、この発明の一実施形態に 係る円錐ころ軸受であって、外輪と、内輪と、外輪および内輪の間に配置される複数 の円錐ころと、円錐ころを収容するポケットを有し、外輪および内輪の間で周方向に 順次連ねて配置される複数の保持器セグメントとを備える。保持器セグメントは、熱に よる線膨張係数を低下させる充填材を含む樹脂製である。複数の保持器セグメントを 周方向に無間隙に配置した場合に、最初に配置される保持器セグメントと最後に配 置される保持器セグメントとの間にすき間を有する。ここで、室温において、すき間の 周方向の寸法は、保持器セグメントの中央を通る円の円周の 0. 075%よりも大きく、 0. 12%よりも小さい。
[0081] 主軸支持軸受 65は、大きな風力を受けるブレード 67を一端に固定する主軸 66を 支持するため、大きなモーメント荷重ゃスラスト荷重、ラジアル荷重等を受ける必要が ある。ここで、ころを円錐ころとすることにより、大きなモーメント荷重等を受けることが できる。
[0082] また、このような風力発電機の主軸支持構造は、機能の低下を防止した円錐ころ軸 受を含むため、風力発電機の主軸支持構造自体の機能の低下を防止することがで きる。
[0083] なお、上記の実施の形態においては、室温において、すき間の周方向の寸法を、 保持器セグメントの中央を通る円の円周の 0. 075%よりも大きく、 0. 12%よりも小さ くすることにした力 さらには、保持器セグメントの中央を通る円の円周の 0. 075%よ りも大きく、 0· 10%よりも小さくすることにしてもよい。こうすることにより、保持器の安 全率を 6. 0以上とすることができるため、さらに衝突による変形等を低減することがで きる。
[0084] また、上記の実施の形態においては、保持器セグメントの素材として、樹脂中に含 まれる充填材を炭素繊維のみからなる構成とした力 これに限らず、充填材をガラス 繊維のみとしてもよい。さらには、充填材を炭素繊維またはガラス繊維のいずれをも 含む構成としてもよい。また、カーボンブラック等の粉末状の充填材ゃ粒状の充填材 を含む構成としてもよい。
[0085] なお、上記した構成に加え、保持器セグメントは、ころを収容するポケットを形成す るように軸受の回転軸線に沿う方向に延びる複数の柱部、およびこの複数の柱部を 連結するように周方向に延びる連結部を有し、保持器セグメントは、ころ案内であり、 柱部の側壁面には、ころと接触する接触部を有する一つの案内爪、および接触部の 周方向内方側の位置に形成される凹部が設けられているよう構成してもよい。
[0086] 図 10は、この発明の他の実施形態に係る円錐ころ軸受に備えられる円錐ころ軸受 の保持器セグメント l lgを示す斜視図である。図 11は、図 10に示す保持器セグメント l lgを、図 10中の XI— XIで切断した場合の断面図である。図 12は、図 10に示す保 持器セグメント l lgを、図 10中の線 XII— XIIを含み、軸受の回転軸線に直交する平 面で切断した場合の断面図である。図 13は、図 10に示す保持器セグメント l lgを、 柱部 14gの中央を通り、円周方向に直交する平面で切断した場合の断面図である。 図 14は、図 12に示す保持器セグメント l lgのポケット部分の拡大断面図である。な お、理解の容易の観点から、図 12および図 13において、保持器セグメント l lgが保 持する複数の円錐ころ 12g、 12h、 12iを点線で、図 14においては、実線で示してい る。また、図 10および図 12においては、後述する凹部の図示を省略している。また、 一点鎖線で PCD22gを示す。
[0087] 図 10〜図 14を参照して、まず、円錐ころ軸受に含まれる保持器セグメント l lgの構 成について説明する。保持器セグメント l lgは、一つの環状の保持器を、少なくともこ ろを収容する一つのポケットを有するように、軸受の回転軸線に沿う方向に延びる分 割線によって分割した形状である。保持器セグメント l lgは、円錐ころ 12g、 12h、 12i を保持するポケット 13g、 13h、 13iを形成するように、軸受の回転軸線に沿う方向に 延びる 4つの柱部 14g、 14h、 14i、 14jと、軸方向の両端に位置し、 4つの柱部 14g 〜; 14jを連結するように周方向に延びる一対の連結部 15g、 15hとを含む。ここで、保 持器セグメント l lgは、その周方向外側の端部に柱部 14g、 14jが位置するよう構成 されている。
[0088] 一対の連結部 15g、 15hは、複数の保持器セグメント l lgが円錐ころ軸受に組み込 まれた際に、周方向に連なって一つの環状の保持器を形成するように、周方向にお いて所定の曲率半径を有している。一対の連結部 15g、 15hのうち、円錐ころ 12g〜 12iの小径側に位置する連結部 15gの曲率半径は、円錐ころ 12g〜12iの大径側に 位置する連結部 15hの曲率半径よりも小さく構成されている。
[0089] ポケット 13gの周方向両側に位置する柱部 14g、 14hおよびポケット 13iの周方向 両側に位置する柱部 14i、 14jのうち、柱部 14g〜14jの側壁面の内径側には、保持 器セグメント l lgの径方向外側への移動を規制する内径側の案内爪 17g、 17h、 17i 、 17jが設けられている。案内爪 17g〜17jは、ポケット 13g、 13iに収容された円錐こ ろ 12g、 12iと内径側で接触する。また、ポケット 13hの周方向両側に位置する柱部 1 4h、 14iのうち、柱部 14h、 14iの側壁面の外径側には、保持器セグメント l lgの径方 向内側への移動を規制する外径側の案内爪 18h、 18iが設けられている。案内爪 18 h、 18iは、ポケット 13hに収容された円錐ころ 12hと外径側で接触する。案内爪 17g 〜17j、 18h、 18iは、柱部 14g〜14jの各側壁面に、一つずつ設けられている。各案 内爪 17g〜; 17j、 18h、 18iは、ポケット 13g〜; 13i側に突出した形状である。また、図 12に示す断面において、各案内爪 17g〜17j、 18h、 18iの案内面は、断面円弧状 であって、円錐ころ 12g〜; 12iの転動面に沿う形状である。案内爪 17g〜; 17j、 18h、 18iのころ長さ方向の長さは、ポケット 13g〜13iのころ長さ方向の長さよりも若干短い 程度であり、ポケット 13g〜13iのころ長さ方向の長さのほぼ全長である。また、案内 爪 17g〜; 17j、 18h、 18iは、柱部 14g〜; 14jの側壁面のうち、連結部 15gまたは連結 部 15hの一方側に片寄った位置に設けられておらず、ころ長さ方向の中央に設けら れている。なお、周方向外側に位置する柱部 14g、 14jの周方向外側の端面 21g、 2 lhは、平らである。
[0090] このように内径側および外径側の案内爪 17g〜; 17j、 18h、 18iを設けることにより、 保持器セグメント l lgを案内爪 17g〜17j、 18h、 18iの案内面の接触部 28gに接触 させて、ころ案内とすること力 Sできる。
[0091] 案内爪 18hが設けられた柱部 14hの側壁面には、円錐ころ 12hと接触する接触部
28gの周方向内方側に位置し、保持器セグメント l lgを成形する際に生ずる収縮ひ けにより形成される凹部 29gが設けられている(図 1 1、図 14参照)。このような凹部 29 gは、射出成形において、容易に、すなわち、後加工等を施すことなぐ形成すること ができる。具体的には、接触部 28gに対応する部分の金型形状を、収縮ひけを考慮 した凹形状とする。こうすることにより、接触部 28gは収縮ひけが生じて平坦となり、接 触部 28gの周方向内方側には収縮ひけによる凹部 29gが形成される。このようにして 、保持器セグメント l lgを製造する。この場合、柱部 14hの側壁面には、一つの案内 爪 18hのみが設けられているので、収縮ひけによる凹部 29gを上記した位置に形成 すること力 Sできる。なお、このようにして形成された凹部 29gは、射出成形後の削り加 ェ等によって形成された凹部と、その表面粗さ等が異なるものである。また、内径側 の案内爪 17g〜17j、および外径側の案内爪 18iが設けられた柱部 14g〜14jの側 壁面にも、円錐ころと接触する接触部の周方向内方側に位置する凹部 29gが設けら れている。それらの構成は同様であるため、その説明を省略する。なお、理解の容易 の観点から、図 14において、凹部 29gの凹み量は誇張して大きく図示している。
[0092] このようなころ保持器セグメント l lgは、柱部 14g〜14jの側壁面に設ける案内爪 17 g~ 17j , 18h、 18iを一つとしているため、案内爪 17g〜; 17j、 18h、 18iのエッジきを 少なくすること力できる。このような形状の保持器セグメント l lgは、単純な形状である ため、肉厚差を小さくして、射出成形時における内部欠陥や変形の発生を抑制する こと力 Sできる。また、案内爪 17g〜; 17j、 18h、 18iの先端と円錐ころ 12g〜; 12iとの接 触面積を多くして、接触時における面圧を低下させることができる。さらに、柱部 14g 〜; 14j、引いては、保持器セグメント l lgの剛性を高くすることができる。このような保 持器セグメント l lgを備えるころ軸受は、円錐ころ 12g〜; 12iおよび保持器セグメント 1 lgの姿勢を安定させることができる。また、接触部 28gの周方向内方側に位置する 凹部 29gを形成しているため、凹部 29gを利用して潤滑油を溜めることができる。そう すると、凹部 29gから接触部に潤滑油を供給することができ、潤滑性を向上すること 力できる。したがって、保持器セグメント l lgの破損を防止し、円錐ころ 12g〜; 12iを 円滑に転動させることができる。
[0093] また、このような凹部 29gは、案内爪 17g〜; 17j、 18h、 18iの表面と滑らかに連なつ ているため、潤滑油の流出入が容易となる。また、このような形状の凹部 29gは、応力 集中が発生しにくいため、破損の恐れを低減することができる。
[0094] また、案内爪 17g〜; 17j、 18h、 18iのころ長さ方向の長さは、ポケット 13g〜; 13iのこ ろ長さ方向の長さのほぼ全長であるため、円錐ころ 12g〜; 12iと案内爪 17g〜17j、 1 8h、 18iとの接触部 28gを多くすることができ、円錐ころ 12g〜12iおよび保持器セグ メント l lgの姿勢をより安定させることができる。したがって、円錐ころ 12g〜; 12iを円 滑に転動させること力できる。さらに、案内爪 17g〜; 17j、 18h、 18iは、柱部 14g〜; 14 jの側壁面のうち、ころ長さ方向の中央に設けられているため、ポケット 13g〜13iに収 容される円錐ころ 12g〜12iと、ころ長さ方向の中央で接し、円錐ころ 12g〜; 12iおよ び保持器セグメント l lgの姿勢をより安定させることができる。したがって、円錐ころ 1 2g〜; 12iを円滑に転動させることができる。
[0095] ここで、外径側の案内爪 18hの形状について、さらに詳細に説明する。図 15は、図
14において XVで示す部分の拡大断面図である。図 10〜図 15を参照して、案内爪 18hのポケット 13h側に位置する角部 23gの角度は、鈍角となるよう構成されている。 ここでは、具体的には、図 15に示す断面、すなわち、案内爪 18hを含み、軸受の回 転軸線に直交する平面で切断した断面において、柱部 14hの外径面 24gから角部 2 3gを形成するようにポケット 13hの内方側に延びる面 25gを構成する線と、案内爪 18 hを構成する円弧状の案内面 26gのうち、角部 23gにおける接面 27gを構成する線と のなす角度 Θ は、 90° よりも大きく構成されている。
[0096] 角部 23gの角度が鋭角であると、円錐ころ 12hの転動時において、円錐ころ 12hや 案内爪 18h付近にある潤滑油を大量に搔き取ってしまう。そうすると、保持器セグメン ト l lgの外部側からポケット 13h内へ潤滑油が供給されに《なり、潤滑不良を引き起 こして、円錐ころ 12hの円滑な転動を阻害することになる。 [0097] しかし、案内爪 18hの先端に位置する角部 23gは鈍角であるため、円錐ころ 12hの 転動時において、円錐ころ 12hや案内爪 18h付近の潤滑油を搔き取る量を低減する こと力 Sできる。そうすると、円錐ころ 12hや案内爪 18h付近の潤滑油はポケット 13h内 へ供給されやすくなり、潤滑不良となる恐れは低減する。したがって、円錐ころ 12hを 円滑に転動させること力できる。なお、内径側の案内爪 17g〜17j、および外径側の 案内爪 18iの形状についても同様の構成であるため、その説明を省略する。
[0098] 次に、上記した保持器セグメント l lgを含む円錐ころ軸受の構成について説明する 。図 16は、複数の保持器セグメント l lg、 l lh, l li、 l lj等を周方向に配置させた円 錐ころ軸受 31gを、軸方向から見た概略断面図である。また、図 17は、図 16中にお いて XVIIで示す部分の拡大断面図である。ここで、保持器セグメント l lh、 l li、 l lj は、保持器セグメント l lgと同一形状であるため、その説明を省略する。なお、図 16 においては、保持器セグメント l lg等に保持される円錐ころを省略し、図 16および図 17においては、柱部の側壁面に設けられた凹部を省略している。また、ここでは、複 数の保持器セグメント 1 lg〜l ljのうち、最初に配置される保持器セグメントを保持器 セグメント l lgとし、最後に配置される保持器セグメントを保持器セグメント l ljとする。
[0099] 図 16および図 17を参照して、円錐ころ軸受 31gは、外輪 32gと、内輪 33gと、複数 の円錐ころ 34gと、複数の保持器セグメント l lg〜; l ljとを備える。保持器セグメント 1 lg〜l ljは、周方向において、順次連ねられて無間隙に配置される。ここでは、まず 、最初に保持器セグメント l lgが配置され、次に、保持器セグメント l lhが保持器セグ メント l lgと当接するように、具体的には、保持器セグメント l lgの端面 21gと保持器 セグメント l lhの端面 21iとが当接するように配置される。その後、保持器セグメント 1 liが保持器セグメント l lhと当接するように、具体的には、保持器セグメント l lhの端 面 21jと保持器セグメント l liの端面 21kとが当接するように配置され、順次、保持器 セグメントが配置されていき、最後に、保持器セグメント l ljが配置される。このように して、周方向に連ねられて、保持器セグメント l lg〜l ljが配置される。この場合、最 初の保持器セグメント 11 gと最後の保持器セグメント 1 ljとの間には、周方向のすき間 39gを有する。このようなすき間 39gは、保持器セグメント l lg〜 l ljの熱膨張等を考 慮して設けられている。 [0100] ここで、上記したように、柱部の側壁面に設けられる案内爪 36g、 37gの先端は、収 縮ひけが少ないため、柱部の剛性は高ぐまた、案内爪 36g、 37gの先端と円錐ころ 34gとの接触面積を多くして、接触時における面圧を低下させることができる。また、 接触部の周方向内方側に位置する凹部から接触部に潤滑油を供給することができ、 潤滑性を向上することができる。このような凹部は、案内爪 36g、 37gの表面と滑らか に連なっているため、潤滑油の流出入が容易となる。また、このような形状の凹部は、 応力集中が発生しにくいため、破損の恐れを低減することができる。したがって、保 持器セグメント l lhの破損を防止し、円錐ころ 34gを円滑に転動させることができる。
[0101] さらに、保持器セグメント l lhに設けられた案内爪 36g、 37gの先端に位置する角 部の角度は、鈍角である。そうすると、円錐ころ 34gの転動時において、案内爪 36g、 37gの先端に位置する角部が、円錐ころ 34gや案内爪 36g、 37g付近にある潤滑油 を搔き取る量を低減すること力できる。したがって、円錐ころ 34gや案内爪 36g、 37g 付近の潤滑油はポケット内へ供給されやすくなり、潤滑不良となる恐れは低減する。
[0102] なお、案内爪 36g、 37gの角部に面取りを設けることにしてもよい。こうすることにより 、角部が潤滑油を搔き取る量をさらに低減することができる。したがって、さらに円錐 ころ 34gを円滑に転動させることができる。
[0103] さらに、図 18に示すように、案内爪 41gの角部 42gに設けられた面取りは、 R面取り としてもよい。こうすることにより、角部 42gがより滑らかな面となるため、潤滑油を搔き 取る量をさらに低減すること力 Sできる。
[0104] なお、ころ案内の保持器セグメントにおいて、柱部の側壁面のうち、ころ長さ方向の 中央に設ける案内爪を一つとし、案内爪の接触部の周方向内方側に位置する凹部 を収縮ひけにより形成する構成としてもよい。また、ころ案内の保持器セグメントにお いて、柱部の側壁面のうち、ポケットのころ長さ方向の長さのほぼ全長とした案内爪を 一つとし、案内爪の接触部の周方向内方側に位置する凹部を収縮ひけにより形成す る構成としてもよい。また、ころ案内の保持器セグメントにおいて、柱部の側壁面のう ち、その先端に位置する角部の角度を鈍角とした案内爪を一つとし、案内爪の接触 部の周方向内方側に位置する凹部を収縮ひけにより形成する構成としてもよい。また 、このような角部に面取りを設ける構成にしてもよいし、面取りを R面取りとする構成に してもよい。
[0105] なお、上記の実施の形態においては、接触部の周方向内側の位置に形成される凹 部を、収縮ひけを利用することにより設けることにした力 これに限らず、接触部の周 方向内側に形成される凹部は、肖り加工等により設けることにしてもよい。
[0106] なお、このような円錐ころ軸受を、上記した図 8および図 9に示す風力発電機の主 軸支持構造の主軸支持軸受として適用してもよい。
[0107] すなわち、軸受ハウジングに組み込まれた主軸支持軸受は、この発明の他の実施 形態に係る円錐ころ軸受であって、外輪と、内輪と、外輪および内輪の間に配置され る複数の円錐ころと、円錐ころを収容するポケットを形成するように軸受の回転軸線 に沿う方向に延びる複数の柱部、およびこの複数の柱部を連結するように周方向に 延びる連結部を有し、外輪および内輪の間で周方向に順次連ねて配置される複数 の上述した構成の保持器セグメントとを備える。保持器セグメントは、ころ案内である。 ここで、柱部の側壁面には、円錐ころと接触する接触部を有する一つの案内爪、およ び接触部の周方向内方側に位置に形成される凹部が設けられている。
[0108] 主軸支持軸受は、大きな風力を受けるブレードを一端に固定する主軸を支持する ため、大きなモーメント荷重ゃスラスト荷重、ラジアル荷重等を受ける必要がある。ここ で、ころを円錐ころとすることにより、大きなモーメント荷重等を受けることができる。
[0109] また、このような風力発電機の主軸支持構造は、保持器セグメントの破損の恐れが 低減され、円錐ころを円滑に転動させることができる円錐ころ軸受を含むため、長寿 命ィ匕を図ること力 Sでさる。
[0110] 次に、上記した円錐ころ軸受を複列円錐ころ軸受とした場合において、複列円錐こ ろ軸受を回転軸に組み込む際の複列円錐ころ軸受の組み込み方法について説明 する。
[0111] 一般に、大型の円錐ころ軸受を上下方向に延びる回転軸に組み込む際には、まず
、内輪の大径側端面を下向きにして配置し、内輪の軌道面上に、円錐ころおよび保 持器を配置する。そして、円錐ころおよび保持器が配置された内輪をクレーン等で吊 り上げて、回転軸に組み込む。
[0112] ここで、内輪の小径側端面を下向きにして吊り下げた場合、円錐ころおよび保持器 力 内輪から脱落してしまうことになる。このような場合、環状の一つの部品から構成 される保持器については、内輪および保持器を連結固定することにより、円錐ころ等 の脱落を防止することができる。しかし、上記した保持器セグメントは、周方向に分割 されており、各々が独立した部材である。そうすると、円錐ころ等の脱落を防止するた めには、内輪および各保持器セグメントを連結固定しなければならず、多大な労力が 生じる。その結果、円錐ころおよび保持器が配置された内輪を回転軸に組み込むこ とが困難となり、円錐ころ軸受の生産性を悪化させてしまうことになる。
[0113] ここで、この発明のさらに他の実施形態に係る複列円錐ころ軸受として、以下のよう に構成することにしてもよい。
[0114] 図 19は、この発明のさらに他の実施形態に係る複列円錐ころ軸受を示す断面図で ある。図 20は、図 19中の XXで示す部分の拡大断面図である。図 19および図 20を 参照して、複列円錐ころ軸受 41は、外輪 42と、小径側端部 48a、 48bが互いに対向 するように配置された 2つの内輪 43a、 43bと、外輪 42およびそれぞれの内輪 43a、 4 3bの間に配置される複数の円錐ころ 44a、 44bと、それぞれの円錐ころ 44a、 44bを 保持する上述した複数の保持器セグメント 45a、 45bおよび間座(図示せず)と、内輪 43aと内輪 43bとの間に配置される内輪間座 46とを備える。
[0115] 外輪 42には、 2つの軌道面 51a、 51bが設けられている。また、内輪 43a、 43bは、 それぞれ軌道面 51c、 51dを有する。円錐ころ 44aは、その転動面 52aが軌道面 51a 、 51cに当接するように、外輪 42と内輪 43aの間に配置される。同様に、円錐ころ 44 bは、その転動面 52bカ軌道面 51b、 51dに当接するように、外輪 42と内輪 43bとの 間に配置される。
[0116] ここで、外輪 42は、円錐ころ 44a、 44bの小径側端部に小鍔 49a、 49bを有する。
複列円錐ころ軸受 41の組み込み時において、小鍔 49a、 49bの案内面 50a、 50bは 、それぞれ円錐ころ 44a、 44bの小端面 53a、 53bと当接可能である。なお、案内面 5 Oaは、軌道面 51aと略垂直であること、または円錐ころ 44aを配置した状態において 小端面 53aと略平行であることが好ましい。同様に、案内面 50bは、軌道面 51bと略 垂直であること、または円錐ころ 44bを配置した状態において小端面 53bと略平行で あることが好ましい。 [0117] 内輪 43aは、円錐ころ 44aの大径側端部に大鍔 55aを有する力 S、小径側端部 48a に小鍔を有しない。すなわち、内輪 43aの大径側端部には大鍔 55aが設けられてい る力 内輪 43a小径側端部 48aには小鍔が設けられていない。内輪 43aの小径側端 部 48aの最大外径寸法 Lは、円錐ころ 44aのころ内接円径寸法 L以下である(図 20
1 2
参照)。また、内輪 43bは、内輪 43aと同様に、円錐ころ 44bの大径側端部に大鍔 55 bを有するが、小径側端部 48bに小鍔を有しな!/、。
[0118] 図 21は、上記した図 19および図 20に示す複列円錐ころ軸受 41を、回転軸 47に 組み込む際の手順の概略を示すフローチャートである。また、図 22〜図 26は、各ェ 程における各部材の配置を示す断面図である。図 19〜図 26を参照して、上記した 構成の複列円錐ころ軸受 41を回転軸 47に組み込む際の組み込み方法について説 明する。
[0119] まず、一方の内輪 43bの大径側端面 56bを下向きにして、回転軸 47に組み込む( 図 21 (A)、図 22)。その後、内輪 43bの軌道面 51dと一方の円錐ころ 44bの転動面 5 2bとが当接し、内輪 43bの大鍔 55bの案内面 50dが円錐ころ 44bの大端面 54bに当 接するように、円錐ころ 44bおよび保持器セグメント 45bを配置する(図 21 (B)、図 23 )。円錐ころ 44bおよび保持器セグメント 45bの配置については、上記したように複数 の保持器セグメント 45bを周方向に連ねるように、内輪 43bの軌道面 51d上に配置す る。さらに、最初の保持器セグメント 45bと最後の保持器セグメント 45bとの間に、間 座を配置する。この場合、円錐ころ 44bの大端面 54bが、内輪 43bの大鍔 55bの案 内面 50dに当接するように配置されているため、大端面 54bが大鍔 55bに引っ掛かる ことになり、円錐ころ 44bおよび保持器セグメント 45bの配置が崩れることはない。
[0120] 次に、内輪 43bの小径側端部 48bと当接するように、上方から回転軸 47に内輪間 座 46を組み込む(図 21 (C)、図 24)。
[0121] その後、円錐ころ 44bの転動面 52bと外輪 42の軌道面 51bとが当接し、小鍔 49b の案内面 50bと円錐ころ 44bの小端面 53bとが当接するように、上方から外輪 42を配 置する(図 21 (D)、図 25)。この場合、小鍔 49bが、円錐ころ 44bの小端面 53bに引 っ掛つて!/、るため、外輪 42の配置が崩れることはなレ、。
[0122] 次に、外輪 42の軌道面 51aと他方の円錐ころ 44aの転動面 52aとが当接し、小鍔 4 9aの案内面 50aと円錐ころ 44aの小端面 53aとが当接するように、円錐ころ 44aおよ び保持器セグメント 45aを配置する(図 21 (E)、図 26)。この場合も上記と同様に、各 保持器セグメント 45a等を周方向に連ねるようにして配置する。また、この場合におい ても、円錐ころ 44aの小端面 53aが、小鍔 49aに引っ掛力、ることになり、円錐ころ 44a および保持器セグメント 45aの配置が崩れることはない。
[0123] その後、他方の内輪 43aの大径側端面 56aを上向きにして、円錐ころ 44aの転動面
52aと内輪 43aの軌道面 51cとが当接するように、上方から回転軸 47に内輪 43aを組 み込む(図 21 (F)、図 19、図 20)。この場合、内輪 43aの小径側端部 48aには、小鍔 が設けられていないため、円錐ころ 44aと内輪 43aとが干渉することはない。また、内 輪 43aの小径側端部 48aの最大外径寸法 Lは、円錐ころ 44aのころ内接円径寸法 L 以下であるため、内輪 43aの小径側端部 48aが円錐ころ 44aと干渉することなぐ内
2
輪 43aを回転軸 47に組み込むことができる。
[0124] なお、組み込んだ状態においては、円錐ころ 44a、 44bの小端面 53a、 53bが小鍔
49a、 49bの案内面 50a、 50bに当接している力 複列円錐ころ軸受 41に荷重が負 荷されると、誘起スラスト荷重が発生し、円錐ころ 44a、 44bの大端面 54a、 54bが大 咢 55a、 55bの案内面 50c、 50dと当接するようになる。
[0125] このように構成することにより、複列円錐ころ軸受 41の組み込み性を良好にすること ができる。すなわち、このような複列円錐ころ軸受 41の組み込み方法によれば、外輪 42に設けられた小鍔 49aにより、その配置を崩すことはなく円錐ころ 44aおよび保持 器セグメント 45aを配置することができる。また、内輪 43aの小径側端部 48aには、小 鍔が設けられていないため、内輪 43aの組み込み時において、内輪 43aと円錐ころ 4 4aとが干渉することはない。したがって、組み込み性が良好になる。
[0126] また、複列円錐ころ軸受 41を組み込んだ状態において、内輪 43aの大鍔 55aの案 内面 50cと小鍔 49aの案内面 50aとのころ長さ方向の距離 Lは、円錐ころ 44aのころ
3
長さしよりも長くすることが好ましい(図 20参照)。こうすることにより、円錐ころ 44aの
4
転動面 52aと外輪 42および内輪 43aの軌道面 51a、 51cとが適切に当接するように なるため、適切に円錐ころ 44aによって荷重を受けることができる。なお、大鍔 55bの 案内面 50dと小鍔 49bの案内面 50bとのころ長さ方向の距離と円錐ころ 44bのころ長 さとの関係についても同様とすることが好ましい。
[0127] また、内輪の小径側端部の外径面の外径寸法は、先端に向かって小さくなることが 好ましい。例えば、回転中心軸を通る断面において、小径側端部を構成する外径面 を示す線と回転中心軸線とのなす角度は、 0° よりも大きくすること力 S好ましい。図 27 は、複列円錐ころ軸受に含まれる内輪の小径側端部付近を示す拡大断面図である。 図 27に示す断面は回転中心軸を通る。図 27において、小径側端部 48cを構成する 外径面を示す線 57aと回転軸 47の回転中心軸に平行な線 57bとのなす角度 Θ は、
2
0。 よりも大きくすること力 S好ましい。こうすることにより、内輪 43cの小径側端部 48cの 外径面の外径寸法を、先端に向かって小さくすることができる。したがって、内輪 43c を回転軸 47に組み込む際に、円滑に内輪 43cを組み込むことができる。なお、外径 面は複数の平面および曲面で構成し、外径面の外径寸法を先端に向かって小さくす るようにしてあよレヽ。
[0128] また、内輪の小径側端部の外径面の角部には、面取りが設けられることにしてもよ い。図 28は、この場合における内輪の一部を示す拡大断面図であり、図 27に対応 する。図 28を参照して、内輪 43dの小径側端部 48dの外径面の角部 58には、断面 が R形状の面取りが設けられている。こうすることにより、内輪 43dを回転軸 47に組み 込む際に、取扱い性が向上し、組み込み性が良好になる。なお、面取りは、 C面取り であってもよい。
[0129] なお、このような円錐ころ軸受を、上記した図 8および図 9に示す風力発電機の主 軸支持構造の主軸支持軸受として適用してもよい。
[0130] すなわち、軸受ハウジング 64に組み込まれた主軸支持軸受 65は、この発明のさら に他の実施形態に係る円錐ころ軸受であって、円錐ころと、円錐ころの小径側端部 に小鍔を有する外輪と、円錐ころの小径側端部に小鍔を有しない内輪と、円錐ころを 保持するポケットを少なくとも一つ有し、周方向に分割された複数の保持器セグメント とを備える。
[0131] 主軸支持軸受 65は、大きな風力を受けるブレード 67を一端に固定する主軸 66を 支持するため、大きな荷重力 Sかかることになり、軸受自体も大型にする必要がある。こ こで、保持器を分割型とし、上記のような構成とすると、円錐ころ軸受を主軸 66に組 み込む際に、容易に組み込むことができる。したがって、風力発電機の主軸支持構 造の生産性を良好にすることができる。
[0132] なお、上記の実施の形態においては、複列円錐ころ軸受として使用した場合につ いて説明したが、これに限らず、単列の円錐ころ軸受として使用した場合についても 適用される。また、円錐ころ軸受は、間座を含むことにした力 これに限らず、このよう な間座を含まないタイプの円錐ころ軸受についても、適用される。また、円錐ころ軸受 に含まれる保持器セグメントは、軸に沿う方向に延びる分割線によって分割した形状 とした力 これに限らず、周方向に分割される種々の形状の保持器セグメントに適用 される。
[0133] また、この発明のさらに他の実施形態に係る円錐ころ軸受は、内輪と、外輪と、内輪 および外輪に接する転動面を有する複数の円錐ころと、円錐ころを保持するポケット を形成するように軸に沿う方向に延びる複数の柱部、およびこの複数の柱部を連結 するように周方向に延びる連結部を有し、内輪および外輪の間で周方向に順次連ね て配置される複数の保持器セグメントとを備え、円錐ころの転動面の任意の位置にお けるころ径を D、円錐ころのころ径の測定位置における内輪および外輪の軌道面間 距離を dとすると、全ての円錐ころそれぞれの転動面の少なくとも 1箇所で、 D〉dを 満たすよう構成してもよい。
[0134] 上記構成のように、円錐ころ軸受の円周方向のいずれの位置においても軌道面間 距離 dをころ径 Dより小さくする(以下、この関係を「負隙間」という)ことにより、円錐こ ろの横滑り等を防止して自転運動および公転運動がスムーズになる。その結果、隣 接する保持器セグメント同士の衝突を抑制することができるので、衝突による騒音の 発生、衝突部分の磨耗、および保持器の変形や破損を防止することが可能となる。
[0135] 図 29および図 30は上記した風力発電機の主軸支持軸受として適用される円錐こ ろ軸受 81を示す図、図 31〜図 33は円錐ころ軸受 81を主軸 86に組み込む方法を示 す図である。
[0136] 図 29を参照して、円錐ころ軸受 81は、左右の内輪部材 82a、 82bを含む内輪 82と 、外輪 83と、複数の円錐ころ 84と、複数の保持器セグメント 91を含む保持器と、内輪 間座 85とを備える。なお、保持器セグメント 91aについては、上記した図 2等に示す 保持器セグメントとその構成が同じであるため、説明を省略する。
[0137] 内輪部材 82aは、外径面に軌道面 86aと、軌道面 86aの一方側端部に小鍔 87aと 、他方側端部に大鍔 88aと、大鍔 88a側の端面に軸方向に延びる複数のボルト穴 89 aとを有する。内輪部材 82bも同様の構成である。そして、この内輪部材 82a、 82bは 、内輪間座 85を挟んで互いの小鍔 87a、 87bを向かい合わせて配置することによつ て内輪 82を構成する。外輪 83は、内輪部材 82a, 82bの軌道面 86a, 86bに対応す る複列の軌道面 83a、 83bと、軸方向に貫通する複数の貫通穴 83cとを有する。
[0138] 図 30を参照して、円錐ころ 84は、小端面 84aと、大端面 84bと、転動面 84cとを有 し、 /Jヽ端面 84aを内輪咅 才 82a、 82bの/ Jヽ i咢 87a、 87bイ則に向けて内輪 82および外 輪 83の間に配置される。また、転動面 84cにはクラウユングが形成されており、その 頂上はころ長さの中央に位置する。なお、「転動面」とは、両端の面取り部を除いた部 分の長さであって、軸受に組み込んだ時に内輪 82および外輪 83の軌道面 86a、 86 b、 83a, 83bと接し得る面を指す。
[0139] 上記構成の円錐ころ軸受 81は、円錐ころ 84が軸方向に複列に配置されており、左 右の列の円錐ころ 84の小端面 84a同士を突き合わせた背面組み合わせ軸受である 。さらに、円錐ころ 84の転動面 84cの任意の位置におけるころ径を D、円錐ころ 84の ころ径の測定位置における内輪 82および外輪 83の軌道面間距離を dとすると、全て の円錐ころ 84それぞれの軌道面 84cの少なくとも 1箇所で、 D〉dを満たす。すなわ ち、軌道面間距離は負隙間となっている。
[0140] 具体的には、円錐ころ軸受 81に負荷される荷重が小さい場合 (軽荷重時)、軌道面 86a, 83aと転動面 84cとはクラウユングの頂上でのみ接触する。すなわち、全ての円 錐ころ 84のクラウユングの頂上でのみ負隙間(D > d )となっている。なお、 dはクラ ゥユングの頂上に対応する位置の軌道面間距離を指す。
[0141] 一方、円錐ころ軸受 81に負荷される荷重が大きい場合 (重荷重時)、円錐ころ 84の 転動面 84cが弾性変形して、軌道面 86a、 83aと転動面 84cとの接触面積が増加す る。そして、転動面 84cの全域が軌道面 86a、 83aと接触したときに、全ての円錐ころ 84の転動面 84c全域で負隙間(D〉d)となっている。
[0142] 上記構成のように、軌道面間距離を負隙間とすることにより、円錐ころ 84の横滑り等 を防止して自転運動および公転運動がスムーズになる。その結果、隣接する保持器 セグメント同士の衝突を抑制することができるので、衝突による騒音の発生、衝突部 分の磨耗、および保持器の変形や破損を防止することが可能となる。
[0143] また、円錐ころ軸受 81の軌道面間距離を負隙間とすることにより、全ての円錐ころ 8 4に内外輪 82、 83を介して荷重が負荷される。その結果、負荷領域と非負荷領域と を含む環境で使用する場合でも大きな荷重を支持することが可能となると共に、円錐 ころ軸受 81の剛性が向上する。なお、「負荷領域」とは、主軸の円周方向において荷 重が負荷される領域を指し、「非負荷領域」とは、荷重が負荷されない領域を指す。こ の負荷領域および非負荷領域は、風力発電機の主軸のように、回転時に所定の方 向に偏った荷重が作用する環境で現れる。
[0144] 上記構成の円錐ころ軸受 81を風力発電機の主軸を支持する軸受として使用するこ とにより、長寿命で信頼性の高い風力発電機の主軸支持構造を得ることができる。
[0145] なお、上記実施形態における円錐ころ 84は、クラウユングの頂上が円錐ころ 84のこ ろ長さの中央に位置する例を示したが、これに限ることなぐ任意の位置に設定する こと力 Sできる。また、転動面 84cにクラウユングが形成されている例を示した力 この発 明は、クラウユングが形成されてレ、ない円錐ころを採用した円錐ころ軸受にも適用す ること力 Sでさる。
[0146] また、上記実施形態における円錐ころ軸受 81は、複列の例を示したが、これに限る ことなく、単列であってもよいし、軌道面が 3列以上ある多列の軸受であってもよい。ま た、円錐ころ軸受 81は、背面組み合わせの例を示したが、これに限ることなく、円錐 ころ 84の大端面 84b同士を突き合わせた正面組み合わせの軸受であってもよい。
[0147] 背面組み合わせとした場合には、軸受の回転中心線 1と、左右の列の円錐ころ 84
0
および内外輪 82、 83の接触線 1、 1との交点 α、 βの間の距離 (以下「作用点間距
1 2
離」と!/、う)が長くなるので、剛性が向上する。
[0148] また、上記構成の円錐ころ軸受に使用する保持器は、円周方向の任意の位置で切 断されたあらゆる構成の分割型保持器を含むものとする。
[0149] 次に、図 31〜図 33を参照して、円錐ころ軸受 81を主軸 86に組み込む方法を説明 する。なお、図 31および図 32は円錐ころ軸受 81を主軸 86に組み込む前後の状態 を示す図、図 33は円錐ころ軸受 81の一方の内輪部材 82bを主軸 86に組み込む主 な工程を示すフロー図である。
[0150] 大型の風力発電機の主軸 86に円錐ころ軸受 81を組み込む場合、地上で主軸 86 を垂直に固定して作業を行う。まず、大鍔 88a側を下に向けて内輪部材 82aを主軸 8 6に揷通する。次に、ポケットに円錐ころ 84を収容した保持器セグメント 91および間 座(図示せず)を内輪部材 82aの軌道面 86a上に順次連ねて配置する。ここで、風力 発電機の主軸 86を支持する円錐ころ軸受 81は一般的にテーパ角が大きいので、円 錐ころ 84は軌道面 86a上で拘束されていなくとも大鍔 88aに引っ掛かって脱落する ことはない。さらに、内輪間座 85を主軸 86に揷通する。
[0151] 次に、図 33を参照して、主軸 86に組み込む前に内輪部材 82bと外輪 83とを組み 立てる(S l l)。具体的には、大鍔 88b側を下に向けて内輪部材 82bを載置する。次 に、ポケットに円錐ころ 84を収容した保持器セグメント 91を内輪部材 82bの軌道面 8 6b上に順次連ねて配置する。次に、外輪 83の軌道面 83bと円錐ころ 84の転動面 84 cとが適切に接するように外輪 83を組み込む。
[0152] 次に、内輪部材 82bと外輪 83とを固定連結する(S 12)。具体的には、 L字型の固 定冶具 92の一端と内輪部材 82bのボルト穴 89bとをボルト 93によって固定し、他端と 外輪 83の貫通穴 83cを固定棒 94によって固定する。これにより、円錐ころ 84は軌道 面 86b、 83bの間で拘束されて!/、るので脱落することはな!/、。
[0153] 次に、図 31に示すように、固定連結された内輪部材 82bと外輪 83とを吊り上げて( S 13)、外輪 83の軌道面 83aを下に向けて主軸 86に組み込む(S 14)。さらに、図 32 に示すように、外輪 83の軌道面 83aが内輪部材 82aに組み込まれた円錐ころ 84と適 切に接触していることを確認して固定冶具 92を外す。
[0154] 最後に、内輪 82と外輪 83との軌道面間距離 dを調整する(S 15)。具体的には、予 め内輪間座 85の幅寸法を調整しておき、内輪部材 82a、 82bの間に予圧を加えるこ とによって軌道面間距離を所定値に設定する。
[0155] 上記の組み込み手順とすることにより、円錐ころ軸受 81を主軸 86に組み込む際に 円錐ころ 84および保持器セグメント 91が脱落するのを防止することができる。これに より、円錐ころ軸受 81の主軸 86への組込みが容易となる。 [0156] また、この発明は他の形式の軸受、例えば、自動調心ころ軸受等に適用してもその 効果を得ること力できる。しかし、前述のように円錐ころ軸受は軌道面間距離の調整 が容易であるので、この発明は、特に円錐ころ軸受に適しているといえる。
[0157] なお、上記の組込み手順は一例であって、他の工程をさらに追加してもよいし、一 部の工程の順序を入れ替える等してもよい。また、固定冶具 92としては、内輪部材 8 2bと外輪 83とを固定連結することができるあらゆる構成のものを採用することができ
[0158] さらに、汎用性の観点から内輪部材 82a、 82bの両方にボノレト穴 89a、 89bを設け た例を示した力 組込み作業の観点からは小鍔 87b側を下に向けて組み込む内輪 部材 82bにのみボルト穴 89bを設ければ足りる。
[0159] ここで、この発明に係る風力発電機の主軸支持構造は、風を受けるブレードと、そ の一端がブレードに固定されてブレードとともに回転する主軸と、主軸を回転自在に 支持する円錐ころ軸受とを備える。円錐ころ軸受に注目すると、内輪と、外輪と、内輪 および外輪に接する転動面を有する複数の円錐ころと、円錐ころを保持するポケット を形成するように軸に沿う方向に延びる複数の柱部、およびこの複数の柱部を連結 するように周方向に延びる連結部を有し、内輪および外輪の間で周方向に順次連ね て配置される複数の保持器セグメントとを備える。そして、円錐ころの転動面の任意の 位置におけるころ径を D、円錐ころのころ径の測定位置における内輪および外輪の 軌道面間距離を dとすると、全ての円錐ころそれぞれの転動面の少なくとも 1箇所で、 D > dを満たすよう構成してもよ!/、。
[0160] 上記構成の円錐ころ軸受を採用することにより、長寿命で信頼性の高い風力発電 機の主軸支持構造を得ることができる。
[0161] また、この発明に係る風力発電機の主軸支持構造として、下記構成の風力発電機 の主軸支持構造としてもよい。すなわち、風を受けるブレードと、その一端がブレード に固定されてブレードとともに回転する主軸と、主軸を回転自在に支持する円錐ころ 軸受とを備える風力発電機の主軸支持構造であって、円錐ころ軸受に注目すると、 軌道面を有する内輪および外輪と、軌道面に接する転動面を有する複数の円錐ころ とを備える。そして、この円錐ころ軸受は、隣接する円錐ころが互いに接触可能な位 置に配置される総ころ形式の軸受とする。
[0162] 上記構成のように、風力発電機の主軸を支持する軸受として総ころ形式の円錐ころ 軸受を採用することにより、保持器を有する同じサイズの円錐ころ軸受と比較して収 容可能な円錐ころの本数を増やすことができる。その結果、軸受全体としての負荷容 量が増加する。
[0163] 図 34および図 35は風力発電機の主軸 86を支持する円錐ころ軸受 95を示す図、 図 36〜図 38は円錐ころ軸受 95を主軸 86に組み込む方法を示す図である。
[0164] 図 34を参照して、円錐ころ軸受 95は、左右の内輪部材 82e、 82fを含む内輪 96と 、外輪 97と、複数の円錐ころ 98と、内輪間座 85とを備える。
[0165] 内輪部材 82eは、外径面に軌道面 86eと、軌道面 86eの一方側端部に小鍔 87eと 、他方側端部に大鍔 88eと、大鍔 88e側の端面に軸方向に延びる複数のボルト穴 89 eとを有する。内輪部材 82fも同様の構成である。そして、この内輪部材 82e、 82fは、 内輪間座 85を挟んで互いの小鍔 87e、 87fを向かい合わせて配置することによって 内輪 96を構成する。外輪 97は、内輪部材 82e、 82fの軌道面 86e、 86fに対応する 複列の軌道面 83e、 83fと、軸方向に貫通する複数の貫通穴 83gとを有する。
[0166] 図 35を参照して、円錐ころ 98は、小端面 84eと、大端面 84fと、転動面 84gとを有し 、小端面 84eを内輪部材 82e、 82fの小鍔 87e、 87f側に向けて内輪 96および外輪 9 7の間に配置される。また、転動面 84gにはクラウユングが形成されており、その頂上 はころ長さの中央に位置する。
[0167] 上記構成の円錐ころ軸受 95は、円錐ころ 98が軸方向に複列に配置されており、左 右の列の円錐ころ 98の小端面 84e同士を突き合わせた背面組み合わせ軸受である 。また、各軌道面においては、隣接する円錐ころ 98が互いに接触可能な位置に配置 される総ころ形式の軸受である。
[0168] さらに、円錐ころ 98の転動面 84gの任意の位置におけるころ径を D、円錐ころ 98の ころ径の測定位置における内輪 96および外輪 97の軌道面間距離を dとすると、全て の円錐ころ 98それぞれの軌道面 84gの少なくとも 1箇所で、 D〉dを満たす。すなわ ち、軌道面間距離は負隙間となっている。
[0169] 具体的には、円錐ころ軸受 95に負荷される荷重が小さい場合 (軽荷重時)、軌道面 86e, 83eと転動面 84gとはクラウユングの頂上でのみ接触する。すなわち、全ての円 錐ころ 98のクラウユングの頂上でのみ負隙間(D > d )となる。なお、 dはクラウニン グの頂上に対応する位置の軌道面間距離を指す。
[0170] 一方、円錐ころ軸受 95に負荷される荷重が大きい場合 (重荷重時)、円錐ころ 98の 転動面 84gが弾性変形して、軌道面 86e、 83eと転動面 84gとの接触面積が増加す る。そして、転動面 84gの全域が軌道面 86e、 83eと接触したときに、全ての円錐ころ 98の転動面 84g全域で負隙間(D〉d)となる。
[0171] 上記構成のように総ころ形式の円錐ころ軸受 95とすることにより、保持器を含む同 じサイズの円錐ころ軸受と比較して収容可能な円錐ころ 98の本数が増加する。その 結果、軸受全体の負荷容量を大きくすることができる。また、軌道面間距離を負隙間 とすることにより、全ての円錐ころ 98に内外輪 96、 97を介して荷重が負荷される。そ の結果、負荷領域と非負荷領域とを含む環境で使用する場合でも大きな荷重を支持 することが可能となると共に、円錐ころ軸受 95の剛性が向上する。
[0172] さらに、隣接する円錐ころ 98の接触位置における自転方向は互いに逆向きとなる ので、総ころ形式の円錐ころ軸受 95においては、隣接する円錐ころ 98の干渉による 回転不良が問題となる。しかし、軌道面間距離を負隙間とすることで円錐ころ 98の横 滑り等を防止できるので、隣接する円錐ころ 98同士の干渉による回転不良が抑制さ れる。その結果、円錐ころ 98の自転運動および公転運動がスムーズになる。
[0173] 上記構成の円錐ころ軸受 95を風力発電機の主軸 86を支持する軸受として使用す ることにより、長寿命で信頼性の高い風力発電機の主軸支持構造を得ることができる
[0174] なお、上記実施形態における円錐ころ 98は、クラウユングの頂上が円錐ころ 98のこ ろ長さの中央に位置する例を示したが、これに限ることなぐ任意の位置に設定する こと力 Sできる。また、転動面 84gにクラウユングが形成されている例を示した力 この発 明は、クラウユングが形成されてレ、ない円錐ころを採用した円錐ころ軸受にも適用す ること力 Sでさる。
[0175] また、上記実施形態における円錐ころ軸受 95は複列の例を示したが、これに限るこ となぐ単列であってもよいし、軌道面が 3列以上ある多列の軸受であってもよい。ま た、円錐ころ軸受 95は、背面組み合わせの例を示したが、これに限ることなく、円錐 ころ 98の大端面 84f同士を突き合わせた正面組み合わせの軸受であってもよい。
[0176] 背面組み合わせとした場合には、軸受の回転中心線 1と、左右の列の円錐ころ 98
0
および内外輪 96、 97の接触線 1、 1との交点 α、 βの間の距離、すなわち、作用点
1 2
間距離が長くなるので、剛性が向上する。
[0177] 次に、図 36〜図 38を参照して、円錐ころ軸受 95を主軸 86に組み込む方法を説明 する。なお、図 36および図 37は円錐ころ軸受 95を主軸 86に組み込む前後の状態 を示す図、図 38は円錐ころ軸受 95の一方の内輪部材 82fを主軸 86に組み込む主 な工程を示すフロー図である。
[0178] 大型の風力発電機の主軸 86に円錐ころ軸受 95を組み込む場合、地上で主軸 86 を垂直に固定して作業を行う。まず、大鍔 88e側を下に向けて内輪部材 82eを主軸 8 6に揷通する。次に、内輪部材 82eの軌道面 86eに円錐ころ 98を組み込む。ここで、 円錐ころ 98の重心 Gは大鍔 88eの外径面より径方向内側に位置するので、円錐ころ 98は軌道面 86e上で拘束されていなくとも大鍔 88eに引っ掛かって脱落することはな い。さらに、内輪間座 85を主軸 86に揷通する。
[0179] 風力発電機の主軸 86を支持する円錐ころ軸受 95には、ブレードが風を受けること 等によって生じるスラスト荷重と、ブレードの自重等によって生じるラジアル荷重およ びモーメント荷重とが負荷される。そこで、これらの荷重を適切に支持するために、円 錐ころ軸受 95の回転中心線 1と、外輪 97の軌道面 83eに接する位置における円錐こ
3
ろ 98の外径面、つまり外輪 97の軌道面 83eの仮想線 1とのなす角 Θ (以下「接触角
4 3
」という)を Θ ≥40° に設定する。なお、従来の一般的な円錐ころ軸受の接触角は 1
3
0° 〜35° 程度である。
[0180] 次に、図 38を参照して、主軸 86に組み込む前に内輪部材 82fと外輪 97とを組み 立てる(S21)。具体的には、大鍔 88e側を下に向けて内輪部材 82fを載置する。次 に、内輪部材 82fの軌道面 86fに円錐ころ 98を組み込む。次に、外輪 97の軌道面 8 3fと円錐ころ 98の転動面 84gとが適切に接するように外輪 97を組み込む。
[0181] 次に、内輪部材 82fと外輪 97とを固定連結する(S22)。具体的には、 L字型の固 定冶具 92の一端と内輪部材 82fのボルト穴 89fとをボルト 93によって固定し、他端と 外輪 97の貫通穴 83gを固定棒 94によって固定する。これにより、円錐ころ 98は軌道 面 86f、 83fの間で拘束されて!/、るので脱落することはな!/、。
[0182] 次に、図 36に示すように、固定連結された内輪部材 82fと外輪 97とを吊り上げて(
S23)、外輪 97の軌道面 83eを下に向けて主軸 86に組み込む(S24)。さらに、図 37 に示すように、外輪 97の軌道面 83eが内輪部材 82eに組み込まれた円錐ころ 98と適 切に接触していることを確認して固定冶具 92を外す。
[0183] 最後に、内輪 96と外輪 97との軌道面間距離 dを調整する(S25)。具体的には、予 め内輪間座 85の幅寸法を調整しておき、内輪部材 82e、 82fの間に予圧を加えるこ とによって軌道面間距離を所定値に設定する。さらに具体的には、全ての円錐ころ 9
8のクラウユングの頂上で負隙間(D > d )となるようにする。
[0184] なお、上記の組込み手順は一例であって、他の工程をさらに追加してもよいし、一 部の工程の順序を入れ替える等してもよい。また、固定冶具 92としては、内輪部材 8
2fと外輪 97とを固定連結することができるあらゆる構成のものを採用することができる
[0185] 上記の組み込み手順とすることにより、総ころ形式の円錐ころ軸受 95を主軸 86に 組み込む際に円錐ころ 98が脱落するのを防止することができる。これにより、円錐こ ろ軸受 95の主軸 86への組込みが容易となる。
[0186] また、この発明は他の形式の軸受、例えば、自動調心ころ軸受等に適用してもその 効果を得ること力できる。しかし、前述のように円錐ころ軸受は軌道面間距離の調整 が容易であるので、この発明は、特に円錐ころ軸受に適しているといえる。
[0187] ここで、円錐ころ 98の重心位置は、接触角 Θ が大きくなるにつれて円錐ころ軸受 9
3
5の径方向内側に移動する。したがって、上記の組み込み方法は、風力発電機の主 軸 86を支持する円錐ころ軸受 95のような接触角 Θ の大きい軸受に適している。な
3
お、円錐ころの重心位置を径方向内側に移動させる他の方法として、ころ角度を極 端に小さくしたり、大鍔の外径を極端に大きくしたりすることも考えられる。しかし、これ らは負荷容量が低下したり円錐ころの回転が不安定になったりするので、風力発電 機の主軸 86を支持する軸受には適して!/、な!/、。
[0188] さらに、汎用性の観点から内輪部材 82e、 82fの両方にボノレト穴 89e、 89fを設けた 例を示したが、組込み作業の観点からは小鍔 87f側を下に向けて組み込む内輪部 材 82fにのみボルト穴 89fを設ければ足りる。
[0189] なお、上記の実施の形態においては、保持器セグメントに収容されるころとして、円 錐ころを用いたが、これに限らず、円筒ころや針状ころ、棒状ころ等を用いてもよい。
[0190] 以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実 施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲 内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可 能である。
産業上の利用可能性
[0191] この発明に係るころ軸受は、機能の低下の防止が要求される風力発電機の主軸支 持構造に、有効に利用される。
[0192] また、この発明に係る風力発電機主軸支持用ころ軸受の保持器セグメントは、軸受 の機能の低下が要求される場合に、有効に利用される。
[0193] また、この発明に係る風力発電機の主軸支持構造は、機能の低下の防止が要求さ れる場合に、有効に利用できる。

Claims

請求の範囲
[1] 外輪と、内輪と、前記外輪および前記内輪の間に配置される複数のころと、前記こ ろを収容するポケットを有し、前記外輪および前記内輪の間で周方向に順次連ねて 配置される複数の保持器セグメントとを備えるころ軸受であって、
前記保持器セグメントは、熱による線膨張係数を低下させる充填材を含む樹脂製で あり、
複数の前記保持器セグメントを周方向に無間隙に配置した場合に、最初に配置さ れる保持器セグメントと最後に配置される保持器セグメントとの間にすき間を有し、 室温において、前記すき間の周方向の寸法は、前記保持器セグメントの中央を通 る円の円周の 0· 075%よりも大きく、 0. 12%よりも小さい、ころ軸受。
[2] 前記充填材は、少なくとも炭素繊維またはガラス繊維のいずれ力、を含む、請求項 1 に記載のころ軸受。
[3] 前記樹脂は、ポリエーテルエーテルケトンである、請求項 1に記載のころ軸受。
[4] 前記樹脂の熱による線膨張係数は、 1. 3 X 10— 5/°C以上 1. 7 X 10— 5/°C以下で ある、請求項 1に記載のころ軸受。
[5] 前記樹脂中の前記充填材の充填比率は、 20重量%以上 40重量%以下である、請 求項 1に記載のころ軸受。
[6] 前記ころは、円錐ころである、請求項 1に記載のころ軸受。
[7] 前記保持器セグメントは、前記ころを収容するポケットを形成するように軸受の回転 軸線に沿う方向に延びる複数の柱部、およびこの複数の柱部を連結するように周方 向に延びる連結部を有し、
前記保持器セグメントは、ころ案内であり、
前記柱部の側壁面には、前記ころと接触する接触部を有する一つの案内爪、およ び前記接触部の周方向内方側の位置に形成される凹部が設けられている、請求項 1 に記載のころ軸受。
[8] 前記案内爪は、前記柱部の側壁面のうち、ころ長さ方向の中央に設けられている、 請求項 7に記載のころ軸受。
[9] 前記案内爪のころ長さ方向の長さは、前記ポケットのころ長さ方向の長さのほぼ全 長である、請求項 7に記載のころ軸受。
[10] 前記凹部は、前記保持器セグメントを成形する際に生ずる収縮ひけにより形成され る、請求項 7に記載のころ軸受。
[11] 前記案内爪を含み、前記軸受の回転軸線に直交する平面で前記保持器セグメント を切断した断面において、前記案内爪の先端に位置する角部の角度は、鈍角である
、請求項 7に記載のころ軸受。
[12] 前記角部には、面取りが設けられている、請求項 11に記載のころ軸受。
[13] 前記面取りは、 R面取りである、請求項 12に記載のころ軸受。
[14] 風力発電機の主軸を支持するころ軸受に備えられ、ころを収容するポケットを有し、 周方向に順次連ねて配置される風力発電機主軸支持用ころ軸受の保持器セグメント であって、
熱による線膨張係数を低下させる充填材を含む樹脂製である、風力発電機主軸支 持用ころ軸受の保持器セグメント。
[15] 前記充填材は、少なくとも炭素繊維またはガラス繊維のいずれ力、を含む、請求項 1
4に記載の風力発電機主軸支持用ころ軸受の保持器セグメント。
[16] 前記樹脂は、ポリエーテルエーテルケトンである、請求項 14に記載の風力発電機 主軸支持用ころ軸受の保持器セグメント。
[17] 前記樹脂の熱による線膨張係数は、 1. 3 X 10— 5/°C以上 1. 7 X 10— 5/°C以下で ある、請求項 14に記載の風力発電機主軸支持用ころ軸受の保持器セグメント。
[18] 前記樹脂中の前記充填材の充填比率は、 20重量%以上 40重量%以下である、請 求項 14に記載の風力発電機主軸支持用ころ軸受の保持器セグメント。
[19] ころを収容するポケットを形成するように軸受の回転軸線に沿う方向に延びる複数 の柱部、およびこの複数の柱部を連結するように周方向に延びる連結部を有し、 ころ案内であり、
前記柱部の側壁面には、前記ころと接触する接触部を有する一つの案内爪、およ び前記接触部の周方向内方側の位置に形成される凹部が設けられている、請求項 1 4に記載の風力発電機主軸支持用ころ軸受の保持器セグメント。
[20] 前記凹部は、前記保持器セグメントを成形する際に生ずる収縮ひけにより形成され る、請求項 19に記載の風力発電機主軸支持用ころ軸受の保持器セグメント。
[21] 風力を受けるブレードと、
その一端が前記ブレードに固定され、ブレードとともに回転する主軸と、 固定部材に組み込まれ、前記主軸を回転自在に支持するころ軸受とを含む風力発 電機の主軸支持構造であって、
前記ころ軸受は、外輪と、内輪と、前記外輪および前記内輪の間に配置される複数 のころと、前記ころを収容するポケットを有し、前記外輪および前記内輪の間で周方 向に順次連ねて配置される複数の保持器セグメントとを備え、
前記保持器セグメントは、熱による線膨張係数を低下させる充填材を含む樹脂製で あり、
複数の前記保持器セグメントを周方向に無間隙に配置した場合に、最初に配置さ れる保持器セグメントと最後に配置される保持器セグメントとの間にすき間を有し、 室温において、前記すき間の周方向の寸法は、前記保持器セグメントの中央を通 る円の円周の 0. 075%よりも大きく、 0. 12%よりも小さい、風力発電機の主軸支持 構造。
[22] 前記保持器セグメントは、前記ころを収容するポケットを形成するように軸受の回転 軸線に沿う方向に延びる複数の柱部、およびこの複数の柱部を連結するように周方 向に延びる連結部を有し、
前記保持器セグメントは、ころ案内であり、
前記柱部の側壁面には、前記ころと接触する接触部を有する一つの案内爪、およ び前記接触部の周方向内方側の位置に形成される凹部が設けられている、請求項 2 1に記載の風力発電機の主軸支持構造。
PCT/JP2007/067199 2006-09-08 2007-09-04 Roulement à rouleaux, segment d'arrêt pour roulement à rouleaux de support d'arbre d'aéromoteur, et une structure de support d'arbre d'aéromoteur WO2008029796A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
ES07806654.5T ES2455015T3 (es) 2006-09-08 2007-09-04 Rodamiento de rodillos y estructura de soporte de árbol principal de generador de energía eólica
DK07806654.5T DK2060806T3 (da) 2006-09-08 2007-09-04 Rulleleje og hovedaksel-understøttelsesstruktur til et vindkraftværk
EP07806654.5A EP2060806B1 (en) 2006-09-08 2007-09-04 Roller bearing and main shaft support structure of wind-power generator
CN2007800333120A CN101512169B (zh) 2006-09-08 2007-09-04 滚子轴承、风力发电机主轴支承用滚子轴承的保持器部及风力发电机的主轴支承结构
EP12175578.9A EP2511544B2 (en) 2006-09-08 2007-09-04 Retainer segment of roller bearing for supporting main shaft of wind-power generator
US12/310,798 US8764304B2 (en) 2006-09-08 2007-09-04 Roller bearing, retainer segment of roller bearing for supporting main shaft of wind-power generator, and main shaft support structure of wind-power generator
US14/692,840 US9664231B2 (en) 2006-09-08 2015-04-22 Roller bearing, retainer segment of roller bearing for supporting main shaft of wind-power generator
US15/712,278 US10408267B2 (en) 2006-09-08 2017-09-22 Tapered roller bearing and main shaft support structure of wind-power generator using same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2006244396A JP5354849B2 (ja) 2006-09-08 2006-09-08 風力発電機の主軸支持構造
JP2006-244397 2006-09-08
JP2006-244396 2006-09-08
JP2006244397A JP4308234B2 (ja) 2006-09-08 2006-09-08 風力発電機の主軸支持用円錐ころ軸受および風力発電機の主軸支持構造
JP2006-352462 2006-12-27
JP2006352462A JP2008163999A (ja) 2006-12-27 2006-12-27 円錐ころ軸受、円錐ころ軸受の組み込み方法および風力発電機の主軸支持構造
JP2007-148352 2007-06-04
JP2007148353A JP4105750B1 (ja) 2007-06-04 2007-06-04 ころ軸受、ころ軸受の保持器セグメントおよび風力発電機の主軸支持構造
JP2007148352A JP4231082B2 (ja) 2007-06-04 2007-06-04 風力発電機の主軸支持用ころ軸受および風力発電機の主軸支持構造
JP2007-148353 2007-06-04

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/310,798 A-371-Of-International US8764304B2 (en) 2006-09-08 2007-09-04 Roller bearing, retainer segment of roller bearing for supporting main shaft of wind-power generator, and main shaft support structure of wind-power generator
US14/279,539 Continuation US9810263B2 (en) 2006-09-08 2014-05-16 Retainer segment for a roller bearing for supporting a main shaft of a wind-power generator
US14/279,539 Division US9810263B2 (en) 2006-09-08 2014-05-16 Retainer segment for a roller bearing for supporting a main shaft of a wind-power generator

Publications (1)

Publication Number Publication Date
WO2008029796A1 true WO2008029796A1 (fr) 2008-03-13

Family

ID=39157223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/067199 WO2008029796A1 (fr) 2006-09-08 2007-09-04 Roulement à rouleaux, segment d'arrêt pour roulement à rouleaux de support d'arbre d'aéromoteur, et une structure de support d'arbre d'aéromoteur

Country Status (6)

Country Link
US (4) US8764304B2 (ja)
EP (2) EP2060806B1 (ja)
CN (1) CN101512169B (ja)
DK (2) DK2511544T4 (ja)
ES (2) ES2455228T5 (ja)
WO (1) WO2008029796A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048342A (ja) * 2008-08-21 2010-03-04 Ntn Corp 大型ころ軸受、風力発電機の主軸支持構造およびトンネル掘削機の回転軸支持構造
WO2010038571A1 (ja) * 2008-09-30 2010-04-08 Ntn株式会社 ころ軸受、風力発電機の主軸支持構造、およびころ軸受の保持器セグメント間のすき間調整方法
US20120274074A1 (en) * 2008-12-19 2012-11-01 Robert Bosch Gmbh Continuous-Flow Power Installation

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101512169B (zh) * 2006-09-08 2011-06-22 Ntn株式会社 滚子轴承、风力发电机主轴支承用滚子轴承的保持器部及风力发电机的主轴支承结构
WO2012092107A2 (en) 2010-12-27 2012-07-05 The Timken Company Segmented bearing retainer for wire support rings
CN102182646B (zh) * 2011-03-29 2012-08-15 唐山市拓又达科技有限公司 发电机机壳中心轴与扇叶连接杆的固定装置及方法
FR2976640B1 (fr) * 2011-06-14 2013-07-12 Ntn Snr Roulements Cage de roulement spherique et roulement spherique pourvu d'une telle cage.
CN103062217A (zh) * 2011-10-21 2013-04-24 贵州红林机械有限公司 一种转动装置
CN102817918B (zh) * 2012-01-13 2015-04-15 洛阳轴研科技股份有限公司 一种推力球轴承及其保持架
CN104334899B (zh) 2012-06-01 2016-09-28 迪姆肯公司 改进型分段轴承承托
DE102014207831A1 (de) * 2014-04-25 2015-10-29 Aktiebolaget Skf Wälzlager
JP6459396B2 (ja) 2014-10-29 2019-01-30 株式会社ジェイテクト 円すいころ軸受
JP6459395B2 (ja) 2014-10-29 2019-01-30 株式会社ジェイテクト 円すいころ軸受
JP6565164B2 (ja) * 2014-10-29 2019-08-28 株式会社ジェイテクト 円すいころ軸受用の保持器及び円すいころ軸受
JP6458447B2 (ja) 2014-10-29 2019-01-30 株式会社ジェイテクト 円すいころ軸受
JP6492540B2 (ja) 2014-10-29 2019-04-03 株式会社ジェイテクト 円すいころ軸受
JP6565163B2 (ja) 2014-10-29 2019-08-28 株式会社ジェイテクト 円すいころ軸受
JP2017082945A (ja) 2015-10-29 2017-05-18 Ntn株式会社 複列円すいころ軸受、軌道輪および複列円すいころ軸受の製造方法
USD824967S1 (en) * 2015-11-09 2018-08-07 Seal Ryt Corporation Bearing with integral diverted lantern ring for a rotary mechanical device
USD809033S1 (en) * 2015-12-28 2018-01-30 Ntn Corporation Retainer for rolling bearing
JP6852260B2 (ja) * 2016-01-18 2021-03-31 株式会社ジェイテクト ころ軸受
CN108361281B (zh) * 2017-01-26 2021-01-01 斯凯孚公司 保持架分段、分段式保持架和轴承
CN108425950B (zh) * 2017-02-15 2021-02-05 斯凯孚公司 保持架分段、分段式保持架和轴承
USD888788S1 (en) * 2017-06-07 2020-06-30 Us Synthetic Corporation Radial bearing
USD888787S1 (en) * 2017-06-07 2020-06-30 Us Synthetic Corporation Radial bearing
CA3064424C (en) 2017-06-07 2022-03-29 Us Synthetic Corporation Bearing assemblies, related bearing apparatuses, and related methods
JP7141835B2 (ja) * 2018-03-05 2022-09-26 Ntn株式会社 ころ軸受及びころ軸受用保持器
FR3090766B1 (fr) * 2018-12-21 2021-03-19 Ntn Snr Roulements Procédé de montage des rouleaux dans une cage de rétention
WO2022237921A1 (en) 2021-05-14 2022-11-17 ZKL - Výzkum a vývoj, a.s. Segmented bearing cage

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242662A (ja) * 1988-03-23 1989-09-27 Yobea Rulon Kogyo Kk 摺動性樹脂組成物
GB2361965A (en) 2000-05-02 2001-11-07 Thk Co Ltd Rolling element spacer in rolling guide device
JP2002122148A (ja) * 2000-10-17 2002-04-26 Nsk Ltd 転がり軸受
JP2003278746A (ja) * 2002-03-20 2003-10-02 Ntn Corp 円筒ころ軸受
JP2003336642A (ja) 1993-08-10 2003-11-28 Koyo Seiko Co Ltd 転がり軸受用保持器
JP2004019921A (ja) * 2002-06-20 2004-01-22 Ntn Corp 超薄肉形転がり軸受
EP1408248A2 (de) 2002-10-08 2004-04-14 Ab Skf Käfig für ein Wälzlager
JP2004278746A (ja) 2003-03-18 2004-10-07 Hitachi Sumitomo Heavy Industries Construction Crane Co Ltd 建設機械の油圧操作装置
JP2005061434A (ja) 2003-08-11 2005-03-10 Nsk Ltd 多点接触玉軸受
JP2005147331A (ja) * 2003-11-18 2005-06-09 Ntn Corp 複列転がり軸受
JP2006308080A (ja) * 2005-03-30 2006-11-09 Nsk Ltd 転がり軸受

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51132351A (en) * 1975-05-13 1976-11-17 Koyo Seiko Co Ltd Pre-pressure adjusting type bearing device
JPS54151752A (en) 1978-05-20 1979-11-29 Ntn Toyo Bearing Co Ltd Steep tapered roller bearings
JPS57144621U (ja) 1981-03-06 1982-09-10
DE3728877A1 (de) * 1987-08-29 1989-03-09 Kugelfischer G Schaefer & Co Kegelrollenlager
JPH0648180Y2 (ja) * 1989-04-07 1994-12-12 光洋精工株式会社 冠形保持器
JP3030731B2 (ja) * 1990-12-28 2000-04-10 光洋精工株式会社 転動体保持部材および転がり軸受
JPH0519652U (ja) * 1991-06-28 1993-03-12 エヌテイエヌ株式会社 二つ割れ保持器付き針状コロ軸受
JPH0658334A (ja) 1992-08-07 1994-03-01 Nippon Seiko Kk きしり音抑制ラジアル軸受
US5807920A (en) * 1993-08-10 1998-09-15 Koyo Seiko Co., Ltd. Retainer for rolling-contact element
JPH07127645A (ja) 1993-10-29 1995-05-16 Ntn Corp ころ軸受用保持器
DE9318556U1 (de) 1993-12-06 1994-02-10 Schaeffler Waelzlager Kg Freilaufkäfig mit Armierungsring
JP3668274B2 (ja) 1995-02-08 2005-07-06 日本トムソン株式会社 保持器付きころ
DE29504069U1 (de) * 1995-03-09 1995-04-27 Skf Gmbh Taschenkäfig für Rollenlager
SE506184C2 (sv) * 1995-03-31 1997-11-17 Skf Ab Metod för glappjustering vid ett rullninglager
JPH09144761A (ja) 1995-09-18 1997-06-03 Ntn Corp 玉軸受、並びに当該軸受を備えるプーリ及びファン
JP3510726B2 (ja) 1995-12-25 2004-03-29 Ntn株式会社 ころ軸受
JP2000145790A (ja) 1998-11-11 2000-05-26 Ntn Corp 保持器付き針状ころ
US6113274A (en) * 1999-04-15 2000-09-05 Tsubaki Nakashima Co., Ltd. Linear guideway having spacers and spacer ball
US6302405B1 (en) * 1999-06-24 2001-10-16 Schlumberger Technology Corporation Anti-extrusion seal
JP2001122148A (ja) 1999-10-27 2001-05-08 Yanmar Agricult Equip Co Ltd 管理作業車
JP2001200854A (ja) 2000-01-13 2001-07-27 Koyo Seiko Co Ltd 転がり軸受
DE10165027C5 (de) * 2000-10-27 2019-10-02 Nsk Ltd. Wälzlager und Spindelvorrichtung für Werkzeugmaschine
JP2002242938A (ja) * 2001-02-16 2002-08-28 Nsk Ltd ころ軸受用保持器
JP3982246B2 (ja) 2001-03-27 2007-09-26 日本精工株式会社 工作機械の主軸支持用ころ軸受
JP2003013967A (ja) 2001-04-24 2003-01-15 Ntn Corp 旋回軸受用保持器とこれを用いた旋回軸受
US6994474B2 (en) * 2001-05-29 2006-02-07 Nsk Ltd. Rolling sliding member and rolling apparatus
JP2003042148A (ja) 2001-07-27 2003-02-13 Nsk Ltd 転がり軸受
JP2003074677A (ja) 2001-09-04 2003-03-12 Nsk Ltd 減速機用軸受構造
JP3700636B2 (ja) 2001-10-05 2005-09-28 日本精工株式会社 トロイダル型無段変速機のパワーローラ軸受
EP1457694A4 (en) * 2001-10-31 2006-08-30 Nsk Ltd ROLLER BEARINGS
WO2003042073A1 (en) * 2001-11-14 2003-05-22 Entegris, Inc. Wafer support attachment for a semi-conductor wafer transport container
JP2004338584A (ja) 2003-05-16 2004-12-02 Ntn Corp 駆動車輪用軸受ユニットの製造方法および車輪用駆動ユニット
JP2005098418A (ja) 2003-09-25 2005-04-14 Koyo Seiko Co Ltd 複列円すいころ軸受装置の組立て方法
JP4031747B2 (ja) 2003-09-30 2008-01-09 三菱重工業株式会社 風力発電用風車
JP2005207517A (ja) 2004-01-23 2005-08-04 Ntn Corp 自動調心ころ軸受および風力発電機主軸支持装置
JP2005221001A (ja) 2004-02-05 2005-08-18 Nsk Ltd 円すいころ軸受
JP2005231428A (ja) 2004-02-18 2005-09-02 Ntn Corp 電動式車輪駆動装置
JP2005265126A (ja) 2004-03-19 2005-09-29 Ntn Corp 総ころ型円錐ころ軸受
EP1614914B1 (en) * 2004-07-05 2014-01-15 NTN Corporation Tapered roller bearing
WO2006019142A1 (ja) * 2004-08-18 2006-02-23 Jtekt Corporation 軸受用保持器
US7498683B2 (en) * 2004-09-01 2009-03-03 Wilhelm Landwehr Device for converting flow energy into electrical energy
TW200626364A (en) * 2004-09-29 2006-08-01 Ube Industries Polyimide film and polyimide composite sheet
JP2006125486A (ja) 2004-10-28 2006-05-18 Ntn Corp 保持器付きころ
JP2006177446A (ja) 2004-12-22 2006-07-06 Ntn Corp 調心輪付き円錐ころ軸受
JP2006177447A (ja) 2004-12-22 2006-07-06 Ntn Corp 複列転がり軸受
JP2006214545A (ja) 2005-02-04 2006-08-17 Ntn Corp 複列転がり軸受および風力発電機用増速機の回転軸支持構造
JP2006226496A (ja) 2005-02-21 2006-08-31 Ntn Corp 転がり軸受および転がり軸受用樹脂製保持器
CN1824962A (zh) 2005-02-25 2006-08-30 江苏华盛精细陶瓷科技有限公司 聚醚醚酮(peek)轴承保持架
DE102005009980B3 (de) * 2005-03-04 2006-06-14 Aktiebolaget Skf Wälzlager
DE102005009930B4 (de) * 2005-03-04 2012-01-05 Audi Ag Bowdenzuganordnung und Kupplungselement zum Verbinden zweier Bowdenzüge
JP4978764B2 (ja) 2005-03-22 2012-07-18 独立行政法人産業技術総合研究所 反応熱の推算方法及び装置
JP2007010026A (ja) 2005-06-30 2007-01-18 Ntn Corp 円筒ころ軸受及び円筒ころ軸受用保持器
JP4699827B2 (ja) 2005-07-21 2011-06-15 Ntn株式会社 円錐ころ軸受および風力発電機の主軸支持構造
JP4156623B2 (ja) 2005-12-28 2008-09-24 Ntn株式会社 超薄肉形転がり軸受およびその保持器
JP4697006B2 (ja) * 2006-03-30 2011-06-08 株式会社ジェイテクト ころ軸受用保持器及び円錐ころ軸受
CN101512169B (zh) 2006-09-08 2011-06-22 Ntn株式会社 滚子轴承、风力发电机主轴支承用滚子轴承的保持器部及风力发电机的主轴支承结构
GB2448712A (en) * 2007-04-25 2008-10-29 Cooper Roller Bearings Company A split taper roller bearing
US20080277937A1 (en) * 2007-05-10 2008-11-13 Yung-Tsai Chuo Torque Motor Type Wind Generator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242662A (ja) * 1988-03-23 1989-09-27 Yobea Rulon Kogyo Kk 摺動性樹脂組成物
JP2003336642A (ja) 1993-08-10 2003-11-28 Koyo Seiko Co Ltd 転がり軸受用保持器
GB2361965A (en) 2000-05-02 2001-11-07 Thk Co Ltd Rolling element spacer in rolling guide device
JP2002122148A (ja) * 2000-10-17 2002-04-26 Nsk Ltd 転がり軸受
JP2003278746A (ja) * 2002-03-20 2003-10-02 Ntn Corp 円筒ころ軸受
JP2004019921A (ja) * 2002-06-20 2004-01-22 Ntn Corp 超薄肉形転がり軸受
EP1408248A2 (de) 2002-10-08 2004-04-14 Ab Skf Käfig für ein Wälzlager
JP2004278746A (ja) 2003-03-18 2004-10-07 Hitachi Sumitomo Heavy Industries Construction Crane Co Ltd 建設機械の油圧操作装置
JP2005061434A (ja) 2003-08-11 2005-03-10 Nsk Ltd 多点接触玉軸受
JP2005147331A (ja) * 2003-11-18 2005-06-09 Ntn Corp 複列転がり軸受
JP2006308080A (ja) * 2005-03-30 2006-11-09 Nsk Ltd 転がり軸受

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.A. BARNES ET AL.: "Thermal expansion characteristics of PEEK composites", JOURNAL OF MATERIALS SCIENCE, vol. 26, no. 8, 1 January 1991 (1991-01-01), pages 2259 - 2271, XP055008085, DOI: doi:10.1007/BF00549197
See also references of EP2060806A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048342A (ja) * 2008-08-21 2010-03-04 Ntn Corp 大型ころ軸受、風力発電機の主軸支持構造およびトンネル掘削機の回転軸支持構造
WO2010038571A1 (ja) * 2008-09-30 2010-04-08 Ntn株式会社 ころ軸受、風力発電機の主軸支持構造、およびころ軸受の保持器セグメント間のすき間調整方法
JP2010084835A (ja) * 2008-09-30 2010-04-15 Ntn Corp ころ軸受、風力発電機の主軸支持構造、およびころ軸受の保持器セグメント間のすき間調整方法
CN102165204A (zh) * 2008-09-30 2011-08-24 Ntn株式会社 滚子轴承、风力发电机的主轴支承结构及滚子轴承的保持器扇形体间的间隙调整方法
DE112009002624B4 (de) 2008-09-30 2021-09-23 Ntn Corporation Rollenlager, Hauptwellen-Stützkonstruktion eines Windkraftgenerators und Verfahren zur Justierung des Umfangsspiels zwischen Käfigsegmenten des Rollenlagers
US20120274074A1 (en) * 2008-12-19 2012-11-01 Robert Bosch Gmbh Continuous-Flow Power Installation
US9447777B2 (en) * 2008-12-19 2016-09-20 Zf Friedrichshafen Ag Continuous-flow power installation

Also Published As

Publication number Publication date
EP2060806A4 (en) 2010-09-01
ES2455228T5 (es) 2022-02-25
ES2455015T3 (es) 2014-04-14
US10408267B2 (en) 2019-09-10
US20150226262A1 (en) 2015-08-13
US20090324410A1 (en) 2009-12-31
CN101512169B (zh) 2011-06-22
US8764304B2 (en) 2014-07-01
DK2511544T3 (da) 2014-04-28
EP2511544B1 (en) 2014-01-29
EP2511544A1 (en) 2012-10-17
US20140248018A1 (en) 2014-09-04
US9810263B2 (en) 2017-11-07
EP2060806A1 (en) 2009-05-20
EP2060806B1 (en) 2014-01-29
DK2060806T3 (da) 2014-04-28
ES2455228T3 (es) 2014-04-15
US9664231B2 (en) 2017-05-30
US20180010639A1 (en) 2018-01-11
DK2511544T4 (da) 2021-11-15
EP2511544B2 (en) 2021-08-18
CN101512169A (zh) 2009-08-19

Similar Documents

Publication Publication Date Title
WO2008029796A1 (fr) Roulement à rouleaux, segment d'arrêt pour roulement à rouleaux de support d'arbre d'aéromoteur, et une structure de support d'arbre d'aéromoteur
JP4101844B2 (ja) 軸受組み込み冶具、円錐ころ軸受、円錐ころ軸受の組み込み方法および風力発電機の主軸支持構造
CN1847680B (zh) 复列圆筒滚柱轴承
JP4573791B2 (ja) ころ軸受、および風力発電機の主軸支持構造
JP4342512B2 (ja) 転がり軸受、保持器セグメントおよび風力発電機の主軸支持構造
JP2007211833A (ja) 転がり軸受、保持器セグメントおよび風力発電機の主軸支持構造
WO2007072637A1 (ja) 転がり軸受、保持器セグメントおよび風力発電機の主軸支持構造
JP5457004B2 (ja) 風力発電機の主軸支持用ころ軸受の保持器セグメント間のすき間調整方法
EP2071204A2 (en) Bearing apparatus
JP3877004B2 (ja) 複列円筒ころ軸受
JP2009063101A (ja) 転がり軸受
JP6529209B2 (ja) アンギュラ玉軸受
US10197094B2 (en) Double-row spherical roller bearing
JP4308234B2 (ja) 風力発電機の主軸支持用円錐ころ軸受および風力発電機の主軸支持構造
JP4231082B2 (ja) 風力発電機の主軸支持用ころ軸受および風力発電機の主軸支持構造
JP5131466B2 (ja) 風力発電機の主軸支持用ころ軸受および風力発電機の主軸支持構造
JP4201800B2 (ja) 風力発電機の主軸支持用ころ軸受
JP4105750B1 (ja) ころ軸受、ころ軸受の保持器セグメントおよび風力発電機の主軸支持構造
CN201314336Y (zh) 高转速低噪音电机精密轴承
CN210799697U (zh) 一种轧机立轧减速机的高速轴
JP2009052746A (ja) 転がり軸受、保持器セグメントおよび風力発電機の主軸支持構造
JP2009019708A (ja) 分割型針状ころ軸受
JP2006090346A (ja) 複列自動調心ころ軸受および風力発電機の主軸支持構造
JP2009287706A (ja) 旋回軸受
JP2006211863A (ja) ダイレクトドライブモータ及びダイレクトドライブモータ用軸受

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780033312.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07806654

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007806654

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12310798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE