WO2023037728A1 - 蛍光体粉末、及び発光装置 - Google Patents

蛍光体粉末、及び発光装置 Download PDF

Info

Publication number
WO2023037728A1
WO2023037728A1 PCT/JP2022/026112 JP2022026112W WO2023037728A1 WO 2023037728 A1 WO2023037728 A1 WO 2023037728A1 JP 2022026112 W JP2022026112 W JP 2022026112W WO 2023037728 A1 WO2023037728 A1 WO 2023037728A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
light
particles
casn
phosphor particles
Prior art date
Application number
PCT/JP2022/026112
Other languages
English (en)
French (fr)
Inventor
駿介 三谷
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023546793A priority Critical patent/JPWO2023037728A1/ja
Priority to KR1020247010466A priority patent/KR20240051239A/ko
Priority to CN202280060137.9A priority patent/CN117940532A/zh
Publication of WO2023037728A1 publication Critical patent/WO2023037728A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present disclosure relates to phosphor powders and light emitting devices.
  • Light-emitting devices having light-emitting elements are used for general lighting, backlights for liquid crystal displays, and LED displays.
  • An LED display uses, for example, a light-emitting element that has a light-emitting element that emits blue light and a wavelength converter that absorbs primary light from the light-emitting element and emits light of a different wavelength.
  • Various phosphors such as a red phosphor and a green phosphor are used as the wavelength converter.
  • CASN-based phosphors such as cousin (CASN) phosphors and escasun (SCASN) phosphors are known (for example, Patent Document 1, etc.). These CASN-based phosphors are generally synthesized by heating raw material powders containing europium oxide or europium nitride, calcium nitride, silicon nitride, and aluminum nitride.
  • An object of the present disclosure is to provide a phosphor powder containing a red phosphor capable of exhibiting a large chromaticity X of the cured resin layer when dispersed in a resin to form a cured resin layer.
  • Another object of the present disclosure is to provide a light-emitting device that includes the phosphor powder described above and is capable of exhibiting excellent color reproducibility.
  • the present disclosure provides the following [1] to [7].
  • [1] including a plurality of CASN-based phosphor particles, A phosphor powder, wherein, among the CASN-based phosphor particles, phosphor particles having a particle diameter of 1 ⁇ m or more have an average unevenness of 0.981 or more.
  • [2] The phosphor powder according to [1], wherein, among the CASN-based phosphor particles, the standard deviation of the unevenness of the phosphor particles having a particle diameter of 1 ⁇ m or more is less than 0.025.
  • a light-emitting device comprising: a light-emitting element that emits primary light; and a wavelength converter that absorbs part of the primary light and emits secondary light having a longer wavelength than the primary light, A light-emitting device, wherein the wavelength converter contains the phosphor powder according to any one of [1] to [6].
  • One aspect of the present disclosure is a phosphor powder comprising a plurality of CASN-based phosphor particles, wherein among the CASN-based phosphor particles, the phosphor particles having a particle diameter of 1 ⁇ m or more have an average unevenness of 0.981 or more. I will provide a.
  • the phosphor powder contains a CASN phosphor useful as a red phosphor, and among the CASN phosphor particles, particles having a particle diameter of 1 ⁇ m or more have a relatively large average irregularity.
  • the cured resin layer can exhibit a large chromaticity X.
  • the reason for such an effect is not clear, but by having the above-mentioned average unevenness, the filling property of the phosphor particles in the cured resin layer is increased, the excitation light transmittance from the blue LED is reduced, and the color We presume that the degree X can be made larger. Further, by setting the chromaticity X to a large value, it is possible to improve the color reproducibility of a display element manufactured using the CASN phosphor.
  • the standard deviation of the unevenness of particles having a particle diameter of 1 ⁇ m or more may be less than 0.025.
  • the dispersion of the phosphor particles in the phosphor powder is suppressed, so that the fillability into the cured resin layer or the like can be further improved.
  • variation in properties among phosphor particles filled in the cured resin layer can be further suppressed.
  • the average aspect ratio of particles having a particle diameter of 1 ⁇ m or more may be 1.275 or less.
  • the main crystal phase constituting the CASN-based phosphor may have the same structure as the CaAlSiN3 crystal phase.
  • the phosphor powder is represented by the general formula: ( CaxSryEuz ) AlSiN3 , where 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1, and 0 ⁇ z ⁇ 1 may be satisfied. .
  • the phosphor powder may have an emission peak wavelength of 605 to 670 nm.
  • One aspect of the present disclosure is a light-emitting device that includes a light-emitting element that emits primary light, and a wavelength converter that absorbs part of the primary light and emits secondary light having a longer wavelength than the primary light.
  • a light-emitting device is provided, wherein the wavelength converter contains the phosphor powder described above.
  • the above light emitting device contains the above phosphor powder as a wavelength converter, it can exhibit excellent color reproducibility.
  • a phosphor powder containing a red phosphor capable of exhibiting a large chromaticity X of the cured resin layer when dispersed in a resin to form a cured resin layer.
  • a light-emitting device that includes the phosphor powder described above and can exhibit excellent color reproducibility.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • the “steps” in the present specification may be steps independent of each other or steps performed simultaneously.
  • the phosphor powder is a powder containing a plurality of CASN-based phosphor particles.
  • a phosphor powder is an aggregate of phosphor particles.
  • the phosphor powder may be an aggregate of CASN-based phosphor particles.
  • the CASN-based phosphor means a CASN phosphor, an SCASN phosphor, or a phosphor having the same crystal structure as these.
  • the phosphor powder is represented by the general formula: ( CaxSryEuz ) AlSiN3 , where 0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1, and 0 ⁇ z ⁇ 1 may be satisfied. .
  • the main crystal phase has the same crystal structure as the CaAlSiN3 crystal phase, and is represented by the general formula: ( CaxSryEuz ) AlSiN3 .
  • the CASN-based phosphor may contain a different phase within the scope of the present disclosure.
  • the crystal structure of phosphor particles can be confirmed by powder X-ray diffraction.
  • the contents of Ca (calcium), Sr (strontium), Eu (europium), Al (aluminum), Si (silicon), and N (nitrogen) in the composition of the phosphor particles are obtained by pressure acid decomposition of the measurement object. can be determined by quantitative analysis using an ICP emission spectrometer. Since the elemental composition of the phosphor particles corresponds to the ratio of each element charged when producing the phosphor particles, the elemental composition of the phosphor particles can also be estimated from the raw material composition.
  • the average unevenness (average value of unevenness) of the phosphor particles having a particle diameter of 1 ⁇ m or more among the aggregate of phosphor particles has a large value.
  • the average unevenness of the phosphor particles having a particle diameter of 1 ⁇ m or more is 0.981 or more. It's okay.
  • the lower limit value of the average degree of unevenness is within the above range, when a cured resin layer is formed by dispersing it in a resin, the filling property of the phosphor particles in the cured resin layer is increased, and light from a light source such as a blue LED is increased.
  • the excitation light transmittance can be reduced and the value of chromaticity X can be made larger.
  • the upper limit of the average unevenness of phosphor particles having a particle diameter of 1 ⁇ m or more may be, for example, less than 1.000, 0.999 or less, or 0.998 or less.
  • the average unevenness of phosphor particles having a particle diameter of 1 ⁇ m or more may be adjusted within the above range. .999.
  • the upper limit of the standard deviation of the unevenness of the phosphor particles having a particle diameter of 1 ⁇ m or more is, for example, less than 0.025, 0.023 or less, 0.020 or less, or 0.019.
  • the upper limit of the standard deviation is within the above range, the surface variation of the particles in the phosphor powder is further suppressed, and when forming a cured resin layer dispersed in a resin, the phosphor for the cured resin layer It is possible to increase the filling properties of the particles, reduce the excitation light transmittance from a light source such as a blue LED, and increase the value of the chromaticity X.
  • the lower limit of the standard deviation of the unevenness of the CASN phosphor particles is not particularly limited, but it may generally be 0.005 or more, 0.006 or more, or 0.008 or more.
  • the standard deviation of the unevenness of CASN phosphor particles may be adjusted within the above range, and may be, for example, 0.005 or more and less than 0.025, or 0.006 to 0.019.
  • the unevenness in the present specification is a value calculated by the following formula, where PE is the enveloping perimeter of the phosphor particles and P is the perimeter of the phosphor particles.
  • the enveloping perimeter is the length of the perimeter of the figure connecting the convex portions of the phosphor particles at the shortest distance, and the perimeter is the length of the outline in the projected image of the phosphor particles.
  • a particle shape image analyzer can be used to measure the unevenness.
  • the particle shape image analyzer for example, "PITA-04" (trade name) manufactured by Seishin Enterprise Co., Ltd. can be used.
  • the upper limit of the average aspect ratio (average aspect ratio) of phosphor particles having a particle diameter of 1 ⁇ m or more is, for example, 1.275 or less, 1.250 or less, or 1.230 or less. , 1.210 or less, 1.200 or less, or 1.150 or less.
  • the upper limit of the average aspect ratio is within the above range, so that when a cured resin layer is formed by dispersing it in a resin, the filling property of the phosphor particles in the cured resin layer is increased, and light from a light source such as a blue LED is increased.
  • the excitation light transmittance can be reduced and the value of chromaticity X can be made larger.
  • the lower limit of the average aspect ratio of the phosphor particles having a particle diameter of 1 ⁇ m or more is, for example, 1.000 or more, 1.010 or more, 1.020 or more, 1.030 or more, or It may be 1.040 or more.
  • the average aspect ratio of phosphor particles having a particle diameter of 1 ⁇ m or more may be adjusted within the above range, for example, 1.000 to 1.275, 1.040 to 1.210. , or from 1.040 to 1.150.
  • the upper limit of the average circle equivalent diameter of phosphor particles having a particle size of 1 ⁇ m or more is, for example, 15.0 ⁇ m or less, 10.0 ⁇ m or less, 7.0 ⁇ m or less, or 5.0 ⁇ m or less.
  • the phosphor powder can be made more useful when used for micro LED displays.
  • the lower limit of the average equivalent circle diameter of phosphor particles having a particle size of 1 ⁇ m or more is, for example, 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, It may be 0.6 ⁇ m or greater, 0.8 ⁇ m or greater, 1.0 ⁇ m or greater, 1.5 ⁇ m or greater, or 1.8 ⁇ m or greater.
  • the lower limit of the average equivalent circle diameter is within the above range, it is possible to further improve the absorptance with respect to excitation light even when the phosphor powder is dispersed in the cured resin.
  • the average circle equivalent diameter of the phosphor particles having a particle size of 1 ⁇ m or more may be adjusted within the above-described range, for example, 0.1 to 15.0 ⁇ m, 0.4 to 5.0 ⁇ m. It may be 0 ⁇ m, 1.0-5.0 ⁇ m, or 1.5-5.0 ⁇ m.
  • the average unevenness, the standard deviation of the unevenness, the average aspect ratio, and the average circle equivalent diameter in the present specification are values determined by image analysis of phosphor particles having a particle diameter of 1 ⁇ m or more, and are as follows. It is the value measured by the method. First, a phosphor powder to be measured is put into purified water containing a surfactant, and subjected to ultrasonic treatment for 1 minute to prepare a dispersion liquid, which is used as a measurement sample. For the dispersion liquid, an observed image of the phosphor particles is obtained by using a particle shape image analysis device at a suction pump speed of 3000 Hz and a lens magnification of 10 times during measurement.
  • the unevenness, aspect ratio, and circle equivalent diameter are determined from the data of the obtained particle image.
  • the number of phosphor particles to be observed is 5,000, and each average value is the arithmetic mean value of the data obtained for 5,000 particles.
  • the particle shape image analysis device for example, "PITA-04" (trade name) manufactured by Seishin Enterprise Co., Ltd. can be used.
  • the phosphor powder described above is useful, for example, as a red phosphor.
  • the emission peak wavelength of the phosphor powder described above may be, for example, 605-670 nm, 620-650 nm, or 630-650 nm.
  • the lower limit of the chromaticity X of the phosphor powder described above is, for example, 0.620 or more, 0.630 or more, 0.650 or more, 0.660 or more, 0.663 or more, or 0.665 or more. can.
  • the upper limit of the chromaticity X of the phosphor powder can be 0.72 or less, 0.700 or less, or 0.690 or less.
  • the phosphor powder described above may be used alone or in combination with other phosphors. Since the phosphor powder according to the present disclosure exhibits excellent chromaticity X, it can be suitably used for light-emitting devices such as LEDs, display devices, and the like.
  • the phosphor powder may be dispersed in the cured resin and used.
  • the curable resin is not particularly limited, and for example, a resin used as a sealing resin for light emitting devices or the like can be used.
  • An embodiment of a light-emitting device includes a light-emitting element that emits primary light, and a wavelength converter that absorbs part of the primary light and emits secondary light having a longer wavelength than the primary light. It is a device.
  • the wavelength converter contains the phosphor powder described above.
  • a light-emitting element that emits primary light may be, for example, an InGaN blue LED or the like.
  • the light emitting element and the wavelength converter may be dispersed in a sealing resin or the like.
  • the phosphor powder as described above can be directly produced, for example, by the following method, or can be prepared by mixing phosphor particles with different particle sizes.
  • An example of a method for producing a phosphor powder includes a step of obtaining a fired product by heat-treating a mixed powder containing a calcium source, an aluminum source, a silicon source, a nitrogen source, and a europium source (a firing step); A step of obtaining an annealed product by heat treatment at a temperature lower than the temperature of the heat treatment in the firing step (annealing step), a step of pulverizing the annealing step to obtain a pulverized product (pulverization step), It has a step of reducing the content of fine particles in the pulverized material (classifying step) and a step of acid-treating the pulverized material to obtain a phosphor powder (acid treatment step).
  • the mixed powder in the firing step contains a calcium source, an aluminum source, a silicon source, a nitrogen source, and a europium source, and may contain other components.
  • Other components include, for example, a strontium source.
  • the calcium source, aluminum source, silicon source, nitrogen source, europium source, and strontium source are respectively Ca (calcium), Al (aluminum), Si (silicon), N (nitrogen), Eu (europium) and Sr (strontium) means a compound or element that serves as a source of Sr (strontium).
  • the compound refers to a compound having the supplied element as a constituent element.
  • europium nitride when europium nitride is added to the mixed powder, the europium nitride serves as both a nitrogen source and a europium source.
  • a compound having Ca as a constituent element may be any of nitrides, oxides, oxynitrides and hydroxides, preferably nitrides.
  • Calcium compounds include, for example, calcium nitride (Ca 3 N 2 ).
  • aluminum compounds examples include aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), and aluminum hydroxide (Al(OH) 3 ).
  • silicon compounds include silicon nitride (Si 3 N 4 ) and silicon oxide (SiO 2 ). Silicon nitride having a high ⁇ fraction is preferably used. The ⁇ fraction of silicon nitride may be, for example, 80% by mass or more, 90% by mass or more, or 95% by mass or more. When the ⁇ fraction of silicon nitride is within the above range, the growth of primary particles of the inorganic compound can be promoted.
  • Europium compounds include, for example, europium oxide (europium oxide), europium nitride (europium nitride), and europium halide.
  • europium halides include europium fluoride, europium chloride, europium bromide, and europium iodide.
  • the europium compound preferably comprises europium oxide.
  • the valence of europium in the europium compound may be divalent or trivalent, preferably divalent.
  • Europium which constitutes the europium compound, can be solid-dissolved in the CASN-based phosphor, volatilized and removed during the heat treatment, or left as a heterogeneous component through the firing process.
  • the hetero-phase component containing europium can be a factor in lowering the luminance of the phosphor powder, but the component can be reduced or removed by acid treatment or the like, which will be described later.
  • the different phase has a low absorptance with respect to excitation light, it may remain in the phosphor powder, and europium may be contained in such a different phase.
  • Strontium compounds include, for example, strontium nitride (Sr 3 N 2 ).
  • the mixed powder can be prepared by weighing and mixing each compound. Dry mixing or wet mixing may be used for mixing.
  • the dry mixing method may be, for example, a method of mixing each component using a small mill mixer, a V-type mixer, a rocking mixer, a ball mill, a vibrating mill, and the like.
  • the wet mixing method may be, for example, a method of adding a solvent such as water or a dispersion medium to prepare a solution or slurry, mixing the components, and then removing the solvent or dispersion medium.
  • agglomerates can be removed using a sieve or the like, if necessary.
  • the mixing step is preferably performed in an inert gas atmosphere.
  • the inert gas atmosphere includes, for example, a rare gas atmosphere and a nitrogen gas atmosphere, preferably a nitrogen gas atmosphere.
  • Preparation of the mixed powder is preferably carried out under a nitrogen atmosphere under a low relative humidity environment.
  • the heat treatment in the firing process and the annealing process may be performed, for example, by filling the mixed powder or the like to be subjected to heat treatment into a heat-resistant container with a lid and heating the whole container.
  • a heat-resistant container for example, a container made of tungsten can be used.
  • An electric furnace or the like can be used for heating.
  • the above mixed powder is heat-treated to obtain a fired product.
  • the firing temperature in the firing process may be constant throughout the process.
  • the firing temperature in the firing step may be, for example, 1450° C. or higher, 1500° C. or higher, 1600° C. or higher, 1800° C. or higher, or 1900° C. or higher.
  • the lower limit of the firing temperature is within the above range, the growth of the primary particles of the CASN phosphor can be promoted, and the light absorption rate and quantum efficiency of the CASN phosphor particles can be further improved. can. This makes it possible to further reduce the half width of the fluorescence peak of the obtained phosphor powder.
  • the firing temperature in the firing step may be, for example, 2100° C. or lower, 2050° C. or lower, or 2000° C. or lower.
  • the sintering temperature in the sintering step can be adjusted within the range described above, and may be, for example, 1450-2100°C, 1500-2100°C, or 1500-2000°C.
  • the rate of temperature increase, firing time, pressure during firing, etc. can be appropriately adjusted according to the components, composition ratio, amount, etc. of the mixed powder.
  • the lower limit of the firing time in the firing step may be, for example, 0.5 hours or longer, 1.0 hours or longer, 1.5 hours or longer, 3.0 hours or longer, or 4.0 hours or longer.
  • the upper limit of the firing time in the firing step is, for example, 30.0 hours or less, 20.0 hours or less, 15.0 hours or less, 12.0 hours or less, 10.0 hours or less, 8.0 hours or less, or 5 0 hours or less.
  • the firing time in the firing step can be adjusted within the above range, for example, 0.5 to 30.0 hours, 3.0 to 30.0 hours, 4.0 to 12.0 hours, or 4.0 to 8.0 hours. It can be 0 hours.
  • the firing process is desirably performed in an atmosphere containing at least one selected from the group consisting of rare gases and inert gases.
  • the rare gas may contain, for example, argon, helium, etc., may contain argon, or may consist of argon.
  • the inert gas may contain, for example, nitrogen or may consist of nitrogen.
  • the firing process may be performed under atmospheric pressure or under pressure.
  • the lower limit of the firing pressure in the firing process is, for example, 0.025 MPaG or more, 0.03 MPaG or more, 0.050 MPaG or more, 0.100 MPaG or more, 0.150 MPaG or more, 0 .300 MPaG or greater, 0.500 MPaG or greater, 0.600 MPaG or greater, 0.800 MPaG or greater, or 0.830 MPaG or greater.
  • the upper limit of the firing pressure in the firing step may be, for example, 10.0 MPaG or less, 8.00 MPaG or less, 5.00 MPaG or less, 3.00 MPaG or less, or 1.00 MPaG or less.
  • the pressure of the firing process can be adjusted within the above range, for example, 0.025 to 10.00 MPaG, 0.030 to 8.00 MPaG, 0.030 to 5.00 MPaG, or 0.030 to 1.00 MPaG. good. Pressure herein means gauge pressure.
  • the annealing step is a step of obtaining an annealed product by heat-treating the fired product at a temperature lower than the heat treatment temperature in the firing step. From the viewpoint of improving the effect of the heat treatment in the annealing step, when the fired product is obtained as a lump, it may be subjected to the annealing step after being crushed and classified.
  • the conditions for pulverization and classification may be, for example, the conditions described in the later-described pulverization step and classification step.
  • the temperature of the heat treatment in the annealing process be constant throughout the process.
  • the upper limit of the heat treatment temperature in the annealing step is adjusted to be equal to or lower than the heat treatment temperature in the firing step. °C or lower, or 1400 °C or lower.
  • the lower limit of the heat treatment temperature in the annealing step may be, for example, 1200° C. or higher, 1250° C. or higher, or 1300° C. or higher.
  • the lower limit of the temperature By setting the lower limit of the temperature within the above range, distortion and defects in the crystal phase are reduced by rearrangement of the elements constituting the crystal phase contained in the fired product, and the luminous efficiency of the obtained phosphor powder. can be further improved. Further, by setting the lower limit of the temperature within the above range, it is possible to improve the transparency of the CASN-based phosphor particles by reducing crystal distortion and defects. A different phase may be formed by this step, but it can be sufficiently removed by a classification step, an acid treatment step, etc., which will be described later.
  • the temperature of the heat treatment in the annealing step can be adjusted within the range described above, and may be, for example, 1200-1700°C, 1300-1600°C, or 1300-1400°C.
  • the lower limit of the heat treatment time in the annealing step may be, for example, 1.5 hours or longer, 3.0 hours or longer, 4.0 hours or longer, or 5.0 hours or longer.
  • the upper limit of the heat treatment time in the annealing step may be, for example, 12.0 hours or less, 11.0 hours or less, or 10.0 hours or less.
  • the heat treatment time in the annealing step can be adjusted within the above range, and may be, for example, 3.0 to 12.0 hours, or 5.0 to 10.0 hours.
  • the annealing step may be performed in an atmosphere containing at least one selected from the group consisting of rare gases, reducing gases, and inert gases, or may be performed in a non-oxidizing atmosphere other than pure nitrogen, such as vacuum. good.
  • the rare gas may contain, for example, argon, helium, etc., may contain argon, or may consist of argon.
  • the reducing gas may contain, for example, ammonia, hydrocarbons, carbon monoxide, hydrogen, or the like, and may contain or consist of hydrogen.
  • the inert gas may contain, for example, nitrogen, or may consist of nitrogen.
  • the annealing step is preferably performed under a hydrogen gas atmosphere or an argon atmosphere.
  • the annealing process may be performed under atmospheric pressure or under pressure.
  • the lower limit of the pressure of the atmosphere in which the annealing process is performed may be, for example, 0.01 MPaG or more, or 0.02 MPaG or more.
  • the upper limit of the pressure of the atmosphere in which the annealing process is performed may be, for example, 10.00 MPaG or less, 8.00 MPaG or less, or 5.00 MPaG or less.
  • the pressure of the firing process can be adjusted within the above range, and can be, for example, 0.02-10.00 MPaG.
  • the pulverization step is, for example, a step of pulverizing or pulverizing the annealed material in the annealing step to adjust the particle size and improve the unevenness of the CASN phosphor particles.
  • crushing or pulverizing the annealed product it is desirable to perform under moderate conditions from the viewpoint of suppressing the occurrence of scratches and cracks on the surface of the phosphor particles and the occurrence of defects inside the phosphor particles. .
  • a ball mill is preferably used as a grinder in the grinding process.
  • the pulverization step is preferably performed by wet ball mill pulverization in which an aqueous solution such as ion-exchanged water is allowed to coexist.
  • the aqueous solution may contain other components of ion-exchanged water.
  • Other components contained in the aqueous solution include lower alcohols, organic solvents such as acetone, and dispersants such as sodium hexametaphosphate, sodium pyrophosphate (Napp), trisodium phosphate (TSP), and surfactants. is mentioned.
  • the lower limit of the amount of the aqueous solution is, for example, 0.1% by volume or more, 0.3% by volume or more, 0.5% by volume or more, or 1.0% by volume or more, based on the total volume of the annealed product. It's okay.
  • the upper limit of the content of the aqueous solution may be, for example, 60% by volume or less, 50% by volume or less, 45% by volume or less, or 40% by volume or less based on the total volume of the annealed product.
  • the blending amount of the aqueous solution may be adjusted within the above range, and may be, for example, 1.0 to 45% by volume based on the total volume of the annealed product.
  • the balls used in the ball mill can be zirconia balls.
  • the ball diameter may be, for example, 0.2-20.0 mm, 0.5-10.0 mm, or 1.0-5.0 mm. If the conditions are not met, it is difficult to keep the average degree of unevenness and the standard deviation of the degree of unevenness within the predetermined ranges, and it is difficult for the resulting phosphor powder to exhibit desired color reproducibility.
  • the filling rate of the balls into the container during ball milling can be adjusted according to the particle size such as unevenness and circle equivalent diameter required for the phosphor powder.
  • the lower limit of the pulverization time (pulverization time) in the pulverization step is, for example, 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, 8 hours or more, It may be 9 hours or more, 10 hours or more, or 12 hours or more.
  • the upper limit of the pulverization time may be, for example, 80 hours or less, 70 hours or less, 60 hours or less, 40 hours or less, 30 hours or less, or 24 hours or less.
  • the milling time may be adjusted within the ranges described above, and may be, for example, 1-60 hours, 4-40 hours, or 10-24 hours.
  • the classification process is a process for removing the fine particles in the pulverized material generated by the pulverization process.
  • the decantation method may be used.
  • the classification step is carried out by putting the pulverized material into a dispersion medium, preparing a dispersion liquid, stirring the mixture, allowing the phosphor powder in the dispersion liquid to precipitate, and removing the supernatant. After removing the supernatant, the precipitate is collected by filtration and dried to obtain a phosphor powder from which fine particles have been removed.
  • the dispersion medium may be, for example, an aqueous solution containing ion-exchanged water or the like.
  • the dispersion liquid contains, for example, organic solvents such as lower alcohols and acetone, and dispersing agents such as sodium hexametaphosphate, sodium pyrophosphate (Napp), and trisodium phosphate (TSP) and surfactants. etc. may further be included.
  • organic solvents such as lower alcohols and acetone
  • dispersing agents such as sodium hexametaphosphate, sodium pyrophosphate (Napp), and trisodium phosphate (TSP) and surfactants. etc. may further be included.
  • the dispersion liquid For the preparation of the dispersion liquid, it is preferable to use, for example, dispersion treatment using ultrasonic waves.
  • ultrasonic waves By using ultrasonic waves, the fine particles in the pulverized material can be removed more accurately and efficiently. This can further suppress aggregation of fine particles in the obtained phosphor powder.
  • the phosphor particles are precipitated and recovered by allowing the dispersion to stand or by centrifuging.
  • the particles of the fine particles to be removed can be arbitrarily determined, and the precipitation conditions for removing the fine particles can be determined using the Stokes formula shown by the following formula (1).
  • the fine particles may be, for example, a group of particles having an average particle size of less than 0.4 ⁇ m.
  • v s [D p 2 ( ⁇ p ⁇ f )g]/18 ⁇ Equation (1)
  • v s indicates the terminal velocity [unit: cm / s]
  • D p indicates the particle diameter of the phosphor particles [unit: cm]
  • ⁇ p indicates the density of the phosphor particles [unit: g/cm 3 ]
  • ⁇ f is the density of the dispersion medium (fluid) [unit: g/cm 3 ]
  • g is the gravitational acceleration [unit: cm/s 2 ]
  • is the dispersion medium (fluid ) shows the viscosity [unit: g/(cm ⁇ s)].
  • the sedimentation distance is arbitrarily determined, and the particle size of the fine particles to be removed is determined.
  • the target particle diameter D p to be removed, the gravitational acceleration g of 1 G, and various values specific to the phosphor particles and the dispersion medium (the density ⁇ p of the phosphor particles, the density ⁇ f of the dispersion medium, and the dispersion
  • the viscosity ⁇ ) of the medium is substituted into the Stokes equation shown in the above equation (1) to calculate the terminal velocity vs as the sedimentation velocity.
  • the standing time is calculated from the calculated settling velocity and settling distance. After the dispersion liquid is prepared and the standing time calculated as described above has elapsed, the supernatant is removed, thereby removing the target fine particles to be removed and fine particles having a smaller particle diameter than that. .
  • the sedimentation distance and sedimentation time are set, and the particle size of the fine particles to be removed is determined.
  • the target particle diameter D p to be removed, the terminal velocity v s , and various values unique to the phosphor particles and the dispersion medium (the density of the phosphor particles ⁇ p , the density of the dispersion medium ⁇ f , and the dispersion medium is substituted into the Stokes formula shown in the above formula (1) to calculate the gravitational acceleration g.
  • the number of rotations to be performed in the centrifuge is determined from the relationship between the number of rotations inherent in the centrifuge and the gravitational acceleration calculated as described above.
  • centrifugation is performed for the initially set sedimentation time based on the rotation speed calculated as described above, and then the supernatant is removed to obtain the target fine particles to be removed and more. Fine particles with a small particle diameter can be removed.
  • the classification process may be performed by repeating the decantation method described above multiple times.
  • the acid treatment process is a process for reducing the content of impurities that do not contribute to light emission by acid-treating the phosphor powder.
  • acids include hydrochloric acid, hydrofluoric acid, sulfuric acid, phosphoric acid, and nitric acid.
  • the acid may contain at least one selected from the group consisting of hydrochloric acid, hydrofluoric acid, sulfuric acid, phosphoric acid, and nitric acid, and may be a mixed acid.
  • Hydrochloric acid is preferred as the acid.
  • the acid concentration may be, for example, 0.5-1M.
  • the acid treatment step is performed by bringing the pulverized material into contact with the acid described above. Specifically, the above pulverized material is put into an aqueous solution containing the above acid to prepare a dispersion liquid, which is then treated for a predetermined time while being stirred.
  • the lower limit of the stirring time may be, for example, 0.15 hours or longer, 0.50 hours or longer, or 1.00 hours or longer.
  • the upper limit of the stirring time may be, for example, 6.00 hours or less, 3.00 hours or less, or 1.50 hours or less.
  • the acid treatment may be performed while the aqueous solution is cooled or heated.
  • the temperature of the aqueous solution at this time may be, for example, 20 to 90°C, 40 to 90°C, or 50 to 70°C.
  • the phosphor powder may be washed with water to remove the acid and dried.
  • the temperature during drying may be, for example, 100-120°C.
  • the drying time may be, for example, about 12 hours.
  • Example 1 ⁇ Method for producing phosphor powder>
  • ⁇ -type silicon nitride Si 3 N 4 , manufactured by Ube Industries, Ltd., SN-E10 grade
  • AlN aluminum nitride
  • Ca 3 N 2 calcium nitride
  • Sr 3 N 2 strontium nitride
  • the above raw material powder was filled in a tungsten container with a lid.
  • the lidded container was taken out from the glove box, placed in an electric furnace equipped with a carbon heater, and then sufficiently evacuated until the pressure in the electric furnace became 0.1 PaG or less.
  • the temperature inside the electric furnace was raised to 850° C. while the evacuation was continued.
  • nitrogen gas was introduced into the electric furnace, and the pressure inside the electric furnace was adjusted to 0.85 MPaG.
  • the temperature in the electric furnace was raised to 1930° C. in a nitrogen gas atmosphere, and after reaching that temperature, heat treatment was performed for 4 hours (firing step). After that, heating was terminated and the mixture was allowed to cool to room temperature. After cooling to room temperature, the lump was collected from the container. The collected lumps were pulverized and pulverized by a jet mill to obtain fired powder.
  • the sintered powder was filled in a container made of tungsten with a lid. After the lidded container was placed in an electric furnace equipped with a carbon heater, the electric furnace was sufficiently evacuated to a pressure of 0.1 PaG or less. The temperature inside the electric furnace was raised to 850° C. while the evacuation was continued. After reaching 850° C., argon gas was introduced into the electric furnace, and the pressure inside the electric furnace was adjusted to 0.03 MPaG. After that, in an atmosphere of argon gas, heat treatment was performed for 4 hours while the temperature in the electric furnace was maintained at 1350° C. (annealing step). After that, heating was terminated and the mixture was allowed to cool to room temperature. After cooling to room temperature, the lump was collected from the vessel. The collected lumps were pulverized with a mortar to obtain an annealed powder.
  • the obtained annealed powder was placed in a ball mill and wet-pulverized for 15 hours to prepare a pulverized material (pulverization step). At this time, zirconia balls with a diameter of 5 mm were used as the balls, and the amount of ion-exchanged water was adjusted to 3.13% by volume based on the total volume of the annealed powder. A red powder was obtained as a pulverized product.
  • the red powder was immersed in 0.5 M hydrochloric acid so that the powder concentration was 26.7% by mass, and then subjected to acid treatment by stirring while heating for 1 hour (acid treatment step). After the acid treatment, the stirring was terminated and the powder was allowed to settle, and the supernatant and fine powder generated by the acid treatment were removed. After that, distilled water was further added and stirred again. Stirring was terminated, the powder was precipitated, and the supernatant and fine powder were removed. This operation was repeated until the pH of the aqueous solution was 8 or less and the supernatant liquid became transparent, and the resulting precipitate was filtered and dried in the atmosphere to obtain a phosphor powder.
  • Example 2 Phosphor powder was obtained in the same manner as in Example 1, except that the pulverized material obtained by the pulverizing step was subjected to a classification treatment described below to reduce the fine particle content and obtain a red powder.
  • the pulverized product is dispersed in an aqueous solution containing 0.05% by mass of sodium hexametaphosphate to prepare a dispersion solution, which is filled in a cylindrical container having an inlet at a predetermined height from the bottom, and decantation is performed. By removing the supernatant, fine particles were removed from the pulverized product (classification step).
  • Example 3 Phosphor powder was obtained in the same manner as in Example 2, except that the pulverization time in the pulverization step was changed to 20 hours.
  • Example 4 A phosphor powder was obtained in the same manner as in Example 2, except that the classification process was changed to remove particles having a particle size of 2.0 ⁇ m or less.
  • Example 5 The compounding ratio of silicon nitride, aluminum nitride, calcium nitride, strontium nitride, and europium oxide was changed as shown in Table 1, the firing temperature in the firing process was 1550 ° C., the firing time was 12 hours, and the atmosphere during firing was changed. The pressure was changed to 0.03 MPaG, the heat treatment temperature in the annealing step was changed to 1350 ° C., the heat treatment time was changed to 4 hours, and the diameter of the balls was changed to 1 mm in the crushing step. Phosphor powder was obtained in the same manner as in Example 2, except that the amount of exchanged water was changed to 4.17% by volume.
  • Example 2 The compounding ratio of silicon nitride, aluminum nitride, calcium nitride, strontium nitride, and europium oxide was changed as shown in Table 1, the firing temperature in the firing process was changed to 1650 ° C., and the pulverization process and the classification process were performed. A phosphor powder was obtained in the same manner as in Example 1, except that it was changed so as not to be performed.
  • composition formula of phosphor powder The phosphor powders obtained in Examples 1 to 5 and Comparative Examples 1 to 3 have the general formula: (Ca x Sr y Eu z )AlSiN 3 from the composition ratio of the raw material composition. It was confirmed that the composition satisfies the conditions of 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, and 0 ⁇ z ⁇ 1.
  • a particle shape image analyzer (manufactured by Seishin Enterprise Co., Ltd., trade name: PITA-04) is used to observe the phosphor particles at a suction pump speed of 3000 Hz and a lens magnification of 10 times during measurement. gone. The number of phosphor particles to be observed was 5,000. From the obtained particle image data, the unevenness, the average unevenness, the average aspect ratio, and the average circle equivalent diameter of the phosphor particles having a particle diameter of 1 ⁇ m or more were determined.
  • the phosphor powder to be measured was filled into the concave cell so that the surface was smooth, and attached to the opening of the integrating sphere.
  • a monochromatic light having a wavelength of 455 nm from a Xe lamp as a light emission source was introduced into the integrating sphere as excitation light for the phosphor using an optical fiber.
  • the phosphor powder to be measured was irradiated with the monochromatic light, which is the excitation light, and the fluorescence spectrum was measured.
  • a spectrophotometer manufactured by Otsuka Electronics Co., Ltd., trade name: MCPD-7000 was used for the measurement.
  • the number of excitation reflected light photons (Qref) and the number of fluorescence photons (Qem) were calculated.
  • the number of reflected excitation light photons was calculated in the same wavelength range as the number of excitation light photons, and the number of fluorescence photons was calculated in the range of 465 to 800 nm.
  • a standard reflector plate with a reflectance of 99% (Spectralon (registered trademark) manufactured by Labsphere) was attached to the aperture of the integrating sphere, and the spectrum of excitation light with a wavelength of 455 nm was measured. At that time, the number of excitation light photons (Qex) was calculated from the spectrum in the wavelength range of 450 to 465 nm.
  • the absorptivity of excitation light at 455 nm and the internal quantum efficiency of the phosphor powder to be measured were obtained based on the following calculation formulas.
  • Absorption rate of excitation light at 455 nm ((Qex-Qref)/Qex) x 100
  • Internal quantum efficiency (Qem/(Qex-Qref)) x
  • External quantum efficiency (Qem/Qex) x 100
  • the relational expressions among the external quantum efficiency, the absorptance of excitation light at 455 nm, and the internal quantum efficiency can be expressed as follows.
  • External quantum efficiency 455 nm light absorption rate x internal quantum efficiency
  • the wavelength of the emission peak of the phosphor powder was the wavelength that showed the highest intensity in the wavelength range of 465 to 800 nm in the spectrum data obtained by attaching the phosphor powder to the opening of the integrating sphere.
  • the sheet-like laminate is adjusted by using a roller having a gap of 50 ⁇ m added to the total thickness of the first fluororesin film and the second fluororesin film, and the thickness of the layer of the droplets is adjusted. Molded into a cured sheet.
  • the uncured sheet was heat-treated at 150°C for 60 minutes. After the heat treatment, the first fluororesin film and the second fluororesin film were separated to obtain a cured resin sheet having a film thickness of 50 ⁇ 5 ⁇ m and having phosphor dispersed therein.
  • the blue light emitting diode used for the measurement has a peak wavelength of 450 to 460 nm, a chromaticity X of 0.145 to 0.165, and a chromaticity Y of 0.023 to 0.037.
  • a phosphor powder containing a red phosphor capable of exhibiting a large chromaticity X of the cured resin layer when dispersed in a resin to form a cured resin layer.
  • a light-emitting device that includes the phosphor powder described above and can exhibit excellent color reproducibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

本開示の一側面は、CASN系蛍光体粒子を複数含み、上記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均凹凸度が0.985以上である、蛍光体粉末を提供する。

Description

蛍光体粉末、及び発光装置
 本開示は、蛍光体粉末、及び発光装置に関する。
 発光ダイオード等の発光素子を有する発光装置は、一般照明、液晶ディスプレイ用のバックライト、及びLEDディスプレイ等に使用されている。LEDディスプレイでは、例えば、青色に発光する発光素子と、発光素子からの一次光を吸収して、波長の異なる光とを発する波長変換体とを有する発光素子が用いられる。そして、波長変換体として、赤色蛍光体、緑色蛍光体等の各種蛍光体が用いられる。
 赤色蛍光体としては、カズン(CASN)蛍光体及びエスカズン(SCASN)蛍光体などのCASN系蛍光体が知られている(例えば、特許文献1等)。これらのCASN系蛍光体は、一般に、ユウロピウム酸化物又はユウロピウム窒化物と、カルシウム窒化物、ケイ素窒化物、及びアルミニウム窒化物と、を含む原料粉末を加熱することによって合成される。
国際公報第2005/052087号
 色再現性の高いLEDディスプレイを得る観点から、緑色蛍光体及び赤色蛍光体として、十分な発光強度を示す蛍光体を用いることが重要であり、マイクロLEDディスプレイのように、青色光及び紫外光等のLED上に緑色蛍光体又は赤色蛍光体を充填した硬化樹脂層を配置し、青色光及び紫外光等の一次光を励起光とする波長変換によってマルチカラー化を求める場合には、上記硬化樹脂層の高色域化を図ることが求められる。
 本開示は、樹脂に分散させ硬化樹脂層を形成した場合に、当該硬化樹脂層の大きな色度Xを発揮し得る赤色蛍光体を含む蛍光体粉末を提供することを目的とする。本開示はまた、上述の蛍光体粉末を備え、優れた色再現性を発揮し得る発光装置を提供することを目的とする。
 本開示は、以下の[1]~[7]を提供する。
[1]
 CASN系蛍光体粒子を複数含み、
 前記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均凹凸度が0.981以上である、蛍光体粉末。
[2]
 前記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の凹凸度の標準偏差が0.025未満である、[1]に記載の蛍光体粉末。
[3]
 前記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均アスペクト比が1.275以下である、[1]又は[2]に記載の蛍光体粉末。
[4]
 前記CASN系蛍光体を構成する主結晶相が、CaAlSiN結晶相と同一の構造を有する、[1]~[3]のいずれかに記載の蛍光体粉末。
[5]
 一般式:(CaSrEu)AlSiNで示され、前記一般式中、0≦x<1、0<y<1、及び0<z<1である、[1]~[4]のいずれかに記載の蛍光体粉末。
[6]
 発光ピークの波長が605~670nmである、[1]~[5]のいずれかに記載の蛍光体粉末。
[7]
 一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体と、を備える発光装置であって、
 前記波長変換体が、[1]~[6]のいずれかに記載の蛍光体粉末を含む、発光装置。
 本開示の一側面は、CASN系蛍光体粒子を複数含み、上記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均凹凸度が0.981以上である、蛍光体粉末を提供する。
 上記蛍光体粉末は、赤色蛍光体として有用なCASN系蛍光体を含み、上記CASN系蛍光体粒子のうち、粒子径が1μm以上である粒子についての平均凹凸度が比較的大きいものとなっており、樹脂に分散させ硬化樹脂層を形成した場合に、当該硬化樹脂層は大きな色度Xを発揮し得る。このような効果が奏される理由は定かではないが、上述の平均凹凸度を有することによって硬化樹脂層に対する蛍光体粒子の充填性を上げ、青色LEDからの励起光透過率を低減し、色度Xをより大きなものとすることができると、本発明者らは推定する。また、色度Xを大きな値とすることによって、当該CASN系蛍光体を使用して製造される表示素子の色再現性を向上させ得る。
 上記蛍光体粉末は、上記CASN系蛍光体粒子のうち、粒子径が1μm以上である粒子についての凹凸度の標準偏差が0.025未満であってもよい。上記凹凸度の標準偏差が低く抑制されることによって、蛍光体粉末中の蛍光体粒子のばらつきが抑制されることから、硬化樹脂層等への充填性がより向上され得る。また、硬化樹脂層に充填された蛍光体粒子間の性状のばらつきもより抑制されたものとなり得る。
 上記CASN系蛍光体粒子のうち、粒子径が1μm以上である粒子についての平均アスペクト比が1.275以下であってよい。
 上記CASN系蛍光体を構成する主結晶相が、CaAlSiN結晶相と同一の構造を有してよい。
 上記蛍光体粉末は、一般式:(CaSrEu)AlSiNで示され、上記一般式中、0≦x<1、0<y<1、及び0<z<1であってよい。
 上記蛍光体粉末は、発光ピークの波長が605~670nmであってよい。
 本開示の一側面は、一次光を発する発光素子と、上記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体と、を備える発光装置であって、上記波長変換体が、上述の蛍光体粉末を含む、発光装置を提供する。
 上記発光装置は、上述の蛍光体粉末を波長変換体として含むことから、優れた色再現性を発揮し得る。
 本開示によれば、樹脂に分散させ硬化樹脂層を形成した場合に、当該硬化樹脂層の大きな色度Xを発揮し得る赤色蛍光体を含む蛍光体粉末を提供できる。本開示によればまた、上述の蛍光体粉末を備え、優れた色再現性を発揮し得る発光装置を提供できる。
 以下、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書における「工程」とは、互いに独立した工程であってもよく、同時に行われる工程であってもよい。
 蛍光体粉末の一実施形態は、CASN系蛍光体粒子を複数含む粉末である。蛍光体粉末は、蛍光体粒子の集合であることを示す。蛍光体粉末は、CASN系蛍光体粒子からなる集合であってよい。上記CASN系蛍光体は、CASN蛍光体、SCASN蛍光体、又はこれらと同一の結晶構造を有する蛍光体を意味する。上記蛍光体粉末は、一般式:(CaSrEu)AlSiNで示され、上記一般式中、0≦x<1、0<y<1、及び0<z<1であってよい。上記CASN系蛍光体は、主結晶相がCaAlSiN結晶相と同一の結晶構造を有し、一般式:(CaSrEu)AlSiNで示される。上記一般式中、0≦x<1、0<y<1、及び0<z<1であってよい。上記CASN系蛍光体は、上記主結晶相に加えて、本開示の趣旨を損ねない範囲で異相を含んでもよい。
 蛍光体粒子の結晶構造は粉末X線回折法によって確認することができる。また蛍光体粒子の組成におけるCa(カルシウム)、Sr(ストロンチウム)、Eu(ユウロピウム)、Al(アルミニウム)、Si(ケイ素)、及びN(窒素)の含有量は、測定対象を加圧酸分解して試料溶液を調製し、これに対して、ICP発光分光分析装置を用いた定量分析によって決定することができる。なお、蛍光体粒子における元素組成は、蛍光体粒子を製造する際の各元素の仕込みの割合に対応することから、原料組成から蛍光体粒子の元素組成を推定することもできる。
 上記蛍光体粉末におけるCASN系蛍光体粒子は、蛍光体粒子の集合のうち、粒子径が1μm以上である蛍光体粒子の平均凹凸度(凹凸度の平均値)が大きな値となっている。上記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均凹凸度は0.981以上であるが、例えば、0.983以上、0.985以上、又は0.986以上であってよい。上記平均凹凸度の下限値が上記範囲内であることで、樹脂に分散させ硬化樹脂層を形成する場合に、当該硬化樹脂層に対する蛍光体粒子の充填性を上げ、青色LED等の光源からの励起光透過率を低減することができ、色度Xの値をより大きなものとすることができる。CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均凹凸度の上限値は、例えば、1.000未満、0.999以下、又は0.998以下であってよい。CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均凹凸度は上述の範囲内で調整してよく、例えば、0.981以上1.000未満、又は0.986~0.999であってよい。
 CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の凹凸度の標準偏差の上限値は、例えば、0.025未満、0.023以下、0.020以下、又は0.019以下であってよい。上記標準偏差の上限値が上記範囲内であることで、蛍光体粉末中の粒子の表面のばらつきがより抑制され、樹脂に分散させ硬化樹脂層を形成する場合に、当該硬化樹脂層に対する蛍光体粒子の充填性を上げ、青色LED等の光源からの励起光透過率を低減することができ、色度Xの値をより大きなものとすることができる。CASN系蛍光体粒子の凹凸度の標準偏差の下限値は、特に限定されるものではないが、通常、0.005以上、0.006以上、又は0.008以上であってよい。CASN系蛍光体粒子の凹凸度の標準偏差は上述の範囲内で調整してよく、例えば、0.005以上0.025未満、又は0.006~0.019であってよい。
 本明細書における凹凸度とは、蛍光体粒子の包絡周囲長をPEとし、蛍光体粒子の周囲長をPとしたときに、以下の式で算出される値である。なお、包絡周囲長とは、蛍光体粒子の凸部を最短で結んだ図形の周囲の長さであり、周囲長とは、蛍光体粒子の投影画像における輪郭線の長さである。凹凸度の測定には、粒子形状画像解析装置を用いることができる。粒子形状画像解析装置としては、例えば、株式会社セイシン企業製の「PITA-04」(商品名)等を用いることができる。なお、本明細書における粒子径が1μm以上とは、凹凸度等の性状を測定する際に、測定装置によって検出することができ、充分な精度で所望の物性値を測定するために設定する数値として規定したものでありる。測定装置によって、粒子径が1μm以上である粒子を測定対象とするように設定してもよい。測定装置によっては、1μm未満の粒子を検出することができない場合もある。
 凹凸度=PE/P
 CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均アスペクト比(アスペクト比の平均値)の上限値は、例えば、1.275以下、1.250以下、1.230以下、1.210以下、1.200以下、又は1.150以下であってよい。上記平均アスペクト比の上限値が上記範囲内であることで、樹脂に分散させ硬化樹脂層を形成する場合に、当該硬化樹脂層に対する蛍光体粒子の充填性を上げ、青色LED等の光源からの励起光透過率を低減することができ、色度Xの値をより大きなものとすることができる。CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均アスペクト比の下限値は、例えば、1.000以上、1.010以上、1.020以上、1.030以上、又は1.040以上であってよい。CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均アスペクト比は上述の範囲内で調整してよく、例えば、1.000~1.275、1.040~1.210、又は1.040~1.150であってよい。
 CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均円相当径の上限値は、例えば、15.0μm以下、10.0μm以下、7.0μm以下、又は5.0μm以下であってよい。上記平均円相当径の上限値が上記範囲内であることで、蛍光体粉末をマイクロLEDディスプレイ用に用いる際により有用なものとすることができる。CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均円相当径の下限値は、例えば、0.1μm以上、0.2μm以上、0.3μm以上、0.4μm以上、0.6μm以上、0.8μm以上、1.0μm以上、1.5μm以上、又は1.8μm以上であってよい。上記平均円相当径の下限値が上記範囲内であることで、蛍光体粉末を硬化樹脂中に分散した状態にあっても励起光に対する吸収率をより向上させることができる。CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均円相当径は上述の範囲内で調整してよく、例えば、0.1~15.0μm、0.4~5.0μm、1.0~5.0μm、又は1.5~5.0μmであってよい。
 本明細書における平均凹凸度、凹凸度の標準偏差、平均アスペクト比、及び平均円相当径は、粒子径が1μm以上である蛍光体粒子の画像解析によって決定される値であり、以下のような方法で測定される値である。まず測定対象となる蛍光体粉末を、界面活性剤を含む精製水中に投入し、1分間超音波処理を行うことで分散液を調製し、測定サンプルとする。当該分散液について、粒子形状画像解析装置を用いて、測定時の吸引ポンプ速度を3000Hz、レンズ倍率を10倍として、蛍光体粒子の観測画像を取得する。得られた粒子画像のデータから、凹凸度、アスペクト比、及び円相当径を決定する。なお、観測する蛍光体粒子数は5000個とし、それぞれの平均値は、5000個について取得したデータの算術平均値とする。なお、粒子形状画像解析装置としては、例えば、株式会社セイシン企業製の「PITA-04」(商品名)等を用いることができる。
 上述の蛍光体粉末は、例えば、赤色蛍光体として有用である。上述の蛍光体粉末の発光ピークの波長は、例えば、605~670nm、620~650nm、又は630~650nmであってよい。
 上述の蛍光体粉末の色度Xの下限値は、例えば、0.620以上、0.630以上、0.650以上、0.660以上、0.663以上、又は0.665以上とすることができる。また上述の蛍光体粉末の色度Xの上限値は、0.72以下、0.700以下、又は0.690以下とすることができる。
 上述の蛍光体粉末は、単独で用いてもよく、その他の蛍光体と組み合わせて用いることもできる。本開示に係る蛍光体粉末は優れた色度Xを呈することから、例えば、LED等の発光装置、及び表示装置等に好適に使用できる。蛍光体粉末を硬化樹脂中に分散させて使用してもよい。硬化樹脂は、特に制限されず、例えば、発光装置等の封止樹脂として使用される樹脂等を用いることができる。
 発光装置の一実施形態は、一次光を発する発光素子と、上記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体と、を備える発光装置である。上記波長変換体が、上述の蛍光体粉末を含む。一次光を発する発光素子は、例えば、InGaN青色LED等であってよい。上記発光素子及び波長変換体は、封止樹脂等に分散されていてもよい。
 上述のような蛍光体粉末は、例えば、以下のような方法で直接製造することもでき、また粒度の異なる蛍光体粒子を混合することによって調製することもできる。蛍光体粉末の製造方法の一例は、カルシウム源、アルミニウム源、ケイ素源、窒素源、及びユウロピウム源を含む混合粉末を加熱処理することによって焼成物を得る工程(焼成工程)と、上記焼成物を上記焼成工程における加熱処理の温度よりも低い温度で加熱処理することでアニール処理物を得る工程(アニール工程)と、上記アニール工程を粉砕することによって粉砕物を得る工程(粉砕工程)と、上記粉砕物中の微粒子分の含有量を低減する工程(分級工程)と、上記粉砕物を酸処理して蛍光体粉末を得る工程(酸処理工程)と、を有する。
 焼成工程における混合粉末は、カルシウム源、アルミニウム源、ケイ素源、窒素源、及びユウロピウム源を含み、その他の成分を含んでもよい。その他の成分としては、例えば、ストロンチウム源等が挙げられる。ここで、カルシウム源、アルミニウム源、ケイ素源、窒素源、ユウロピウム源、及びストロンチウム源は、それぞれ、Ca(カルシウム)、Al(アルミニウム)、Si(ケイ素)、N(窒素)、Eu(ユウロピウム)及びSr(ストロンチウム)の供給源となるような化合物及び単体を意味する。当該化合物は、供給する元素を構成元素として有する化合物をいう。ここで、例えば、混合粉末に窒化ユウロピウムを配合した場合、窒化ユウロピウムは、窒素源であると同時にユウロピウム源でもある。
 Caを構成元素として有する化合物(カルシウム化合物)、Alを構成元素として有する化合物(アルミニウム化合物)、Siを構成元素として有する化合物(ケイ素化合物)、Euを構成元素として有する化合物(ユウロピウム化合物)、及びSrを構成元素として有する化合物(ストロンチウム化合物)は、それぞれ窒化物、酸化物、酸窒化物、及び水酸化物のいずれかであってよいが、好ましくは窒化物である。
 カルシウム化合物は、例えば、窒化カルシウム(Ca)等が挙げられる。
 アルミニウム化合物は、例えば、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、及び水酸化アルミニウム(Al(OH))等が挙げられる。
 ケイ素化合物は、例えば、窒化ケイ素(Si)、及び酸化ケイ素(SiO)等が挙げられる。窒化ケイ素としては、α分率の高いものを用いることが好ましい。窒化ケイ素のα分率は、例えば、80質量%以上、90質量%以上、又は95質量%以上であってよい。窒化ケイ素のα分率が上記範囲内であると、無機化合物の一次粒子の成長を促進することができる。
 ユウロピウム化合物は、例えば、ユウロピウムの酸化物(酸化ユウロピウム)、ユウロピウムの窒化物(窒化ユウロピウム)、及びユウロピウムのハロゲン化物等が挙げられる。ユウロピウムのハロゲン化物は、例えば、フッ化ユウロピウム、塩化ユウロピウム、臭化ユウロピウム、及びヨウ化ユウロピウム等が挙げられる。ユウロピウムの化合物は、好ましくは酸化ユウロピウムを含む。ユウロピウムの化物におけるユウロピウムの価数は、2価又は3価であってよく、好ましくは2価である。
 ユウロピウム化合物を構成するユウロピウムは焼成工程を経ることで、CASN系蛍光体に固溶されるもの、加熱処理の過程で揮発し除去されるもの、及び、異相成分として残存するもののいずれかになり得る。ユウロピウムを含有した異相成分は、蛍光体粉末の輝度を低下させる要因となり得るが、後述する酸処理等によって当該成分を低減又は除去することができる。また、励起光に対する吸収率が小さな異相であれば、蛍光体粉末中に残存していてもよく、このような異相にユウロピウムが含有されていてもよい。
 ストロンチウム化合物は、例えば、窒化ストロンチウム(Sr)等が挙げられる。
 上記混合粉末は、各化合物を秤量し、混合することによって調製できる。混合には、乾式混合法又は湿式混合法を用いてもよい。乾式混合法は、例えば、小型ミルミキサー、V型混合機、ロッキングミキサー、ボールミル、及び振動ミル等を用いて各成分を混合する方法であってよい。湿式混合法は、例えば、水等の溶媒又は分散媒を加えて溶液又はスラリーを調製し各成分を混合して、その後、溶媒又は分散媒を除去する方法であってよい。混合粉末の調製の際、装置等による化合物の混合の後、必要に応じて、篩等を用いて凝集物を除去することもできる。混合粉末を構成する化合物の酸化を抑制し、不純物の混入を抑制する観点から、上記混合工程は、不活性ガス雰囲気下で行うことが好ましい。不活性ガス雰囲気は、例えば、希ガス雰囲気、及び窒素ガス雰囲気が挙げられるが、好ましくは窒素ガス雰囲気である。混合粉末の調製は、好ましくは、窒素雰囲気下、相対湿度が低い環境下で行う。
 焼成工程及びアニール工程における加熱処理は、例えば、加熱処理の対象となる混合粉末等を耐熱性の蓋つき容器に充填し、容器ごと加熱することで行ってもよい。耐熱性の容器としては、例えば、タングステン製の容器などを使用できる。加熱は、電気炉等を用いることができる。
 焼成工程では、上述の混合粉末を加熱処理して焼成物を得る。
 焼成工程における焼成温度は、工程を通して一定であることが望ましい。焼成工程における焼成温度は、例えば、1450℃以上、1500℃以上、1600℃以上、1800℃以上、又は1900℃以上であってよい。上記焼成温度の下限値が上記範囲内であることで、CASN系蛍光体の一次粒子の成長を促進させることができ、CASN系蛍光体粒子の光吸収率、及び量子効率をより向上させることができる。これによって、得られる蛍光体粉末の蛍光ピークにおける半値幅を更に低下させることができる。焼成工程における焼成温度は、例えば、2100℃以下、2050℃以下、又は2000℃以下であってよい。上記焼成温度の上限値が上記範囲内であることで、CASN系蛍光体の一次粒子が分解することをより十分に抑制することができ、またCASN系蛍光体の一次粒子の過剰な成長を抑制することができ、凹凸度及び円相当径の調整が容易である。焼成工程における焼成温度は上述の範囲内で調整でき、例えば、1450~2100℃、1500~2100℃、又は1500~2000℃であってよい。
 焼成工程において、昇温速度、焼成時間、及び焼成時圧力等は、上記混合粉末の成分、組成比、及び量等に応じて、適宜調整することができる。
 焼成工程における焼成時間の下限値は、例えば、0.5時間以上、1.0時間以上、1.5時間以上、3.0時間以上、又は4.0時間以上であってよい。焼成工程における焼成時間の上限値は、例えば、30.0時間以下、20.0時間以下、15.0時間以下、12.0時間以下、10.0時間以下、8.0時間以下、又は5.0時間以下であってよい。焼成工程における焼成時間は上述の範囲内で調整でき、例えば、0.5~30.0時間、3.0~30.0時間、4.0~12.0時間、又は4.0~8.0時間であってよい。
 焼成工程は、希ガス、及び不活性ガスからなる群より選択される少なくとも一種を含む雰囲気下で行うことが望ましい。上記希ガスは、例えば、アルゴン、及びヘリウム等を含有してよく、アルゴンを含有してよく、アルゴンからなってもよい。不活性ガスは、例えば、窒素等を含有してよく、窒素からなってもよい。
 焼成工程は、大気圧下、又は加圧下で行われてよい。焼成工程を加圧環境下で行う場合、焼成工程の焼成時圧力の下限値は、例えば、0.025MPaG以上、0.03MPaG以上、0.050MPaG以上、0.100MPaG以上、0.150MPaG以上、0.300MPaG以上、0.500MPaG以上、0.600MPaG以上、0.800MPaG以上、又は0.830MPaG以上であってよい。焼成工程の焼成時圧力の上限値は、例えば、10.0MPaG以下、8.00MPaG以下、5.00MPaG以下、3.00MPaG以下、又は1.00MPaG以下であってよい。焼成工程の圧力は上述の範囲内で調整でき、例えば、0.025~10.00MPG、0.030~8.00MPaG、0.030~5.00MPaG、又は0.030~1.00MPaGであってよい。本明細書における圧力はゲージ圧を意味する。
 アニール工程は、上記焼成物を上記焼成工程における加熱処理の温度よりも低い温度で加熱処理することでアニール処理物を得る工程である。アニール工程における加熱処理の効果を向上させる観点から、上記焼成物が塊状物として得られる場合、これを解砕、分級等してからアニール工程に供してもよい。解砕、分級の条件は、例えば、後述する粉砕工程及び分級工程に記載の条件としてもよい。
 アニール工程における加熱処理の温度は、工程を通して一定であることが望ましい。アニール工程における加熱処理の温度の上限値は、上記焼成工程における加熱処理温度以下となるように調整し、例えば、1700℃以下、1650℃以下、1600℃以下、1550℃以下、1500℃以下、1450℃以下、又は1400℃以下であってよい。上記温度の上限値が上記範囲内であることで、発光中心の酸化反応を抑制し、光学特性の低下をより十分に防ぐことができる。アニール工程における加熱処理の温度の下限値は、例えば、1200℃以上、1250℃以上、又は1300℃以上であってよい。上記温度の下限値を上記範囲内とすることで、焼成物に含まれる結晶相を構成する元素の再配列等によって、結晶相中の歪みや欠陥を低減し、得られる蛍光体粉末の発光効率をより向上させることができる。また、上記温度の下限値を上記範囲内とすることで、結晶の歪みや欠陥を低減することによって、CASN系蛍光体粒子の透明性を向上させることもできる。当該工程によって、異相が形成される場合があるが、後述する分級工程、酸処理工程等によって十分に除去することができる。アニール工程における加熱処理の温度は上述の範囲内で調整でき、例えば、1200~1700℃、又は1300~1600℃、又は1300~1400℃であってよい。
 アニール工程における加熱処理の時間の下限値は、例えば、1.5時間以上、3.0時間以上、4.0時間以上、又は5.0時間以上であってよい。アニール工程における加熱処理の時間の上限値は、例えば、12.0時間以下、11.0時間以下、又は10.0時間以下であってよい。アニール工程における加熱処理の時間は上述の範囲内で調整でき、例えば、3.0~12.0時間、又は5.0~10.0時間であってよい。
 アニール工程は、希ガス、還元性ガス、及び不活性ガスからなる群より選択される少なくとも一種を含む雰囲気下で行ってよく、また真空中等の純窒素以外の非酸化性雰囲気下で行ってもよい。上記希ガスは、例えば、アルゴン、及びヘリウム等を含有してよく、アルゴンを含有してよく、アルゴンからなってもよい。上記還元性ガスは、例えば、アンモニア、炭化水素、一酸化炭素、及び水素等を含有してよく、水素を含有してよく、水素からなってもよい。上記不活性ガスは、例えば、窒素等を含有してよく、窒素からなってもよい。アニール工程は、好ましくは、水素ガス雰囲気下、又はアルゴン雰囲気下で行う。
 アニール工程は、大気圧下、又は加圧下で行われてよい。アニール工程を加圧環境下で行う場合、アニール工程の行う雰囲気の圧力の下限値は、例えば、0.01MPaG以上、又は0.02MPaG以上であってよい。アニール工程を行う雰囲気の圧力の上限値は、例えば、10.00MPaG以下、8.00MPaG以下、又は5.00MPaG以下であってよい。焼成工程の圧力は上述の範囲内で調整でき、例えば、0.02~10.00MPaGであってよい。
 粉砕工程は、例えば、アニール工程でアニール処理物を解砕又は粉砕し、粒度を調整すると共に、CASN系蛍光体粒子の凹凸度を向上させる工程である。アニール処理物の解砕又は粉砕の際には、蛍光体粒子の表面への傷、割れの発生、及び蛍光体粒子内部の欠陥の発生等を抑制する観点から、緩やかな条件で行うことが望ましい。
 粉砕工程では、好ましくは粉砕機として、ボールミルを使用する。粉砕工程は、イオン交換水等の水溶液を共存させた湿式におけるボールミル粉砕で行われることが望ましい。
 水溶液は、イオン交換水の他の成分を含んでもよい。水溶液に含有される他の成分としては、低級アルコール及びアセトン等の有機溶媒、並びに、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム(Napp)、リン酸三ナトリウム(TSP)、及び界面活性剤等の分散剤などが挙げられる。
 水溶液の配合量の下限値は、アニール処理物の全体積を基準として、例えば、0.1体積%以上、0.3体積%以上、0.5体積%以上、又は1.0体積%以上であってよい。水溶液の配合量の下限値を上記範囲内とすることで、より緩やかな条件でアニール処理物の粉砕を行うことができ、蛍光体としての光学特性の低下をより抑制することができる。水溶液の配合量の上限値は、アニール処理物の全体積を基準として、例えば、60体積%以下、50体積%以下、45体積%以下、又は40体積%以下であってよい。水溶液の配合量の上限値を上記範囲内とすることで、ボールによるアニール処理物の粉砕に加わる力を向上させ、CASN系蛍光体粒子の凹凸度をより高めることができる。水溶液の配合量は上述の範囲内で調整してよく、アニール処理物の全体積を基準として、例えば、1.0~45体積%であってよい。
 ボールミルに使用するボールは、ジルコニアボールを使用できる。ボールの直径は、例えば、0.2~20.0mm、0.5~10.0mm、又は1.0~5.0mmであってよい。この条件外である場合、平均凹凸度及び凹凸度の標準偏差を所定範囲内のものとすることが困難であり、得られる蛍光体粉末は所望の色再現性を発揮することが困難である。
 ボールミルの際の容器へのボールの充填率は、蛍光体粉末に求める凹凸度及び円相当径等の粒度に合わせて調整することができる。
 粉砕工程における粉砕処理の時間(粉砕時間)の下限値は、例えば、1時間以上、2時間以上、3時間以上、4時間以上、5時間以上、6時間以上、7時間以上、8時間以上、9時間以上、10時間以上、又は12時間以上であってよい。粉砕時間の下限値を上記範囲内とすることで、十分に細かい粉砕物を得ることができ、続く酸処理工程での酸処理効率をより向上させることができる。上記粉砕処理の時間の上限値は、例えば、80時間以下、70時間以下、60時間以下、40時間以下、30時間以下、又は24時間以下であってよい。粉砕時間の上限値を上記範囲内とすることで、アニール処理物の過剰な粉砕によって、蛍光体粒子の表面への傷、割れの発生、及び蛍光体粒子内部の欠陥の発生等することをより十分に抑制できる。粉砕時間は上述の範囲内で調整してよく、例えば、1~60時間、4~40時間、又は10~24時間であってよい。
 分級工程は、上記粉砕工程によって生じた、粉砕物中の微粒子分を除去する工程である。
 分級工程は、例えば、デカンテーション法を用いてよい。分級工程は、上記粉砕物を分散媒中に投入し、分散液を調製して撹拌した後、当該分散液中の蛍光体粉末を沈殿させ、上澄みを除去することによって行う。上澄み除去後、沈殿物をろ集し、乾燥させることで、微粒子分の除去された蛍光体粉末を得ることができる。分級工程では、上述の分散液の調製、上澄みの除去を繰り返し行ってよい。分散媒は、例えば、イオン交換水等を含む水溶液であってよい。分散液は上記分散媒に加えて、例えば、低級アルコール及びアセトン等の有機溶媒、並びに、ヘキサメタリン酸ナトリウム、ピロリン酸ナトリウム(Napp)、及びリン酸三ナトリウム(TSP)及び界面活性剤等の分散剤などを更に含んでもよい。
 分散液の調製には、例えば、超音波による分散処理を用いることが好ましい。超音波を用いることで、上記粉砕物中の微粒子分の除去をより高精度かつ効率よく行うことができる。これによって、得られる蛍光体粉末における微粒子分の凝集等を更に抑制できる。
 分散液を調製の後、分散液を静置すること又は遠心分離することによって蛍光体粒子を沈殿させ、回収する。除去したい微粒子分の粒子を任意に決定し、微粒子分を除去するための沈殿条件を、下記式(1)で示されるストークス式を用いて決定することができる。微粒子分としては、例えば、平均粒子径が0.4μm未満の粒子群であってよい。
 v=[D (ρ-ρ)g]/18η …式(1)
 上記式(1)中、vは終端速度[単位:cm/s]を示し、Dは蛍光体粒子の粒子径[単位:cm]を示し、ρは蛍光体粒子の密度[単位:g/cm]を示し、ρは分散媒(流体)の密度[単位:g/cm]を示し、gは重力加速度[単位:cm/s]を示し、ηは分散媒(流体)の粘度[単位:g/(cm・s)]を示す。
 例えば、分散液を静置して沈殿を生ぜしめる場合、まず、沈降距離を任意に決定し、除去したい微粒子の粒子径を決定する。次に、除去するターゲットとする粒子径D、1Gの重力加速度g、並びに、蛍光体粒子及び分散媒に固有の各種値(蛍光体粒子の密度ρ、分散媒の密度ρ、及び分散媒の粘度η)を上記式(1)で示されるストークス式に代入し、沈降速度としての終端速度vを算出する。算出された沈降速度と沈降距離とから、静置時間を算出する。分散液を調製後、上述のように算出された静置時間だけ経過した後に、上澄みを除去することによって、除去するターゲットとなる微粒子及びそれよりも粒子径の小さな微粒子分を除去することができる。
 また、遠心分離器を使用して、分散液中に沈殿を生ぜしめる場合、まず、沈降距離と沈降時間を設定し、除去したい微粒子の粒子径を決める。次に、除去するターゲットとする粒子径D、終端速度v、並びに、蛍光体粒子及び分散媒に固有の各種値(蛍光体粒子の密度ρ、分散媒の密度ρ、及び分散媒の粘度η)を上記式(1)で示されるストークス式に代入し、重力加速度gを算出する。遠心分離器に固有の回転数と、上述のように算出された重力加速度との関係から、遠心分離器で行う回転数を決定する。分散液を調製後、上述のように算出された回転数に基づいて、初めに設定した沈降時間だけ遠心分離を行った後に、上澄みを除去することによって、除去するターゲットとなる微粒子及びそれよりも粒子径の小さな微粒子分を除去することができる。
 分級工程は、上述のデカンテーション法を複数回繰り返すことによって行ってもよい。
 酸処理工程は、蛍光体粉末を酸処理することによって、発光に寄与しない不純物の含有量を低減する工程である。
 酸としては、例えば、塩酸、フッ化水素酸、硫酸、リン酸、及び硝酸等を挙げることができる。酸は、塩酸、フッ化水素酸、硫酸、リン酸、及び硝酸からなる群より選択される少なくとも1種を含んでよく、混酸であってよい。酸としては、塩酸が好ましい。酸の濃度は、例えば、0.5~1Mであってよい。
 酸処理工程は、上記粉砕物を上述の酸に接触させることによって行う。具体的には、上記酸を含む水溶液中に上述の粉砕物を投入し、分散液を調製して、撹拌しながら所定時間処理を行う。上記撹拌時間の下限値は、例えば、0.15時間以上、0.50時間以上、又は1.00時間以上であってよい。上記撹拌時間の上限値は、例えば、6.00時間以下、3.00時間以下、又は1.50時間以下であってよい。
 酸処理工程において、上記水溶液を冷却又は加温した状態で酸処理を行ってもよい。この際の水溶液の温度は、例えば、20~90℃、40~90℃、又は50~70℃であってよい。酸処理の後に、蛍光体粉末を水で洗浄し酸を除去して、乾燥させてもよい。乾燥の際の温度は、例えば、100~120℃であってよい。乾燥の際の時間は、例えば、12時間程度であってよい。
 以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
 以下、実施例及び比較例を参照して本開示の内容をより詳細に説明する。ただし、本開示は、下記の実施例に限定されるものではない。
(実施例1)
<蛍光体粉末の製造方法>
 窒素雰囲気に保持したグローブボックス中で容器に、25.7質量部のα型窒化ケイ素(Si、宇部興産株式会社製、SN-E10グレード)、22.5質量部の窒化アルミニウム(AlN、株式会社トクヤマ製、Eグレード)、3.0質量部の窒化カルシウム(Ca、Materion社製)、43.1質量部の窒化ストロンチウム(Sr、純度2N、株式会社高純度化学研究所製)、及び5.8質量部の酸化ユウロピウム(Eu、信越化学工業株式会社製、RUグレード)を測り取り、乾式混合することで原料粉末(混合粉末)を得た。
 グローブボックス内で、上記原料粉末をタングステン製の蓋つき容器に充填した。当該蓋つき容器をグローブボックスから取り出し、カーボンヒーターを備える電気炉内に配置した後、電気炉内の圧力が0.1PaG以下となるまで十分に真空排気した。真空排気を継続したまま、電気炉内の温度が850℃になるまで昇温した。850℃に到達した後、電気炉内に窒素ガスを導入し、電気炉内の圧力が0.85MPaGとなるように調整した。その後、窒素ガスの雰囲気下で、電気炉内の温度が1930℃になるまで昇温し、到達後はその温度を維持した状態で4時間かけて加熱処理を行った(焼成工程)。その後、加熱を終了し、室温まで冷却させた。室温まで冷却した後、容器から塊状物を回収した。回収した塊状物を、ジェットミルによって解砕、粉砕して、焼成粉末を得た。
 上記焼成粉末をタングステン製の蓋つき容器に充填した。当該蓋つき容器を、カーボンヒーターを備える電気炉内に配置した後、電気炉内の圧力が0.1PaG以下となるまで十分に真空排気した。真空排気を継続したまま、電気炉内の温度が850℃になるまで昇温した。850℃に到達した後、電気炉内にアルゴンガスを導入し、電気炉内の圧力が0.03MPaGとなるように調整した。その後、アルゴンガスの雰囲気下で、電気炉内の温度が1350℃に維持した状態で4時間かけて加熱処理を行った(アニール工程)。その後、加熱を終了し、室温まで冷却させた。室温まで冷却した後、容器から塊状物を回収した。回収した塊状物を、乳鉢によって解砕して、アニール処理粉末を得た。
 得られたアニール処理粉末をボールミルに入れ、湿式で15時間かけて粉砕処理を行うことによって、粉砕物を調製した(粉砕工程)。この際、ボールとして、直径5mmのジルコニアボールを使用し、アニール処理粉末の全体積を基準として、イオン交換水を配合量が3.13体積%となるように調整した。粉砕物として赤色粉末を得た。
 次に、上記赤色粉末を、粉末濃度が26.7質量%となるよう0.5Mの塩酸中に浸し、さらに加熱しながら1時間攪拌する酸処理を行った(酸処理工程)。酸処理後、撹拌を終了し粉体を沈殿させて、上澄み及び酸処理で生成した微粉を除去した。その後、蒸留水を更に加え再度撹拌した。撹拌を終了し粉体を沈殿させ上澄み及び微粉を除去した。かかる操作を水溶液のpHが8以下で、上澄み液が透明になるまで繰り返し、得られた沈殿物をろ過、大気雰囲気下で乾燥させることで、蛍光体粉末を得た。
(実施例2)
 粉砕工程によって得られた粉砕物を、後述する分級処理することによって、微粒子分が低減し、赤色粉末を得たこと以外は、実施例1と同様にして、蛍光体粉末を得た。上記粉砕物を、ヘキサメタリン酸Naを0.05質量%含む水溶液に対して分散させ分散溶液を調製し、これを、底部から所定高さに吸入口を備える円筒状容器に充填し、デカンテーション法によって、上澄みを除去することで上記粉砕物から微粒子分を除去した(分級工程)。なお、上記分級工程は、粒子径が1.5μm以下である粒子を除去する設定で、ストークス式を用い、蛍光体粒子の沈降時間を計算し、沈降開始から所定時間に達したと同時に、所定高さ以上の上澄み液を除去する方法で行った。上述のデカンテーション法による処理を複数回行ない、上記沈殿物をろ集し、乾燥させることによって微粒子分を除去した赤色粉末(微粒子分が低減された粉砕物)を得た。
(実施例3)
 粉砕工程における粉砕時間を20時間に変更したこと以外は、実施例2と同様にして、蛍光体粉末を得た。
(実施例4)
 分級工程を、粒子径が2.0μm以下である粒子を除去する設定に変更したこと以外は、実施例2と同様にして、蛍光体粉末を得た。
(実施例5)
 窒化ケイ素、窒化アルミニウム、窒化カルシウム、窒化ストロンチウム、及び酸化ユウロピウムの配合比を表1に記載のように変更し、焼成工程における焼成温度を1550℃とし、焼成時間を12時間とし、焼成時の雰囲気の圧力を0.03MPaGとなるように変更し、アニール工程における加熱処理温度を1350℃とし、加熱処理時間を4時間となるように変更し、さらに粉砕工程における、ボールの直径を1mmとし、イオン交換水の配合量を4.17体積%となるように変更した以外は、実施例2と同様にして、蛍光体粉末を得た。
(比較例1)
 粉砕工程及び分級工程を行わないように変更したこと以外は、実施例1と同様にして、蛍光体粉末を得た。
(比較例2)
 窒化ケイ素、窒化アルミニウム、窒化カルシウム、窒化ストロンチウム、及び酸化ユウロピウムの配合比を表1に記載のように変更し、焼成工程における焼成温度を1650℃となるように変更し、粉砕工程及び分級工程を行わないように変更したこと以外は、実施例1と同様にして、蛍光体粉末を得た。
(比較例3)
 窒化ケイ素、窒化アルミニウム、窒化カルシウム、窒化ストロンチウム、及び酸化ユウロピウムの配合比を表1に記載のように変更し、焼成工程における焼成温度を1950℃とし、焼成時間を8時間となるように変更し、粉砕工程及び分級工程を行わないように変更したこと以外は、実施例1と同様にして、蛍光体粉末を得た。
<蛍光体粉末の組成式>
 実施例1~5、及び比較例1~3で得られた蛍光体粉末は、原料組成の組成比から、いずれの蛍光体粉末についても、一般式:(CaSrEu)AlSiNで示され、0≦x<1、0<y<1、及び0<z<1の条件を満たす組成であることを確認した。
<蛍光体粉末にける結晶構造の確認>
 実施例1~5、及び比較例1~3で得られた蛍光体粉末について、X線回折装置(株式会社リガク製、商品名:UltimaIV)を用いた粉末X線回折法によってX線回折パターンを取得した。得られたX線回折パターンから結晶構造を確認した。得られたX線回折パターンのいずれについてもCaAlSiN結晶と同一の回折パターンが認められた。なお、測定には、CuKα線(特性X線)を用いた。
<蛍光体粉末の凹凸度、平均凹凸度、平均アスペクト比、及び平均円相当径の測定>
 実施例1~5、及び比較例1~3で得られた蛍光体粉末について、それぞれ、粒子径が1μm以上である蛍光体粒子の凹凸度、アスペクト比、及び円相当径の測定を行った。蛍光体粉末を、界面活性剤を含む精製水中に投入し、1分間超音波処理を行うことで分散液を調製し、測定サンプルとした。当該分散液について、粒子形状画像解析装置(株式会社セイシン企業製、商品名:PITA-04)を用いて、測定時の吸引ポンプ速度を3000Hz、レンズ倍率を10倍として、蛍光体粒子の観測を行った。観測する蛍光体粒子数は5000個とした。得られた粒子画像のデータから、粒子径が1μm以上である蛍光体粒子の凹凸度、平均凹凸度、平均アスペクト比、及び平均円相当径を決定した。
<455nmの光に対する光吸収率、内部量子効率、外部量子効率、及び発光ピーク波長の測定>
 実施例1~5及び比較例1~3で得られた蛍光体粉末について、それぞれ、波長455nmの励起光を照射した場合の光の吸収率(光吸収率)、内部量子効率及び外部量子効率を、以下の手順で算出した。結果を表1に示す。
 まず、測定対象である蛍光体粉末を、凹型セルに表面が平滑になるように充填し、積分球の開口部に取り付けた。発光光源であるXeランプから455nmの波長に分光した単色光を、光ファイバーを用いて蛍光体の励起光として上記積分球内に導入した。この励起光である単色光を測定対象である蛍光体粉末に照射し、蛍光スペクトルを測定した。測定には、分光光度計(大塚電子株式会社製、商品名:MCPD-7000)を用いた。
 得られた蛍光スペクトルのデータから、励起反射光フォトン数(Qref)及び蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は465~800nmの範囲で算出した。また同じ装置を用い、積分球の開口部に反射率が99%の標準反射板(Labsphere社製、スペクトラロン(登録商標))を取り付けて、波長が455nmの励起光のスペクトルを測定した。その際、450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
 上述の算出結果から、以下に示す計算式に基づいて、測定対象である蛍光体粉末の455nmの励起光の吸収率、及び内部量子効率を求めた。
 455nmの励起光の吸収率=((Qex-Qref)/Qex)×100
 内部量子効率=(Qem/(Qex-Qref))×100
 外部量子効率=(Qem/Qex)×100
 なお、上記式から外部量子効率と、455nmの励起光の吸収率、及び内部量子効率との関係式は以下のように表すことができる。
 外部量子効率=455nm光吸収率×内部量子効率
 蛍光体粉末の発光ピークの波長は、上記積分球の開口部に蛍光体粉末を取り付けて得られたスペクトルデータの、波長465~800nmの範囲で最も高い強度を示した波長とした。
<蛍光体粉末を分散させた硬化樹脂シートについての色度Xの測定>
[硬化樹脂シート(測定サンプル)の調製]
 まず、測定対象である蛍光体粉末40質量部と、シリコーン樹脂(東レ・ダウコーニング社製、商品名:OE-6630)60質量部と、を自転・公転ミキサーを用いて撹拌処理及び脱泡処理することによって均一な混合物(液体)を得た。次に、上記混合物を、透明な第一のフッ素樹脂フィルム上に滴下し、その滴下物の上からさらに透明な第二のフッ素樹脂フィルムを重ねることによって、シート状の積層物を得た。さらにシート状の積層物を、第一のフッ素樹脂フィルム及び第二のフッ素樹脂フィルムの合計厚みに50μmを加えたギャップを持つローラーを用いて、上記滴下物の層の厚みを調整して、未硬化シートに成形した。
 上記未硬化シートを、150℃、60分間の条件で加熱処理した。加熱処理の後、第一のフッ素樹脂フィルム及び第二のフッ素樹脂フィルムをはく離して、膜厚が50±5μmである、蛍光体が内部に分散した硬化樹脂シートを得た。
[色度Xの測定]
 450~460nmの範囲内にピーク波長を持つ青色発光ダイオード(青色LED)を用意した。当該青色LEDから発せられる青色光を樹脂硬化シートの一方の主面に対して照射し、樹脂硬化シートの他方の主面側から発せられる光の発光スペクトルを測定した。当該発光スペクトルの400~800nmの範囲の波長域におけるスペクトルデータから、JIS Z 8781-3:2016で規定されるXYZ表色系におけるCIE色度座標x値(色度X)をJIS Z 8724:2015「色の測定方法-光源色」の記載に準じて、算出することで求めた。Xの値が大きいほど、赤色蛍光体の赤色の表現領域が広がり、LEDディスプレイの高色域化につながることを意味する。
 なお、測定に用いた青色発光ダイオードは、ピーク波長が450~460nmであり、色度Xが0.145~0.165であり、色度Yが0.023~0.037である発光ダイオード(品番:SMT形、PLCC-6、0.2W、SMD 5050LED)を用いた。
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、樹脂に分散させ硬化樹脂層を形成した場合に、当該硬化樹脂層の大きな色度Xを発揮し得る赤色蛍光体を含む蛍光体粉末を提供できる。本開示によればまた、上述の蛍光体粉末を備え、優れた色再現性を発揮し得る発光装置を提供できる。

 

Claims (7)

  1.  CASN系蛍光体粒子を複数含み、
     前記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均凹凸度が0.981以上である、蛍光体粉末。
  2.  前記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の凹凸度の標準偏差が0.025未満である、請求項1に記載の蛍光体粉末。
  3.  前記CASN系蛍光体粒子のうち、粒子径が1μm以上である蛍光体粒子の平均アスペクト比が1.275以下である、請求項1又は2に記載の蛍光体粉末。
  4.  前記CASN系蛍光体を構成する主結晶相が、CaAlSiN結晶相と同一の構造を有する、請求項1又は2に記載の蛍光体粉末。
  5.  一般式:(CaSrEu)AlSiNで示され、前記一般式中、0≦x<1、0<y<1、及び0<z<1である、請求項1又は2に記載の蛍光体粉末。
  6.  発光ピークの波長が605~670nmである、請求項1又は2に記載の蛍光体粉末。
  7.  一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体と、を備える発光装置であって、
     前記波長変換体が、請求項1又は2に記載の蛍光体粉末を含む、発光装置。

     
PCT/JP2022/026112 2021-09-08 2022-06-29 蛍光体粉末、及び発光装置 WO2023037728A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023546793A JPWO2023037728A1 (ja) 2021-09-08 2022-06-29
KR1020247010466A KR20240051239A (ko) 2021-09-08 2022-06-29 형광체 분말 및 발광 장치
CN202280060137.9A CN117940532A (zh) 2021-09-08 2022-06-29 荧光体粉末、及发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-146399 2021-09-08
JP2021146399 2021-09-08

Publications (1)

Publication Number Publication Date
WO2023037728A1 true WO2023037728A1 (ja) 2023-03-16

Family

ID=85506479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026112 WO2023037728A1 (ja) 2021-09-08 2022-06-29 蛍光体粉末、及び発光装置

Country Status (5)

Country Link
JP (1) JPWO2023037728A1 (ja)
KR (1) KR20240051239A (ja)
CN (1) CN117940532A (ja)
TW (1) TW202328397A (ja)
WO (1) WO2023037728A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052087A1 (ja) * 2003-11-26 2005-06-09 Independent Administrative Institution National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
WO2006106948A1 (ja) * 2005-04-01 2006-10-12 Mitsubishi Chemical Corporation 無機機能材原料用合金粉末及び蛍光体
JP2007332324A (ja) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk サイアロン蛍光体とその製造方法、およびそれを用いた発光素子
JP2009132916A (ja) * 2007-11-09 2009-06-18 Mitsubishi Chemicals Corp 蛍光体、及びその製造方法
JP2009173905A (ja) * 2007-12-28 2009-08-06 Mitsubishi Chemicals Corp 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
WO2010119799A1 (ja) * 2009-04-13 2010-10-21 日本化学工業株式会社 赤色蛍光体、その製造方法及び発光素子
JP2011246662A (ja) * 2010-05-28 2011-12-08 Nippon Chem Ind Co Ltd アルミン酸塩蛍光体、その製造方法及び発光素子
WO2016021705A1 (ja) * 2014-08-07 2016-02-11 三菱化学株式会社 蛍光体、発光装置、画像表示装置及び照明装置
JP2019186537A (ja) * 2018-03-30 2019-10-24 日亜化学工業株式会社 波長変換部材及び発光装置
WO2020054351A1 (ja) * 2018-09-12 2020-03-19 デンカ株式会社 蛍光体及び発光装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052087A1 (ja) * 2003-11-26 2005-06-09 Independent Administrative Institution National Institute For Materials Science 蛍光体と蛍光体を用いた発光器具
WO2006106948A1 (ja) * 2005-04-01 2006-10-12 Mitsubishi Chemical Corporation 無機機能材原料用合金粉末及び蛍光体
JP2007332324A (ja) * 2006-06-19 2007-12-27 Denki Kagaku Kogyo Kk サイアロン蛍光体とその製造方法、およびそれを用いた発光素子
JP2009132916A (ja) * 2007-11-09 2009-06-18 Mitsubishi Chemicals Corp 蛍光体、及びその製造方法
JP2009173905A (ja) * 2007-12-28 2009-08-06 Mitsubishi Chemicals Corp 蛍光体、蛍光体の製造方法、蛍光体含有組成物および発光装置
WO2010119799A1 (ja) * 2009-04-13 2010-10-21 日本化学工業株式会社 赤色蛍光体、その製造方法及び発光素子
JP2011246662A (ja) * 2010-05-28 2011-12-08 Nippon Chem Ind Co Ltd アルミン酸塩蛍光体、その製造方法及び発光素子
WO2016021705A1 (ja) * 2014-08-07 2016-02-11 三菱化学株式会社 蛍光体、発光装置、画像表示装置及び照明装置
JP2019186537A (ja) * 2018-03-30 2019-10-24 日亜化学工業株式会社 波長変換部材及び発光装置
WO2020054351A1 (ja) * 2018-09-12 2020-03-19 デンカ株式会社 蛍光体及び発光装置

Also Published As

Publication number Publication date
TW202328397A (zh) 2023-07-16
JPWO2023037728A1 (ja) 2023-03-16
KR20240051239A (ko) 2024-04-19
CN117940532A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
JP7303822B2 (ja) 蛍光体及び発光装置
TWI827667B (zh) 螢光體及發光裝置
WO2014077240A1 (ja) 蛍光体、発光素子及び照明装置
WO2017155111A1 (ja) 蛍光体、発光素子及び発光装置
WO2023037727A1 (ja) 蛍光体粉末、及び発光装置
WO2022118600A1 (ja) 蛍光体粒子および発光装置
WO2023037728A1 (ja) 蛍光体粉末、及び発光装置
WO2021193183A1 (ja) 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ
WO2021193182A1 (ja) 蛍光体粒子、複合体、発光装置および自発光型ディスプレイ
WO2022024722A1 (ja) 蛍光体粒子、複合体、波長変換部材およびプロジェクタ
JP2024094873A (ja) 蛍光体粉末の製造方法
JP7539811B2 (ja) β型サイアロン蛍光体の製造方法
JP2024129351A (ja) 蛍光体粉末の製造方法
WO2022209178A1 (ja) ユウロピウム賦活β型サイアロン蛍光体、及び発光装置
JP2023082287A (ja) 蛍光体粉末の製造方法
TW202346539A (zh) 螢光體粉末、螢光體粉末之製造方法、及發光裝置
TW202212539A (zh) 螢光體粒子、複合體、波長轉換構件及投影機
WO2022080097A1 (ja) ユーロピウム賦活β型サイアロン蛍光体
JP2022116885A (ja) 蛍光体粉末の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867052

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546793

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280060137.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247010466

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22867052

Country of ref document: EP

Kind code of ref document: A1