WO2006106948A1 - 無機機能材原料用合金粉末及び蛍光体 - Google Patents

無機機能材原料用合金粉末及び蛍光体 Download PDF

Info

Publication number
WO2006106948A1
WO2006106948A1 PCT/JP2006/306903 JP2006306903W WO2006106948A1 WO 2006106948 A1 WO2006106948 A1 WO 2006106948A1 JP 2006306903 W JP2006306903 W JP 2006306903W WO 2006106948 A1 WO2006106948 A1 WO 2006106948A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
elements
nitride
metal element
oxynitride
Prior art date
Application number
PCT/JP2006/306903
Other languages
English (en)
French (fr)
Inventor
Hiromu Watanabe
Masumi Itou
Keiichi Seki
Hiroshi Wada
Motoyuki Shigeiwa
Kaoru Terada
Naoto Kijima
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006085148A external-priority patent/JP5130639B2/ja
Priority claimed from JP2006086850A external-priority patent/JP5130640B2/ja
Priority to EP06730851A priority Critical patent/EP1867695A4/en
Priority to KR1020137033409A priority patent/KR101471883B1/ko
Priority to KR1020077025384A priority patent/KR101241488B1/ko
Priority to CN2006800158625A priority patent/CN101171321B/zh
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to KR1020137008922A priority patent/KR101422046B1/ko
Priority to KR1020137000182A priority patent/KR101346580B1/ko
Priority to US11/910,320 priority patent/US7824573B2/en
Priority to KR1020147011854A priority patent/KR20140063899A/ko
Publication of WO2006106948A1 publication Critical patent/WO2006106948A1/ja
Priority to US12/615,002 priority patent/US8460580B2/en
Priority to US13/834,110 priority patent/US8801970B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/052Metallic powder characterised by the size or surface area of the particles characterised by a mixture of particles of different sizes or by the particle size distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/591Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by reaction sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7735Germanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7737Phosphates
    • C09K11/7738Phosphates with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/77927Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7794Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7795Phosphates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/16Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/761Unit-cell parameters, e.g. lattice constants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/32257Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic the layer connector connecting to a bonding area disposed in a recess of the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48257Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a die pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Definitions

  • the present invention relates to an alloy powder for inorganic functional material raw material and a method for producing the same. Specifically, the present invention relates to an inorganic functional material raw material alloy powder that is suitable as a raw material for manufacturing a phosphor and a method for manufacturing the same. The present invention also relates to a phosphor and a method for producing the same. The present invention also relates to a phosphor-containing composition and a light emitting device using the phosphor, and an image display device and an illumination device using the light emitting device.
  • Phosphors are used in fluorescent lamps, fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), cathode ray tubes (CRT), white light emitting diodes (LE D), etc. Yes.
  • VFD fluorescent display tubes
  • FED field emission displays
  • PDP plasma display panels
  • CRT cathode ray tubes
  • LE D white light emitting diodes
  • any of these applications in order to make the phosphor emit light, it is necessary to supply the phosphor with energy for exciting the phosphor, such as vacuum ultraviolet rays, ultraviolet rays, visible rays, and electron beams. It is excited by an excitation source having high energy and emits ultraviolet rays, visible rays, and infrared rays.
  • an excitation source having high energy and emits ultraviolet rays, visible rays, and infrared rays.
  • the luminance of the phosphor decreases.
  • M is at least one alkaline earth metal element selected from the group consisting of Ca, Sr, and Ba
  • z 2Z3x + 4Z3y.
  • phosphors represented by These phosphors are synthesized by nitriding an alkaline earth metal to synthesize an alkaline earth metal nitride and adding silicon nitride thereto, or using an alkaline earth metal and an imide of silicon as raw materials. Or heating in an Ar stream It is synthesized by. In both cases, alkaline earth metals sensitive to air and moisture had to be used as raw materials, and there were problems with industrial mass synthesis.
  • Patent Document 2 describes an oxide of structure M Si ON, structure MSiAl ON,
  • Nitride phosphors are disclosed. Especially when M is Sr, SrCO and A1N and Si N
  • the obtained phosphor is only oxynitride, and nitride containing no oxygen is not obtained.
  • Patent Document 4 As an oxynitride phosphor, a Ca-alpha sialon phosphor activated with Eu 2+ ions has been proposed (Patent Document 4).
  • This phosphor is manufactured by a manufacturing process generally described below.
  • the Eu-alpha sialon is produced by firing in a hot press method in which it is kept at a temperature of 1700 ° C for 1 hour.
  • 1700 ° C Ca-alpha sialon is produced by firing by a hot press method that is held at a temperature of 1 hour.
  • the Eu-alpha sialon and Ca-alpha sialon powders obtained in this way were mixed at a ratio of 50:50, kept in 1 atm nitrogen gas, and held at a temperature of 1700 ° C for 1 hour.
  • the Ca-alpha sialon phosphor activated by the desired Eu 2+ ion is manufactured by firing by the hot press method. It has been reported that the phosphor obtained by this process emits yellow light with a wavelength of 550 nm to 600 nm when excited with blue light having a wavelength of 450 nm and 500 nm.
  • the nitride or oxynitride phosphor has a low reactivity of the raw material powder used, it is heated to a high temperature for the purpose of promoting a solid-phase reaction between the raw material mixed powders during firing. Oh! Thus, since it is heated in a compression molded state, that is, with a large contact area between the raw material powders, it is synthesized in the state of a very hard sintered body.
  • the sintered body thus obtained must be pulverized to a fine powder suitable for the intended use of the phosphor.
  • phosphors with strong sintered strength are pulverized over a long period of time and with a large amount of energy using ordinary mechanical crushing methods such as jaw crushers and ball mills, many defects are present in the phosphor crystal matrix. If the emission intensity of the phosphor is significantly reduced, inconvenience arises.
  • Alkaline earth metal nitrides must be used, but generally divalent metal nitrides are unstable in moisture-containing atmospheres and react with moisture to form hydroxides. This trend is particularly noticeable in the case of Sr. For this reason, it has been difficult to keep the oxygen concentration contained in the synthesized phosphor low.
  • Patent Document 3 has been reported regarding a method for producing a nitride phosphor using a metal as a starting material.
  • Patent Document 3 discloses an example of a method for producing an aluminum nitride-based phosphor, and describes that transition elements, rare earth elements, aluminum and alloys thereof can be used as raw materials. It is listed. However, an example using an alloy as a raw material is not described,
  • A1 metal is used as the A1 source.
  • it differs from the present invention in that it uses a combustion synthesis method in which the raw material is ignited and instantaneously raised to a high temperature (3000 K), and it is estimated that it is difficult to obtain a high-quality phosphor by this method.
  • the method of instantaneously raising the temperature to 3000 K cannot uniformly distribute the activating elements, and it is difficult to obtain a phosphor with high characteristics.
  • a nitride phosphor containing an alkaline earth element obtained from an alloy raw material and a nitride phosphor containing silicon there is no description regarding a nitride phosphor containing an alkaline earth element obtained from an alloy raw material and a nitride phosphor containing silicon.
  • Non-Patent Document 1 and Non-Patent Document 2 are described.
  • these alloys have been prepared in small quantities for academic research at the laboratory level, and there has been no example of industrial production of such alloys in the past.
  • Si and alkaline earth metal elements such as Sr (Ca) Si N and CaAlSiN
  • the phosphor is excited by a blue light emitting diode or near-ultraviolet light emitting diode and emits yellowish red light. Therefore, in combination with a blue light emitting diode or a near ultraviolet light emitting diode, a phosphor emitting white light is formed. Industrially useful as a material for
  • the contamination of impurities can be obtained even in a trace amount. It has an adverse effect on the light emission characteristics of the phosphor, and for example, that the activator elements are uniformly distributed and the composition as designed is an essential requirement for realizing a phosphor having the desired light emission characteristics. For this reason, there is a need for technology capable of industrially mass-producing alloys for phosphor raw materials with high composition uniformity and a designed alloy composition that does not contain impurities.
  • Patent Document 1 Japanese Translation of Special Publication 2003-515665
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-206481
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-54182
  • Non-patent literature l M.Imai, Applied Physics Letters, 80 (2002) 1019-1021
  • Non-Patent Document 2 M.Imai, Physical Review B, 68, (2003), 064512
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-363554
  • the first case of the present invention is highly efficient by allowing the reaction for the inorganic functional material to proceed efficiently and uniformly.
  • An object of the present invention is to provide an alloy powder for inorganic functional material raw material capable of producing an inorganic functional material having high performance.
  • Alloy powder of the first aspect is an alloy powder as a raw material of an inorganic functional material, alloy is contained and at least one metal element, and activating element M 1 at least one, powder
  • the weight median diameter of D is characterized by D force ⁇ m or more and 40 ⁇ m or less.
  • This alloy powder can be produced through a process of pulverizing the alloy in a nitrogen-containing atmosphere.
  • the purpose of the second aspect is to perform chemical molding without the need for compression molding for promoting solid-phase reaction of nitride raw materials, powerful long-time pulverization after firing, and expensive high-temperature and high-pressure firing furnaces.
  • An object of the present invention is to provide a method for producing a phosphor having a uniform composition at a low cost.
  • the second aspect is intended to produce a phosphor based on nitrides, oxynitrides, oxides, and the like by such an industrially advantageous method.
  • the method for producing the phosphor of the second aspect is characterized in that an alloy containing two or more metal elements constituting the phosphor is heated in a nitrogen-containing atmosphere.
  • the third aspect aims to provide a technique for improving the luminance of a phosphor by a simple method.
  • the phosphor of the third aspect is a phosphor having nitride or oxynitride as a base material.
  • the phosphor is dispersed in 10 times by weight of water and then allowed to stand for 1 hour. It has a conductivity of 50mSZm or less.
  • the fourth aspect is yellow to orange or orange when excited by light from the near ultraviolet region to the blue region! / High brightness and luminous efficiency that emits red light!
  • the objective is to obtain a phosphor.
  • the phosphor of the fourth aspect has a peak intensity ratio I in the following region 1 to region 6 of 8% or less in the powder X-ray diffraction pattern measured using the CuKo; line (1.554184A). It is characterized by that.
  • the peak intensity ratio I corresponds to the height I of the strongest peak existing in the range of 2 ⁇ force to 37 ° in the powder X-ray diffraction pattern in the range of 2 ⁇ force ⁇ 0 ° to 60 °.
  • Region 1 is in the range of 20 force S 10 ° to 17 °.
  • Region 2 has a 20 force in the range of 8.3 ° to 24 °.
  • Region 3 ranges from 2 ⁇ force 25.3 ° to 30.7 °.
  • Region 4 ranges from 2 ⁇ force 32 ° to 34.3 °.
  • Region 5 ranges from 20 forces S37 ° to 40 °.
  • Region 6 has a 20 force of 41.5 ° to 47 °. Range.
  • the fifth aspect is yellow to orange or orange when excited by light from the near ultraviolet region to the blue region! / High brightness and luminous efficiency that emits red light!
  • the objective is to obtain a phosphor.
  • Phosphor fifth aspect is a nitride or oxynitride as a host, a phosphor having a activator elements M 1, Teiatai least 85 mole percent of the activator elements M 1 is higher than the highest Sani ⁇ Be a number It is characterized by.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a light emitting device of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of a surface-emitting illumination device using the light-emitting device of the present invention.
  • FIG. 3 is a schematic perspective view showing another embodiment of the light emitting device of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of a light emitting device.
  • FIG. 5 is a chart showing an emission spectrum of the light emitting device.
  • FIG. 6 is a chart showing an emission spectrum of the light emitting device.
  • FIG. 7 is a chart showing an emission spectrum of the phosphor after washing.
  • FIG. 8 is a chart showing a powder X-ray diffraction pattern of the phosphor after washing.
  • FIG. 9 is a chart showing a powder X-ray diffraction pattern of an unwashed phosphor.
  • FIG. 10 is a chart showing a powder X-ray diffraction pattern of a phosphor.
  • FIG. 11 is a chart showing a powder X-ray diffraction pattern of a phosphor.
  • FIG. 12 is a chart showing an EXAFS spectrum at the Eu—K absorption edge.
  • FIG. 13 is a chart showing an XANES spectrum at the Eu-L absorption edge.
  • the inventors have used a specific range of weight median diameter D and particle size distribution alloy powder.
  • the present inventors have found that an inorganic functional material such as a luminous body with high brightness and luminous efficiency can be obtained.
  • concentration of oxygen, carbon, etc. contained in a trace amount in the alloy greatly affects the activity of the alloy and the properties of the obtained phosphor.
  • One of the most effective ways to control the activity of the alloy powder is to adjust the particle size. If the weight median diameter D is too large, the activity will be low and the inside of the particles will not react sufficiently.
  • the first aspect of the present invention has been achieved based on such knowledge.
  • the first aspect of inorganic functional raw material alloy powder an alloy powder as a raw material of an inorganic functional material, and the alloy is at least one metal element, at least one activator elements M 1
  • the weight median diameter of the powder D is from force ⁇ m to 40 ⁇ m.
  • the proportion of alloy particles with a particle size of 10 m or less contained in the alloy powder is 80 wt% or less, the proportion of alloy particles with a particle size of 45 ⁇ m or more is 40 wt% or less, QD is 0.59 or less, The amount of iron
  • the amount of oxygen contained in the alloy powder is preferably 0.5% by weight or less.
  • the amount of carbon contained in the alloy powder is 0.06 wt% or less.
  • the inorganic functional raw material alloy powder, Yo also contain tetravalent metal elements M 4 including activating element M 1 2 divalent metal elements M 2, and least Si,.
  • the inorganic functional raw material alloy powder may comprise an alkaline earth metal elemental divalent metal elements M 2.
  • the inorganic functional raw material alloy powder further include a trivalent metal elements M 3 Yo,.
  • the activator element M 1 is Cr, Mn, Fe, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb forces. Preferably there is.
  • divalent metal elements M 2 is Mg, Ca, Sr, at least one element selected from the group consisting of Ba, and Zn
  • 3-valent metal element M 3 is Al, Ga, In, and One or more elements selected from the group consisting of Sc, a tetravalent metal element containing at least Si
  • M 4 is a group force consisting of Si, Ge, Sn, Ti, Zr, and Hf One or more elements selected It is preferable that
  • 50 mol% or more of the divalent metal elements M 2 is Ca and Z or Sr
  • 50 mol% or more of the trivalent metal elements M 3 is A1
  • the r, Al as trivalent metal element M 3 may include a Si as tetravalent metal elements M 4 including at least Si.
  • This alloy powder for inorganic functional material raw material can be suitably used as a raw material for producing a phosphor.
  • the alloy powder for inorganic functional material raw material can be manufactured through a process of pulverizing the alloy in a nitrogen-containing atmosphere.
  • classification treatment is preferably performed.
  • the alloy powder for inorganic functional material raw materials outside the first case of the present invention is particularly suitable as a raw material for manufacturing phosphors, and manufactures phosphors excellent in luminous characteristics such as luminance and luminous efficiency at low cost. It becomes possible to do.
  • the numerical range expressed using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the alloy powder for the phosphor raw material will be mainly described as the alloy powder for the inorganic functional material raw material of the first aspect.
  • the alloy powder for the inorganic functional material raw material outside the first aspect is fluorescent. It is effective not only for the body but also for the production of other inorganic functional materials.
  • an alloy powder refers to the aggregate
  • alloy composition suitable for the alloy powder for the inorganic functional material raw material of the first aspect will be described.
  • Alloy composition of the inorganic functional material raw alloy powder outside the first Asupe are those containing at least one metal element, at least one of the activator elements M 1.
  • the activator element M 1 is an element that is required for expressing the target function in the inorganic functional material or for improving the expression of the function, and is a matrix crystal of the inorganic functional material. Trace amount in It's something that lets you join.
  • alloy of the alloy powder of the first aspect is an alloy containing one or more and the tetravalent metal elements M 4 and Si other than metal elements including at least Si, particularly, activation element M It contains a divalent metal element M 2 and a tetravalent metal element M 4 containing at least Si.
  • Divalent metal elements M 2 containing an alkaline earth metal element is preferred. If the alloy composition is such, Si and an alkaline earth metal element are contained (Sr, Ca) Si N: Eu, Ce, CaAlSiN:
  • This alloy is particularly It is preferable to include the divalent metal element M 2 , the trivalent metal element M 3 , and the tetravalent metal element M 4 containing at least Si, and represented by the following general formula [1].
  • Such an inorganic functional material raw material alloy powder is suitable for the production of a phosphor based on a nitride or oxynitride represented by the following general formula [2].
  • the force may be used emitting ions that can be contained various crystal matrix constituting the phosphor of the nitride or oxynitride as a host Cr, Mn, Fe, Ce It is preferable to use one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb because it is possible to produce a phosphor with high emission characteristics. .
  • the activator M 1 preferably contains one or more of Mn, Ce, Pr, and Eu, and particularly contains phosphors that emit red light with high luminance when containing Ce, Z, or Eu. Is more preferable.
  • the activator element M 1 may contain one or more coactivator elements in addition to Ce, Z, or Eu.
  • the elements other than the activating element M 1 divalent various trivalent, but tetravalent metal elements may be used, the divalent metal elements M 2 is Mg, Ca, Sr, Ba, Group force consisting of Zn and Zn One or more elements selected, trivalent metal element M 3 is also selected group force consisting of Al, Ga, In, and Sc One or more elements, tetravalent metal element M 4 Si, Ge, Sn, Ti, Zr, and H are one or more elements selected from the group force, which is preferable, because a phosphor having high light emission characteristics can be obtained.
  • the divalent metal elements M 2 is Mg, Ca, Sr, Ba, Group force consisting of Zn and Zn
  • trivalent metal element M 3 is also selected group force consisting of Al, Ga, In, and Sc
  • tetravalent metal element M 4 Si, Ge, Sn, Ti, Zr, and H are one or more elements selected from the group force, which is preferable, because a phosphor having high light emission characteristics can be obtained.
  • emission characteristics and tetravalent least 50 mole percent of the metal element M 4 is adjusting the composition such that the Si containing at least Si high, ⁇ preferable than the phosphor is obtained, of M 4 80 mol% or more is preferably Si. 90 mol% or more is more preferably Si. All of M 4 is preferably Si.
  • more than 50 mole% of M 2 is Ca and Z or Sr, and at least 50 mole% of M 3 is A1, and, as least 50 mol% of M 4 is Si This is preferable because the phosphor can be manufactured with particularly high emission characteristics.
  • c is less than 0.5 or c is greater than 1.5, a heterogeneous phase is produced during production, and the yield of the phosphor tends to be low. Therefore, mix raw materials so that c is in the range of 0.5 ⁇ c ⁇ l.5. From the viewpoint of emission intensity, 0.5 ⁇ c ⁇ l. 5 is preferred 0. 6 ⁇ c ⁇ l. 4 is more preferred 0. 8 ⁇ c ⁇ l. 2 is most preferred.
  • d is less than 0.5 or d is greater than 1.5, a heterogeneous phase is produced during production, and the yield of the phosphor tends to be low. Therefore, mix the raw materials so that d is in the range of 0.5 ⁇ d ⁇ l.5. Also, from the viewpoint of emission intensity, 0.5 ⁇ d ⁇ l. 5 is preferred. 0.6 ⁇ d ⁇
  • e is a coefficient indicating the content of nitrogen
  • Oxygen in the phosphor represented by the general formula [2] may be mixed as an impurity in the raw metal, or may be introduced during a manufacturing process such as a pulverization process or a nitriding process. .
  • the ratio of oxygen, f is preferably 0 ⁇ f ⁇ 0.5 within a range where the phosphor emission characteristics can be tolerated.
  • alloy composition examples include EuSrCaAISi alloy, EuSrAISi alloy, EuCaAISi alloy, EuSrMgAISi alloy, EuCaMgAISi alloy, EuCaSi alloy, EuSrCaSi alloy, Eu SrSi alloy, and more specifically Eu Sr Ca alloy. AlSi, Eu Sr Ca Al
  • composition of the phosphor include (Sr, Ca, Mg) AlSiN: Eu, (Sr, Ca, Mg) AlS.
  • the alloy powder for the inorganic functional material raw material according to the first aspect is not limited to the above-described phosphor raw material based on the nitride or oxynitride, but may be an oxide, sulfide, oxysulfide, carbide, etc. It can be used as a raw material for phosphors having a base material, and can be used as a raw material for various inorganic functional materials without being limited to phosphors.
  • the alloy powder for inorganic functional material raw material of the first aspect preferably has an oxygen content of not more than 0.5% by weight as impurities.
  • the oxygen content is particularly preferably 0.4% by weight or less, and particularly preferably 0.3% by weight or less.
  • the carbon content is preferably 0.06% by weight or less, and the iron content is 500 ppm or less, particularly 300 ppm or less, especially lOOppm or less. It is preferable that
  • the lower limit of iron content, oxygen content, and carbon content, which are preferred as they are less, is not particularly limited! However, it is possible to increase the purity of raw materials and prevent contamination by impurities in the alloy manufacturing process! / Due to the limitations of industrial methods, the lower limits are usually iron content lppm, oxygen content 0.01% by weight, and carbon content 0.1% by weight.
  • the weight median diameter is a value obtained from a weight-based particle size distribution curve.
  • the weight-based particle size distribution curve is obtained by measuring the particle size distribution by a laser diffraction / scattering method. For example, each substance is dispersed in ethylene glycol in an environment of an air temperature of 25 ° C and a humidity of 70%.
  • Laser diffraction particle size distribution analyzer manufactured by HORIBA, Ltd. According to “LA-300”), it can be obtained by measuring in a particle size range of 0.1 ⁇ m to 600 ⁇ m.
  • the particle size value when the integrated value is 50% is expressed as weight median diameter D.
  • the particle size values when the integrated value is 25% and 75% are D and D, respectively.
  • the alloy powder for the inorganic functional material raw material of the first aspect needs to be adjusted in particle size depending on the activity of the metal element constituting the alloy powder, and the weight median diameter D is usually 5 ⁇ m or more and 40 ⁇ m.
  • the proportion of alloy particles having a particle size of 10 ⁇ m or less is 80% by weight or less, the proportion of alloy particles having a particle size of 45 ⁇ m or more is 40% by weight or less, and the QD is 0.59 or less.
  • the lower limit of the weight median diameter D of the alloy powder for the inorganic functional material raw material of the first aspect is usually 5
  • the upper limit is 40 ⁇ m or less, preferably 35 ⁇ m or less, more preferably 32 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • Weight median diameter D force Less than ⁇ m
  • the proportion of fine particles that is, the proportion of alloy particles having a particle size of 10 m or less is more than 80% by weight, the heat generation rate at the time of reaction such as nitriding tends to be too high to control the reaction.
  • the proportion of alloy particles having a particle diameter of 10 m or less is preferably 60% by weight or less, more preferably 50% by weight or less, force S, further preferably 30% by weight or less.
  • the proportion of coarse particles that is, the proportion of alloy particles having a particle size of 45 ⁇ m or more is greater than 0% by weight, the proportion of particles in which the reaction such as nitridation inside the particles becomes insufficient is large. In this case, the light emission characteristics tend to be deteriorated.
  • the ratio of alloy particles having a particle size of 45 m or more is more preferably 30% by weight or less.
  • the product obtained by a reaction such as nitriding tends to be inhomogeneous.
  • the QD value is more preferably 0.55 or less, and particularly preferably 0.5 or less.
  • the elemental metal and one or more activator elements M for example, weigh the metal as a raw material and its alloy so that it has the composition of the general formula [1] described above, and melt it to form an alloy. Then, crushing and classification are performed.
  • a high melting point (high boiling point) si and an alloy containing Z or si a low melting point (low boiling point) It is preferable to melt the alkaline earth metal.
  • metal elements that are lost due to volatilization or reaction with the material of the crucible at the time of melting may be excessively weighed in advance if necessary and added.
  • the purity of the metal used for the production of the alloy is such that the impurity is 0.1 mol% or less, preferably 0.01 mol% or less as the metal raw material of the active element M 1 from the viewpoint of the light emission characteristics of the phosphor to be synthesized. Preference is given to using metal purified to the bottom.
  • Eu activator elements M 1
  • the raw material for elemental non activator elements M 1, 2-valent, 3-valent, but using a tetravalent various metals such as, for the same reason, it has an impurity concentration which displaced also contained the 0.1 mol% It is preferable to use a high-purity metal raw material of 0.01 mol% or less because it has high emission characteristics and can produce a phosphor.
  • the shape of the raw metal there are no limitations on the shape of the raw metal, but usually a granular or lump shape with a diameter of several millimeters and several tens of millimeters is used.
  • the divalent alkaline earth metal element as the metal element M 2, as a raw material thereof, granular, but shapes such as bulk is not limited, it is preferable to select an appropriate shape depending on the chemical nature of the material.
  • Ca is stable in the atmosphere in either granular or massive form and can be used.
  • Sr is chemically more active, it is preferable to use a massive raw material.
  • the melting point of Si is 1410 ° C, which is about the same as the boiling point of alkaline earth metal elements (for example, Ca has a boiling point of 1494 ° C, Sr has a boiling point of 1350 ° C, and Ba has a boiling point of 1537 ° C).
  • Ca has a boiling point of 1494 ° C
  • Sr has a boiling point of 1350 ° C
  • Ba has a boiling point of 1537 ° C.
  • this problem was solved by melting the Si metal first, preferably producing a master alloy, and then melting the alkaline earth metal.
  • the melting method of the raw material metal in the first aspect is not particularly limited, but is usually an arc melting method, a high frequency induction heating method (hereinafter sometimes referred to as "high frequency melting method"), a resistance heating method.
  • An electron beam method or the like can be used.
  • the high frequency melting method is preferred, with the arc melting method and the high frequency melting method being preferred.
  • melting is performed according to the following procedure.
  • mixing may be promoted by heating and stirring with an electron beam or arc discharge.
  • Alloys containing alkaline earth metal elements are highly reactive with oxygen and must be melted in a vacuum or inert gas rather than in the atmosphere. Under such conditions, high frequency melting is usually preferred.
  • Si is a semiconductor and is difficult to melt by induction heating using high frequency.
  • the resistivity of aluminum at 20 ° C is 2.8 ⁇ 10 " 8 ⁇ • m, while the resistivity of polycrystalline Si for semiconductors is more than 10 5 ⁇ 'm. Since it is not possible to directly melt high-frequency materials with high specific resistance, it is generally conductive.
  • the silicon is melted by transferring heat to Si by heat conduction and radiation.
  • the susceptor may be disc-shaped or tubular, but a crucible is preferably used.
  • crucibles capable of melting alkaline earth metals are insulators and cannot be used as susceptors. Therefore, when alkaline earth metal and Si are charged into a crucible and melted at high frequency, a known conductive deposit (such as graphite) is used as a susceptor and Si metal and Al It is impossible to simultaneously melt similar metals. Therefore, this problem can be solved by melting in the following order.
  • an alkaline earth metal is melted by using an insulating crucible to obtain an alloy containing Si and an alkaline earth metal element.
  • the Si metal may be cooled, or the alkaline earth metal may be continuously melted without cooling.
  • a crucible coated with a strong container suitable for melting alkaline earth metal such as Lucia and alumina can be used.
  • Si metal and metal M eg, Al, Ga
  • a conductive alloy mother alloy
  • Si can be alloyed with a metal M other than the divalent metal element M 2 to impart conductivity.
  • the melting point of the obtained alloy is as low as SU.
  • An alloy of Si and A1 is particularly preferred because it has a melting point near S1010 ° C and a melting point lower than the boiling point of the alkaline earth metal element.
  • Si metal can also be added to the master alloy containing Si.
  • the atmosphere during melting of the raw material metal is preferably Ar, even though an inert atmosphere is preferred.
  • the pressure is usually preferably 1 X 10 3 Pa or more and 1 X 10 5 Pa or less, and from the viewpoint of safety, it is desirable to perform the pressure at atmospheric pressure or less.
  • Such an atmosphere during fabrication is preferably Ar, even though an inert atmosphere is preferred.
  • the alloy lump obtained in the forging process is then pulverized to prepare an alloy powder having a desired particle size and particle size distribution.
  • a pulverization method it is possible to carry out by a dry method or a wet method using an organic solvent such as ethylene glycol, hexane or acetone.
  • an organic solvent such as ethylene glycol, hexane or acetone.
  • the dry method will be described in detail as an example.
  • This pulverization step may be divided into a plurality of steps such as a coarse pulverization step, a medium pulverization step, and a fine pulverization step as necessary.
  • the entire pulverization process can be pulverized using the same apparatus, but the apparatus used may be changed depending on the process.
  • the coarse pulverization step is a step of pulverizing to a diameter of about 1 cm, and a pulverizer such as a jaw crusher, a gyratory crusher, a crushing roll, or an impact crusher can be used.
  • the medium pulverization step is a step of pulverizing to a diameter of about 1 mm, and a pulverizer such as a cone crusher, a crushing roll, a hammer mill, or a disk mill can be used.
  • a pulverizer such as a ball mill, a tube mill, a rod mill, a roller mill, a stamp mill, an edge runner, a vibration mill, and a jet mill can be used.
  • the alloy lump needs to be pulverized in advance to a particle size of about several mm (for example, 50 ⁇ m to 5 mm).
  • the particles are pulverized mainly using the expansion energy of the fluid injected to the atmospheric pressure, such as the nozzle original pressure, so the particle size is controlled by the pulverization pressure and impurities are prevented from being mixed. It is possible.
  • powder The crushing pressure varies depending on the device. Usually, the gauge pressure is in the range of 0. OlMPa or more and 2 MPa or less, with 0.05 MPa or more and less than 0.4 MPa being preferred 0. IMPa or more, 0.3 MPa or less Is more preferable.
  • the powder contact portion is preferably made of alumina, tungsten-strengthened carbide, zirconia, or the like.
  • the pulverization is preferably performed in an inert gas atmosphere.
  • the oxygen concentration in the inert gas atmosphere is preferably 10% or less, particularly preferably 5% or less.
  • the lower limit of the oxygen concentration is usually about 10 ppm.
  • By setting the oxygen concentration within a specific range it is considered that an oxide film is formed on the surface of the alloy during the pulverization and is stabilized.
  • the pulverization process is performed in an atmosphere with an oxygen concentration higher than 5%, there is a risk of dust exothermic burning during the pulverization, so facilities that do not generate dust are necessary.
  • There are no particular restrictions on the type of inert gas but usually a single atmosphere or a mixed atmosphere of two or more of the gases such as nitrogen, argon, and helium is used, and nitrogen is particularly preferred from the viewpoint of economy. Yes.
  • the alloy powder may be cooled if necessary so that the temperature of the alloy powder does not rise during grinding!
  • the alloy powder pulverized in the pulverization process uses a sieving device using a mesh such as a neurating screen or a shifter, an inertia classifier such as an air separator, or a centrifuge such as a cyclone as described above. Adjusted to median diameter D and particle size distribution
  • the oxygen concentration in the inert gas atmosphere which is preferably performed in an inert gas atmosphere, is preferably 10% or less, particularly preferably 5% or less.
  • the type of inert gas but usually one or more of nitrogen, argon, helium, etc. are used, and particularly from the viewpoint of economy, nitrogen is preferred.
  • a method for producing a phosphor using the alloy powder for inorganic functional material raw material of the first aspect is set according to the type of phosphor, such as oxides, sulfides, and nitrides, which are not particularly limited.
  • the nitriding reaction will be described below as an example.
  • the nitriding treatment of the alloy powder is performed as follows.
  • an alloy powder as a nitriding raw material is filled in a crucible or a tray.
  • the crucible or tray material used here include boron nitride, silicon nitride, aluminum nitride, and tungsten. Boron nitride is preferred because of its excellent corrosion resistance.
  • a gas containing nitrogen is circulated to sufficiently replace the inside of the system with the nitrogen-containing gas. If necessary, a nitrogen-containing gas may be circulated after the system is evacuated.
  • the nitrogen-containing gas used in the nitriding treatment includes a gas containing nitrogen such as nitrogen, ammonia, or a mixed gas of nitrogen and hydrogen.
  • the oxygen concentration in the system affects the oxygen content of the phosphor to be produced. If the content is too high, high light emission cannot be obtained. Therefore, the lower the oxygen concentration in the nitriding atmosphere, the better lOOOppm or less, preferably lOOppm or less, more preferably lOppm or less.
  • an oxygen getter such as carbon or molybdenum may be placed in the heating part in the system to lower the oxygen concentration.
  • the nitriding treatment is performed by heating in a state in which the nitrogen-containing gas is filled or in a flow state, and the pressure may be any of a reduced pressure, an atmospheric pressure, or a pressurized pressure rather than atmospheric pressure.
  • the pressure is preferably set to atmospheric pressure or higher. If the pressure is less than atmospheric pressure, if the heating furnace is not tightly sealed, a large amount of oxygen may be mixed, and it may not be possible to obtain a high characteristic V phosphor.
  • the pressure of the nitrogen-containing gas is preferably at least 0.2 MPa as a gage pressure, and most preferably from lOMPa to 200 MPa.
  • the heating of the alloy powder is usually 800 ° C or higher, preferably 1000 ° C or higher, more preferably 1200 ° C or higher, usually 2200 ° C or lower, preferably 2100 ° C or lower, more preferably 2000 °. Carry out at temperatures below C.
  • the heating temperature is lower than 800 ° C, the time required for the nitriding treatment is undesirably long.
  • the heating temperature is higher than 2200 ° C, the resulting nitride is Volatilization or decomposition causes the chemical composition of the resulting nitride phosphor to shift, resulting in failure to obtain a phosphor with high characteristics, and poor reproducibility.
  • the heating time (holding time at the maximum temperature) during the nitriding treatment may be a time required for the reaction between the alloy powder and nitrogen, but is usually 1 minute or more, preferably 10 minutes or more, more preferably 30 minutes. More preferably, 60 minutes or more. If the heating time is shorter than 1 minute, the nitriding reaction is not completed and a highly specific phosphor cannot be obtained.
  • the upper limit of the heating time is determined in terms of production efficiency and is usually 24 hours or less.
  • the simple metals used for alloy raw materials are all high purity products with an impurity concentration of 0.01 mol% or less.
  • the shape of the raw material metal is a lump for Sr and a granular shape for others.
  • ICP emission spectroscopy (hereinafter referred to as "ICP method") may be used.
  • ICP method ICP emission spectroscopy
  • the obtained alloy shows a powder X-ray diffraction pattern similar to Sr (Si Al), A1B type
  • alkaline earth silicide of 0.5.
  • the resulting alloy was pulverized for 10 minutes using an alumina mortar in a nitrogen atmosphere (oxygen concentration 4%), separated under a sieve having an opening of 53 m, and repeatedly pulverized on the sieve again for 10 minutes.
  • Table 1 shows the particle size distribution and elemental analysis results of the obtained alloy powder. Elemental analysis was performed using an oxygen-nitrogen simultaneous analyzer (Leco) for the oxygen content, a carbon / sulfur analyzer (Horiba Ltd.) for the carbon content, and an ICP chemical analyzer for iron.
  • the particle size distribution and weight median diameter D of the alloy powder is an ambient temperature of 25 ° C and humidity of 70%.
  • the phosphor is dispersed in ethylene glycol and measured with a laser diffraction particle size distribution measuring device (“LA-300” manufactured by Horiba, Ltd.) in a particle size range of 0.1 ⁇ m to 600 m. Obtained from the obtained weight-based particle size distribution curve, the particle size value when the integrated value was 50% was defined as the weight median diameter D. Also, the particle size values when the integrated value is 25% and 75% are respectively shown.
  • LA-300 laser diffraction particle size distribution measuring device
  • Example 1-1 Fill the boron nitride crucible (inner diameter 55mm) with 10g of the alloy powder obtained in Example 1-1, set it in the hot isostatic press (HIP), and the inside of the device up to 5 X 10 _ 1 Pa After evacuation, it was heated to 300 ° C and evacuation was continued for 1 hour at 300 ° C. Thereafter, nitrogen was filled in IMPa, the pressure was released to 0. IMPa after cooling, and the operation of filling nitrogen again into IMPa was repeated twice. Before starting heating, nitrogen was charged up to 50 MPa, and the sample temperature was raised to about 1900 ° C at about 600 ° C Zhr. At this time, the internal pressure was increased to 135 MPa with nitrogen at about 50 MPa Zhr, then further increased to 190 MPa, and held at 1900 ° C. and 190 MPa for 1 hour to obtain a phosphor.
  • HIP hot isostatic press
  • Example 1-1 An alloy powder was obtained in the same manner as in Example 1-1 except that the pulverization time using an alumina mortar was changed to 5 minutes. The particle size distribution and elemental analysis results are shown in Table 1. In addition, nitriding treatment was performed in the same manner as in Reference Example 11, and the emission characteristics of the obtained phosphor were measured. The results are shown in Table 1.
  • Example 11 An alloy obtained in the same manner as in Example 1 was roughly pulverized to about lm m using an alumina mortar in a nitrogen atmosphere. ) Under a nitrogen atmosphere (oxygen concentration 2%), pulverization pressure 0.15 MPa, raw material supply rate 0.8 kgZhr. Table 1 shows the particle size distribution and elemental analysis results of the obtained alloy powder. In addition, nitriding was performed in the same manner as in Reference Example 1-1, and the emission characteristics of the obtained phosphor were measured. The results are shown in Table 1.
  • Example 1 An alloy powder was obtained in the same manner as in Example 1-3, except that the pulverization pressure by the supersonic jet pulverizer was 0. IMPa. Table 1 shows the particle size distribution and elemental analysis results of the obtained alloy powder. In addition, nitriding treatment was performed in the same manner as in Reference Example 1-1, and the emission characteristics of the obtained phosphor were measured. The results are shown in Table 1.
  • An alloy powder was obtained by grinding in the same manner as in Example 1-3, except that the grinding pressure by the supersonic jet grinding machine was 0.4 MPa and the raw material supply speed was 0.7 kgZhr.
  • Table 1 shows the particle size distribution and elemental analysis results of the obtained alloy powder.
  • nitriding treatment was performed in the same manner as in Reference Example 1-1, and the emission characteristics of the obtained phosphor were measured. The results are shown in Table 1.
  • the powder was pulverized in the same manner as in Example 11 except that the pulverization time using an alumina mortar was set to 5 hours, and no sieving force was applied.
  • Table 1 shows the particle size distribution and element analysis results of the obtained alloy powder. When this alloy powder was used for nitriding in the same manner as in Reference Example 11, the force that produced a black solid did not emit light.
  • Example 1-1 The alloy obtained in the same manner as in Example 1-1 was coarsely pulverized in the same manner as in Example 1-3, and pulverized in a nitrogen atmosphere using a stainless steel mechanical pulverizer.
  • Table 1 shows the particle size distribution and elemental analysis results of the obtained alloy powder.
  • nitriding treatment was performed in the same manner as in Reference Example 11, and the emission characteristics of the obtained phosphor were measured. The results are shown in Table 1.
  • the present inventors have found that the object of the second aspect can be achieved by heating an alloy having a composition containing two or more metal elements constituting the phosphor in a nitrogen-containing atmosphere.
  • the method for producing the phosphor of the second aspect is characterized in that an alloy containing two or more metal elements constituting the phosphor is heated in a nitrogen-containing atmosphere.
  • the median diameter D of the alloy is preferably 100 m or less.
  • the phosphor is a tetravalent metallic element M 4 including at least Si, preferably contains as on 1 or more kinds of metal elements other than Si.
  • the phosphor preferably contains an alkaline earth metal element as the divalent metal elements M 2
  • the phosphor may further include a trivalent metal elements M 3.
  • the activator element M 1 is one or more elements selected from the group consisting of Cr, Mn, Fe, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb.
  • the divalent metal element M 2 is a group force of Mg, Ca, Sr, Ba, and Zn forces One or more elements selected
  • the trivalent metal element M 3 is Al, Ga, In, and Sc
  • One or more elements selected from the group force consisting of at least Si and a tetravalent metal element M 4 is one or more elements selected from the group consisting of Si, Ge, Sn, Ti, Zr, and Hf. I prefer to be there!
  • the phosphor may include Eu and Z or Ce as activator elements M 1.
  • 50 mol% or more of the divalent metal elements M 2 is Ca and Z or Sr
  • 50 mol% or more of the trivalent metal elements M 3 is A1
  • 4-valent metal elements including at least Si More than 50 mol% of M 4 may be Si.
  • the phosphor is preferably based on a nitride or oxynitride.
  • the phosphor obtained by heating the alloy in a nitrogen-containing atmosphere may be reheated.
  • a phosphor produced by the method for producing a phosphor of the second aspect and a liquid medium A phosphor-containing composition is provided.
  • the phosphor in the light emitting device having the excitation light source and the phosphor that converts the wavelength of at least part of the light having the excitation light source power, is a method for producing the phosphor of the second aspect.
  • a light emitting device characterized by containing a phosphor produced by the method described above.
  • the second aspect provides an image display device having the light emitting device.
  • the second aspect provides an illumination device having the light emitting device.
  • the method for manufacturing the phosphor of the second aspect aspect it is possible to provide a phosphor that exhibits high-luminance emission and has little deterioration during use at low cost.
  • the method for producing the phosphor of the second aspect can be applied to phosphors such as nitrides, oxynitrides, oxides, sulfides, oxysulfides, and carbides.
  • the phosphor obtained by the manufacturing method of the second aspect emits light with higher luminance than the conventional sialon phosphor, and particularly when Eu is selected as an activator, it has a high luminance and a long wavelength of orange or thru. Shows red light emission. Even when exposed to an excitation source for a long time, the phosphor does not lose its brightness. Therefore, fluorescent lamps, fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), Useful phosphors suitably used for cathode ray tubes (CRT), white light emitting diodes (LEDs) and the like are provided.
  • VFD fluorescent display tubes
  • FED field emission displays
  • PDP plasma display panels
  • Useful phosphors suitably used for cathode ray tubes (CRT), white light emitting diodes (LEDs) and the like are provided.
  • the numerical range expressed using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
  • composition of the phosphor manufactured according to the second aspect is not particularly limited, but will be described below with an example.
  • the second aspect phosphor produced by has a preferred KUHA activator elements M 1, and tetravalent metal elements M 4 including at least Si
  • the phosphor of the present invention includes an activating element M 1 2 Metal element M 2 and tetravalent metal element M 4 .
  • Sr Si N Eu
  • the divalent metal elements M 2 an alkaline earth metal element is good preferable.
  • phosphor of the second aspect is also the activation element M 2 divalent metal elements M 2, 3-valent metal elemental M 3, and may contain tetravalent metal elements M 4 including at least Si
  • the nitride or oxynitride represented by the following general formula [2] is preferably used as a base.
  • the activating element M 1 the force may be used emitting ions that can be contained various crystal matrix constituting the phosphor of the nitride or oxynitride as a matrix Cr, Mn, Fe, Ce It is preferable to use one or more elements selected from the group consisting of Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb because it is possible to produce a phosphor with high emission characteristics. .
  • the activator element M 1 preferably contains one or more of Mn, Ce, Pr and Eu, and particularly a phosphor exhibiting high-intensity red light emission containing Ce, Z or Eu. It is more preferable because it can be obtained. Further, in order to provide a variety of functions such as to impart the or phosphorescent increasing the brightness, and the Tomozuke Katsumoto element is contained one or more other than Ce and Z or Eu as activator elements M 1 Also good.
  • the divalent metal elements M 2 is Mg, Ca, Sr, Ba, and one or more elements selected the group force consisting of Zn
  • one or more elements trivalent metal elements M 3 is Al, Ga, in, and also the group force consisting Sc selected, tetravalent metal containing at least Si
  • the element M 4 is at least one element selected from the group forces of Si, Ge, Sn, Ti, Zr, and H, so that a phosphor with high emission characteristics can be obtained. It is preferable because it can be! /.
  • emission characteristics and tetravalent least 50 mole percent of the metal element M 4 is adjusting the composition such that the Si containing at least Si high, ⁇ preferable than the phosphor is obtained, of M 4 80 mol% or more is preferably Si. 90 mol% or more is more preferably Si. All of M 4 is preferably Si.
  • a divalent metal elements M 2 of 50 mol% or more Ca and Z or Sr, and 50 mol% or more of the trivalent metal elements M 3 is A1, and at least Si It is preferable that 50 mol% or more of the tetravalent metal element M 4 contained is Si because a phosphor having particularly high emission characteristics can be manufactured.
  • d is less than 0.5 or d is greater than 1.5, a heterogeneous phase is produced during production, and the yield of the phosphor tends to be low. Therefore, mix the raw materials so that d is in the range of 0.5 ⁇ d ⁇ l.5. Also, from the viewpoint of light emission intensity, 0.5 ⁇ d ⁇ l.5 is preferred 0.6 ⁇ d ⁇ 1.4 force S, and 0.8 ⁇ d ⁇ l.2 is most preferred.
  • e is a coefficient indicating the nitrogen content
  • the oxygen in the phosphor represented by the general formula [2] may be mixed as an impurity in the raw metal, or may be introduced during a manufacturing process such as a pulverization step or a nitriding step. .
  • the ratio of oxygen, f is preferably 0 ⁇ f ⁇ 0.5 within a range where the phosphor emission characteristics can be tolerated.
  • M 1 ′ is Cr, Mn, Fe, Ce, Pr, Nd, S m, Eu, Tb, Dy, Ho, Er, Tm, and M 1 in the general formula [2].
  • An activating element selected from the group consisting of Yb is represented.
  • the activator element M 1 ′ preferably contains one or more of Mn, Ce, Pr and Eu, and particularly preferably contains Eu and Z or Ce.
  • M 2 ' represents Mg and Z or Ba, and is preferably Mg.
  • the emission wavelength of the phosphor can be made long wave.
  • the range of a ' is usually 0.00001 ⁇ a' ⁇ 0.15, preferably 0.001 ⁇ a' ⁇ 0.05, more preferably 0.002 ⁇ a' ⁇ 0.01.
  • the range of b ' is usually 0.1 l ⁇ b' ⁇ 0.99999, preferably 0.6 ⁇ b' ⁇ 0.99999
  • c ' is usually 0 ⁇ c' ⁇ 1, preferably 0 ⁇ c' ⁇ 0.5, more preferably 0 ⁇ c,
  • the range of d is usually 0 ⁇ d ' ⁇ 1, preferably 0 ⁇ d' ⁇ 0.5, more preferably 0 ⁇ d,
  • the range of e ' is usually 0.5 ⁇ e' ⁇ l.5, preferably 0.8 ⁇ e' ⁇ l.2, more preferably 0.9 ⁇ e' ⁇ l.1.
  • the range of f is usually 0.5 ⁇ f' ⁇ l.5, preferably 0.8 ⁇ f' ⁇ l.2, more preferably 0.9 ⁇ f' ⁇ l.1.
  • SCASN phosphor a phosphor with a large amount of Sr substitution
  • the oxygen contained in the phosphor of the present invention may be one that is mixed as an impurity in the raw material metal, one that is mixed during a manufacturing process such as a grinding step or a nitriding step.
  • the oxygen content is usually 5% by weight or less, preferably 2% by weight or less, and most preferably 1% by weight or less as long as the deterioration of the light emission characteristics of the phosphor is acceptable.
  • the phosphor composition examples include (Sr, Ca, Mg) AlSiN: Eu, (Sr, Ca, Mg)
  • AlSiN Ce, (Sr, Ca) Si N: Eu, (Sr, Ca) Si N: Ce, and the like.
  • a raw material metal or an alloy thereof is weighed so as to have a composition represented by the following general formula [1], and is melted to form an alloy. Then, the phosphor raw material alloy is pulverized, and then heated in a nitrogen-containing atmosphere for nitriding.
  • a nitrogen-containing atmosphere for nitriding for example, when manufacturing an alloy containing Si and an alkaline earth metal element, after melting a high melting point (high boiling point) Si metal and an alloy containing Z or Si, a low melting point (low Preferably, the boiling point) alkaline earth metal is melted.
  • metal elements that are lost due to volatilization or reaction with the material of the crucible during melting may be preliminarily weighed and added as necessary.
  • the explanation for the purity of the metal used to manufacture the alloy is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation about the shape of the raw metal is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation of the molten metal fabrication is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation for the crushing of the lump is the same as the first aspect, and the explanation of the first aspect is used.
  • the alloy powder pulverized in the pulverization process uses a sieving device using a mesh such as a neurating screen or a shifter, an inertia classifier such as an air separator, or a centrifuge such as a cyclone as described above. Adjusted to median diameter D and particle size distribution
  • the oxygen concentration in the inert gas atmosphere that is preferably performed in an inert gas atmosphere is preferably 10% or less, particularly preferably 5% or less.
  • the type of inert gas usually one or more of nitrogen, argon, helium, etc. are used, and particularly from the viewpoint of economy, nitrogen is preferred.
  • the weight median diameter D of the alloy powder before the heat treatment is the value of the metal element constituting the alloy powder.
  • the particle size depending on the activity is 100 / zm or less, preferably 80 ⁇ m or less, particularly preferably ⁇ or 60 ⁇ m or less, or 0.1 m or more, preferably ⁇ or 0.00. 5 m or more, particularly preferably 1 ⁇ m or more.
  • the weight median diameter D of the alloy powder is usually 5 ⁇ m or more, preferably 8 ⁇ m.
  • the weight median diameter D is smaller than the above range, the rate of heat generation during reactions such as nitridation is high.
  • the reaction such as nitriding inside the alloy particles may be insufficient.
  • the reaction conditions are set according to the type of phosphor, such as oxide, nitride, oxynitride, sulfide, oxysulfide, and carbide, which are not particularly limited in the method for producing the phosphor using the above-mentioned alloy.
  • the nitriding reaction will be described as an example. ⁇ Nitriding of alloys>
  • the explanation of the nitriding treatment of the phosphor raw material alloy is the same as that of the first aspect, and the explanation of the first aspect is used.
  • a phosphor based on nitride or oxynitride can be obtained.
  • a phosphor based on the obtained nitride or oxynitride is necessary. Accordingly, high light emission can be obtained. Therefore, the particles may be grown again by heat treatment.
  • the heating condition for reheating the phosphor obtained from the nitride or oxynitride obtained by nitriding is preferably 1200 ° C or higher and 2200 ° C or lower. If this temperature is less than 1200 ° C, the effect of grain growth is small even if reheating is performed. On the other hand, if heating is performed at a temperature exceeding 2200 ° C, phosphors are decomposed in addition to consuming unnecessary heating energy, and the target nitrogen pressure, which is a part of the atmospheric gas, must be set very high. The phosphor cannot be manufactured.
  • the heat treatment temperature is preferably 1300 ° C or higher, more preferably 140 ° C or higher, and most preferably 1500 ° C or higher. Further, it is preferably 2100 ° C or lower, more preferably 2000 ° C or lower, and most preferably 1900 ° C or lower.
  • the atmosphere at the time of reheating the phosphor based on nitride or oxynitride is basically an inert atmosphere or reducing atmosphere such as a nitrogen-containing gas.
  • the oxygen concentration in the atmosphere is usually 10 ppm or less, preferably 10 ppm or less, more preferably 10 ppm or less. If reheating treatment is performed in an oxygen-containing gas or oxygen atmosphere where the oxygen concentration exceeds lOOOOppm, the phosphor is oxidized and the desired phosphor cannot be obtained. However, it is preferable to use an atmosphere containing a trace amount of oxygen of 0.1 ppm to LOppm because the phosphor can be synthesized at a relatively low temperature.
  • the pressure during the reheating treatment is preferably set to a pressure equal to or higher than atmospheric pressure in order to prevent oxygen from being mixed in the atmosphere. If the pressure is less than atmospheric pressure, the heating furnace is poorly sealed in the same way as the heating process during nitriding, and in some cases, a large amount of oxygen may be mixed, resulting in high characteristics and inability to obtain a phosphor. .
  • the heating time (retention time at the maximum temperature) during the reheating treatment is usually 1 minute or more and 100 hours or less. If the holding time is too short, particle growth will not proceed sufficiently, and the holding time will be long. If the amount is too high, not only is the wasted heating energy consumed, but the phosphor surface force nitrogen tends to desorb and the light emission characteristics tend to deteriorate. For the same reason, the retention time is preferably 10 minutes or more, more preferably 30 minutes or more, more preferably 24 hours or less, and more preferably 12 hours or less.
  • the phosphor obtained by the manufacturing method of this aspect has the following characteristics.
  • the Eu-activated SCASN phosphor obtained by the manufacturing method of this aspect has the following characteristics when measured with an emission spectrum when excited with light having a wavelength of 465 nm, in view of its use as an orange and red phosphor. Preferred to have the characteristics of.
  • the phosphor produced by the method of this aspect has a peak wavelength p (nm) in the above-mentioned emission spectrum which is usually larger than 590 nm. It is preferably in the range of 600 nm or more, usually 650 nm or less, and particularly 640 nm or less. If this emission peak wavelength ⁇ is too short, it tends to be yellowish, while if it is too long, it tends to be dark reddish. ,.
  • the phosphor of this aspect has an emission peak in the above-mentioned emission spectrum (foil width at half maximum, hereinafter abbreviated as "FWHM"), which is usually larger than 50 nm. Furthermore, it is preferably in the range of 75 nm or more, usually less than 120 nm, particularly 100 nm or less, and more preferably 90 nm or less. If the full width at half maximum FWHM is too narrow, the emission intensity may be lowered, and if it is too wide, the color purity may be lowered.
  • FWHM emission peak in the above-mentioned emission spectrum
  • a GaN-based light emitting diode can be used.
  • the measurement of the emission spectrum of the phosphor of the present invention and the calculation of the emission peak wavelength, peak relative intensity, and peak half-value width can be performed using an apparatus such as a fluorescence measuring apparatus manufactured by JASCO Corporation. it can.
  • the phosphor of this aspect has a weight median diameter D force of usually 3 ⁇ m or more, especially 5 ⁇ m. m or more, usually 30 ⁇ m or less, preferably 20 ⁇ m or less. If the weight median diameter D is too small, the brightness decreases and the phosphor particles tend to aggregate.
  • the weight median diameter D of the phosphor in this aspect is, for example, laser diffraction.
  • It can be measured using a device such as a Z-scattering particle size distribution measuring device.
  • the phosphor of this aspect is more preferable as its internal quantum efficiency is higher.
  • the value is usually 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more. If the internal quantum efficiency is low, the light emission efficiency tends to decrease, which is not preferable.
  • the phosphor of this aspect is more preferable as its absorption efficiency is higher.
  • the value is usually 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more. If the absorption efficiency is low, the light emission efficiency tends to decrease, which is not preferable.
  • the phosphor of this aspect can be suitably used for various types of light-emitting devices, taking advantage of the high brightness and high color rendering properties.
  • the phosphor of the present invention is an orange or red phosphor
  • a white light emitting device with high color rendering can be realized by combining a green phosphor and a blue phosphor.
  • the light-emitting device thus obtained can be used as a light-emitting portion (particularly a liquid crystal backlight) or an illumination device of an image display device.
  • the phosphor of this aspect When the phosphor of this aspect is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium.
  • a material in which the phosphor of this aspect is dispersed in a liquid medium is appropriately referred to as “the phosphor-containing composition of this aspect”.
  • liquid medium that can be used in the phosphor-containing composition of this aspect exhibits liquid properties under the desired use conditions, and preferably disperses the phosphor of this aspect in addition to undesirable reactions. Anything that does not cause a problem can be selected according to the purpose.
  • liquid media include thermosetting resin before curing, photocuring Examples thereof include addition reaction type silicone resin, condensation reaction type silicone resin, modified silicone resin, epoxy resin and the like.
  • a solution obtained by hydrolytic polymerization of a solution containing an inorganic material, for example, a ceramic precursor polymer or a metal alkoxide by a sol-gel method can be used.
  • These liquid media may be used alone or in combination of two or more in any combination and ratio.
  • the amount of the liquid medium to be used may be appropriately adjusted depending on the application and the like, but in general, the weight ratio of the liquid medium to the phosphor of the present invention is usually 3% by weight or more, preferably 5%. It is in the range of not less than wt% and usually not more than 30 wt%, preferably not more than 15 wt%.
  • the phosphor-containing composition of this aspect may contain other optional components depending on its use and the like.
  • Other components include diffusing agents, thickeners, extenders, interference agents and the like. Specific examples include silica fine powder such as aerosol, alumina and the like.
  • the light-emitting device includes at least a first light-emitting body as an excitation light source and a second light-emitting body that emits visible light when irradiated with light from the first light-emitting body.
  • the first light emitter in the light emitting device of this aspect emits light that excites a second light emitter described later.
  • the emission wavelength of the first illuminant is not particularly limited as long as it overlaps with the absorption wavelength of the second illuminant described later, and an illuminant having a wide emission wavelength region can be used.
  • an illuminant having an emission wavelength from the near ultraviolet region to the blue region is used, and specific numerical values are usually 300 nm or more, preferably 330 nm or more, and usually 500 nm or less, preferably 480 nm or less.
  • a luminescent material having the following is used.
  • As the first light emitter a semiconductor light emitting element is generally used.
  • LED light emitting diode
  • semiconductor laser diode semiconductor laser diode
  • abbreviation “: LD” may be used as appropriate.
  • the first light emitter is a GaN-based LED or L that uses a GaN-based compound semiconductor. D is preferred. This is because GaN-based LEDs and LDs are extremely bright at very low power by combining with the above phosphors, which have significantly higher emission output and external quantum efficiency than SiC-based LEDs that emit light in this region. It is also the power to obtain luminescence. For example, for a current load of 20 mA, GaN-based LEDs and LDs usually have a light emission intensity that is more than 100 times that of SiC. In GaN-based LEDs and LDs, Al Ga N light-emitting layer, GaN light-emitting layer, or In Ga
  • a GaN-based LD with N light emitting layer is particularly preferred because its light emission intensity is very strong.
  • the multi-quantum well structure has very high emission intensity.
  • the value of X + Y is usually in the range of 0.8 to 1.2.
  • these light-emitting layers doped with Zn or Si or those without dopants are preferred for adjusting the light-emitting characteristics.
  • GaN-based LEDs have these light-emitting layers, p-layers, n-layers, electrodes, and substrates as basic constituent elements.
  • the light-emitting layers are n-type and p-type AlGaN layers, GaN layers, or In layers. Sand with Ga N layer etc.
  • the power of having a heterostructure that is switched to a higher one is preferably higher, and the structure of a heterostructure having a quantum well structure is more preferable because the light emission efficiency is higher.
  • the second light emitter in the light emitting device of this aspect is a light emitter that emits visible light when irradiated with light from the first light emitter described above, and a first phosphor (orange or red phosphor) to be described later is used.
  • a first phosphor range or red phosphor
  • it contains a second phosphor (a green phosphor, a blue phosphor, etc.), which will be described later, as appropriate depending on the application.
  • composition of the phosphor is not particularly limited, but is representative of Y O, Zn SiO, etc., which are crystal bases.
  • Metal oxides metal nitrides typified by Sr Si N, etc., Ca (PO) C1 etc.
  • Phosphates and sulfides such as ZnS, SrS, CaS, etc., ions of rare earth metals such as Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb
  • ions of rare earth metals such as Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb
  • a combination of metal ions such as Ag, Cu, Au, Al, Mn, and Sb as activators or coactivators is preferred.
  • Preferred examples of the crystal matrix include, for example, sulfur such as (Zn, Cd) S, SrGaS, SrS, ZnS, etc. , Oxysulfides such as Y ⁇ S, (Y, Gd) Al O, YAIO, BaMgAl O, (Ba, Sr) (
  • Silicate such as aluminate, Y SiO, Zn SiO, oxide such as SnO, Y ⁇ , GdMgB
  • halophosphates such as 10 3 10 4 6 2 10 4 6 2
  • phosphates such as Sr P 2 O and (La, Ce) PO.
  • the crystal matrix and the activator element or coactivator element can be partially replaced with elements of the same family that have no particular restriction on the element composition, and the obtained phosphor can be used from near ultraviolet. Any material that absorbs light in the viewing region and emits visible light can be used.
  • phosphors that can be used in the present invention are not limited to these.
  • phosphors that differ only in part of the structure are omitted as appropriate.
  • ⁇ SiO: Ce 3+ ”, ⁇ SiO: Tb 3+ ” and “Y SiO: Ce 3+ , Tb 3+ ” are changed to “YS
  • the second light emitter in the light emitting device of this aspect contains at least the above-described phosphor of the present invention as an orange to red phosphor (hereinafter referred to as “first phosphor” as appropriate).
  • the phosphors of the present invention may be used alone or in combination of two or more in any combination and ratio.
  • one or more other orange or red phosphors may be used in combination as the first phosphor.
  • the peak wavelength is usually 570 nm or more, preferably 580 nm or more, Usually, it is 700 nm or less, preferably 680 nm or less.
  • Orange to red phosphors other than the phosphor of this aspect are composed of, for example, fractured particles having a red fracture surface and emit light in the red region (Mg, Ca, Sr, Ba) Si
  • Luminescent (Y, La, Gd, Lu) OS Palladium-activated rare earth ox represented by Eu
  • Examples include chalcogenide phosphors.
  • JP 2004-300247 A Group force consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo described in this publication contains at least one element selected.
  • red phosphors include Eu-activated oxysulfide firefly such as (La, Y) O S: Eu.
  • Phosphor, Y (V, P) 0 Eu
  • Y 2 O Eu activated oxide phosphor such as Eu, (Ba, Sr, Ca, Mg) S
  • Eu-activated silicate phosphor such as 9 4 6 2 2 8 4 6 2 3 5 2 5, (Y, Gd) Al 2 O 3: Ce, (Tb, Gd) Al 2 O 3: Ce, etc.
  • Eu-activated nitride phosphor such as Eu, (Mg, Ca, Sr, Ba) AlSiN
  • Ce-activated nitride phosphor such as Ce, (Sr, Ca, Ba, Mg) (PO)
  • CI Eu such as Eu and Mn
  • Mn-activated halophosphate phosphor (Ba Mg) Si 2 O: Eu, Mn, (Ba, Sr, Ca, Mg) (Zn,
  • Mg) Si 2 O Eu
  • Mn activated silicate phosphor such as Eu, Mn, 3.5MgO-0.5MgF-GeO
  • Mn-activated germanate phosphor such as Mn, Eu-activated aSialon and other Eu-activated oxynitrides
  • Ce-activated sulfide phosphors such as Ce, (Ba, Sr, Ca) MgP 2 O: Eu,
  • N Eu, Ce activated nitride phosphor such as Eu, Ce (where x, y, z are integers of 1 or more), (Ca, z
  • the red phosphor includes ⁇ diketonate, ⁇ -diketone, aromatic carboxylic acid, or a red organic phosphor having a rare earth element ion complex with a ligand such as Bronsted acid, perylene Pigments (eg, dibenzo ⁇ [f, f '] -4, 4', 7, 7'-tetraphenyl ⁇ diindeno [1, 2, 3— cd: l, 2 ', 3, 1 lm] perylene) , Anthraquinone pigments, lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone It is also possible to use a pigment, an indophenol pigment, a cyanine pigment, or a dioxazine pigment.
  • a ligand such as Bronsted acid, per
  • red phosphors those having a peak wavelength in the range of 580 nm or more, preferably 590 nm or more, and 620 nm or less, preferably 610 nm or less can be suitably used as an orange phosphor.
  • orange phosphors include (Sr, Ba) SiO
  • the second light emitter in the light emitting device of this aspect may contain a phosphor having an emission wavelength different from that of the above-described first phosphor (the phosphor of the present invention) according to the application.
  • Good hereinafter referred to as “second phosphor” as appropriate.
  • the second phosphor one kind of phosphor may be used alone, or two or more kinds of phosphors may be used arbitrarily. Use in combination and ratio.
  • Examples of the second phosphor used in combination with the first phosphor include phosphors emitting green light (hereinafter referred to as “green phosphors” as appropriate), and blue Phosphors that emit light of the above (hereinafter referred to as “blue phosphors” as appropriate).
  • the peak wavelength is usually 490 nm or more, preferably 500 nm or more, and usually 570 nm. Below, preferably 550 nm or less.
  • Such a green phosphor is composed of, for example, fractured particles having a fracture surface, and is green.
  • An active alkaline earth silicon oxynitride phosphor composed of fractured particles with a fractured surface, emits light in the green region (Ba, Ca, Sr, Mg) SiO: europium represented by Eu
  • Examples include hum activated alkaline earth silicate phosphors.
  • green phosphors include SrAlO: Eu, (Ba, Sr, Ca) AlO: Eu, etc.
  • Tb-activated silicate phosphor CeMgAl 2 O 3: Tb
  • Y A1 0 Tb-activated aluminate such as Tb
  • Ce-activated aluminum such as Ce
  • Silicate phosphor, CaSc 2 O 3 Ce activated oxide phosphor such as Ce, SrSi 2 O N: Eu, (Sr, B
  • Eu-activated aluminate phosphor such as Eu
  • Tb-activated oxysulfur such as (La, Gd, Y)
  • S Sulfide phosphor such as Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO: Ce, Tb, Na Gd B
  • Ba Al, Ga, In
  • Green phosphors include pyridine phthalimide condensed derivatives, benzoxazinone-based, quinazolinone-based, coumarin-based, quinophthalone-based, naltalimide-based fluorescent dyes, It is also possible to use an organic phosphor such as a rubyum complex.
  • the peak wavelength is usually 420 nm or more, preferably 440 nm or more, and usually 480 nm or less, preferably 470 nm or less is desirable.
  • Such a blue phosphor is composed of grown particles having a substantially hexagonal shape as a regular crystal growth shape, and is represented by BaMgAl 2 O 3: Eu that emits light in the blue region.
  • Palladium-activated barium magnesium aluminate-based phosphor composed of regularly grown crystal grains with a nearly spherical shape, emits light in the blue region (Ca, Sr, Ba) (PO)
  • CI Eu-pium-activated calcium halophosphate phosphor expressed by Eu
  • Potassium earth chloroborate phosphor composed of fractured particles with fracture surface, and emits light in the blue-green region (Sr, Ca, Ba) Al O: Eu or (Sr, Ca, Ba) Al O: Eu Represented by
  • blue phosphors include Sn-activated phosphate phosphors such as Sr P 2 O 3: Sn,
  • Eu-activated aluminate fluorescence such as SrAlO: Eu, BaMgAlO: Eu, BaAlO: Eu
  • SrGa S Ce
  • CaGa S Ce-activated thiogallate phosphors such as Ce, (Ba, Sr, Ca) M
  • gAl 2 O Eu
  • BaMgAl 2 O Eu-activated aluminate phosphors such as Eu, Tb, and Sm
  • MgAl 2 O Eu, Mn activated aluminate phosphor such as Eu, Mn, (Sr, Ca, Ba
  • Silicate phosphors such as Sr P O: Eu, ZnS: Ag, ZnS: Ag, Al
  • Sulfide phosphors such as Y SiO: Ce-activated silicate phosphors such as Ce, and TANDAS such as CaWO
  • Eu-activated halosilicate phosphors such as 2SrCl: Eu can also be used.
  • blue phosphor examples include naphthalimide, benzoxazole, and It is also possible to use fluorescent substances such as thyryl, coumarin, virarizone, and triazole compounds, organic phosphors such as thulium complexes, and the like.
  • the second phosphor red phosphor, blue phosphor, green phosphor, etc.
  • its type can be appropriately selected according to the use of the light emitting device.
  • the use of the second phosphor is sufficient if only the first phosphor (orange or red phosphor) is used. Usually unnecessary.
  • the first light emitter and the first phosphor are obtained so as to obtain desired white light.
  • the light body) and the second phosphor may be appropriately combined.
  • the first phosphor, the first phosphor, and the second phosphor when the light-emitting device of the present invention is configured as a white light-emitting device, The following combinations i) to iii) are mentioned.
  • a blue phosphor (such as a blue LED) is used as the first phosphor
  • a red phosphor (such as the phosphor of the present invention) is used as the first phosphor
  • a second phosphor is used as the first phosphor.
  • a green phosphor is used.
  • a near-ultraviolet emitter (such as a near-ultraviolet LED) is used as the first emitter, a red phosphor (such as the phosphor of the present invention) is used as the first phosphor, and the second emitter A blue phosphor and a green phosphor are used in combination as the phosphor.
  • a blue phosphor (such as a blue LED) is used as the first phosphor
  • an orange phosphor (such as the phosphor of the present invention) is used as the first phosphor
  • a second phosphor is used as the first phosphor.
  • the weight median diameter of the second phosphor used in the light emitting device of the present invention is usually 10 m or more, particularly 15 ⁇ m or more, and usually 30 ⁇ m or less, especially 20 ⁇ m or less. Is preferred. If the weight median diameter is too small, the brightness decreases and the phosphor particles aggregate. This is not preferable. On the other hand, if the weight median diameter is too large, coating unevenness tends to cause clogging of the dispenser etc., which is not preferable.
  • the light emitting device of this aspect is not particularly limited as long as it includes the first light emitter and the second light emitter described above, but usually the first light emitter described above is mounted on an appropriate frame.
  • a light emitter and a second light emitter are arranged.
  • the second illuminant is excited by the luminescence of the first illuminant to generate luminescence, and the luminescence of the first illuminant and the luminescent power of the Z or second illuminant are external. It will be arranged so that it may be taken out.
  • the red phosphor does not necessarily have to be mixed in the same layer as the blue phosphor and the green phosphor.
  • the red phosphor is placed on the layer containing the blue phosphor and the green phosphor. The containing layer is laminated.
  • the encapsulating material includes the above-described first phosphor and Z or second phosphor dispersed to form a second light emitter, or the first light emitter and the second light emitter. It is also used for the purpose of bonding between frames.
  • Examples of the sealing material to be used usually include thermoplastic resin, thermosetting resin, and photocurable resin.
  • methacrylic resin such as methyl polymethacrylate
  • styrene resin such as polystyrene and styrene-acrylonitrile copolymer
  • polycarbonate resin polyester resin
  • phenoxy resin such as phenoxy resin
  • petital resin examples thereof include alcohols; cenorose-based resins such as ethenoresenorelose, cenololose acetate, cenololose acetate butyrate; epoxy resins; phenol resins; silicone resins.
  • inorganic materials such as siloxane bonds, which are solidified solid solutions of inorganic materials such as metal alkoxides, ceramic precursor polymers or solutions containing metal alkoxides by hydrolytic polymerization using a sol-gel method, or combinations thereof, are used. It is possible to use inorganic materials!
  • Fig. 1 is a diagram schematically showing a configuration of a light emitting device according to an embodiment of this aspect.
  • the light emitting device 1 of the present embodiment absorbs a part of light emitted from the frame 2, the blue LED (first light emitter) 3 as a light source, and the blue LED 3, and emits light having a wavelength different from that. It comprises a phosphor-containing part (second light emitter) 4.
  • the frame 2 is a base made of resin for holding the blue LED 3 and the phosphor-containing portion 4.
  • a trapezoidal concave section (dent) 2A that is open on the upper side in FIG. 1 is formed.
  • the inner surface of the recess 2A of the frame 2 is enhanced in reflectivity of light in the entire visible light region by metal plating such as silver, so that the light hitting the inner surface of the recess 2A of the frame 2 can also be emitted from the light emitting device. It becomes possible to discharge from 1 to a predetermined direction!
  • a blue LED 3 is installed as a light source.
  • the blue LED 3 is an LED that emits blue light when supplied with electric power. Part of the blue light emitted from the blue LED 3 is absorbed as excitation light by the luminescent material (first phosphor and second phosphor) in the phosphor-containing portion 4, and another part is The light is emitted from the light emitting device 1 in a predetermined direction.
  • the blue LED 3 is installed at the bottom of the recess 2A of the frame 2 as described above.
  • a silver paste (a mixture of silver particles in the adhesive) between the frame 2 and the blue LED 3 is used.
  • the blue LED 3 is installed on the frame 2 by the glued by 5. Further, the silver paste 5 also plays a role of efficiently dissipating heat generated in the blue LED 3 to the frame 2.
  • a gold wire 6 for supplying power to the blue LED 3 is attached to the frame 2. That is, the electrode (not shown) provided on the upper surface of the blue LED 3 is connected by wire bonding using the wire 6, and when the wire 6 is energized, power is supplied to the blue LED 3. Blue LED3 emits blue light.
  • One or more wires 6 are attached in accordance with the structure of the blue LED 3.
  • the recess 2A of the frame 2 absorbs a part of the light emitted from the blue LED 3 and is different.
  • a phosphor-containing portion 4 that emits light having a certain wavelength.
  • the phosphor-containing part 4 is formed of a phosphor and a transparent resin.
  • the phosphor is a substance that is excited by blue light emitted from the blue LED 3 and emits light having a wavelength longer than that of the blue light.
  • the phosphor constituting the phosphor-containing portion 4 may be a single type or a mixture of multiple colors. The total of the light emitted by the blue LED 3 and the light emitted by the phosphor light-emitting portion 4 is desired. You can choose the color that you want.
  • the color may be yellow, orange, pink, purple, blue-green, etc. as well as white. Further, it may be an intermediate color between these colors and white. Further, the transparent resin is a sealing material for the phosphor-containing portion 4, and here, the above-described sealing material is used.
  • the mold part 7 functions as a lens for controlling the light distribution characteristics as well as protecting the blue LED 3, the phosphor-containing part 4, the wire 6, and the like with external force.
  • epoxy resin can be mainly used for the mold part 7.
  • FIG. 2 is a schematic cross-sectional view showing an example of a surface-emitting illumination device incorporating the light-emitting device 1 shown in FIG.
  • 8 is a surface emitting illumination device
  • 9 is a diffuser
  • 10 is a holding case.
  • This surface-emitting illumination device 8 has a large number of light-emitting devices 1 on the bottom surface of a rectangular holding case 10 whose inner surface is light-opaque, such as a white smooth surface, and the light-emitting device 1 is driven outside.
  • a power source, a circuit and the like are provided.
  • a diffusion plate 9 such as a milky white acrylic plate is fixed to a portion corresponding to the lid of the holding case 10.
  • the surface-emitting illumination device 8 is driven to apply a voltage to the blue LED 3 of the light-emitting device 1 to emit blue light or the like.
  • Part of the emitted light is absorbed in the phosphor-containing portion 4 by the phosphor of the present invention, which is a wavelength conversion material, and another phosphor added as necessary, and converted into light having a longer wavelength.
  • Light emission with high luminance can be obtained by mixing with blue light that has not been absorbed. This light is transmitted through the diffusion plate 9 and emitted upward in the drawing, and illumination light with uniform brightness can be obtained within the surface of the diffusion plate 9 of the holding case 10.
  • the phosphor-containing portion (second light emitter) is formed into a film.
  • the light of the surface-emitting type illuminant has a sufficiently large cross-sectional area.
  • the irradiation cross-sectional area from the first light emitter to the phosphor increases per amount of the phosphor, so that the intensity of light emitted from the phosphor can be further increased.
  • the film-like second directly on the light-emitting surface of the first light emitter. It is preferable to have a shape in which the phosphors are in contact. Contact here means creating a state in which the first light emitter and the second light emitter are in perfect contact with each other without air or gas. As a result, it is possible to avoid light loss such that light from the first light emitter is reflected by the film surface of the second light emitter and oozes out, so that the light emission efficiency of the entire apparatus can be improved. .
  • FIG. 3 is a schematic perspective view showing an example of a light-emitting device using a surface-emitting type as the first light-emitting body and applying a film-like one as the second light-emitting body.
  • 11 is a film-like second light emitter having the phosphor
  • 12 is a surface-emitting GaN-based LD as the first light emitter
  • 13 is a substrate.
  • the LD of the first light emitter 12 and the second light emitter 11 may be formed separately, and their surfaces may be brought into contact with each other by an adhesive or other means.
  • the second light emitter 11 may be formed (molded) on the light emitting surface of the first light emitter 12. As a result, the first light emitter 12 and the second light emitter 11 can be brought into contact with each other.
  • the use of the light-emitting device of the present invention is not particularly limited, and is capable of being used in various fields where ordinary light-emitting devices are used. It is particularly preferably used as a light source for lighting devices. In addition, when using the light-emitting device of this invention as a light source of an image display apparatus, it is preferable to use it with a color filter.
  • the simple metals used for alloy raw materials are all high purity products with an impurity concentration of 0.01 mol% or less.
  • the shape of the raw material metal is a lump for Sr and a granular shape for others.
  • the force was 8.6 ⁇ m.
  • Nitrogen was passed through the reaction tube at atmospheric pressure, and while maintaining the oxygen concentration at 20 ppm or less, the temperature was raised to 1 600 ° C and held at that temperature for 10 hours to obtain a phosphor.
  • ICP optical analysis device JY 38S manufactured by Jobibon Co., Ltd.
  • ICP emission spectroscopy Inductively Coupled Plasma-Atomic Emission Spectrometry; hereinafter referred to as “ICP method”.
  • N and O were performed with a total nitrogen oxygen analyzer (manufactured by LECO). The results are shown in Table 2.
  • the composition was substantially the same within the range of analysis accuracy.
  • the resulting alloy shows a powder X-ray diffraction pattern similar to that of Sr (Si Al), A1B type
  • alkaline earth silicide of 0.5 0.5 2 2.
  • this plate-like alloy was pulverized in the same manner as in Example 2-1, and the obtained alloy powder lg was filled in a boron nitride crucible (inner diameter: 18 mm), and a hot isostatic press (HIP ) was set in, after evacuating the inside of the apparatus to 5X10 _1 Pa, heated to 300 ° C, the evacuation was continued for 1 hour at 300 ° C. Thereafter, the operation of filling nitrogen to IMPa, releasing the pressure to 0. IMPa after cooling, and then filling nitrogen again to IMPa was repeated twice. Before starting heating, nitrogen was charged up to 50 MPa, and the sample temperature was raised to about 1800 ° C at about 600 ° C Zhr. At the same time, nitrogen was introduced at about 50 MPaZhr until the internal pressure reached 135 MPa, then the pressure was further increased to 180 MPa, and held at 1800 ° C. and 180 MPa for 1 hour to obtain a phosphor.
  • HIP hot isostatic press
  • Example 2-2 The phosphor obtained in Example 2-2 was reheated again under the same conditions using the same hot isostatic pressure device as used in Example 2-2, and the phosphor was obtained. Obtained.
  • the mixed powder was filled into a boron nitride crucible and set in an atmosphere heating furnace. After evacuating the inside of the equipment to 1 X 10 _2 Pa, evacuation was stopped, filling the equipment with nitrogen to 0. IMPa, heating to 1600 ° C and holding for 5 hours to obtain a phosphor .
  • the mixed powder was filled into a boron nitride crucible and set in an atmosphere heating furnace. After evacuating the device to 1 X 10 _2 Pa, evacuation was stopped, filling the device with nitrogen to 0.9 MPa, heating to 1800 ° C and holding for 2 hours to obtain a phosphor .
  • the emission characteristics of the phosphor by excitation at a wavelength of 465 nm were measured with a fluorescence spectrophotometer, and the relative luminance was obtained with the emission wavelength and the luminance of the phosphor of Comparative Example 2-1 described above as 100%. It was shown to.
  • the phosphor obtained by nitriding the alloy according to the method of the present invention has a significantly higher light emission than the phosphor obtained by the conventional method using nitride as a raw material. Indicates brightness.
  • the light emitting device shown in FIG. 4 was produced.
  • the light emitting device was manufactured according to the following procedure.
  • the constituent elements of Example 2-4 the constituent elements corresponding to those shown in FIG. 4 are indicated with appropriate reference numerals.
  • the first illuminant (14) a 460 MB manufactured by Cree, which is a blue light emitting diode (hereinafter abbreviated as "LED” as appropriate), was used. This emits light at a dominant wavelength of 456 nm to 458 nm.
  • This blue LED (14) was die-bonded to the terminal (19) at the bottom of the recess of the frame (16) using silver paste as an adhesive. At this time, the silver paste as an adhesive was applied thinly and uniformly in consideration of the heat radiation of the blue LED (14). After heating at 150 ° C for 2 hours to cure the silver paste, the electrode of the blue LED (14) and the terminal (18) of the frame (16) were wire bonded.
  • LED blue light emitting diode
  • the wire (17) a gold wire having a diameter of 25 m was used.
  • the luminescent material of the phosphor-containing part (15) the phosphor of Example 3 which is an orange phosphor (this phosphor may be referred to as "phosphor (A)"), and a wavelength of about 520 ⁇ ! Ba Sr Eu SiO, a phosphor that emits light at ⁇ 760nm (this phosphor is called "phosphor (B)".
  • the obtained light-emitting device was driven by applying a current of 20 mA at room temperature to the blue LED (14) to emit light.
  • Example 2-4 instead of phosphor (B), Ca Ce Sc Mg Si O (which is a phosphor emitting light having a wavelength of about 560 nm to 750 nm) (this phosphor is referred to as “phosphor (C)
  • a light-emitting device was fabricated in the same procedure as in Example 2-4, except that 2) was used.
  • the emission spectrum of this light emitting device is shown in FIG.
  • a phosphor based on a nitride or oxynitride obtained by the production method of the present invention includes a fluorescent lamp, a fluorescent display tube (VFD), a field emission display (FED), a plasma display panel (PDP). ), Cathode ray tube (CRT), white light emitting diode (LED), etc.
  • the present inventors pulverize and classify the phosphor as necessary in a phosphor based on a nitride or oxynitride manufactured using an alloy as a raw material, and have a weight 10 times that of the phosphor. It was found that there is a correlation between the electrical conductivity, which is an indicator of the amount of dissolved ions in the supernatant obtained by dispersing for 1 hour after dispersion in water, and the luminous efficiency of the phosphor.
  • the phosphor of the third aspect is a phosphor based on nitride or oxynitride! It is characterized in that the electrical conductivity of the supernatant obtained by dispersing the phosphor in water 10 times by weight and allowing it to stand for 1 hour is 50 mSZm or less.
  • phosphor, divalent metal elements M 2 may comprise an alkaline earth metal element.
  • phosphor may further include a trivalent metal elements M 3.
  • phosphor, Cr as activator elements M 1, Mn, Fe, Ce , Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and one or more selected from the group consisting of Yb These elements may be contained.
  • divalent metal elements M 2 is Mg, Ca, Sr, at least one element selected from the group consisting of Ba, and Zn
  • 3-valent metal element M 3 is Al, Ga, In, and One or more elements selected from the group consisting of Sc, a tetravalent metal element containing at least Si
  • M 4 is a group force consisting of Si, Ge, Sn, Ti, Zr, and Hf One or more elements selected It may be.
  • 50 mol% or more of the divalent metal elements M 2 is Ca and Z or Sr
  • 50 mol% or more of the trivalent metal elements M 3 is A1
  • 4-valent metal elements including at least Si More than 50 mol% of M 4 may be Si.
  • Electric conductivity power of water in which the phosphor is dispersed may be not less than OOlmSZm and not more than lmSZm.
  • the phosphor is preferably manufactured using an alloy as a raw material.
  • a third aspect is a light emitting device having an excitation light source and a phosphor that converts the wavelength of at least part of the light of the excitation light source power, wherein the phosphor contains the above-described phosphor.
  • a light emitting device is provided.
  • the third aspect provides an image display device having the light emitting device.
  • a third aspect provides a lighting device having the light emitting device.
  • the brightness of the phosphor can be improved by a simple method.
  • a light emitting device with high luminous efficiency can be obtained by using a thread and composition containing this phosphor. be able to.
  • This light emitting device is suitably used for applications such as an image display device and a lighting device.
  • the numerical range expressed using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
  • Third aspect of the phosphor is preferably be those containing the activator elements M 1, and tetravalent metallic elements M 4 including at least Si, one or more and the metal elements other than Si
  • the phosphor of the present invention is Divalent metal elements M 2, and is intended to include tetravalent metallic element M 4 including at least Si.
  • Sr Si N: Eu, Ce etc. are mentioned.
  • the valent metal element M 2 is preferably an alkaline earth metal element.
  • activation element M 2 divalent metal elements M 2, 3-valent metal elemental M 3, and may contain tetravalent metal elements M 4 including at least Si
  • the nitride or oxynitride represented by the following general formula [2] is preferably used as a base.
  • the explanation of the phosphor composition is the same as the explanation of the alloy composition of the first aspect.
  • At least 50 mol% is A1, and by more than 50 mol% of M 4 is made to be Si
  • oxygen contained in the phosphor of the third aspect is mixed as an impurity in the raw material metal
  • oxygen mixed in during the manufacturing process such as the pulverization step and the nitriding step can be considered.
  • the oxygen content is usually 5% by weight or less, preferably 2% by weight or less, and most preferably 1% by weight or less as long as the deterioration of the light emission characteristics of the phosphor is acceptable.
  • the oxygen content of the phosphor tends to be reduced by the cleaning described later.
  • the phosphor composition examples include (Sr, Ca, Mg) AlSiN: Eu, (Sr, Ca, Mg) AlS
  • a metal or alloy thereof as a raw material is weighed and melted and alloyed so that the composition of the following general formula [1] is obtained. Then, the phosphor raw material alloy is pulverized, nitrided, and washed. At that time, for example, when producing an alloy containing Si and an alkaline earth metal element, after melting a high melting point (high boiling point) Si metal and an alloy containing Z or Si, a low melting point (low It is preferable to melt alkaline earth metals (boiling point).
  • the explanation for the purity of the metal used to manufacture the alloy is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation for melting the source metal is the same as the first aspect, and the explanation for the first aspect is used.
  • the explanation of the molten metal fabrication is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation for the crushing of the lump is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation for classifying the alloy powder is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation of the nitriding treatment of the phosphor raw material alloy is the same as that of the first aspect, and the explanation of the first aspect is used.
  • the phosphor obtained by nitriding the phosphor raw material alloy is roughly pulverized with a jaw crusher, stamp mill, hammer mill or the like, and then washed with a neutral or acidic solution.
  • water As a neutral solution used here, it is preferable to use water.
  • the type of water that can be used is not particularly limited, but demineralized water or distilled water is preferred.
  • the electric conductivity of the water used is usually at least OOlmSZm, preferably at 0. OlmS / m, and usually at most lmSZm, preferably at most 0.1 lmSZm.
  • the temperature of water is usually preferably room temperature (about 25 ° C), preferably 40 ° C or higher, more preferably 50 ° C or higher, and preferably 90 ° C or lower, more preferably 80 °. By using hot water or hot water of C or less, it is possible to reduce the number of washings for obtaining the target phosphor.
  • an acidic aqueous solution is preferred as the acidic solution.
  • an aqueous solution in which one or more mineral acids such as hydrochloric acid and sulfuric acid are diluted can be used.
  • the acid concentration of the aqueous acid solution is usually 0.1 ImolZl or more, preferably 0.2 molZl or more, Further, it is usually 5 molZl or less, preferably 2 molZl or less. It is preferable to use an acidic aqueous solution rather than a neutral aqueous solution in terms of the efficiency of reducing the amount of dissolved ions in the phosphor.
  • the acid concentration of the aqueous acid solution used for this cleaning exceeds 5 molZl, the phosphor surface is dissolved. Therefore, the effect of using an acid is not sufficiently obtained if it is less than 0. ImolZl.
  • a highly corrosive acid such as hydrofluoric acid is not required as the acid.
  • the phosphor cleaning method is not particularly limited! /, But specifically, the obtained phosphor particles are neutral or acidic solution (hereinafter referred to as "cleaning medium"). And a method of dispersing the phosphor particles by stirring for a predetermined time, and then separating the phosphor particles into a solid and a liquid.
  • cleaning medium neutral or acidic solution
  • the stirring method for cleaning the phosphor there is no particular limitation on the stirring method for cleaning the phosphor, and it is sufficient that the phosphor particles can be uniformly dispersed.
  • a chip stirrer or a stirrer can be used.
  • the amount of the cleaning medium is not particularly limited, but if it is too small, a sufficient cleaning effect cannot be obtained. If it is excessively large, a large amount of cleaning medium is required, which is unreasonable. It is preferably 2 times or more, particularly 5 times or more, 1000 times or less, particularly 100 times or less of the weight.
  • the stirring time is 10 minutes in the examples described later. However, the stirring time is usually 1 minute or more and 1 hour or less as long as the phosphor and the cleaning medium as described above can be sufficiently brought into contact with each other. is there.
  • the method for solid-liquid separation of the cleaning medium and the phosphor particles is not particularly limited, and examples thereof include filtration, centrifugation, and decantation.
  • the phosphor particle cleaning method is not limited to the solid-liquid separation after dispersion of the phosphor particles in the cleaning medium by stirring as described above.
  • the exposure method may be used.
  • Such a cleaning step may be performed a plurality of times.
  • water washing and washing with an acid aqueous solution may be combined, but in that case, after washing with an acid aqueous solution in order to prevent acid from adhering to the phosphor, It is preferable to perform water washing. Further, after washing with water, it may be washed with an acid aqueous solution and then with water. In addition, when performing a plurality of washing steps, the above-described pulverization step or classification step may be inserted between the washing steps.
  • the phosphor is washed with respect to the phosphor after washing!
  • the following water dispersion test is performed, and the electrical conductivity of the supernatant liquid at that time is a predetermined value.
  • the washed phosphor is pulverized or pulverized with a dry ball mill or the like as necessary, classified with a sieve or a water tank, and sized to a desired weight median diameter, and then 10 weight of the phosphor.
  • the mixture is allowed to stand for 1 hour to naturally precipitate phosphor particles having a specific gravity heavier than water.
  • the electrical conductivity of the supernatant liquid at this time is measured, and the above washing operation is repeated as necessary until the electrical conductivity is usually 50 mSZm or less, preferably 10 mSZm or less, and most preferably 5 mSZm or less.
  • the water used for the water dispersion test of this phosphor is not particularly limited, but demineralized water or distilled water is preferred in the same manner as the water of the washing medium described above, and the electrical conductivity is usually 0. 001 mSZm or more, preferably 0. OlmSZm or more, and usually lmSZm or less, preferably 0.1 lmSZm or less.
  • the temperature of water used for the water dispersion test of the phosphor is usually room temperature (about 25 ° C.).
  • the phosphor of the present invention has an electric conductivity of 50 mSZm or less of the supernatant obtained by dispersing the phosphor in water 10 times by weight and then allowing it to stand for 1 hour. It is possible to obtain
  • the electrical conductivity of the supernatant liquid in the phosphor aqueous dispersion test can be measured using an electrical conductivity meter “EC METER CM-30G” manufactured by Toa Decike Co., Ltd.
  • the oxygen content of the phosphor as described above is also reduced by the above-described cleaning, but this is not due to the removal of the oxygen-containing impurity phase, for example, the hydroxide formed by hydrolysis of the poorly crystalline nitride. Presumed to be left.
  • Nitride with poor crystallinity is hydrolyzed to form a hydroxide such as Sr (OH).
  • the phosphor is used as a powder and is used in a state dispersed in another dispersion medium. Therefore, in order to facilitate these dispersion operations, various surface treatments are performed on phosphors as a normal method among those skilled in the art. In the case of a phosphor that has been subjected to a powerful surface treatment, it is appropriate to understand that the stage before the surface treatment is performed is the phosphor according to the present invention.
  • the phosphor is dried until there is no adhering moisture and is used.
  • the peak intensity is a value obtained by performing background correction.
  • the explanation of the emission spectrum of the Eu-activated SCASN phosphor obtained by the third aspect is the same as the explanation of the emission spectrum of the second aspect, and the explanation of the second aspect is incorporated.
  • the explanation of the weight median diameter D of the phosphor of the third aspect is the same as that of the second aspect.
  • the phosphor of the present invention is more preferable as its internal quantum efficiency is higher.
  • the explanation of the value is taken from the explanation of the second aspect.
  • the phosphor of the present invention is preferably as its absorption efficiency is high.
  • the explanation of the second aspect is used.
  • the phosphor of the present invention When the phosphor of the present invention is used for a light emitting device or the like, it is preferable to use the phosphor in a form dispersed in a liquid medium. The explanation of this is taken from the description of the second aspect.
  • the light emitting device of the third aspect includes at least a first light emitter as an excitation light source and a second light emitter that emits visible light when irradiated with light from the first light emitter.
  • the description of the light emitting device is the same as that of the second aspect light emitting device, and the description of the second aspect is incorporated.
  • Figures 1-3 are also incorporated. [0344] [Application of light emitting device]
  • the electrical conductivity was measured using an electric conductivity meter “EC METER CM-30G” manufactured by Toa Deckeke. Washing and measurement were performed at room temperature.
  • the electric conductivity of water used in the cleaning and phosphor water dispersion tests is 0.03 mS / m.
  • a 150 W xenon lamp was used as an excitation light source in a fluorescence measuring apparatus manufactured by JASCO Corporation. Pass the light of the xenon lamp through a diffraction grating spectrometer with a focal length of 10 cm, and 450 ⁇ ! The phosphor was irradiated through the optical fiber only with ⁇ 475 nm light. The light generated by the irradiation of excitation light was dispersed with a diffraction grating spectrometer with a focal length of 25 cm, and the emission intensity of each wavelength from 300 nm to 800 nm was measured with a multi-channel CCD detector “C7041” manufactured by Hamamatsu Photo-TAS. . Subsequently, an emission spectrum was obtained through signal processing such as sensitivity correction by a personal computer.
  • Chromaticity coordinates X and y in the XYZ color system specified by JIS Z8701 were calculated from the data in the wavelength region of 480 nm to 800 nm of this emission spectrum.
  • ICP method Inductively Coupled Plasma-Atomic Emission Spectrometry
  • an ultrasonic disperser manufactured by Kaijo Co., Ltd.
  • the frequency was 19 KHz
  • the intensity of the ultrasonic wave was 5 W
  • the sample was ultrasonically dispersed for 25 seconds.
  • the dispersion used was water with a small amount of a surfactant added to prevent reaggregation.
  • Measuring device PW1700, manufactured by PANalytical
  • Sample preparation Sample milling jig (formerly Philips) using an agate mortar
  • the simple metals used as alloy raw materials are all high-purity products having an impurity concentration of 0.01 mol% or less.
  • the shape of the raw material metal is Sr in the form of a lump and the others in the form of particles.
  • Example 2-2 of the second aspect The alloy produced in Example 2-2 of the second aspect was used.
  • the elemental analysis was conducted by sampling about 10g from the single point near the center of gravity of the plate and the single point near the end face of the plate and obtained the elemental analysis by ICP method.
  • composition was substantially the same in the range of analysis accuracy. Therefore, it was thought that each element including Eu was distributed uniformly.
  • this alloy has a powder X-ray diffraction pattern similar to Sr (Si Al).
  • A1B type alkaline earth silicide was identified as an intermetallic compound called A1B type alkaline earth silicide.
  • the washed phosphor was dried at 120 ° C, and the emission characteristics were measured. The results are shown in Table 3-1.
  • the luminance is set to 100% of the phosphor obtained in Reference Example 3-3 described later.
  • the phosphor obtained in Synthesis Example 3-1 was placed in 10 times the amount of water by weight and stirred for 10 minutes using a stirrer to be dispersed. After standing for 1 hour, it was confirmed that the phosphor had settled, and the phosphor was separated by filtration. This operation was repeated 17 times.
  • the washed phosphor was dried at 120 ° C, and the emission characteristics were measured. The results are shown in Table 3-1.
  • the phosphor obtained in Synthesis Example 3-1 was placed in a 5-fold amount by weight of 0.5 mol Zl hydrochloric acid aqueous solution and stirred for 10 minutes using a stirrer to be dispersed. After standing for 1 hour, it was confirmed that the phosphor had settled, and the phosphor was separated by filtration. This operation was repeated 6 times. The phosphor after washing was subjected to a water dispersion test, and the electrical conductivity of the supernatant was measured. The results are shown in Table 3-1.
  • the washed phosphor was dried at 120 ° C, and the emission characteristics were measured.
  • the emission spectrum is shown in Fig. 7, and the emission characteristics data are shown in Tables 3-1 and 3-2.
  • the peak intensity ratio I was 1.9%.
  • Example 3-4 and Comparative Example 3-2 were synthesized in Ex. 3 except that they were calcined at 1030 ° C for 8 hours in an atmospheric pressure nitrogen stream before firing in the HIP apparatus. It was synthesized in the same way as for —1.
  • the phosphor obtained in Synthesis Example 3-2 was placed in 10 times the weight ratio of water and stirred for 10 minutes using a stirrer to be dispersed. After standing for 1 hour, it was confirmed that the phosphor had settled, and the phosphor was separated by filtration. The obtained phosphor was pulverized with a ball mill and classified to obtain a weight median diameter D of 9 ⁇ m. The resulting phosphor is 5 times the weight ratio of 0
  • the weight median diameter D did not change by the above-described washing operation.
  • the washed phosphor was subjected to a water dispersion test, and the electrical conductivity of the supernatant was measured. The results are shown in Table 1. The emission characteristics were measured and the results are shown in Table 3-1.
  • the light emission characteristic measured by excitation at 465 nm with a fluorescence spectrophotometer was 648 nm.
  • the phosphor washing operation improves the luminance of the phosphor as the electrical conductivity of the supernatant liquid in the water dispersion test decreases.
  • Example 3-3 Further, comparing the powder X-ray diffraction patterns of Example 3-3 and Comparative Example 3-1, the crystallinity was improved in Example 33, and the poorly crystalline part was removed by washing. I'll power you.
  • the present inventors have found that a phosphor produced from an alloy has a powder X-ray diffraction pattern.
  • the present inventors have found that the impurity peak is low, and the luminance and the luminous efficiency are high.
  • the phosphor of the fourth aspect has a peak intensity ratio I in the region 1 to region 6 of 8% or less in the powder X-ray diffraction pattern measured using the CuK o; line (1.554184A).
  • the base material is nitride or oxynitride.
  • the peak intensity ratio I corresponds to the height I of the strongest peak existing in the range of 2 ⁇ force to 37 ° in the powder X-ray diffraction pattern in the range of 2 ⁇ force ⁇ 0 ° to 60 °.
  • This phosphor is a tetravalent metallic element M 4 including at least Si, may comprise one or more and the metal elements other than Si.
  • This phosphor is It may contain the divalent metal element M 2 and the tetravalent metal element M 4 containing at least Si.
  • the phosphor may contain an alkaline earth metal element as a divalent metal element.
  • phosphor may further include a trivalent metal elements M 3.
  • phosphor, Cr as activator elements M 1, Mn, Fe, Ce , Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and one or more selected from the group consisting of Yb These elements may be contained.
  • divalent metal elements M 2 is Mg, Ca, Sr, at least one element selected from the group consisting of Ba, and Zn
  • 3-valent metal element M 3 is Al, Ga, In, and It is one or more elements selected from the group consisting of Sc
  • the tetravalent metal element M 4 is one or more elements selected from the group force consisting of Si, Ge, Sn, Ti, Zr, and Hf. Yo ...
  • 50 mol% or more of the divalent metal elements M 2 is Ca and Z or Sr, a trivalent least 50 mol% of the metal element M 3 is A1, 50 of tetravalent metal elements M 4 More than mol% may be Si.
  • phosphor, a Eu and Z or Ce as activator elements M 1, 2-valent and Ca ⁇ beauty Z or Sr as the metal element M 2, trivalent metal elements M 3 as A1, 4-valent Choi contains Si as metal elements M 4.
  • the phosphor is preferably manufactured using an alloy as a raw material.
  • the emission peak wavelength of the phosphor is preferably 590 nm or more and 650 nm or less.
  • the fourth aspect provides a phosphor-containing composition containing this phosphor and a liquid medium.
  • the phosphor in a light-emitting device that includes an excitation light source and a phosphor that converts the wavelength of at least part of the light having the excitation light source power, the phosphor may be shifted from the above! / Provided is a light emitting device characterized by containing the phosphor.
  • the fourth aspect provides an image display device having the light emitting device.
  • the fourth aspect provides an illumination device having the light emitting device.
  • the phosphor based on the nitride or oxynitride of the fourth aspect exhibits higher luminance than the conventional nitride or oxynitride phosphor, and is yellow to orange or orange. It is excellent as a red phosphor.
  • the phosphor of the fourth aspect is a useful phosphor suitably used for VFD, FED, PDP, CRT, white LED, etc., which does not decrease in luminance even when exposed to excitation sources for a long time. .
  • the matrix color is red and absorbs ultraviolet rays, it is also suitable for red pigments and ultraviolet absorbers.
  • a light emitting device with high light emission efficiency can be obtained by using a yarn and composition containing this phosphor.
  • This light emitting device is suitably used for applications such as an image display device and a lighting device.
  • the fourth aspect will be described in detail, but the fourth aspect is not limited to the following description, and various modifications can be made within the scope of the gist thereof.
  • the numerical range expressed using “to” means a range including the numerical values described before and after “to” as the lower limit value and the upper limit value.
  • composition of the phosphor based on the nitride or oxynitride of the fourth aspect is the same as that of the third aspect, and all descriptions of the composition of the third aspect are incorporated.
  • the same ingredients preferably the phosphor of the third aspect the activator elements M 1, and tetravalent metal elements M 4 including at least Si, 1 or more metal elements other than Si Including
  • the phosphor of the present invention includes the activator element M 2 valent metal element M 2 and the tetravalent metal element M 4 containing at least Si.
  • Sr Si N E
  • the divalent metal element M 2 is preferably an alkaline earth metal element.
  • activation element M 2 divalent metal elements M 2, 3-valent metal elemental M 3, and may contain tetravalent metal elements M 4 including at least Si
  • the base is a nitride or oxynitride represented by the general formula [2].
  • a raw material metal or an alloy thereof is weighed so as to have the composition of the following general formula [3], and then melted and alloyed to be used for the phosphor raw material.
  • An alloy is manufactured, and then the phosphor raw material alloy is pulverized and nitrided.
  • a high melting point (high boiling point) Si metal and an alloy containing Z or Si a low melting point (low boiling point) It is preferable to melt the alkaline earth metal.
  • the explanation for the purity of the metal used to manufacture the alloy is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation for melting the source metal is the same as the first aspect, and the explanation for the first aspect is used.
  • the explanation of the molten metal fabrication is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation for the crushing of the lump is the same as the first aspect, and the explanation of the first aspect is used.
  • the explanation for classifying the alloy powder is the same as the first aspect, and the explanation of the first aspect is used.
  • reaction conditions are set according to the type of phosphor such as oxide, sulfide, and nitride. Will be described as an example.
  • the explanation of the nitriding treatment of the alloy powder is the same as that of the first aspect, and the explanation of the first aspect is used.
  • the obtained phosphor is preferably pulverized and classified.
  • the phosphor of the present invention has an orthorhombic crystal (Cmc) identical to the CASN structure described in WO2005Z052087. 21 and # 36) crystal structure.
  • the lattice constant is usually 9.8A ⁇ a ⁇ 9.93A, 5.6A ⁇ b ⁇ 5.8A, 5.OA ⁇ c ⁇ 5.2A, 280A ⁇ V ⁇ 300A, more preferably 9.8A ⁇ a ⁇ 9. 93A, 5.69A ⁇ b ⁇ 5. 77A, 5. lA ⁇ c ⁇ 5. 18A, 285A ⁇ V ⁇ 2 98A.
  • the inventors of the present invention have examined the powder X-ray diffraction pattern measured with the CuKa line (1.554184A) for the phosphor of the fourth aspect.
  • Examples of powder X-ray diffraction patterns are shown in Table 4 below.
  • Table 4 the X-ray powder diffraction peak position is represented by 2 ⁇ (within the range of 10 ° to 60 °).
  • the amount of Sr and Ca that can be contained in the above-mentioned general formula [1] can be changed.
  • Example 1 Example 2, Example 3, Example 4, Example In the order of 5, the amount of Ca is decreased and the amount of Sr is increased. Both are orthorhombic with the same type as CaAlSiN, with the strongest peak
  • the position of the peak in the powder X-ray diffraction pattern derived from the same crystal structure as the CaAlSiN crystal of the phosphor of the fourth aspect is usually the position where Example 5 is the lower limit and Example 1 is the upper limit. Preferred is a position where Example 4 is the lower limit and Example 2 is the upper limit. Furthermore, the peak position in Example 3 is preferably within the range of ⁇ 0.2 °.
  • the phosphor of the fourth aspect usually has 7 or more, preferably 10 or more of the peaks shown in Table 4.
  • the phosphor of the fourth aspect has the following characteristics in addition to having the above-mentioned peak. That is, the peaks appearing in the following regions 1 to 6 indicate the presence of crystals other than the phosphor of the fourth aspect, and it is preferable that these peak intensities are low. Each peak appearing in each of the regions 1 to 6 has a peak intensity ratio I of usually 8% or less, preferably 5% or less, more preferably 3% or less.
  • the peak intensity ratio I is the max of the peak corresponding to the height I of the strongest peak existing in the range from 2 ⁇ force to 37 ° in the powder X-ray diffraction pattern in the range from 2 ⁇ force ⁇ 0 ° to 60 °.
  • the ratio of height I is (IX 100) / ⁇ (%).
  • peak intensity is backdull p p max
  • Region 1 20 force 10 ° -17. Range.
  • Region 2 20 force 18. Range between 3 ° and 24 °.
  • Region 3 20 force in the range of 3 ° to 30 °.
  • Region 4 20 force to 34.3 ° range.
  • Region 5 20 force to 40 °.
  • Region 6 20 force 1.5 in the range of 5 ° to 47 °.

Abstract

 蛍光体等の無機機能材の製造原料である合金粉末、高輝度の蛍光体及びその製造方法が提供される。少なくとも1種の金属元素と、少なくとも1種の付活元素M1とを含有し、重量メジアン径D50が5μm以上40μm以下である無機機能材原料用合金粉末、及び蛍光体を構成する金属元素を2種以上含有する合金を、窒素含有雰囲気下で加熱することを特徴とする蛍光体の製造方法。

Description

明 細 書
無機機能材原料用合金粉末及び蛍光体
発明の分野
[0001] 本発明は、無機機能材原料用合金粉末及びその製造方法に関する。詳しくは、蛍 光体の製造原料として好適な無機機能材原料用合金粉末とその製造方法に関する 。また、本発明は、蛍光体及びその製造方法に関する。本発明はまた、この蛍光体を 用いた蛍光体含有組成物及び発光装置、並びにその発光装置を用いた画像表示 装置及び照明装置に関する。
発明の背景
[0002] 蛍光体は、蛍光灯、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED )、プラズマディスプレイパネル (PDP)、陰極線管(CRT)、白色発光ダイオード (LE D)などに用いられている。これらのいずれの用途においても、蛍光体を発光させるた めには、蛍光体を励起するためのエネルギーを蛍光体に供給する必要があり、蛍光 体は真空紫外線、紫外線、可視光線、電子線などの高いエネルギーを有する励起 源により励起されて、紫外線、可視光線、赤外線を発する。しかしながら、蛍光体は 前記のような励起源に長時間曝されると、蛍光体の輝度が低下するという問題があつ た。
[0003] そこで、近年、従来のケィ酸塩蛍光体、リン酸塩蛍光体、アルミン酸塩蛍光体、ホウ 酸塩蛍光体、硫化物蛍光体、酸硫化物蛍光体などの蛍光体に代わり、三元系以上 の窒化物について多くの新規物質が合成されている。特に最近、窒化珪素をベース とした多成分窒化物や酸窒化物において優れた特性を有する蛍光体が開発されて いる。
[0004] 特許文献 1には、一般式 M Si N: Eu [ここで Mは Ca, Sr, Baからなる群から選択 される少なくとも一つのアルカリ土類金属元素であり、かつ z = 2Z3x+ 4Z3yである ]で表される蛍光体が開示されている。これらの蛍光体は、アルカリ土類金属を窒化 してアルカリ土類金属の窒化物を合成し、これに窒化珪素を加えて合成するか、又 はアルカリ土類金属及び珪素のイミドを原料として N又は Ar気流中で加熱すること によって合成されている。いずれも空気や水分に敏感なアルカリ土類金属を原料とし て使用しなくてはならず、工業的な大量合成には問題があった。
[0005] また、特許文献 2には、構造 M Si O N のォキシュトリド、構造 MSiAl O N、
16 15 6 32 2 3 2
M Si Al O N 、 MSi Al ON及び M Si AION のサイアロンから由来する酸
13 18 12 18 36 5 2 9 3 5 10
窒化物蛍光体が開示されている。特に、 Mが Srの場合に、 SrCOと A1N、 Si Nとを
3 3 4
1 : 2 : 1の割合で混合し、還元雰囲気中(N /H )で加熱し、 SrSiAl O N : Eu2+
2 2 2 3 2 得られたことが記載されて 、る。
この場合、得られる蛍光体は、酸窒化物のみであり、酸素を含まない窒化物は得ら れていない。
酸窒化物蛍光体として、 Eu2+イオンを付活した Ca—アルファサイアロン蛍光体が 提案されている (特許文献 4)。
[0006] この蛍光体は、概略以下に述べるような製造プロセスによって製造される。
まず、窒化ケィ素(Si N )、窒化アルミニウム (A1N)、酸化ユーロピウム(Eu O )の
3 4 2 3 原料粉末を31:八1^11= 13 : 9 : 1となるょぅに混合し、原料混合粉末を 200気圧の圧 力を加えて圧縮成形した状態で、 1気圧の窒素ガス中において 1700°Cの温度で 1 時間保持するホットプレス法により焼成して Eu—アルファサイアロンが製造される。次 に、窒化ケィ素(Si N )、窒化アルミニウム (A1N)、酸ィ匕カルシウム (CaO)の原料粉
3 4
末を Si: Al: Ca = 13: 9: 3となるように混合し、原料混合粉末を 200気圧の圧力をカロ えて圧縮成形した状態で、 1気圧の窒素ガス中にぉ 、て 1700°Cの温度で 1時間保 持するホットプレス法により焼成して Ca—アルファサイアロンが製造される。そして、こ の様にして得られた Eu—アルファサイアロンと Ca—アルファサイアロンの粉末を 50 : 50の割合で混合し、 1気圧の窒素ガス中にぉ 、て 1700°Cの温度で 1時間保持する ホットプレス法により焼成して、 目的の Eu2+イオンを付活した Ca—アルファサイアロン 蛍光体が製造される。このプロセスで得られる蛍光体は、波長 450nm力ら 500nmの 青色光で励起されて波長 550nmから 600nmの黄色の光を発することが報告されて いる。
[0007] しカゝしながら、紫外線や青色光を励起源とする白色 LEDやプラズマディスプレイな どの用途には、使用時の劣化が小さい蛍光体が求められていた。 [0008] また、上記窒化物又は酸窒化物蛍光体は、使用される原料粉末の反応性がいず れも低いことから、焼成時に原料混合粉末の間の固相反応を促進する目的で高温に お!、て圧縮成形した状態、すなわち原料粉末間の接触面積を多くして加熱されるた めに、非常に硬い焼結体の状態で合成される。よって、この様にして得られた焼結体 は蛍光体の使用目的に適した微粉末状態まで粉砕する必要がある。ところが、硬い 焼結体力 なる蛍光体を通常の機械的粉砕方法、例えばジョークラッシャーやボー ルミルなどを使用して長時間と多大なエネルギーをかけて粉砕すると、蛍光体の結晶 母体中に多数の欠陥を発生させてしまい、蛍光体の発光強度を著しく低下させてし まうと 、う不都合が生じて 、た。
[0009] このために、加熱時に圧縮成形せずに粉末状態で焼成する方法が試みられたが、 低温では原料の窒化物粉末間での固相反応が促進せずに目的の蛍光体が生成し ないため、 1800°C以上の高温で蛍光体を合成する必要があった。ところが、この様 な高温での焼成時には窒化物原料力 の窒素の脱離を伴う分解反応が起こるという 不都合が発生するために、それを抑制する目的で 5気圧以上の窒素ガス雰囲気下 で焼成する必要があり、高い焼成エネルギーが必要とされるだけでなぐ非常に高価 な高温高圧焼成炉が必要となり、蛍光体の製造コストを上昇させる原因となっていた
[0010] また、酸素濃度の低い窒化物を合成する際には、アルカリ土類金属酸化物の原料 粉末を使用する代わりに窒化カルシウム (Ca N )、窒化ストロンチウム(Sr N )など
3 2 3 2 アルカリ土類金属窒化物を使用することが必要であるが、一般に 2価の金属窒化物 は水分含有雰囲気下で不安定であり、水分と反応して水酸化物を生成しやすぐ特 に Srの場合はこの傾向が著しい。このため、合成される蛍光体に含有される酸素濃 度を低く抑えることが難し力つた。
[0011] このようなことから、これらの金属窒化物を原料として使用しない新たな製造方法が 求められていた。
[0012] 近年、金属を出発原料とした窒化物蛍光体の製造方法に関し、特許文献 3が報告 された。特許文献 3には窒化アルミニウム系蛍光体の製造方法の一例が開示され、 原料として、遷移元素、希土類元素、アルミニウム及びその合金が使用できる旨が記 載されている。しかし、実際に合金を原料として用いた実施例は記載されておらず、
A1源として A1金属を用いることを特徴としている。また、原料に着火し、瞬時に高温( 3000K)まで上昇させる燃焼合成法を用いる点で、本発明と大きく異なり、この方法 で高特性の蛍光体を得ることは困難であると推測される。すなわち、瞬時に 3000Kと いう高温まで昇温させる方法では付活元素を均一に分布させることは出来ず、特性 の高い蛍光体を得ることは困難である。また、合金原料から得られるアルカリ土類元 素を含む窒化物蛍光体、更に珪素を含む窒化物蛍光体に関する記載は無い。
[0013] ところで、 Siとアルカリ土類金属元素を含む合金としては、 Ca Si、 Ca Si、 Ca Si、
7 2 5 3
CaSi、 Ca Si、 Ca Si 、 Ca Si、 SrSi、 SrSi、 Sr Si、 Sr Si、 Sr Si力知られて
2 2 14 19 3 4 2 4 7 5 3 7
いる。また、 Si、アルミニウム、及びアルカリ土類金属元素を含む合金としては、 Ca (S i _ Al ) 、 Sr (Si Al ) 、 Ba (Si Al ) 、 Ca Sr (Si Al )等力知られている 。中でも、 A(B Si ) : (A=Ca, Sr, Ba : B=Al, Ga)については、超伝導特性
O. 5 0. 5 2
に関して検討が行われており、例えば、非特許文献 1及び非特許文献 2に記載があ る。しかし、これらの合金を蛍光体原料として用いた例はない。また、これらの合金は 、学術研究用に実験室レベルでその少量が調製されたものであり、従来において、こ のような合金を工業的に大量生産された例はない。
[0014] 前述の如ぐ Sr (Ca) Si N、 CaAlSiNなどの Siとアルカリ土類金属元素を含む
2 5 8 3
蛍光体は、青色発光ダイオード又は近紫外発光ダイオードによって励起されて黄色 な ヽし赤色の発光を示すことから、青色発光ダイオード又は近紫外発光ダイオードと の組み合わせにより、白色を発光するダイオードを構成するための材料として工業的 に有用である。
[0015] し力しながら、従来においては、このような蛍光体を、合金を材料として製造するた めに必要とされる Siとアルカリ土類金属元素とを含む合金を、工業的に大量生産す ることができる技術は提供されていな力つた。即ち、従来の合金の製造方法では、不 純物が混入する;沸点が低いアルカリ土類金属が揮発するため設計通りの組成の合 金を得ることが困難である;得られる合金の組成の均一性が低 ヽ;と 、つた問題があ る。
[0016] 一方で、蛍光体の製造のためには、不純物の混入はたとえ微量であっても得られる 蛍光体の発光特性に悪影響を及ぼし、また、例えば付活元素が均一に分布している こと、設計通りの組成であることが、所望の発光特性を有する蛍光体の実現には必須 の要件であることから、不純物の混入がなぐ設計通りの合金組成で組成均一性の 高い蛍光体原料用合金を工業的に大量生産可能な技術が必要となる。
[0017] し力も、たとえこのような合金が得られたとしても、原料合金は塊状のままでは蛍光 体ィ匕のための反応が殆ど進行しないため、所望の反応を円滑に進行できるような検 討が必要とされている。
特許文献 1 :特表 2003— 515665号公報
特許文献 2:特開 2003 - 206481号公報
特許文献 3:特開 2005 - 54182号公報
非特許文献 l : M.Imai、 Applied Physics Letters, 80 (2002) 1019-1021
非特許文献 2 : M.Imai、 Physical Review B、 68、(2003)、 064512
特許文献 4:特開 2002— 363554号公報
発明の概要
[0018] 本発明の第 1ァスぺ外は、合金を原料として蛍光体等の無機機能材を製造するに あたり、無機機能材ィ匕のための反応を効率的かつ均一に進行させて高性能の無機 機能材を製造することができる無機機能材原料用合金粉末を提供することを目的と する。
第 1アスペクトの合金粉末は、無機機能材の製造原料としての合金粉末であって、 該合金が少なくとも 1種の金属元素と、少なくとも 1種の付活元素 M1とを含有し、該粉 末の重量メジアン径 D 力 μ m以上 40 μ m以下であることを特徴とする。
50
この合金粉末は、該合金を窒素含有雰囲気下で粉砕する工程を経て製造されるこ とがでさる。
[0019] 第 2アスペクトの目的は、窒化物原料の固相反応促進のための圧縮成形や焼成後 の強力な長時間の粉砕処理や、高価な高温高圧焼成炉などを必要とせずに、化学 組成が均一な蛍光体を安価に製造する方法を提供しょうとするものである。特に、第 2アスペクトは、このような工業的に有利な方法で、窒化物、酸窒化物、酸化物等を母 体とする蛍光体を製造することを目的とする。 第 2アスペクトの蛍光体の製造方法は、蛍光体を構成する金属元素を 2種以上含 有する合金を窒素含有雰囲気下で加熱することを特徴とする。
[0020] 第 3アスペクトは、簡便な手法により、蛍光体の輝度を向上させる技術を提供するこ とを目的とする。
第 3アスペクトの蛍光体は、窒化物又は酸窒化物を母体とする蛍光体において、該 蛍光体を重量比で 10倍の水に分散後、 1時間静置して得られる上澄み液の電気伝 導度が 50mSZm以下であることを特徴とする。
[0021] 第 4アスペクトは、近紫外領域から青色領域の光により励起した時、黄色ないし橙 色、もしくは橙色な!/ヽし赤色に発光する輝度及び発光効率の高!ヽ蛍光体を得ること を目的としている。
第 4アスペクトの蛍光体は、 CuK o;線(1. 54184A)を用いて測定された粉末 X線 回折パターンにおいて、下記に示す領域 1〜領域 6におけるピーク強度比 Iが 8%以 下であることを特徴とする。
ただし、ピーク強度比 Iは 2 Θ力^ 0°以上 60°以下の範囲の粉末 X線回折パターン において、 2 Θ力 以上 37°以下の範囲に存在する最強ピークの高さ I に対する
max 該当ピークの高さ Iの比 (I X
p loo) /\ (%)である。ここで、ピーク強度はバックグ p max
ラウンド補正を行って得た値である。
領域 1は、 2 0力 S 10° 〜17° の範囲である。
領域 2は、 2 0力 8. 3° 〜24° の範囲である。
領域 3は、 2 Θ力 25. 3° 〜30. 7° の範囲である。
領域 4は、 2 Θ力 32° 〜34. 3° の範囲である。
領域 5は、 2 0力 S37° 〜40° の範囲である。
領域 6は、 2 0力41. 5° 〜47。 の範囲である。
[0022] 第 5アスペクトは、近紫外領域から青色領域の光により励起した時、黄色ないし橙 色、もしくは橙色な!/ヽし赤色に発光する輝度及び発光効率の高!ヽ蛍光体を得ること を目的としている。
第 5アスペクトの蛍光体は、窒化物又は酸窒化物を母体とし、付活元素 M1を有する 蛍光体であって、付活元素 M1の 85モル%以上が最高酸ィ匕数より低価数であること を特徴とする。
図面の簡単な説明
[0023] [図 1]本発明の発光装置の一実施例を示す模式的断面図である。
[図 2]本発明の発光装置を用いた面発光照明装置の一例を示す模式的断面図であ る。
[図 3]本発明の発光装置の他の実施の形態を示す模式的な斜視図である。
[図 4]発光装置の一実施例を示す模式的断面図である。
[図 5]発光装置の発光スペクトルを示すチャートである。
[図 6]発光装置の発光スペクトルを示すチャートである。
[図 7]洗浄後の蛍光体の発光スペクトルを示すチャートである。
[図 8]洗浄後の蛍光体の粉末 X線回折パターンを示すチャートである。
[図 9]未洗浄の蛍光体の粉末 X線回折パターンを示すチャートである。
[図 10]蛍光体の粉末 X線回折パターンを示すチャートである。
[図 11]蛍光体の粉末 X線回折パターンを示すチャートである。
[図 12]Eu— K吸収端の EXAFSスペクトルを示すチャートである。
[図 13]Eu— L吸収端の XANESスペクトルを示すチャートである。
3
詳細な説明
[0024] [第 1アスペクトの詳細な説明]
本発明者らは、特定の範囲の重量メジアン径 D 、粒度分布の合金粉末を用いると
50
、輝度及び発光効率の高 ヽ発光体等の無機機能材料を得ることができることを見出 した。また、合金中に微量含まれる酸素、炭素等の濃度が、合金の活性及び得られ た蛍光体の特性に大きな影響を与えることを見出した。
[0025] 即ち、例えば、合金を原料の一部として蛍光体を製造するには、窒化、酸化、又は 硫化反応等を行う必要があるが、その際、合金粉末の活性を制御することが極めて 重要である。
合金粉末の活性を制御する最も有効な方法の一つは、粒径を調節することである。 重量メジアン径 D が大きすぎると活性が低くて粒子内部が充分に反応せず、重量メ
50
ジアン径 D 力 、さすぎると活性が高すぎて化学反応の制御が困難となり、目的とす る物質が高 、純度で得られな 、。
[0026] 本発明の第 1アスペクトはこのような知見に基いて達成されたものである。
[0027] 第 1アスペクトの無機機能材原料用合金粉末は、無機機能材の製造原料としての 合金粉末であって、該合金が少なくとも 1種の金属元素と、少なくとも 1種の付活元素 M1とを含有し、該粉末の重量メジアン径 D 力 μ m以上 40 μ m以下であることを特
50
徴とする。
[0028] 合金粉末中に含まれる、粒径 10 m以下の合金粒子の割合が 80重量%以下、粒 径 45 μ m以上の合金粒子の割合が 40重量%以下、 QDが 0. 59以下、鉄分の量が
500ppm以下であることが好まし!/、。
[0029] 合金粉末中に含まれる酸素の量が 0. 5重量%以下であることが好ましい。
[0030] 合金粉末中に含まれる炭素の量が 0. 06重量%以下であることが特に好ましい。
[0031] この無機機能材原料用合金粉末は、少なくとも Siを含む 4価の金属元素 M4と、 Si 以外の金属元素の 1種類以上とを含んでもょ 、。
[0032] この無機機能材原料用合金粉末は、付活元素 M1 2価の金属元素 M2、及び少な くとも Siを含む 4価の金属元素 M4を含んでもょ 、。
[0033] この無機機能材原料用合金粉末は、 2価の金属元素 M2としてアルカリ土類金属元 素を含んでもよい。
[0034] この無機機能材原料用合金粉末は、更に 3価の金属元素 M3を含んでもょ 、。
[0035] 付活元素 M1が Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及 び Yb力もなる群力 選ばれる 1種以上の元素であることが好ましい。
[0036] 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群から選ばれる 1種以上 の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからなる群から選ばれる 1 種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、 及び Hfからなる群力 選ばれる 1種以上の元素であることが好ましい。
[0037] 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、 3価の金属元素 M 3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元素 M4の 50モル%以 上が Siであることが好まし 、。
[0038] 付活元素 M1として Eu及び Z又は Ceを、 2価の金属元素 M2として Ca及び Z又は S rを、 3価の金属元素 M3として Alを、少なくとも Siを含む 4価の金属元素 M4として Siを 含むことが好ましい。
[0039] この無機機能材原料用合金粉末は、蛍光体の製造原料として好適に用いることが できる。
[0040] この無機機能材原料用合金粉末は、前記合金を窒素含有雰囲気下で粉砕するェ 程を経て製造されることができる。
[0041] この粉砕後、分級処理が行われることが好ましい。
[0042] 本発明の第 1アスペクトによると、合金粉末の重量メジアン径 D 、粒度分布、合金
50
中に含まれる微量元素の量を制御することにより、高特性の無機機能材を得ることが できる。
本発明の第 1ァスぺ外の無機機能材原料用合金粉末は、特に、蛍光体の製造用 原料として好適であり、輝度や発光効率等の発光特性に優れた蛍光体を低コストで 製造することが可能となる。
[0043] 以下、本発明の第 1アスペクトについてさらに詳細に説明する力 第 1アスペクトは 以下の説明に限定されるものではなぐその要旨の範囲内で種々変形して実施する ことができる。
第 1アスペクトの説明にお 、て「〜」を用いて表される数値範囲は、「〜」の前後に記 載される数値を下限値及び上限値として含む範囲を意味する。
なお、以下においては、第 1アスペクトの無機機能材原料用合金粉末として、蛍光 体原料用合金粉末について主に説明するが、第 1ァスぺ外の無機機能材原料用合 金粉末は、蛍光体に限らず、その他の無機機能材の製造にも有効である。
また、本明細書において、合金粉末とは、合金粒子の集合体を指す。
[0044] 〈無機機能材原料用合金粉末の合金組成〉
まず、第 1アスペクトの無機機能材原料用合金粉末に好適な合金組成につ!ヽて説 明する。第 1ァスぺ外の無機機能材原料用合金粉末の合金組成は、少なくとも 1種 の金属元素と、少なくとも 1種の付活元素 M1とを含むものである。ここで、付活元素 M 1とは、無機機能材において、目的とする機能を発現させるために、或いは当該機能 の発現性向上のために必要とされる元素であり、無機機能材の母体結晶中に微量 酉己合させるものである。
[0045] 第 1アスペクトの合金粉末の合金は、少なくとも Siを含む 4価の金属元素 M4と Si以 外の金属元素の 1種類以上とを含む合金であって、詳しくは、付活元素 M 2価の 金属元素 M2、少なくとも Siを含む 4価の金属元素 M4を含むものである。 2価の金属 元素 M2としてはアルカリ土類金属元素を含むものが好ましぐこのような合金組成で あれば、 Siとアルカリ土類金属元素とを含む(Sr, Ca) Si N: Eu, Ce、 CaAlSiN:
2 5 8 3
Eu, Ce等の工業的に有用な黄色乃至橙色、もしくは橙色乃至赤色発光蛍光体を製 造するための原料として有用である。
[0046] この合金は、特に、
Figure imgf000012_0001
2価の金属元素 M2、 3価の金属元素 M3、及び少 なくとも Siを含む 4価の金属元素 M4を含み、下記一般式 [ 1 ]で表されることが好まし ぐこのような無機機能材原料用合金粉末は、下記一般式 [2]で表される窒化物又 は酸窒化物を母体とする蛍光体の製造に好適である。
M1 M2 M3 M4 [1]
a b e d
M1 M2 M" M4 N O [2]
a b c d e f
(但し、 a、 b、 c、 d、 e、 fはそれぞれ下記の範囲の値である。
0. 00001≤a≤0. 15
a + b = l
0. 5≤c≤l. 5
0. 5≤d≤l. 5
2. 5≤e≤3. 5
0≤f≤0. 5 )
[0047] 付活元素 M1としては、窒化物又は酸窒化物を母体とする蛍光体を構成する結晶 母体に含有可能な各種の発光イオンを使用することができる力 Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybよりなる群から選ばれる 1種以上 の元素を使用すると、発光特性の高い蛍光体を製造することが可能なので好ましい。 また、付活元素 M1としては、 Mn、 Ce、 Pr及び Euの 1種又は 2種以上を含むことが好 ましぐ特に Ce及び Z又は Euを含むことが高輝度の赤色発光を示す蛍光体を得るこ とができるので更に好ましい。また、輝度を上げることや蓄光性を付与するなど様々 な機能を持たせるために、付活元素 M1としては Ce及び Z又は Eu以外に共付活元 素を 1種又は複数種含有させても良 、。
[0048] 付活元素 M1以外の元素としては、各種の 2価、 3価、 4価の金属元素が使用可能 であるが、 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znよりなる群力 選ばれる 1 種以上の元素、 3価の金属元素 M3が Al、 Ga、 In、及び Scよりなる群力も選ばれる 1 種以上の元素、 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、及び Hはりなる群力 選 ばれる 1種以上の元素であること力 発光特性の高い蛍光体を得ることができるので 好ましい。
[0049] また、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srとなるように組成を 調整すると発光特性の高 、蛍光体が得られるので好まし 、が、 M2の 80モル%以上 を Ca及び/又は Srとするのがより好ましぐ 90モル%以上を Ca及び/又は Srとする のが更に好ましぐ M2の全てを Ca及び Z又は Srとするのが最も好ましい。
[0050] また、 3価の金属元素 M3の 50モル%以上が A1となるように組成を調整すると発光 特性の高 、蛍光体が得られるので好まし 、が、 M3の 80モル%以上を A1とするのが 好ましぐ 90モル%以上を A1とするのがより好ましぐ M3の全てを A1とするのが最も 好ましい。
[0051] また、少なくとも Siを含む 4価の金属元素 M4の 50モル%以上が Siとなるように組成 を調整すると発光特性の高 、蛍光体が得られるので好まし ヽが、 M4の 80モル%以 上を Siとするのが好ましぐ 90モル%以上を Siとするのがより好ましぐ M4の全てを Si とするのが好ましい。
[0052] 特に、 M2の 50モル%以上が Ca及び Z又は Srであり、かつ、 M3の 50モル%以上 が A1であり、かつ、 M4の 50モル%以上が Siとなるようにすることにより、発光特性が 特に高 、蛍光体が製造できるので好ま 、。
[0053] また、前記一般式 [1] , [2]における a〜fの数値範囲の好適理由は次の通りである
[0054] aが 0. 00001より小さいと十分な発光強度が得られない傾向にあり、 aが 0. 15より 大きいと濃度消光が大きくなつて発光強度が低くなる傾向にある。従って、 aは 0. 00 001≤a≤0. 15の範囲となるように原料を混合する。同様の理由で、 0. 0001≤a≤ 0. 1力 S好ましく、 0. 001≤a≤0. 05力 Sより好ましく、 0. 002≤a≤0. 04力 Sさらに好ま しく、 0. 004≤a≤0. 02とするの力最も好まし!/ヽ。
[0055] aと bの合計は、蛍光体の結晶母体中にお!、て付活元素 M1が金属元素 M2の原子 位置を置換するので、 1となるように原料混合組成を調整する。
[0056] cが 0. 5より小さい場合も、 cが 1. 5より大きい場合も、製造時に異相が生じ、前記蛍 光体の収率が低くなる傾向にある。従って、 cは 0. 5≤c≤l. 5の範囲となるように原 料を混合する。発光強度の観点からも 0. 5≤c≤l. 5が好ましぐ 0. 6≤c≤l. 4が より好ましぐ 0. 8≤c≤l. 2が最も好ましい。
[0057] dが 0. 5より小さい場合も、 dが 1. 5より大きい場合も、製造時に異相が生じ、前記 蛍光体の収率が低くなる傾向にある。従って、 dは 0. 5≤d≤l. 5の範囲となるように 原料を混合する。また、発光強度の観点からも 0. 5≤d≤l. 5が好ましぐ 0. 6≤d≤
1. 4力 Sより好ましく、 0. 8≤d≤l. 2が最も好ましい。
[0058] eは窒素の含有量を示す係数であり、
e = 2/3 + c+ (4/3) d
となる。この式に 0. 5≤c≤l. 5, 0. 5≤d≤l. 5を代人すれば、、 eの範囲は
1. 84≤e≤4. 17
となる。しかしながら、前記一般式 [2]で表される蛍光体組成において、窒素の含有 量を示す eが 2. 5未満であると蛍光体の収率が低下する傾向にある。また、 eが 3. 5 を超えても蛍光体の収率が低下する傾向にある。従って、 eは通常 2. 5≤e≤3. 5で ある。
[0059] 前記一般式 [2]で表される蛍光体中の酸素は、原料金属中の不純物として混入す る場合、粉砕工程、窒化工程などの製造プロセス時に導入される場合などが考えら れる。酸素の割合である fは蛍光体の発光特性低下が容認できる範囲で 0≤f≤0. 5 が好ましい。
[0060] 合金の組成の具体例としては、 EuSrCaAISi合金、 EuSrAISi合金、 EuCaAISi合 金、 EuSrMgAISi合金、 EuCaMgAISi合金、 EuCaSi合金、 EuSrCaSi合金、 Eu SrSi合金等が挙げられ、より具体的には Eu Sr Ca AlSi、 Eu Sr Ca Al
0.008 0.792 0.2 0.008 0.892 0.1
Si, Eu Sr Ca AlSi、 Eu Ca Mg AlSi等が挙げられる。
0.008 0.692 0.3 0.008 0.892 0.1 [0061] 蛍光体の組成の具体例としては、 (Sr, Ca, Mg)AlSiN: Eu、 (Sr, Ca, Mg)AlS
3
iN: Ce、 (Sr, Ca) Si N: Eu、 (Sr, Ca) Si N: Ce等が挙げられる。
3 2 5 8 2 5 8
[0062] ただし、第 1アスペクトの無機機能材原料用合金粉末は、上述の窒化物又は酸窒 化物を母体とする蛍光体の原料に限らず、酸化物、硫化物、酸硫化物、炭化物等を 母体とする蛍光体の原料にも用いることができ、また蛍光体に限らず、各種の無機機 能材の原料として用いることができる。
[0063] 〈無機機能材原料用合金粉末中の不純物〉
第 1アスペクトの無機機能材原料用合金粉末は、不純物としての酸素の含有量が 0 . 5重量%以下であることが好ましい。酸素含有量が 0. 5重量%より多いと、例えば 窒化物蛍光体の製造において、輝度の高い蛍光体を得ることができない。酸素含有 量は特に 0. 4重量%以下、とりわけ 0. 3重量%以下であることが好ましい。
[0064] また、輝度の高 、蛍光体を得るためには、炭素含有量は 0. 06重量%以下であるこ と力 子ましく、鉄分含有量は 500ppm以下、特に 300ppm以下、とりわけ lOOppm以 下であることが好ましい。
[0065] 鉄分含有量、酸素含有量、炭素含有量は少ないほど好ましぐその下限には特に 制限はな!、が、原料の高純度化や合金製造工程での不純物混入の防止と!/、つたェ 業的手法の限界から、通常その下限は、鉄分含有量 lppm、酸素含有量 0. 01重量 %、炭素含有量 0. 1重量%程度である。
[0066] 無機機能材原料用合金粉末中の鉄分含有量、酸素含有量及び炭素含有量を上 記上限以下とするために、後述の無機機能材原料用合金粉末の製造方法において 、原料金属として高純度のものを用いる;粉砕機の材質と被粉砕物との関係を適切に 選択する;融解、铸造、粉砕工程における雰囲気を選定する;などの工夫を行うこと が好ましい。
[0067] 〈合金粉末の粒径〉
第 1アスペクトにおいて、重量メジアン径とは、重量基準粒度分布曲線から求められ る値である。前記重量基準粒度分布曲線は、レーザ回折 ·散乱法により粒度分布を 測定して得られるもので、例えば、気温 25°C、湿度 70%の環境下において、ェチレ ングリコールに各物質を分散させ、レーザ回折式粒度分布測定装置 (堀場製作所製 「LA— 300」)により、粒径範囲 0. 1 μ m〜600 μ mにて測定して得ることができる。 この重量基準粒度分布曲線において積算値が 50%のときの粒径値を重量メジアン 径 D と表記する。また、積算値が 25%及び 75%の時の粒径値をそれぞれ D 、 D
50 25 75 と表記し、 QD= (D — D ) / (D +D )と定義する。 QDが小さいことは粒度分布
75 25 75 25
が狭いことを意味する。
[0068] 第 1アスペクトの無機機能材原料用合金粉末は、合金粉末を構成する金属元素の 活性度により粒径を調整する必要があり、重量メジアン径 D が通常 5 μ m以上 40 μ
50
m以下である。また、好ましくは粒径 10 μ m以下の合金粒子の割合が 80重量%以 下、粒径 45 μ m以上の合金粒子の割合が 40重量%以下、 QDが 0. 59以下である。
[0069] 第 1アスペクトの無機機能材原料用合金粉末の重量メジアン径 D の下限は通常 5
50
μ m以上、好ましくは 8 μ m以上、より好ましくは 10 μ m以上、さらに好ましくは 13 μ m以上である。一方、上限は 40 μ m以下、好ましくは 35 μ m以下、さらに好ましくは 3 2 μ m以下、特に好ましくは 25 μ m以下である。重量メジアン径 D 力 μ mより小さ
50
いと、窒化等の反応時の発熱速度が大きすぎて反応の制御が困難となる場合があり
、 40 mより大きいと、粒子内部の窒化等の反応が不十分となる場合がある。
[0070] 細粒子の割合、即ち、粒径 10 m以下の合金粒子の割合が 80重量%より多いと、 窒化等の反応時の発熱速度が大きすぎて反応の制御が困難となる傾向がある。粒 径 10 m以下の合金粒子の割合は、 60重量%以下がより好ましぐ 50重量%以下 力 Sさらに好ましく、 30重量%以下が特に好ましい。また、粗大粒子の割合、即ち粒径 45 μ m以上の合金粒子の割合力 0重量%より多いと、粒子内部の窒化等の反応が 不十分となる粒子の割合が多ぐ例えば蛍光体の製造にあっては発光特性が低下す る傾向がある。粒径 45 m以上の合金粒子の割合は、 30重量%以下であることがさ らに好ましい。
[0071] また、 QDが 0. 59より大きいと、窒化等の反応で得られた生成物が不均質となる傾 向がある。 QD値は、 0. 55以下であることがさらに好ましぐ 0. 5以下であることが特 に好ましい。
[0072] [無機機能材原料用合金粉末の製造方法]
第 1アスペクトの無機機能材原料用合金粉末を製造するには、 1種以上の金属元 素と 1種以上の付活元素 M より具体的には、例えば前述の一般式 [1]の組成とな るように、原料となる金属やその合金を秤量し、これを融解させて合金化し、次いで粉 砕、分級を行う。その際、例えば Siとアルカリ土類金属元素を含む合金を製造する場 合であれば、高融点(高沸点)の si及び Z又は siを含む合金を融解させた後、低融 点 (低沸点)のアルカリ土類金属を融解させることが好ましい。また、融解時に揮発や ルツボ材質との反応等により損失する金属元素については、必要に応じて予め過剰 に秤量して添カ卩してもよ!、。
[0073] 〈原料金属の純度〉
合金の製造に使用する金属の純度は、合成される蛍光体の発光特性の点から、付 活元素 M1の金属原料としては不純物が 0. 1モル%以下、好ましくは 0. 01モル%以 下まで精製された金属を使用することが好ましい。付活元素 M1として Euを使用する 場合には、 Eu原料として Eu金属を使用することが好ましい。付活元素 M1以外の元 素の原料としては、 2価、 3価、 4価の各種金属等を使用するが、同様の理由から、い ずれも含有される不純物濃度は 0. 1モル%以下が好ましぐ 0. 01モル%以下の高 純度の金属原料を使用することが発光特性の高 、蛍光体を製造できる点で好まし 、
[0074] 〈原料金属の形状〉
原料金属の形状に制限は無いが、通常、直径数 mm力 数十 mmの粒状又は塊状 のものが用いられる。
2価の金属元素 M2としてアルカリ土類金属元素を用いる場合、その原料としては、 粒状、塊状など形状は問わないが、原料の化学的性質に応じて適切な形状を選択 するのが好ましい。例えば、 Caは粒状、塊状のいずれでも大気中で安定であり、使 用可能であるが、 Srは化学的により活性であるため、塊状の原料を用いることが好ま しい。
[0075] 〈原料金属の融解〉
原料金属の融解にあたっては、特に、 Siと 2価の金属元素 M2としてアルカリ土類金 属元素を含む蛍光体原料用合金を製造する場合、次の問題点がある。
[0076] Siの融点は 1410°Cであり、アルカリ土類金属元素の沸点と同程度である(例えば、 Caの沸点は 1494°C、 Srの沸点は 1350°C、 Baの沸点は 1537°Cである)。特に、 Sr の沸点が Siの融点より低いため、 Srと Siを同時に融解させることは極めて困難である
[0077] そこで、第 1アスペクトでは Si金属を先に融解させて好ましくは母合金を製造し、次 いでアルカリ土類金属を融解することによって、この問題点を解決した。
さらに、このように Si金属を融解後アルカリ土類金属の融解を行うことにより、得られ る合金の純度が向上し、それを原料とする蛍光体の特性が著しく向上するという効果 ち奏される。
[0078] 第 1アスペクトにおける原料金属の融解法については、特に制限はないが、通常、 アーク融解法、高周波誘導加熱法 (以下、「高周波融解法」と称する場合がある。)、 抵抗加熱法、電子ビーム法等を用いることができる。中でも、アーク融解法、高周波 融解法が好ましぐ高周波融解法が特に好ましい。
以下、 1)アーク融解'電子ビーム融解の場合、 2)高周波融解の場合を例に更に詳 しく説明する。
[0079] 1)アーク融解'電子ビーム融解の場合
アーク融解'電子ビーム融解の場合は、以下の手順で融解を行う。
i) Si金属又は Siを含む合金を電子ビームあるいはアーク放電により融解し、 ii)次いで間接加熱によりアルカリ土類金属を融解し、 Siとアルカリ土類金属元素を 含む合金を得る。
ここで、 Siを含む溶湯にアルカリ土類金属が溶け込んだ後、電子ビームあるいはァ ーク放電により加熱 '攪拌して混合を促進しても良い。
[0080] 2)高周波融解の場合
アルカリ土類金属元素を含む合金は酸素との反応性が高いため、大気中ではなく 真空あるいは不活性ガス中で融解する必要がある。このような条件では通常、高周波 融解が好ましい。し力しながら、 Siは半導体であり、高周波を用いた誘導加熱による 融解が困難である。例えば、アルミニウムの 20°Cにおける比抵抗率は 2. 8 Χ 10"8 Ω •mであるのに対し、半導体用多結晶 Siの比抵抗率は 105 Ω 'm以上である。このよう に比抵抗率が大きいものを直接高周波融解することはできないため、一般に導電性 のサセプタを用い、熱伝導や放射により Siに熱移動を行って融解する。サセプタは、 ディスク状、管状なども可能であるが坩堝を用いるのが好ましい。サセプタの材質は、 黒鉛、モリブデン、炭化珪素などが一般に用いられるが、これらはアルカリ土類金属 と反応しやすいという問題点がある。一方、アルカリ土類金属を融解可能な坩堝 (ァ ルミナ、力ルシアなど)は絶縁体であり、サセプタとして使用することができない。従つ て、アルカリ土類金属と Siを坩堝に仕込んで高周波融解するにあたり、公知の導電 性の堆禍 (黒鉛など)をサセプタとして使用して、間接的な加熱により Si金属とアル力 リ土類金属を同時に融解することは不可能である。そこで、次のような順序で融解す ることで、この問題点を解決する。
i) Si金属を導電性の坩堝を使用して間接加熱により融解する。
ii)次に、絶縁性の坩堝を使用して、アルカリ土類金属を融解することにより、 Siとァ ルカリ土類金属元素を含む合金を得る。
[0081] 上記 i)、 ii)の工程の間で Si金属を冷却しても良 、し、冷却せず連続してアルカリ土 類金属を融解しても良い。連続して行う場合には導電性の容器にアルカリ土類金属 の融解に適した力ルシア、アルミナなどで被覆した坩堝を使用することもできる。
[0082] 更に具体的な工程を記述すると、以下の通りである。
i)高周波融解にあたり、 Si金属と金属 M (例えば Al、 Ga)を導電性の坩堝を使用し て間接加熱により融解し、導電性の合金 (母合金)を得る。
ii)次いで、アルカリ土類金属耐性坩堝を使用して、 i)の母合金を融解させた後、ァ ルカリ土類金属を融解させることにより、 Siとアルカリ土類金属元素を含む合金を得る
[0083] Si金属あるいは Siを含む母合金を先に融解させ、次 ヽでアルカリ土類金属を融解 させる具体的方法としては、例えば、 Si金属あるいは Siを含む母合金を先に融解さ せ、そこにアルカリ土類金属を添加する方法等が挙げられる。
[0084] Siを 2価の金属元素 M2以外の金属 Mと合金化して導電性を付与することもできる。
この場合、得られる合金の融点が SUり低いことが好ましい。 Siと A1の合金は、融点 力 S1010°C付近と、アルカリ土類金属元素の沸点より融点が低くなるので特に好まし い。 Siと 2価の金属元素 M2以外の金属 Mとの母合金を用いる場合、その糸且成には特に 制限はないが、母合金が導電性を有していることが好ましぐ通常、モル比で Si: M = 1 : 0. 01〜5の範囲として、アルカリ土類金属元素の沸点よりも融点の低い母合金 を製造することが好ましい。
なお、 Siを含む母合金に、さらに Si金属をカ卩えることもできる。
[0085] 第 1アスペクトにおいて、 Si金属を融解させた後にアルカリ土類金属を融解させるこ と以外に、他の原料金属の融解時期には特に制限はないが、通常、量が多いもの、 もしくは、融点が高いものを先に融解させる。
付活元素 M1を均一に分散させるため、また、付活元素 M1の添加量は少量である ため、 Siを融解させた後に付活元素 M1を融解させることが好ましい。
[0086] 前述の一般式 [1]で表され、 4価の金属元素 M4が Siであり、 2価の金属元素 M2と して少なくとも Srを含む蛍光体原料用合金を製造する場合、次のような手順で融解さ せることが好ましい。
1) Siと 3価の金属元素 M3との母合金を製造する。この際、好ましくは Siと M3とは、 一般式 [1]における Si: M3比で合金化する。
2) 1)の母合金を融解させた後、 Srを融解させる。
3) その後、 Sr以外の 2価の金属元素、付活元素 M1を融解させる。
[0087] このような原料金属の融解時の雰囲気は、不活性雰囲気が好ましぐ中でも Arが好 ましい。
[0088] また、圧力は、通常、 1 X 103Pa以上、 1 X 105Pa以下が好ましく、安全性の面から 、大気圧以下で行うことが望ましい。
[0089] 〈溶湯の铸造〉
原料金属の融解により製造された合金溶湯から直接蛍光体を製造するには技術的 課題が多く存在する。そのため、原料金属の融解により製造された合金溶湯を金型 に注入して成型する铸造工程を経て、凝固体を得る。ただし、この铸造工程において 溶融金属の冷却速度によって偏祈が生じ、溶融状態で均一組成であったものが組 成分布に偏りが生じることもある。従って、冷却速度はできるだけ速いことが望ましい 。また、金型は銅などの熱伝導性のよい材料を使用することが好ましぐ熱が放散し やすい形状であることが好ましい。また、必要に応じて水冷などの手段により金型を 冷却する工夫をすることも好まし 、。
[0090] このような工夫により、例えば厚さに対して底面積の大きい金型を用い、溶湯を金 型へ注湯後、できるだけ早く凝固させることが好ましい。
[0091] また、合金の組成によって偏祈の程度は異なるので必要な分析手段、例えば ICP 発光分光分析法などによって、得られた凝固体の数箇所より試料を採取して組成分 析を行い、偏祈の防止に必要な冷却速度を定めることが好ましい。
[0092] このような铸造時の雰囲気は、不活性雰囲気が好ましぐ中でも Arが好ましい。
[0093] 〈铸塊の粉砕〉
铸造工程で得られた合金塊は次いで粉砕することにより、所望の粒径、粒度分布を 有する合金粉末を調製することができる。粉砕方法としては、乾式法や、エチレンダリ コール、へキサン、アセトン等の有機溶媒を用いる湿式法で行うことが可能である。以 下、乾式法を例に詳しく説明する。
この粉砕工程は、必要に応じて、粗粉砕工程、中粉砕工程、及び微粉砕工程等の 複数の工程に分けてもよい。この場合、全粉砕工程を同じ装置を用いて粉砕すること もできるが、工程によって使用する装置を変えてもよい。
[0094] 粗粉砕工程とは、直径 lcm程度に粉砕する工程であり、ジョークラッシャー、ジャィ レトリークラッシャー、クラッシングロール、インパクトクラッシャーなどの粉砕装置を使 用することができる。中粉砕工程とは、直径 lmm程度に粉砕する工程であり、コーン クラッシャー、クラッシングロール、ハンマーミル、ディスクミルなどの粉砕装置を使用 することができる。微粉砕工程では、ボールミル、チューブミル、ロッドミル、ローラーミ ル、スタンプミル、エッジランナー、振動ミル、ジェットミルなどの粉砕装置を使用する ことができる。
[0095] 中でも、不純物の混入を防止する観点から、微粉砕工程では、ジェットミルを用いる ことが好ましい。ジェットミルを用いるためには、粒径数 mm程度(例えば 50 μ m〜5 mm)まで予め合金塊を粉砕しておく必要がある。ジェットミルでは、主に、ノズル元圧 カゝら大気圧に噴射される流体の膨張エネルギーを利用して粒子の粉砕を行うため、 粉砕圧力により粒径を制御すること、不純物の混入を防止することが可能である。粉 砕圧力は、装置によっても異なる力 通常、ゲージ圧で 0. OlMPa以上、 2MPa以下 の範囲であり、中でも、 0. 05MPa以上、 0. 4MPa未満が好ましぐ 0. IMPa以上、 0. 3MPa以下がさらに好ましい。
[0096] Vヽずれの場合も粉砕工程中に鉄等の不純物の混入が起こらな ヽよう、粉砕機の材 質と被粉砕物の関係を適切に選択する必要がある。例えば、接粉部は、セラミツクラ イニングが施されていることが好ましぐセラミックの中でも、アルミナ、タングステン力 ーバイド、ジルコユア等が好ましい。
また、合金粉末の酸ィ匕を防ぐため、粉砕は不活性ガス雰囲気下で行うことが好まし ぐ不活性ガス雰囲気中の酸素濃度は 10%以下、特に 5%以下が好ましい。また、 酸素濃度の下限としては、通常、 lOppm程度である。特定の範囲の酸素濃度とする ことによって、粉砕中に合金の表面に酸化被膜が形成され、安定化すると考えられる 。酸素濃度が 5%より高い雰囲気中で粉砕工程を行う場合、粉砕中に粉塵が発熱燃 焼する恐れがあるため、粉塵を生じさせないような設備が必要である。不活性ガスの 種類に特に制限はないが、通常、窒素、アルゴン、ヘリウムなどの気体のうち 1種単 独雰囲気又は 2種以上の混合雰囲気が用いられ、特に経済性の観点力 窒素が好 ましい。
また、粉砕中に合金粉末の温度が上がらな 、ように必要に応じて冷却してもよ!/、。
[0097] 〈合金粉末の分級〉
粉砕工程で粉砕された合金粉末は、ノイブレーティングスクリーン、シフターなどの 網目を使用した篩い分け装置、エアセパレータ等の慣性分級装置、サイクロン等の 遠心分離機を使用して、前述の所望の重量メジアン径 D 及び粒度分布に調整され
50
る。
[0098] この分級工程にっ 、ても、不活性ガス雰囲気下で行うことが好ましぐ不活性ガス雰 囲気中の酸素濃度は 10%以下、特に 5%以下が好ましい。不活性ガスの種類に特 に制限はないが、通常、窒素、アルゴン、ヘリウムなどの 1種又は 2種以上が用いられ 、特に経済性の観点力 窒素が好ましい。
[0099] [蛍光体の製造]
第 1アスペクトの無機機能材原料用合金粉末を用いて、蛍光体を製造する方法に は特に制限はなぐ酸化物、硫化物、窒化物など蛍光体の種類に応じて反応条件が 設定されるが、以下に窒化反応を例にとって説明する。
[0100] 《合金の窒化》
合金粉末の窒化処理は例えば以下の様にして行われる。
即ち、まず、窒化処理原料である合金粉末をるつぼ、或いはトレイに充填する。ここ で使用するるつぼ或いはトレイの材質としては、窒化ホウ素、窒化珪素、窒化アルミ ユウム、タングステン等が挙げられるが、窒化ホウ素が耐食性に優れることから好まし い。
[0101] この合金粉末を充填したるつぼ或いはトレィを、雰囲気制御が可能な加熱炉に納 めた後、窒素を含むガスを流通して系内を十分にこの窒素含有ガスで置換する。必 要に応じて、系内を真空排気した後、窒素含有ガスを流通しても良い。
[0102] 窒化処理の際に使用する窒素含有ガスとしては、窒素を含むガス、例えば窒素、ァ ンモニァ、或いは窒素と水素の混合気体等が挙げられる。系内の酸素濃度は製造さ れる蛍光体の酸素含有量に影響し、余り高い含有量となると高い発光が得られなくな るため、窒化処理雰囲気中の酸素濃度は、低いほど好ましぐ通常 lOOOppm以下、 好ましくは lOOppm以下、より好ましくは lOppm以下とする。また、必要に応じて、炭 素、モリブデン等の酸素ゲッターを系内加熱部分に入れて、酸素濃度を低下させて も良い。
[0103] 窒化処理は、窒素含有ガスを充填した状態或いは流通させた状態で加熱すること により行うが、その圧力は大気圧よりも幾分減圧、大気圧或いは加圧の何れの状態 でも良い。大気中の酸素の混入を防ぐためには大気圧以上とするのが好ましい。大 気圧未満にすると加熱炉の密閉性が悪い場合には多量の酸素が混入して特性の高 V、蛍光体を得ることができな 、おそれがある。窒素含有ガスの圧力は少なくともゲー ジ圧で 0. 2MPa以上が好ましぐ lOMPaから 200MPaが最も好ましい。
[0104] 合金粉末の加熱は、通常 800°C以上、好ましくは 1000°C以上、更に好ましくは 12 00°C以上で、通常 2200°C以下、好ましくは 2100°C以下、更に好ましくは 2000°C 以下の温度で実施する。加熱温度が 800°Cより低いと、窒化処理に要する時間が非 常に長くなり好ましくない。一方、加熱温度が 2200°Cより高いと、生成する窒化物が 揮発或いは分解し、得られる窒化物蛍光体の化学組成がずれて、特性の高い蛍光 体が得られず、また、再現性も悪いものとなるおそれがある。
[0105] 窒化処理時の加熱時間(最高温度での保持時間)は、合金粉末と窒素との反応に 必要な時間で良いが、通常 1分以上、好ましくは 10分以上、より好ましくは 30分以上 、更に好ましくは 60分以上とする。加熱時間が 1分より短いと窒化反応が完了せず特 性の高い蛍光体が得られない。加熱時間の上限は生産効率の面から決定され、通 常 24時間以下である。
[0106] 以下、第 1アスペクトを実施例によりさらに具体的に説明する力 本発明はその要旨 を超えない限り以下の実施例に限定されるものではな 、。
[0107] 〈原料金属〉
合金の原料に用いた金属単体は、いずれも不純物濃度 0. 01モル%以下の高純 度品である。また、原料金属の形状は、 Srは塊状、その他は粒状である。
[0108] 実施例 1 1
〈母合金の製造〉
金属元素組成比が A1: Si= 1: 1 (モル比)となるように各金属を秤量し、黒鉛るつぼ を用い、アルゴン雰囲気で高周波誘導式溶融炉を用いて原料金属を溶融した後、る つぼ力 金型へ注湯して凝固させ、金属元素組成元素比が Al: Si= 1: 1である合金 (母合金)を得た。
[0109] 〈蛍光体原料用合金の製造〉
Eu: Sr: Ca :Al: Si=0. 008 : 0. 792 : 0. 2 : 1: 1 (モル比)となるよう母合金、その 他原料金属を秤量した。炉内を 5 X 10_2Paまで真空排気した後、排気を中止し、炉 内にアルゴンを所定圧まで充填した。この炉内で、力ルシアるつぼ内で母合金を溶 解し、次いで Srを溶解し、 Eu、 Caを加えて、全成分が融解した溶湯が誘導電流によ り攪拌されるのを確認後、るつぼから溶湯を金型へ注湯して凝固させた。
[0110] 得られた合金をアルカリ溶融し、希塩酸に溶解した後、 ICP発光分光分析法 (Indue tiveiy Coupled Plasma— Atomic Emission spectrometry;以「""、「ICP法」と称する場合 がある。)で組成分析を行ったところ、中心部は、
Eu: Sr: Ca :Al: Si=0. 009 : 0. 782 : 0. 212 : 1 : 0. 986、 表面部は、
Eu: Sr: Ca :Al: Si=0. 009 : 0. 756 : 0. 210 : 1 : 0. 962
であり、分析精度の範囲で均一であることが確認された。
[0111] 得られた合金は Sr (Si Al ) と類似した粉末 X線回折パターンを示し、 A1B型
0. 5 0. 5 2 2 のアルカリ土類シリサイドと呼ばれる金属間化合物と同定された。
[0112] 〈蛍光体原料用合金の粉砕〉
得られた合金を窒素雰囲気 (酸素濃度 4%)でアルミナ乳鉢を用いて 10分間粉砕し 、目開き 53 mの篩い下を分離して、篩い上を再び 10分間粉砕する操作を繰り返し て合金粉末を得た。得られた合金粉末の粒度分布、元素分析結果を表 1に示した。 なお、元素分析は、酸素含有量は酸素窒素同時分析装置 (Leco社製)、炭素含有 量は炭素 ·硫黄分析装置 (堀場製作所社製)、また、鉄は ICP化学分析装置により行 つた o
また、合金粉末の粒度分布及び重量メジアン径 D は、気温 25°C、湿度 70%の環
50
境下において、エチレングリコールに蛍光体を分散させ、レーザ回折式粒度分布測 定装置 (堀場製作所製「LA— 300」)により、粒径範囲 0. 1 μ m〜600 mにて測定 して得られた重量基準粒度分布曲線から求め、積算値が 50%のときの粒径値を重 量メジアン径 D とした。また、この積算値が 25%及び 75%の時の粒径値をそれぞ
50
れ D 、D とし、 QD= (D — D ) / (D +D )で QDを算出した。
25 75 75 25 75 25
[0113] 参考例 1 1
実施例 1—1で得られた合金粉末 10gを窒化ホウ素製るつぼ(内径 55mm)に充填 し、熱間等方加圧装置 (HIP)内にセットし、装置内を 5 X 10_ 1Paまで真空排気した 後、 300°Cに加熱し、 300°Cで真空排気を 1時間継続した。その後、窒素を IMPa充 填し、冷却後に 0. IMPaまで放圧し、再び IMPaまで窒素を充填する操作を 2回繰 り返した。加熱開始前に 50MPaまで窒素を充填し、約 600°CZhrで試料温度 1900 °Cまで昇温した。このとき、内圧を 135MPaまで約 50MPaZhrで窒素で昇圧した後 、さらに 190MPaまで昇圧し、 1900°C、 190MPaで 1時間保持して蛍光体を得た。
[0114] 得られた蛍光体の粉末 X線回折測定の結果、 CaAlSiNと同型の斜方晶の結晶相
3
が生成していた。蛍光分光光度計で 465nm励起による発光特性を測定し、後述の 参考例 1—2の蛍光体の輝度を 100%として相対輝度を求めた。結果を表 1に示した
[0115] 実施例 1—2
アルミナ乳鉢を用いた粉砕時間を 5分とした以外は実施例 1—1と同様にして合金 粉末を得、その粒度分布、元素分析結果を表 1に示した。また、参考例 1 1と同様 に窒化処理を行い、得られた蛍光体の発光特性を測定し、結果を表 1に示した。
[0116] 実施例 1—3
実施例 1 1と同様にして得た合金を窒素雰囲気下でアルミナ乳鉢を用いて約 lm mまで粗粉砕したものを、超音速ジェット粉砕機(日本-ユーマチック工業株式会社 製「PJM— 80SP」)を用い、窒素雰囲気下 (酸素濃度 2%)、粉砕圧力 0. 15MPa、 原料供給速度 0. 8kgZhrで粉砕した。得られた合金粉末の粒度分布、元素分析結 果を表 1に示した。また、参考例 1—1と同様に窒化処理を行い、得られた蛍光体の 発光特性を測定し、結果を表 1に示した。
[0117] 実施例 1—4
超音速ジェット粉砕機による粉砕圧力を 0. IMPaとしたこと以外は、実施例 1—3と 同様にして合金粉末を得た。得られた合金粉末の粒度分布、元素分析結果を表 1に 示した。また、参考例 1—1と同様に窒化処理を行い、得られた蛍光体の発光特性を 測定し、結果を表 1に示した。
[0118] 比較例 1 1
超音速ジェット粉砕機による粉砕圧力を 0. 4MPa、原料供給速度を 0. 7kgZhrと したこと以外は実施例 1—3と同様に粉砕して合金粉末を得た。得られた合金粉末の 粒度分布、元素分析結果を表 1に示した。また、参考例 1—1と同様に窒化処理を行 い、得られた蛍光体の発光特性を測定し、結果を表 1に示した。
[0119] 参考例 1 2
金属元素組成比が£11 :じ&:八1: 31=0. 008 : 0. 992 : 1: 1となるように、 Eu O 、 C
2 3 a N 、 A1N、及び Si Nをアルゴン雰囲気中で秤量し、混合機を用いて混合した。こ
3 2 3 4
の混合粉を窒化ホウ素製るつぼへ充填して、雰囲気加熱炉中にセットした。装置内 を 1 X 10_2Paまで真空排気した後、排気を中止し、装置内へ窒素を 0. IMPaまで 充填した後、 1600°Cまで加熱し、 5時間保持して目的の蛍光体を得た。 この蛍光体について、蛍光分光光度計で 465nm励起による発光特性を測定したと ころ、発光波長は 648nmであった。
[0120] 参考例 1 3
アルミナ乳鉢を用いた粉砕時間を 5時間とし、篩い分けを行わな力 たこと以外は 実施例 1 1と同様に粉砕して合金粉末を得た。得られた合金粉末の粒度分布、元 素分析結果を表 1に示した。この合金粉末を用いて参考例 1 1と同様に窒化処理を 行ったところ、黒色の固体が得られた力 このものは発光しなかった。
[0121] 参考例 1 4
実施例 1—1と同様にして得た合金を、実施例 1—3と同様に粗粉砕し、ステンレス 製の機械式粉砕機を用いて、窒素雰囲気下で粉砕した。得られた合金粉末の粒度 分布、元素分析結果を表 1に示した。また、参考例 1 1と同様に窒化処理を行い、 得られた蛍光体の発光特性を測定し、結果を表 1に示した。
[0122] [表 1] 表 1
Figure imgf000027_0001
註 1 : 粒径が 10 m以下の合金粒子の割合
註 2 : 粒径が 45 ju m以上の合金粒子の割合
[0123] 以上の結果から、第 1アスペクトによれば高輝度の蛍光体を製造することができるこ とが分力る。 [0124] [第 2アスペクトの詳細な説明]
本発明者等は、蛍光体を構成する金属元素を 2種以上含有する組成の合金を窒 素含有雰囲気下で加熱することにより、第 2アスペクトの目的が達成できることを見出 した。
[0125] 第 2アスペクトの蛍光体の製造方法は、蛍光体を構成する金属元素を 2種以上含 有する合金を、窒素含有雰囲気下で加熱することを特徴とする。
[0126] 該合金のメジアン径 D は 100 m以下であることが好ましい。
50
[0127] 該蛍光体は、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種以 上とを含むことが好ましい。
[0128] 該蛍光体は、付活元素 M1と、 2価の金属元素 M2と、少なくとも Siを含む 4価の金属 元素 M4とを含むことが好ま 、。
[0129] 該蛍光体は、 2価の金属元素 M2としてアルカリ土類金属元素を含むことが好ましい
[0130] 該蛍光体は、さらに 3価の金属元素 M3を含んでもよい。
[0131] 付活元素 M1が Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及 び Ybからなる群から選ばれる 1種以上の元素であり、 2価の金属元素 M2が Mg、 Ca 、 Sr、 Ba、及び Zn力 なる群力 選ばれる 1種以上の元素であり、 3価の金属元素 M 3が Al、 Ga、 In、及び Scからなる群力 選ばれる 1種以上の元素であり、少なくとも Si を含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、及び Hfからなる群から選ばれる 1 種以上の元素であることが好まし!/、。
[0132] 該蛍光体は、付活元素 M1として Eu及び Z又は Ceを含んでもよい。
[0133] 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、 3価の金属元素 M 3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元素 M4の 50モル%以 上が Siであってもよい。
[0134] 該蛍光体が窒化物又は酸窒化物を母体とすることが好ま 、。
[0135] 第 2アスペクトの蛍光体の製造方法では、前記合金を窒素含有雰囲気下で加熱し て得られた蛍光体を再加熱してもよ ヽ。
[0136] 第 2アスペクトの蛍光体の製造方法で製造された蛍光体と、液状媒体とを含有する 蛍光体含有組成物を提供する。
[0137] 第 2アスペクトは、また、励起光源と、該励起光源力もの光の少なくとも一部を波長 変換する蛍光体とを有する発光装置において、該蛍光体が第 2アスペクトの蛍光体 の製造方法により製造された蛍光体を含有することを特徴とする発光装置を提供す る。
[0138] 第 2アスペクトは、この発光装置を有する画像表示装置を提供する。
[0139] 第 2アスペクトは、この発光装置を有する照明装置を提供する。
[0140] 第 2アスペクトアスペクトの蛍光体の製造方法によれば、高輝度の発光を示し、使用 時の劣化の少ない、蛍光体を安価に提供することが可能になる。
また、第 2アスペクトの蛍光体の製造方法は、窒化物、酸窒化物、酸化物、硫化物、 酸硫化物、炭化物等の蛍光体に応用可能である。
[0141] 第 2アスペクトの製造方法により得られる蛍光体は、従来のサイアロン蛍光体より高 輝度に発光し、特に Euを付活元素として選択した場合には、高輝度で長波長の橙 色ないし赤色発光を示す。また、励起源に長時間曝された場合でも、この蛍光体は 輝度が低下することなぐ従って、蛍光灯、蛍光表示管 (VFD)、フィールドエミッショ ンディスプレイ(FED)、プラズマディスプレイパネル(PDP)、陰極線管(CRT)、 白色 発光ダイオード (LED)などに好適に使用される有用な蛍光体が提供される。
[0142] 以下、第 2アスペクトについてさらに詳細に説明する力 第 2アスペクトは以下の説 明に限定されるものではなぐその要旨の範囲内で種々変形して実施することができ る。
なお、第 2アスペクトの説明において「〜」を用いて表される数値範囲は、「〜」の前 後に記載される数値を下限値及び上限値として含む範囲を意味する。
[0143] [蛍光体の組成]
第 2アスペクトにより製造される蛍光体の組成については特に制限はないが、以下 に例を挙げて説明する。
[0144] 第 2アスペクトにより製造される蛍光体 (以下「本発明の蛍光体」と称す。)は、好まし くは付活元素 M1と、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種類以上とを含むものであって、詳しくは、本発明の蛍光体は、付活元素 M1 2価 の金属元素 M2、及び 4価の金属元素 M4を含むものである。例えば、 Sr Si N: Eu,
2 5 8
Ce等が挙げられる。ここで、 2価の金属元素 M2としては、アルカリ土類金属元素が好 ましい。
[0145] 第 2アスペクトの蛍光体は、また、付活元素 M 2価の金属元素 M2、 3価の金属元 素 M3、及び少なくとも Siを含む 4価の金属元素 M4を含むことができ、下記一般式 [2 ]で表される窒化物又は酸窒化物を母体とすることが好ましい。
M1 M2 M" M4 N O [2]
a b c d e f
(但し、 a、 b、 c、 d、 e、 fはそれぞれ下記の範囲の値である。
0. 00001≤a≤0. 15
a + b = l
0. 5≤c≤l. 5
0. 5≤d≤l. 5
2. 5≤e≤3. 5
0≤f≤0. 5 )
[0146] 付活元素 M1としては、窒化物又は酸窒化物を母体とする蛍光体を構成する結晶 母体に含有可能な各種の発光イオンを使用することができる力 Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybよりなる群から選ばれる 1種以上 の元素を使用すると、発光特性の高い蛍光体を製造することが可能なので好ましい。 また、付活元素 M1としては Mn、 Ce、 Pr及び Euの 1種又は 2種以上を含むことが好 ましぐ特に Ce及び Z又は Euを含むことが高輝度の赤色発光を示す蛍光体を得るこ とができるので更に好ましい。また、輝度を上げることや蓄光性を付与するなど様々 な機能を持たせるために、付活元素 M1としては Ce及び Z又は Eu以外に共付活元 素を 1種又は複数種含有させても良 、。
[0147] 付活元素 M1以外の元素としては、各種の 2価、 3価、 4価の金属元素が使用可能 であるが、 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znよりなる群力 選ばれる 1 種以上の元素、 3価の金属元素 M3が Al、 Ga、 In、及び Scよりなる群力も選ばれる 1 種以上の元素、少なくとも Siを含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、及び Hはりなる群力も選ばれる 1種以上の元素であることが、発光特性の高い蛍光体を得 ることができるので好まし!/、。
[0148] また、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srとなるように組成を 調整すると発光特性の高 、蛍光体が得られるので好まし 、が、 M2の 80モル%以上 を Ca及び/又は Srとするのがより好ましぐ 90モル%以上を Ca及び/又は Srとする のが更に好ましぐ M2の全てを Ca及び Z又は Srとするのが最も好ましい。
[0149] また、 3価の金属元素 M3の 50モル%以上が A1となるように組成を調整すると発光 特性の高 、蛍光体が得られるので好まし 、が、 M3の 80モル%以上を A1とするのが 好ましぐ 90モル%以上を A1とするのがより好ましぐ M3の全てを A1とするのが最も 好ましい。
[0150] また、少なくとも Siを含む 4価の金属元素 M4の 50モル%以上が Siとなるように組成 を調整すると発光特性の高 、蛍光体が得られるので好まし ヽが、 M4の 80モル%以 上を Siとするのが好ましぐ 90モル%以上を Siとするのがより好ましぐ M4の全てを Si とするのが好ましい。
[0151] 特に、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、かつ、 3価の 金属元素 M3の 50モル%以上が A1であり、かつ、少なくとも Siを含む 4価の金属元素 M4の 50モル%以上が Siとなるようにすることにより、発光特性が特に高い蛍光体が 製造できるので好ましい。
[0152] また、前記一般式 [2]における a〜fの数値範囲の好適理由は次の通りである。
[0153] aが 0. 00001より小さいと十分な発光強度が得られない傾向にあり、 aが 0. 15より 大きいと濃度消光が大きくなつて発光強度が低くなる傾向にある。従って、 aは 0. 00 001≤a≤0. 15の範囲となるように原料を混合する。同様の理由で、 0. 0001≤a≤ 0. 1力 S好ましく、 0. 001≤a≤0. 05力 Sより好ましく、 0. 002≤a≤0. 04力 Sさらに好ま しく、 0. 004≤a≤0. 02とするの力最も好まし!/ヽ。
[0154] aと bの合計は、蛍光体の結晶母体中において付活元素 M1が金属元素 M2の原子 位置を置換するので、 1となるように原料混合組成を調整する。
[0155] cが 0. 5より小さい場合も、 cが 1. 5より大きい場合も、製造時に異相が生じ、前記蛍 光体の収率が低くなる傾向にある。従って、 cは 0. 5≤c≤l. 5の範囲となるように原 料を混合する。発光強度の観点からも 0. 5≤c≤l. 5が好ましぐ 0. 6≤c≤l. 4が より好ましぐ 0.8≤c≤l. 2が最も好ましい。
[0156] dが 0. 5より小さい場合も、 dが 1. 5より大きい場合も、製造時に異相が生じ、前記 蛍光体の収率が低くなる傾向にある。従って、 dは 0. 5≤d≤l. 5の範囲となるように 原料を混合する。また、発光強度の観点からも 0. 5≤d≤l. 5が好ましぐ 0.6≤d≤ 1.4力 Sより好ましく、 0.8≤d≤l. 2が最も好ましい。
[0157] eは窒素の含有量を示す係数であり、
e = 2/3 + c+(4/3)d
となる。この式に 0. 5≤c≤l. 5, 0. 5≤d≤l. 5を代人すれば、、 eの範囲は
1.84≤e≤4. 17
となる。しかしながら、前記一般式 [2]で表される蛍光体組成において、窒素の含有 量を示す eが 2. 5未満であると蛍光体の収率が低下する傾向にある。また、 eが 3. 5 を超えても蛍光体の収率が低下する傾向にある。従って、 eは通常 2. 5≤e≤3. 5で ある。
[0158] 前記一般式 [2]で表される蛍光体中の酸素は、原料金属中の不純物として混入す る場合、粉砕工程、窒化工程などの製造プロセス時に導入される場合などが考えら れる。酸素の割合である fは蛍光体の発光特性低下が容認できる範囲で 0≤f≤0. 5 が好ましい。
[0159] 前記一般式 [2]で表される蛍光体の中でも、下記一般式 [3]で表される蛍光体とす ることがでさる。
M1 Sr Ca M2' Al Si N [3]
a, b, c, d, e, f, g,
(但し、 a,、b,、c,、d,、e,、f,、g,はそれぞれ下記の範囲の値である。
0.00001≤a'≤0. 15
0. l≤b'≤0. 99999
0≤c'<l
0≤d'<l
a'+b'+c'+d'=l
0. 5≤e'≤l. 5
0. 5≤f,≤l. 5 0.8X(2/3 + e,+4/3Xf,)≤g,≤l.2X(2/3 + e, +4/3Xf,))
[0160] ここで、 M1'は前記一般式 [2]における M1と同様に、 Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 S m、 Eu、 Tb、 Dy、 Ho、 Er、 Tm及び Ybからなる群から選ばれる付活元素を表す。付 活元素 M1'としては中でも、 Mn、 Ce、 Pr及び Euの 1種又は 2種以上を含むことが好 ましぐ特に Eu及び Z又は Ceを含むことが好ましい。
[0161] M2'は Mg及び Z又は Baを表し、好ましくは Mgである。 Mgを含有させることにより、 蛍光体の発光波長を長波にすることができる。
[0162] a'の範囲は、通常 0.00001≤a'≤0. 15であり、好ましくは 0.001≤a'≤0.05、 より好ましくは 0.002≤a'≤0.01である。
[0163] b'の範囲は、通常 0. l≤b'≤0.99999であり、好ましくは 0.6≤b'≤0.99999
、より好ましくは 0.7≤b'≤0.99999である。
[0164] c'の範囲は、通常 0≤c 'く 1であり、好ましくは 0≤c'≤0.5、より好ましくは 0≤c,
≤0.3である。
[0165] dの範囲は、通常 0≤d' < 1であり、好ましくは 0≤d'≤0.5、より好ましくは 0≤d,
≤0.2である。
[0166] a'、 、 c'、d'相互の関係は通常、
a'+b'+c'+d'=l
を満足する。
[0167] e'の範囲は通常、 0.5≤e'≤l.5であり、好ましくは 0.8≤e'≤l.2、より好ましく は 0.9≤e'≤l. 1である。
[0168] f,の範囲は通常、 0.5≤f'≤l.5であり、好ましくは 0.8≤f'≤l.2、より好ましく は 0.9≤f'≤l.1である。
[0169] g'の範囲は、通常
0.8(2/3 + e' +4/3Xf)≤g'≤1.2X (2Z3 + e, +4Z3Xf,)であり、好まし くは 0.9X (2/3 + e'+4/3Xf')≤g'≤l. IX (2Z3 + e, +4Z3Xf,)、より好 ましくは、 2.5≤g,≤3.5である。
[0170] 以下に、一般式 [3]において b,の値力 0.6≤b,≤0.99999の範囲であり、力つ
、 d' =0である蛍光体、すなわち、 Sr置換量が多い蛍光体を「SCASN蛍光体」と略 記する。
[0171] 本発明の蛍光体に含まれる酸素は、原料金属中の不純物として混入するもの、粉 砕工程、窒化工程などの製造プロセス時に混入するものなどが考えられる。
酸素の含有量は蛍光体の発光特性低下が容認できる範囲で通常 5重量%以下、 好ましくは 2重量%以下、最も好ましくは 1重量%以下である。
尚、蛍光体の組成の具体例としては、 (Sr, Ca, Mg)AlSiN: Eu、 (Sr, Ca, Mg)
3
AlSiN: Ce、 (Sr, Ca) Si N: Eu、 (Sr, Ca) Si N: Ce等が挙げられる。
3 2 5 8 2 5 8
[0172] [蛍光体の製造方法]
本発明の蛍光体を製造するには、例えば下記一般式 [1]の組成となるように、原料 となる金属やその合金を秤量し、これを融解させて合金化して蛍光体原料用合金を 製造し、次いでこの蛍光体原料用合金の粉砕し、その後、窒素含有雰囲気下で加熱 することにより窒化を行う。その際、例えば Siとアルカリ土類金属元素を含む合金を製 造する場合であれば、高融点(高沸点)の Si金属及び Z又は Siを含む合金を融解さ せた後、低融点 (低沸点)のアルカリ土類金属を融解させることが好ましい。また、融 解時に揮発やルツボ材質との反応等により損失する金属元素については、必要に応 じて、予め過剰に秤量し添加してもよい。
M1 M2 M3 M4 [1]
b e
(但し、
Figure imgf000034_0001
M2、 M3、 a、 b、 c、 dはそれぞれ前記一般式 [1]におけると同義であ る。)
[0173] 〈原料金属の純度〉
合金の製造に使用する金属の純度に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援用される。
[0174] 〈原料金属の形状〉
原料金属の形状に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0175] 〈原料金属の融解〉
原料金属の融解に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。 [0176] 〈溶湯の铸造〉
溶湯の铸造に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0177] 〈铸塊の粉砕〉
铸塊の粉砕に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0178] 〈合金粉末の分級〉
粉砕工程で粉砕された合金粉末は、ノイブレーティングスクリーン、シフターなどの 網目を使用した篩い分け装置、エアセパレータ等の慣性分級装置、サイクロン等の 遠心分離機を使用して、前述の所望の重量メジアン径 D 及び粒度分布に調整され
50
る。
[0179] この分級工程にっ 、ても、不活性ガス雰囲気下で行うことが好ましぐ不活性ガス雰 囲気中の酸素濃度は 10%以下、特に 5%以下が好ましい。不活性ガスの種類に特 に制限はないが、通常、窒素、アルゴン、ヘリウムなどの 1種又は 2種以上が用いられ 、特に経済性の観点力 窒素が好ましい。
加熱処理前の合金粉末の重量メジアン径 D は、合金粉末を構成する金属元素の
50
活性度により粒径を調整する必要があり、通常の場合、 100 /z m以下、好ましくは 80 μ m以下、特に好ましく ίま 60 μ m以下、また、 0. 1 m以上、好ましく ίま 0. 5 m以 上、特に好ましくは 1 μ m以上である。また、 Srを含有する場合は、雰囲気ガスとの反 応性が高いため、合金粉末の重量メジアン径 D は、通常 5 μ m以上、好ましくは 8 μ
50
m以上、より好ましくは 10 μ m以上、特に好ましくは 13 μ m以上とすることが望ましい 。前述の重量メジアン径 D の範囲よりも小さいと、窒化等の反応時の発熱速度が大
50
きくなり、反応の制御が困難となるおそれがある。一方で前述の重量メジアン径 D の
50 範囲よりも大きいと、合金粒子内部での窒化等の反応が不十分となるおそれがある。
[0180] 〈蛍光体の製造〉
前述の合金を用いて蛍光体を製造する方法には特に制限はなぐ酸化物、窒化物 、酸窒化物、硫化物、酸硫化物、炭化物など蛍光体の種類に応じて反応条件が設定 される力 以下に窒化反応を例に説明する。 《合金の窒化》
蛍光体原料用合金の窒化処理に関する説明は第 1アスペクトと同一であり、第 1ァ スぺタトの説明が援用される。
[0181] このように合金を窒化処理することにより、窒化物又は酸窒化物を母体とする蛍光 体を得ることができるが、得られた窒化物又は酸窒化物を母体とする蛍光体は必要 に応じて、高い発光を得ることが可能となるので、再度、加熱処理することにより粒子 成長させても良い。
[0182] 窒化処理によって得られる窒化物又は酸窒化物を母体とする蛍光体を再加熱処理 する場合の加熱条件としては、好ましくは 1200°C以上 2200°C以下とする。この温度 が 1200°C未満では再加熱しても粒子成長させる効果が少ない。一方、 2200°Cを超 える温度で加熱すると、無駄な加熱エネルギーを消費してしまうだけでなぐ蛍光体 の分解が起こり、雰囲気ガスの一部となる窒素の圧力を非常に高くしないと目的の蛍 光体を製造できない。同様の理由で、加熱処理温度は 1300°C以上が好ましぐ 140 0°C以上が更に好ましぐ 1500°C以上が最も好ましい。また、 2100°C以下が好ましく 、 2000°C以下が更に好ましぐ 1900°C以下が最も好ましい。
[0183] 窒化物又は酸窒化物を母体とする蛍光体を再加熱処理する際の雰囲気は、基本 的には窒素含有ガス等の不活性雰囲気又は還元性雰囲気とする。雰囲気中の酸素 濃度は、通常 lOOOppm以下、好ましくは lOOppm以下、より好ましくは lOppm以下 とする。酸素濃度が lOOOppmを越えるような酸素含有ガス中や大気中など酸ィ匕雰囲 気下で再加熱処理すると、蛍光体が酸化されてしまい、目的の蛍光体を得ることがで きない。ただし、 0. lppm〜: LOppmの微量酸素を含有する雰囲気とすることで比較 的低温での蛍光体の合成が可能となるので好ましい。
[0184] 再加熱処理時の圧力は、大気中の酸素の混入を防ぐためには大気圧以上の圧力 とするのが好ましい。大気圧未満の圧力とすると、窒化処理時の加熱工程と同様に 加熱炉の密閉性が悪 、場合には多量の酸素が混入して特性の高 、蛍光体を得るこ とができないおそれがある。
[0185] 再加熱処理時の加熱時間(最高温度での保持時間)は、通常 1分間以上 100時間 以下とする。保持時間が短すぎると粒子成長が十分に進まず、また、保持時間が長 すぎる場合には、無駄な加熱エネルギーが消費されるだけではなぐ蛍光体の表面 力 窒素が脱離して発光特性が低下する傾向がある。同様の理由により、保持時間 は 10分間以上とするのが好ましぐ 30分間以上とするのがより好ましぐ 24時間以下 とするのが好ましぐ 12時間以下とするのがより好ましい。
[0186] [蛍光体の特性]
このアスペクトの製造方法により得られる蛍光体は、以下のような特性を有する。
[0187] 発光スペクトル
このアスペクトの製造方法により得られる Eu付活 SCASN蛍光体は、橙色な 、し赤 色蛍光体としての用途に鑑みて、波長 465nmの光で励起した場合における発光ス ベクトルを測定した場合に、以下の特徴を有することが好ま 、。
[0188] まず、このアスペクトの方法により製造された蛍光体 (以下「本発明の蛍光体」と称 す。)は、上述の発光スペクトルにおけるピーク波長 p (nm)が、通常 590nmより大 きぐ中でも 600nm以上、また、通常 650nm以下、中でも 640nm以下の範囲である ことが好ましい。この発光ピーク波長 λ ρが短過ぎると黄味を帯びる傾向がある一方 で、長過ぎると暗赤味を帯びる傾向があり、何れも橙色ないし赤色光としての特性が 低下するおそれがあるので好ましくな 、。
[0189] また、このアスペクトの蛍光体は、上述の発光スペクトルにおける発光ピークの半値 幅(foil width at half maximum。以下適宜「FWHM」と略称する。 )が、通常 50nmより 大きぐ中でも 70nm以上、更には 75nm以上、また、通常 120nm未満、中でも 100 nm以下、更には 90nm以下の範囲であることが好ましい。この半値幅 FWHMが狭 過ぎると発光強度が低下するおそれがあり、広過ぎると色純度が低下するおそれが あるので、何れも好ましくない。
[0190] なお、このアスペクトの蛍光体を波長 465nmの光で励起するには、例えば、 GaN 系発光ダイオードを用いることができる。また、本発明の蛍光体の発光スペクトルの測 定、並びにその発光ピーク波長、ピーク相対強度及びピーク半値幅の算出は、例え ば、 日本分光社製蛍光測定装置等の装置を用いて行なうことができる。
[0191] 重量メジアン径 D
50
このアスペクトの蛍光体は、その重量メジアン径 D 力 通常 3 μ m以上、中でも 5 μ m以上、また、通常 30 μ m以下、中でも 20 μ m以下の範囲であることが好ましい。重 量メジアン径 D が小さすぎると、輝度が低下し、蛍光体粒子が凝集してしまう傾向が
50
あり好ましくない。一方、重量メジアン径 D が大きすぎると、塗布ムラゃデイスペンサ
50
一等の閉塞が生じる傾向があり好ましくない。
なお、このアスペクトにおける蛍光体の重量メジアン径 D は、例えばレーザー回折
50
Z散乱式粒度分布測定装置等の装置を用いて測定することができる。
[0192] その他の特性
このアスペクトの蛍光体は、その内部量子効率が高いほど好ましい。その値は、通 常 0. 5以上、好ましくは 0. 6以上、更に好ましくは 0. 7以上である。内部量子効率が 低いと発光効率が低下する傾向にあり、好ましくない。
[0193] このアスペクトの蛍光体は、その吸収効率も高いほど好ましい。その値は通常 0. 5 以上、好ましくは 0. 6以上、更に好ましくは 0. 7以上である。吸収効率が低いと発光 効率が低下する傾向にあり、好ましくない。
[0194] [蛍光体の用途]
このアスペクトの蛍光体は、高輝度であり、演色性が高いという特性を生かして、各 種の発光装置に好適に用いることができる。例えば、本発明の蛍光体が、橙色ないし 赤色蛍光体である場合、緑色蛍光体、青色蛍光体等を組み合わせれば、高演色性 の白色発光装置を実現することができる。こうして得られた発光装置を、画像表示装 置の発光部 (特に液晶用バックライトなど)や照明装置として使用することができる。
[0195] [蛍光体含有組成物]
このアスペクトの蛍光体を発光装置等の用途に使用する場合には、これを液状媒 体中に分散させた形態で用いることが好まし 、。このアスペクトの蛍光体を液状媒体 中に分散させたものを、適宜「このアスペクトの蛍光体含有組成物」と呼ぶものとする
[0196] このアスペクトの蛍光体含有組成物に使用可能な液状媒体としては、所望の使用 条件下において液状の性質を示し、このアスペクトの蛍光体を好適に分散させると共 に、好ましくない反応等を生じないものであれば、任意のものを目的等に応じて選択 することが可能である。液状媒体の例としては、硬化前の熱硬化性榭脂、光硬化性 榭脂が挙げられ、例えば、付加反応型シリコーン榭脂、縮合反応型シリコーン榭脂、 変性シリコーン榭脂、エポキシ榭脂等が挙げられる。また、無機系材料、例えば、セラ ミック前駆体ポリマー若しくは金属アルコキシドを含有する溶液をゾル ゲル法により 加水分解重合して成る溶液を用いることができる。これらの液状媒体は一種を単独で 使用してもよぐ二種以上を任意の組み合わせ及び比率で併用してもよ 、。
[0197] 液状媒体の使用量は、用途等に応じて適宜調整すればよいが、一般的には、本発 明の蛍光体に対する液状媒体の重量比で、通常 3重量%以上、好ましくは 5重量% 以上、また、通常 30重量%以下、好ましくは 15重量%以下の範囲である。
[0198] また、このアスペクトの蛍光体含有組成物は、本発明の蛍光体及び液状媒体に加 え、その用途等に応じて、その他の任意の成分を含有していてもよい。その他の成分 としては、拡散剤、増粘剤、増量剤、干渉剤等が挙げられる。具体的には、ァエロジ ル等のシリカ系微粉、アルミナ等が挙げられる。
[発光装置]
次に、このアスペクトの発光装置について説明する。本アスペクトの発光装置は、励 起光源としての第 1の発光体と、第 1の発光体からの光の照射によって可視光を発す る第 2の発光体とを、少なくとも備えて構成される。
[0199] 第 1の発光体
このアスペクトの発光装置における第 1の発光体は、後述する第 2の発光体を励起 する光を発光するものである。第 1の発光体の発光波長は、後述する第 2の発光体の 吸収波長と重複するものであれば、特に制限されず、幅広い発光波長領域の発光体 を使用することができる。通常は、近紫外領域から青色領域までの発光波長を有する 発光体が使用され、具体的数値としては、通常 300nm以上、好ましくは 330nm以上 、また、通常 500nm以下、好ましくは 480nm以下のピーク発光波長を有する発光体 が使用される。この第 1の発光体としては、一般的には半導体発光素子が用いられ、 具体的には発光ダイオード (light emitting diode。以下、適宜「LED」と略称する。) や半導体レーザーダイオード(semiconductor laser diode。以下、適宜「: LD」と略称 する。)等が使用できる。
[0200] 中でも、第 1の発光体としては、 GaN系化合物半導体を使用した GaN系 LEDや L Dが好ましい。なぜなら、 GaN系 LEDや LDは、この領域の光を発する SiC系 LED等 に比し、発光出力や外部量子効率が格段に大きぐ前記蛍光体と組み合わせること によって、非常に低電力で非常に明るい発光が得られる力もである。例えば、 20mA の電流負荷に対し、通常 GaN系 LEDや LDは SiC系の 100倍以上の発光強度を有 する。 GaN系 LEDや LDにおいては、 Al Ga N発光層、 GaN発光層、又は In Ga
X Y X Υ
Ν発光層を有しているものが好ましい。 GaN系 LEDにおいては、それらの中で In G
X
a N発光層を有するものが発光強度が非常に強いので、特に好ましぐ GaN系 LD
Y
においては、 In Ga N層と GaN層の多重量子井戸構造のものが発光強度が非常に
X Y
強いので、特に好ましい。
[0201] なお、上記において X+Yの値は通常 0. 8〜1. 2の範囲の値である。 GaN系 LED にお!/、て、これら発光層に Znや Siをドープしたものやドーパント無しのものが発光特 性を調節する上で好まし 、ものである。
[0202] GaN系 LEDはこれら発光層、 p層、 n層、電極、及び基板を基本構成要素としたも のであり、発光層を n型と p型の Al Ga N層、 GaN層、又は In Ga N層などでサンド
X Y X Y
イッチにしたへテロ構造を有しているもの力 発光効率が高ぐ好ましぐさらにへテロ 構造を量子井戸構造にしたものが、発光効率がさらに高ぐより好ましい。
[0203] 第 2の発光体
このアスペクトの発光装置における第 2の発光体は、上述した第 1の発光体からの 光の照射によって可視光を発する発光体であり、後述する第 1の蛍光体 (橙色ないし 赤色蛍光体)を含有するとともに、その用途等に応じて適宜、後述する第 2の蛍光体 ( 緑色蛍光体、青色蛍光体等)を含有する。
[0204] 蛍光体の組成には特に制限はないが、結晶母体である Y O、 Zn SiO等に代表
2 3 2 4 される金属酸化物、 Sr Si N等に代表される金属窒化物、 Ca (PO ) C1等に代表さ
2 5 8 5 4 3
れるリン酸塩及び ZnS、 SrS、 CaS等に代表される硫化物に、 Ce、 Pr、 Nd、 Pm、 S m、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、 Yb等の希土類金属のイオンや Ag、 Cu、 Au、 Al、 Mn、 Sb等の金属のイオンを付活元素又は共付活元素として組み合わせたものが好 ましい。
[0205] 結晶母体の好ましい例としては、例えば、 (Zn, Cd)S、 SrGa S、 SrS、 ZnS等の硫 化物、 Y Ο S等の酸硫化物、 (Y, Gd) Al O 、 YAIO、 BaMgAl O 、 (Ba, Sr)(
2 2 3 5 12 3 10 17
Mg, Mn)Al O 、 (Ba, Sr, Ca)(Mg, Zn, Mn)Al O 、 BaAl O 、 CeMgAl
10 17 10 17 12 19 11
O 、 (Ba, Sr, Mg)0-Al O、 BaAl Si O、 SrAl O、 Sr Al O 、 Y Al O 等の
19 2 3 2 2 8 2 4 4 14 25 3 5 12 アルミン酸塩、 Y SiO、 Zn SiO等の珪酸塩、 SnO、 Y Ο等の酸化物、 GdMgB
2 5 2 4 2 2 3 5
O 、 (Y, Gd)BO等の硼酸塩、 Ca (PO ) (F, CI)、 (Sr, Ca, Ba, Mg) (PO ) CI
10 3 10 4 6 2 10 4 6 2 等のハロリン酸塩、 Sr P O、 (La, Ce)PO等のリン酸塩等を挙げることができる。
2 2 7 4
[0206] ただし、上記の結晶母体及び付活元素又は共付活元素は、元素組成には特に制 限はなぐ同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可 視領域の光を吸収して可視光を発するものであれば用いることが可能である。
[0207] 具体的には、蛍光体として以下に挙げるものを用いることが可能である力 これらは あくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。 なお、以下の例示では、構造の一部のみが異なる蛍光体を、適宜省略して示してい る。例えば、 Γγ SiO: Ce3+」、 Γγ SiO: Tb3+」及び「Y SiO: Ce3+, Tb3+」を「Y S
2 5 2 5 2 5 2 ίθ: Ce3+, Tb3+」と、「La O S :Eu」、「Y O 3 ^11」及び「(1^, Y) O 3 ^11」を「(し
5 2 2 2 2 2 2
a, Y) O S :Eu」とまとめて示している。省略箇所はカンマ (,)で区切って示す。
2 2
[0208] <第 1の蛍光体 (橙色ないし赤色蛍光体) >
このアスペクトの発光装置における第 2の発光体は、橙色ないし赤色蛍光体 (これを 以下適宜「第 1の蛍光体」と呼ぶ。)として、少なくとも上述の本発明の蛍光体を含有 する。本発明の蛍光体は、何れか一種を単独で使用してもよぐ二種以上を任意の 組み合わせ及び比率で併用してもよい。また、本発明の蛍光体以外に、その他の一 種又は二種以上の橙色ないし赤色蛍光体を、第 1の蛍光体として併用してもよい。
[0209] 赤色の蛍光を発する蛍光体 (以下適宜、「赤色蛍光体」 、う)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 570nm以上、好ましくは 580nm 以上、また、通常 700nm以下、好ましくは 680nm以下が望ましい。
[0210] このアスペクトの蛍光体以外の橙色ないし赤色蛍光体としては、例えば、赤色破断 面を有する破断粒子から構成され、赤色領域の発光を行なう (Mg, Ca, Sr, Ba) Si
2 5
N: Euで表わされるユウ口ピウム付活アルカリ土類シリコンナイトライド系蛍光体、規
8
則的な結晶成長形状としてほぼ球形状を有する成長粒子力 構成され、赤色領域の 発光を行なう (Y, La, Gd, Lu) O S : Euで表わされるユウ口ピウム付活希土類ォキシ
2 2
カルコゲナイド系蛍光体等が挙げられる。
[0211] さら【こ、特開 2004— 300247号公報【こ記載された、 Ti、 Zr、 Hf、 Nb、 Ta、 W、及 び Moよりなる群力 選ばれる少なくも 1種の元素を含有する酸窒化物及び Z又は酸 硫ィ匕物を含有する蛍光体であって、 A1元素の一部又は全てが Ga元素で置換された アルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本実施形態において 用いることができる。なお、これらは酸窒化物及び Z又は酸硫化物を含有する蛍光 体である。
[0212] また、そのほか、赤色蛍光体としては、 (La, Y) O S: Eu等の Eu付活酸硫化物蛍
2 2
光体、 Y(V, P)0 : Eu、 Y O : Eu等の Eu付活酸化物蛍光体、 (Ba, Sr, Ca, Mg) S
4 2 3 2 iO : Eu, Mn、 (Ba, Mg) SiO : Eu, Mn等の Eu, Mn付活珪酸塩蛍光体、(Ca, Sr)
4 2 4
S : Eu等の Eu付活硫ィ匕物蛍光体、 YAIO : Eu等の Eu付活アルミン酸塩蛍光体、 Li
3
Y (SiO ) O : Eu, Ca Y (SiO ) O : Euゝ (Sr, Ba, Ca) SiO : Euゝ Sr BaSiO : Eu
9 4 6 2 2 8 4 6 2 3 5 2 5 等の Eu付活珪酸塩蛍光体、(Y, Gd) Al O : Ce、(Tb, Gd) Al O : Ce等の Ce付
3 5 12 3 5 12
活アルミン酸塩蛍光体、(Ca, Sr, Ba) Si N : Eu、 (Mg, Ca, Sr, Ba)SiN : Eu、 (M
2 5 8 2 g, Ca, Sr, Ba)AlSiN : Eu等の Eu付活窒化物蛍光体、(Mg, Ca, Sr, Ba)AlSiN
3 3
: Ce等の Ce付活窒化物蛍光体、(Sr, Ca, Ba, Mg) (PO ) CI : Eu, Mn等の Eu,
10 4 6 2
Mn付活ハロリン酸塩蛍光体、(Ba Mg)Si O : Eu, Mn、 (Ba, Sr, Ca, Mg) (Zn,
3 2 8 3
Mg)Si O : Eu, Mn等の Eu, Mn付活珪酸塩蛍光体、 3. 5MgO - 0. 5MgF - GeO
2 8 2
: Mn等の Mn付活ゲルマン酸塩蛍光体、 Eu付活 aサイアロン等の Eu付活酸窒化
2
物蛍光体、 (Gd, Y, Lu, La) O : Eu, Bi等の Eu, Bi付活酸化物蛍光体、 (Gd, Y,
2 3
Lu, La) O S : Eu, Bi等の Eu, Bi付活酸硫化物蛍光体、 (Gd, Y, Lu, La)VO : Eu
2 2 4
, Bi等の Eu, Bi付活バナジン酸塩蛍光体、 SrY S : Eu, Ce等の Eu, Ce付活硫ィ匕
2 4
物蛍光体、 CaLa S : Ce等の Ce付活硫化物蛍光体、(Ba, Sr, Ca)MgP O : Eu,
2 4 2 7
Mn、 (Sr, Ca, Ba, Mg, Zn) P O : Eu, Mn等の Eu, Mn付活リン酸塩蛍光体、(Y
2 2 7
, Lu) WO : Eu, Mo等の Eu, Mo付活タングステン酸塩蛍光体、(Ba, Sr, Ca) Si
2 6 x y
N : Eu, Ce (但し、 x、 y、 zは、 1以上の整数)等の Eu, Ce付活窒化物蛍光体、(Ca, z
Sr, Ba, Mg) (PO ) (F, CI, Br, OH) : Eu, Mn等の Eu, Mn付活ハロリン酸塩蛍 光体、((Y, Lu, Gd, Tb) Sc Ce ) (Ca, Mg) (Mg, Zn) Si GeqO 等の l -x x y 2 1 -r 2 + r z-q 12+ δ
Ce付活珪酸塩蛍光体等を用いることも可能である。
[0213] 赤色蛍光体としては、 β ジケトネート、 βージケトン、芳香族カルボン酸、又は、 ブレンステッド酸等のァ-オンを配位子とする希土類元素イオン錯体力 なる赤色有 機蛍光体、ペリレン系顔料 (例えば、ジベンゾ { [f, f' ] -4, 4' , 7, 7'—テトラフエ- ル}ジインデノ [1, 2, 3— cd: l,, 2' , 3,一 lm]ペリレン)、アントラキノン系顔料、レー キ系顔料、ァゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔 料、イソインドリノン系顔料、フタロシアニン系顔料、トリフエ-ルメタン系塩基性染料、 インダンスロン系顔料、インドフエノール系顔料、シァニン系顔料、ジォキサジン系顔 料を用いることも可能である。
[0214] また、赤色蛍光体のうち、ピーク波長が 580nm以上、好ましくは 590nm以上、また 、 620nm以下、好ましくは 610nm以下の範囲内にあるものは、橙色蛍光体として好 適に用いることができる。このような橙色蛍光体の例としては、(Sr, Ba) SiO
3 5: Eu、 (
Sr, Mg) (PO ) : Sn2+等が挙げられる。
3 4 2
[0215] <第 2の蛍光体 >
更に、このアスペクトの発光装置における第 2の発光体は、その用途に応じて、上 述の第 1の蛍光体 (本発明の蛍光体)とは発光波長の異なる蛍光体を含有していても よい (これを以下適宜「第 2の蛍光体」と呼ぶ。 )0第 2の蛍光体としては、一種類の蛍 光体を単独で使用してもよく、二種以上の蛍光体を任意の組み合わせ及び比率で 併用してちょい。
[0216] 第 1の蛍光体 (橙色ないし赤色蛍光体)と併用する第 2の蛍光体の例としては、緑色 の発光を発する蛍光体 (以下適宜「緑色蛍光体」という。)、及び、青色の発光を発す る蛍光体 (以下適宜「青色蛍光体」 、う。 )が挙げられる。
[0217] {緑色蛍光体 }
緑色の蛍光を発する蛍光体 (以下適宜、「緑色蛍光体」 ヽぅ)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 490nm以上、好ましくは 500nm 以上、また、通常 570nm以下、好ましくは 550nm以下が望ましい。
[0218] このような緑色蛍光体として、例えば、破断面を有する破断粒子から構成され、緑 色領域の発光を行なう (Mg, Ca, Sr, Ba)Si O N : Euで表わされるユウ口ピウム付
2 2 2
活アルカリ土類シリコンォキシナイトライド系蛍光体、破断面を有する破断粒子から構 成され、緑色領域の発光を行なう (Ba, Ca, Sr, Mg) SiO : Euで表わされるユウロピ
2 4
ゥム付活アルカリ土類シリケート系蛍光体等が挙げられる。
[0219] また、そのほか、緑色蛍光体としては、 Sr Al O : Eu、 (Ba, Sr, Ca)Al O : Eu等
4 14 25 2 4 の Eu付活アルミン酸塩蛍光体、(Sr, Ba)Al Si O : Eu、 (Ba, Mg) SiO : Eu、 (Ba,
2 2 8 2 4
Sr, Ca, Mg) SiO : Euゝ (Ba, Sr, Ca) (Mg, Zn)Si O : Euゝ (Ba, Ca, Sr, Mg) (S
2 4 2 2 7 9 c, Y, Lu, Gd) (Si, Ge) O : Eu等の Eu付活珪酸塩蛍光体、 Y SiO : Ce, Tb等
2 6 24 2 5
の Ce, Tb付活珪酸塩蛍光体、 Sr P O—Sr B O : Eu等の Eu付活硼酸リン酸塩蛍
2 2 7 2 2 5
光体、 Sr Si O - 2SrCl: Eu等の Eu付活ハロ珪酸塩蛍光体、 Zn SiO : Mn等の
2 3 8 2 2 4
Mn付活珪酸塩蛍光体、 CeMgAl O : Tb、Y A1 0 : Tb等の Tb付活アルミン酸
11 19 3 5 12
塩蛍光体、 Ca Y (SiO ) O : Tb, La Ga SiO : Tb等の Tb付活珪酸塩蛍光体、(S
2 8 4 6 2 3 5 14
r, Ba, Ca)Ga S : Eu, Tb, Sm等の Eu, Tb, Sm付活チォガレート蛍光体、 Y (Al,
2 4 3
Ga) O : Ceゝ (Y, Ga, Tb, La, Sm, Pr, Lu) (Al, Ga) O : Ce等の Ce付活アルミ
5 12 3 5 12
ン酸塩蛍光体、 Ca Sc Si O : Ce、 Ca (Sc, Mg, Na, Li) Si O : Ce等の Ce付活
3 2 3 12 3 2 3 12
珪酸塩蛍光体、 CaSc O : Ce等の Ce付活酸化物蛍光体、 SrSi O N : Eu、 (Sr, B
2 4 2 2 2
a, Ca)Si O N : Eu、 Eu付活 j8サイアロン、 Eu付活 αサイアロン等の Eu付活酸窒
2 2 2
ィ匕物蛍光体、 BaMgAl O : Eu, Mn等の Eu, Mn付活アルミン酸塩蛍光体、 SrAl
10 17
O : Eu等の Eu付活アルミン酸塩蛍光体、(La, Gd, Y) O S :Tb等の Tb付活酸硫
2 4 2 2
化物蛍光体、 LaPO : Ce, Tb等の Ce, Tb付活リン酸塩蛍光体、 ZnS : Cu, Al、 Zn
4
S : Cu, Au, Al等の硫化物蛍光体、(Y, Ga, Lu, Sc, La)BO : Ce, Tb、 Na Gd B
3 2 2
O : Ce, Tb、 (Ba, Sr) (Ca, Mg, Zn)B O : K, Ce, Tb等の Ce, Tb付活硼酸塩蛍
2 7 2 2 6
光体、 Ca Mg(SiO ) CI : Eu, Mn等の Eu, Mn付活ハロ珪酸塩蛍光体、 (Sr, Ca,
8 4 4 2
Ba)(Al, Ga, In) S : Eu等の Eu付活チオアルミネート蛍光体やチォガレート蛍光体
2 4
、 (Ca, Sr) (Mg, Zn)(SiO ) CI : Eu, Mn等の Eu, Mn付活ハロ珪酸塩蛍光体等を
8 4 4 2
用いることも可能である。
[0220] また、緑色蛍光体としては、ピリジン フタルイミド縮合誘導体、ベンゾォキサジノン 系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テ ルビゥム錯体等の有機蛍光体を用いることも可能である。
[0221] {青色蛍光体)
青色の蛍光を発する蛍光体 (以下適宜、「青色蛍光体」 t 、う)が発する蛍光の具体 的な波長の範囲を例示すると、ピーク波長が、通常 420nm以上、好ましくは 440nm 以上、また、通常 480nm以下、好ましくは 470nm以下が望ましい。
[0222] このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有す る成長粒子から構成され、青色領域の発光を行なう BaMgAl O : Euで表わされる
10 17
ユウ口ピウム付活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶成長形 状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行なう (Ca, Sr, Ba) (PO ) CI :Euで表わされるユウ口ピウム付活ハロリン酸カルシウム系蛍光体
5 4 3
、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒子力 構成され、青 色領域の発光を行なう (Ca, Sr, Ba) B O CI :Euで表わされるユウ口ピウム付活アル
2 5 9
カリ土類クロロボレート系蛍光体、破断面を有する破断粒子から構成され、青緑色領 域の発光を行なう (Sr, Ca, Ba)Al O : Eu又は (Sr, Ca, Ba) Al O : Euで表わさ
2 4 4 14 25
れるユウ口ピウム付活アルカリ土類アルミネート系蛍光体等が挙げられる。
[0223] また、そのほか、青色蛍光体としては、 Sr P O : Sn等の Sn付活リン酸塩蛍光体、
2 2 7
Sr Al O : Eu, BaMgAl O : Eu、 BaAl O : Eu等の Eu付活アルミン酸塩蛍光
4 14 25 10 17 8 13
体、 SrGa S : Ce、 CaGa S : Ce等の Ce付活チォガレート蛍光体、(Ba, Sr, Ca)M
2 4 2 4
gAl O : Eu, BaMgAl O : Eu, Tb, Sm等の Eu付活アルミン酸塩蛍光体、(Ba
10 17 10 17
, Sr, Ca)MgAl O : Eu, Mn等の Eu, Mn付活アルミン酸塩蛍光体、(Sr, Ca, Ba
10 17
, Mg) (PO ) CI: Euゝ (Ba, Sr, Ca) (PO ) (CI, F, Br, OH) :Eu, Mn, Sb等の E
10 4 6 2 5 4 3
u付活ハロリン酸塩蛍光体、 BaAl Si O : Eu、 (Sr, Ba) MgSi O : Eu等の Eu付活
2 2 8 3 2 8
珪酸塩蛍光体、 Sr P O : Eu等の Eu付活リン酸塩蛍光体、 ZnS :Ag、 ZnS :Ag, Al
2 2 7
等の硫化物蛍光体、 Y SiO : Ce等の Ce付活珪酸塩蛍光体、 CaWO等のタンダス
2 5 4
テン酸塩蛍光体、 (Ba, Sr, Ca)BPO : Eu, Mn、 (Sr, Ca) (PO ) ·ηΒ O :Euゝ 2S
5 10 4 6 2 3 rO -0. 84P O ·0. 16B O : Eu等の Eu, Mn付活硼酸リン酸塩蛍光体、 Sr Si O ·
2 5 2 3 2 3 8
2SrCl: Eu等の Eu付活ハロ珪酸塩蛍光体等を用いることも可能である。
2
[0224] また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾォキサゾール系、ス チリル系、クマリン系、ビラリゾン系、トリァゾール系化合物の蛍光色素、ツリウム錯体 等の有機蛍光体等を用いることも可能である。
[0225] なお、上述のような蛍光体は 1種類を単独で用いてもよぐ 2種類以上を任意の組 み合わせ及び比率で併用しても良 、。
[0226] 第 2の蛍光体の選択
このアスペクトの発光装置において、以上説明した第 2の蛍光体 (赤色蛍光体、青 色蛍光体、緑色蛍光体等)の使用の有無及びその種類は、発光装置の用途に応じ て適宜選択すればよい。例えば、本発明の発光装置を橙色ないし赤色発光の発光 装置として構成する場合には、第 1の蛍光体 (橙色ないし赤色蛍光体)のみを使用す ればよぐ第 2の蛍光体の使用は通常は不要である。
[0227] 一方、このアスペクトの発光装置を白色発光の発光装置として構成する場合には、 所望の白色光が得られるように、第 1の発光体と、第 1の蛍光体 (橙色ないし赤色蛍 光体)と、第 2の蛍光体を適切に組み合わせればよい。具体的に、本発明の発光装 置を白色発光の発光装置として構成する場合における、第 1の発光体と、第 1の蛍光 体と、第 2の蛍光体との好ましい組み合わせの例としては、以下の i)〜iii)の組み合わ せが挙げられる。
[0228] i)第 1の発光体として青色発光体 (青色 LED等)を使用し、第 1の蛍光体として赤色 蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として緑色蛍光体を使用する。
[0229] ii)第 1の発光体として近紫外発光体 (近紫外 LED等)を使用し、第 1の蛍光体とし て赤色蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として青色蛍光体及び 緑色蛍光体を併用する。
[0230] iii)第 1の発光体として青色発光体 (青色 LED等)を使用し、第 1の蛍光体として 橙色蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として緑色蛍光体を使用 する。
[0231] 第 2の蛍光体の物性
本発明の発光装置に使用される第 2の蛍光体の重量メジアン径は、通常 10 m以 上、中でも 15 μ m以上、また、通常 30 μ m以下、中でも 20 μ m以下の範囲であるこ とが好ましい。重量メジアン径が小さすぎると、輝度が低下し、蛍光体粒子が凝集し てしまう傾向があり好ましくない。一方、重量メジアン径が大きすぎると、塗布ムラゃデ イスペンサ一等の閉塞が生じる傾向があり好ましくない。
[0232] 発光装置の構成
このアスペクトの発光装置は、上述の第 1の発光体及び第 2の発光体を備えて ヽれ ばよぐそのほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の 第 1の発光体及び第 2の発光体を配置してなる。この際、第 1の発光体の発光によつ て第 2の発光体が励起されて発光を生じ、且つ、この第 1の発光体の発光及び Z又 は第 2の発光体の発光力 外部に取り出されるように配置されることになる。この場合 、赤色蛍光体は、青色蛍光体、緑色蛍光体とは必ずしも同一の層中に混合されなく てもよぐ例えば、青色蛍光体と緑色蛍光体を含有する層の上に赤色蛍光体を含有 する層が積層されて 、てもよ 、。
[0233] 上述の第 1の発光体、第 2の発光体及びフレームに加えて、通常は封止材料が用 いられる。具体的に、この封止材料は、上述の第 1の蛍光体及び Z又は第 2の蛍光 体を分散させて第 2の発光体を構成したり、第 1の発光体、第 2の発光体及びフレー ム間を接着したりする目的で採用される。
[0234] 使用される封止材料としては、通常、熱可塑性榭脂、熱硬化性榭脂、光硬化性榭 脂等が挙げられる。具体的には、ポリメタアクリル酸メチル等のメタアクリル榭脂;ポリ スチレン、スチレン—アクリロニトリル共重合体等のスチレン榭脂;ポリカーボネート榭 脂;ポリエステル榭脂;フエノキシ榭脂;プチラール榭脂;ポリビュルアルコール;ェチ ノレセノレロース、セノレロースアセテート、セノレロースアセテートブチレート等のセノレロー ス系榭脂;エポキシ榭脂;フエノール榭脂;シリコーン榭脂等が挙げられる。また、無 機系材料、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは金属アルコ キシドを含有する溶液をゾルーゲル法により加水分解重合して成る溶液又はこれら の組み合わせを固化した無機系材料、例えばシロキサン結合を有する無機系材料を 用!/、ることができる。
[0235] 発光装置の実施形態
以下、このアスペクトの発光装置について、具体的な実施の形態を挙げて、より詳 細に説明するが、本発明は以下の実施形態に限定されるものではなぐ本発明の要 旨を逸脱しない範囲において任意に変形して実施することができる。
[0236] 図 1は、このアスペクトの一実施形態に係る発光装置の構成を模式的に示す図であ る。本実施形態の発光装置 1は、フレーム 2と、光源である青色 LED (第 1の発光体) 3と、青色 LED3から発せられる光の一部を吸収し、それとは異なる波長を有する光 を発する蛍光体含有部 (第 2の発光体) 4からなる。
[0237] フレーム 2は、青色 LED3、蛍光体含有部 4を保持するための榭脂製の基部である 。フレーム 2の上面には、図 1中上側に開口した断面台形状の凹部(窪み) 2Aが形成 されている。これにより、フレーム 2はカップ形状となっているため、発光装置 1から放 出される光に指向性をもたせることができ、放出する光を有効に利用できるようになつ ている。更に、フレーム 2の凹部 2A内面は、銀などの金属メツキにより、可視光域全 般の光の反射率を高められており、これにより、フレーム 2の凹部 2A内面に当たった 光も、発光装置 1から所定方向に向けて放出できるようになって!/、る。
[0238] フレーム 2の凹部 2Aの底部には、光源として青色 LED3が設置されている。青色 L ED3は、電力を供給されることにより青色の光を発する LEDである。この青色 LED3 から発せられた青色光の一部は、蛍光体含有部 4内の発光物質 (第 1の蛍光体及び 第 2の蛍光体)に励起光として吸収され、また別の一部は、発光装置 1から所定方向 に向けて放出されるようになっている。
[0239] また、青色 LED3は前記のようにフレーム 2の凹部 2Aの底部に設置されているが、 ここではフレーム 2と青色 LED3との間は銀ペースト (接着剤に銀粒子を混合したもの ) 5によって接着され、これにより、青色 LED3はフレーム 2に設置されている。更に、 この銀ペースト 5は、青色 LED3で発生した熱をフレーム 2に効率よく放熱する役割も 果たしている。
[0240] 更に、フレーム 2には、青色 LED3に電力を供給するための金製のワイヤ 6が取り付 けられている。つまり、青色 LED3の上面に設けられた電極(図示省略)とは、ワイヤ 6 を用いてワイヤボンディングによって結線されて 、て、このワイヤ 6を通電することによ つて青色 LED3に電力が供給され、青色 LED3が青色光を発するようになつている。 なお、ワイヤ 6は青色 LED3の構造にあわせて 1本又は複数本が取り付けられる。
[0241] 更に、フレーム 2の凹部 2Aには、青色 LED3から発せられる光の一部を吸収し異な る波長を有する光を発する蛍光体含有部 4が設けられている。蛍光体含有部 4は、蛍 光体と透明榭脂とで形成されている。蛍光体は、青色 LED3が発する青色光により 励起されて、青色光よりも長波長の光である光を発する物質である。蛍光体含有部 4 を構成する蛍光体は一種類であっても良いし、複数カゝらなる混合物であってもよぐ 青色 LED3の発する光と蛍光体発光部 4の発する光の総和が所望の色になるように 選べばよい。色は白色だけでなぐ黄色、オレンジ、ピンク、紫、青緑等であっても良 い。また、これらの色と白色との間の中間的な色であっても良い。また、透明榭脂は 蛍光体含有部 4の封止材料であり、ここでは、上述の封止材料を用いている。
[0242] モールド部 7は、青色 LED3、蛍光体含有部 4、ワイヤ 6などを外部力 保護するとと もに、配光特性を制御するためのレンズとしての機能を持つ。モールド部 7には主に エポキシ榭脂を用いることができる。
[0243] 図 2は、図 1に示す発光装置 1を組み込んだ面発光照明装置の一実施例を示す模 式的断面図である。図 2において、 8は面発光照明装置、 9は拡散板、 10は保持ケ ースである。
[0244] この面発光照明装置 8は、内面を白色の平滑面等の光不透過性とした方形の保持 ケース 10の底面に、多数の発光装置 1を、その外側に発光装置 1の駆動のための電 源及び回路等(図示せず。)を設けて配置したものである。発光の均一化のために、 保持ケース 10の蓋部に相当する箇所に、乳白色としたアクリル板等の拡散板 9を固 定している。
[0245] そして、面発光照明装置 8を駆動して、発光装置 1の青色 LED3に電圧を印加する ことにより青色光等を発光させる。その発光の一部を、蛍光体含有部 4において波長 変換材料である本発明の蛍光体と必要に応じて添加した別の蛍光体が吸収し、より 長波長の光に変換し、蛍光体に吸収されなかった青色光等との混色により、高輝度 の発光が得られる。この光が拡散板 9を透過して、図面上方に出射され、保持ケース 10の拡散板 9面内において均一な明るさの照明光が得られることとなる。
[0246] また、本発明の発光装置において、特に励起光源 (第 1の発光体)として面発光型 のものを使用する場合、蛍光体含有部 (第 2の発光体)を膜状とするのが好ましい。 即ち、面発光型の発光体力もの光は断面積が十分大きいので、第 2の発光体をその 断面の方向に膜状とすると、第 1の発光体からの蛍光体への照射断面積が蛍光体単 位量あたり大きくなるので、蛍光体からの発光の強度をより大きくすることができる。
[0247] また、第 1の発光体として面発光型のものを使用し、第 2の発光体として膜状のもの を用いる場合、第 1の発光体の発光面に、直接膜状の第 2の発光体を接触させた形 状とするのが好ましい。ここでいう接触とは、第 1の発光体と第 2の発光体とが空気や 気体を介さないでぴたりと接している状態をつくることを言う。その結果、第 1の発光 体からの光が第 2の発光体の膜面で反射されて外にしみ出るという光量損失を避け ることができるので、装置全体の発光効率を良くすることができる。
[0248] 図 3は、このように、第 1の発光体として面発光型のものを用い、第 2の発光体として 膜状のものを適用した発光装置の一例を示す模式的斜視図である。図 3中、 11は、 前記蛍光体を有する膜状の第 2の発光体、 12は第 1の発光体としての面発光型 Ga N系 LD、 13は基板を表す。相互に接触した状態をつくるために、第 1の発光体 12の LDと第 2の発光体 11とそれぞれ別個につくっておいてそれらの面同士を接着剤や その他の手段によって接触させても良いし、第 1の発光体 12の発光面上に第 2の発 光体 11を製膜 (成型)させても良い。これらの結果、第 1の発光体 12と第 2の発光体 1 1とを接触した状態とすることができる。
[0249] 〈発光装置の用途〉
本発明の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種 の分野に使用することが可能である力 高輝度であり、且つ、演色性も高いことから、 中でも画像表示装置や照明装置の光源として、とりわけ好適に用いられる。なお、本 発明の発光装置を画像表示装置の光源として用いる場合には、カラーフィルタ一とと もに用いることが好ましい。
[0250] 以下、第 2アスペクトを実施例により更に具体的に説明する力 第 2アスペクトはそ の要旨を超えな!/、限り以下の実施例に限定されるものではな 、。
[0251] 《原料金属》
合金の原料に用いた金属単体は、いずれも不純物濃度 0. 01モル%以下の高純 度品である。また、原料金属の形状は、 Srは塊状、その他は粒状である。
[0252] 実施例 2— 1 金属元素組成比(モル比)が A1: Si = 1: 1となるように各金属を秤量し、黒鉛ルツボ を用い、アルゴン雰囲気で高周波誘導式溶融炉を用いて原料金属を溶融した後、ル ッボカゝら金型へ注湯して凝固させ、金属元素組成比が Al: Si= 1: 1である合金 (母合 金)を得た。
[0253] 次に、 Eu: Ca :Al: Si=0. 008 : 0. 992 : 1: 1となるよう母合金、その他原料金属を 秤量した。炉内を 5 X 10_2Paまで真空排気した後、排気を中止し、炉内にアルゴン を所定圧まで充填した。この炉内で、カルシアルッボ内で母合金を溶解し、次いで。 a、 Euを加えて、全成分が融解した溶湯が誘導電流により攪拌されるのを確認後、ル ッボから水冷された銅製の金型 (厚さ 40mmの板状)へ溶湯を注湯して凝固させ、目 的とする組成の合金を得た。
[0254] この合金をアルゴン雰囲気中で、アルミナルツボ内で粉砕した後、 lOOmeshのふ るいにふるったふるい下を窒化ホウ素製トレイに充填し、管状式電気炉のアルミナ製 反応管中にセットした。なお、ふるい下の粒径は、メジアン径 D
50力 8. 6 μ mであつ た。
[0255] この反応管に窒素を大気圧で流通させ、酸素濃度を 20ppm以下に保ちながら、 1 600°Cまで昇温して、その温度で 10時間保持して、蛍光体を得た。
得られた蛍光体中に生成して 、る結晶相を粉末 X線回折法で同定した結果、 CaAl SiNの斜方晶系の結晶が生成していることが確認された。また、蛍光体組成の分析
3
を、金属元素は ICP発光分光分析法(Inductively Coupled Plasma-Atomic Emission Spectrometry;以下「ICP法」と称する場合がある。 )により、ジョバイボン社製 ICPィ匕 学分析装置「JY 38S」を使用して分析した。 N、 Oは全窒素酸素分析計 (LECO社 製)により行った。結果を表 2に示した。
[0256] 蛍光分光光度計でこの蛍光体の波長 465nm励起による発光特性を測定し、発光 波長と、後述の比較例 2— 1の蛍光体の輝度を 100%として相対輝度を求め、結果を
^: ^した ο
[0257] 実施例 2— 2
金属元素組成比が A1: Si= 1: 1 (モル比)となるように各金属を秤量し、黒鉛ルツボ を用い、アルゴン雰囲気で高周波誘導式溶融炉を用いて原料金属を溶融した後、ル ッボカゝら金型へ注湯して凝固させ、金属元素組成比が Al: Si= 1: 1である合金 (母合 金)を得た。
[0258] 次に、 Eu:Sr:Ca:Al:Si=0.008:0.792:0.2: 1: 1となるように母合金、及びそ の他原料金属を秤量した。炉内を 5X 10_2Paまで真空排気した後、排気を中止し、 炉内にアルゴンを所定圧まで充填した。この炉内で、カルシアルッボを用いて母合金 を溶解し、次いで Srを溶解し、さらに、 Eu、 Caを加えて、全成分が融解した溶湯が誘 導電流により攪拌されるのを確認後、ルツボカゝら水冷された銅製の金型 (厚さ 40mm の板状)へ溶湯を注湯して凝固させた。
[0259] 得られた厚み 40mm板状合金について ICP法で組成分析を行った。板の重心付 近一点と、板の端面一点から約 10gサンプリングし、元素分析を行ったところ、 板の中心部 Eu:Sr:Ca:Al:Si=0.009:0.782:0.212:1:0.986、
板の端部 Eu:Sr:Ca:Al:Si=0.009:0.756:0.210:1:0.962
であり、分析精度の範囲にぉ 、て実質的に同一組成であった。
得られた合金は Sr (Si Al ) と類似した粉末 X線回折パターンを示し、 A1B型
0.5 0.5 2 2 のアルカリ土類シリサイドと呼ばれる金属間化合物と同定された。
[0260] 次いで、この板状合金を実施例 2— 1と同様に粉砕し、得られた合金粉末 lgを窒化 ホウ素製ルツボ(内径 18mm)に充填して、熱間等方加圧装置 (HIP)内にセットし、 装置内を 5X10_1Paまで真空排気した後、 300°Cに加熱し、 300°Cで真空排気を 1 時間継続した。その後、窒素を IMPaまで充填し、冷却後に 0. IMPaまで放圧し、 再び IMPaまで窒素を充填する操作を二回繰り返した。加熱開始前に 50MPaまで 窒素を充填し、約 600°CZhrで試料温度 1800°Cまで昇温した。それと同時に、内圧 が 135MPaになるまで約 50MPaZhrで窒素を導入した後、さらに 180MPaまで昇 圧し、 1800°C、 180MPaで 1時間保持して蛍光体を得た。
得られた蛍光体中に生成して 、る結晶相を粉末 X線回折法で同定した結果、 CaAl SiNと同型の斜方晶系の結晶が生成していることが確認された。
3
[0261] 実施例 2— 1と同様にして、この蛍光体の組成を分析し、結果を表 2に示した。
また、蛍光分光光度計でこの蛍光体の波長 465nm励起による発光特性を測定し、 発光波長と、後述の比較例 2— 1の蛍光体の輝度を 100%として相対輝度を求め、 結果を表 2に示した。
[0262] 実施例 2— 3
実施例 2— 2で得られた蛍光体を、実施例 2— 2で用いたのと同様の熱間等方圧力口 圧装置を用いて、再度、同条件で再加熱して、蛍光体を得た。
得られた蛍光体中に生成して 、る結晶相を粉末 X線回折法で同定した結果、 CaAl SiNと同型の斜方晶系の結晶が生成していることが確認された。
3
[0263] 実施例 2— 1と同様にして、この蛍光体の組成を分析し、結果を表 2に示した。
また、蛍光分光光度計でこの蛍光体の波長 465nm励起による発光特性を測定し、 発光波長と、後述の比較例 2— 1の蛍光体の輝度を 100%として相対輝度を求め、 結果を表 2に示した。
[0264] 比較例 2— 1
金属元素組成比が£11 :じ&:八1: 31=0. 008 : 0. 992 : 1: 1となるように、 Eu O、C
2 3 a N、 AIN及び Si Nをアルゴン雰囲気中で秤量し、混合機を用いて混合した。この
3 2 3 4
混合粉を窒化ホウ素製ルツボへ充填して、雰囲気加熱炉中にセットした。装置内を 1 X 10_2Paまで真空排気した後、排気を中止し、装置内へ窒素を 0. IMPaまで充填 した後、 1600°Cまで加熱し、 5時間保持して、蛍光体を得た。
[0265] 得られた蛍光体中に生成して 、る結晶相を粉末 X線回折法で同定した結果、 CaAl SiNの斜方晶系の結晶が生成していることが確認された。
3
[0266] 実施例 2— 1と同様にして、この蛍光体の組成を分析し、結果を表 2に示した。
また、蛍光分光光度計でこの蛍光体の波長 465nm励起による発光特性を測定し、 発光波長を求め、結果を表 2に示した。またこのときの輝度を 100%とした。
[0267] 比較例 2— 2
金属元素組成比が£11 : 31::じ&:八1: 31=0. 008 : 0. 792 : 0. 2 : 1 : 1となるように、 EuN、 Sr N、 Ca N、 AIN及び Si Nをアルゴン雰囲気中で秤量し、混合機を用い
3 2 2 3 3 4
て混合した。この混合粉を窒化ホウ素製ルツボへ充填して、雰囲気加熱炉中にセット した。装置内を 1 X 10_2Paまで真空排気した後、排気を中止し、装置内へ窒素を 0. 9MPaまで充填した後、 1800°Cまで加熱し、 2時間保持して、蛍光体を得た。
[0268] 得られた蛍光体中に生成して 、る結晶相を粉末 X線回折法で同定した結果、 CaAl SiNの斜方晶系の結晶が生成していることが確認された。
3
[0269] 実施例 2— 1と同様にして、この蛍光体の組成を分析し、結果を表 2に示した。
また、蛍光分光光度計でこの蛍光体の波長 465nm励起による発光特性を測定し、 発光波長と、前述の比較例 2— 1の蛍光体の輝度を 100%として相対輝度を求め、 結果を表 2に示した。
[0270] [表 2] 表 2
Figure imgf000054_0001
[0271] 表 2より明らかなように、本発明の方法に従って、合金の窒化処理により得られた蛍 光体は、窒化物を原料とする従来法により得られた蛍光体に比べて著しく高い発光 輝度を示す。
[0272] 実施例 2— 4
図 4に示す発光装置を作製した。この発光装置の作製は以下の手順により行なつ た。なお、実施例 2— 4の各構成要素のうち、図 4に対応する構成要素が描かれてい るものについては、適宜その符号をカツコ書きにて示す。
[0273] 第 1の発光体(14)としては、青色発光ダイオード(以下適宜「LED」と略する。)で ある Cree社の 460MBを用いた。これは、ドミナント波長 456nm〜458nmに発光す る。この青色 LED (14)を、フレーム(16)の凹部の底の端子(19)に、接着剤として 銀ペーストを用いてダイボンディングした。この際、青色 LED (14)で発生する熱の放 熱性を考慮して、接着剤である銀ペーストは薄く均一に塗布した。 150°Cで 2時間加 熱し、銀ペーストを硬化させた後、青色 LED (14)の電極とフレーム(16)の端子(18 )とをワイヤボンディングした。ワイヤ(17)としては、直径 25 mの金線を用いた。 [0274] 蛍光体含有部(15)の発光物質としては、橙色蛍光体である上記実施例 3の蛍光 体(この蛍光体を「蛍光体 (A)」という場合がある。)と、凡そ波長 520ηπ!〜 760nmの 光を発光する蛍光体である Ba Sr Eu SiO (この蛍光体を「蛍光体 (B)」と
1. 39 0. 46 0. 15 4
いう場合がある。)を用いて、蛍光体含有組成物を作製した。得られた蛍光体含有組 成物を、上述のフレーム(16)のカップ形状の凹部に注入し、加熱して硬化させ、蛍 光体含有部(15)を形成した。
[0275] 得られた発光装置を、その青色 LED (14)に室温で 20mAの電流を通電して駆動 して、発光させた。その白色色度点を測定したところ、 x/y=0. 31/0. 33であり、 その演色評価数 (Ra)は、 90であった。
この発光装置の発光スペクトルを図 5に示す。
[0276] 実施例 2— 5
実施例 2— 4において、蛍光体(B)の代わりに、凡そ波長 560nm〜750nmの光を 発光する蛍光体である Ca Ce Sc Mg Si O (この蛍光体を「蛍光体 (C)
2. 94 0. 06 1. 94 0. 06 3 12
」という場合がある。)を用いたこと以外は、実施例 2— 4と同様の手順により発光装置 を作製した。
[0277] 得られた発光装置を、実施例 2— 4と同様の条件で発光させ、その白色色度点を測 定したところ、 xZy=0. 31/0. 33であり、その演色評価数 (Ra)は、 88であった。 この発光装置の発光スペクトルを図 6に示す。
[0278] 本発明の製造方法により得られる窒化物又は酸窒化物を母体とする蛍光体は、蛍 光灯、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED)、プラズマディ スプレイパネル (PDP)、陰極線管(CRT)、白色発光ダイオード (LED)などに好適 に使用される。
[0279] [第 3アスペクトの詳細な説明]
本発明者等は、合金を原料として製造された窒化物又は酸窒化物を母体とする蛍 光体において、この蛍光体を必要に応じて粉砕、分級し、当該蛍光体の 10倍の重量 の水に分散させた後、 1時間静置して得られる上澄み液中の溶解イオンの量の指標 である電気伝導度と、蛍光体の発光効率とに相関関係があることを見出した。
[0280] 第 3アスペクトの蛍光体は、窒化物又は酸窒化物を母体とする蛍光体にお!、て、該 蛍光体を重量比で 10倍の水に分散後、 1時間静置して得られる上澄み液の電気伝 導度が 50mSZm以下であることを特徴とする。
[0281] この蛍光体は、付活元素 M1と、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の 金属元素の 1種以上とを含んでもょ ヽ。
[0282] この蛍光体は、付活元素 M1と、 2価の金属元素 M2と、少なくとも Siを含む 4価の金 属元素 M4とを含んでもよい。
[0283] 蛍光体は、 2価の金属元素 M2としてアルカリ土類金属元素を含んでもよい。
[0284] 蛍光体は、さらに 3価の金属元素 M3を含んでもよい。
[0285] 蛍光体は、付活元素 M1として Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho 、 Er、 Tm、及び Ybからなる群から選ばれる 1種以上の元素を含有してもよい。
[0286] 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群から選ばれる 1種以上 の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからなる群から選ばれる 1 種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、 及び Hfからなる群力 選ばれる 1種以上の元素であってもよい。
[0287] 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、 3価の金属元素 M 3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元素 M4の 50モル%以 上が Siであってもよい。
[0288] 蛍光体は、付活元素 M1として Eu及び Z又は Ceを、 2価の金属元素 M2として Ca及 び Z又は Srを、 3価の金属元素 M3として A1を、少なくとも Siを含む 4価の金属元素 M 4として Siを含んでもよい。
[0289] 蛍光体を分散させる水の電気伝導度力 0. OOlmSZm以上、 lmSZm以下であ つてもよい。
[0290] 蛍光体は、合金を原料として製造されることが好ましい。
[0291] 第 3ァスぺ外は、上記蛍光体と、液状媒体とを含有する蛍光体含有組成物を提供 する。
[0292] 第 3アスペクトは、励起光源と、該励起光源力 の光の少なくとも一部を波長変換す る蛍光体とを有する発光装置において、該蛍光体が上記の蛍光体を含有することを 特徴とする発光装置を提供する。 [0293] 第 3アスペクトは、この発光装置を有する画像表示装置を提供する。
[0294] 第 3アスペクトは、この発光装置を有することを照明装置を提供する。
[0295] 第 3アスペクトによると、簡便な手法により、蛍光体の輝度を向上させることができる また、この蛍光体を含有する糸且成物を用いることによって、発光効率の高い発光装 置を得ることができる。この発光装置は、画像表示装置や照明装置等の用途に好適 に用いられる。
[0296] 以下、第 3アスペクトについて詳細に説明する力 第 3アスペクトは以下の実施の形 態に限定されるものではなぐその要旨の範囲内で種々変形して実施することができ る。
なお、第 3アスペクトの説明において「〜」を用いて表される数値範囲は、「〜」の前 後に記載される数値を下限値及び上限値として含む範囲を意味する。
[0297] [蛍光体の組成]
第 3アスペクトの窒化物又は酸窒化物を母体とする蛍光体の糸且成については特に 制限はないが、以下に例を挙げて説明する。
[0298] 第 3アスペクトの蛍光体は、好ましくは付活元素 M1と、少なくとも Siを含む 4価の金 属元素 M4と、 Si以外の金属元素の 1種類以上とを含むものであって、詳しくは、本発 明の蛍光体は、
Figure imgf000057_0001
2価の金属元素 M2、及び少なくとも Siを含む 4価の金 属元素 M4を含むものである。例えば、 Sr Si N: Eu, Ce等が挙げられる。ここで、 2
2 5 8
価の金属元素 M2としては、アルカリ土類金属元素が好ましい。
[0299] 第 3アスペクトの蛍光体は、また、付活元素 M 2価の金属元素 M2、 3価の金属元 素 M3、及び少なくとも Siを含む 4価の金属元素 M4を含むことができ、下記一般式 [2 ]で表される窒化物又は酸窒化物を母体とすることが好ましい。
M1 M2 M3 M4 N O [2]
a b c d e f
(但し、 a、 b、 c、 d、 e、 fはそれぞれ下記の範囲の値である。
0. 00001≤a≤0. 15
a + b = l
0. 5≤c≤l. 5 0. 5≤d≤l. 5
2. 5≤e≤3. 5
0≤f≤0. 5 )
この蛍光体の組成についての説明は第 1アスペクトの合金組成の説明と共通する。
[0300] 付活元素 M1に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0301] 付活元素 M1以外の元素に関する説明は第 1アスペクトと同一であり、第 1アスペクト の説明が援用される。
[0302] また、 2価の金属元素 M2に関する説明は第 1アスペクトと同一であり、第 1アスペクト の説明が援用される。
[0303] また、 3価の金属元素 M3に関する説明は第 1アスペクトと同一であり、第 1アスペクト の説明が援用される。
[0304] また、少なくとも Siを含む 4価の金属元素 M4に関する説明は第 1アスペクトと同一で あり、第 1アスペクトの説明が援用される。
[0305] 第 1アスペクトと同じぐ M2の 50モル0 /0以上が Ca及び Z又は Srであり、かつ、 M3
50モル%以上が A1であり、かつ、 M4の 50モル%以上が Siとなるようにすることにより
、発光特性が特に高!、蛍光体が製造できるので好ま 、。
[0306] また、前記一般式 [2]における a〜fの数値範囲と、その好適理由に関する説明は 第 1アスペクトと同一であり、第 1アスペクトの説明が援用される。
[0307] 前記一般式 [2]で表される蛍光体の中でも、下記一般式 [3]で表される蛍光体とす ることがでさる。
M1 Sr Ca M2' Al Si N [3]
a, b, c, d, e, f, g,
(但し、 a,、b,、c,、d,、e,、f,、g,はそれぞれ下記の範囲の値である。
0. 00001≤a'≤0. 15
0. l≤b'≤0. 99999
0≤c' < l
0≤d' < l
a' +b' +c' +d' = l 0. 5≤e'≤l. 5
0. 5≤f,≤l. 5
0. 8 X (2/3 + e,+4/3 X f,)≤g,≤l. 2 X (2/3 + e, +4/3 X f,))
[0308] この一般式 [3]の説明は、第 2アスペクトと同一であるので、第 2アスペクトの説明が 援用される。
[0309] 第 3アスペクトの蛍光体に含まれる酸素は、原料金属中の不純物として混入するも の、粉砕工程、窒化工程などの製造プロセス時に混入するものなどが考えられる。 酸素の含有量は蛍光体の発光特性低下が容認できる範囲で通常 5重量%以下、 好ましくは 2重量%以下、最も好ましくは 1重量%以下である。蛍光体の酸素含有量 は後述する洗浄により減少する傾向がある。
蛍光体の組成の具体例としては、 (Sr, Ca, Mg)AlSiN: Eu、 (Sr, Ca, Mg)AlS
3
iN: Ce、 (Sr, Ca) Si N: Eu、 (Sr, Ca) Si N: Ce等が挙げられる。
3 2 5 8 2 5 8
[0310] [蛍光体の製造方法]
第 3アスペクトの蛍光体を製造するには、例えば下記一般式 [1]の組成となるように 、原料となる金属やその合金を秤量し、これを融解させて合金化して蛍光体原料用 合金を製造し、次いでこの蛍光体原料用合金の粉砕、窒化、洗浄を行う。その際、例 えば Siとアルカリ土類金属元素を含む合金を製造する場合であれば、高融点(高沸 点)の Si金属及び Z又は Siを含む合金を融解させた後、低融点 (低沸点)のアルカリ 土類金属を融解させることが好まし ヽ。
M1 M2 M3 M4 [1]
(但し、
Figure imgf000059_0001
a、 b、 c、 dはそれぞれ前記一般式 [1]におけると同義であ る。)
[0311] 〈原料金属の純度〉
合金の製造に使用する金属の純度に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援用される。
[0312] 〈原料金属の形状〉
原料金属の形状に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。 [0313] 〈原料金属の融解〉
原料金属の融解に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0314] 〈溶湯の铸造〉
溶湯の铸造に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0315] 〈铸塊の粉砕〉
铸塊の粉砕に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0316] 〈合金粉末の分級〉
合金粉末の分級に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0317] 《合金の窒化》
蛍光体原料用合金の窒化処理に関する説明は第 1アスペクトと同一であり、第 1ァ スぺタトの説明が援用される。
[0318] 〈洗浄〉
蛍光体原料用合金を窒化して得られた蛍光体をジョークラッシャー、スタンプミル、 ハンマーミル等で粗粉砕した後、中性又は酸性の溶液を用いて洗浄を行う。
ここで用いる中性の溶液としては、水を用いることが好ましい。使用可能な水の種類 は、特に制限はないが、脱塩水又は蒸留水が好ましい。用いる水の電気伝導度は、 通常 0. OOlmSZm以上、好ましくは 0. OlmS/m,また、通常 lmSZm以下、好 ましくは 0. lmSZm以下である。また、水の温度は、通常、室温(25°C程度)が好ま しいが、好ましくは 40°C以上、さらに好ましくは 50°C以上、また、好ましくは 90°C以下 、さらに好ましくは 80°C以下の温水又は熱水を用いることにより、目的とする蛍光体を 得るための洗浄回数を低減することも可能である。
[0319] また、酸性の溶液としては酸性の水溶液が好ま Uヽ。酸性水溶液の種類に特に制 限はないが、塩酸、硫酸などの鉱酸の 1種又は 2種以上を希釈した水溶液が使用で きる。酸水溶液の酸の濃度は、通常 0. ImolZl以上、好ましくは 0. 2molZl以上、 また、通常 5molZl以下、好ましくは 2molZl以下である。中性の水溶液ではなぐ酸 性の水溶液を用いることは、蛍光体の溶解イオン量の低減効率の点で好ましいが、こ の洗浄に用いる酸水溶液の酸濃度が 5molZlを超えると蛍光体表面を溶解するお それがあるため、好ましくなぐ 0. ImolZl未満では酸を用いた効果が十分に得られ ない。本発明では、この酸としてフッ酸のような腐食性の強い酸は必要としない。
[0320] 蛍光体の洗浄方法としては、特に制限はな!/、が、具体的には、得られた蛍光体粒 子を上述の中性又は酸性の溶液 (以下「洗浄媒」と称す場合がある。 )に入れて所定 時間撹拌することにより分散させ、その後、蛍光体粒子を固液分離する方法が挙げら れる。
[0321] 蛍光体を洗浄する際の撹拌手法には特に制限はなぐ蛍光体粒子を均一に分散さ せることができればよい。例えば、チップスターラーや撹拌機等を用いることができる
[0322] 洗浄媒量は特に制限はないが、過度に少ないと十分な洗浄効果が得られず、過度 に多いと大量の洗浄媒を要し、不合理であることから、洗浄する蛍光体の重量の 2倍 以上、特に 5倍以上で、 1000倍以下、特に 100倍以下であることが好ましい。
撹拌時間は、後述の実施例では 10分間であるが、蛍光体と上述のような洗浄媒と を十分に接触させることができるような時間であれば良ぐ通常 1分以上、 1時間以下 である。
[0323] 洗浄媒と蛍光体粒子とを固液分離する手法には、特に制限はなぐ例えば、濾過、 遠心分離、デカンテーシヨン等が挙げられる。
[0324] ただし、蛍光体粒子の洗浄方法は、上述のような、洗浄媒中での蛍光体粒子の撹 拌による分散後の固液分離に特に制限はなぐ蛍光体粒子を洗浄媒の流体にさらす 方法等であっても良い。
[0325] また、このような洗浄工程は複数回行っても良い。
また、複数回の洗浄工程を行う場合、水洗浄と酸水溶液による洗浄とを組み合わせ て行なっても良いが、その場合、蛍光体への酸の付着を防止するために、酸水溶液 で洗浄した後水洗浄を行うようにすることが好ましい。また、水洗浄後、酸水溶液で洗 浄し、その後水洗浄するようにしても良い。 また、複数回の洗浄工程を行う場合、洗浄工程の間に前述の粉砕工程や分級ェ 程を入れても良い。
[0326] 本発明にお 、て、蛍光体の洗浄は、洗浄後の蛍光体につ!、て、次のような水分散 試験を行 、、その時の上澄み液の電気伝導度が所定の値以下となるまで行う。 即ち、洗浄後の蛍光体を、必要に応じて乾式ボールミル等で解砕ないし粉砕し、篩 又は水簸により分級を行って所望の重量メジアン径に整粒し、その後、当該蛍光体 の 10重量倍の水中で所定時間、例えば 10分間撹拌して分散させた後、 1時間静置 することにより、水よりも比重の重い蛍光体粒子を自然沈降させる。このときの上澄み 液の電気伝導度を測定し、その電気伝導度が通常、 50mSZm以下、好ましくは 10 mSZm以下、最も好ましくは 5mSZm以下となるまで、必要に応じて上述の洗浄操 作を繰り返す。
[0327] この蛍光体の水分散試験に用いられる水としては、特に制限はないが、上述の洗 浄媒の水と同様に脱塩水又は蒸留水が好ましぐ特に電気伝導度は、通常 0. 001 mSZm以上、好ましくは 0. OlmSZm以上、また、通常 lmSZm以下、好ましくは 0 . lmSZm以下である。また、上記蛍光体の水分散試験に用いられる水の温度は、 通常、室温(25°C程度)である。
[0328] このような洗浄を行うことにより、蛍光体を重量比で 10倍の水に分散後、 1時間静置 して得られる上澄み液の電気伝導度が 50mSZm以下である本発明の蛍光体を得 ることがでさる。
[0329] なお、上記蛍光体の水分散試験における上澄み液の電気伝導度の測定は、東亜 ディケーケ一社製電気伝導度計「EC METER CM— 30G」等を用いて行うことが できる。
[0330] 上記蛍光体の水分散試験における上澄み液の電気伝導度は、蛍光体の構成成分 がー部溶解した結果、イオンとなって水中に溶け出すことにより上昇する。上記上澄 み液の電気伝導度が低い、ということは、蛍光体中のこの水溶性成分の含有量が少 ないことを意味する。
前述の如ぐ蛍光体の酸素含有量も上述の洗浄によって減少するが、これは酸素 を含む不純物相、例えば結晶性の悪い窒化物が加水分解して生じた水酸化物が除 去されるためと推察される。
[0331] 例えば、前述の SCASN蛍光体では、洗浄工程において、次のようなことが起きて 、ると推定することができる。
1) 結晶性の悪い窒化物等が加水分解して、例えば Sr (OH)などの水酸化物とな
2
り、水中に溶け出す。温水、あるいは希薄な酸で洗浄すると、これらが効率よく除去さ れ、電気伝導度が低下する。一方、酸濃度が高すぎると、あるいは、長時間酸にさら すと、母体の SCASN蛍光体自体が分解するおそれがあり、好ましくない。
2) 合金の窒化工程における焼成時に使用する窒化ホウ素(BN)製ルツボカ 混 入したホウ素が、水溶性のホウ素窒素 アルカリ土類ィ匕合物を形成して蛍光体に混 入するが、上記洗浄によりこれが分解'除去される。
[0332] 第 3アスペクトにおける発光効率及び輝度向上の理由は完全には明ら力とはされて V、な 、が、焼成直後の蛍光体を空気中に取り出したときわずかなアンモニア臭が感 じられるところから、洗浄により、この未反応又は反応不十分な部分が分解して生成 した部分が除去されたことによると考えられる。
[0333] なお、蛍光体は多くの場合、粉体で使用され、他の分散媒中に分散した状態で使 用される。従って、これらの分散操作を容易にするため、蛍光体に各種表面処理を 行うことが当業者の中では通常の手法として行われて 、る。力かる表面処理が行わ れた蛍光体にあっては表面処理が行われる前の段階が本発明による蛍光体と理解 するのが適切である。
[0334] 上記洗浄後は、蛍光体を付着水分がなくなるまで乾燥させて、使用に供する。
[0335] [蛍光体の特性]
粉末 X線回折パターン
SCASN蛍光体の場合、上述の洗浄操作を行うことによって、 Cu— Κ α線(1. 541 84 Α)を用いた粉末 X線回折ピークのうち、 2 0 = 33. 2±0. 2°のピーク強度(高さ) 比が低下する傾向にある。これは、洗浄を行うことによって、蛍光体から不純物が除 去されて!、ることを示して!/、る。
[0336] SCASN蛍光体の粉末 X線回折パターンにおいて、 2 Θ力 35. 5°〜37°の範囲に おける最強ピークの高さ I に対する、 2 0 = 33. 2° ±0. 2°のピークの高さ Iの強度 比を I= (I X 100) /I とするとき、 Iは通常 15%以下であり、好ましくは 10%以下、 p max
より好ましくは 5%以下、特に 3%以下が好ましい。ここでピーク強度はバックグラウン ド補正を行って得た値である。
[0337] 発光スペクトル
第 3アスペクトにより得られる Eu付活 SCASN蛍光体の発光スペクトルの説明は、 第 2アスペクトの発光スペクトルの説明と同一であり、第 2アスペクトの説明が援用され る。
[0338] 重量メジアン径 D
50
第 3アスペクトの蛍光体の重量メジアン径 D の説明は第 2アスペクトと同一であり、
50
第 2アスペクトにおける説明が援用される。
[0339] その他の特性
本発明の蛍光体は、その内部量子効率が高いほど好ましい。その値の説明は第 2 アスペクトの説明が援用される。
[0340] 本発明の蛍光体は、その吸収効率も高いほど好ましい。その値の説明は、第 2ァス ぺタトの説明が援用される。
[0341] [蛍光体の用途]
第 3アスペクトの蛍光体の用途の説明については、第 2アスペクトの説明が援用され る。
[0342] [蛍光体含有組成物]
本発明の蛍光体を発光装置等の用途に使用する場合には、これを液状媒体中に 分散させた形態で用いることが好ま 、。これに関する説明は第 2アスペクトの記述 が援用される。
[0343] [発光装置]
次に、第 3アスペクトの発光装置について説明する。第 3アスペクトの発光装置は、 励起光源としての第 1の発光体と、第 1の発光体からの光の照射によって可視光を発 する第 2の発光体とを、少なくとも備えて構成される。この発光装置の説明は、第 2ァ スぺタトの発光装置と同一であり、第 2アスペクトの記述が援用される。図 1〜3も援用 される。 [0344] [発光装置の用途]
本発明の発光装置の用途の説明は、第 2アスペクトの説明が援用される。
[0345] 以下、第 3アスペクトを実施例によりさらに具体的に説明する力 第 3アスペクトはそ の要旨を超えな!/、限り以下の実施例に限定されるものではな 、。
後述の各実施例及び各比較例にぉ 、て、各種の評価は以下の手法で行った。
[0346] 〈水分散試験における上澄み液の電気伝導度〉
篩により分級して重量メジアン径 9 μ mに整粒した後(ただし、洗浄後の蛍光体粒子 の重量メジアン径が 9 mの場合は、この操作は行わない。)、この蛍光体粒子を蛍 光体重量の 10倍量の水に入れ、スターラーを用いて 10分間撹拌して分散させた。 1 時間放置後、蛍光体が沈降していることを確認し、上澄み液の電気伝導度を測定し た。
電気伝導度は東亜ディケーケ一社製電気伝導度計「EC METER CM— 30G」 を用いて、測定した。洗浄及び測定は室温で行った。
なお、各実施例及び各比較例で洗浄及び蛍光体の水分散試験に使用して 、る水 の電気伝導度は、 0. 03mS/mである。
[0347] 〈発光スペクトル、色度座標、及び輝度〉
日本分光社製蛍光測定装置において、励起光源として 150Wキセノンランプを用 いた。キセノンランプの光を焦点距離 10cmの回折格子分光器に通し、 450ηπ!〜 47 5nmの光のみを光ファイバ一を通じて蛍光体に照射した。励起光の照射により発生 した光を焦点距離 25cmの回折格子分光器により分光し、浜松フォト-タス社製マル チチャンネル CCD検出器「C7041」によって 300nm〜800nmの各波長の発光強 度を測定した。続いて、パーソナルコンピュータによる感度補正等の信号処理を経て 発光スペクトルを得た。
この発光スペクトルの 480nm〜800nmの波長領域のデータから、 JIS Z8701で 規定される XYZ表色系における色度座標 Xと yを算出した。
また、 JIS Z8724に準拠して算出した XYZ表色系における刺激値 Yから、後述す る参考例 3— 3における蛍光体の刺激値 Yの値を 100%とした相対輝度を算出した。 尚、色度座標及び輝度は、励起青色光をカットして測定した。 [0348] 〈化学組成〉
ICP発光分光分析法 (Inductively Coupled Plasma-Atomic Emission Spectrome try;以下、「ICP法」と称する場合がある。)により、ジョバイボン社製 ICP化学分析装 置「JY 38S」を使用して分析した。
[0349] 〈蛍光体の重量メジアン径 D >
50
測定前に、超音波分散器((株)カイジョー製)を用いて周波数を 19KHz、超音波 の強さを 5Wとし、 25秒間試料を超音波で分散させた。なお、分散液には、再凝集を 防止するため界面活性剤を微量添加した水を用いた。
重量メジアン径の測定にぉ 、ては、レーザー回折 Z散乱式粒度分布測定装置 (堀 場製作所製)を使用した。
[0350] 〈粉末 X線回折測定〉
粉末 X線回折測定条件の詳細は以下の通りである。
測定装置: PANalytical社製 PW1700型
粉末 X線回折測定条件:
X線源: Cu— Κ α線(λ = 1. 54184Α)、
出力設定: 40kV' 30mA
測定時光学条件:発散スリット = 1°
散乱スリット = 1。
受光スリット =0. 2mm
回折ピークの位置 2 0 (回折角)
測定範囲: 2 0 = 10〜89. 95°
スキャン速度: 0. 05度(2 0 ) Zsec,連続スキャン
試料調製:めのう乳鉢を用いて人力で粉砕し、試料成形治具(旧 Philips社製
PW1001Z00型)を使って成形
サンプノレホノレダー: PANalytical社製 PW178 lZ〇0型
試料部寸法
外径: 53mm
内径: 27mm 深さ: 2.6mm
[0351] 〈原料金属〉
以下において、合金の原料に用いた金属単体は、いずれも不純物濃度 0.01モル %以下の高純度品である。また、原料金属の形状は、 Srは塊状、その他は粒状であ る。
[0352] 合成例 3— 1
第 2アスペクトの実施例 2— 2で製造した合金を用いた。第 2アスペクトで記述した通 り、得られた厚み 40mmの板状合金について板の重心付近一点と、板の端面付近 一点から約 10gサンプリングし、 ICP法により元素分析を行ったところ、
板の中心部 Eu:Sr:Ca:Al:Si=0.009:0.782:0.212:1:0.986, 板の端面 Eu:Sr:Ca:Al:Si=0.009:0.756:0.210:1:0.962
であり、分析精度の範囲において実質的に同一組成であった。従って、 Euを始め、 各々の元素が均一に分布していると考えられた。
[0353] 第 2アスペクトの通り、この合金は Sr (Si Al ) と類似した粉末 X線回折パターンを
0.5 0.5 2
示し、 A1B型のアルカリ土類シリサイドと呼ばれる金属間化合物と同定されたもので
2
ある。
[0354] この板状合金塊を、窒素気流中で重量メジアン径 17.4 μ mに粉砕して得た合金 粉末 5gを、内径 55mmの窒化ホウ素製トレイに充填し、熱間等方加圧装置 (HIP装 置)内にセットした。装置内を真空排気した後、 300°Cに加熱し、 300°Cで真空排気 を 1時間継続した。その後、窒素を IMPa充填し、冷却後に 0. IMPaまで放圧し、再 び IMPaまで窒素を充填する操作を 2回繰り返した。加熱開始前に 50MPaまで窒素 を充填し、 600°CZhrで試料温度 1900°Cまで昇温し、それと同時に内圧を平均 45 MPaZhrで 190MPaまで昇圧した。その後装置内圧を 190MPaに保ちながら 190 0°Cまで加熱し、この温度で 1時間保持して目的の蛍光体を得て、粗粉砕を行った。
[0355] 得られた蛍光体の粉末 X線回折測定の結果、 CaAlSiNと同型の斜方晶の結晶相
3
が生成していた。
[0356] 実施例 3— 1
合成例 3— 1で得られた蛍光体を重量比で 10倍量の水に入れ、スターラーを用い て 10分間撹拌し、分散させた。 1時間静置後、蛍光体が沈降していることを確認し、 濾過することにより、蛍光体を分離した。
この洗浄後の蛍光体について、水分散試験を行い、上澄み液の電気伝導度を測 定し、結果を表 3—1に示した。
また、洗浄後の蛍光体を 120°Cで乾燥した後、発光特性を計測し、結果を表 3—1 に示した。
表 3— 1において、輝度は、後述の参考例 3— 3で得られた蛍光体の輝度を 100% としている。
[0357] 実施例 3— 2
合成例 3— 1で得られた蛍光体を重量比で 10倍量の水に入れ、スターラーを用い て 10分間撹拌し、分散させた。 1時間静置後、蛍光体が沈降していることを確認し、 濾過することにより、蛍光体を分離した。この操作を 17回繰り返した。
この洗浄後の蛍光体について、水分散試験を行い、上澄み液の電気伝導度を測 定し、結果を表 3—1に示した。
また、洗浄後の蛍光体を 120°Cで乾燥した後、発光特性を計測し、結果を表 3—1 に示した。
[0358] 実施例 3— 3
合成例 3— 1で得られた蛍光体を重量比で 5倍量の 0. 5molZl塩酸水溶液に入れ 、スターラーを用いて 10分間撹拌し、分散させた。 1時間静置後、蛍光体が沈降して いることを確認し、濾過することにより、蛍光体を分離した。この操作を 6回繰り返した この洗浄後の蛍光体について、水分散試験を行い、上澄み液の電気伝導度を測 定し、結果を表 3—1に示した。
また、洗浄後の蛍光体を 120°Cで乾燥した後、発光特性を計測し、発光スペクトル を図 7に、発光特性のデータを表 3—1及び表 3— 2に示した。
なお、表 3— 2において、相対ピーク強度は、後述の参考例 3— 3の相対ピーク強度 を 100%として示した。
また、この洗浄後の蛍光体の粉末 X線回折パターンを図 8に示す。図 8から、 2 Θが 35. 5°以上 37°以下の範囲にある最強ピーク(I )に対する、 2 0 = 33. 2° ± 0. 2° max
のピーク強度比 Iは 1. 9%であることがわ力つた。
[0359] 参考例 3— 1
合成例 3—1で得られた蛍光体について、洗浄を行うことなぐそのまま水分散試験 を行い、上澄み液の電気伝導度を測定し、結果を表 3— 1に示した。
また、発光特性を計測し、結果を表 3—1及び表 3— 2に示した。
また、この蛍光体の粉末 X線回折パターンを図 9に示す。図 9から、 2 Θ力^ 5. 5°以 上 37°以下の範囲にある最強ピークに対する、 2 0 = 33. 2° ± 0. 2°のピーク強度比 Iは 4. 6%であることがわかった。
[0360] 合成例 3— 2
実施例 3— 4及び比較例 3— 2で使用した蛍光体は、 HIP装置で焼成する前に、常 圧窒素気流中、 1030°Cで 8時間、仮焼成を行ったこと以外は合成例 3—1と同様の 方法で合成した。
[0361] 実施例 3— 4
合成例 3— 2で得られた蛍光体を重量比で 10倍量の水に入れ、スターラーを用い て 10分間撹拌し、分散させた。 1時間静置後、蛍光体が沈降していることを確認し、 濾過することにより、蛍光体を分離した。得られた蛍光体をボールミルで粉砕し、分級 を行って重量メジアン径 D を 9 μ mとした。得られた蛍光体を重量比で 5倍重量の 0
50
. 5molZl塩酸水溶液に入れ、スターラーを用いて 10分間撹拌し、分散させた。 1時 間静置後、濾過することにより蛍光体を分離し、さらに 10倍量の水に分散して濾過す る操作を 6回繰り返した。得られた蛍光体の重量メジアン径 D は 9 μ mであったこと
50
から、前述の洗浄操作によって、重量メジアン径 D は変化しな力つた。
50
この洗浄後の蛍光体について、水分散試験を行い、上澄み液の電気伝導度を測 定し、結果を表 1に示した。また、発光特性を計測し、結果を表 3—1に示した。
[0362] 参考例 3— 2
合成例 3— 2で得られた蛍光体を洗浄することなぐそのまま水分散試験を行い、上 澄み液の電気伝導度を測定し、結果を表 3—1に示した。また、発光特性を計測し、 結果を表 1に示した。 [0363] 参考例 3— 3
第 2アスペクトの比較例 2— 1で製造した蛍光体を用いた。
この蛍光体について、蛍光分光光度計で 465nm励起による発光特性を測定したと ころ、発光波長は 648nmであった。
[0364] [表 3] 表 3— 1
Figure imgf000070_0001
[0365] これらの結果から明らかなように、蛍光体の洗浄操作により、水分散試験における 上澄み液の電気伝導度が低下するにつれ、蛍光体の輝度が向上する。
また、実施例 3— 3と比較例 3—1の粉末 X線回折パターンを比較すると、実施例 3 3においては結晶性が向上しており、洗浄により結晶性の悪い部分が除去されて いることがわ力る。
[0366] [第 4アスペクトの詳細な説明]
本発明者らは、合金を原料として製造した蛍光体は、粉末 X線回折パターンにおい て、不純物ピークが低ぐかつ、輝度及び発光効率が高いことを見出した。
[0367] 第 4アスペクトの蛍光体は、 CuK o;線(1. 54184A)を用いて測定された粉末 X線 回折パターンにおいて、前記領域 1〜領域 6におけるピーク強度比 Iが 8%以下であ る窒化物又は酸窒化物を母体とする。
ただし、ピーク強度比 Iは 2 Θ力^ 0°以上 60°以下の範囲の粉末 X線回折パターン において、 2 Θ力 以上 37°以下の範囲に存在する最強ピークの高さ I に対する
max 該当ピークの高さ Iの比 (I X 100) (%)
p p /\ である。ここで、ピーク強度はバックグ
max
ラウンド補正を行って得た値である。
[0368] この蛍光体は、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種 以上とを含んでもよい。
[0369] この蛍光体は、
Figure imgf000071_0001
2価の金属元素 M2、及び少なくとも Siを含む 4価の 金属元素 M4を含んでもょ ヽ。
[0370] 蛍光体は、 2価の金属元素としてアルカリ土類金属元素を含んでもよい。
[0371] 蛍光体は、さらに 3価の金属元素 M3を含んでもよい。
[0372] 蛍光体は、付活元素 M1として Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho 、 Er、 Tm、及び Ybからなる群から選ばれる 1種以上の元素を含有してもよい。
[0373] 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群から選ばれる 1種以上 の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからなる群から選ばれる 1 種以上の元素であり、 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、及び Hfからなる群 力も選ばれる 1種以上の元素であってもよ 、。
[0374] 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、 3価の金属元素 M 3の 50モル%以上が A1であり、 4価の金属元素 M4の 50モル%以上が Siであってもよ い。
[0375] 蛍光体は、付活元素 M1として Eu及び Z又は Ceを、 2価の金属元素 M2として Ca及 び Z又は Srを、 3価の金属元素 M3として A1を、 4価の金属元素 M4として Siを含んで ちょい。
[0376] 蛍光体は、合金を原料として製造されることが好ましい。
[0377] 蛍光体の発光ピーク波長は、好ましくは 590nm以上、 650nm以下である。 [0378] 第 4アスペクトは、この蛍光体と、液状媒体とを含有する蛍光体含有組成物を提供 する。
[0379] 第 4アスペクトは、励起光源と、該励起光源力 の光の少なくとも一部を波長変換す る蛍光体とを有する発光装置にぉ 、て、該蛍光体が上記の!/、ずれかの蛍光体を含 有すること特徴とする発光装置を提供する。
[0380] 第 4アスペクトは、この発光装置を有する画像表示装置を提供する。
[0381] 第 4アスペクトは、この発光装置を有する照明装置を提供する。
[0382] 第 4アスペクトの窒化物又は酸窒化物を母体とする蛍光体は、従来の窒化物又は 酸窒化物蛍光体よりも高輝度の発光を示すものであり、黄色ないし橙色、もしくは橙 色ないし赤色の蛍光体として優れている。また、第 4アスペクトの蛍光体は、長時間励 起源に曝された場合でも、輝度が低下することなぐ VFD、 FED, PDP、 CRT,白色 LEDなどに好適に使用される有用な蛍光体である。また、母体の色が赤色系であり 、紫外線を吸収することから、赤色の顔料及び紫外線吸収剤にも好適である。
また、この蛍光体を含有する糸且成物を用いることによって、発光効率の高い発光装 置を得ることができる。この発光装置は、画像表示装置や照明装置等の用途に好適 に用いられる。
[0383] 以下、第 4アスペクトについて詳細に説明するが、第 4アスペクトは以下の説明に限 定されるものではなぐその要旨の範囲内で種々変形して実施することができる。 なお、第 4アスペクトの説明において「〜」を用いて表される数値範囲は、「〜」の前 後に記載される数値を下限値及び上限値として含む範囲を意味する。
[0384] [蛍光体の組成]
第 4アスペクトの窒化物又は酸窒化物を母体とする蛍光体の組成は第 3アスペクトと 同一であり、第 3アスペクトの組成の説明がすべて援用される。第 3アスペクトにおい て援用されている第 1アスペクトの合金組成の説明及び第 2アスペクトの説明も重ね て第 4アスペクトに援用される。
念のため、第 4アスペクトの蛍光体の組成について簡単に次に説明する。
[0385] このアスペクトの蛍光体は、第 3アスペクトの蛍光体と同じぐ好ましくは付活元素 M 1と、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種類以上とを含 むものであって、詳しくは、本発明の蛍光体は、付活元素 M 2価の金属元素 M2、 及び少なくとも Siを含む 4価の金属元素 M4を含むものである。例えば、 Sr Si N: E
2 5 8 u, Ce等が挙げられる。ここで、 2価の金属元素 M2としては、アルカリ土類金属元素 が好ましい。
[0386] 第 3アスペクトの蛍光体は、また、付活元素 M 2価の金属元素 M2、 3価の金属元 素 M3、及び少なくとも Siを含む 4価の金属元素 M4を含むことができ、前記一般式 [2 ]で表される窒化物又は酸窒化物を母体とすることが好ましい。
M1 M2 M" M4 N O [2]
a b c d e f
[0387] そして、前記一般式 [2]で表される蛍光体の中でも、下記一般式 [3]で表される蛍 光体とすることができる。
M1 Sr Ca M2' Al Si N [3]
a, b, c, d, e, f, g,
[0388] この一般式 [2]、 [3]の説明は、既に十分になされているので、先行するアスペクト における説明が援用されることは明らかである。
[0389] [蛍光体の製造方法]
第 4アスペクトの蛍光体を製造するには、例えば、下記一般式 [3]の組成となるよう に、原料となる金属やその合金を秤量し、これを融解させて合金化して蛍光体原料 用合金を製造し、次いでこの蛍光体原料用合金の粉砕、窒化を行う。その際、例え ば Siとアルカリ土類金属を含む合金を製造する場合であれば、高融点(高沸点)の Si 金属及び Z又は Siを含む合金を融解させた後、低融点 (低沸点)のアルカリ土類金 属を融解させることが好まし 、。
M1 M2 M3 M4 [1]
(但し、
Figure imgf000073_0001
a、 b、 c、 dはそれぞれ前記第 1アスペクトにおけると同義 である。 )
[0390] 〈原料金属の純度〉
合金の製造に使用する金属の純度に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援用される。
[0391] 〈原料金属の形状〉
原料金属の形状に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0392] 〈原料金属の融解〉
原料金属の融解に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0393] 〈溶湯の铸造〉
溶湯の铸造に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0394] 〈铸塊の粉砕〉
铸塊の粉砕に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0395] 〈合金粉末の分級〉
合金粉末の分級に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0396] [蛍光体の製造]
合金粉末を用いて、第 4アスペクトの蛍光体を製造する方法には特に制限はなぐ 酸化物、硫化物、窒化物など蛍光体の種類に応じて反応条件が設定されるが、以下 に窒化反応を例にとって説明する。
[0397] 《合金の窒化》
合金粉末の窒化処理に関する説明は第 1アスペクトと同一であり、第 1アスペクトの 説明が援用される。
〈窒化処理後の処理〉
合金の窒化処理後、得られた蛍光体について粉砕、分級処理を行なうことが好まし い。例えば、得られた蛍光体粒子の 90%以上が 5 μ m以上、 20 μ m以下の粒子とな るように粉砕、分級処理を行うことが特に好ま 、。
[0398] [蛍光体の特性]
結晶構造
第 4アスペクトの蛍光体の結晶構造に関して述べる。
本発明の蛍光体は、 WO2005Z052087記載の CASN構造と同一の斜方晶(Cmc 21、 # 36)の結晶構造を有する。格子定数は通常、 9. 8A≤a≤9. 93A、 5. 6A≤ b≤5. 8A、 5. OA≤c≤5. 2A、 280A≤V≤300Aであり、さらに好ましくは、 9. 8A≤a≤9. 93A、 5. 69A≤b≤5. 77A、 5. lA≤c≤5. 18A、 285A≤V≤2 98 A、である。
[0399] 粉末 X線回折パターン
本発明者らは、第 4アスペクトの蛍光体について CuK a線(1. 54184A)を用いた 時に測定される粉末 X線回折パターンにつ!ヽて検討を行った。粉末 X線回折パター ンの例を、下記表 4に示す。表 4では、 X線粉末回折ピーク位置を 2 Θ (10°から 60° の範囲とする。)で表記している。
本発明の蛍光体は、前述の一般式 [1]において、含有可能な Sr、 Caの量は変化さ せることが出来るが、表 4において、例 1、例 2、例 3、例 4、例 5の順で Caの量を減ら し、 Srの量を増加させている。いずれも CaAlSiNと同型の斜方晶であり、最強ピー
3
ク以下いくつかのピークを示す。
表 4から、 Srの置換量によって、回折ピーク位置がずれることがわかる。 Caよりも Sr の方が、イオン半径が大きいため、 Sr置換量が多いものほど格子定数が大きくなり、 ピーク位置の 2 Θの値が小さくなる。
[0400] [表 4]
表 4
Figure imgf000076_0001
[0401] 第 4アスペクトの蛍光体の CaAlSiN結晶と同一の結晶構造に由来する粉末 X線回 折パターンにおけるピークの位置は、通常、例 5を下限とし、例 1を上限とする位置で あり、好ましくは、例 4を下限とし、例 2を上限とする位置である。さらには、例 3のピー ク位置 ±0. 2° の範囲内であることが好ましい。
[0402] 第 4アスペクトの蛍光体は、表 4に示すピークのうち、通常 7本以上を有し、好ましく は 10本以上を有する。
[0403] また、第 4アスペクトの蛍光体は上記のピークを有すること以外に以下の特徴を有 する。 すなわち、下記に示す領域 1〜領域 6に現れるピークは第 4アスペクトの蛍光体以 外の結晶の存在を示すものであり、これらのピーク強度が低いことが好ましい。領域 1 〜6にそれぞれ現われるピークは、ピーク強度比 Iが通常 8%以下、好ましくは 5%以 下、更に好ましくは 3%以下である。
ただし、ピーク強度比 Iは 2 Θ力^ 0°以上 60°以下の範囲の粉末 X線回折パターン において、 2 Θ力 以上 37°以下の範囲に存在する最強ピークの高さ I に対する max 該当ピークの高さ Iの比 (I X 100) /\ (%)である。ここでピーク強度はバックダラ p p max
ゥンド補正を行って得た値である。
[0404] 領域 1 : 2 0力 10° 〜17。 の範囲である。
領域 2 : 2 0力 18. 3° 〜24° の範囲である。
領域 3 : 2 0力 3° 〜30.で の範囲である。
領域 4 : 2 0力 〜34. 3° の範囲である。
領域 5 : 2 0力 〜40° の範囲である。
領域 6 : 2 0力 1. 5° 〜47° の範囲である。
[0405] 発光スペクトル
例えば、第 4アスペクトにより得られる Eu付活 SCASN蛍光体の発光スペクトルの説 明は、第 2アスペクトの発光スペクトルの説明と同一であり、第 2アスペクトの説明が援 用される。
[0406] 重量メジアン径 D
50
第 4アスペクトの蛍光体の重量メジアン径 D の説明は第 2アスペクトと同一であり、
50
第 2アスペクトにおける説明が援用される。
[0407] その他の特性
第 4アスペクトの蛍光体は、その内部量子効率が高いほど好ましい。その値の説明 は、第 2アスペクトの説明が援用される。
[0408] 第 4アスペクトの蛍光体は、その吸収効率も高いほど好ましい。その値の説明は、第
2アスペクトの説明が援用される。
[0409] [蛍光体の用途]
第 4アスペクトの蛍光体の用途の説明は、第 2アスペクトの説明が援用される。 [0410] [蛍光体含有組成物]
本発明の蛍光体を発光装置等の用途に使用する場合には、これを液状媒体中に 分散させた形態で用いることが好ま 、。これに関連する説明は第 2アスペクトの記 述が援用される。
[0411] [発光装置]
次に、第 4アスペクトの発光装置について説明する。第 4アスペクトの発光装置は、 励起光源としての第 1の発光体と、第 1の発光体からの光の照射によって可視光を発 する第 2の発光体とを、少なくとも備えて構成される。この発光装置の説明は、第 2ァ スぺタトの発光装置と同一であり、第 2アスペクトの記述が援用される。図 1〜3も援用 される。
[0412] [発光装置の用途]
本発明の発光装置の用途の説明は、第 2アスペクトの説明が援用される。
[0413] 以下、第 4アスペクトを実施例によりさらに具体的に説明する力 第 4アスペクトはそ の要旨を超えな!/、限り以下の実施例に限定されるものではな 、。
後述の各実施例及び各比較例にぉ 、て、各種の評価は以下の手法で行った。
[0414] 〈発光スペクトル、色度座標、及び輝度〉
発光スペクトル、色度座標、及び輝度の測定は第 3アスペクトの記述が援用される。
[0415] 〈化学組成の分析〉
化学組成の分析は第 3アスペクトの記述が援用される。
[0416] 〈粉末 X線回折測定〉
粉末 X線回折測定条件の説明は第 3アスペクトの記述が援用される。
[0417] 〈原料金属〉
合金の原料に用いた金属単体は、いずれも不純物濃度 0. 01モル%以下の高純 度品である。また、原料金属の形状は、 Srは塊状、その他は粒状である。
[0418] 実施例 4 1
第 2アスペクトの実施例 2— 2によって製造した合金を用いた。第 2アスペクトで記述 した通り、得られた厚み 40mmの板状合金について板の重心付近一点と、板の端面 付近一点から約 10gサンプリングし、 ICP法により元素分析を行ったところ、 板の中心部 Eu:Sr:Ca:Al:Si=0. 009:0. 782:0. 212:1:0. 986, 板の端面 Eu:Sr:Ca:Al:Si=0. 009:0. 756:0. 21:1:0. 962
であり、分析精度の範囲において実質的に同一組成であった。従って、 Euを始め、 各々の元素が均一に分布していると考えられた。
[0419] 第 2アスペクトで記述した通り、この合金は Sr (Si Al ) と類似した粉末 X線回折
0.5 0.5 2
パターンを示し、 A1B型のアルカリ土類シリサイドと呼ばれる金属間化合物と同定さ
2
れたものである。
[0420] この板状合金塊を、窒素気流中で重量メジアン径 20. 0 μ mに粉砕して得た合金 粉末 5gを、内径 55mmの窒化ホウ素製トレイに充填し、熱間等方加圧装置 (HIP装 置)内にセットした。装置内を 5X10_1Paまで真空排気した後、 300°Cに加熱し、 300 °Cで真空排気を 1時間 ¾続した。その後、窒素を IMPa充填し、冷却後に 0. IMPa まで放圧し、再び IMPaまで窒素を充填する操作を 2回繰り返した。加熱開始前に 5 OMPaまで窒素を充填し、 600°CZ時で試料温度 1900°Cまで昇温し、それと同時に 内圧を平均 45MPaZ時で 190MPaまで昇圧した。その後装置内圧を 190MPaに 保ちながら 1900°Cまで加熱し、この温度で 2時間保持して蛍光体を得た。
[0421] 得られた蛍光体の粉末 X線回折パターンは図 10に示す通りであり、 CaAlSiNと同
3 型の斜方晶の結晶相が生成していた。また、ピーク位置(2 Θ )は表 5— 3に示す通り であり、この蛍光体の各領域のピーク強度比は表 5— 1に示す通りであった。
また、この蛍光体について、発光特性の計測結果を表 5—1に、 ICP化学分析結果 を表 5— 2に示した。
表 5— 1において、輝度は、後述の参考例 4 1で得られた蛍光体の輝度を 100% としている。
[0422] 比較例 4 1
Eu:Sr:Ca:Al:Si=0. 008:0. 792:0. 2: 1:1となるように、 EuN、 Sr N、 Ca
3 2 2
N、 A1N、 Si Nをアルゴン雰囲気で秤量し、乳鉢中で混合した。この混合粉を実施
3 3 4
例 4— 1と同様に窒化して蛍光体を得た。
この蛍光体の粉末 X線回折パターンを図 11に、評価結果を表 5— 1、表 5— 2に示 した。 得られた蛍光体の粉末 X線回折測定の結果、 CaAlSiNと同型の斜方晶の結晶相
3
の他に、前述の領域 1〜6にピークとして現れる不純物が生成していた。発光ピーク は波長 628nmであった。
[0423] 比較例 4 2
窒化を雰囲気加熱炉中(1600°C、常圧)で行ったこと以外は、実施例 1と同様の操 作を行って蛍光体を得た。この蛍光体の評価結果を表 5— 1、表 5— 2に示した。 得られた蛍光体の発光ピークは波長 641nm、相対輝度は 117%であった。
[0424] 参考例 4 1
第 2アスペクトの比較例 2— 1で製造した蛍光体を用いた。この蛍光体の発光ピーク 波長は 648nmであった。表 5— 3にこの蛍光体の粉末 X線回折パターンのピーク位 置 (2 Θ )を示す。
[0425] [表 5]
表 5—1
Figure imgf000081_0001
蛍光体組成 (原子比 Al =
Figure imgf000081_0002
3
ピーク位置 (2 0 )
Figure imgf000081_0003
[第 5ァスぺ外の詳細な説明]
本発明者らは、合金を原料として製造した蛍光体は高特性であり、また、全付活元 素における、付活元素の価数及びその割合と蛍光体の特性に相関関係があることを 見出し、第 5アスペクトに至った。
[0427] 第 5アスペクトの蛍光体は、窒化物又は酸窒化物を母体とし、付活元素 M1を有する 蛍光体であって、付活元素 M1の 85モル%以上が最高酸ィ匕数より低価数であること を特徴とする。
[0428] この蛍光体は、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素 1種以 上とを含んでもよい。
[0429] 蛍光体は、
Figure imgf000082_0001
2価の金属元素 M2、及び少なくとも Siを含む 4価の金属 元素 M4を含んでもよい。
[0430] この蛍光体は、 2価の金属元素としてアルカリ土類金属元素を含んでもよい。
[0431] この蛍光体は、 3価の金属元素 M3を含んでもよい。
[0432] この蛍光体は、付活元素 M1として Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Yb力 なる群力 選ばれる 1種以上の元素を含有してもよい。
[0433] 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群から選ばれる 1種以上 の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからなる群から選ばれる 1 種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、 及び Hfからなる群力 選ばれる 1種以上の元素であってもよい。
[0434] 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、 3価の金属元素 M 3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元素 M4の 50モル%以 上が Siであってもよい。
[0435] この蛍光体は、付活元素 M1として Eu及び Z又は Ceを、 2価の金属元素 M2として C a及び Z又は Srを、 3価の金属元素 M3として A1を、少なくとも Siを含む 4価の金属元 素 M4として Siを含んでもょ 、。
[0436] この蛍光体は、合金を原料として製造されることが好ましい。
[0437] この蛍光体の発光ピーク波長が 590nm以上、 650nm以下であることが好ましい。
[0438] 第 5アスペクトは、この蛍光体と、液状媒体とを含有する蛍光体含有組成物を提供 する。
[0439] 第 5アスペクトは、励起光源と、該励起光源からの光の少なくとも一部を波長変換す る蛍光体とを有する発光装置において、該蛍光体がこの蛍光体を含有する発光装置 を提供する。
[0440] 第 5アスペクトは、この発光装置を有する画像表示装置を提供する。
[0441] 第 5アスペクトは、この発光装置を有することを照明装置を提供する。
[0442] 第 5アスペクトの窒化物又は酸窒化物を母体とする蛍光体は、従来の窒化物又は 酸窒化物蛍光体よりも高輝度の発光を示すものであり、黄色ないし橙色、もしくは橙 色ないし赤色の蛍光体として優れている。また、第 5アスペクトの蛍光体は、長時間励 起源に曝された場合でも、輝度が低下することなぐ VFD、 FED, PDP、 CRT,白色 LEDなどに好適に使用される有用な蛍光体である。また、母体の色が赤色系であり 、紫外線を吸収することから、赤色の顔料及び紫外線吸収剤にも好適である。
また、この蛍光体を含有する糸且成物を用いることによって、発光効率の高い発光装 置を得ることができる。この発光装置は、画像表示装置や照明装置等の用途に好適 に用いられる。
[0443] 以下、第 5アスペクトの実施の形態について詳細に説明する力 第 5アスペクトは以 下の実施の形態に限定されるものではなぐその要旨の範囲内で種々変形して実施 することができる。
なお、第 5アスペクトの説明において「〜」を用いて表される数値範囲は、「〜」の前 後に記載される数値を下限値及び上限値として含む範囲を意味する。
[0444] [蛍光体の組成]
第 5アスペクトの窒化物又は酸窒化物を母体とする蛍光体の組成は、第 3アスペクト と同一であり、第 3アスペクトの組成の説明がすべて援用される。第 3アスペクトにお いて援用されている第 1アスペクトの合金組成の説明及び第 2アスペクトの説明も重 ねて第 5アスペクトに援用される。
念のため、第 5アスペクトの蛍光体の組成について簡単に次に説明する。
[0445] このアスペクトの蛍光体は、第 3アスペクトの蛍光体と同じぐ好ましくは付活元素 M 1と、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種類以上とを含 むものであって、詳しくは、本発明の蛍光体は、
Figure imgf000083_0001
2価の金属元素 M2、 及び少なくとも Siを含む 4価の金属元素 M4を含むものである。例えば、 Sr Si N: E u, Ce等が挙げられる。ここで、 2価の金属元素 M2としては、アルカリ土類金属元素 が好ましい。
[0446] 第 3アスペクトの蛍光体は、また、付活元素 M 2価の金属元素 M2、 3価の金属元 素 M3、及び少なくとも Siを含む 4価の金属元素 M4を含むことができ、前記一般式 [2 ]で表される窒化物又は酸窒化物を母体とすることが好ましい。
M1 M2 M3 M4 N O [2]
a b c d e f
[0447] そして、前記一般式 [2]で表される蛍光体の中でも、下記一般式 [3]で表される蛍 光体とすることができる。
M1 Sr Ca M2' Al Si N [3]
a, b, c, d, e, f, g,
[0448] この一般式 [2]、 [3]の説明は、既に十分になされているので、先行するアスペクト における説明が援用されることは明らかである。
[0449] [蛍光体の製造方法]
第 5アスペクトの蛍光体を製造するには、例えば、下記一般式 [3]の組成となるよう に、原料となる金属やその合金を秤量し、これを融解させて合金化して蛍光体原料 用合金を製造し、次いでこの蛍光体原料用合金の粉砕、窒化を行う。その際、例え ば Siとアルカリ土類金属元素を含む合金を製造する場合であれば、高融点(高沸点 )の Si金属及び Z又は Siを含む合金を融解させた後、低融点 (低沸点)のアルカリ土 類金属を融解させることが好まし ヽ。
M1 M2 M3 M4 [1]
(但し、
Figure imgf000084_0001
a、 b、 c、 dはそれぞれ前記第 1アスペクトにおけると同義 である。 )
[0450] 〈原料金属の純度〉
合金の製造に使用する金属の純度に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援用される。
[0451] 〈原料金属の形状〉
原料金属の形状に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0452] 〈原料金属の融解〉 原料金属の融解に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0453] 〈溶湯の铸造〉
溶湯の铸造に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0454] 〈铸塊の粉砕〉
铸塊の粉砕に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明が援 用される。
[0455] 〈合金粉末の分級〉
合金粉末の分級に関する説明は第 1アスペクトと同一であり、第 1アスペクトの説明 が援用される。
[0456] [蛍光体の製造]
合金粉末を用いて、第 5アスペクトの蛍光体を製造する方法には特に制限はなぐ 酸化物、硫化物、窒化物など蛍光体の種類に応じて反応条件が設定されるが、以下 に窒化反応を例にとって説明する。
[0457] 《合金の窒化》
合金粉末の窒化処理に関する説明は第 1アスペクトと同一であり、第 1アスペクトの 説明が援用される。
〈窒化処理後の処理〉
合金の窒化処理後、得られた蛍光体について粉砕、分級処理を行なうことが好まし い。例えば、得られた蛍光体粒子の 90%以上が 5 μ m以上、 20 μ m以下の粒子とな るように粉砕、分級処理を行うことが特に好ま 、。
[0458] [蛍光体の特性]
付活元素の価数及びその割合
第 5アスペクトの蛍光体は、当該蛍光体に含まれる付活元素 M1の 85モル%以上が 最高酸ィ匕数より低価数であることを特徴とする。
[0459] 以下、第 5アスペクトの蛍光体における橙色な ヽし赤色発光をもたらす好ま Uヽ付 活元素の一つである Euを例に説明する。付活元素 M1の Euは、少なくともその一部 力^価イオンである。具体的には、蛍光体中の全 Euに占める Eu2+の割合は高いほど 好ましぐ通常 85モル%以上、好ましくは 90モル%以上、より好ましくは 92モル%以 上であることが好ましい。全 Euに占める Eu2+の割合を高くする方法としては、蛍光体 の製造工程において、例えば一酸化炭素、窒素 Z水素、水素などの何らかの還元 雰囲気下で焼成する方法が知られて 、るが、本発明にお 、ては合金を出発原料と することで、全 Euに占める Eu2+の割合を向上させることに成功した。
[0460] Eu2+の全 Euに占める割合を求める手法の一例を以下に示す。
Eu2+の全 Euに占める割合は、例えば Eu—L吸収端の XANESスペクトルを測定
3
することにより算出できる。 XANESは、各元素の特性吸収端とその近傍に現れる共 鳴吸収ピークの総称で、その元素の価数や構造を敏感に反映している。一般に、希 土類の L吸収端 XANESスペクトルに現れる強い共鳴ピークエネルギーは、希土類
3
元素の価数によって決まることが知られており、 Euの場合、 Eu2+のピークは Eu3+の ピークより約 8eV低!、エネルギーを持つので、 2つを分離して定量することが可能で ある。
また、発光中心原子周辺の局所的な構造は、たとえば Eu— L
3吸収端又は Eu— K 吸収端の EXAFSスペクトルを測定することにより明らかにすることができる。 EXAFS は、各元素の特性吸収端の高エネルギー側に現れる微細な振動構造のことで、吸収 元素周辺の局所構造を敏感に反映する。 EXAFSスペクトルを適切に処理した後フ 一リエ変換を行うことによって、吸収元素を中心とした動径構造関数が得られる。一 般に、類似の組成及び結晶構造を有する限りは、 Eu周辺の配位構造が揃うとピーク 強度が増大する。
[0461] また、 Eu— L吸収端又は Eu—K吸収端 EXAFSスペクトルのフーリエ変換におい
3
て、第一近接原子 (N、 Oなどの陰イオン)に由来するピークがシャープであることが 好ましい。また、第二近接原子(Si、 Al、 Sr、 Caなどの陽イオン)に由来するピークに 対する第一近接原子 (N、 Oなどの陰イオン)に由来するピークの強度が 50%以上で あることが好ましい。
ここで、 Eu2+や Ce3+のような 4f5d—4f遷移で発光する付活元素は、最外殻軌道 である 5d軌道の順位が結晶場により影響を受けるため、発光特性は付活元素の環 境に非常に強く依存することが知られている。特に、付活元素の第一近接原子によつ て形成される環境は、発光特性に大きな影響を与えると推察される。
本発明者らは、 EXAFSスペクトルのフーリエ変換において、第二近接原子に由来 するピークの強度に対する、第一近接原子に由来するピークの強度が高いほど発光 強度や輝度が向上する傾向があることを見出した。第一近接原子に由来するピーク の強度 (高さ)が相対的に大きいことは、相対的に第一近接原子-付活元素間の距 離の分布が狭いこと、すなわち、結晶中の付活元素の第一近接原子が形成する環 境がより均一に近いことを意味すると解釈される。付活元素の周囲の環境が均一に 近づくことにより、発光効率が向上するものと推察される。
[0462] 発光スペクトル
例えば、第 5アスペクトにより得られる Eu付活 SCASN蛍光体の発光スペクトルの説 明は、第 2アスペクトの発光スペクトルの説明と同一であり、第 2アスペクトの説明が援 用される。
[0463] 重量メジアン径 D
50
第 5アスペクトの蛍光体の重量メジアン径 D の説明は第 2アスペクトと同一であり、
50
第 2アスペクトにおける説明が援用される。
[0464] その他の特性
第 5アスペクトの蛍光体は、その内部量子効率が高いほど好ましい。その値の説明 は、第 2アスペクトの説明が援用される。
[0465] 第 5アスペクトの蛍光体は、その吸収効率も高いほど好ましい。その値の説明は、第
2アスペクトの説明が援用される。
[0466] [蛍光体の用途]
第 5アスペクトの蛍光体の用途の説明は、第 2アスペクトの説明が援用される。
[0467] [蛍光体含有組成物]
本発明の蛍光体を発光装置等の用途に使用する場合には、これを液状媒体中に 分散させた形態で用いることが好ま 、。これに関連する発明は第 2アスペクトの記 述が援用される。
[0468] [発光装置] 次に、第 5アスペクトの発光装置について説明する。第 5アスペクトの発光装置は、 励起光源としての第 1の発光体と、第 1の発光体からの光の照射によって可視光を発 する第 2の発光体とを、少なくとも備えて構成される。この発光装置の説明は、第 2ァ スぺタトの発光装置の説明と同一であり、第 2アスペクトの記述が援用される。図 1〜3 にも援用される。
[0469] [発光装置の用途]
本発明の発光装置の用途の説明は、第 2アスペクトの説明が援用される。
[0470] 以下、第 5アスペクトを実施例によりさらに具体的に説明する力 第 5アスペクトはそ の要旨を超えな!/、限り以下の実施例に限定されるものではな 、。
後述の各実施例及び各比較例にぉ 、て、各種の評価は以下の手法で行った。
[0471] 〈発光スペクトル、色度座標、及び輝度〉
発光スペクトル、色度座標、及び輝度の説明は第 4アスペクトにおける記述が援用 される。
[0472] 〈化学組成の分析〉
化学組成の分析方法の説明は第 4アスペクトにおける記述が援用される。
[0473] 〈XANES測定及び EXAFS測定〉
蛍光体の Eu— L吸収端の X線吸収端近傍微細構造 (X— ray absorption near
3
-edge fine structure :XANES)スペクトル及び広域 X線吸収微細構造(Exten ded X-ray absorption fine structure : EXAFS)は、大学共同利用機関法 人 高エネルギー加速器研究機構 物質構造化学研究所 放射光利用研究施設( フオトンファクトリー)のビームライン BL9Aに設置されて!、る XAFS測定装置にお!/ヽ て、 Si (111) 2結晶分光器と高次光除去ミラーを用いて測定した。
X線のエネルギー較正は、金属銅箔の Cu— K吸収端 XANESスペクトルにおいて 、 8980. 3eVに現れるプリエッジピークにおける分光器の角度を 12. 7185°として行 い、さらに酸ィ匕ユーロピウムの Eu—L吸収端 XANES測定を実施して分光器の微小
3
なずれを補正した。 Eu—K吸収端の EXAFSは、財団法人高輝度光科学研究セン ター 大型放射光施設(SPring— 8)のビームライン BL19B2第一ハッチに設置され て 、る XAFS測定装置にお 、て、 Si (311) 2結晶分光器を用いて測定した。 [0474] Eu-L吸収端 XANES及び EXAFSスペクトルの測定は、 Eu—L吸収端(6970
3 3
eV付近)を含む約 700eVの範囲で、透過法で行った。すなわち、窒素ガスを充填し た電極長 17cm及び 31cmの電離箱をそれぞれ入射 X線及びサンプルを透過した X 線の検出器として用い、 Lambert— Beerの式に従って X線吸収係数を/ z t=ln (10 Λ) (ここで、 10は入射 X線強度、 Iは透過 X線強度を示す。)として定義した。 Eu-L 吸収端近傍においては、ピークのエネルギーを正確に得るため測定間隔を 0. 25e
3
V (分光器の角度にして 0. 0006度)とした。 Eu— K吸収端 EXAFSスペクトルの測 定は、 Eu—K吸収端(48530eV付近)を含む約 2000eVの範囲で、透過法で行つ た。すなわち、それぞれアルゴン 75%—クリプトン 25%混合ガス及びクリプトンガスを 充填した電極長 17cm及び 31cmの電離箱を入射 X線及びサンプルを透過した X線 の検出器として用い、
Figure imgf000089_0001
)として定義した。
測定のための試料には、焼成後に篩を通した蛍光体粉末約 400mg、又は蛍光体 粉末約 15mgを 60mg程度の窒化ホウ素と混合し、メノウ乳鉢で均一になるまで混合 したものを、 150kg重 Zcm2の圧力下で直径 10mmの錠剤に成形して用いた。
[0475] 得られた Eu— L吸収端 XANESスペクトルを、ノ ックグラウンドの影響を取り除くた
3
め一階微分すると、 Eu2+及び Eu3+に由来するスペクトルパターンがそれぞれ 6965 — 6976eV付近、 6976— 6990eV付近に出現した。そこで、それぞれのエネルギー 範囲内における微分スペクトルの極大値と極小値の差を求め、これを Eu2+、 Eu3+標 準試料の Eu— L吸収端 XANES微分スペクトルの極大値と極小値の差で割って規
3
格ィ匕したものを Eu2+、 Eu3+ピークの強度 p, qとして定義し、 Eu全体に占める Eu2+の 割合 rを r = p/ (p + q)として定義した。
一方、 Eu—L吸収端 EXAFSスペクトル及び Eu— K吸収端 EXAFSスペクトルは
3
、一般的な方法によってデータ処理を実施した。すなわち、吸収端前のバックグラウ ンドをヴィクトリーン関数( t=C λ 3— D λ 4)類似の関数でフィットして除去した後、 吸収立ち上がりの変曲点を基準として X線エネルギーを波数 kに変換し、キュービッ クースプライン法による原子吸収分除去、強度規格ィ匕を経て EXAFS関数% (k)を得 た。さらに、 EXAFS関数に波数の 3乗をかけた関数 k3 % (k)をおよそ 3から 9 A—1 の範囲でフーリエ変換し、動径構造関数を得た。すると、 Euの第一近接原子 (N, O などの陰イオン)及び第二近接原子 (Si, Al, Sr, Caなどの陽イオン)に由来するピ ークが、それぞれ 1. 5〜2. 2 Aと 2. 2〜3. 4 Aに現れたので、それぞれの極大値を t, uとし、第二近接原子のピークに対する第一近接原子のピーク強度比 sを s=tZu として定義した。
[0476] 〈原料金属〉
合金の原料に用いた金属単体は、いずれも不純物濃度 0. 01モル%以下の高純 度品である。また、原料金属の形状は、 Srは塊状、その他は粒状である。
[0477] 実施例 5— 1
第 4アスペクトの実施例 1で合成した蛍光体を用いる。
[0478] 得られた蛍光体の粉末 X線回折測定の結果、 CaAlSiNと同型の斜方晶の結晶相
3
が生成していた。
[0479] この蛍光体にっ 、て、蛍光高度分光計で 465nm励起による発光特性を測定し、後 述の参考例 5— 1の蛍光体の発光強度を 100%として相対輝度を求めたところ、 195 %であり、発光ピーク波長は 627nmであった。
蛍光体の ICP元素分析結果、 Eu2+の割合、 EXAFS解析結果を表 6に示す。また 、発光波長及び輝度を表 7に、色度座標及び参考例 5— 1を 100%とした発光ピーク 強度を表 8に示す。
また、 Eu— K吸収端の EXAFSスペクトルを図 12に、 Eu— L吸収端 XANESスぺ
3
タトルを図 13に示す。
[0480] 比較例 5— 1
Eu: Sr: Ca :Al: Si=0. 008 : 0. 792 : 0. 2 : 1 : 1となるように、 EuN、 Sr N、 Ca
3 2 2
N、 A1N、 Si Nをアルゴン雰囲気で秤量し、乳鉢中で混合した。この混合粉を、カロ
3 3 4
熱温度を 1800°C、圧力を 180MPa、加熱時間を 1時間としたこと以外は実施例 5— 1と同様に窒化して蛍光体を得た。
この蛍光体にっ 、て蛍光光度分光計で 465nm励起による発光特性を測定し、後 述の参考例 5— 1の蛍光体の発光強度を 100%として相対輝度を求めた。発光ピー ク波長は 628nmであった。この蛍光体の ICP元素分析結果、 Eu2+の割合、 EXAFS 解析結果を表 6に示す。また、発光波長及び輝度を表 7に示す。
また、 Eu— K吸収端の EXAFSスペクトルを図 12に、 Eu-L吸収端 XANESスぺ
3
タトルを図 13に示す。
図 12において、実施例 5— 1は、比較例 5— 1と比較して、 Euの第一近接原子 (N、 O等の陰イオン)に由来するピーク (約 2 Aの位置に存在する)がシャープになってい る。これは、本発明の蛍光体は、従来の窒化物混合法により製造された蛍光体 (比較 例 5— 1)と比べ、第一近接原子が形成する Euの周りの配位環境が整っていることを 示す。
[0481] 参考例 5— 1
第 2ァスぺクトの比較例 1で製造した蛍光体を用 ヽた。
[0482] [表 6]
表 6
Figure imgf000091_0001
[0483] [表 7]
表 7
Figure imgf000091_0002
[0484] [表 8] 表 8
Figure imgf000092_0001
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れるこ となく様々な変更が可能であることは当業者に明らかである。
なお、本出願は、 2005年 4月 1日付で出願された日本特許出願 (特願 2005— 10 6285)、 2006年 3月 27曰付で出願された曰本特許出願(特願 2006— 085148)、 2006年 3月 27日付で出願された日本特許出願(特願 2006— 085149)、 2006年 3 月 27日付で出願された日本特許出願 (特願 2006— 085150)、 2006年 3月 28日 付で出願された日本特許出願 (特願 2006— 086849)及び 2006年 3月 28日付で 出願された日本特許出願 (特願 2006— 086850)に基づいており、その全体が引用 により援用される。

Claims

請求の範囲
[1] 無機機能材の製造原料としての合金粉末であって、該合金が少なくとも 1種の金属 元素と、少なくとも 1種の付活元素 M1とを含有し、該粉末の重量メジアン径 D 力
50 m以上 40 μ m以下であることを特徴とする無機機能材原料用合金粉末。
[2] 請求項 1にお 、て、合金粉末中に含まれる、粒径 10 μ m以下の合金粒子の割合が 80重量%以下、粒径 45 μ m以上の合金粒子の割合力 0重量%以下、 QDが 0. 59 以下、鉄分の量が 500ppm以下であることを特徴とする無機機能材原料用合金粉末
[3] 請求項 1において、合金粉末中に含まれる酸素の量が 0. 5重量%以下であること を特徴とする無機機能材原料用合金粉末。
[4] 請求項 1において、合金粉末中に含まれる炭素の量が 0. 06重量%以下であること を特徴とする無機機能材原料用合金粉末。
[5] 請求項 1において、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の
1種類以上とを含むことを特徴とする無機機能材原料用合金粉末。
[6] 請求項 5において、付活元素 M 2価の金属元素 M2、及び少なくとも Siを含む 4価 の金属元素 M4を含むことを特徴とする無機機能材原料用合金粉末。
[7] 請求項 6において、 2価の金属元素 M2としてアルカリ土類金属元素を含むことを特 徴とする無機機能材原料用合金粉末。
[8] 請求項 6において、更に 3価の金属元素 M3を含むことを特徴とする無機機能材原 料用合金粉末。
[9] 請求項 1において、付活元素 M1が Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy
、 Ho、 Er、 Tm、及び Yb力もなる群力も選ばれる 1種以上の元素であることを特徴と する無機機能材原料用合金粉末。
[10] 請求項 8において、 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群から 選ばれる 1種以上の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからなる 群力 選ばれる 1種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、及び Hfからなる群力 選ばれる 1種以上の元素であることを特徴と する無機機能材原料用合金粉末。
[11] 請求項 10において、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであ り、 3価の金属元素 M3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元 素 M4の 50モル%以上が Siであることを特徴とする無機機能材原料用合金粉末。
[12] 請求項 10において、付活元素 M1として Eu及び Z又は Ceを、 2価の金属元素 M2と して Ca及び Z又は Srを、 3価の金属元素 M3として A1を、少なくとも Siを含む 4価の金 属元素 M4として Siを含むことを特徴とする無機機能材原料用合金粉末。
[13] 請求項 1にお ヽて、蛍光体の製造原料であることを特徴とする無機機能材原料用 合金粉末。
[14] 請求項 1に記載の無機機能材原料用合金粉末を製造する方法であって、前記合 金を窒素含有雰囲気下で粉砕する工程を備えることを特徴とする無機機能材原料用 合金粉末の製造方法。
[15] 請求項 14にお ヽて、前記粉砕後、分級処理を行うことを特徴とする無機機能材原 料用合金粉末の製造方法。
[16] 蛍光体を構成する金属元素を 2種以上含有する合金を、窒素含有雰囲気下でカロ 熱することを特徴とする蛍光体の製造方法。
[17] 請求項 16において、該合金のメジアン径 D が 100 m以下であることを特徴とす
50
る蛍光体の製造方法。
[18] 請求項 16において、該蛍光体が、少なくとも Siを含む 4価の金属元素 M4と、 Si以 外の金属元素の 1種以上とを含むことを特徴とする蛍光体の製造方法。
[19] 請求項 18において、該蛍光体が、付活元素 M1と、 2価の金属元素 M2と、少なくと も Siを含む 4価の金属元素 M4とを含むことを特徴とする蛍光体の製造方法。
[20] 請求項 19において、該蛍光体が、 2価の金属元素 M2としてアルカリ土類金属元素 を含むことを特徴とする蛍光体の製造方法。
[21] 請求項 18において、該蛍光体が、さらに 3価の金属元素 M3を含むことを特徴とす る蛍光体の製造方法。
[22] 請求項 21にお!/、て、付活元素 M1が Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 D y、 Ho、 Er、 Tm、及び Ybからなる群から選ばれる 1種以上の元素であり、 2価の金属 元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群力も選ばれる 1種以上の元素であり 、 3価の金属元素 M3が Al、 Ga、 In、及び Scからなる群力も選ばれる 1種以上の元素 であり、少なくとも Siを含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、及び Hfからな る群から選ばれる 1種以上の元素であることを特徴とする蛍光体の製造方法。
[23] 請求項 19において、該蛍光体が、付活元素 M1として Eu及び Z又は Ceを含むこと を特徴とする蛍光体の製造方法。
[24] 請求項 22において、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであ り、 3価の金属元素 M3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元 素 M4の 50モル%以上が Siであることを特徴とする蛍光体の製造方法。
[25] 請求項 16において、該蛍光体が窒化物又は酸窒化物を母体とすることを特徴とす る蛍光体の製造方法。
[26] 請求項 16において、前記合金を窒素含有雰囲気下で加熱して得られた蛍光体を 再加熱することを特徴とする蛍光体の製造方法。
[27] 請求項 16に記載の方法により製造された蛍光体と、液状媒体とを含有することを特 徴とする蛍光体含有組成物。
[28] 励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有す る発光装置において、該蛍光体が請求項 16に記載の方法により製造された蛍光体 を含有することを特徴とする発光装置。
[29] 請求項 28に記載の発光装置を有することを特徴とする画像表示装置。
[30] 請求項 28に記載の発光装置を有することを特徴とする照明装置。
[31] 窒化物又は酸窒化物を母体とする蛍光体において、該蛍光体を重量比で 10倍の 水に分散後、 1時間静置して得られる上澄み液の電気伝導度が 50mSZm以下であ ることを特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[32] 請求項 31において、付活元素 M1と、少なくとも Siを含む 4価の金属元素 M4と、 Si 以外の金属元素の 1種以上とを含むことを特徴とする窒化物又は酸窒化物を母体と する蛍光体。
[33] 請求項 31において、付活元素 M1と、 2価の金属元素 M2と、少なくとも Siを含む 4価 の金属元素 M4とを含むことを特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[34] 請求項 33において、 2価の金属元素 M2としてアルカリ土類金属元素を含むことを 特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[35] 請求項 31において、さらに 3価の金属元素 M3を含むことを特徴とする窒化物又は 酸窒化物を母体とする蛍光体。
[36] 請求項 31において、付活元素 M1として Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb
、 Dy、 Ho、 Er、 Tm、及び Yb力 なる群力 選ばれる 1種以上の元素を含有すること を特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[37] 請求項 35において、 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群か ら選ばれる 1種以上の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからな る群力 選ばれる 1種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si
、 Ge、 Sn、 Ti、 Zr、及び Hfからなる群力 選ばれる 1種以上の元素であることを特徴 とする窒化物又は酸窒化物を母体とする蛍光体。
[38] 請求項 37において、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであ り、 3価の金属元素 M3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元 素 M4の 50モル%以上が Siであることを特徴とする窒化物又は酸窒化物を母体とす る蛍光体。
[39] 請求項 38において、付活元素 M1として Eu及び Z又は Ceを、 2価の金属元素 M2と して Ca及び Z又は Srを、 3価の金属元素 M3として A1を、少なくとも Siを含む 4価の金 属元素 M4として Siを含むことを特徴とする窒化物又は酸窒化物を母体とする蛍光体
[40] 請求項 31において、蛍光体を分散させる水の電気伝導度が、 0. OOlmSZm以上 、 lmSZm以下であることを特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[41] 請求項 31において、合金を原料として製造されたことを特徴とする窒化物又は酸 窒化物を母体とする蛍光体。
[42] 請求項 31に記載の蛍光体と液状媒体とを含有することを特徴とする蛍光体含有組 成物。
[43] 励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有す る発光装置において、該蛍光体が請求項 31に記載の蛍光体を含有することを特徴 とする発光装置。
[44] 請求項 43に記載の発光装置を有することを特徴とする画像表示装置。
[45] 請求項 43に記載の発光装置を有することを特徴とする照明装置。
[46] CuK o;線(1. 54184 A)を用いて測定された粉末 X線回折パターンにおいて、下 記に示す領域 1〜領域 6におけるピーク強度比 Iが 8%以下であることを特徴とする窒 化物又は酸窒化物を母体とする蛍光体。
ただし、ピーク強度比 Iは 2 Θ力^ 0°以上 60°以下の範囲の粉末 X線回折パターン において、 2 Θ力 以上 37°以下の範囲に存在する最強ピークの高さ I に対する
max
該当ピークの高さ Iの比 (I X 100)
p p /\ (%)である。ここで、ピーク強度はバックグ
max
ラウンド補正を行って得た値である。
領域 1は、 2 0力 S 10° 〜17° の範囲である。
領域 2は、 2 0力 8. 3° 〜24° の範囲である。
領域 3は、 2 Θ力 25. 3° 〜30. 7° の範囲である。
領域 4は、 2 Θ力 32° 〜34. 3° の範囲である。
領域 5は、 2 0力 S37° 〜40° の範囲である。
領域 6は、 2 0力41. 5° 〜47。 の範囲である。
[47] 請求項 46において、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素 の 1種以上とを含むことを特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[48] 請求項 46において、
Figure imgf000097_0001
2価の金属元素 M2、及び少なくとも Siを含む 4 価の金属元素 M4を含むことを特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[49] 請求項 48において、 2価の金属元素としてアルカリ土類金属元素を含むことを特徴 とする窒化物又は酸窒化物を母体とする蛍光体。
[50] 請求項 46において、さらに 3価の金属元素 M3を含むことを特徴とする窒化物又は 酸窒化物を母体とする蛍光体。
[51] 請求項 46において、付活元素 M1として Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb 、 Dy、 Ho、 Er、 Tm、及び Yb力 なる群力 選ばれる 1種以上の元素を含有すること を特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[52] 請求項 50にお!/、て、 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群か ら選ばれる 1種以上の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからな る群力 選ばれる 1種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si 、 Ge、 Sn、 Ti、 Zr、及び Hfからなる群力 選ばれる 1種以上の元素であることを特徴 とする窒化物又は酸窒化物を母体とする蛍光体。
[53] 請求項 52において、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであ り、 3価の金属元素 M3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元 素 M4の 50モル%以上が Siであることを特徴とする窒化物又は酸窒化物を母体とす る蛍光体。
[54] 請求項 53において、付活元素 M1として Eu及び Z又は Ceを、 2価の金属元素 M2と して Ca及び Z又は Srを、 3価の金属元素 M3として A1を、少なくとも Siを含む 4価の金 属元素 M4として Siを含むことを特徴とする窒化物又は酸窒化物を母体とする蛍光体
[55] 請求項 46において、合金を原料として製造されたことを特徴とする窒化物又は酸 窒化物を母体とする蛍光体。
[56] 請求項 46において、発光ピーク波長が 590nm以上、 650nm以下であることを特 徴とする窒化物又は酸窒化物を母体とする蛍光体。
[57] 請求項 46に記載の蛍光体と液状媒体とを含有することを特徴とする蛍光体含有組 成物。
[58] 励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有す る発光装置において、該蛍光体が請求項 46に記載の蛍光体を含有することを特徴 とする発光装置。
[59] 請求項 58に記載の発光装置を有することを特徴とする画像表示装置。
[60] 請求項 58に記載の発光装置を有することを特徴とする照明装置。
[61] 窒化物又は酸窒化物を母体とし、付活元素 Μ1を有する蛍光体であって、付活元素
Μ1の 85モル%以上が最高酸ィ匕数より低価数であることを特徴とする窒化物又は酸 窒化物を母体とする蛍光体。
[62] 請求項 61において、少なくとも Siを含む 4価の金属元素 Μ4と、 Si以外の金属元素
1種以上とを含むことを特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[63] 請求項 61において、
Figure imgf000098_0001
2価の金属元素 M2、及び少なくとも Siを含む 4 価の金属元素 M4を含むことを特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[64] 請求項 63において、 2価の金属元素 M2としてアルカリ土類金属元素を含むことを 特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[65] 請求項 61において、さらに 3価の金属元素 M3を含むことを特徴とする窒化物又は 酸窒化物を母体とする蛍光体。
[66] 請求項 61において、付活元素 M1として Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb
、 Dy、 Ho、 Er、 Tm、及び Yb力 なる群力 選ばれる 1種以上の元素を含有すること を特徴とする窒化物又は酸窒化物を母体とする蛍光体。
[67] 請求項 65において、 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群か ら選ばれる 1種以上の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからな る群力 選ばれる 1種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si
、 Ge、 Sn、 Ti、 Zr、及び Hfからなる群力 選ばれる 1種以上の元素であることを特徴 とする窒化物又は酸窒化物を母体とする蛍光体。
[68] 請求項 67において、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであ り、 3価の金属元素 M3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元 素 M4の 50モル%以上が Siであることを特徴とする窒化物又は酸窒化物を母体とす る蛍光体。
[69] 請求項 68において、付活元素 M1として Eu及び Z又は Ceを、 2価の金属元素 M2と して Ca及び Z又は Srを、 3価の金属元素 M3として A1を、少なくとも Siを含む 4価の金 属元素 M4として Siを含むことを特徴とする窒化物又は酸窒化物を母体とする蛍光体
[70] 請求項 61において、合金を原料として製造されたことを特徴とする窒化物又は酸 窒化物を母体とする蛍光体。
[71] 請求項 61において、発光ピーク波長が 590nm以上、 650nm以下であることを特 徴とする窒化物又は酸窒化物を母体とする蛍光体。
[72] 請求項 61に記載の蛍光体と液状媒体とを含有することを特徴とする蛍光体含有組 成物。
[73] 励起光源と、該励起光源からの光の少なくとも一部を波長変換する蛍光体とを有す る発光装置において、該蛍光体が請求項 61に記載の蛍光体を含有することを特徴 とする発光装置。
請求項 73に記載の発光装置を有することを特徴とする画像表示装置。
請求項 73に記載の発光装置を有することを特徴とする照明装置。
PCT/JP2006/306903 2005-04-01 2006-03-31 無機機能材原料用合金粉末及び蛍光体 WO2006106948A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020147011854A KR20140063899A (ko) 2005-04-01 2006-03-31 무기 기능재 원료용 합금 분말 및 형광체
US11/910,320 US7824573B2 (en) 2005-04-01 2006-03-31 Alloy powder for material of inorganic functional material precursor and phosphor
KR1020137033409A KR101471883B1 (ko) 2005-04-01 2006-03-31 무기 기능재 원료용 합금 분말 및 형광체
KR1020077025384A KR101241488B1 (ko) 2005-04-01 2006-03-31 무기 기능재 원료용 합금 분말 및 형광체
CN2006800158625A CN101171321B (zh) 2005-04-01 2006-03-31 无机功能材料原料用合金粉末及荧光体
EP06730851A EP1867695A4 (en) 2005-04-01 2006-03-31 ALLOY POWDER AS A RAW MATERIAL FOR FUNCTIONAL AND PHOSPHOROUS INORGANIC MATERIAL
KR1020137008922A KR101422046B1 (ko) 2005-04-01 2006-03-31 무기 기능재 원료용 합금 분말 및 형광체
KR1020137000182A KR101346580B1 (ko) 2005-04-01 2006-03-31 무기 기능재 원료용 합금 분말 및 형광체
US12/615,002 US8460580B2 (en) 2005-04-01 2009-11-09 Alloy powder for raw material of inorganic functional material and phosphor
US13/834,110 US8801970B2 (en) 2005-04-01 2013-03-15 Europium- and strontium-based phosphor

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2005-106285 2005-04-01
JP2005106285 2005-04-01
JP2006-085149 2006-03-27
JP2006085149 2006-03-27
JP2006085148A JP5130639B2 (ja) 2006-03-27 2006-03-27 蛍光体及びそれを使用した発光装置
JP2006-085150 2006-03-27
JP2006085150 2006-03-27
JP2006-085148 2006-03-27
JP2006-086849 2006-03-28
JP2006086850A JP5130640B2 (ja) 2005-04-01 2006-03-28 蛍光体の製造方法
JP2006-086850 2006-03-28
JP2006086849 2006-03-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/910,320 A-371-Of-International US7824573B2 (en) 2005-04-01 2006-03-31 Alloy powder for material of inorganic functional material precursor and phosphor
US12/615,002 Division US8460580B2 (en) 2005-04-01 2009-11-09 Alloy powder for raw material of inorganic functional material and phosphor

Publications (1)

Publication Number Publication Date
WO2006106948A1 true WO2006106948A1 (ja) 2006-10-12

Family

ID=37073498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306903 WO2006106948A1 (ja) 2005-04-01 2006-03-31 無機機能材原料用合金粉末及び蛍光体

Country Status (6)

Country Link
US (3) US7824573B2 (ja)
EP (2) EP2781575A3 (ja)
KR (5) KR101471883B1 (ja)
CN (4) CN103254894A (ja)
TW (3) TWI433908B (ja)
WO (1) WO2006106948A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127509A (ja) * 2006-11-22 2008-06-05 Mitsubishi Chemicals Corp 蛍光体、蛍光体含有組成物、発光装置、画像表示装置、照明装置、及び蛍光体の製造方法
JP2008135707A (ja) * 2006-10-31 2008-06-12 Toshiba Lighting & Technology Corp 発光装置
JP2008230873A (ja) * 2007-03-19 2008-10-02 Osaka Univ 蛍光体原料用金属材料、及び蛍光体の製造方法、蛍光体、並びに蛍光体含有組成物、発光装置、画像表示装置及び照明装置
WO2008132954A1 (ja) 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置、画像表示装置、並びに窒素含有化合物
EP2060614A3 (en) * 2007-11-14 2009-07-08 Cree, Inc. Cerium and europium doped phosphor compositions and light emitting devices including the same
WO2010114061A1 (ja) 2009-03-31 2010-10-07 三菱化学株式会社 蛍光体、蛍光体の製造方法、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
JP2011072388A (ja) * 2009-09-29 2011-04-14 Panasonic Corp Led照明光源及び照明装置
WO2011142228A1 (ja) * 2010-05-13 2011-11-17 電気化学工業株式会社 β型サイアロンの製造方法、β型サイアロン及びその利用製品
US8451401B2 (en) 2006-04-19 2013-05-28 Mitsubishi Chemical Corporation Color image display device
JP2013163727A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置
JP2013163726A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置
US20130234586A1 (en) * 2008-05-19 2013-09-12 Intematix Corporation Nitride-Based Red-Emitting Phosphors in RGB (Red-Green-Blue) Lighting Systems
JP2014019872A (ja) * 2012-07-13 2014-02-03 Rohm & Haas Electronic Materials Llc 蛍光体およびこれを含む発光素子
JP2014077119A (ja) * 2012-08-29 2014-05-01 Lightscape Materials Inc オキシ炭窒化物蛍光体および蛍光体を使用するデバイス
WO2021157458A1 (ja) * 2020-02-07 2021-08-12 デンカ株式会社 蛍光体プレート、及び発光装置
KR20210145006A (ko) 2020-05-22 2021-12-01 주식회사 유제이엘 적색 질화물 형광체의 제조방법
WO2023037728A1 (ja) * 2021-09-08 2023-03-16 デンカ株式会社 蛍光体粉末、及び発光装置
WO2023037727A1 (ja) * 2021-09-08 2023-03-16 デンカ株式会社 蛍光体粉末、及び発光装置
KR20230059523A (ko) 2021-10-26 2023-05-03 주식회사 유제이엘 내습성 적색 형광체, 이의 제조방법 및 이를 포함하는 발광 장치

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103254894A (zh) 2005-04-01 2013-08-21 三菱化学株式会社 无机功能材料原料用合金粉末及荧光体
TW200804564A (en) * 2006-02-28 2008-01-16 Mitsubishi Chem Corp Fluorescent material and method of manufacturing alloy for fluorescent material
US8123980B2 (en) * 2006-05-19 2012-02-28 Mitsubishi Chemical Corporation Nitrogen-containing alloy and method for producing phosphor using same
TW200830580A (en) * 2007-01-05 2008-07-16 Solidlite Corp High color saturation three wavelength white-light LED
AU2008321873A1 (en) 2007-11-12 2009-05-22 Mitsubishi Chemical Corporation Illuminating Device
JP5644112B2 (ja) * 2008-01-21 2014-12-24 日亜化学工業株式会社 発光装置
JP4756104B2 (ja) * 2008-05-09 2011-08-24 三井金属鉱業株式会社 緑色蛍光体
FR2938524B1 (fr) * 2008-11-20 2011-01-07 Rhodia Operations Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci
FR2938526B1 (fr) * 2008-11-20 2011-01-07 Rhodia Operations Phosphate de cerium et/ou de terbium, eventuellement avec du lanthane, luminophore issu de ce phosphate et procedes de preparation de ceux-ci
TWI356890B (en) * 2008-12-31 2012-01-21 Wistron Corp Backlight module and related manufacturing method
JP5833918B2 (ja) 2009-02-26 2015-12-16 日亜化学工業株式会社 蛍光体及びその製造方法並びにこれを用いた発光装置
WO2010109365A1 (en) * 2009-03-23 2010-09-30 Koninklijke Philips Electronics N.V. Optically pumped solid-state laser and lighting system comprising said solid-state laser
JP5612355B2 (ja) * 2009-07-15 2014-10-22 株式会社Kanzacc メッキ構造及び電気材料の製造方法
JP5558787B2 (ja) * 2009-11-13 2014-07-23 電気化学工業株式会社 β型サイアロンの製造方法
WO2011115032A1 (ja) 2010-03-18 2011-09-22 株式会社東芝 白色発光ランプおよびそれを用いた白色led照明装置
WO2011145090A2 (en) * 2010-05-17 2011-11-24 Freespace Materials Ltd. Sorption pump with mechanical activation of getter material and process for capturing of active gases
US9062853B2 (en) * 2010-07-12 2015-06-23 National University Corporation Nagoya University Broadband infrared light emitting device
KR20170124614A (ko) * 2010-08-04 2017-11-10 우베 고산 가부시키가이샤 규질화물 형광체용 질화규소 분말 그리고 그것을 이용한 CaAlSiN3계 형광체, Sr2Si5N8계 형광체, (Sr, Ca)AlSiN3계 형광체 및 La3Si6N11계 형광체, 및 그 제조 방법
US9196785B2 (en) 2010-08-14 2015-11-24 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified quantum dot luminophores
US9614129B2 (en) 2010-08-14 2017-04-04 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified luminophores
DE102010034322A1 (de) 2010-08-14 2012-02-16 Litec-Lp Gmbh Oberflächenmodifizierter Silikatleuchtstoffe
US9234129B2 (en) 2010-08-14 2016-01-12 Seoul Semiconductor Co., Ltd. Surface-modified quantum dot luminophores
JP5864851B2 (ja) 2010-12-09 2016-02-17 シャープ株式会社 発光装置
RU2570450C2 (ru) * 2010-12-15 2015-12-10 Константин ЧУНТОНОВ Сорбционные аппараты для производства чистых газов
EP2546901A1 (en) * 2011-07-13 2013-01-16 Koninklijke Philips Electronics N.V. Wavelength converting element
JP6002772B2 (ja) * 2011-10-17 2016-10-05 グリレム アドヴァンスド マテリアルズ カンパニー リミテッドGrirem Advanced Materials Co.,Ltd. 窒化物赤色発光材料、それを含む発光素子及び発光デバイス
US9017574B2 (en) * 2011-12-19 2015-04-28 Lightscape Materials, Inc. Carbidonitride phosphors and LED lighting devices using the same
US8663502B2 (en) 2011-12-30 2014-03-04 Intematix Corporation Red-emitting nitride-based phosphors
KR101641378B1 (ko) 2011-12-30 2016-07-20 인터매틱스 코포레이션 전하 평형을 위한 침입형 양이온을 갖는 질화물 인광체
US9938460B2 (en) 2012-04-02 2018-04-10 National Taiwan University Phosphor, light emitting apparatus and method of forming phosphor
US8597545B1 (en) 2012-07-18 2013-12-03 Intematix Corporation Red-emitting nitride-based calcium-stabilized phosphors
CN105567234B (zh) * 2013-04-19 2017-12-22 四川新力光源股份有限公司 氮氧化物发光材料及其制备方法和应用、包含该氮氧化物的荧光粉以及由其制成的led光源
EP2803715B1 (en) * 2013-05-16 2020-02-26 LG Innotek Co., Ltd. Phosphor and light emitting device package including the same
BR112016007234B1 (pt) 2013-10-08 2022-02-22 Osram Opto Semiconductors Gmbh Fósforo para emissão de luz vermelha e seu processo de produção
JP6528418B2 (ja) * 2014-01-29 2019-06-12 日亜化学工業株式会社 蛍光体及びこれを用いた発光装置
KR101467808B1 (ko) * 2014-07-14 2014-12-03 엘지전자 주식회사 황색 발광 형광체 및 이를 이용한 발광 소자 패키지
JP6645429B2 (ja) 2014-08-07 2020-02-14 三菱ケミカル株式会社 蛍光体、発光装置、画像表示装置及び照明装置
WO2016063965A1 (ja) 2014-10-23 2016-04-28 三菱化学株式会社 蛍光体、発光装置、照明装置及び画像表示装置
CN104357054A (zh) * 2014-11-11 2015-02-18 河北利福化工科技有限公司 氮化物荧光粉前驱体、制备方法和氮化物荧光粉制备方法
CN104327854B (zh) * 2014-11-11 2016-05-18 河北利福化工科技有限公司 一种红色发光荧光粉及其制备方法
US10309588B2 (en) * 2016-08-11 2019-06-04 Abl Ip Holding Llc Luminaires with transition zones for glare control
JP6997799B6 (ja) 2017-09-30 2022-06-07 有研稀土新材料股▲フン▼有限公司 窒化物蛍光物質および当該蛍光物質を含む発光装置
TW202017209A (zh) * 2018-10-22 2020-05-01 隆達電子股份有限公司 具提升量子點信賴性的發光二極體封裝
CN113042160A (zh) * 2021-03-10 2021-06-29 南京华东电子真空材料有限公司 一种应用于极紫外设备的吸气剂及制备装置
CN113620262B (zh) * 2021-09-10 2022-12-23 渤海大学 稀土掺杂氮化硼纳米片的制备方法及纳米片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189291A (ja) * 1996-12-27 1998-07-21 High Frequency Heattreat Co Ltd 熱プラズマによる加熱処理装置
JPH11166179A (ja) * 1997-12-03 1999-06-22 Futaba Corp 蛍光体及びその製造方法
JP2003336050A (ja) * 2002-05-23 2003-11-28 Nichia Chem Ind Ltd 蛍光体
JP2005054182A (ja) * 2003-07-24 2005-03-03 Toyo Aluminium Kk 窒化アルミニウム系蛍光体及びその製造方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252148A (en) * 1989-05-27 1993-10-12 Tdk Corporation Soft magnetic alloy, method for making, magnetic core, magnetic shield and compressed powder core using the same
US6080954A (en) * 1996-12-27 2000-06-27 Neturen Co., Ltd Heat treatment method and apparatus using thermal plasma, and heat treated substance produced thereby
EP0854669B1 (en) * 1997-01-20 2003-03-26 Daido Steel Company Limited Soft magnetic alloy powder for electromagnetic and magnetic shield, and shielding members containing the same
US6558447B1 (en) * 1999-05-05 2003-05-06 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
JP3938820B2 (ja) 1999-06-28 2007-06-27 富士フイルム株式会社 希土類賦活アルカリ土類金属弗化ハロゲン化物系蛍光体の製造方法、および該製造方法により得られた希土類賦活アルカリ土類金属弗化ハロゲン化物系蛍光体を用いた放射線像変換パネル
EP1104799A1 (en) * 1999-11-30 2001-06-06 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Red emitting luminescent material
JP3668770B2 (ja) 2001-06-07 2005-07-06 独立行政法人物質・材料研究機構 希土類元素を付活させた酸窒化物蛍光体
US6632379B2 (en) * 2001-06-07 2003-10-14 National Institute For Materials Science Oxynitride phosphor activated by a rare earth element, and sialon type phosphor
DE10147040A1 (de) 2001-09-25 2003-04-24 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Beleuchtungseinheit mit mindestens einer LED als Lichtquelle
JP2003171661A (ja) * 2001-12-06 2003-06-20 Konica Corp 蛍光体の製造方法及び蛍光体
JP4868685B2 (ja) 2002-06-07 2012-02-01 日亜化学工業株式会社 蛍光体
JP2004131677A (ja) * 2002-10-10 2004-04-30 Kasei Optonix Co Ltd 2価金属珪酸塩蛍光体及びその製造方法、並びにその蛍光体を用いた蛍光体ペースト組成物及び真空紫外線励起発光素子
JP4218328B2 (ja) * 2002-11-29 2009-02-04 日亜化学工業株式会社 窒化物蛍光体及びそれを用いた発光装置
JP4009828B2 (ja) * 2002-03-22 2007-11-21 日亜化学工業株式会社 窒化物蛍光体及びその製造方法
CA2447288C (en) 2002-03-22 2011-10-04 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
JP4096619B2 (ja) 2002-05-17 2008-06-04 松下電器産業株式会社 プラズマディスプレイ装置の製造方法
MY149573A (en) * 2002-10-16 2013-09-13 Nichia Corp Oxynitride phosphor and production process thereof, and light-emitting device using oxynitride phosphor
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP4124056B2 (ja) 2003-08-14 2008-07-23 昭栄化学工業株式会社 蛍光体粉末の製造方法
JP2005068169A (ja) * 2003-08-21 2005-03-17 Sumitomo Chemical Co Ltd Eu付活蛍光体
JP3837588B2 (ja) 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP4362625B2 (ja) 2004-02-18 2009-11-11 独立行政法人物質・材料研究機構 蛍光体の製造方法
JP3931239B2 (ja) 2004-02-18 2007-06-13 独立行政法人物質・材料研究機構 発光素子及び照明器具
JP4511849B2 (ja) * 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、光源、並びにled
JP4210761B2 (ja) 2004-03-12 2009-01-21 独立行政法人物質・材料研究機構 蛍光体とその製造方法
EP1742096A4 (en) * 2004-04-26 2008-10-01 Mitsubishi Chem Corp BLUE COLOR COMPOSITION FOR A COLOR FILTER, COLOR FILTER, AND COLOR FILTER DISPLAY EQUIPMENT
KR100865624B1 (ko) * 2004-04-27 2008-10-27 파나소닉 주식회사 형광체 조성물과 그 제조 방법, 및 그 형광체 조성물을이용한 발광 장치
WO2005104767A2 (en) * 2004-04-27 2005-11-10 Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University Method to synthesize highly luminescent doped metal nitride powders
JP2005336450A (ja) 2004-04-27 2005-12-08 Matsushita Electric Ind Co Ltd 蛍光体組成物とその製造方法、並びにその蛍光体組成物を用いた発光装置
JP4128564B2 (ja) 2004-04-27 2008-07-30 松下電器産業株式会社 発光装置
JP4422653B2 (ja) 2004-07-28 2010-02-24 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、並びに光源
JP2006052363A (ja) 2004-08-16 2006-02-23 Konica Minolta Medical & Graphic Inc 蛍光体及びその製造方法並びにプラズマディスプレイパネル
JP4729278B2 (ja) 2004-08-30 2011-07-20 Dowaエレクトロニクス株式会社 蛍光体及び発光装置
JP2006077079A (ja) 2004-09-08 2006-03-23 Konica Minolta Medical & Graphic Inc 蛍光体の製造方法及び蛍光体並びにプラズマディスプレイパネル
JP4979194B2 (ja) 2005-01-21 2012-07-18 東洋アルミニウム株式会社 窒化アルミニウム系蛍光体
EP1845146B1 (en) 2005-01-31 2015-03-04 Ube Industries, Ltd. Red emitting nitride phosphor and process for producing the same
CN101138278A (zh) 2005-03-09 2008-03-05 皇家飞利浦电子股份有限公司 包括辐射源和荧光材料的照明系统
CN103254894A (zh) 2005-04-01 2013-08-21 三菱化学株式会社 无机功能材料原料用合金粉末及荧光体
CN101171321B (zh) * 2005-04-01 2013-06-05 三菱化学株式会社 无机功能材料原料用合金粉末及荧光体
CN1281708C (zh) * 2005-05-23 2006-10-25 彩虹集团电子股份有限公司 一种阴极射线发光材料的制备方法
CN1305999C (zh) * 2005-05-23 2007-03-21 彩虹集团电子股份有限公司 橡胶块状回收荧光粉的洗净方法
WO2006126567A1 (ja) 2005-05-24 2006-11-30 Mitsubishi Chemical Corporation 蛍光体及びその利用
JP4215046B2 (ja) 2005-11-24 2009-01-28 日亜化学工業株式会社 窒化物蛍光体及びそれを用いた発光装置
JP2008163078A (ja) 2006-12-27 2008-07-17 Stanley Electric Co Ltd 蛍光体及びそれを用いた発光装置
WO2008133077A1 (ja) * 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 無機化合物の製造方法、蛍光体、蛍光体含有組成物、発光装置、照明装置及び画像表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10189291A (ja) * 1996-12-27 1998-07-21 High Frequency Heattreat Co Ltd 熱プラズマによる加熱処理装置
JPH11166179A (ja) * 1997-12-03 1999-06-22 Futaba Corp 蛍光体及びその製造方法
JP2003336050A (ja) * 2002-05-23 2003-11-28 Nichia Chem Ind Ltd 蛍光体
JP2005054182A (ja) * 2003-07-24 2005-03-03 Toyo Aluminium Kk 窒化アルミニウム系蛍光体及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1867695A1 *

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451401B2 (en) 2006-04-19 2013-05-28 Mitsubishi Chemical Corporation Color image display device
JP2008135707A (ja) * 2006-10-31 2008-06-12 Toshiba Lighting & Technology Corp 発光装置
JP2008127509A (ja) * 2006-11-22 2008-06-05 Mitsubishi Chemicals Corp 蛍光体、蛍光体含有組成物、発光装置、画像表示装置、照明装置、及び蛍光体の製造方法
JP2008230873A (ja) * 2007-03-19 2008-10-02 Osaka Univ 蛍光体原料用金属材料、及び蛍光体の製造方法、蛍光体、並びに蛍光体含有組成物、発光装置、画像表示装置及び照明装置
US8992797B2 (en) 2007-04-18 2015-03-31 Mitsubishi Chemical Corporation Phosphor and production method thereof, phosphor-containing composition, light emitting device, illuminating device, display, and nitrogen-containing compound
WO2008132954A1 (ja) 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置、画像表示装置、並びに窒素含有化合物
EP2141216A1 (en) * 2007-04-18 2010-01-06 Mitsubishi Chemical Corporation Phosphor and method for producing the same, phosphor-containing composition, light-emitting device, illuminating device, image display device, and nitrogen-containing compound
CN101663372A (zh) * 2007-04-18 2010-03-03 三菱化学株式会社 荧光体及其制造方法、含荧光体组合物、发光装置、照明装置、图像显示装置以及含氮化合物
US20100085728A1 (en) * 2007-04-18 2010-04-08 Mitsubishi Chemical Corporation Phosphor and production method thereof, phosphor-containing composition, light emitting device, illuminating device, display, and nitrogen-containing compound
EP2141216A4 (en) * 2007-04-18 2011-03-02 Mitsubishi Chem Corp PHOSPHOR AND PRODUCTION METHOD THEREFOR, PHOSPHOR-CONTAINING COMPOSITION, LIGHT-EMITTING DEVICE, ILLUMINATION DEVICE, IMAGE DISPLAY DEVICE, AND NITROGEN-CONTAINING COMPOUND
US8398890B2 (en) 2007-04-18 2013-03-19 Mitsubishi Chemical Corporation Phosphor and production method thereof, phosphor-containing composition, light emitting device, illuminating device, display, and nitrogen-containing compound
EP2060614A3 (en) * 2007-11-14 2009-07-08 Cree, Inc. Cerium and europium doped phosphor compositions and light emitting devices including the same
US8119028B2 (en) 2007-11-14 2012-02-21 Cree, Inc. Cerium and europium doped single crystal phosphors
EP2481786A1 (en) * 2007-11-14 2012-08-01 Cree, Inc. Cerium and europium doped phosphor compositions and light emitting devices including the same
US8597543B2 (en) 2007-11-14 2013-12-03 Cree, Inc. Cerium and europium doped phosphor compositions and light emitting devices including the same
US20150315464A1 (en) * 2008-05-19 2015-11-05 Intematix Corporation Nitride-Based Red-Emitting Phosphors in RGB (Red-Green-Blue) Lighting Systems
US20130234586A1 (en) * 2008-05-19 2013-09-12 Intematix Corporation Nitride-Based Red-Emitting Phosphors in RGB (Red-Green-Blue) Lighting Systems
US8951440B2 (en) * 2008-05-19 2015-02-10 Intematix Corporation Nitride-based red-emitting phosphors in RGB (red-green-blue) lighting systems
WO2010114061A1 (ja) 2009-03-31 2010-10-07 三菱化学株式会社 蛍光体、蛍光体の製造方法、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
JP2011072388A (ja) * 2009-09-29 2011-04-14 Panasonic Corp Led照明光源及び照明装置
US8926864B2 (en) 2010-05-13 2015-01-06 Denki Kagaku Kogyo Kabushiki Kaisha Method of producing β-SiAION, β-SiAION, and products using the same
WO2011142228A1 (ja) * 2010-05-13 2011-11-17 電気化学工業株式会社 β型サイアロンの製造方法、β型サイアロン及びその利用製品
JP5852564B2 (ja) * 2010-05-13 2016-02-03 デンカ株式会社 β型サイアロンの製造方法
JP2013163726A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置
JP2013163727A (ja) * 2012-02-09 2013-08-22 Denki Kagaku Kogyo Kk 蛍光体及び発光装置
JP2014019872A (ja) * 2012-07-13 2014-02-03 Rohm & Haas Electronic Materials Llc 蛍光体およびこれを含む発光素子
JP2014077119A (ja) * 2012-08-29 2014-05-01 Lightscape Materials Inc オキシ炭窒化物蛍光体および蛍光体を使用するデバイス
WO2021157458A1 (ja) * 2020-02-07 2021-08-12 デンカ株式会社 蛍光体プレート、及び発光装置
KR20210145006A (ko) 2020-05-22 2021-12-01 주식회사 유제이엘 적색 질화물 형광체의 제조방법
WO2023037728A1 (ja) * 2021-09-08 2023-03-16 デンカ株式会社 蛍光体粉末、及び発光装置
WO2023037727A1 (ja) * 2021-09-08 2023-03-16 デンカ株式会社 蛍光体粉末、及び発光装置
KR20230059523A (ko) 2021-10-26 2023-05-03 주식회사 유제이엘 내습성 적색 형광체, 이의 제조방법 및 이를 포함하는 발광 장치

Also Published As

Publication number Publication date
EP1867695A4 (en) 2013-03-27
KR20070116972A (ko) 2007-12-11
EP2781575A2 (en) 2014-09-24
US8801970B2 (en) 2014-08-12
TWI597348B (zh) 2017-09-01
KR20140016976A (ko) 2014-02-10
TWI433908B (zh) 2014-04-11
US20090134775A1 (en) 2009-05-28
US20100052515A1 (en) 2010-03-04
CN103361046B (zh) 2016-02-03
EP2781575A3 (en) 2015-02-18
KR101241488B1 (ko) 2013-03-08
EP1867695A1 (en) 2007-12-19
TW200710203A (en) 2007-03-16
CN103361046A (zh) 2013-10-23
KR20140063899A (ko) 2014-05-27
CN104759615A (zh) 2015-07-08
KR101346580B1 (ko) 2014-01-02
US7824573B2 (en) 2010-11-02
KR101471883B1 (ko) 2014-12-12
KR20130042058A (ko) 2013-04-25
KR20130010095A (ko) 2013-01-25
TW201341506A (zh) 2013-10-16
TWI522446B (zh) 2016-02-21
CN103131410A (zh) 2013-06-05
CN103254894A (zh) 2013-08-21
US8460580B2 (en) 2013-06-11
KR101422046B1 (ko) 2014-07-23
US20130214675A1 (en) 2013-08-22
TW201529806A (zh) 2015-08-01

Similar Documents

Publication Publication Date Title
KR101346580B1 (ko) 무기 기능재 원료용 합금 분말 및 형광체
JP5130640B2 (ja) 蛍光体の製造方法
JP4548549B1 (ja) 蛍光体の製造方法
US8123980B2 (en) Nitrogen-containing alloy and method for producing phosphor using same
JP5353192B2 (ja) 蛍光体、及びその製造方法
JP2007291352A (ja) 蛍光体及びそれを使用した発光装置
JP5239182B2 (ja) 蛍光体及びそれを使用した発光装置
JP5332136B2 (ja) 窒素含有合金、及びそれを使用した蛍光体の製造方法
JP4840778B2 (ja) 蛍光体の製造方法、蛍光体、並びに蛍光体含有組成物、発光装置、画像表示装置及び照明装置
JP2012207228A (ja) 蛍光体及びそれを使用した発光装置
JP5130639B2 (ja) 蛍光体及びそれを使用した発光装置
JP2009221318A (ja) 蛍光体の製造方法、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP5403134B2 (ja) 蛍光体及びそれを使用した発光装置
JP2008013627A (ja) 蛍光体の製造方法、蛍光体原料用合金粉末及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015862.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2006730851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006730851

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 1020077025384

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006730851

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11910320

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020137000182

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020137008922

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020137033409

Country of ref document: KR