WO2006061993A1 - 膜電極複合体およびその製造方法、ならびに燃料電池 - Google Patents

膜電極複合体およびその製造方法、ならびに燃料電池 Download PDF

Info

Publication number
WO2006061993A1
WO2006061993A1 PCT/JP2005/021507 JP2005021507W WO2006061993A1 WO 2006061993 A1 WO2006061993 A1 WO 2006061993A1 JP 2005021507 W JP2005021507 W JP 2005021507W WO 2006061993 A1 WO2006061993 A1 WO 2006061993A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
membrane
reducing composition
electrode assembly
electrode
Prior art date
Application number
PCT/JP2005/021507
Other languages
English (en)
French (fr)
Inventor
Shinya Adachi
Daisuke Izuhara
Masataka Nakamura
Naoki Shimoyama
Takao Uete
Masayuki Kidai
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2006547802A priority Critical patent/JP5176321B2/ja
Priority to EP05809174A priority patent/EP1858096B1/en
Priority to AT05809174T priority patent/ATE533200T1/de
Priority to KR1020077012689A priority patent/KR101244565B1/ko
Priority to CA2590317A priority patent/CA2590317C/en
Priority to US11/721,143 priority patent/US7838164B2/en
Publication of WO2006061993A1 publication Critical patent/WO2006061993A1/ja
Priority to US12/833,760 priority patent/US8278004B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04197Preventing means for fuel crossover
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1089Methods of surface bonding and/or assembly therefor of discrete laminae to single face of additional lamina
    • Y10T156/1092All laminae planar and face to face

Definitions

  • the present invention relates to a membrane electrode composite capable of achieving a high power density and a method for producing the same
  • a fuel cell is a power generation device that has low emissions and high energy efficiency and has a low burden on the environment. For this reason, it is in the spotlight again in recent years due to the rise in global environmental protection.
  • this power generation device is expected in the future as a relatively small-scale distributed generation facility, and as a power generation device for mobile objects such as automobiles and ships. It is also attracting attention as a power source for small mobile devices and portable devices, as an alternative to secondary batteries such as nickel metal hydride batteries and lithium ion batteries, as a charger for secondary batteries, and as a secondary battery.
  • the combined use (hybrid) is expected to be installed in mobile devices such as mobile phones.
  • PEFC Polymer Electrolyte Fuel Cells
  • Direct fuel cells that directly supply fuel such as methanol are also attracting attention.
  • direct fuel cells have a lower output than conventional PEFCs, the fuel is liquid and does not use a reformer, so the energy density is high and the usage time of portable devices per filling is long. There is an advantage.
  • a polymer electrolyte fuel cell is composed of an anode and a force sword electrode in which a reaction responsible for power generation occurs, and a polymer electrolyte membrane serving as a proton conductor between the anode and the force sword.
  • the body (MEA) is composed of cells that are sandwiched by separators.
  • the electrode is composed of an electrode substrate (also called a gas diffusion electrode or a current collector) that promotes gas diffusion and collects (supply) electricity, and a catalyst layer and force that actually becomes an electrochemical reaction field. Yes.
  • the anode electrode fuel such as hydrogen gas reacts with the catalyst layer of the anode electrode to produce protons and electrons, which are conducted to the electrode substrate, Ton conducts to the polymer electrolyte membrane.
  • the anode electrode is required to have good gas diffusivity, electron conductivity, and proton conductivity.
  • oxygen and oxygen or other oxidizing gas is a catalyst layer of the force sword electrode, and protons conducted from the polymer electrolyte membrane react with electrons conducted from the electrode substrate to react with water. Is generated. For this reason, in the force sword electrode, it is necessary to efficiently discharge generated water in addition to gas diffusibility, electron conductivity, and proton conductivity.
  • direct fuel cells using methanol or the like as fuel are required to have different performance from conventional PEFCs using hydrogen gas as fuel. That is, in a direct fuel cell, at the anode electrode, a fuel such as a methanol aqueous solution reacts with the catalyst layer of the anode electrode to produce protons, electrons, and carbon dioxide. Mouth tons are conducted to the polymer electrolyte, and carbon dioxide is released from the system through the electrode substrate. For this reason, in addition to the required characteristics of the anode electrode of the conventional PEFC, fuel permeability such as aqueous methanol solution and carbon dioxide emission are also required.
  • fuel permeability such as aqueous methanol solution and carbon dioxide emission are also required.
  • JP-A-4-132168 a method in which a perfluorinated proton conductive polymer is applied to an electrode and dried, and then the electrode and the membrane are integrated by a high-temperature press, sodium styrenesulfonate and hexaethylene glycol as a crosslinking agent are disclosed. Illustrated is a method in which a monomer composition solution such as dimetatalate is applied to an electrode, joined to an electrolyte membrane, heated and pressurized for 1 hour or longer, and the membrane and the electrode are integrated via a crosslinked polymer of the monomer. Yes.
  • the present invention in particular, maintains an effect of suppressing fuel crossover even in an electrolyte membrane having high heat resistance, high strength, high tensile elastic modulus and low water content, and in a short time,
  • the present invention provides a method for producing a membrane electrode composite that can easily reduce the resistance at the interface between the electrode and the electrolyte membrane at a low temperature and a low pressure, and further provides a high-power density fuel cell.
  • the present invention also provides a membrane electrode assembly that can take out a high output density with a high fuel crossover suppression effect using an electrolyte membrane having high heat resistance, high strength, high tensile modulus, and low water content. In addition, they are trying to provide high-power fuel cells that use them.
  • the present invention employs the following means. That is, the present invention relates to a method for producing a membrane electrode composite comprising an electrolyte membrane between a pair of electrodes, wherein at least one of the electrodes is composed of a polymer material having an ionic group and a plasticizer. Bonding to the electrolyte membrane through the interfacial resistance reducing composition (including bonding the electrode and the electrolyte membrane, and integrating them after bonding the electrode and the electrolyte membrane) A membrane electrode assembly having a step and a step of removing part or all of the plasticizer from the interface resistance-reducing composition by extraction with a solvent. It is a manufacturing method.
  • the present invention provides a membrane electrode composite comprising an electrolyte membrane interposed between a pair of electrodes, and has a layer (A) between at least one electrode and the electrolyte membrane, and is measured with an ultra-micro hardness meter
  • the storage elastic modulus of the electrolyte membrane is C
  • the value of the storage elastic modulus C is 1 GPa or more.
  • the present invention provides a membrane electrode composite comprising an electrolyte membrane between a pair of electrodes, A fragrance having a layer (A) whose phase difference measured by tapping mode scanning with a scanning probe microscope is different from that of the electrolyte membrane, and the electrolyte membrane and the layer (A) have an anionic group between at least one electrode and the electrolyte membrane. It is a membrane electrode composite containing a group hydrocarbon.
  • the fuel cell of the present invention is characterized by using the membrane electrode assembly.
  • the present invention even when an electrolyte membrane having high heat resistance, high strength, high tensile elastic modulus and low water content is used, low interface resistance between the electrode of the membrane electrode composite and the electrolyte membrane can be achieved. Thus, it is possible to provide a high power density fuel cell by using a powerful membrane electrode assembly. Further, according to the present invention, a membrane electrode assembly having low fuel crossover property, high output density and high durability can be provided, and a high output fuel cell can be provided by using such a membrane electrode assembly. It becomes possible to do.
  • Fig. 1 is an example of circular fitting of impedance measurement results of a membrane electrode assembly.
  • FIG. 2 is a voltage-current characteristic diagram of a fuel cell using the membrane electrode assembly of Example 1 and Comparative Example 1 of the present invention.
  • FIG. 5 is a graph showing the relationship between the ratio of the output of a fuel cell using the interface resistance reducing composition and the output of a fuel cell without using the interface resistance reducing composition.
  • FIG. 4 is a diagram showing an example of a stacked fuel cell.
  • FIG. 7 is a cross-sectional view of an example of a passive fuel cell.
  • FIG. 8 is a graph showing the temperature dependence of the viscosity change of the interface resistance-reducing composition B in Example 2.
  • the method for producing a membrane electrode composite of the present invention comprises a membrane electrode composite comprising an electrolyte membrane interposed between a pair of electrodes, wherein at least one electrode is formed of an interface resistance reducing composition containing a plasticizer. It is essential to have a step of attaching to the electrolyte membrane.
  • tensile modulus of lOOMPa or higher in order to suppress fuel membrane crossover in the electrolyte membrane and to improve mechanical strength, high heat resistance with a glass transition point of 120 ° C or higher due to dynamic viscoelasticity, tensile modulus of lOOMPa or higher, preferably Preferably has a high elastic modulus of 500 MPa or higher, more preferably lOOOMPa or higher, and a molecular structure that can obtain a low moisture content of 100% or lower with respect to the weight of the electrolyte membrane. Tend to be.
  • interposing an interfacial resistance reducing composition containing a plasticizer when the electrode and the electrolyte membrane are combined at least a part of the fine gap between the electrode and the electrolyte membrane is filled with the interfacial resistance reducing composition.
  • the substantial contact area can be increased, and the increase in resistance due to the entry of fuel and air used as a fuel cell, water, and carbon dioxide into the air gap can be prevented.
  • the interface resistance reducing composition penetrates into the cracks generated in the catalyst layer of the electrode, and the inner wall surface of the cracked catalyst layer crack that cannot be used for conventional power generation can be used effectively.
  • the contact area of the catalyst can be increased.
  • the resistance of the membrane electrode assembly decreases, the power density increases, and a high-performance fuel cell can be obtained.
  • the electrolyte membrane has pinholes, surface defects, etc., it can be protected and repaired by a layer made of the interface resistance reducing composition, and the performance as a membrane electrode composite can be stabilized. It is possible to improve durability.
  • the low interface resistance it is preferable for the low interface resistance that 50% or more of the area (projected area) of at least one of the electrodes is combined with the electrolyte membrane through the interface resistance reducing composition. More preferably 75% or more, more preferably 95% or more. Furthermore, the area of each pair of electrodes is 50% or more combined with the electrolyte membrane via the interfacial resistance reducing composition. More preferably, 75% or more is more preferable, and 95% or more is most preferable. .
  • the composition for reducing interfacial resistance of the present invention has ionic conductivity, can be fluidized or plastically deformed at least when the electrode and the electrolyte membrane are combined, and fills voids in the electrode so that fuel and It does not inhibit the diffusion of air, generated water and carbon dioxide, has good adhesion to the electrolyte membrane, does not adversely affect the catalyst performance, and does not flow at least during power generation as a membrane electrode composite, That is, it is preferable that the fuel does not swell excessively and does not dissolve, for example, when methanol aqueous solution is methanol, the fuel satisfies the conditions such as methanol resistance and strength equal to or higher than the electrolyte membrane to be used. As a result of intensive studies that satisfy these conditions, the inventors have found that the following compositions are preferable.
  • the interface resistance-reducing composition used in the present invention must contain a polymer material having an ionic group.
  • ionic groups are preferably those having a proton exchange capacity that is favorably favored by negatively charged atomic groups.
  • functional groups include sulfonic acid groups (one SO (03 ⁇ 4), sulfate group (-030 (OH)),
  • Ruphonimide group (—SO NHSO R (R represents an organic group;)
  • phosphonic acid group (—PO (OH)
  • Two or more kinds of these ionic groups can be contained in the polymer material, and may be preferable by combining them.
  • the combination is appropriately determined depending on the structure of the polymer. Among them, it is more preferable to have at least one of a sulfonic acid group, a sulfonimide group, and a sulfuric acid group from the viewpoint of high proton conductivity. In terms of hydrolysis resistance, it is most preferable to have at least a sulfonic acid group. I like it.
  • the density of the sulfonic acid group is preferably 0.1 to 5.
  • OmmolZg more preferably 0.5 to 3.5 mmol from the viewpoint of proton conductivity and fuel crossover suppression. More preferably, it is 1.0 to 3.5 mmol Zg.
  • ionic conductivity that is, low interface resistance can be maintained. 5.
  • a liquid fuel such as a direct methanol fuel cell can be used. When used in a fuel cell that is in direct contact, the interface resistance reducing layer can be prevented from being excessively swollen by the fuel and leaching out or flowing out.
  • the sulfonic acid group density is the molar amount of sulfonic acid groups introduced per unit dry weight of the polymer material, and this value is larger! /, The degree of sulfonation! /, Is high!
  • the sulfonic acid group density of the polymer material used can be measured by elemental analysis, neutralization titration or nuclear magnetic resonance spectroscopy. Elemental analysis is preferred because of the ease and accuracy of sulfonic acid group density measurement.
  • the neutralization titration method should be used when it is difficult to calculate the exact sulfonic acid group density by elemental analysis, such as when a sulfur source is included in addition to the sulfonic acid group.
  • the polymer material having an ionic group include a polymer electrolyte having an aromatic ring in the main chain from the viewpoint of mechanical strength, fuel durability, heat resistance, and the like of the interface resistance-reducing layer.
  • polyether ketone and ionic group-containing polyether ether ketone are preferably used.
  • the ionic group is as described above.
  • an ionic group may be introduced into the polymer, or a monomer having an ionic group may be polymerized. Introduction of phosphonic acid groups into the polymer can be performed by the method described in “Polymer Preprints Japan”, 51, 750 (2002).
  • Introduction of phosphate groups into the polymer can be achieved, for example, by phosphate esters of polymers having hydroxyl groups.
  • Introduction of a carboxylic acid group into the polymer can be performed by, for example, acidifying a polymer having an alkyl group or a hydroxyalkyl group.
  • Introduction of a sulfonimide group into the polymer can be achieved by, for example, treating a polymer having a sulfonic acid group with an alkylsulfonamide.
  • the introduction of a sulfate group into the polymer is possible, for example, by sulfate ester of a polymer having a hydroxyl group.
  • Introduction of sulfonic acid groups into the polymer can be carried out, for example, by a method in which the polymer is reacted with chlorosulfonic acid, concentrated sulfuric acid or fuming sulfuric acid.
  • ionic group introduction methods can be controlled to a target ionic group density by appropriately selecting conditions such as treatment time, concentration, and temperature.
  • the weight average molecular weight is preferably 10,000 to 5,000,000, more preferably 30,000 to 1,000,000.
  • the weight average molecular weight is preferably 10,000 to 5,000,000, more preferably 30,000 to 1,000,000.
  • the interface resistance reducing composition used in the present invention must contain a plasticizer.
  • a plasticizer that satisfies the above-described conditions for the interfacial resistance reducing composition is selected.
  • the reason why it is necessary to include a plasticizer is that the interface resistance-reducing composition is below the decomposition temperature of the polymer material having the ionic group and below the temperature at which no adverse effects such as decomposition and deformation of the material used occur. The point that makes it possible to flow Can be mentioned.
  • a plasticizer is not included, it is necessary to raise the temperature above the softening point of the polymer electrolyte, which adversely affects other materials used. Therefore, the performance as a membrane electrode composite may be insufficient.
  • plasticizers those that have hydrogen bonding properties with the ionic groups of the aromatic hydrocarbon polymer having the ionic group and whose number of hydrogen bonds can be changed depending on the temperature, that is, a composition having a low interface resistance.
  • ethylene glycol and propylene glycol are preferred.
  • Polyhydric alcohols such as trimethylene glycol and glycerin are preferably used.
  • the plasticizer is at least partially or after the electrode and the electrolyte membrane are bonded or the electrode catalyst layer.
  • it is preferable to remove by extraction with water or a solvent containing water. Therefore, a water-soluble plasticizer is particularly preferable.
  • it is excellent in compatibility with a polymer material having an ion group having an aromatic ring in the main chain, can maintain a shape at room temperature, and provides an interface resistance reducing composition with good hot melt properties. Low volatility! More preferred are polyhydric alcohols which are particularly preferred.
  • the selected plasticizer or solvent immediately affects the electrolyte membrane.
  • the effect of reducing the fuel crossover is reduced, or the strength is lowered and the durability is affected.
  • the performance of the membrane electrode assembly is affected, such as when a part of the plasticizer or the solvent is provided on the electrode with at least an interfacial resistance reducing composition, before the electrode and the electrolyte membrane are bonded together Extraction removal with water or a solvent containing water that is preferably removed Is preferred.
  • the interfacial resistance reducing composition is provided on the electrode, only a part of the plasticizer is removed before the electrode and the electrolyte membrane are bonded together. If the agent is not present, the adhesion between the interface resistance reducing composition provided on the electrode and the electrolyte membrane and the unevenness of the electrode catalyst layer are reduced, and the durability and output of the membrane electrode composite are improved. This is because the effects of the invention cannot be obtained.
  • the plasticizer in the present invention has good storage stability as an interfacial resistance reducing composition that hardly volatilizes when using the interfacial resistance reducing composition. From the viewpoint of this, it is preferable.
  • a plasticizer suitable for the present invention a thermogravimetric analysis of a sample after processing the interface resistance reducing composition into a sheet of 100 to 200 ⁇ m and drying in hot air at 100 ° C. for 1 hour ( TG—DTA), and the thermal weight loss rate between 100 ° C and 300 ° C (temperature increase rate 10 ° CZ min, under N atmosphere) is in the range of 5% to 90%, or at room temperature
  • an interfacial resistance reducing composition that falls within the range of 5% to 90% of weight loss before immersion. Things are preferred. If the weight loss rate in these measurement methods is 5% or more, it can have fluidity and plastic deformability when the electrolyte membrane and the electrode are combined, and an excellent performance membrane electrode assembly can be obtained. it can. On the other hand, if it is 90% or less, the possibility that the voids in the electrode are filled with the interface resistance reducing composition is reduced, and a membrane electrode composite having excellent performance can be obtained. Further, the storage stability is improved, which is preferable from the viewpoint of cost. More preferably, it is 10% or more and 85% or less, and further preferably 20% or more and 80% or less.
  • the amount is too large, it penetrates into the electrolyte membrane and tends to decrease the fuel barrier property of the electrolyte membrane or short-circuit the membrane electrode assembly.
  • this component 1% by weight or more and 70% by weight or less in the composition for reducing interface resistance is preferred, and 2% by weight or more and 50% by weight or less are more preferred.
  • a method for producing the interface resistance-reducing composition generally known methods can be selected.
  • a polymer material having a ionic group, its solvent, and a plasticizer can be put into a suitable container and stirred.
  • examples thereof include a method of kneading at a temperature and a method of melting and kneading a polymer material having an ionic group and a plasticizer in an extruder or a kneader. At this time, it may be heated as necessary.
  • the solvent selected is preferably a solvent that can dissolve 10% by weight or more of a polymer material having an ionic group and can be uniformly mixed with a plasticizer.
  • a solvent that can dissolve 10% by weight or more of a polymer material having an ionic group and can be uniformly mixed with a plasticizer.
  • Protic polar solvents such as ⁇ -petit latatotone and butyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, ethylene glycol monomethyl ether, ethylene glycol monoethyl etherate, propylene glycol monomethinole Alkylene glycol monoalkyl ethers such as etherol and propylene glycol monoethyl ether, and alcohol solvents such as isopropanol V- are preferably used.
  • the polymer electrode in addition to the polymer material and the plasticizer having the ionic group, is used for the purpose of improving the strength, adhesion, fuel resistance, etc. of the low interface resistance layer.
  • Various inorganic fillers such as montmorillonite glass fiber, carbon materials such as carbon fiber and carbon nanotubes, silica, alumina, zirconia, titania Various fines such as polysilsesquioxane Even if the particulate matter is added, the function of the interface resistance reducing composition is not adversely affected.
  • the ratio of the polymer material having an ionic group and the plasticizer in the composition for reducing interface resistance is preferably 10% by weight or more, more preferably 30% by weight or more. Preferably it is 40 weight% or more.
  • a film composed of the interface resistance reducing composition alone is laminated and bonded between the electrode and the electrolyte film, and the interface resistance reducing composition is injected into the gap while keeping the electrode and the electrolyte film at a predetermined interval in advance.
  • An example of such a process is as follows.
  • a process of providing and bonding an interfacial resistance reducing composition on an electrode and Z or an electrolyte membrane is preferable.
  • the method for providing the interface resistance reducing composition on the electrode or the electrolyte membrane include a method in which the composition is applied directly on the electrode catalyst surface or the electrolyte membrane, or the interface resistance reducing composition is applied to another substrate. Examples include a method of removing the base material by pasting it with an electrode or an electrolyte membrane after coating.
  • interfacial resistance reducing composition As an application method of the interfacial resistance reducing composition, generally known methods can be used. Techniques such as spray coating, brush coating, dip coating, slit die coating, curtain coating, flow coating, spin coating, screen printing, etc. Is applicable. In addition, when the interface resistance reducing composition cannot be applied at room temperature, a hot melt coating method in which the composition is heated and melted and then coated by the above method and then cooled can be applied. In addition, after the interfacial resistance reducing composition is provided on the electrode or the electrolyte membrane, it is pasted together so that the interfacial resistance reducing composition does not flow.
  • a solvent used to dissolve a plasticizer or a polymer material having an ionic group, it should not be adversely affected on the electrode or the electrolyte membrane.
  • a part of the plasticizer and solvent in the interface resistance reducing composition can be dried and adjusted.
  • the viscosity of the interfacial resistance reducing composition used in the present invention is preferably such that the viscosity decreases as the temperature becomes higher than the room temperature, such as during pressing or coating, for example, having an ionic group.
  • Viscosity at 30 ° C measured at a shear rate of 35 (s _1 ) using a rotary viscometer with a polymer material, a plasticizer, and optionally a solvent, at X (Pa), 80 ° C YZX is preferably 0.3 or less, where Y (Pa) is the viscosity.
  • YZ X obtained by measuring in this way shows the temperature dependence of the viscosity of the interface resistance reducing composition, and the smaller the value, the more the temperature range that can be adopted for production of 30 ° C to 80 ° C. Since the viscosity change is large, if YZX is 0.3 or less, it is easy to handle at room temperature at the time of manufacturing the membrane electrode assembly at room temperature. At the time of heating press or hot-met coating at room temperature or higher, the fluidity of the interfacial resistance-reducing composition is increased (viscosity is decreased), and the followability of the catalyst layer can be increased, and as a membrane electrode composite The viewpoint power of high output is also preferable. 0.2 or less is more preferable 0.1 or less is more preferable.
  • the viscosity X value at 30 ° C is preferably 50 Pa or more, more preferably 70 Pa, more preferably lOOPa or more, and even more difficult measurement conditions.
  • the viscosity Y value at 80 ° C is as small as possible, and the viewpoint power of catalyst layer followability is also preferred.
  • Such an interfacial resistance-reducing composition can be produced as follows. For example, a polymer material having an ionic group is dissolved in a solvent capable of dissolving 10% by weight or more of an ionic group and can be uniformly mixed with a plasticizer. Added .
  • a plasticizer is a poor solvent that cannot dissolve a polymer material having an ionic group. Therefore, it is difficult to obtain a uniform interface resistance-reducing composition by depositing a polymer material having an ionic group. .
  • a polymer material having such an ionic group and a plasticizer a polymer material having a sulfonic acid group or a derivative thereof as an ionic group and a plasticizer having a hydroxyl group, an amide group, a carboxyl group, etc.
  • a combination of polyhydric alcohols such as glycerin is preferred as a plasticizer from the viewpoint of storage stability and workability.
  • YZX is preferably determined as appropriate experimentally depending on the method of coating the interface resistance reducing composition, the manufacturing conditions of the membrane electrode assembly, etc., but this control is performed on the polymer material having an ionic group. This is possible depending on the type, ionic group density, type and addition amount of plasticizer, addition amount of solvent, etc.
  • the composition of the interfacial resistance reducing composition can be experimentally changed appropriately according to the selected material and production conditions. it can.
  • the solvent here may be allowed to remain in the interface resistance reducing composition for easy mixing of the polymer material having an ionic group and the plasticizer and for adjusting YZX.
  • YZX can be adjusted under conditions where it can be removed by drying or the like before it is used as a composition for reducing interfacial resistance in the production of a membrane electrode assembly.
  • a polymer material having an ionic group and a plasticizer are mechanically mixed with a kneading machine or a kneader at a temperature lower than the decomposition temperature or boiling point of the plasticizer. It is also possible to form the sheet-like interfacial resistance-reducing composition and use it.
  • the viscosity change of the interfacial resistance-reducing composition is reversible until the plasticizer is removed.
  • the interfacial resistance-reducing composition is applied to a release paper or the electrode, the interfacial resistance is reduced.
  • the product directly coated with the conductive composition can be stored after being cooled to room temperature, and the time constraints during the production of the membrane electrode composite can be alleviated.
  • the coating amount of the surface resistance reducing composition 0. 5mgZcm 2 or more as a composition, preferably 30mgZc m 2 or less.
  • 0.5 mgZcm 2 or more the gap between the electrode and the electrolyte membrane and the catalyst layer crack can be filled, and a low interface resistance can be achieved.
  • it is 30 mgZcm 2 or less, the possibility of filling gaps necessary for the diffusion of fuel and generated gas other than the gap between the electrode and the electrolyte membrane is reduced, and the plasticizer contained in the interface resistance reducing composition Reduced adverse effects Is done. It is more preferably lmgZcm 2 or more and lOmgZcm 2 or less.
  • the electrode and the electrolyte membrane can be combined by a generally known method (for example, the chemical plating method described in "Electrochemistry” 1985, 53, 269, “Jelect Elect Mole Chemical Science” (J. Electrochem. Soc.)). : Gas diffusion electrode heating press bonding method described in Electrochemical Science and Technology, 1988, 135 (9), 2209.
  • the integration by heating press is a preferable method, but the temperature and pressure may be appropriately selected depending on the thickness of the electrolyte membrane, the moisture content, the catalyst layer and the electrode substrate.
  • the composite film can be formed by pressing even when the electrolyte membrane is dried or absorbed.
  • the electrolyte membrane in the method of the present invention, normally, if the electrolyte membrane is not in a water-containing state, it is not possible to obtain a membrane-electrode composite with a good joined state between the electrode and the electrolyte membrane! Since it can be pressed in a dry state, the substantial contact area between the electrolyte membrane and the catalyst layer can be increased, and furthermore, there is almost no shrinkage of the electrolyte membrane due to moisture volatilization during heating press, so that the membrane of extremely excellent quality An electrode composite can be obtained, resulting in a high-performance fuel cell.
  • Specific pressing methods include roll presses that specify pressure and clearance, and flat plate presses that specify pressure.
  • the heating temperature can be selected appropriately according to the fluidity of the interfacial resistance-reducing composition. From the viewpoint of suppressing thermal decomposition of the polymer material having an ionic group or an ionic group, it is preferable to carry out the reaction in the range of room temperature to 130 ° C. In the case of a flat plate press in which pressurization is preferably as weak as possible from the viewpoint of electrolyte membrane and electrode protection, a range of 0.1 MPa to 10 MPa is preferable.
  • an electrode catalyst layer may be formed on the interface resistance-reducing composition to form a membrane electrode assembly.
  • the electrodes provided with the interfacial resistance reducing composition are pasted together as an interfacial resistance reducing composition / electrolyte film without preparing an electrolyte membrane again. It can also be set as a membrane electrode composite. In this case, it is preferable to apply the interface resistance reducing composition larger than the area of at least one of the electrodes, which is preferably thickened so that the coating weight of the interface resistance reducing composition is not short-circuited.
  • the output of a fuel cell using an electrode composite tends to be improved, and the interface resistance reducing composition is also capable of reducing the interfacial resistance and the electrode or electrolyte membrane with less shrinkage when the plasticizer of the coating film is removed.
  • the coating film made of the composition is excellent in that the interfacial adhesion is good.
  • cleaning (extraction) removal with water or alcohol is preferred. Therefore, it is industrially preferable that the plasticizer is also water-soluble.
  • the membrane electrode composite composited via the interfacial resistance-reducing composition has an adverse effect on the good solvent for the plasticizer and the member to be used such as the electrolyte membrane and the catalyst.
  • the membrane electrode assembly is immersed in a solvent such as water, alcohol, or an aqueous alcohol solution for a certain period of time, extracted and removed with water vapor, and the membrane electrode assembly is removed from the fuel cell.
  • the method for producing a membrane electrode assembly of the present invention can be applied to all electrolyte membranes such as perfluoro-based electrolyte membranes and hydrocarbon-based electrolyte membranes typified by Nafion (registered trademark) (manufactured by DuPont).
  • electrolyte membranes such as perfluoro-based electrolyte membranes and hydrocarbon-based electrolyte membranes typified by Nafion (registered trademark) (manufactured by DuPont).
  • Nafion registered trademark
  • DuPont DuPont
  • membranes having a glass transition temperature of 130 ° C or higher, a tensile modulus of lOOMPa or higher, and a moisture content of 40% by weight or lower including ionic group-containing polyphenoloxide, ionic group-containing polyether ketone, and ionic group.
  • polymer materials can be used alone or in combination of two or more, and can be used as a polymer blend, a polymer alloy, or a laminated film of two or more layers.
  • introduction method, synthesis method, and molecular weight range of the ionic group and ionic group here are as described above.
  • a polymer material having a sulfonic acid group is most preferred as described above.
  • — SO M group M is a metal
  • the metal M may be any salt that can form a salt with sulfonic acid, but Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Ti, V can be used in terms of cost and environmental impact. Of these, Li, Na, K, Ca, Sr, and Ba are more preferred. Li, Na, and others are preferred among others, Mn, Fe, Co, Ni ⁇ Cu, Zn, Zr, Mo, and W. I like it. By forming a film in the state of these metal salts, heat treatment at a high temperature is possible, and this method is suitable for a polymer material system that can obtain a high glass transition point and a low water absorption rate.
  • the temperature of the heat treatment is preferably from 100 to 500 ° C, more preferably from 200 to 450 ° C, and more preferably from 250 to 400 ° C, from the viewpoint of water absorption of the resulting film.
  • a temperature of 100 ° C. or higher is preferable for obtaining a low water absorption rate.
  • the temperature is 500 ° C. or lower, the polymer material can be prevented from being decomposed.
  • the heat treatment time is preferably 10 seconds to 24 hours in terms of productivity, more preferably 30 seconds to 1 hour, and more preferably 45 seconds to 30 minutes. By setting the heat treatment time to 10 seconds or longer, it is possible to remove the solvent sufficiently and to obtain a sufficient fuel crossover suppression effect. In addition, when the time is shorter than 24 hours, the polymer is not decomposed and proton conductivity can be maintained, and the productivity is increased.
  • Examples of the method for producing the electrolyte membrane include a method of applying a polymer solution by an appropriate coating method, removing the solvent, treating at a high temperature, and then treating with an acid.
  • methods such as spray coating, brush coating, dip coating, die coating, curtain coating, flow coating, spin coating, and screen printing can be applied.
  • a film can be formed by a wet coagulation method using a soot solvent, and in the absence of a solvent, a method of curing with light, heat, moisture, or the like, a method of heating and melting a polymer, cooling the film into a film, and the like can be applied.
  • Examples of the solvent used for film formation include N, N dimethylacetamide, N, N dimethyl formamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, Aprotic polar solvents such as hexamethylphosphonetriamide, ⁇ ⁇ ⁇ ⁇ ester solvents such as butyrolatatone and butyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate, ethylene glycol monomethyl etherenole, ethyleneglycolenomonoethylenoatenoate, An alcohol solvent such as propylene glycol monomethyleno ether, an alcoholylene glycol monoalkyl ether such as propylene glycol monomethenoate ethere, or isopropanol is preferably used.
  • the film thickness of the electrolyte membrane to be used usually 3 to 2000 / ⁇ is preferably used. A thickness of more than 3 m is preferred to obtain a membrane strength that can withstand practical use. A thickness of less than 2000 m is preferred to reduce membrane resistance, that is, to improve power generation performance. A more preferable range of the film thickness is 5 to: LOOO ⁇ m, and a more preferable range is 10 to 500 ⁇ m.
  • the film thickness can be controlled by various methods. For example, when forming a film by the solvent casting method, it can be controlled by the concentration of the solution or the coating thickness on the substrate, and when forming the film by the cast polymerization method, for example, the thickness of the spacer between the plates. Can also be prepared.
  • the mechanical strength is improved, the thermal stability of the ionic group is improved, and the workability is improved within a range that does not impair the ionic conductivity and the effect of suppressing fuel crossover.
  • it may contain fillers or inorganic fine particles, or may form networks or fine particles made of polymers or metal oxides, or it may be a film soaked in a support or the like. There is no problem.
  • an electrode suitable for the membrane electrode assembly of the present invention comprises a catalyst layer and an electrode substrate.
  • the catalyst layer here is a layer containing a catalyst for promoting an electrode reaction, an electron conductor, an ion conductor, and the like.
  • a noble metal catalyst such as platinum, palladium, ruthenium, rhodium, iridium and gold is preferably used.
  • One of these may be used alone, or two or more of them may be used in combination, such as an alloy or a mixture.
  • Furnace Black includes Cabot Vulcan XC-72R (registered trademark), Nolecan P (registered trademark), Black Pearls 880 (registered trademark), Black Pearls 1100 (registered trademark), Black Pearls 1300 (registered trademark), Black Pa Alesylene 2000 (Registered Trademark), Regal 400 (Registered Trademark), Ketjen Black 'International Ketjen Black EC (Registered Trademark), EC600JD, Mitsubishi Igakusha # 3150, # 3250, etc.
  • black include Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo.
  • the substance having ion conductivity (ion conductor) used in the catalyst layer various organic and inorganic materials are generally known. However, when used in a fuel cell, the ion conductivity is low. Polymers (ionic conductive polymers) having ionic groups such as sulfonic acid groups, carboxylic acid groups, and phosphoric acid groups that are improved are preferably used. Among these, from the viewpoint of the stability of the ionic group, a polymer having ion conductivity composed of a side chain of fluoroalkyl ether and a main chain of fluoroalkyl, or the polymer electrolyte material of the present invention is preferably used.
  • the above-mentioned hydrocarbon polymer material may be effective in durability and the like from the viewpoint of methanol resistance.
  • the ionic conductor Since the catalyst and the electronic conductors are usually powders, the ionic conductor usually plays a role of solidifying them.
  • the ionic conductor may be added in advance to a coating liquid containing catalyst particles and an electronic conductor as main constituents when the catalyst layer is prepared, and applied in a uniformly dispersed state. Preferred is U ⁇ .
  • the amount of the ionic conductor contained in the catalyst layer should be appropriately determined according to the required electrode characteristics and the conductivity of the ionic conductor used, and is not particularly limited. A range of 1 to 80% is preferable, and a range of 5 to 50% is more preferable. If the ionic conductor is too low, the ionic conductivity is too low, and if it is too high, the gas permeability may be hindered.
  • the catalyst layer may contain various substances in addition to the catalyst, the electron conductor, and the ion conductor.
  • a polymer other than the above-mentioned ion conductive polymer may be included in order to enhance the binding property of the substance contained in the catalyst layer.
  • Such polymers include, for example, polyfluoride (PVF), poly (vinylidene fluoride) (PVDF), polyhexafluoropropylene (FEP), polytetrafluoroethylene, polyperfluoroalkyl vinyl ether.
  • Polymers containing fluorine atoms such as (PFA), copolymers thereof, copolymers of monomer units constituting these polymers with other monomers such as ethylene and styrene, or blend polymers may be used. It can.
  • the content of these polymers in the catalyst layer is preferably in the range of 5 to 40% by weight. If the polymer content is too high, the electron and ionic resistance increases and the electrode performance tends to decrease.
  • the catalyst layer facilitates the discharge of by-products due to an electrode reaction that preferably has a structure that allows the liquid or gas to permeate. Structure is preferred.
  • the electrode base material one that can collect current or supply power with low electrical resistance can be used. Further, when the catalyst layer is used also as a current collector, it is not necessary to use an electrode substrate.
  • the electrode base material include carbonaceous and conductive inorganic substances. Examples thereof include, for example, fired bodies from polyacrylonitrile, fired bodies of pitch force, carbon materials such as graphite and expanded graphite, stainless steel, molybdenum, titanium, and the like. These forms are not particularly limited, and are used in the form of a fiber or particles, for example, but a fibrous conductive material (conductive fiber) such as carbon fiber is preferable from the viewpoint of fuel permeability. O Conductive fiber was used.
  • a non-woven fabric carbonized or graphitized, a flameproofed yarn, or a mat non-woven fabric made by a paper making method using carbonized yarn or graphitic yarn is preferably used.
  • Examples of the carbon fibers used for the electrode substrate that can be used include polyacrylonitrile (PAN) -based carbon fibers, phenol-based carbon fibers, pitch-based carbon fibers, and rayon-based carbon fibers.
  • PAN polyacrylonitrile
  • the powerful electrode base material has a water repellency treatment for preventing gas diffusion due to stagnation of water and a decrease in permeability, a partial water repellency for forming a water discharge path, a hydrophilic treatment,
  • carbon powder can be added to lower the resistance.
  • a conductive intermediate layer containing at least an inorganic conductive material and a hydrophobic polymer can be provided between the electrode substrate and the catalyst layer.
  • the electrode base material is a carbon fiber woven fabric or a nonwoven fabric having a large porosity, by providing a conductive intermediate layer, it is possible to suppress performance degradation due to the catalyst layer soaking into the electrode base material.
  • Rr can be used as an index of the interfacial resistance of the membrane electrode assembly of the present invention. Rr will be described in detail in Section 6 etc. of [Measurement Method] below.
  • Fuels for fuel cells using the membrane electrode assembly produced by the method of the present invention include oxygen, hydrogen and methane, ethane, propane, butanemethanol, isopropyl alcohol, acetone, glycerin, ethylene glycol, formic acid. And organic compounds having 1 to 6 carbon atoms such as acetic acid, dimethyl ether, hydroquinone, and cyclohexane, and a mixture of these with water, and one or a mixture of two or more may be used.
  • the power of power generation and the simplification of the entire battery system Hydrogen and a fuel containing an organic compound having 1 to 6 carbon atoms are preferably used, and hydrogen and aqueous methanol are particularly preferable in terms of power generation efficiency.
  • the methanol concentration is appropriately selected depending on the fuel cell system to be used, but a higher concentration as much as possible is preferable from the viewpoint of long-time driving.
  • an active fuel cell with a system that sends a medium necessary for power generation such as a liquid feed pump or blower fan, to a membrane electrode assembly, or an auxiliary machine such as a cooling fan, a fuel dilution system, or a product recovery system
  • Concentration 30 ⁇ Passive type fuel cell without auxiliary equipment that is preferable to inject fuel of more than LOO% by fuel tank or fuel cassette, dilute to about 0.5 ⁇ 20% and send it to membrane electrode assembly Is preferably a fuel having a methanol concentration of 10 to 100%.
  • the membrane electrode assembly of the present invention is a membrane electrode assembly in which an electrolyte membrane is interposed between a pair of electrodes, and has a layer (A) between at least one electrode and the electrolyte membrane, and has an ultrafine hardness.
  • the storage elastic modulus of the electrolyte membrane measured by the meter is C and the storage elastic modulus of the layer (A) is D, the value of the storage elastic modulus C is lGPa or more.
  • a material substantially the same as the high molecular material having an ionic group in the above-mentioned interface resistance reducing composition can be used.
  • the material that is substantially the same as the polymer material having an ionic group in the interface resistance reducing composition means that the main component is the same material.
  • the material having the same main component here means that 50% by weight or more of the constituent material is the same material.
  • types of groups that bind aromatic rings such as polyetheretherketone and polyetherketone If they are the same, they can be made of the same material.
  • the materials constituting the electrolyte membrane and the layer (A) are substantially the same.
  • the electrolyte membrane and the layer (A) are mixed with different additives and polymer materials, or have different substituents or derivatives thereof, other components are copolymerized.
  • 50% by weight or more of the material constituting the electrolyte membrane and the layer (A) is the same material, it can be judged that the material is substantially the same.
  • the density and type of the ionic group of the polymer material having the ionic group constituting the electrolyte membrane and the layer (A) are different! /
  • the same material can be used as long as the types of groups connecting the aromatic rings such as polyetheretherketone and polyetherketone are the same.
  • the storage elastic modulus in the present invention indicates that the rigidity indicating the rigidity of the material is high. That is, the higher the storage elastic modulus, the higher the resistance to fuel and the higher the heat resistance. Ascertained and reached the present invention. In other words, in order to suppress fuel crossover, it is important to suppress swelling with respect to fuel, but there is a correlation between this swelling suppression effect and storage elastic modulus, and in particular, storage of the electrolyte membrane constituting the membrane electrode assembly. If the elastic modulus C is greater than lGPa, the fuel crossover suppression effect is high.
  • the storage elastic modulus C of the electrolyte membrane is preferably 2 GPa or more, more preferably 3 GPa or more.
  • the storage elastic modulus D of the layer (A) is also 1 GPa or more, the effect of suppressing the fuel crossover can be further enhanced, so it is preferable.
  • the storage elastic modulus D is more preferably 2 GPa or more.
  • the viscoelastic physical strength of the material such as the electrolyte membrane and the layer (A) measured by using an ultra-micro hardness meter is extremely correlated with the superiority or inferiority of the fuel crossover. Since the absorption of the material was considered to be the force that initiates the surface force of the material, the present inventors focused on the viscoelastic properties of the extreme surface and completed the present invention.
  • the storage elastic modulus was measured using a microhardness meter (Tribo Indenter manufactured by Hysitron) with a modular mapping image [storage elastic modulus (E,) image 'loss elastic modulus (E ,,)
  • the membrane electrode composite is embedded and cured with an electron microscope epoxy resin (Q U etol 812 manufactured by Nissin EM Co.), and then the membrane electrode composite is formed using an ultramicrotome (Leica Ultracut S). An ultrathin section with a cross-section is prepared and used as a measurement sample, measured under the following conditions, and elastic modulus is calculated using Hertz's contact theory.
  • Tribo Indenter manufactured by Hysitron
  • Measurement field of view approx. 30 mm square
  • is the projected area of the impression formed by contact between the sample and the indenter
  • E * is the combined elastic modulus of the indenter system and the sample system.
  • the tip of the indenter when the indenter contacts the very surface of the sample, the tip of the indenter is regarded as a spherical shape, and it is considered that Hertz's contact theory relating to the contact between the spherical shape and the semi-infinite flat plate can be applied.
  • Hertz's contact theory the radius a of the indentation projection surface when the indenter is in contact with the sample is expressed by Equation (2).
  • Modulus mapping is based on the Hertzian contact theory described above, in which an indenter is brought into contact with the very surface of the sample, the indenter is microvibrated during the test, and the response amplitude and phase difference with respect to vibration as a function of time. This is a method to obtain K (measurement system stiffness) and D (sample damping).
  • Equation (4) the first term is the force derived from the indenter shaft (m: mass of the indenter shaft), Equation (4), the second term is the force derived from the viscous component of the sample, and Equation (4)
  • the third term represents the stiffness of the sample system, and t represents time. Since F (t) in Equation (4) depends on time, it is expressed as in Equation (5).
  • E * is regarded as the storage elastic modulus (E '), and the formulas (1) to (10) are summarized.
  • Formula (11) force also calculated storage elastic modulus.
  • the loss elastic modulus of the electrolyte membrane is ⁇ and the loss elastic modulus of the layer ( ⁇ ) is F, either of the loss elastic modulus ⁇ and F is 0. lGPa or higher is preferred.
  • the loss elastic modulus indicates the viscosity of the material, and its value is large and tends to be strong and difficult to break!
  • the loss elastic modulus in the present invention can also be measured in the same manner as the storage elastic modulus measurement described above.
  • Ks derived from the sample is used, and the equation (11) The combined equation (12) was calculated.
  • At least either CZD or EZF is 0.5.
  • CZD and EZF are viscoelastic property ratios between the electrolyte membrane and the layer (A), and indicate the degree of deformation of each layer at the bonded interface. If the membrane electrode assembly of the present invention is used as a fuel cell, the degree of deformation of the electrolyte membrane and the layer (A) is the same in various fuel cell operating environments. It can be reduced and durability can be improved. More preferred is 0.7 to 1.4, and even more preferred is 0.8 to 1.3. Furthermore, if both CZD and EZF are 0.5 to 1.5, peeling and deformation can be further reduced, and durability is further improved. Therefore, both CZD and EZF are preferably 0. 7 to 1.4, and more preferably, both CZD and EZF are 0.8 to 1.3.
  • the membrane electrode assembly of the present invention comprises an electrolyte membrane between a pair of electrodes, and the phase difference measured by tapping mode scanning of a scanning probe microscope is between the electrolyte membrane and at least one electrode and the electrolyte membrane.
  • the substantially different layer (A) has an electrolyte membrane and the layer (A) contain an aromatic hydrocarbon having a diionic group.
  • the phase difference in the present invention is an index of softness and can be measured by the following method. For example, after embedding a membrane electrode composite with epoxy resin for electron microscopy (Q U etol 812 manufactured by Nissin EM) and curing it, the cross section of the membrane electrode composite with an ultramicrotome (Ultracut S manufactured by Leica) is used. Can be measured by tapping mode scanning of a scanning probe microscope.
  • the tapping mode in the present invention is "scanning probe microscope for nanotechnology"
  • the phase difference distribution in the scanning range can be output.
  • the phase difference is large and the interaction force is small. Is detected with a small phase difference. That is, a relatively soft portion in the sample has a large phase difference and a hard portion has a small phase difference. Therefore, the phase difference is an index representing the softness of the surface.
  • the membrane electrode assembly of the present invention has a layer (A) having a phase difference substantially different from that of the electrolyte membrane, and the electrolyte membrane and the layer (A) have a ionic group in the main chain.
  • Aromatic hydrocarbons having Here, the phase difference is substantially different from the first decimal point of the absolute value of the phase difference of each layer (electrolyte membrane layer and layer (A)) when measuring the electrolyte membrane and the layer (A) in the same field of view. Means different places.
  • phase difference is substantially different from that of the electrolyte membrane (A), and the electrolyte membrane and the layer
  • (A) should be a membrane electrode composite containing an aromatic hydrocarbon having an anionic group in the main chain. Even if the characteristics of the individual members of the electrode and the electrolyte membrane to be used are excellent, the inventors have the performance of the membrane electrode assembly as a result if the resistance between the electrode and the electrolyte membrane is large when combined. As a result, the inventors have found that this is insufficient, and have reached the present invention.
  • the electrolyte membrane in order to suppress fuel crossover of the electrolyte membrane, improve durability at high temperatures, and improve mechanical strength, it has a high heat resistance with a glass transition point of 120 ° C or higher due to dynamic viscoelasticity, a tensile elastic modulus of lOOMPa or higher,
  • the electrolyte membrane tends to be rigid because a molecular structure that provides a high modulus of elasticity of 500 MPa or more, more preferably lOOOMPa or more, and a low water content of 100% or less with respect to the weight of the electrolyte membrane is preferable. There is. For this reason, it is necessary to use an electrolyte membrane having an aromatic hydrocarbon having the above-mentioned performance and having a viewpoint of productivity and workability as a main component and having an aromatic group.
  • fuel crossover can be suppressed and the mechanical strength can be maintained between the electrolyte membrane and the electrode, and at least a part of the fine void between the electrode and the electrolyte membrane can be filled, and the catalyst surface shape can be improved.
  • a layer that can improve the followability by the electrolyte and substantially increase the contact area between the electrode and the electrolyte membrane, i.e., the phase difference of the electrolyte membrane is substantially different, and the aromatic carbonization having an anionic group in the main chain A layer of polymer material containing hydrogen was provided.
  • the electrode and the electrolyte membrane are attached with an ordinary adhesive or a perfluorinated proton conductive polymer.
  • the electrolyte membrane and the layer (A) having a substantially different phase difference from the electrolyte membrane have an anionic group in the main chain.
  • the aromatic hydrocarbon having an anionic group in the main chain means a unit in which an anionic group is directly bonded to an aromatic ring. The reason why the eron group is present in the main chain of the aromatic hydrocarbon is that the effect of suppressing the fuel crossover is great.
  • the above-described aromatic group is present in the main chain of the aromatic hydrocarbon because the aromatic carbon of the main chain is rigid and difficult to move. Because the anionic group is directly bonded to hydrogen, for example, even if an aqueous methanol solution enters the polymer, the portion having the anionic group cannot move freely, resulting in a polymer. The rate at which the fuel can enter can be suppressed and fuel crossover can be reduced.
  • the phase difference (M) of the electrolyte membrane and the phase difference (I) of the layer (A) in which the phase difference is substantially different from the electrolyte membrane are larger.
  • the flexibility of the layer (A) whose phase difference is substantially different from that of the electrolyte membrane is changed in order to increase the contact area with the electrode in the production process of the membrane electrode assembly. Also good.
  • the main component of the material constituting the layer (A) whose phase difference is substantially different from that of the electrolyte membrane of the membrane electrode assembly of the present invention is substantially the same. It is preferable that the adhesive strength at the interface of the layer (A) having a phase difference substantially different from that of the electrolyte membrane is substantially the same as the material strength.
  • substantially the same material means that 50% by weight or more of the constituent material is the same material.
  • the electrolyte membrane and the layer (A) may be mixed with different additives or polymer materials, may have different substituents or derivatives thereof, may be copolymerized with other components, If 50% by weight or more of the materials constituting the electrolyte membrane and the layer (A) are the same material, it can be judged that they are substantially the same material. As described above, even if the density and type of the ionic group of the polymer material containing an aromatic hydrocarbon having an anionic group in the main chain constituting the electrolyte membrane and the layer (A) are different, If the main chain skeletons of the polymer material are the same, they can be handled as the same material. For example, if the types of groups that bind aromatic rings such as polyether ether ketone and polyether ketone are the same, the same material is used. There is no problem.
  • polymer material containing an aromatic hydrocarbon having an anionic group in the present invention will be described.
  • the eron group one having proton exchange ability is preferable.
  • Such functional groups include sulfonic acid groups (—SO (OH)), sulfate groups (—OSO (OH)), sulfone
  • Two or more kinds of these ionic groups can be contained in the polymer material, and it may be preferable to combine them.
  • the combination is appropriately determined depending on the structure of the polymer.
  • the point of high proton conductivity has at least one of a sulfonic acid group, a sulfonimide group, and a sulfuric acid group.
  • the point of hydrolysis resistance also has at least a sulfonic acid group.
  • the density of the sulfonic acid group is preferably 0.1 to 5.
  • OmmolZg more preferably 0.5 to 3.5 mmolZg, more preferably from the viewpoint of proton conductivity and fuel crossover suppression. Preferably, it is 1.0 to 3.5 mmol Zg.
  • sulfonic acid group density 0. ImmolZg or higher, a high output density can be taken out, and 5.
  • OmmolZg or lower to allow direct contact with liquid fuel such as a direct methanol fuel cell. fuel When used in a battery, it is possible to prevent the interface resistance reducing layer from being excessively swollen by the fuel and eluting or flowing out.
  • the sulfonic acid group density is as described above.
  • aromatic hydrocarbons having an anionic group in the main chain include mechanical strength, fuel durability, heat resistance, etc. of the layer (A) whose phase difference is substantially different from that of the electrolyte membrane.
  • aromatic hydrocarbon polymers such as imide, polyimidazole, polyoxazole, and polyphenylene, in which an anionic group is introduced into an aromatic ring of the main chain.
  • Ether ether ketone polyether ether ketone containing a component derived from 4,4, -dihydroxytetraphenol, polyether ether ketone containing a component derived from 4,4'-dihydroxybenzophenone, and 4,4 ' It is particularly preferred that the polyetherketone power containing a component derived from dihydroxybenzophenone is selected. These can be used alone or in combination of two or more, and can be used as a polymer blend or a polymer alloy.
  • the membrane electrode assembly of the present invention used for these fuel cells has a layer (A) 12 that follows the irregularities of the catalyst layer 4. It is pasted in a state where it is interposed.
  • Fig. 7 shows an example of a passive fuel cell that does not use an auxiliary machine.
  • the fuel cell may be built in the device to be used, or may be used as an external unit. From the viewpoint of maintenance, it is also preferable that the membrane electrode assembly is detachable from the fuel cell.
  • the fuel cell performance of the present invention differs depending on the device to be driven because the fuel and air supply method, cell shape, flow channel shape, current collection method, electronic circuit design, etc. differ.
  • the size, number, series and number of Z or parallel, etc. are preferably selected according to the equipment design as appropriate.
  • the resistance of the produced membrane electrode assembly can be set in a fuel cell and measured using a frequency response analyzer 1255B manufactured by Solartron and a potentiostat SI1287.
  • a frequency response analyzer 1255B manufactured by Solartron and a potentiostat SI1287.
  • current I (mA) and amplitude iZlO (mA) are applied to the membrane electrode assembly, measurement is performed in the frequency range of 50 kHz to lOmHz, and impedance is measured.
  • the right end and the left end of the obtained X-axis intercept are the right end and the left end of the intersection with the X axis of the semicircle obtained from the complex plane graph force, respectively. If it is not a semicircle, use a Nyquist plot to estimate the semicircle from the circular fit of ZVie w Electrochemical Impedance Software (bcnbner Associates, Inc.) and use the right and left edges of its X-axis intercept (see Figure 1). ).
  • the resistance Rr greatly depends on the applied current value and amplitude.
  • the membrane electrode composite membrane of the present invention preferably uses a 3% by weight aqueous methanol solution and has an Rr of 1.5 ⁇ 'cm 2 or less when the cell temperature is 60 ° C. 2 ⁇ ′cm 2 or less is more preferable 1.0 ⁇ ′cm 2 or less is more preferable.
  • the power density is preferably 40mWZcm 2 or more. If it is 40 mWZcm 2 or more, the area of the membrane electrode assembly can be reduced, and the range of devices that can be driven is wide and useful. 50 mWZcm 2 or more is more preferable. 60 mWZcm 2 or more is more preferable.
  • the device can be used for a long time when it is mounted on a device as a fuel cell.
  • the voltage drop rate is preferably 50% or more, more preferably 60% or more, and further preferably 70% or more.
  • the above output density can also be measured using, for example, an evaluation device manufactured by Toyo Corporation, a potentiostat manufactured by solartron 1470, and a frequency response analyzer manufactured by solartron 1255B.
  • the exhaust gas from the force sword is collected in a gas collection bag and oxidized with methanol in the sampling gas using a gas chromatograph with an autosampler manufactured by Jell Science. both concentrations of the resulting diacid I ⁇ oxygen using methanol permeation amount force 3 wt% of aqueous methanol solution measured calculated membrane electrode assembly, when the cell temperature 60 ° C, at 10 molZcm 2 Zmin less Preferably there is. If it is less than 10 / z molZc m 2 / min, it is also useful from the viewpoint of extending the drive time of the on-board equipment that is less affected by the output drop at the fuel crossover. 8 ⁇ molZcm 2 Zmin or less is more preferable, and 5 molZcm 2 Zmin or less is more preferable.
  • the power density with 30% by weight methanol aqueous fuel is the area of the membrane electrode assembly. Is more preferable than 40 mWZcm 2, more preferably 15 mWZcm 2 or more, and more preferably 20 mWZcm 2 .
  • a power supply source of a moving body is preferable.
  • the weight average molecular weight of the polymer was measured by GPC.
  • Tosoh's HLC-8022GPC is used as an integrated UV detector and differential refractometer, and Tosoh's TSK gel Super HM-H (inner diameter 6. Omm, length 15cm) is used as the GPC column.
  • Pyrrolidone solvent N-methyl-2-pyrrolidone solvent containing 10 mmol / L of lithium bromide
  • the sample was prepared by immersing the polymer formed into a film in water at 25 ° C for 24 hours and cutting it into a strip of about 5 cm in length and 2 mm in width.
  • the water used for washing was analyzed with a gas chromatograph “5890 series IV” manufactured by Hewlett Packard.
  • the measurement conditions are as follows.
  • the right end and the left end of the X-axis intercept obtained are the right end and the left end of the intersection point with the X axis of the semicircle obtained from the complex plane graph, respectively. If it is not a semicircle, use a Nyquist plot; et al. From ZView Electrochemical Impedance software (Scribner Asso dates, Inc.) to estimate the semicircle and use the right and left edges of its X-axis intercept.
  • Fig. 1 shows an example of the impedance measurement result of the membrane electrode assembly.
  • the resistance Rr greatly depends on the current value and amplitude to be applied, in the measurement method of the present invention, a 3 wt% methanol (MeOH) aqueous solution is supplied at 0.5 mlZmin to the anode side, and the air is supplied to the force sword side.
  • MeOH methanol
  • the cell temperature was set to 60 ° C, and the product of the current density value at the maximum output when measuring the voltage-current characteristics and the evaluated electrode area I (mA) was applied.
  • Rr greatly depends on the interfacial resistance
  • Rr is an index representing the effect of using the composition for reducing interfacial resistance of the present invention, and should be small.
  • the membrane electrode assembly dried under reduced pressure at 60 ° C for 24 hours is cut out with a cutter, embedded in electron microscope epoxy resin (Quetol 812 manufactured by Nissin EM Co.), and in 48 ° C in an oven at 60 ° C for 48 hours. After curing the epoxy resin, an ultrathin section having a thickness of about 100 ⁇ m was prepared with an ultramicrotome (Ultracut S manufactured by Leica).
  • the prepared ultrathin section was mounted on a 100 mesh Cu grid manufactured by Oken Shoji Co., Ltd., and TEM observation was performed at 100kV acceleration voltage using Hitachi transmission electron microscope H-7100FA. The cross section was observed to confirm the location of the electrolyte membrane and layer (A).
  • a modulus mapping image of the electrolyte membrane part and layer (A) part was obtained using an ultra-micro hardness tester (Tribo Indenter manufactured by Hysitron), and storage modulus and loss modulus were calculated. Calculated.
  • the storage elastic modulus of the electrolyte membrane is C
  • the storage elastic modulus of the layer (A) is D and its ratio C / D
  • the loss elastic modulus E of the electrolyte membrane is the value of the storage elastic modulus F of the layer (A) and its ratio.
  • the ratio EZF was determined. The measurement conditions are shown below.
  • Tribo Indenter manufactured by Hysitron
  • Measurement field of view approx. 30 mm square
  • the membrane electrode assembly dried under reduced pressure at 60 ° C for 24 hours is cut out with a cutter, embedded in electron microscope epoxy resin (Quetol 812 manufactured by Nissin EM Co.), and in 48 ° C in an oven at 60 ° C for 48 hours. After curing the epoxy resin, an ultrathin section having a thickness of about 100 ⁇ m was prepared with an ultramicrotome (Ultracut S manufactured by Leica).
  • the prepared ultrathin section was mounted on a 100 mesh Cu grid manufactured by Oken Shoji Co., Ltd., and TEM observation was performed at 100kV acceleration voltage using a Hitachi transmission electron microscope H-7100FA. By observing the cross section, the location of the layer (A) having a different phase difference from the electrolyte membrane was confirmed.
  • the cross-section cut with a microtome was ultrasonically cleaned with ethanol, and the measurement location of the electrolyte membrane and layer (A) was determined with reference to the TEM observation image, respectively. Measurement was performed using a Dimension 3000) and phase detection extender module (PHASE-D01 type). The scanning range was 12.5 m X 25 m, and the sample surface was moved while vibrating the measurement probe at the resonance frequency (tapping mode scanning). At this time, the radius of curvature of the probe tip was 5 to 20 nm, and the tabing frequency was 150 to 450 kHz.
  • phase difference ratio is the brightest part of the observation sample excluding the constituents of the membrane electrode complex, that is, the membrane electrode.
  • M is the hardened epoxy resin used when preparing ultra-thin slice samples of the polar composite, and M Expressed in ZI.
  • Membrane electrode assembly is installed in Electrochem single cell "EFC05-01SP" (cell for 5cm 2 electrode area), cell temperature is 50 ° C, 20% methanol aqueous solution at the anode side at a rate of 0.5ml / min. Supply the synthetic air to the force sword side at a speed of 50mlZ, and measure the voltage and current characteristics using the evaluation device made by Toyo Techni Power, the potentiostat 1470 made by solartron, and the frequency response analyzer made by solartron 1255B.
  • the synthetic air discharged from the force sword is collected in a gas collection bag, and methanol in the sampling gas is collected using a gas chromatograph 'MicroGC CP4900' with an autosampler manufactured by GL Sciences.
  • concentration of both carbon dioxide produced by oxidation was calculated by assuming that all the carbon dioxide originated from the permeated methanol.
  • Min the total concentration of methanol and diacid carbon by gas chromatograph is Z (volume%) and the total volume is V (ml), and the open area (the area where the methanol aqueous solution fuel in the membrane electrode assembly is in direct contact)
  • Viscosity was measured between temperatures 20 ° C ⁇ 100 ° C under the condition of using a rotary viscometer (Rheotech Co. rheometer RC20 type) shear rate 35 (s _ 1).
  • the temperature dependence of the viscosity change was determined by the ratio YZX of the value X (Pa) at 30 ° C and the value Y (Pa) at 80 ° C.
  • the lOh reaction was performed at 0 ° C. Then, it was poured into a large amount of water little by little and neutralized with NaOH, and then 200 g of sodium chloride was added to precipitate the composite. The resulting precipitate was separated by filtration and recrystallized with an aqueous ethanol solution to obtain disodium 3, 3, 1-disulfonate-4, 4, 4-dibenzo benzophenone. (Yield 181 g, yield 86%).
  • the above polymer A was dissolved in N, N-dimethylacetamide to obtain a coating solution having a solid content of 25%.
  • the coating solution was cast on a glass plate and dried at 70 ° C for 30 minutes and further at 100 ° C for 1 hour to obtain a 72 m film.
  • the temperature was raised to 200 to 300 ° C for 1 hour, heat-treated at 300 ° C for 10 minutes, allowed to cool, and immersed in 1N hydrochloric acid for 12 hours or more to protonate
  • the membrane was immersed in a large excess amount of pure water for 1 day or more and thoroughly washed to obtain an electrolyte membrane A.
  • the tensile modulus of the film was 1300 MPa.
  • Polymer B was similarly formed to obtain electrolyte membrane B.
  • the tensile elastic modulus of the electrolyte membrane was 131 OMPa.
  • PT FE treatment was performed on carbon cloth manufactured by E-TEK Co., Ltd., which has carbon fiber weaving ability. Specifically, carbon cloth was dipped in an aqueous dispersion containing 20% by weight of polytetrafluoroethylene (hereinafter abbreviated as PTFE), pulled up, dried, and fired. One side was coated with a carbon black dispersion containing 20% by weight of PTFE and baked to prepare an electrode substrate. On this electrode substrate, Pt—Ru supported carbon catalyst “HiSPEC” (registered trademark) 7000 and “HiSPEC” (registered trademark) 6000 manufactured by Johnson Massey (Johson & Matthey), and 20% “naphth ion manufactured by DuPont”.
  • HiSPEC registered trademark
  • HiSPEC registered trademark
  • An anode catalyst coating solution consisting of “(“ Nafion ”) (registered trademark) solution and n-propanol was applied and dried to prepare an electrode A.
  • the anode catalyst coating solution was applied to the surface coated with the carbon black dispersion.
  • a force sword catalyst coating solution consisting of a Pt-supported carbon catalyst TEC10V50E made by Tanaka Kikinzoku Kogyo Co., Ltd. (Naphion) (registered trademark) (Naphion (registered trademark)) solution is applied to the above electrode base material. It was coated and dried to produce Electrode B.
  • a catalyst-supported carbon (catalyst: Pt, carbon: Cabot ValcanXC-72, platinum loading: 50% by weight) is added to Aldrich's “Nafion” (registered trademark) solution.
  • the catalyst polymer composition was prepared by adding the mixture so that the weight ratio was 1: 0.5 and stirring well.
  • the catalyst-polymer composition was previously treated with a water repellent treatment (impregnated with 20% by weight of PTFE). It was applied to an electrode base material (carbon paper TGP-H-060 manufactured by Toray Industries, Inc.) that had been fired, and immediately dried to prepare electrode C.
  • composition A 10 g of polymer A as a polymer material having an ionic group, 60 g of N-methyl-2-pyrrolidone and 40 g of glycerin as plasticizers were placed in a container and stirred until uniform to obtain composition A with reduced interface resistance.
  • YZX which represents the temperature dependence of the viscosity change of Composition A having reduced interface resistance, was 0.08.
  • This interfacial resistance-reducing composition A was applied onto electrode A and electrode B to 3 mgZcm 2 and heat-treated at 100 ° C. for 1 minute. These electrodes were cut to have an electrode area of 5 cm 2 .
  • these electrodes with the interfacial resistance reducing composition A are laminated so that the interfacial resistance reducing composition A is on the electrolyte membrane A side, and heated at 100 ° C for 1 minute at a pressure of 5 MPa.
  • the membrane electrode assembly was obtained by pressing.
  • the pressed membrane electrode assembly was immersed in 50 ml of pure water for 30 minutes, and the plasticizer remaining in the interfacial resistance-reducing composition A was extracted and washed, and incorporated into a power generation cell to obtain a fuel cell.
  • the voltage holding ratio of the membrane electrode composite is that the initial voltage is 0.25 V after 100 hours constant current power generation. The voltage was 0.24V and showed an excellent durability of 96%.
  • the methanol permeation amount of this membrane electrode assembly was 4.5 ⁇ mol Zcm 2 Z min.
  • the output of a passive evaluation showed 40mWZcm 2.
  • Electrode A, electrode B and electrolyte membrane A were laminated so as not to use an interface resistance reducing composition, and heated and pressed at 100 ° C for 8 minutes at a pressure of 5 MPa to obtain a membrane electrode composite.
  • Figure 2 shows the voltage-current characteristics of a fuel cell using this. The Rr value was 2.5 Q -cm 2 .
  • Example 1 showed better voltage-current characteristics than Comparative Example 1. Attempts were made to measure the storage elastic modulus, loss elastic modulus, and phase difference of the cross section of this membrane electrode composite, and it was found that only the electrolyte membrane portion could be observed.
  • This membrane electrode composite had a methanol permeation of 4 ⁇ molZcm 2 Z min. The output of this membrane electrode composite in the passive evaluation was 5 mWZcm 2 .
  • composition B 10 g of polymer A as a polymer material having an ionic group, 40 g of N-methyl-2-pyrrolidone and 40 g of glycerin as plasticizers were placed in a container and stirred until uniform to obtain composition B with reduced interface resistance.
  • Figure 8 shows the temperature dependence of the viscosity of Composition B for reducing interfacial resistance.
  • YZX which represents the temperature dependence of the viscosity change of Composition B for reducing interfacial resistance, was 0.05.
  • This interfacial resistance-reducing composition B was applied to a release substrate at 3 mg / cm 2 and heat-treated at 100 ° C. for 1 minute to prepare a release sheet with an interfacial resistance-reducing composition.
  • This release sheet with the interface resistance reducing composition is superimposed on electrode A and electrode B, and heated and pressed at 100 ° C for 1 minute at a pressure of 2 MPa, the release paper is peeled off, and the electrode with the interface resistance reducing composition is attached. Got. These electrodes were cut so as to have an electrode area of 5 cm 2, and a membrane electrode assembly was obtained in the same manner as in Example 1. A fuel cell using this was fabricated and evaluated in the same manner as in Example 1. The voltage-current characteristics almost overlapped with Example 1, and the maximum output was 102 mWZcm 2 . The Rr value was 0.8 ⁇ 'cm 2 .
  • the voltage holding ratio of the membrane electrode composite was 0.26V at the initial voltage, and 0.25V after 100 hours of constant current power generation, showing excellent durability of 96%.
  • the methanol permeation amount of this membrane electrode assembly was 4.0 ⁇ mol Zcm 2 Z min.
  • the output of a passive evaluation showed 39mWZcm 2.
  • a release sheet with the interfacial resistance-reducing composition B of Example 2 was prepared.
  • This release sheet with the interfacial resistance reducing composition B is cut to a 2.4 cm square, and the interfacial resistance reducing composition B and the electrolyte membrane A are in contact with each other and pasted on both sides at 60 ° C.
  • the release substrate was peeled off.
  • electrodes A and B with an electrode area of 5 cm 2 were layered on the surface of the electrolyte resistance reducing composition layer provided on both sides of the electrolyte membrane, and heated and pressed at 100 ° C for 1 minute at a pressure of 2 MPa. As a result, an electrode with an interface resistance reducing composition was obtained.
  • Example 2 When a fuel cell using this was fabricated and evaluated in the same manner as in Example 1, the voltage-current characteristics almost overlapped with Example 1, and the maximum output was 99 mWZcm 2 . The Rr value was 0.85 ⁇ 'cm 2 .
  • the storage elastic modulus, loss elastic modulus and phase difference of the cross section of this membrane electrode composite were measured, a layer (A) having a phase difference different from that of the electrolyte membrane portion could be confirmed, and the phase difference ratio MZI was 1.11.
  • the storage elastic modulus C of the electrolyte membrane portion is 7.5 GPa
  • the loss elastic modulus E is 1.8 GPa
  • the storage elastic modulus D of the layer (A) portion is 8.8 GPa
  • the loss elastic modulus F is 1.7 GPa.
  • the initial voltage was 0.26V
  • the voltage after 100 hours constant current power generation was 0.25V, which showed an excellent durability of 96%.
  • a release sheet with the interface resistance-reducing composition B was prepared.
  • This interfacial resistance reducing composition B-attached release sheet is superimposed on electrode A and electrode B, heated at 100 ° C for 1 minute and heated at 2 MPa, peeled off the release paper, and interface resistance reducing composition B An attached electrode was obtained.
  • These electrodes are cut to an electrode area of 5 cm 2 and 20% methanol After being immersed in an aqueous solution for 5 hours, the plasticizer and solvent in the interface resistance reducing composition B were extracted and removed by washing with pure water. Next, the electrolyte membrane A was sandwiched between these electrodes, and heated and pressed at 130 ° C for 1 minute at a pressure of 5 MPa to obtain a membrane electrode composite.
  • Example 2 A fuel cell using this was fabricated and evaluated in the same manner as in Example 1.
  • the voltage-current characteristics almost overlapped with Example 1, and the maximum output was 105 mWZcm 2 .
  • the Rr value was 0.79 Q-C m 2 .
  • the storage elastic modulus, loss elastic modulus and phase difference of the cross section of this membrane electrode assembly were measured, a layer (A) having a phase difference different from that of the electrolyte membrane portion was confirmed, and the phase difference ratio M o. 95 was obtained.
  • the storage elastic modulus C of the electrolyte membrane portion is 9.2 GPa
  • the loss elastic modulus E is 1.4 7 GPa
  • the storage elastic modulus D of the layer (A) portion is 8.8 GPa
  • the loss elastic modulus F is 1.8 GPa
  • C / ⁇ 1.04
  • E / F 0.82.
  • the membrane electrode composite had an Rr value of 0.8 ⁇ ⁇ cm 2 .
  • the storage elastic modulus, loss elastic modulus and phase difference of the cross section of this membrane electrode assembly were measured, a layer (A) having a phase difference different from that of the electrolyte membrane portion could be confirmed, and the phase difference ratio MZI was 0.99.
  • the storage elastic modulus C of the electrolyte membrane part is 0.8 GPa
  • the loss elastic modulus E is 0.06 GPa
  • the storage elastic modulus D of the layer (A) part is 0.7 GPa
  • the loss elastic modulus F is 0.05 GPa.
  • DuPont's "Nafion 117 (registered trademark)" is used as the electrolyte membrane, and these electrodes with the interface resistance reducing composition A are the interface resistance reducing composition A on the electrolyte membrane side.
  • the membrane electrode composite was obtained by heating and pressing at 100 ° C for 5 minutes at a pressure of 5 MPa. The pressed membrane electrode assembly was immersed in 50 ml of pure water for 30 minutes, and the plasticizer remaining in the interfacial resistance reducing composition A was extracted and washed, and incorporated into a power generation cell to obtain a fuel cell.
  • the Rr value of this membrane electrode composite was 0.9 ⁇ ′cm 2 .
  • the storage elastic modulus, loss elastic modulus, and phase difference of the cross section of the membrane electrode assembly were measured, a layer (A) having a phase difference different from that of the electrolyte membrane portion could be confirmed, and the phase difference ratio MZI was 12.8.
  • the storage elastic modulus C of the electrolyte membrane part is 0.8 GPa
  • the loss elastic modulus E is 0.06 GPa
  • the storage elastic modulus D of the layer (A) part is 9.2 GPa
  • the loss elastic modulus F is 1.7 GPa.
  • this membrane electrode composite was smaller than the storage elastic modulus C force GPa of the electrolyte membrane, the methanol permeation amount with a large methanol aqueous fuel penetration was 14 molZcm 2 Z, and the methanol suppression effect was small.
  • the initial voltage was 0.17V
  • the voltage after 100 hours constant current power generation was 0.08V
  • the durability was inferior at 47%.
  • the output in the noisy evaluation was 8 mWZcm 2 , which was a low output.
  • the evaluation cell after these evaluations was disassembled, and the membrane electrode assembly was taken out and visually observed. Separation occurred at the interface of the membrane, which was thought to be caused by different dimensional changes due to the swelling of the methanol aqueous solution of each constituent material.
  • the current density that is, the electrode reaction rate is increased, the degree of non-equilibrium in the process that does not proceed easily becomes very large and eventually reaches the physical limit. That is, a force that makes it impossible to obtain a current density higher than this.
  • This current density is the limiting current density.
  • the membrane electrode composite produced via the interfacial resistance reducing composition has a larger maximum output in the range of the tensile modulus of elasticity.
  • the tensile modulus of elasticity is lOOMPa. If it becomes above, the effect will become remarkable.
  • a membrane electrode assembly was produced in the same manner as in Example 3 except that the electrolyte membrane A in Example 3 was changed to the electrolyte membrane B.
  • the voltage holding ratio of the membrane electrode composite was 0.26V at the initial voltage, and 0.25V after 100 hours constant current power generation, showing an excellent durability of 96%.
  • the methanol permeation amount of this membrane electrode composite was 5.4 / ⁇ ⁇ « ⁇ 2 ⁇ .
  • the output in the noisy evaluation was 42 mWZcm 2 .
  • the methanol permeation amount of this membrane electrode assembly was 3.8 molZcm 2 Z min.
  • the output of passive evaluation exhibited 35m WZcm 2.
  • these electrodes with the interface resistance reducing composition were laminated so that the interface resistance reducing composition was on the electrolyte membrane B side, and heated at 100 ° C for 1 minute at a pressure of 5 MPa. After pressing, the membrane electrode assembly is immersed in 50 ml of pure water for 30 minutes and remains in the interface resistance reducing composition! / The plasticizer was extracted and washed to produce a membrane electrode assembly.
  • the voltage holding ratio of the membrane electrode composite was 0.23V at the initial voltage and 0.22V after 100 hours of constant current power generation, showing excellent durability of 96%.
  • these electrodes with the interfacial resistance reducing composition were laminated so that the interfacial resistance reducing composition was on the electrolyte membrane A side, and heated at 100 ° C for 1 minute at a pressure of 5 MPa.
  • the membrane electrode assembly was obtained by pressing. After pressing, the membrane electrode assembly was immersed in 50 ml of pure water for 30 minutes, and the plasticizer remaining in the interface resistance reducing composition was extracted and washed to prepare a membrane electrode assembly.
  • the initial voltage was 0.25 V
  • the voltage after 100 hours constant current power generation was 0.24 V
  • the durability was 96%.
  • the methanol permeation amount of this membrane electrode assembly was 5.0 ⁇ mol Zcm 2 Z min.
  • the output of a passive evaluation showed 42mWZcm 2.
  • the method for producing a membrane electrode assembly of the present invention can be applied to the production of membrane electrode assemblies of various electrochemical devices (for example, fuel cells, water electrolysis devices, black-hole alkaline electrolysis devices, etc.). Among these devices, it is suitable for a fuel cell, and particularly suitable for a fuel cell using hydrogen or methanol aqueous solution as fuel.
  • various electrochemical devices for example, fuel cells, water electrolysis devices, black-hole alkaline electrolysis devices, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 高耐熱性、高強度、高引っ張り弾性率および低含水率の電解質膜でも燃料クロスオーバー抑制効果を維持しつつ、短時間、低温度、低圧力、さらには重合などせずに簡便に電極と電解質膜界面の抵抗を低減できる界面抵抗低減性組成物を用いた膜電極複合体の製造方法を提供することを課題とし、一対の電極間に電解質膜を介してなる膜電極複合体において、少なくとも一方の電極を、可塑剤を含有する界面抵抗低減性組成物を介して電解質膜と貼り合わせる工程を有する膜電極複合体の製造方法とすること、一対の電極間に電解質膜を介してなる膜電極複合体において、少なくとも一方の電極と電解質膜間に層(A)を有し、超微小硬度計で測定した電解質膜の貯蔵弾性率をC、層(A)の貯蔵弾性率をDとしたとき、貯蔵弾性率Cの値が1GPa以上である、膜電極複合体とすることにより達成できる。

Description

明 細 書
膜電極複合体およびその製造方法、ならびに燃料電池
技術分野
[0001] 本発明は、高出力密度を達成することができる膜電極複合体およびその製造方法
、ならびにそれを使用した燃料電池に関するものである。
背景技術
[0002] 燃料電池は、排出物が少なぐかつエネルギー効率が高ぐ環境への負担の低い 発電装置である。このため、近年の地球環境保護への高まりの中で再び脚光を浴び ている。従来の大規模発電施設に比べ、比較的小規模の分散型発電施設、自動車 や船舶など移動体の発電装置として、将来的にも期待されている発電装置である。ま た、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池ゃリ チウムイオン電池などの二次電池の代替として、あるいは二次電池の充電器として、 またあるいは二次電池との併用(ハイブリッド)により、携帯電話などの携帯機器ゃパ ソコンなどへの搭載が期待されている。
[0003] 高分子電解質型燃料電池(Polymer Electrolyte Fuel Cell)にお!/ヽては、水素ガスを 燃料とする従来の高分子電解質型燃料電池 (以下、 PEFCと記載する場合がある) に加えて、メタノールなどの燃料を直接供給する直接型燃料電池も注目されて ヽる。 直接型燃料電池は、従来の PEFCに比べて出力が低いものの、燃料が液体で改質 器を用いないために、エネルギー密度が高くなり、一充填あたりの携帯機器の使用 時間が長時間になるという利点がある。
[0004] 高分子電解質型燃料電池は通常、発電を担う反応の起こるアノードと力ソードの電 極と、アノードと力ソードとの間でプロトン伝導体となる高分子電解質膜とが、膜電極 複合体(MEA)を構成し、この MEAがセパレーターによって挟まれたセルをユニット として構成されている。ここで、電極は、ガス拡散の促進と集 (給)電を行う電極基材( ガス拡散電極あるいは集電体とも云う)と、実際に電気化学的反応場となる触媒層と 力も構成されている。たとえば PEFCのアノード電極では、水素ガスなどの燃料がァノ ード電極の触媒層で反応してプロトンと電子を生じ、電子は電極基材に伝導し、プロ トンは高分子電解質膜へと伝導する。このため、アノード電極には、ガスの拡散性、 電子伝導性、プロトン伝導性が良好なことが要求される。一方、力ソード電極では、酸 素や空気などの酸化ガスが力ソード電極の触媒層で、高分子電解質膜から伝導して きたプロトンと、電極基材から伝導してきた電子とが反応して水を生成する。このため 、力ソード電極においては、ガス拡散性、電子伝導性、プロトン伝導性とともに、生成 した水を効率よく排出することも必要となる。
[0005] また、 PEFCの中でも、メタノールなどを燃料とする直接型燃料電池においては、水 素ガスを燃料とする従来の PEFCとは異なる性能が要求される。すなわち、直接型燃 料電池にぉ 、ては、アノード電極ではメタノール水溶液などの燃料がアノード電極の 触媒層で反応してプロトン、電子、二酸化炭素を生じ、電子は電極基材に伝導し、プ 口トンは高分子電解質に伝導し、二酸ィ匕炭素は電極基材を通過して系外へ放出され る。このため、従来の PEFCのアノード電極の要求特性に加えて、メタノール水溶液 などの燃料透過性や二酸化炭素の排出性も要求される。さらに、直接型燃料電池の 力ソード電極では、従来の PEFCと同様な反応に加えて、電解質膜を透過したメタノ ールなどの燃料と酸素あるいは空気などの酸ィ匕ガスが力ソード電極の触媒層で、二 酸化炭素と水を生成する反応も起こる。このため、従来の PEFCよりも生成水が多く なるため、さらに効率よく水を排出することが必要となる。
[0006] 従来、高分子電解質膜としてナフイオン (登録商標)(デュポン社製)に代表される パーフルォロ系プロトン伝導性ポリマー膜が使用されてきた。しかし、これらのパーフ ルォロ系プロトン伝導性ポリマー膜は直接型燃料電池においてはメタノールなどの燃 料透過が大きぐ電池出力やエネルギー効率が十分でないという問題があった。また パーフルォロ系プロトン伝導性ポリマーは、フッ素を使用するという点力も価格も非常 に高いものである。
[0007] 従来のパーフルォロ系プロトン伝導性ポリマー膜とは異なる非パーフルォロ系プロ トン伝導性ポリマー膜、例えば非フッ素系の芳香族系高分子にァ-オン性基を導入 した高分子電解質膜も種々提案されている (米国特許出願公開第 2002Z91225号 明細書、米国特許第 5403675号明細書、 Journal of Membrane Science, Vol.197, 2 31-242(2002)参照)。し力しこれらの高分子電解質膜では、高伝導度を得るためにァ ユオン性基の導入量を多くすると内部に水を取り込み易くなり、メタノールなどの燃料 クロスオーバーが大きいという欠点があった。この欠点の改良として、ァ-オン性基の 導入量を減少させ、燃料クロスオーバーを低減させるなどの方策は容易に推測され るが、該方策では、膜電極複合体として使用する場合に、イオン伝導度が低下する ばかりではなぐ高分子電解質膜が硬くなることから、電極と接着性が不十分となり、 結果として膜電極複合体としてのイオン伝導度が低下し、燃料電池としての性能が 不十分となる。つまり、電解質膜が高耐熱性、高引っ張り弾性率の場合、たとえ低燃 料クロスオーバーおよび高イオン伝導度の両立ができたとしても、膜が硬ぐ軟ィ匕しに くいため、触媒層の微細表面と電解質膜の間に空隙が生じやすくなる。該空隙部に 空気や二酸ィ匕炭素などの気泡が溜まることでもイオン伝導に対して大きな抵抗となり 、燃料電池としての性能が不十分となる。
[0008] これらの対策として、例えば、電解質と電極間にイオン性基をもつ物質を介在させ る方法が提案されている(特開昭 59— 209278号公報,特開平 4— 132168号公報 参照)。
[0009] 特開昭 59— 209278号公報においては、発明の実施例中に高分子酸がペースト 状のものを触媒層表面力 塗りつけるという方法が記載されており、高分子酸として ポリスチレンスルホン酸、ポリエチレンスルホン酸のォレフィン系の電解質を使用して いる。しかしながら、ペースト化の具体的な方法やペースト化するのに必要な材料の 開示は全くされていない。また、使用する材料が燃料電池の運転条件によっては耐 久性が不十分である。
[0010] 特開平 4— 132168号公報においては、パーフルォロ系プロトン伝導性ポリマーを 電極に塗布乾燥後、電極と膜を高温プレスで一体化する方法、スチレンスルホン酸 ナトリウムと架橋剤のへキサエチレングリコールジメタタリレートなどのモノマー組成物 溶液を電極に塗布後、電解質膜と接合し、 1時間以上加熱および加圧し、膜と電極 を該モノマーの架橋重合体を介して一体化する方法が例示されている。
[0011] し力しながら、これらの方法では、電極と膜の接合に長時間要したり、 150°C程度の 高温が必要であったりするので、不必要にモノマーや溶液が電解質膜にしみ込むな どして電解質膜の燃料クロスオーバーの抑制効果やイオン伝導性に悪影響を及ぼし 、高出力密度の燃料電池が得られない。さらに、これらの文献に記載の材料系では、 たとえば、メタノールなどを含む燃料を使用する直接型燃料電池に用いる場合、電極 と電解質膜の接着層の耐久性が不十分であるため、高出力密度の燃料電池が得ら れない。
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、力かる背景技術に鑑み、特に、高耐熱性、高強度、高引っ張り弾性率 および低含水率の電解質膜でも燃料クロスオーバー抑制効果を維持しつつ、短時 間で、低温度で、低圧力下で簡便に電極と電解質膜界面の抵抗を低減できる膜電 極複合体の製造方法を提供し、さらには、高出力密度の燃料電池を提供せんとする ものである。また本発明は、特に、高耐熱性、高強度、高引っ張り弾性率および低含 水率の電解質膜を用いた燃料クロスオーバー抑制効果が高ぐ高出力密度を取り出 せる膜電極複合体を提供し、さらには、それを用いた高出力の燃料電池を提供せん とするちのである。
課題を解決するための手段
[0013] 上記目的を達成するための本発明は、次のような手段を採用するものである。すな わち、本発明は、一対の電極間に電解質膜を介してなる膜電極複合体を製造する方 法において、少なくとも一方の電極を、イオン性基を有する高分子材料と可塑剤とを 含有する界面抵抗低減性組成物を介して電解質膜と貼り合わせる (以下、電極と電 解質膜を貼り合わせることを、電極と電解質膜を貼り合わせた後にそれらを一体化さ せることを含めて「複合化」と称することがある。)工程、ならびに、溶媒による抽出によ り前記界面抵抗低減性組成物から可塑剤の一部または全部を除去する工程を有す る、膜電極複合体の製造方法である。
[0014] また、本発明は、一対の電極間に電解質膜を介してなる膜電極複合体において、 少なくとも一方の電極と電解質膜間に層 (A)を有し、超微小硬度計で測定した電解 質膜の貯蔵弾性率を Cとしたとき、貯蔵弾性率 Cの値が lGPa以上の膜電極複合体 である。
[0015] また、本発明は、一対の電極間に電解質膜を介してなる膜電極複合体において、 少なくとも一方の電極と電解質膜間に、走査プローブ顕微鏡のタッピングモード走査 で測定した位相差が電解質膜と異なる層 (A)を有し、かつ電解質膜および層 (A)が ァニオン性基を有する芳香族炭化水素を含有する膜電極複合体である。
[0016] さらに、本発明の燃料電池は該膜電極複合体を用いることを特徴とする。
発明の効果
[0017] そして本発明によれば、高耐熱性、高強度、高引っ張り弾性率および低含水率の 電解質膜を使用した場合でも膜電極複合体の電極と電解質膜間の低界面抵抗化が 可能であり、力かる膜電極複合体を用いることによって、高出力密度の燃料電池を提 供することが可能となる。また本発明によれば、低燃料クロスオーバー性、高出力密 度および高耐久性の膜電極複合体を提供でき、カゝかる膜電極複合体を用いることに よって、高出力な燃料電池を提供することが可能となる。
図面の簡単な説明
[0018] [図 1]膜電極複合体のインピーダンス測定結果の円形フィット例である。
[図 2]本発明の実施例 1および比較例 1の膜電極複合体を用いた燃料電池の電圧一 電流特性図である。
[図 3]膜電極複合体に使用した電解質膜の引っ張り弾性率と、それぞれ膜電極複合 体の製造にお!ヽて界面抵抗低減性組成物を使用した燃料電池の出力と界面抵抗低 減性組成物を使用しなカゝつた燃料電池の出力の比の関係を示した図である。
[図 4]スタック状燃料電池の一例を示した図である。
[図 5]膜電極複合体の一例を示した図である。
[図 6]電極 Z電解質膜部分を拡大したイメージ図である。
[図 7]パッシブ型燃料電池の一例の断面図である。
[図 8]実施例 2における、界面抵抗低減性組成物 Bの粘度変化の温度依存性を示す 図である。
符号の説明
[0019] 1 :膜電極複合体
2 :ガスケット
3 :ノイポーラーセノ レーター 4 :集電板
5 :燃料供給口
6 :締め付けネジ
7 :空気流路
8 :燃料流路
9 :燃料タンク
10 :電極
11 :電解質膜 (層)
12 :層 (A)
13 :触媒層
14 :ガスケット
15 :電解質膜
16 :燃料供給および発生ガス排気口
17 :アノード極リード
18 :集電メッシュ
19: :触媒層 +層 (A)
20: :燃料拡散層
21: :燃料保持材料
22: :カソードリード
23: :oリング
24: :スぺーサー
25: :カソードリード開口部 (温度測定用)
26: :空気取り入れ口
27: :筐体
28: :負荷
29: :結線
発明を実施するための最良の形態
以下、本発明の好ましい実施形態を説明する。 [0021] 本発明の膜電極複合体の製造方法は、一対の電極間に電解質膜を介してなる膜 電極複合体において、少なくとも一方の電極を、可塑剤を含有する界面抵抗低減性 組成物を介して電解質膜と貼り合わせる工程を有することが必須である。
[0022] 本発明者らは、使用する電極、電解質膜の個々の部材の特性が優れていても、複 合ィ匕した場合に電極と電解質膜間の抵抗が大きければ、結果として膜電極複合体の 性能が不十分となることを突き止め、本発明に至った。特に、電解質膜の燃料クロス オーバーの抑制のため、また、機械的強度の向上のためには、動的粘弾性によるガ ラス転移点 120°C以上の高耐熱性、引っ張り弾性率 lOOMPa以上、好ましくは 500 MPa以上、さらに好ましくは lOOOMPa以上の高弾性率、高強度、および電解質膜 重量に対して 100%以下の低含水率が得られるような分子構造が好ましいため、電 解質膜が剛直になる傾向がある。つまり、膜電極複合体やそれを使用した燃料電池 の性能を向上させるために優れた電解質膜を見出しても、電解質膜が変形しにくい ため、前記の電極と電解質膜間の抵抗が大きくなり、期待した膜電極複合体の性能 が得られな ヽ傾向にあった。
[0023] 電極と電解質膜の複合化時に可塑剤を含有する界面抵抗低減性組成物を介する ことにより、電極と電解質膜間の微細な空隙を該界面抵抗低減性組成物で少なくとも 一部分は満たすことにより実質的接触面積を増大させることができ、空隙に、燃料電 池として使用する燃料や空気、および発生する水や二酸ィ匕炭素などが入り込むこと による抵抗の増大を防ぐことができる。また、電極の触媒層に生じたクラック中にも界 面抵抗低減性組成物が浸入し、従来発電に使用できなカゝつた触媒層クラックの内部 壁面も有効に利用できるようになり、電解質と触媒の接触面積を大きくできる。これら の結果として、膜電極複合体の抵抗が低下し、出力密度が大きくなり、高性能な燃料 電池を得ることができる。
[0024] さらに、電極基材ゃ触媒層の突起などを被覆することも可能であり、膜電極複合体 作製時の微小短絡や燃料電池として使用中の微小短絡を低減でき、膜電極複合体 の性能低下を抑制できる。
[0025] さらに、電解質膜にピンホールや表面欠陥等がある場合でも、界面抵抗低減性組 成物よりなる層により保護、補修可能であり、膜電極複合体としての性能安定化ゃ耐 久性向上が可能である。
[0026] また、少なくとも一方の電極の面積 (投影面積)の 50%以上が界面抵抗低減性組 成物を介して電解質膜と複合ィ匕していることが低界面抵抗ィ匕に対して好ましぐ 75% 以上がより好ましぐ 95%以上がさらに好ましい。また、さらに一対の電極のそれぞれ 面積 50%以上が界面抵抗低減性組成物を介して電解質膜と複合化されていること 力 り好ましぐ 75%以上がさらに好ましぐ 95%以上が最も好ましい。
[0027] まず、界面抵抗低減性組成物カゝら説明する。本発明の界面抵抗低減性組成物とは 、イオン伝導性があること、少なくとも電極と電解質膜の複合ィ匕時に流動性または塑 性変形可能であること、電極内の空隙を埋めすぎて燃料や空気および発生する水、 二酸化炭素の拡散を阻害しないこと、電解質膜との密着性が良好なこと、触媒性能 に悪影響を与えないこと、膜電極複合体となり少なくとも発電する際には流動しない こと、つまり、燃料による過度の膨潤ゃ溶出がないこと、例えばメタノール水溶液ゃメ タノールを燃料にする場合、使用する電解質膜と同等以上の耐メタノール性、強度を 有することなどの条件を満たすものが好ましい。発明者らは、これらの条件を満足す るべぐ鋭意検討した結果、以下に示す組成物が好ましいことを見出した。
[0028] まずイオン伝導性を付与するために、本発明に用いられる界面抵抗低減性組成物 には、イオン性基を有した高分子材料を含むことを必須とする。係るイオン性基として は、負電荷を有する原子団が好ましぐプロトン交換能を有するものが好ましい。この ような官能基としては、スルホン酸基(一 SO (0¾ )、硫酸基(-030 (OH) )、ス
2 2
ルホンイミド基(— SO NHSO R(Rは有機基を表す。;))、ホスホン酸基(― PO (OH
2 2
) )、リン酸基(― OPO (OH) )、カルボン酸基(— CO (OH) )、およびこれらの塩等
2 2
を好ましく採用することができる。これらのイオン性基は前記高分子材料中に 2種類 以上含むことができ、組み合わせることにより好ましくなる場合がある。組み合わせは ポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なく ともスルホン酸基、スルホンイミド基、硫酸基のいずれかを有することがより好ましぐ 耐加水分解性の点カゝら少なくともスルホン酸基を有することが最も好まし ヽ。スルホン 酸基を有する場合、そのスルホン酸基密度は、プロトン伝導性および燃料クロスォー バー抑制の点から 0. 1〜5. OmmolZgが好ましぐより好ましくは 0. 5〜3. 5mmol んさらに好ましくは 1. 0〜3. 5mmolZgである。スルホン酸基密度を 0. lmmol Zg以上とすることにより、イオン伝導度すなわち低界面抵抗を維持することができ、 また 5. OmmolZg以下とすることで、たとえば、直接メタノール型燃料電池など液体 燃料が直接接触するような燃料電池に使用する際に、界面抵抗低減性層が燃料に より過度に膨潤し溶出したり流出したりするのを防ぐことができる。
[0029] ここで、スルホン酸基密度とは、高分子材料の単位乾燥重量当たりに導入されたス ルホン酸基のモル量であり、この値が大き!/、ほどスルホン化の度合!/、が高!、ことを示 す。使用する高分子材料のスルホン酸基密度は、元素分析、中和滴定あるいは核磁 気共鳴スペクトル法等により測定が可能である。スルホン酸基密度測定の容易さや 精度の点で、元素分析が好ましぐ通常はこの方法で分析を行う。ただし、スルホン 酸基以外に硫黄源を含む場合など元素分析法では正確なスルホン酸基密度の算出 が困難な場合には中和滴定法を用いるものとする。さらに、これらの方法でもスルホ ン酸基密度の決定が困難な場合においては、核磁気共鳴スペクトル法を用いること が可能である。
[0030] イオン性基を有した高分子材料の具体例としては、界面抵抗低減性層の機械的強 度、燃料耐久性、耐熱性などの観点から、主鎖に芳香環を有する高分子電解質材 料が好ましぐイオン性基含有ポリフエ-レンォキシド、イオン性基含有ポリエーテル ケトン、イオン性基含有ポリエーテルエーテルケトン、イオン性基含有ポリエーテルス ルホン、イオン性基含有ポリエーテルエーテルスルホン、イオン性基含有ポリエーテ ルホスフィンォキシド、イオン性基含有ポリエーテルエーテルホスフィンォキシド、ィォ ン性基含有ポリフエ-レンスルフイド、イオン性基含有ポリアミド、イオン性基含有ポリ イミド、イオン性基含有ポリエーテルイミド、イオン性基含有ポリイミダゾール、イオン性 基含有ポリオキサゾール、イオン性基含有ポリフエ-レンなどの、イオン性基を有する 芳香族炭化水素系ポリマーが挙げられる。これらのイオン性基を有した高分子材料 のうち、イオン性基の導入量の制御の容易さという観点、および燃料にメタノール水 溶液を使用した場合の耐燃料性の観点から、イオン性基含有ポリエーテルケトン、ィ オン性基含有ポリエーテルエーテルケトンが好適に用いられる。ここで、イオン性基 については前述のとおりである。 [0031] これらの高分子材料にイオン性基を導入する方法については、重合体にイオン性 基を導入してもよいし、イオン性基を有するモノマーを重合してもよい。重合体へのホ スホン酸基の導入は、例えば、「ポリマープレプリンツジャパン」(Polymer Preprints, J apan ) , 51, 750 (2002).等に記載の方法によって可能である。重合体へのリン酸基 の導入は、例えば、ヒドロキシル基を有するポリマーのリン酸エステルイ匕によって可能 である。重合体へのカルボン酸基の導入は、例えば、アルキル基ゃヒドロキシアルキ ル基を有するポリマーを酸ィ匕することによって可能である。重合体へのスルホンイミド 基の導入は、例えば、スルホン酸基を有するポリマーをアルキルスルホンアミドで処 理するによって可能である。重合体への硫酸基の導入は、例えば、ヒドロキシル基を 有するポリマーの硫酸エステルイ匕によって可能である。重合体へのスルホン酸基の 導入は例えば、重合体をクロロスルホン酸、濃硫酸、発煙硫酸と反応させる方法によ り行うことができる。これらの、イオン性基導入方法は、処理時間、濃度、温度などの 条件を適宜選択することにより目的とするイオン性基密度に制御できる。
[0032] また、イオン性基を有するモノマーを重合する方法としては、例えば、「ポリマー プ レプリンツ」 (Polymer Preprints) , 41(1) (2000) 237.等に記載の方法によって可能で ある。この方法により重合体を得る場合には、イオン性基の導入の度合いはイオン酸 基を有するモノマーの仕込み比率により、容易に制御することができる。
[0033] また使用するイオン性基を有した高分子材料が非架橋構造を有する場合、重量平 均分子量は 1万〜 500万が好ましぐより好ましくは 3万〜 100万である。重量平均分 子量を 1万以上とすることで、低界面抵抗層として実用に供しうる機械的強度を得るこ とができる。一方、 500万以下とすることで、取り扱いの容易な界面抵抗低減性組成 物を得ることができ、良好な加工性を維持することができる。該重量平均分子量は G PC法によって測定できる。
[0034] また、本発明で使用する界面抵抗低減性組成物中には可塑剤を含むことが必要で ある。可塑剤としては、先に述べた界面抵抗低減性組成物としての条件を満足できる ものが選ばれる。可塑剤を含有させることが必要な理由として、上記イオン性基を有 した高分子材料の分解温度以下かつ使用する材料の分解および変形などの悪影響 が発生しない温度以下で界面抵抗低減性組成物が流動させることが可能となる点が 挙げられる。可塑剤を含有させない場合、上記高分子電解質の軟化点以上に温度 を高める必要があり、その他の使用する材料に悪影響を及ぼす。よって、膜電極複 合体としての性能が不十分となる場合がある。
[0035] 本発明で ヽぅ可塑剤とは、前記イオン性基を有した高分子材料と混合し、該高分子 材料の本来の軟ィ匕点より低温で軟ィ匕できるようにする材料である。つまり、成形、製 膜、コーティング加工などの加工が行いやすくする材料である。また、前記界面抵抗 低減性組成物の条件が達成できれば、常温にお!ヽて液体でも固体でも気体でもよ ヽ が通常は液体または固体が好ましい。また、高分子でもオリゴマーでもペースト状で もゾル状でもオイル状でもェマルジヨン状でもその性状や形状に関係なく利用でき、 単に混合されて!ヽても一部が反応してイオン性基を有した高分子材料と結合ある ヽ は強固に吸着してもよい。
[0036] 具体的には、アクリル酸イソボ-ル、アクリル酸 4-ヒドロキシブチル、アタリロイルモ ルホリン、 12-アミノドデカン酸、ァリルダリコール、アルキルフエノール、アルミニウム キレート、イソフタル酸、イソフタル酸ジァリル、イソプロピルアクリルアミド、 P-イソプロ ぺ-ルフエノール誘導体、ィタコン酸、イミノジ酢酸、インデン、ェチルセルロース、ェ チレンィミン、 n-ォクチルアルコール、キシレノール、グリシジルエーテル類、クロトン 酸、 2-クロロェチルビ-ルエーテル、 ρ-クロロスチレンとその誘導体、 2-ジァゾ -1-ナ フトール- 5-スルホン酸ソーダ、シァノ酢酸エステル、ジアミノジフエ-ルエーテル、 N , N-ジェチルアクリルアミド、ジエチレングリコールビスァリルカーボネート、 N, N-ジ (グリシジル) -。-トルィジン、 1, 4-シクロへキサンジメタノール、ジシクロペンタジェン 、ジヒドロキシジフエニルメタン、 4、 4,-ジヒドロキシビフエニール、ジフエニルメタンジ イソシァネート、ジプロピレングリコール、ジペンタエリスリトールへキサ(ペンタ)アタリ レート、 N, N-ジメチルアクリルアミド、 N, N-ジメチルホルムアミド、水素化ビスフエノ 一ル八、セラック、ダイアセトンアクリルアミド、ダイマージオール、チォグリセロール、 テトラシァノキノジメタン、テルペンジフエノール、テレフタル酸ジァリル、ドデカン二酸 、トリグリコールジメルカプタン、 0-トリジン、 0-トリジンジイソシァネート、トリス(ェポキ シプロピル)イソシァヌレート、トリス(2-ヒドロキシェチル)イソシァヌレート、トリメチロー ノレエタン、トリメチローノレプロパン、トリメチローノレプロパントリグリシジノレエーテノレ、 2, 6-ナフタレンジカルボン酸ジメチル、ナフチレン- 1, 5-ジイソシァネート、ネオペンチ ルグリコール、ノルボルナンジイソシアナート、パラヒドロキシビフエ-ルカルボン酸、 ビスアシッド A2、 1, 3-ビス(アミノメチル)シクロへキサン、ビス [4- (1-ヒドロキシェトキ シ)フエ-ル]スルホン、 2-ヒドロキシェチルアタリレート、 2-ヒドロキシェチルメタクリレ ート、 2-ヒドロキシプロピルアタリレート、 N-ビュルァセトアミド、ビュルスルホン酸ナト リウム、ビュルトルエン、 2-ビュルピリジン、 4-ビュルピリジン、 N-ビュルホルムアミド、 ピバリン酸ビュル、ビフエノール、フエ-ルホスホン酸とその誘導体、 n-フエ-ルマレイ ミド、 1, 3-ブタンジオール、 1, 2, 3, 4-ブタンテトラカルボン酸、ブチルへミホルマー ル、 n-ブチルメタタリレート、フマル酸、フルフラール、フルフリルアルコール、 1, 6-へ キサンジオール、ベンゾグアナミン、ペンタエリスリトール、ポリカーボネートジオール 、ポリテトラメチレンエーテルグリコール、 1, 2-ポリブタジエン、無水ィタコン酸、無水 エンドメチレンテトラヒドロフタル酸、無水テトラヒドロフタル酸、無水ピロメリット酸、メタ キシレンジァミン、メタクリル酸グリシジル、メタクリル酸シクロへキシル、メタクリル酸べ ンジル、 α -メチルスチレン、 3-メチル - 1, 5-ペンタンジオール、 α -メチレンスチレン ダイマー、ァセチルリシノール酸メチル、ァゼライン酸、イソデシルアルコール、ォクチ ルジフエ-ルホスフェート、クレジルジフエ-ルホスフェート、ジ- 2-ェチルへキシルァ ゼレート、セバシン酸、セバシン酸ジォクチル、セバシン酸ジブチル、トリフエ-ルホス フェート、 2, 2, 4-トリメチル -1, 3-ペンタンジオールジイソプチレート、ノ-ルアルコ ール、 1, 2-ブタンジオール、 1, 5-ペンタンジオール、無水トリメリット酸、リン酸トリク レジル、レオフォス、 ρ-ェチルフエノール、 η-ォクタデシル- 3 (3,, 5,-ジ-1;-ブチル- 4'-ヒドロキシフエ-ル)プロピオネート、ジステアリルペンタエリスリトールジホスファイト 、ジフエ-ルイソォクチルホスフアイト、ジフエ-ルイソデシルホスファイト、ジミリスチル -3, 3,-チォジプロピオネート、チォジプロピオン酸、テトラキス [メチレン- 3 (3,, 5,- ジ- -ブチル -4,-ヒドロキシフエ-ル)プロピオネート]メタン、トリス(3, 5-ジ -t-ブチル -4-ヒドロキシベンジル)イソシァヌレート、トリス(2, 4-ジ- -ブチルフエ-ル)ホスファ イト、 1, 1, 3-トリス(2-メチル -4-ヒドロキシ- 5- 1-ブチルフエ-ル)ブタン、トリフエ- ルホスフアイト、 4, 4,-ブチリデンビス(3-メチル -6- -ブチルフエノール)、ェチル -2- シァノ -3, 3,-ジフエニルアタリレート、 2- (3,5-ジ- -ブチル -2-ヒドロキシフエ-ル)- 5 -クロ口べンゾトリァリゾール、チヌビン 318、チヌビン 622LD、ビス(2, 2, 6, 6-テトラ メチル -4-ピぺリジン)セバケイト、 2-ヒドロキシ- 4- n -オタトキシベンゾフエノン、 2 (2, -ヒドロキシ- 3, - 1-ブチル - 5, -メチルフエニル- 5-クロ口べンゾトリァリゾール、 2 (2, -ヒ ドロキシ- 5, -メチルフエニル)ベンゾトリァリゾール、 2-ヒドロキシ- 4- n-メトキシベンゾ フエノン、ベンゾフエノン、三酸化アンチモン、ジェチル -n, n-ビス(1-ヒドロキシェチ ル)アミノメチルホスホネート、シクロドデカトリェン、ジブ口モクレジルグリシジルエーテ ル、スルファミン酸グァ-ジン、デカブロモジフエ-ルエーテル、デクロランプラス、テト ラブロモビスフエノール A、トリス( -クロロェチル)ホスフェート、トリス(2, 3-ジブロモ プロピル)イソシァヌレート、 2, 4, 6-トリブロモフエノール、 1 , 2-ビス(2, 4, 6-トリブ ロモフエノキシ)ェタン、へキサブ口モシクロドデカン、へキサブロモベンゼン、ァゾジ カルボンアミド、 1-アミノエチルピペラジン、 13 -ァミノクロトン酸エステル、ァリルメタク リレート、ァルケ-ルコハク酸無水物、イミダゾール類、ゥロトロピン、エチレン 'ビス'ス テアロアマイド、エル力酸アミド、 n-ォクチルメルカプタン、ォレイン酸アマイド、過酢 酸、 m-キシリレンジァミン、 1 , 8-ジァザ-ビシクロ(5, 4, 0)ゥンデセン- 7、 1 , 5-ジァ ザ-ビシクロ(4, 3, 0)ノネン- 5、 4, 4,-ジァミノ- 3, 3,-ジェチルジフエ-ルメタン、 3 , 3,-ジアミノジフエ-ルスルホン、 4, 4,-ジアミノジフエ-ルスルホン、ジ(2-ェチル へキシル)パーォキシジカーボネート、ジクミルパーオキサイド、 N, N-ジ(グリシジル )ァ二リン、ジクロロジアミノジフエ二ノレメタン、 N, N-ジニトロペンタメチレンテトラミン、 9, 10-ジヒドロ- 9-ォキサ -10-ホスファフェナンスレン- 10-オキサイド、ジビニルベン ゼン、ジフヱ-ルジサルファイド、 2-ジ- n-ブチルァミノ- 4, 6-ジメルカプト- s-トリアジ ン、ジベンジリデンソルビトール、 3, 3,-ジメチル- 4, 4,-ジアミノジフエ-ルメタン、ジ メチルチオトルエンジァミン、ステアリン酸アマイド、ステアリン酸アルミニウム、スピロ ァセタール化合物、ソルビトールポリグリシジルエーテル、ダイマー酸、超微粒子状 無水シリカ、 t-ドデシルメルカプタン、 n-ドデシルメルカプタン、トリアリルイソシァヌレ ート、トリェチルァミン、 2, 4, 6-トリ(ジメチルアミノメチル)フエノール、トリプロピレング リコールジアタリレート、 a , a , α -トリブロモメチルフエ-ルスルホン、トリメタァリルイ ソシァヌレート、 2, 2, 4-トリメチル -1 , 3-ペンタンジオールモノイソブチレート、トリメ チロールプロパントリメタタリレート、ノルボルナンジァミン、ビス(ジチォベンジル) -ッ ケル、 2, 2-ビス(4-ヒドロキシフエ-ル)-へキサフルォロプロパン、ビス [2-メチル -4- (3- n-アルキルチオプロピオ-口キシ) - 5- -ブチルフエ-ル]スルファイド、 2- (2, -ヒ ドロキシ- 5' -メタクリルォキシェチルフエニル- 2H-ベンゾトリァゾール、ビバリン酸、フ エノールァラルキル榭脂、フエノチアジン、 p-t-ブチル安息香酸、 4-t-ブチルカテコ ール、 t-ブチルパーォキシベンゾエート、 N- (n-ブトキシメチル)アクリルアマイド、へ キサメチレンジイソシァネート、ベンジル、 1-ベンジル- 2 -ェチルイミダゾール、 p-ベ ンゾキノン、ホウ酸アルミニウムゥイスカー、無水クロレンド酸,クロレンド酸、無水へキ サヒドロフタル酸、無水メチルエンドメチレンテトラヒドロフタル酸、メチルェチルケトキ シム、 N, N,-メチレンビスアクリルアミド、メチレンビスステアルアミド、 N-メチロールァ クリルアミド、 2-メルカプトエタノール、 13 -メルカプトプロピオン酸、モノクロ口酢酸ビニ ル、流動パラフィン、 N, N ジメチルァセトアミド、 N, N ジメチルホルムアミド、 N— メチルー 2 ピロリドン、ジメチルスルホキシド、スルホラン、 1, 3 ジメチルー 2 イミ ダゾリジノン、へキサメチルホスホントリアミド等の非プロトン性極性溶媒類、 γ—プチ 口ラタトン、酢酸ブチルなどのエステル類、エチレンカーボネート、プロピレンカーボネ ートなどのカーボネート類、エチレングリコールモノメチルエーテル、エチレングリコー ノレモノェチノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリコー ルモノェチルエーテル、エチレングリコールモノブチルエーテル、等のァノレキレングリ コールモノアルキルエーテル類、あるいはベンジルアルコール、イソプロパノールなど のアルコール類、エチレングリコーノレ、プロピレングリコール、 1, 4 ブタンジオール 、 1, 6 へキサンジオール、トリメチレングリコール、ネオペンチルグリコール、シクロ へキサンジメタノール、グリセリン、ジエチレングリコール、ペンタエリスリトール、ポリエ チレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどの多価 アルコール類、酢酸、リン酸、硫酸、フタル酸トリオクチル、リン酸トリオクチル、デカン 、デカリン、水、ァセトニトリル、イソキノリン、イソドデカン、イソプロピルエーテル、イソ ホロン、 0-クロロア-リン、酢酸イソプロピル、 1, 4-ジァミノアントラキノン、ジイソアミル エーテノレ、シクロへキサノーノレ、 2- (1-シクロへキセニノレ)シクロへキサノン、ジクロロ ェチルエーテル、 1, 4-ジクロロブタン、ジブチルエーテル、ジメチルァセトアマイド、 ジメチルスルフオキサイド、チォジグリコール、テトラヒドロフラン、テトラヒドロフルフリル アルコール、トリグリコールジクロライド、乳酸ェチル、 2-フエノキシエタノール、へキシ レングリコール、メチルイソプロピルケトン、 3-メチル -3-メトキシブタノール、メトキシブ タノール、メトキシブチルアセテート、イミダゾリゥム塩系、ピリジ-ゥム塩系、四級アン モ-ゥム塩系などのイオン性液体など多種多様の可塑剤が挙げられる。これらの可 塑剤のうち、前記イオン性基を有する芳香族炭化水素系ポリマーのイオン性基等と 水素結合性があり、温度によって水素結合数が変化可能なもの、つまり界面抵抗低 減性組成物の粘度の温度依存性を付与可能なものが好ましぐさらには塗液安定性 、作業性、コスト、触媒への悪影響の低さ (低触媒被毒性)という観点から、エチレン グリコール、プロピレングリコール、トリメチレングリコール、グリセリンなどの多価アルコ ールが好適に用いられる。
[0037] これらの可塑剤は、単独でも二種以上の混合物でも使用できる。使用するイオン性 基を有した高分子材料や電極材料、混練方法、条件などにより適宜選択できる。また 、塗工性や製膜性、保存安定性、作業環境など観点から、揮発しにくい可塑剤が好 ましい。例えば沸点を指標にした場合、 100°C以上の可塑剤が挙げられ、好ましくは 150°C以上、 200°C以上がさらに好ましい。また、大気圧下で実質的に沸点を有さな い化合物がさらに好適である。
[0038] また、後述するように、電極触媒への影響防止と!/、う観点からは、可塑剤の一部ま たは全部は、少なくとも電極と電解質膜を貼り合わせた後または電極触媒層に設け た後に除去されることが好ましぐこの際、水または水を含む溶剤での抽出除去が好 ましい。従って、水溶性の可塑剤が特に好ましい。中でも主鎖に芳香環を有するィォ ン性基を有した高分子材料との相溶性に優れ、室温では形状保持が可能で、かつ、 ホットメルト性も良好な界面抵抗低減性組成物を与える、揮発性の少な!ヽアルコール 類が特に好ましぐ多価アルコール類がさらに好ましい。
[0039] さらに、後述するように、例えば、選択した可塑剤や溶媒が電解質膜を冒しやすぐ 例えば、燃料クロスオーバー低減効果が小さくなつたり、強度が低下して耐久性に影 響が及んだりするなど、膜電極複合体の性能に影響する場合、可塑剤の一部や溶 媒は少なくとも界面抵抗低減性組成物を電極上に設けた後、該電極と電解質膜を貼 り合わせる前に除去されることが好ましぐ前記水または水を含む溶剤での抽出除去 が好ましい。界面抵抗低減性組成物中のイオン性基を有した高分子材料のイオン性 基が金属塩の状態である場合は、抽出溶媒中に塩酸や硫酸などの酸を添加し、プロ トン交換と可塑剤の一部や溶剤の抽出除去を同時に行うことができ、工業的にはェ 程数が省略できるため好ましい。また、電解質膜との密着性の観点から、界面抵抗低 減性組成物中の可塑剤と別の可塑剤を抽出溶媒中に混合し可塑剤の交換や含浸 を行っても差し支えない。なお、界面抵抗低減性組成物を電極上に設けた後、該電 極と電解質膜を貼り合わせる前に可塑剤の一部のみを除去するのは、その後、電極 と電解質膜を貼り合わせるに際し可塑剤が存在していなければ、電極上に設けた界 面抵抗低減性組成物と電解質膜の密着性や、電極触媒層の凹凸追随性が低下し 膜電極複合体の耐久性や出力向上という本発明の効果が得られないためである。
[0040] 本発明での可塑剤は、前述のように界面抵抗低減性組成物を使用する際に揮発し にくぐ界面抵抗低減性組成物として保存安定性が良いものが作業性、工業的生産 の観点カゝら好ましい。例えば、本発明に好適な可塑剤としては、界面抵抗低減性組 成物を 100〜200 μ mのシート状に加工して 100°Cで 1時間熱風乾燥した後の試料 の熱重量減量分析 (TG— DTA)を行い、 100°C〜300°C間(昇温速度 10°CZ分、 N雰囲気下)の熱重量減量率が 5%以上 90%以下の範囲であること、または室温で
2
へキサン、トルエン、メタノール、水のいずれかに 24時間浸漬し、重量減量率が浸漬 前の 5%以上 90%以下の範囲であることのいずれかに該当する界面抵抗低減性組 成物を与えるものが好まし 、。これらの測定方法での重量減量率が 5%以上であれ ば、電解質膜と電極の複合化時の流動性、塑性変形性を有することができ、優れた 性能の膜電極複合体を得ることができる。また、 90%以下であれば、電極内の空隙 を界面抵抗低減性組成物で埋めてしまう可能性が低くなり優れた性能の膜電極複合 体を得ることができる。また、保存安定性も向上し、コスト的な観点からも好ましい。よ り好ましくは 10%以上 85%以下、さらに好ましくは、 20%以上 80%以下である。
[0041] また、電解質膜と界面抵抗低減性組成物間の界面抵抗の低減の観点カゝらできる限 り接着性が強い方が好ましいため、界面抵抗低減性組成物に、膜電極複合体に使 用する電解質膜を溶解または膨潤可能な溶媒を含有してもよ ヽ。この含有量は接着 性や電解質膜性能への影響の観点から適宜実験的に決めることができる。該溶媒を 含有させることにより、電解質膜と界面抵抗低減性組成物間の接着性が向上し、これ らの界面でのイオン伝導性の低下度合いを抑えることができる場合がある。逆に、多 すぎると電解質膜内部に浸透し電解質膜の燃料遮断性を低下させたり膜電極複合 体が短絡したりする傾向がある。この成分を含有させる場合は、界面抵抗低減性組 成物中の 1重量%以上、 70重量%以下が好ましぐ 2重量%以上、 50重量%以下が より好まし 、。
[0042] 界面抵抗低減性組成物の作製方法は通常公知の方法が選択でき、例えば、ィォ ン性基を有した高分子材料とその溶剤、可塑剤を適当な容器に投入し撹拌可能な 温度で混練する方法、イオン性基を有した高分子材料と可塑剤を押し出し機やニー ダーなどに投入し溶融混練する方法などが挙げられる。また、この際、必要に応じて 加熱しても差し支えない。
[0043] イオン性基を有した高分子材料と可塑剤のみで均一な界面抵抗低減性組成物を 作製できない場合、イオン性基を有した高分子材料を溶媒で溶解し、可塑剤を添カロ する方法が好ましい。この場合、選択される溶媒としては、イオン性基を有した高分 子材料を 10重量%以上溶解可能で、可塑剤と均一混合可能なものが好ましい。例 えば、 N, N—ジメチルァセトアミド、 N, N—ジメチルホルムアミド、 N—メチルー 2— ピロリドン、ジメチルスルホキシド、スルホラン、 1, 3—ジメチルー 2—イミダゾリジノン、 へキサメチルホスホントリアミド等の非プロトン性極性溶媒、 γ—プチ口ラタトン、酢酸 ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどの カーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモ ノエチノレエーテノレ、プロピレングリコーノレモノメチノレエーテノレ、プロピレングリコーノレモ ノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロ ノ V—ルなどのアルコール系溶媒が好適に用いられる。
[0044] 界面抵抗低減性組成物中には、上記イオン性基を有した高分子材料および可塑 剤以外に、低界面抵抗層の強度や接着性、耐燃料性などを高める目的で高分子電 解質以外の高分子材料、無機材料、塩類などを添加してもよぐモンモリロナイトゃガ ラス繊維などの各種無機フィラー、炭素繊維やカーボンナノチューブなどのカーボン 材料、シリカやアルミナ、ジルコユア、チタ二了、ポリシルセスキォキサンなどの各種微 粒子状物を添加しても、界面抵抗低減性組成物の機能に悪影響しなければ差し支 えない。具体的には、界面抵抗低減性組成物中に占めるイオン性基を有した高分子 材料および可塑剤の割合が、 10重量%以上であることが好ましぐより好ましくは 30 重量%以上、さらに好ましくは 40重量%以上である。
[0045] 本発明の界面抵抗低減性組成物を電極と電解質膜間に介するようにする方法とし ては特に限定されない。例えば、界面抵抗低減性組成物を電解質膜上に設け、その 後、界面抵抗低減性組成物を設けた電解質膜と電極を貼り合わせる、または界面抵 抗低減性組成物を設けた電極と電解質膜を貼り合わせる、または界面抵抗低減性 組成物を設けた電解質膜と界面抵抗低減性組成物を設けた電極を貼り合わせて、 界面抵抗低減性組成物を電極と電解質膜間に介するようにできる。さらには、界面抵 抗低減性組成物単独からなるフィルムを電極と電解質膜間に積層して貼り合わせる 工程、あらかじめ電極と電解質膜を一定の間隔に保ちその隙間に界面抵抗低減性 組成物を注入する工程などが例として挙げられる。
[0046] 作業性や再現性などの工業的な製造の観点力 は、界面抵抗低減性組成物を電 極上および Zまたは電解質膜上に設けて貼り合わせる工程が好まし 、。界面抵抗低 減性組成物を電極上や電解質膜上に設ける方法としては、電極の触媒面上や電解 質膜上に直接塗工する方法や、界面抵抗低減性組成物を別の基材に塗布後、電極 や電解質膜と貼り合わせて基材を取り除く方法などが挙げられる。
[0047] 界面抵抗低減性組成物の塗布方法としては、通常公知の方法が使用でき、スプレ 一コート、刷毛塗り、ディップコート、スリットダイコート、カーテンコート、フローコート、 スピンコート、スクリーン印刷などの手法が適用できる。また、界面抵抗低減性組成物 が常温では塗工できない場合、加熱溶融させて上記方法で塗工後、冷却する、ホッ トメルトコーティング方法などが適用できる。また、界面抵抗低減性組成物を電極や 電解質膜上に設けたのち、互いに貼り合わせるために貼り合わせるが、この際、界面 抵抗低減性組成物が流動しないような粘度に調整することが好ましぐまた、可塑剤 やイオン性基を有した高分子材料を溶解させるため溶媒を使用した場合、これらが 電極や電解質膜へ悪影響を及ぼさな ヽように、界面抵抗低減性組成物を塗工後、 界面抵抗低減性組成物中の可塑剤や溶媒の一部を乾燥して調整することができる。 特に溶媒を使用した場合、溶媒の乾燥程度を適宜実験的に決めることで、膜電極複 合体作製時の界面抵抗低減性組成物の粘度を調整することが可能となる。
[0048] 本発明に用いる界面抵抗低減性組成物の粘度は、プレスや塗工時など温度が室 温より高温になるにつれて低粘度化するものが好ましぐ例えば、イオン性基を有す る高分子材料と可塑剤と、場合によっては溶剤を含有した状態で、回転型粘度計を 用いて剪断速度 35 (s_1)で測定した 30°Cでの粘度を X(Pa)、 80°Cの粘度を Y(Pa) としたとき、 YZXが 0. 3以下であることが好ましい。このように測定して得られた YZ Xは、界面抵抗低減性組成物の粘度の温度依存性を示し、数値が小さい程、 30°C 〜80°Cという製造上採用可能な温度範囲での粘度変化が大きいことを示すこととな るので、 YZXが 0. 3以下であれば、室温では膜電極複合体作製工程時の室温での 取扱性が容易で、作業性の観点力 好ましぐ室温以上での加熱プレスやホットメット 塗工時では、界面抵抗低減性組成物の流動性が上昇 (粘度が低下)し、触媒層の追 随性を高めることができ、膜電極複合体としての高出力化の観点力も好ましい。 0. 2 以下がより好ましぐ 0. 1以下がさらに好ましい。
[0049] 30°Cでの粘度 Xの値としては、作業性の観点から 50Pa以上が好ましぐ 70Paがよ り好ましぐ lOOPa以上がさらに好ましぐ測定困難な状態であってもよい。 80°Cでの 粘度 Yの値はできるだけ小さ 、方が、触媒層追随性の観点力も好まし 、。
[0050] かかる界面抵抗低減性組成物は、以下のようにして製造することができる。例えば、 イオン性基を有した高分子材料を 10重量%以上溶解可能で可塑剤と均一に混合可 能な溶剤で、イオン性基を有した高分子材料を溶解し、所定量の可塑剤を添加する 。通常、可塑剤はイオン性基を有した高分子材料を溶解できない貧溶媒のため、ィ オン性基を有した高分子材料が析出し均一な界面抵抗低減性組成物を得ることは 困難である。しかしながら、本発明者らは、イオン性基を有した高分子材料と可塑剤 の組み合わせによっては、イオン性基を有する高分子材料のイオン性基と可塑剤の 官能基の影響で、室温ではゲル状やゴム状となり流動性が小さいが、加熱混合する ことで、流動化する組み合わせがあることを見出したのである。かかる現象は、室温で は可塑剤や溶媒を大量に含んでいるのにかかわらず、構成材料同士の水素結合性 が高く流動化が抑制されるが、昇温することで、水素結合数が減少し流動化するとい うものである。すなわち、水素結合数の変化が可逆的であれば、温度によって流動化 、非流動化が可逆的に起こるということである。このようなイオン性基を有した高分子 材料と可塑剤の組み合わせとしては、イオン性基としてスルホン酸基またはその誘導 体を有する高分子材料と水酸基やアミド基ゃカルボキシル基などを有する可塑剤と の組み合わせが好ましぐその中でも保存安定性や作業性の観点からはグリセリンな どの多価アルコールを可塑剤として用いることが好まし 、。
[0051] YZXは、界面抵抗低減性組成物の塗工方法や膜電極複合体の製造条件などに よって適宜実験的に決めることが好ましいが、この制御はイオン性基を有した高分子 材料の種類やイオン性基密度、可塑剤の種類と添加量、溶剤の添加量などで可能 であり、選択した材料と製造条件に合わせて界面抵抗低減性組成物の組成を適宜 実験的に変えることができる。ここでの溶剤は、イオン性基を有した高分子材料と可 塑剤を均一に混合しやすくするためと、 YZXの調整のために界面抵抗低減性組成 物中に残存させても差し支えな ヽし、界面抵抗低減性組成物として膜電極複合体の 作製に使用する前に、乾燥などで除去しても差し支えなぐ除去する条件でも YZX の調整が可能である。
[0052] また、溶剤を使用しなくても、イオン性基を有した高分子材料と可塑剤を混練機や ニーダーなどにより、可塑剤の分解温度や沸点以下の温度条件で機械的に混合す ることも可能であり、シート状の界面抵抗低減性組成物中に成形して使用する方法も 可能である。
[0053] 界面抵抗低減性組成物の粘度変化は、可塑剤を除去するまでは可逆性があるほう 力 ぐ例えば、剥離紙などに界面抵抗低減性組成物を塗布したものや電極へ界面 抵抗低減性組成物を直接塗布したものを、ー且室温まで冷却して保存ができ、膜電 極複合体製造の際の時間的制約を緩和できる。
[0054] 界面抵抗低減性組成物の塗布量は、組成物として 0. 5mgZcm2以上、 30mgZc m2以下が好ましい。 0. 5mgZcm2以上で電極と電解質膜間の空隙や触媒層のクラ ックを埋めることができ低界面抵抗ィ匕を達成できる。 30mgZcm2以下であれば、電 極と電解質膜間の空隙以外の燃料や発生ガスの拡散に必要な空隙を埋めてしまう 可能性が低減し、また、界面抵抗低減性組成物に含まれる可塑剤の悪影響が低減 される。さらに好ましく lmgZcm2以上、 lOmgZcm2以下である。
[0055] 電極と電解質膜の複合化は、通常公知の方法 (例えば、「電気化学」 1985, 53, 269 .記載の化学メツキ法、「ジエイエレクト口ケミカルサイエンス」(J. Electrochem. Soc.): Electrochemical Science and Technology, 1988, 135(9), 2209.記載のガス拡散電極 の加熱プレス接合法など)を適用することが可能である。加熱プレスにより一体化する ことは好ましい方法であるが、その温度や圧力は、電解質膜の厚さ、水分率、触媒層 や電極基材により適宜選択すればよい。また、本発明では電解質膜が乾燥した状態 または吸水した状態でもプレスによる複合ィ匕が可能である。特に、本発明の方法では 、通常、電解質膜が含水状態でなければ、電極と電解質膜の接合状態の良好な膜 電極複合体を得ることができな!/ヽような電解質膜でも、電解質が乾燥した状態でプレ スできるため、電解質膜と触媒層の実質的な接触面積を大きくでき、さらには加熱プ レス時の水分揮発による電解質膜の収縮がほとんどないことから、極めて優れた品位 の膜電極複合体を得ることができ、結果として高性能な燃料電池が得られる。具体的 なプレス方法としては圧力やクリアランスを規定したロールプレスや、圧力を規定した 平板プレスなどが挙げられ、加熱温度は界面抵抗低減性組成物の流動性に応じて 適宜選択でき、工業的生産性やイオン性基を有する高分子材料の熱分解抑制など の観点カゝら室温〜 130°Cの範囲で行うことが好ましい。加圧は電解質膜や電極保護 の観点力 できる限り弱い方が好ましぐ平板プレスの場合、 0. lMPa〜10MPaの 範囲が好ましい。
[0056] また、電解質膜に界面抵抗低減性組成物を設ける場合は、電極の触媒層を界面 抵抗低減性組成物上に形成して膜電極複合体としてもよい。さらに、電極に界面抵 抗低減性組成物を設ける場合は、あらためて電解質膜を準備しなくても、界面抵抗 低減性組成物兼電解質膜として、界面抵抗低減性組成物を設けた電極同士を貼り 合わせて膜電極複合体とすることもできる。この場合、界面抵抗低減性組成物の塗 布目付は短絡しない程度に厚くすることが好ましぐ少なくとも一方の電極面積より大 きめに界面抵抗低減性組成物を塗布することが好ま ヽ。
[0057] また、複合化した膜電極複合体を燃料電池として発電する際、長期にわたって発 電をした場合に、可塑剤が膜電極複合体中にぉ ヽて ヽかなる状態で存在するかは 現時点では明らかにされておらず、可塑剤の存在が燃料電池に与える影響が不明 であるため、可塑剤はできる限り除去する方が好ましい。除去方法としては、溶媒に よる洗浄 (抽出)〖こよることを必須とする。溶媒による抽出により可塑剤を除去するの は、例えば、熱による乾燥により可塑剤を除去する場合に比べ、電解質膜や電極の 触媒層への熱的な負荷による劣化が防止でき、本発明の膜電極複合体を用いた燃 料電池の出力が向上する傾向にあり、また、界面抵抗低減性組成物力もなる塗膜の 可塑剤が抜ける場合の収縮が小さぐ電極や電解質膜と界面抵抗低減性組成物か らなる塗膜の界面接着性が良好となるという点で優れているからである。特に、作業 性、環境問題、触媒被毒防止などの観点力 水あるいはアルコール水による洗浄( 抽出)除去が好ましい。従って可塑剤も水溶性であることが工業的に好ましい。
[0058] 具体的な除去工程としては、界面抵抗低減性組成物を介して複合ィ匕した膜電極複 合体を、可塑剤の良溶媒かつ電解質膜や触媒などの使用する部材に悪影響を及ぼ さない溶媒に接触させ、可塑剤を抽出除去することである。たとえば、水溶性可塑剤 を使用した場合、膜電極複合体を水、アルコール、またはアルコール水溶液などの 溶媒に一定時間浸漬する方法や、水蒸気などで抽出除去する方法、膜電極複合体 を燃料電池のセルにセットしたのち、水、アルコール、またはアルコール水溶液など の溶媒または蒸気を燃料供給箇所など力 流して可塑剤を除去する方法、またはメ タノール水溶液を燃料とする場合、初期エージング工程を兼ねて発電時にアノード 側はメタノール水溶液を力ソード側は生成する水を利用し除去を行う方法などが挙げ られる。
[0059] 本発明の膜電極複合体の製造方法は、ナフイオン (登録商標)(デュポン社製)に 代表されるパーフルォロ系電解質膜や炭化水素系電解質膜などすベての電解質膜 に適用できるが、特に、前述した高耐熱性、高強度、高引っ張り弾性率および低含 水率の電解質膜を使用した膜電極複合体の製造に好適である。具体的にはガラス 転移温度 130°C以上、引っ張り弾性率 lOOMPa以上、含水率 40重量%以下などの 膜が挙げられ、イオン性基含有ポリフエ-レンォキシド、イオン性基含有ポリエーテル ケトン、イオン性基含有ポリエーテルエーテルケトン、イオン性基含有ポリエーテルス ルホン、イオン性基含有ポリエーテルエーテルスルホン、イオン性基含有ポリエーテ ルホスフィンォキシド、イオン性基含有ポリエーテルエーテルホスフィンォキシド、ィォ ン性基含有ポリフエ-レンスルフイド、イオン性基含有ポリアミド、イオン性基含有ポリ イミド、イオン性基含有ポリエーテルイミド、イオン性基含有ポリイミダゾール、イオン性 基含有ポリオキサゾール、イオン性基含有ポリフエ-レン、イオン性基含有ポリアゾメ チン、イオン性基含有ポリイミドアゾメチン、イオン性基含有ポリスチレンおよびイオン 性基含有スチレン マレイミド系架橋共重合体などのイオン性基含有ポリオレフイン 系高分子およびその架橋体などのイオン性基を有する芳香族炭化水素系高分子が 挙げられる。これらの高分子材料は単独、あるいは二種以上併用して使用でき、ポリ マーブレンド、ポリマーァロイ、また二層以上の積層膜として使用できる。また、ここで のイオン性基およびイオン性基の導入方法、合成方法、分子量の範囲については前 述のとおりである。特にイオン性基としては、前述のようにスルホン酸基を有する高分 子材料が最も好ま ヽが、スルホン酸基を有する高分子材料を使用する一例として、 — SO M基 (Mは金属)含有のポリマーを溶液状態より製膜し、その後高温で熱処理
3
し溶媒を除去し、プロトン置換して膜とする方法が挙げられる。前記の金属 Mはスル ホン酸と塩を形成しうるものであればよいが、価格および環境負荷の点からは Li、 Na 、 K、 Rb、 Cs、 Mg、 Ca、 Sr、 Ba、 Ti、 V、 Mn、 Fe、 Co、 Niゝ Cu、 Zn、 Zr、 Mo、 Wな どが好ましぐこれらの中でも Li、 Na、 K、 Ca、 Sr、 Baがより好ましぐ Li、 Na、 がさ らに好ま 、。これらの金属塩の状態で製膜することで高温での熱処理が可能となり 、該方法は高ガラス転移点、低吸水率が得られる高分子材料系には好適である。
[0060] 前記熱処理の温度としては、得られる膜の吸水性の点で 100〜500°Cが好ましぐ 200〜450°C力 Sより好ましく、 250〜400°Cがさらに好ましい。 100°C以上とするのは 、低吸水率を得る上で好ましい。一方、 500°C以下とすることで、高分子材料が分解 するのを防ぐことができる。
[0061] また、熱処理時間としては、生産性の点で 10秒〜 24時間が好ましぐ 30秒〜 1時 間がより好ましぐ 45秒〜 30分がさらに好ましい。熱処理時間を 10秒以上することで 、十分な溶媒除去が可能となり、十分な燃料クロスオーバーの抑制効果が得られる。 また、 24時間以下とすることでポリマーの分解が起こらずプロトン伝導性を維持する ことができ、また生産性も高くなる。 [0062] 電解質膜の作製方法としては、ポリマー溶液を適当なコーティング法で塗布し、溶 媒を除去し、高温で処理後、酸処理する方法を例示することができる。
コーティング法としては、スプレーコート、刷毛塗り、ディップコート、ダイコート、カー テンコート、フローコート、スピンコート、スクリーン印刷などの手法が適用できる。
[0063] 溶媒を用いたコーティング法では、熱による溶媒の乾燥、ポリマーを溶解しな!ヽ溶 媒での湿式凝固法などで製膜でき、無溶媒では光、熱、湿気などで硬化させる方法 、ポリマーを加熱溶融させ、膜状に製膜後冷却する方法などが適用できる。
[0064] 製膜に用いる溶媒としては、例えば、 N, N ジメチルァセトアミド、 N, N ジメチル ホルムアミド、 N—メチルー 2 ピロリドン、ジメチルスルホキシド、スルホラン、 1, 3— ジメチル— 2—イミダゾリジノン、へキサメチルホスホントリアミド等の非プロトン性極性 溶媒、 Ύ ブチロラタトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート 、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチル エーテノレ、エチレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノメチノレ エーテル、プロピレングリコーノレモノェチノレエーテノレ等のァノレキレングリコーノレモノァ ルキルエーテル、あるいはイソプロパノールなどのアルコール系溶媒が好適に用いら れる。
[0065] 使用する電解質膜の膜厚としては、通常 3〜2000 /ζ πιのものが好適に使用される 。実用に耐える膜の強度を得るには 3 mより厚い方が好ましぐ膜抵抗の低減つま り発電性能の向上のためには 2000 mより薄い方が好ましい。膜厚のより好ましい 範囲は 5〜: LOOO μ m、さらに好ましい範囲は 10〜500 μ mである。
[0066] 膜厚は、種々の方法で制御できる。例えば、溶媒キャスト法で製膜する場合は、溶 液濃度あるいは基板上への塗布厚により制御することができるし、また、例えばキャス ト重合法で製膜する場合は板間のスぺーサー厚みによって調製することもできる。
[0067] また、本発明の電解質膜およびイオン性基を有する高分子材料は、必要に応じて 放射線照射などの手段によって高分子構造全体あるいは一部を架橋せしめることも できる。架橋せしめることにより、燃料クロスオーバーおよび燃料に対する膨潤をさら に抑制する効果が期待でき、機械的強度が向上し、より好ましくなる場合がある。放 射線照射の種類としては例えば、電子線照射や γ線照射を挙げることができる。架 橋構造を有することにより、水分や燃料の浸入に対する高分子鎖間の広がりを抑える ことができる。吸水量を低く抑えることができ、また、燃料に対する膨潤も抑制できるこ とから、結果的に燃料クロスオーバーを低減できる。また、高分子鎖を拘束できるた め耐熱性や剛性も付与できる。ここでの架橋は、化学架橋であっても物理架橋であつ てもよい。この架橋構造は通常公知の方法で形成でき、例えば、多官能単量体の共 重合や電子線照射によって形成できる。特に多官能単量体による架橋が経済的観 点から好ましく、単官能ビニル単量体と多官能単量体の共重合体やビニル基ゃァリ ル基を有する高分子を多官能単量体で架橋したものが挙げられる。ここでの架橋構 造とは、熱に対しての流動性が実質的に無い状態か、溶剤に対して実質的に不溶の 状態を意味する。
[0068] また、本発明の電解質膜中には、イオン伝導性や燃料クロスオーバーの抑制効果 を阻害しない範囲内において、機械的強度の向上、イオン性基の熱安定性向上、加 工性の向上などの目的のために、フィラーや無機微粒子を含有しても、ポリマーや金 属酸ィ匕物からなるネットワークや微粒子を形成させても構わな 、し、支持体などに含 浸した膜でも差し支えない。
[0069] 次に、本発明の膜電極複合体に好適な電極の例を説明する。かかる電極は、触媒 層および電極基材からなるものである。ここでいう触媒層は、電極反応を促進する触 媒、電子伝導体、イオン伝導体などを含む層である。かかる触媒層に含まれる触媒と しては、例えば、白金、パラジウム、ルテニウム、ロジウム、イリジウム、金などの貴金属 触媒が好ましく用いられる。これらの内の 1種類を単独で用いてもよいし、合金、混合 物など、 2種類以上を併用してもよい。
[0070] また、触媒層に電子伝導体 (導電材)を使用する場合は、電子伝導性や化学的な 安定性の点カゝら炭素材料、無機導電材料が好ましく用いられる。なかでも、非晶質、 結晶質の炭素材料が挙げられる。例えば、チャネルブラック、サーマルブラック、ファ 一ネスブラック、アセチレンブラックなどのカーボンブラックが電子伝導性と比表面積 の大きさから好ましく用いられる。ファーネスブラックとしては、キャボット社製バルカン XC- 72R (登録商標)、ノ レカン P (登録商標)、ブラックパールズ 880 (登録商標)、 ブラックパールズ 1100 (登録商標)、ブラックパールズ 1300 (登録商標)、ブラックパ ールズ 2000 (登録商標)、リーガル 400 (登録商標)、ケッチェンブラック 'インターナ ショナル社製ケッチェンブラック EC (登録商標)、 EC600JD、三菱ィ匕学社製 # 3150 、 # 3250などが挙げられ、アセチレンブラックとしては電気化学工業社製デンカブラ ック (登録商標)などが挙げられる。またカーボンブラックのほか、天然の黒鉛、ピッチ 、コータス、ポリアクリロニトリル、フエノール榭脂、フラン榭脂などの有機化合物力も得 られる人工黒鉛や炭素なども使用することができる。これらの炭素材料の形態として は、不定形粒子状のほか繊維状、鱗片状、チューブ状、円錐状、メガホン状のものも 用いることができる。また、これら炭素材料を後処理カ卩ェしたものを用いてもよい。
[0071] また、電子伝導体を使用する場合は、触媒粒子と均一に分散していることが電極性 能の点で好ましい。このため、触媒粒子と電子伝導体は予め塗液として良く分散して おくことが好ましい。さらに、触媒層として、触媒と電子伝導体とが一体化した触媒担 持カーボン等を用いることも好まし 、実施態様である。この触媒担持カーボンを用い ることにより、触媒の利用効率が向上し、電池性能の向上および低コストィ匕に寄与で きる。ここで、触媒層に触媒担持カーボンを用いた場合においても、電子伝導性をさ らに高めるために導電剤を添加することも可能である。このような導電剤としては、上 述のカーボンブラックが好ましく用いられる。
[0072] 触媒層に用いられるイオン伝導性を有する物質 (イオン伝導体)としては、一般的に 、種々の有機、無機材料が公知であるが、燃料電池に用いる場合には、イオン伝導 性を向上するスルホン酸基、カルボン酸基、リン酸基などのイオン性基を有するポリ マー (イオン伝導性ポリマー)が好ましく用いられる。なかでも、イオン性基の安定性 の観点から、フルォロアルキルエーテル側鎖とフルォロアルキル主鎖と力 構成され るイオン伝導性を有するポリマー、あるいは本発明の高分子電解質材料が好ましく用 いられる。パーフルォロ系イオン伝導性ポリマーとしては、例えばデュポン社製のナ フイオン (登録商標)、旭化成社製の Aciplex (登録商標)、旭硝子社製フレミオン (登 録商標)などが好ましく用いられる。これらのイオン伝導性ポリマーは、溶液または分 散液の状態で触媒層中に設ける。この際に、ポリマーを溶解あるいは分散化する溶 媒は特に限定されるものではな ヽが、イオン伝導性ポリマーの溶解性の点から極性 溶媒が好ましい。また、前述した電解質膜として好ましい炭化水素系高分子材料も、 触媒層中のイオン伝導性を有する物質 (イオン伝導体)に好適に使用できる。特に、 メタノール水溶液やメタノールを燃料にする燃料電池の場合、耐メタノール性の観点 力も前述した炭化水素系高分子材料が耐久性などに効果的な場合がある。
[0073] 前記、触媒と電子伝導体類は通常粉体であるので、イオン伝導体はこれらを固める 役割を担うことが通常である。イオン伝導体は、触媒層を作製する際に触媒粒子と電 子伝導体とを主たる構成物質とする塗液に予め添加し、均一に分散した状態で塗布 することが電極性能の点カゝら好ま Uヽものである。触媒層に含まれるイオン伝導体の 量としては、要求される電極特性や用いられるイオン伝導体の伝導度などに応じて適 宜決められるべきものであり、特に限定されるものではないが、重量比で 1〜80%の 範囲が好ましぐ 5〜50%の範囲がさらに好ましい。イオン伝導体は、少な過ぎる場 合はイオン伝導度が低ぐ多過ぎる場合はガス透過性を阻害する点で、いずれも電 極性能を低下させることがある。
[0074] かかる触媒層には、上記の触媒、電子伝導体、イオン伝導体の他に、種々の物質 を含んでいてもよい。特に、触媒層中に含まれる物質の結着性を高めるために、上述 のイオン伝導性ポリマー以外のポリマーを含んでもょ 、。このようなポリマーとしては 例えば、ポリフッ化ビュル(PVF)、ポリフッ化ビ-リデン(PVDF)、ポリへキサフルォ 口プロピレン(FEP)、ポリテトラフルォロエチレン、ポリパーフルォロアルキルビニルェ 一テル(PFA)などのフッ素原子を含むポリマー、これらの共重合体、これらのポリマ 一を構成するモノマー単位とエチレンやスチレンなどの他のモノマーとの共重合体、 あるいは、ブレンドポリマーなどを用いることができる。これらポリマーの触媒層中の含 有量としては、重量比で 5〜40%の範囲が好ましい。ポリマー含有量が多すぎる場 合、電子およびイオン抵抗が増大し電極性能が低下する傾向がある。
[0075] また、触媒層は、燃料が液体や気体の場合には、その液体や気体が透過しやす ヽ 構造を有していることが好ましぐ電極反応に伴う副生成物質の排出も促す構造が好 ましい。
[0076] また、電極基材としては、電気抵抗が低ぐ集電あるいは給電を行えるものを用いる ことができる。また、前記触媒層を集電体兼用で使用する場合は、特に電極基材を 用いなくてもよい。電極基材の構成材としては、たとえば、炭素質、導電性無機物質 が挙げられ、例えば、ポリアクリロニトリルからの焼成体、ピッチ力 の焼成体、黒鉛及 び膨張黒鉛などの炭素材、ステンレススチール、モリブデン、チタンなどが例示される 。これらの、形態は特に限定されず、たとえば繊維状あるいは粒子状で用いられるが 、燃料透過性の点から炭素繊維などの繊維状導電性物質 (導電性繊維)が好ましい o導電性繊維を用いた電極基材としては、織布あるいは不織布いずれの構造も使用 可能である。たとえば、東レ (株)製カーボンペーパー TGPシリーズ、 SOシリーズ、 E -TEK社製カーボンクロスなどが用いられる。カゝかる織布としては、平織、斜文織、朱 子織、紋織、綴織など、特に限定されること無く用いられる。また、不織布としては、抄 紙法、ニードルパンチ法、スパンボンド法、ウォータージェットパンチ法、メルトブロー 法によるものなど特に限定されること無く用いられる。また編物であってもよい。これら の布帛において、特に炭素繊維を用いた場合、耐炎化紡績糸を用いた平織物を炭 化あるいは黒鉛ィ匕した織布、耐炎化糸をニードルパンチ法やウォータージェットパン チ法などによる不織布加工した後に炭化あるいは黒鉛ィ匕した不織布、耐炎化糸ある いは炭化糸あるいは黒鉛ィ匕糸を用いた抄紙法によるマット不織布などが好ましく用い られる。特に、薄く強度のある布帛が得られる点カも不織布、やクロスを用いるのが好 ましい。
[0077] 力かる電極基材に用いられる炭素繊維としては、ポリアクリロニトリル (PAN)系炭素 繊維、フエノール系炭素繊維、ピッチ系炭素繊維、レーヨン系炭素繊維などがあげら れる。
[0078] また、力かる電極基材には、水の滞留によるガス拡散 '透過性の低下を防ぐための 撥水処理や、水の排出路を形成するための部分的撥水、親水処理や、抵抗を下げ るための炭素粉末の添加等を行うこともできる。また、電極基材と触媒層の間に、少 なくとも無機導電性物質と疎水性ポリマーを含む導電性中間層を設けることもできる 。特に、電極基材が空隙率の大きい炭素繊維織物ゃ不織布である場合、導電性中 間層を設けることで、触媒層が電極基材にしみ込むことによる性能低下を抑えること ができる。
[0079] 本発明の膜電極複合体の界面抵抗は Rrをその指標とすることができる。 Rrについ ては下記 [測定方法]の第 6項などにお 、て詳細に述べる。 [0080] 本発明の方法で製造された膜電極複合体を使用した燃料電池の燃料としては、酸 素、水素およびメタン、ェタン、プロパン、ブタンメタノール、イソプロピルアルコール、 アセトン、グリセリン、エチレングリコール、ギ酸、酢酸、ジメチルエーテル、ハイドロキ ノン、シクロへキサンなどの炭素数 1〜6の有機化合物およびこれらと水との混合物等 が挙げられ、 1種または 2種以上の混合物でもよい。特に発電効率や電池全体のシス テム簡素化の観点力 水素、炭素数 1〜6の有機化合物を含む燃料が好適に使用さ れ、発電効率の点でとりわけ好ましいのは水素およびメタノール水溶液である。メタノ ール水溶液を用いる場合、メタノールの濃度としては、使用する燃料電池のシステム によって適宜選択されるが、できる限り高濃度のほうが長時間駆動の観点力も好まし い。例えば、送液ポンプや送風ファンなど発電に必要な媒体を膜電極複合体に送る システムや、冷却ファン、燃料希釈システム、生成物回収システムなどの補機を有す るアクティブ型燃料電池はメタノールの濃度 30〜: LOO%以上の燃料を燃料タンクや 燃料カセットにより注入し、 0. 5〜20%程度に希釈して膜電極複合体に送ることが好 ましぐ補機が無いパッシブ型の燃料電池はメタノールの濃度が 10〜 100%の範囲 の燃料が好ましい。
[0081] 以下、本発明の別の好ましい実施形態を説明する。
[0082] 本発明の膜電極複合体は、一対の電極間に電解質膜を介してなる膜電極複合体 において、少なくとも一方の電極と電解質膜間に層 (A)を有し、超微小硬度計で測 定した電解質膜の貯蔵弾性率を C、層 (A)の貯蔵弾性率を Dとしたとき、貯蔵弾性率 Cの値が lGPa以上である。
[0083] ここにおける層(A)は、前述の界面抵抗低減性組成物中のイオン性基を有する高 分子材料と実質的に同じ材料を用いることができる。ここで、界面抵抗低減性組成物 中のイオン性基を有する高分子材料と実質的に同じ材料とは、主成分が同じ材料で あることを意味する。ここでの主成分が同じ材料とは、構成する材料の 50重量%以上 が同じ材料であることを意味する。この際、界面抵抗低減性組成物に含まれるイオン 性基を有する高分子材料のイオン性基の密度や種類が異なって!/ヽても、当該高分 子材料の主鎖骨格が同じであれば、同じ材料として取り扱うことができる。また、例え ば、ポリエーテルエーテルケトンとポリエーテルケトンなど芳香環を結合する基の種類 が同じであれば、同じ材料としても差し支えない。
[0084] さらに、本発明の膜電極複合体は、電解質膜および層 (A)を構成する材料が実質 的に同じであることが、界面の接着性の点で好ましい。ここで、電解質膜と、層 (A)に それぞれ異なる添加剤や高分子材料が混合されて 、ても、異なる置換基やその誘 導体を有していても、別の成分が共重合されていても、電解質膜および層 (A)を構 成する材料の 50重量%以上が同じ材料であれば、実質的に同じ材料であると判断 しても差し支えない。なお、上述の通り、電解質膜および層 (A)を構成するイオン性 基を有する高分子材料のイオン性基の密度や種類が異なって!/ヽても、当該高分子 材料の主鎖骨格が同じであれば、同じ材料として取り扱うことができ、例えば、ポリエ 一テルエーテルケトンとポリエーテルケトンなど芳香環を結合する基の種類が同じで あれば、同じ材料としても差し支えない。
[0085] 本発明における貯蔵弾性率は材料の剛直性を表す力 剛直性が高 ヽ、すなわち 貯蔵弾性率の数値が大きい材料ほど燃料に対する耐性が高ぐまた耐熱性が向上 する傾向にあることを突き止め、本発明に至った。すなわち、燃料クロスオーバーを 抑制するためには燃料に対する膨潤を抑制することが重要であるが、この膨潤抑制 効果と貯蔵弾性率と相関性があり、特に膜電極複合体を構成する電解質膜の貯蔵 弾性率 Cが lGPa以上であれば燃料クロスオーバーの抑制効果が高 、。電解質膜の 貯蔵弾性率 Cは 2GPa以上が好ましぐ 3GPa以上がさらに好ましい。さらに、層(A) の貯蔵弾性率 Dも lGPa以上であれば、燃料クロスオーバーの抑制効果をさらに高 めることができるので好ましぐより好ましくは貯蔵弾性率 Dが 2GPa以上、さらに好ま しくは貯蔵弾性率 Dが 3GPa以上である。
[0086] 特に、超微小硬度計を用いて測定された電解質膜や層 (A)などの材料の極めて表 面における粘弾性物性力 燃料クロスオーバーの優劣との相関性が高いことは、燃 料の吸収が材料の表面力 始まる力 であると考えられたため、本発明者らは極表 面の粘弾性物性に注目し、本発明を完成させたのである。
[0087] 貯蔵弾性率の測定は、超微小硬度計 (Hysitron社製 Tribo Indenter)を用いてモジ ュラスマッピング像 [貯蔵弾性率 (E,)像'損失弾性率 (E,,)
像]を取得して行うことができる。 [0088] 例えば、膜電極複合体を電顕用エポキシ榭脂 (日新 EM社製 QUetol812)で包埋し 硬化させた後、ウルトラミクロトーム (ライカ社製 Ultracut S)で膜電極複合体の断面の 超薄切片を作製し測定サンプルとし、以下の条件で測定し、ヘルツの接触理論を用 いて弾性率を算出する。
測定装置: Hysitron社製 Tribo Indenter
使用圧子:ダイヤモンド製 Cubecorner圧子(曲率半径 50nm)
測定視野:約 30mm角
測定周波数: 200Hz
測定雰囲気:室温 ·大気中
接触荷重: 0.3 N
以下に超微小硬度計による測定原理を説明する。
[0089] 軸対称圧子を試料に押し込んだ際の、測定系のスチフネス (K)は式(1)で表される ことが知られている。
[0090] [数 1]
Figure imgf000033_0001
[0091] ここで、 Αは、試料と圧子が接触してできる圧痕の投影面積、 E*は圧子系と試料系 の複合弾性率である。
[0092] 一方、圧子が試料のごく表面に接触した際には、圧子先端を球形状とみなし、球形 と半無限平板の接触に関するヘルツの接触理論を適用できると考えられる。ヘルツ の接触理論では、圧子と試料が接触している際の圧痕投影面の半径 aは式 (2)で表 される。
[0093] [数 2]
Figure imgf000033_0002
[0094] ここで、 Pは荷重、 Rは圧子先端の曲率半径、である。
[0095] よって、試料と圧子が接触してできる圧痕の投影面積 Aは式 (3)で表され、式(1) 〜(3)を用いて、 E*を算出することができる c
[0096] [数 3]
Figure imgf000034_0001
[0097] モジュラスマッピングとは、上記へルツの接触理論に基づき、試料のごく表面に圧 子を接触させ、試験中に圧子を微小振動させ、振動に対する応答振幅、位相差を時 間の関数として取得し、 K (測定系スチフネス)および D (試料ダンピング)を求める方 法である。
[0098] この振動が単純調和振動子であると、試料へ圧子が侵入する方向の力の総和 (検 出荷重成分) F(t)は、式 (4)で表される。
[0099] [数 4]
Figure imgf000034_0002
[0100] ここで、式 (4)第 1項は圧子軸由来の力(m:圧子軸の質量)、式 (4)第 2項は試料の 粘性的成分由来の力を、式 (4)第 3項は試料系の剛性を表し、 tは時間を表している 。式 (4)の F(t)は、時間に依存することから、式(5)のように表される。
[0101] [数 5]
F{t) = 0 «φ ω ( 5 )
[0102] ここで、 F は定数、 ωは角振動数である。式(5)を式 (4)に代入して、常微分方程
0
式の特別解である式 (6)を代入し、方程式を解くと、式 (7)〜(10)の関係式を得ること ができる。
[0103] [数 6]
h = Ηϋ€3φ ^(ω- φ)} ( 6 )
[0104] [数 7] hn
Figure imgf000034_0003
[0105] [数 8]
Dm
tan = ( 8 )
K - m
[0106] [数 9]
Figure imgf000035_0001
[0107] [数 10]
Figure imgf000035_0002
[0108] φは位相差である。 mは測定時に既知であることから、供試体の測定時に、 変位の振動振幅 (h )、位相差( φ )と励起振動振幅 (F )を計測することによって、 (7)
0 0
〜(10)式より、 Kおよび Dを算出することができる。
[0109] E*を貯蔵弾性率 (E ' )とみなして式( 1)〜式( 10)をまとめ、測定系スチフネスのうち 、試料由来である Ks ( = K— m co 2)を用いて式(11)力も貯蔵弾性率を算出した。
[0110] [数 11]
Figure imgf000035_0003
[0111] また、本発明の膜電極複合体は、電解質膜の損失弾性率を Ε、層 (Α)の損失弾性 率を Fとしたとき、損失弾性率 Εおよび Fのいずれかの値が 0. lGPa以上であることが 好ましい。
[0112] 損失弾性率は材料の粘性を示し、値が大き 、程ねばり強く破れにく!、傾向にある。
0. lGPa以上であれば材料の機械的な耐久性が向上し、本発明の膜電極複合体を 使用した燃料電池の耐久性も向上する。この値は 0. 2GPa以上が好ましぐ 0. 3GP a以上がさらに好ましい。さらに、電解質膜の損失弾性率 E、層 (A)の損失弾性率 F のいずれもが 0. lGPa以上であれば、本発明の膜電極複合体を使用した燃料電池 の耐久性をさらに向上させることができるので好ましぐより好ましくは損失弾性率 E, Fのいずれもが 0. 2GPa以上、さらに好ましくは損失弾性率 E, Fのいずれもが 0. 3G Pa以上である。 [0113] 本発明中の損失弾性率も前述した貯蔵弾性率の測定と同様に測定でき、前述の 式(8)における測定系スチフネスのうち、試料由来である Ksを用い、式(11)とあわせ てまとめた式(12)力 損失弾性率算出した。
[0114] [数 12]
Ε',= ~ ( 1 2 )
2- Λ
[0115] また、本発明の膜電極複合体は、少なくとも CZDまたは EZFのいずれかが 0. 5
〜1. 5であることが好ましい。 CZDおよび EZFは、電解質膜と層(A)の極表面の粘 弾性物性の比であり、貼り合わせた界面における各層の変形の程度の指標を示すこ ととなるので、 0. 5〜1. 5であれば、本発明の膜電極複合体を燃料電池にした場合 、様々な燃料電池の運転環境において、電解質膜と層 (A)の変形度合いが同様とな るため、剥離や変形などを低減でき、耐久性が向上できる。より好ましぐ 0. 7〜1. 4 であり、さらに好ましくは 0. 8〜1. 3である。さらに、 CZD, EZFのいずれもが 0. 5 〜1. 5であれば、剥離や変形などをより低減でき、耐久性がさらに向上するので好ま しぐより好ましくは CZD, EZFのいずれもが 0. 7〜1. 4、さらに好ましくは CZD, EZFのいずれもが 0. 8〜1. 3である。
[0116] 以下、本発明のさらに別の好ましい実施形態を説明する。
[0117] 本発明の膜電極複合体は、一対の電極間に電解質膜を介してなり、少なくとも一方 の電極と電解質膜間に、走査プローブ顕微鏡のタッピングモード走査で測定した位 相差が電解質膜と実質的に異なる層 (A)を有し、かつ電解質膜および層 (A)が、ァ 二オン性基を有する芳香族炭化水素を含有する。
[0118] 本発明での位相差とは柔らかさの指標であり、以下の方法で測定可能である。例え ば、膜電極複合体を電顕用エポキシ榭脂(日新 EM社製 QUetol812)で包埋し硬化さ せた後、ウルトラミクロトーム (ライカ社製 Ultracut S)で膜電極複合体の断面を作製し 、走査プローブ顕微鏡のタッピングモード走査で測定できる。
[0119] 本発明でのタッピングモードとは「ナノテクノロジーのための走査プローブ顕微鏡」、
(2002年)、 日本表面科学会編、丸善株式会社発行、や Characterization and optimiz ation of scan speed ror tapping-mode atomic force microscopy; Rev. ¾ci. Instrum., V ol.73, N0.8, pp.2928— 2936 (2002); American Institute of Physicsに記載されているよ うな、振動するプローブを試料上方カゝら接近させ、軽く試料に接触して、試料の AF M像や位相像を得る方法のことである。このモードの名称は、タッピングモードの他に Intermittent contact mode、 cyclic contact modeめる ヽ ίま dynamic force microscopeと 呼称される場合もあるが、本発明では総称してタッピングモードとする。
[0120] 位相差の測定は、米国ビーコ社デジタル 'インスツルメンッ製走査型プローブ顕微 鏡(NanoscopeIIIa、 Dimension3000)、および、位相検出ェクステンダーモジュール(P HASE-D01型)を用いて行うことができる。具体的には、走査範囲を例えば 12. 5 m X 25 mとし、測定プローブを共鳴周波数で振動させつつ試料表面を走査する(タ ッビングモード走査)。このとき、プローブ先端の曲率半径は 5〜20nm、タッピング周 波数は 150〜450kHzである。このような条件により、タッピングモード走査を行ない 、プローブを振動させるために入力した交流信号に対する、タッピングモード走査で 出力された交流信号の位相差 (遅れ)を測定する。各走査点での位相差をそれぞれ 測定することにより、走査範囲における位相差の分布が出力可能であり、プローブと の相互作用力の大きな表面領域では位相差が大きぐ相互作用力の小さな領域で は位相差が小さく検出される。すなわち、試料内で相対的に柔らかい部分は位相差 が大きぐ硬い部分は位相差が小さくなるため、位相差は表面の柔らかさを表す指標 となる。
[0121] また、本発明の膜電極複合体では、位相差が電解質膜と実質的に異なる層 (A)を 有し、かつ電解質膜および層 (A)が、主鎖にァ-オン性基を有する芳香族炭化水素 を含有する。ここで、位相差が実質的に異なるとは、電解質膜と層 (A)の同一視野で の測定時の、各層(電解質膜層および層 (A) )の位相差の絶対値の小数点第 1位が 異なることを意味する。また、膜電極複合体の断面の超薄切片サンプルを透過顕微 鏡で観察した場合に、電解質膜と電極間に何らかの境界である線が観察され、層 (A )が存在することが明らかな場合は、各層(電解質膜層および層 (A) )の位相差の絶 対値の小数点第 2位が異なることを意味する。
なお、電解質膜と層 (A)とが実質的に同じ材料で構成されていたとしても、製造工程 の違いによるポリマーの高次構造の違いなどで結果的に位相差が異なる膜電極複 合体が得られた場合、上記測定結果を充足する膜電極複合体は本発明の範囲に含 まれると考えて差し支えは無 、。
[0122] ここで、位相差が電解質膜と実質的に異なる層 (A)を有し、かつ電解質膜および層
(A)が、主鎖にァニオン性基を有する芳香族炭化水素を含有する膜電極複合体と すれば良い理由を説明する。発明者らは、使用する電極、電解質膜の個々の部材の 特性が優れていても、複合ィ匕した場合に電極と電解質膜間の抵抗が大きければ、結 果として膜電極複合体の性能が不十分となることを突き止め、本発明に至った。特に 、電解質膜の燃料クロスオーバーの抑制や、高温使用耐久性、機械的強度の向上 のためには、動的粘弾性によるガラス転移点 120°C以上の高耐熱性、引っ張り弾性 率 lOOMPa以上、好ましくは 500MPa以上、さらに好ましくは lOOOMPa以上の高 弾性率、高強度、および電解質膜重量に対して 100%以下の低含水率が得られるよ うな分子構造が好ましいため、電解質膜が剛直になる傾向がある。そのため、上記性 能を有し、生産性や加工性の観点力 ァ-オン性基を有する芳香族炭化水素を主 成分とする電解質膜の使用が必要である。
[0123] しかし、膜電極複合体やそれを使用した燃料電池の性能を向上させるために優れ た電解質膜を見出しても、電解質膜が変形しにくいため、前記の電極と電解質膜間 の抵抗が大きくなり、期待した膜電極複合体の性能が得られない傾向にあった。
[0124] そこで、本発明では、電解質膜と電極間に、燃料クロスオーバーの抑制や、機械的 強度が維持でき、かつ電極と電解質膜間の微細な空隙の少なくとも一部分は満たし 、触媒表面形状の電解質による追随性を高め、実質的に電極と電解質膜の接触面 積を増大させることができる層、すなわち電解質膜とは位相差が実質的に異なり、主 鎖にァニオン性基を有する芳香族炭化水素を含有する高分子材料の層を設けたの である。
[0125] 特に 40°C以上の高温や 20重量%〜99. 9重量%の高濃度メタノール水溶液を使 用する場合、通常の接着剤やパーフルォロ系プロトン伝導性ポリマーなどによる電極 と電解質膜の貼り付けでは膜電極界面の劣化による耐久性の低下が見られる傾向 があるが、本発明では、電解質膜および位相差が電解質膜と実質的に異なる層 (A) は、主鎖にァニオン性基を有する芳香族炭化水素を含有する高分子材料からなるた め、高強度、高耐久性な膜電極複合体が実現できた。ここで、主鎖にァ-オン性基を 有する芳香族炭化水素とは、芳香環にァニオン性基が直接結合したユニットを意味 する。そして、前記ァ-オン性基を芳香族炭化水素の主鎖に存在させるのは、燃料ク ロスオーバーを抑制する効果が大き 、からである。
[0126] すなわち、前記ァ-オン性基を芳香族炭化水素の主鎖に存在させるのは、芳香族 炭化水素が主鎖にある高分子材料は剛直で動きにくぐその主鎖の芳香族炭化水 素に直接ァ-オン性基が結合していることにより、例えば、メタノール水溶液がポリマ 一内に侵入してきても、ァニオン性基を有する部分が自由に動くことができず、結果 的にポリマー中に燃料が侵入できる割合を抑制でき燃料クロスオーバーを低減でき るカゝらである。
[0127] 本発明の膜電極複合体にお!ヽては、電解質膜の位相差 (M)と位相差が電解質膜 と実質的に異なる層 (A)の位相差 (I)はどちらが大きくても小さくても特に問題はなく 、膜電極複合体の製造工程において電極との接触面積を大きくするために、位相差 が電解質膜と実質的に異なる層 (A)の柔軟性が変化していてもよい。
[0128] 電解質膜の位相差 (M)と位相差が電解質膜と実質的に異なる層 (A)の位相差 (I) の比(MZl)は 0. 1〜10であることが好ましぐ 0. 5〜2がさらに好ましい(ただし MZ 1= 1は除く)。
[0129] 特に 40°C以上の高温や 20重量%〜99. 9重量%の高濃度メタノール水溶液を使 用する場合、本発明の膜電極複合体は、特に電解質膜に関しては、燃料クロスォー バー抑制効果が高ぐ高耐熱性、高強度、高引っ張り弾性率および低含水率の電解 質膜を選択し用いることが好ましいが、電解質膜と位相差が電解質膜と実質的に異 なる層(A)に関しても同様の性能がある電解質ポリマー力もなる方が好ましい。その ため、本発明の膜電極複合体の電解質膜と位相差が電解質膜と実質的に異なる層( A)を構成する材料の主成分が、実質的に同じであることが好ましぐまた、電解質膜 と位相差が電解質膜と実質的に異なる層 (A)の界面の接着性の観点力もも、実質的 に同じ材料力もなることが好ましい。ここにおける実質的に同じ材料とは、上述の通り 、構成する材料の 50重量%以上が同じ材料であることを意味する。
[0130] この際、使用する主鎖にァニオン性基を有する芳香族炭化水素を含む高分子材料 のァ-オン性基の密度や種類が異なっていても、主鎖骨格が同じであれば、実質的 に同じ材料として取り扱うことができる。また、例えば、ポリエーテルエーテルケトンと ポリエーテルケトンなど芳香環を結合する基の種類が同じであれば同じ材料としても 差し支えない。
さらに、電解質膜と、層 (A)にそれぞれ異なる添加剤や高分子材料が混合されてい ても、異なる置換基やその誘導体を有していても、別の成分が共重合されていても、 電解質膜および層 (A)を構成する材料の 50重量%以上が同じ材料であれば、実質 的に同じ材料であると判断しても差し支えない。なお、上述の通り、電解質膜および 層 (A)を構成する主鎖にァニオン性基を有する芳香族炭化水素を含む高分子材料 のァ-オン性基の密度や種類が異なっていても、当該高分子材料の主鎖骨格が同 じであれば、同じ材料として取り扱うことができ、例えば、ポリエーテルエーテルケトン とポリエーテルケトンなど芳香環を結合する基の種類が同じであれば、同じ材料とし ても差し支えない。
次に、本発明中のァニオン性基を有する芳香族炭化水素を含む高分子材料を説 明する。ァ-オン性基としては、プロトン交換能を有するものが好ましい。このような官 能基としては、スルホン酸基(— SO (OH) )、硫酸基(― OSO (OH) )、スルホンイミ
2 2
ド基(— SO NHSO R(Rは有機基を表す。;))、ホスホン酸基(― PO (OH) )、リン酸
2 2 2 基(― OPO (OH) )、カルボン酸基(― CO (OH) )、およびこれらの塩等を好ましく
2
採用することができる。これらのァ-オン性基は前記高分子材料中に 2種類以上含 むことができ、組み合わせることにより好ましくなる場合がある。組み合わせはポリマ 一の構造などにより適宜決められる。中でも、高プロトン伝導度の点力も少なくともス ルホン酸基、スルホンイミド基、硫酸基のいずれかを有することがより好ましぐ耐加水 分解性の点力も少なくともスルホン酸基を有することが最も好まし 、。スルホン酸基を 有する場合、そのスルホン酸基密度は、プロトン伝導性および燃料クロスオーバー抑 制の点から 0. 1〜5. OmmolZgが好ましぐより好ましくは 0. 5〜3. 5mmolZg、さ らに好ましくは 1. 0〜3. 5mmolZgである。スルホン酸基密度を 0. ImmolZg以上 とすることにより、高出力密度を取り出すことができ、また 5. OmmolZg以下とするこ とで、たとえば、直接メタノール型燃料電池など液体燃料が直接接触するような燃料 電池に使用する際に、界面抵抗低減性層が燃料により過度に膨潤し溶出したり流出 したりするのを防ぐことができる。
[0132] ここで、スルホン酸基密度とは前述の通りである。
[0133] 主鎖にァニオン性基を有する芳香族炭化水素の具体例としては、電解質膜と位相 差が電解質膜と実質的に異なる層 (A)の機械的強度、燃料耐久性、耐熱性などの 観点から、ポリフエ-レンォキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、 ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルホスフィンォキ シド、ポリエーテルエーテルホスフィンォキシド、ポリフエ-レンスルフイド、ポリアミド、 ポリイミド、ポリエーテルイミド、ポリイミダゾール、ポリオキサゾール、ポリフエ-レンな どの、主鎖の芳香族環にァニオン性基を導入した芳香族炭化水素系ポリマーが挙げ られる。これらの高分子材料は単独、あるいは二種以上併用して使用でき、ポリマー ブレンド、ポリマーァロイとして使用できる。
[0134] これらの中でも、特に 40°C以上の高温や 20重量%〜99. 9重量%の高濃度メタノ ール水溶液を燃料として使用する場合、燃料クロスオーバー抑制、機械的強度、燃 料耐久性、耐熱性の観点から電解質膜および層 (A)を構成する材料が電解質膜お よび層(A)を構成する材料が 9, 9 ビス(4ーヒドロキシフエ-ル)フルオレン由来の 成分を含有するポリエーテルエーテルケトン、 4, 4,ージヒドロキシテトラフエ-ルメタ ン由来の成分を含有するポリエーテルエーテルケトン、 4, 4'ージヒドロキシベンゾフ ェノン由来の成分を含有するポリエーテルエーテルケトンおよび 4, 4'ージヒドロキシ ベンゾフエノン由来の成分を含有するポリエーテルケトン力 選択されることが特に好 ましい。これらは単独、あるいは二種以上併用して使用でき、ポリマーブレンド、ポリマ ーァロイとして使用できる。
[0135] これらの高分子材料にァ-オン性基を導入する方法については、前述のとおりであ る。
[0136] 本発明の膜電極複合体は複数枚のスタック状で使用しても、電極を電解質膜上に 並べた状態で直列化するなどして使用してもよい。スタック状の燃料電池の一例を第 4図に示す。複数の膜電極複合体を燃料流路と空気流路を表裏に兼ね備えた炭素 材または金属などの導電性材料力 なるセパレーターで挟み込むようにセットするこ とにより直列化し (ただし最外のセパレーターは片面に燃料か空気のどちらか一方の 流路のみ)燃料電池とする。液体燃料は各種ポンプを利用して燃料タンク等より供給 しても良いし、燃料流路にフェルトゃ不織布などを設置し毛細管現象を利用して供給 してもよい。空気はファンなどで強制的に供給してもよいし、空気流路に自然に存在 する空気を利用できる。
[0137] 電極を電解質膜上に並べた状態で直列化して使用する場合は、第 5図の例のよう に、電解質膜に複数の電極を複合化した膜電極複合体を使用できる。
これらの燃料電池に使用する本発明の膜電極複合体は、第 6図の電極 10と電解質 膜 11の界面の拡大図に示すように、触媒層 4の凹凸を追随した層 (A) 12を介した状 態で貼り付けられている。
[0138] また、第 7図は補機などを使用しないパッシブ型燃料電池の一例を示したものであ る。
[0139] また、燃料電池は使用する機器に内蔵してもよいし、外付けのユニットとして使用し てもよい。また、メンテナンスの観点から、燃料電池セルから膜電極複合体が脱着可 能な構成であることも好まし 、。
[0140] 本発明の燃料電池性能は、駆動する機器によって、燃料や空気の供給方法、セル の形状、流路の形状、集電方法、電子回路の設計などが異なるため、膜電極複合体 の大きさや、数、直列および Zまたは並列の数等は、適宜機器設計に応じて選択す ることが好ましい。
[0141] 本発明の膜電極複合体の性能は、電解質膜や層 (A)や電極などの選択や、使用 する温度、燃料濃度により変化するが、市販のエレクトロケム社製単セル" EFC05— 0 1SP" (電極面積 5cm2用セル)に組み込み評価することができる。
[0142] また、本発明の膜電極複合体を使用した燃料電池の燃料としては、前述のとおり酸 素、水素およびメタン、ェタン、プロパン、ブタンメタノール、イソプロピルアルコール、 アセトン、グリセリン、エチレングリコール、ギ酸、酢酸、ジメチルエーテル、ハイドロキ ノン、シクロへキサンなどの炭素数 1〜6の有機化合物およびこれらと水との混合物等 が挙げられ、 1種または 2種以上の混合物など用途によって選択できる力 主に携帯 用機器に使用する場合は液体供給型が好ましい。液体供給型とは、少なくとも一方 の電極にメタノール水溶液などの液体を供給することを示し、アノード側に液体を供 給することが好ましい。液体を供給することで、安全性や燃料供給の選択範囲が広 がり、システムの簡素化が可能となり、燃料電池の小型化が実現でき、携帯用電子機 器などの電源として有益である。
[0143] 作製した膜電極複合体の抵抗は燃料電池セルにセットし、ソ一ラトロン (solartron) 社製周波数応答解析器 1255Bと、ポテンシヨスタツト SI1287を用いて測定できる。 測定条件の例としては、膜電極複合体に電流 I (mA)、振幅 iZlO (mA)を印加し、 5 0kHzから lOmHzの周波数範囲で測定を行い、インピーダンスを測定する。測定し たインピーダンスを複素平面グラフにし、得られた円弧あるいはそれが歪んだ形のも のの大きさを抵抗 Rr (Rr=X軸(実軸)切片の右端-左端)とした。このとき、得られる X軸切片の右端および左端は、複素平面グラフ力 得られる半円の X軸との交点の、 それぞれ右端および左端となる。半円にならな 、場合はナイキストプロットから "ZVie w Electrochemical Impedance Software (bcnbner Associates, Inc.製)の円形フィット より半円を推定し、その X軸切片の右端および左端を用いる (第 1図参照)。
[0144] なお、抵抗 Rrは、印加する電流値と振幅に大きく依存するため、本発明では、下記
[測定方法]の第 (6)項に記載の通りに電圧 電流特性を測定した際の最大出力時 の電流密度値と評価した電極面積の積 I (mA)を印加し、振幅をその 1Z10とする。 このようにして求められた Rrは界面抵抗に大きく依存するので、 Rrは本発明の界面 抵抗低減性組成物を用いる効果を表す指標となる。すなわち、 Rrの値が大きくなれ ば界面抵抗の値は大きくなり、 Rrの値が小さくなれば界面抵抗の値は小さくなると言 える。そして、 Rrが小さいほど高出力が得られる傾向にあるため、本発明の膜電極複 合体の Rrは 1. 5 Ω 'cm2以下となることが好ましぐ 1. 2 Ω 'cm2以下がより好ましぐ 1. 0 Ω 'cm2以下がさらに好ましい。本発明の膜電極複合膜は、特に、 3重量%のメ タノール水溶液を使用し、セル温度 60°Cとした際の Rrが 1. 5 Ω 'cm2以下となること が好ましぐ 1. 2 Ω 'cm2以下がより好ましぐ 1. 0 Ω 'cm2以下がさらに好ましい。 カゝる要件を具備することにより、燃料電池の内部抵抗が低減し、取り出す電流を増加 させた場合の電圧低下が小さぐ高出力化が可能で、搭載する機器や装置の選択範 囲が広がる力 である。 [0145] 出力としては、例えば、セル温度を 60°Cとし、アノード側に 3%メタノール水溶液 0. 5mlZ分の速度で供給し、力ソード側に空気を 50mlZ分の速度で供給した場合の 最大出力密度が 40mWZcm2以上であることが好まし 、。 40mWZcm2以上であれ ば、膜電極複合体の面積を小さくでき、駆動できる機器の選択範囲が広力 ^有用で ある。 50mWZcm2以上がよりに好ましぐ 60mWZcm2以上がさらに好ましい。
[0146] さらに、 lOOmAZcm2以上の電流密度で 100時間の発電を行った後の電圧保持 率力 50%以上であることが好ましぐ 60%以上より好ましぐ 70%以上がさらに好ま しい。電流密度はより高い方が搭載機器の選択範囲が広がることから好ましぐ 150 mAZcm2以上がより好ましぐ 250mAZcm2がさらに好ましい。本発明の膜電極複 合膜は、特に、 20重量%のメタノール水溶液を使用し、 50°Cで 250mAZcm2の定 電流での運転 (以下、略一定電流値の条件下で行う評価を「定電流評価」と言う。)を 100時間行った後の電圧保持率が 50%以上であること好ましぐ 60%以上がより好 ましぐ 70%以上がさらに好ましい。力かる要件を具備することにより、燃料電池とし て機器に搭載した場合、該機器の長期使用が可能となるからである。もちろん、 100 mAZcm2未満でも、好ましくは 50%以上、より好ましくは 60%以上、さらに好ましく は 70%以上の電圧低下率を有することが好ましい。なお、上記出力密度も、例えば 、東陽テク-力製評価装置、ポテンシヨスタツトは solartron製 1470、周波数応答アナラ ィザは solartron製 1255Bを用いて測定する事ができる。
[0147] また、電流を印加する前に力ソードからの排出ガスをガス捕集用の袋に捕集してジ エルサイエンス製オートサンプラー付ガスクロマトグラフを用いてサンプリングガス 中のメタノールと酸化されて生成する二酸ィ匕炭素の両方の濃度を測定し算出した膜 電極複合体のメタノール透過量力 3重量%のメタノール水溶液を使用し、セル温度 60°Cとした場合に、 10 molZcm2Zmin以下であることが好ましい。 10 /z molZc m2/min以下であれば燃料クロスオーバーでの出力低下の影響が小さぐ搭載機器 の駆動時間の延長の観点からも有用である。 8 μ molZcm2Zmin以下がより好まし く、 5 molZcm2Zmin以下がさらに好ましい。
また、アノード、力ソードとも積極的な燃料供給や温度制御を行わないパッシブ評価 の場合は、 30重量%メタノール水溶液燃料での出力密度は、膜電極複合体の面積 を小さく設計でき、駆動できる機器の選択範囲が広がることにより 15mWZcm2以上 、 20mWZcm2より好ましぐ 40mWZcm2以上がさらに好ましい。
[0148] 本発明の燃料電池の用途としては、移動体の電力供給源が好ましいものである。
特に、携帯電話、ノ ソコン、 PDA,ビデオカメラ (カムコーダ一)、デジタルカメラ、ノヽ ンディターミナル、 RFIDリーダー、各種ディスプレー類などの携帯機器、電動シエー バー、掃除機等の家電、電動工具、家庭用電力供給機、乗用車、バスおよびトラック などの自動車、二輪車、電動アシスト付自転車、ロボット、電動カート、電動車椅子や 船舶および鉄道などの移動体の電力供給源として好ましく用いられる。特に携帯用 機器では、電力供給源だけではなぐ携帯機器に搭載した二次電池の充電用にも使 用され、さらには二次電池や太陽電池と併用するハイブリッド型電力供給源としても 好適に利用できる。
実施例
[0149] 以下、実施例により本発明をさらに詳しく説明するが、これらの例は本発明をよりよ く理解するためのものであり、本発明はこれらに限定されるものではない。
[0150] [測定方法]
実施例中の物性は下記に示す方法で測定した。
[0151] (1)スルホン酸基密度
25°Cの純水中で 24時間以上撹拌洗浄したのち、 100°Cで 24時間真空乾燥した 後精製、乾燥後のポリマーについて、元素分析により測定した。 C、 H、 Nの分析は、 全自動元素分析装置 varioELで、また、 Sの分析はフラスコ燃焼法'酢酸バリウム滴定 、 Pの分析についてはフラスコ燃焼法'リンバナドモリブデン酸比色法で実施した。そ れぞれのポリマーの組成比から単位グラムあたりのスルホン酸基密度(mmolZg)を 算出した。
[0152] (2)重量平均分子量
ポリマーの重量平均分子量を GPCにより測定した。紫外検出器と示差屈折計の一 体型装置として東ソー製 HLC- 8022GPCを、また GPCカラムとして東ソー製 TSK gel S uperHM- H (内径 6. Omm、長さ 15cm) 2本を用い、 N—メチルー 2—ピロリドン溶媒( 臭化リチウムを 10mmol/L含有する N—メチル— 2—ピロリドン溶媒)にて、流量 0. 2mLZminで測定し、標準ポリスチレン換算により重量平均分子量を求めた。
[0153] (3)膜厚
ミツトヨ製ダラナイトコンパレータスタンド BSG- 20にセットしたミツトヨ製 ID- C112型を 用いて測定した。
[0154] (4)引っ張り弾性率
株式会社オリエンテック社製"テンシロン,,を用いて、ロードセル 5N、レンジ 40%、 チャック間距離 3cm、クロスヘッドスピード 100mm/min、 n= 5の条件で引っ張りモー ドの弾性率を測定した。試験サンプルは、フィルム状に製膜したポリマーを 25°Cの水 中に 24時間浸漬し、長さ約 5cm、幅 2mmの短冊状に切り出して作製した。
[0155] (5)膜複合体洗浄液中の可塑剤の分析
洗浄に使用した水をヒューレットパッカード(Hewlett Packard)社製ガスクロマトグラ フ" 5890 series Π"で分析した。測定条件を下記する。
Injection temp: 250°C
し olumn head press: 20psi
Carrier gas: He
Injection mode: Split (Line flow 40ml/ min)
Septum purge: He 3. Oml/min
Injection volume: 2. 0 ^ 1
Detector temp: 250°C
Detector gas: H 40ml/min、 Air400ml/min、 Aux (N ) 40ml/min
2 2
Column oven temp Initial: 50°C
Final : 250°C
Rate: 20°C/ min。
[0156] (6)膜電極複合体の抵抗
作製した膜電極複合体を燃料電池セル (エレクトロケム社製単セル" EFC05— 01SP ,,)にセットし、ソ一ラトロン (solartron)社製周波数応答解析器 1255Bとポテンシヨスタ ット SI1287を用いて測定した。測定条件としては、例えば、膜電極複合体に電流 1 ( mA)、振幅 iZlO (mA)を印加し、 50kHzから lOmHzの周波数範囲で測定を行い 、インピーダンスを測定する。測定したインピーダンスを複素平面グラフにし、得られ た円弧あるいはそれが歪んだ形のものの大きさを抵抗 Rr (Rr=X軸切片の右端 左 端)とした。このとき、得られる X軸切片の右端および左端は、複素平面グラフから得 られる半円の X軸との交点の、それぞれ右端および左端となる。半円にならない場合 はナイキストプロット; ら ZView Electrochemical Impedance software (Scribner Asso dates, Inc.製)の円形フィットより半円を推定し、その X軸切片の右端および左端を用 いる。膜電極複合体のインピーダンス測定結果の例を第 1図に示す。なお、抵抗 Rr は、印加する電流値と振幅に大きく依存するため、本発明の測定方法においては、 アノード側に 3重量%メタノール(MeOH)水溶液を 0. 5mlZminで供給し、力ソード 側に空気を 50mlZminで流し、セル温度を 60°Cにして、電圧—電流特性を測定し た際の最大出力時の電流密度値と評価した電極面積の積 I (mA)を印加し、振幅を その 1Z10とする。 Rrは界面抵抗に大きく依存するので、 Rrは本発明の界面抵抗低 減性組成物を用いる効果を表す指標となり、小さ!ヽ方がよ!ヽ。
[0157] (7)貯蔵弾性率、損失弾性率の測定
A.膜電極複合体断面の確認
60°Cで 24時間減圧乾燥した膜電極複合体をカッターで切り出し、電顕用エポキシ 榭脂(日新 EM社製 Quetol812)で包埋し、 60°Cのオーブン中で 48時間かけて該ェポ キシ榭脂を硬化させた後、ウルトラミクロトーム (ライカ社製 Ultracut S)で厚さ約 100η mの超薄切片を作製した。
[0158] 作製した超薄切片を応研商事社製 100メッシュの Cuグリッドに搭載して、日立製透 過型電子顕微鏡 H-7100FAを使用し加速電圧 100kVで TEM観察を行 、、膜電極複 合断面の観察を行 、、電解質膜と層 (A)の場所を確認した。
[0159] B.超微小硬度計による測定
上記、超薄切片をサンプルとし、超微小硬度計 (Hysitron社製 Tribo Indenter)を用 いて電解質膜部分と層 (A)部分のモジュラスマッピング像を取得し、貯蔵弾性率、損 失弾性率を算出した。電解質膜の貯蔵弾性率を C、層 (A)の貯蔵弾性率を Dの値と その比 C/D、および電解質膜の損失弾性率 E、層(A)の貯蔵弾性率 Fの値とその 比 EZFを求めた。 測定条件は下記に示す。
測定装置: Hysitron社製 Tribo Indenter
使用圧子:ダイヤモンド製 Cubecorner圧子(曲率半径 50nm)
測定視野:約 30mm角
測定周波数: 200Hz
測定雰囲気:室温 ·大気中
接触荷重: 0.3 N
(8)位相差の測定
A.膜電極複合体断面の確認
60°Cで 24時間減圧乾燥した膜電極複合体をカッターで切り出し、電顕用エポキシ 榭脂(日新 EM社製 Quetol812)で包埋し、 60°Cのオーブン中で 48時間かけて該ェポ キシ榭脂を硬化させた後、ウルトラミクロトーム (ライカ社製 Ultracut S)で厚さ約 100η mの超薄切片を作製した。
[0160] 作製した超薄切片を応研商事社製 100メッシュの Cuグリッドに搭載して、 日立製透 過型電子顕微鏡 H-7100FAを使用し加速電圧 100kVで TEM観察を行 、、膜電極複 合断面の観察を行 ヽ、電解質膜と位相差の異なる層 (A)の場所を確認した。
[0161] B.走査型プローブ顕微鏡による測定
ミクロトームで切削した断面をエタノールで超音波洗浄し、 TEM観察像を参考に、 電解質膜および層 (A)の測定個所を決定し、それぞれ米国ビーコ社デジタル 'インス ツルメンッ製走査型プローブ顕微鏡(NanoscopeIIIa、 Dimension3000)、及び、位相検 出ェクステンダーモジュール (PHASE-D01型)を用いて測定を行った。走査範囲は 1 2. 5 m X 25 mとし、測定プローブを共鳴周波数で振動させつつ試料表面を走 查した(タッピングモード走査)。このとき、プローブ先端の曲率半径は 5〜20nm、タ ッビング周波数は 150〜450kHzを用いた。
[0162] 上記条件により、タッピングモード走査を行な 、、プローブを振動させるために入力 した交流信号に対する、タッピングモード走査で出力された交流信号の位相差 (遅れ )を測定し、各走査点での位相差 (遅れ)をそれぞれ測定した。位相差の比は、観察 試料内で膜電極複合体構成成分を除いた部分での最も明るい部分、すなわち膜電 極複合体の超薄切片試料を作製する際に使用するエポキシ榭脂の硬化物を 0とし電 解質膜部分と電極近傍部分の層の位相差を規格化した数値をそれぞれ M、 Iとし M ZIで表した。
[0163] (9)膜電極複合体の性能評価
A.電圧保持率
膜電極複合体をエレクトロケム社製単セル" EFC05— 01SP" (電極面積 5cm2用セル )に組み込み、セル温度を 50°Cとし、アノード側に 20%メタノール水溶液 0. 5ml/ 分の速度で供給し、力ソード側に合成空気を 50mlZ分の速度で供給し、東陽テク二 力製評価装置、ポテンシヨスタツトは solartron製 1470、周波数応答アナライザは solart ron製 1255Bを用いて電圧 電流特性を測定し、電流密度 250mAZcm2の電圧を 読みとり、以後 5時間毎に 1時間発電休止を入れるパターンで、 250mAZcm2の定 電流で通算 100時間の運転を行った。定電流評価後、電流-電圧曲線から電流密 度 250mAZcm2の電圧をよみとり、初回力もの保持率を算出した。
[0164] B.燃料 (メタノール)透過量 (以下、「MCO」と称する場合がある。 )の測定
電流を印加する前に力ソードからの排出される合成空気をガス捕集用の袋に捕集 してジ—エルサイエンス製オートサンプラー付ガスクロマトグラブ' MicroGC CP4900" を用いてサンプリングガス中のメタノールと、酸化されて生成する二酸化炭素の両方 の濃度を測定し算出した。ここでの二酸化炭素は、全て透過したメタノール由来で発 生したものと仮定した。力ソードの空気流量を L (ml/分)、ガスクロマトグラフによるメタ ノールと二酸ィ匕炭素の合計濃度を Z (体積%)および合計体積を V (ml)、開口面積( 膜電極複合体中のメタノール水溶液燃料が直接接触する面積)を A (cm2)とし下式 十异しフ^
[0165] MCO (mol/cm2/分) = (L+V) X (Z/100) /22400/Ao
[0166] C.パッシブ評価
30重量%メタノール水をアノードに溜めた状態で、東陽テク-力製評価装置、ポテ ンシヨスタツトは solartron製 1470、周波数応答アナライザは solartron製 1255Bを用い て測定した。電流スイープ速度を lOmVZ分とし、電圧が 30mVまで測定した。電流 電圧曲線の電流と電圧の積が最高になる点を電極面積で割った値を出力密度と した。
[0167] (10)界面抵抗低減性組成物の粘度測定
回転型粘度計 (レオテック社製レオメータ RC20型)を用いて剪断速度 35 (s_ 1)の 条件で温度 20°C〜100°C間の粘度を測定した。
[0168] ジオメトリーは(試料を充填するアタッチメント)コーン &プレートを使用して、 RHE02
000ソフトウェアで得られた値を採用した。
[0169] 本発明の評価方法においては、 30°Cの値 X(Pa)と 80°Cの値 Y(Pa)の比 YZXで 粘度変化の温度依存性とした。
[0170] [イオン性基を有した高分子材料の合成例]
(1)合成例 1
4, 4,ージフルォロベンゾフエノン 109. lgを発煙硫酸(50%SO ) 150mL中、 10
3
0°Cで lOh反応させた。その後、多量の水中に少しずつ投入し、 NaOHで中和した 後、食塩 200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶 液で再結晶し、ジソジゥム 3, 3,一ジスルホネート—4, 4,ージフルォ口べンゾフエノ ンを得た。(収量 181g、収率 86%)。炭酸カリウムを 6. 9g、 4, 4'一(9H—フルォレ ン 9 イリデン)ビスフエノールを 14g、および 4, 4'ージフルォロベンゾフエノンを 2 . 6g、および前記ジソジゥム 3, 3,一ジスルホネート 4, 4,ージフルォロベンゾフエ ノン 12gを用いて、 N—メチルー 2 ピロリドン中、 190°Cで重合を行った。多量の水 で再沈することで精製を行い、ポリマー Aを得た。得られたポリマー Aのプロトン置換 膜のスルホン酸基密度は、元素分析より 2. 4mmol/g,重量平均分子量 24万であ つた o
[0171] (2)合成例 2
炭酸カリウムを 6. 9g、 4, 4'ージヒドロキシテトラフエ-ルメタンを 14g、および 4, 4' ージフルォロベンゾフエノンを 7g、および前記合成例 1のジソジゥム 3, 3,一ジスル ホネート一 4, 4,一ジフルォロベンゾフエノン 5gを用いて、 N—メチル 2 ピロリドン 中、 190°Cで重合を行った。多量の水で再沈することで精製を行い、ポリマー Bを得 た。得られたポリマー Bのプロトン置換膜のスルホン酸基密度は、元素分析より 1. 8m mol/g,重量平均分子量 18万であった。 [0172] [電解質膜の作製例]
上記ポリマー Aを N, N—ジメチルァセトアミドに溶解し固形分 25%の塗液とした。 当該塗液をガラス板上に流延塗布し、 70°Cにて 30分さらに 100°Cにて 1時間乾燥し て 72 mのフィルムを得た。さらに、窒素ガス雰囲気下、 200〜300°Cまで 1時間か けて昇温し、 300°Cで 10分間加熱する条件で熱処理した後、放冷し、 1N塩酸に 12 時間以上浸漬してプロトン置換した後に、大過剰量の純水に 1日間以上浸漬して充 分洗浄し電解質膜 Aを得た。 膜の引っ張り弾性率は 1300MPaであった。
[0173] またポリマー Bについても同様に製膜し、電解質膜 Bを得た。電解質膜の引っ張り 弾性率は 131 OMPaであった。
[0174] 〔電極作製例〕
( 1)メタノール水溶液を燃料とする膜電極複合体用の電極
炭素繊維の織物力もなる米国ィーテック(E-TEK)社製カーボンクロスに、 20%PT FE処理を行った。具体的には、ポリテトラフルォロエチレン(以下 PTFEと略す)を 20 重量%含む水分散液にカーボンクロスを浸漬、引き上げ後、乾燥、焼成した。その片 面に PTFEを 20重量%含むカーボンブラック分散液を塗工し、焼成して電極基材を 作製した。この電極基材上に、ジョンソンマッセイ(Johson&Matthey)社製 Pt— Ru担 持カーボン触媒" HiSPEC" (登録商標) 7000と" HiSPEC" (登録商標) 6000、デュポ ン(DuPont)社製 20%"ナフイオン"("Nafion") (登録商標)溶液と n プロパノールか らなるアノード触媒塗液を塗工し、乾燥して電極 Aを作製した。アノード触媒塗液の 塗工はカーボンブラック分散液を塗工した面に行った。また、同様に、上記の電極基 材上に、田中貴金属工業社製 Pt担持カーボン触媒 TEC10V50Eど'ナフイオン"(登 録商標)("ナフイオン"(登録商標))溶液からなる力ソード触媒塗液を塗工し、乾燥し て電極 Bを作製した。
[0175] (2)水素を燃料とする膜電極複合体用の電極
Aldrich社製"ナフイオン"(登録商標)溶液に、触媒担持カーボン (触媒: Pt、カー ボン: Cabot社製 ValcanXC-72、白金担持量: 50重量%)を白金ど'ナフイオン"(登 録商標)の重量比が 1 : 0. 5になるように加え、よく撹拌して触媒 ポリマー組成物を 調製した。この触媒—ポリマー組成物を、予め撥水処理 (PTFEを 20重量%含浸し 焼成する)を行った電極基材 (東レ (株)製カーボンペーパー TGP- H- 060)に塗布し、 直ちに乾燥して、電極 Cを作製した。
[0176] [実施例 1]
イオン性基を有する高分子材料としてポリマー Aを 10g、可塑剤として N—メチルー 2—ピロリドン 60g、グリセリン 40gを容器にとり、均一になるまで撹拌して界面抵抗低 減性組成物 Aとした。界面抵抗低減性組成物 Aの粘度変化の温度依存性をあらわ す YZXは 0. 08であった。この界面抵抗低減性組成物 Aを前記電極 A、電極 B上に 3mgZcm2となるように塗工し、 100°Cで 1分間熱処理した。これらの電極を電極面 積 5cm2となるようにカットした。
[0177] 次に、これらの界面抵抗低減性組成物 A付きの電極を界面抵抗低減性組成物 Aが 電解質膜 A側となるように積層し、 100°Cで 1分間、 5MPaの圧力で加熱プレスを行 い、膜電極複合体を得た。プレスした後の膜電極複合体を 50mlの純水に 30分間浸 し、界面抵抗低減性組成物 A中に残存している可塑剤を抽出洗浄し、発電用セルに 組み込み燃料電池とした。また、該膜電極複合体を浸した水中のグリセリンを GCで 定量分析したところ、 60 g/cm2検出され、膜電極複合化工程で界面抵抗低減性 組成物に可塑剤としてグリセリンが含まれたままであったことが確認できた。
[0178] アノード側に 3重量%メタノール(MeOH)水溶液を 0. 5mlZminで供給し、カソー ド側に空気を 50mlZminで流して、発電評価を行った。また、セル温度は 60°Cに調 整した。評価は、膜電極複合体に定電流を流し、そのときの電圧を測定した。電流を 順次増加させ、電圧が 10mV以下になるまで測定を行った。各測定点での電流と電 圧の積が出力となる。この燃料電池の電圧一電流特性を第 2図に示す。また、 Rr値 は。. 9 Ω 'cm2であった。
[0179] この膜電極複合体の断面の貯蔵弾性率、損失弾性率および位相差を測定したとこ ろ、電解質膜部分と位相差の異なる層 (A)が確認でき、位相差の比 MZIは 0. 95で あり、電解質膜部分の貯蔵弾性率 Cは 9. 2GPa、損失弾性率 Eは 1. 4GPa、層 (A) 部分の貯蔵弾性率 Dは 9. 2GPa、損失弾性率 Fは 1. 7GPaであり、 CZD= 1、 EZ F = 0. 82であった。
[0180] 膜電極複合体の電圧保持率は、初回の電圧が 0. 25V、 100時間定電流発電後の 電圧は 0. 24Vであり、 96%の優れた耐久性を示した。
[0181] また、この膜電極複合体のメタノール透過量は 4. 5 μ molZcm2Z分であった。ま た、パッシブ評価での出力は 40mWZcm2を示した。
[0182] [比較例 1]
電極 A、電極 Bと電解質膜 Aを、界面抵抗低減性組成物を用いることなく挟むように 積層し、 100°Cで 8分間、 5MPaの圧力で加熱プレスを行い、膜電極複合体を得た。 これを使用した燃料電池の電圧 電流特性を第 2図に示す。また、 Rr値は 2. 5 Q -c m2であった。第 2図より明らかなように、実施例 1の方が比較例 1より優れた電圧—電 流特性を示した。この膜電極複合体の断面の貯蔵弾性率、損失弾性率および位相 差の測定を試みたところ、電解質膜部分しか観察できなカゝつた。この膜電極複合体 のメタノール透過量は 4 μ molZcm2Z分であった力 電圧保持率評価はできなかつ た。この膜電極複合体のパッシブ評価での出力は 5mWZcm2であった。
[0183] [実施例 2]
イオン性基を有する高分子材料としてポリマー Aを 10g、可塑剤として N—メチルー 2 ピロリドン 40g、グリセリン 40gを容器にとり、均一になるまで撹拌して界面抵抗低 減性組成物 Bとした。界面抵抗低減性組成物 Bの粘度の温度依存性を図 8に示す。 界面抵抗低減性組成物 Bの粘度変化の温度依存性をあらわす YZXは 0. 05であつ た。この界面抵抗低減性組成物 Bを剥離基材に 3mg/cm2となるように塗工し、 100 °Cで 1分間熱処理し、界面抵抗低減性組成物付き剥離シートを作製した。この界面 抵抗低減性組成物付き剥離シートを電極 A、電極 B上に重ね合わせ 100°Cで 1分間 、 2MPaの圧力で加熱プレスを行い、剥離紙を剥がしとり界面抵抗低減性組成物付 き電極を得た。これらの電極を電極面積 5cm2となるようにカットし、実施例 1と同様に 膜電極複合体を得た。これを使用した燃料電池を実施例 1と同様に作製 ·評価したと ころ電圧 -電流特性は実施例 1とほぼ重なり、最大出力は 102mWZcm2であった。 また、 Rr値は 0. 8 Ω 'cm2であった。この膜電極複合体の断面の貯蔵弾性率、損失 弾性率および位相差を測定したところ、電解質膜部分と位相差の異なる層 (A)が確 認でき、位相差の比 MZlは 0. 74であり、電解質膜部分の貯蔵弾性率 Cは 9. 2GPa 、損失弾性率 Eは 1. 47GPa、層(A)部分の貯蔵弾性率 Dは 8. 8GPa、損失弾性率 Fは 1. 8GPaであり、 CZD= 1. 04、 E/F=0. 82であった。
[0184] 膜電極複合体の電圧保持率は、初回の電圧が 0. 26V、 100時間定電流発電後の 電圧は 0. 25Vであり、 96%の優れた耐久性を示した。
[0185] また、この膜電極複合体のメタノール透過量は 4. 0 μ molZcm2Z分であった。ま た、パッシブ評価での出力は 39mWZcm2を示した。
[0186] [実施例 3]
実施例 2の界面抵抗低減性組成物 B付き剥離シートを作製した。この界面抵抗低 減性組成物 B付き剥離シートを 2. 4cm角となるように切り取り、界面抵抗低減性組成 物 Bと電解質膜 Aが接し、互いに向かい合うように両面に貼り付け、 60°Cで 1分間、 1 MPaの圧力で加熱プレスしたのち、剥離基材を剥離した。次に、電極面積 5cm2の 電極 A、電極 Bを電解質膜両面に設けた界面抵抗低減性組成物カゝらなる層上に重 ね合わせ、 100°Cで 1分間、 2MPaの圧力で加熱プレスを行い、界面抵抗低減性組 成物付き電極を得た。これを使用した燃料電池を実施例 1と同様に作製'評価したと ころ電圧—電流特性は実施例 1とほぼ重なり、最大出力は 99mWZcm2であった。ま た、 Rr値は 0. 85 Ω 'cm2であった。この膜電極複合体の断面の貯蔵弾性率、損失 弾性率および位相差を測定したところ、電解質膜部分と位相差の異なる層 (A)が確 認でき、位相差の比 MZIは 1. 11であり、電解質膜部分の貯蔵弾性率 Cは 7. 5GPa 、損失弾性率 Eは 1. 8GPa、層(A)部分の貯蔵弾性率 Dは 8. 8GPa、損失弾性率 F は 1. 7GPaであり、 CZD = 0. 85、 E/F= l. 05であった。
[0187] 膜電極複合体の電圧保持率は、初回の電圧が 0. 26V、 100時間定電流発電後の 電圧は 0. 25Vであり、 96%の優れた耐久性を示した。
[0188] また、この膜電極複合体のメタノール透過量は 5. 4 μ molZcm2Z分であった。ま た、パッシブ評価での出力は 42mWZcm2を示した。
[0189] [実施例 4]
実施例 2と同様に界面抵抗低減性組成物 B付き剥離シートを作製した。この界面抵 抗低減性組成物 B付き剥離シートを電極 A、電極 B上に重ね合わせ 100°Cで 1分間 、 2MPaの圧力で加熱プレスを行い、剥離紙を剥がしとり界面抵抗低減性組成物 B 付き電極を得た。これらの電極を電極面積 5cm2となるようにカットし、 20%メタノール 水溶液中に 5時間浸漬した後、純水で洗浄し界面抵抗低減性組成物 B中の可塑剤 および溶剤を抽出除去した。次に、これらの電極で電解質膜 Aを挟み込むように挟 み、 130°Cで 1分間、 5MPaの圧力で加熱プレスを行い、膜電極複合体を得た。これ を使用した燃料電池を実施例 1と同様に作製'評価したところ電圧 電流特性は実 施例 1とほぼ重なり、最大出力は 105mWZcm2であった。また、 Rr値は 0. 79 Q - C m2であった。この膜電極複合体の断面の貯蔵弾性率、損失弾性率および位相差を 測定したところ、電解質膜部分と位相差の異なる層 (A)が確認でき、位相差の比 M o. 95であり、電解質膜部分の貯蔵弾性率 Cは 9. 2GPa、損失弾性率 Eは 1. 4 7GPa、層(A)部分の貯蔵弾性率 Dは 8. 8GPa、損失弾性率 Fは 1. 8GPaであり、 C /Ό= 1. 04、 E/F=0. 82であった。
[0190] 膜電極複合体の電圧保持率は、初回の電圧が 0. 27V、 100時間定電流発電後の 電圧は 0. 25Vであり、 93%の優れた耐久性を示した。
[0191] また、この膜電極複合体のメタノール透過量は 4. 0 μ molZcm2Z分であった。ま た、パッシブ評価での出力は 43mWZcm2を示した。
[0192] [比較例 2]
電極 A、電極 Bに市販のナフイオン (登録商標)溶液 (アルドリッチ社製試薬)を塗布 し 100°Cで乾燥しナフイオン (登録商標)被膜つき電極を得た。ナフイオン (登録商標 )溶液の粘度変化の温度依存性をあらわす YZXは 0. 5であり、電極内にナフイオン (登録商標)溶液がしみ込むなど塗工性が不良であった。デュポン社製"ナフイオン 1 17 (登録商標) "を電解質膜として使用し、前述の電極で、界面抵抗低減性組成物を 用いることなく電解質膜を挟むように積層し、 100°Cで 30分間、 5MPaの圧力で加熱 プレスを行い、膜電極複合体を得た。
[0193] この膜電極複合体また、 Rr値は 0. 8 Ω · cm2であった。この膜電極複合体の断面の 貯蔵弾性率、損失弾性率および位相差を測定したところ、電解質膜部分と位相差の 異なる層 (A)が確認でき、位相差の比 MZIは 0. 99であり、電解質膜部分の貯蔵弾 性率 Cは 0. 8GPa、損失弾性率 Eは 0. 06GPa、層(A)部分の貯蔵弾性率 Dは 0. 7 GPaゝ損失弾性率 Fは 0. 05GPaであり、 CZD= 1. 14、 E/F= l . 2であった。し かし、電解質および層 (A)が主鎖にァニオン性基を有する芳香族炭化水素を含有し ない高分子材料であるため、膜電極複合体のメタノール透過量は 13. O ^ mol/cm 2Z分と大きぐ電圧保持率は、初回の電圧が 0. 21V、 100時間定電流発電後の電 圧は 0. IVであり、 48%と耐久性が劣った。また、ノッシブ評価での出力は 10mW Zcm2であり低出力であった。これらの評価後の評価セルを解体し、膜電極複合体を 取り出して目視で観察したところ、電極と電解質膜の界面に、メタノール水溶液の膨 潤による剥離が発生し、触媒の一部が崩壊流出していた。
[0194] [比較例 3]
イオン性基を有した高分子材料としてポリマー Aを 10g、可塑剤として N—メチルー 2—ピロリドン 60g、グリセリン 40gを容器にとり、均一になるまで撹拌して界面抵抗低 減性組成物 Aとした。この界面抵抗低減性組成物 Aを前記電極 A、電極 B上に 3mg Zcm2となるように塗工し、 100°Cで 1分間熱処理した。これらの電極を電極面積 5c m2となるようにカットした。
[0195] 次に、デュポン社製"ナフイオン 117 (登録商標)"を電解質膜として使用し、これら の界面抵抗低減性組成物 A付きの電極を界面抵抗低減性組成物 Aが電解質膜側と なるように積層し、 100°Cで 5分間、 5MPaの圧力で加熱プレスを行い、膜電極複合 体を得た。プレスした後の膜電極複合体を 50mlの純水に 30分間浸し、界面抵抗低 減性組成物 A中に残存して ヽる可塑剤を抽出洗浄し、発電用セルに組み込み燃料 電池とした。この膜電極複合体の Rr値は 0. 9 Ω 'cm2であった。また、膜電極複合体 の断面の貯蔵弾性率、損失弾性率および位相差を測定したところ、電解質膜部分と 位相差の異なる層 (A)が確認でき、位相差の比 MZIは 12. 8であり、電解質膜部分 の貯蔵弾性率 Cは 0. 8GPa、損失弾性率 Eは 0. 06GPa、層(A)部分の貯蔵弾性率 Dは 9. 2GPa、損失弾性率 Fは 1. 7GPaであり、 C/D = 0. 09、 E/F = 0. 04であ つた。この膜電極複合体は電解質膜の貯蔵弾性率 C力 GPaより小さいため、メタノ ール水溶液燃料の浸透力が大きぐメタノール透過量は 14 molZcm2Z分であり メタノール抑制効果が小さかった。膜電極複合体の電圧保持率は、初回の電圧が 0 . 17V、 100時間定電流発電後の電圧は 0. 08Vであり、 47%と耐久性が劣った。ま た、ノッシブ評価での出力は 8mWZcm2であり低出力であった。これらの評価後の 評価セルを解体し、膜電極複合体を取り出して目視で観察したところ、電極と電解質 膜の界面に、それぞれの構成材料のメタノール水溶液の膨潤による寸法変化が異な ることが原因と考えられる剥離が発生して 、た。
[0196] [実施例 5]
電極として前記電極 Cを 2枚使用した以外は、実施例 1と同様に膜電極複合体を得 た。この膜電極複合体を実施例 1と同様に抽出洗浄した後、セルにセットし燃料電池 セルを作製した。この燃料電池セルをセル温度: 60°C、燃料ガス:水素、酸化ガス: 空気、ガス利用率:アノード 70%Z力ソード 40%において電流—電圧 (I—V)測定を 行ったところ、最大出力は 600mWZcm2、限界電流密度は 1500mAZcm2であつ た。
[0197] なお、限界電流密度について説明すると、一般に、電極反応は、その反応の場に おける反応物の吸着、解離、電荷移動や、この場の近傍における反応物、生成物の 移動等、多くの連続した過程力 なっている力 各過程の速度は、その過程の平衡 状態 (電流が 0の状態)からのずれの程度 (以後非平衡度と!/、う)が大きくなるほど速く なり、この非平衡度の程度と速度の大きさの関係は、個々の過程により異なる。定常 的に電流が流れている時は全ての過程の速度は同じであるので、容易に進行する過 程の非平衡度は僅かであるのに対し、そうでない過程の非平衡度は大きい。ここで電 流密度、すなわち電極反応速度を大きくしていくと、特に容易に進行しない過程の非 平衡度は非常に大きくなり、ついには物理的限界に達する。すなわちこれ以上の電 流密度をとることは不可能となる力 この電流密度がここでの限界電流密度である。
[0198] [比較例 4]
電極 C2枚で電解質膜 Aを、界面抵抗低減性組成物を用いることなく挟むように積 層し、 100°Cで 8分間、 5MPaの圧力で加熱プレスを行い、膜電極複合体を得た。こ の膜電極複合体をセルにセットし実施例 4と同様に燃料電池の評価を行った。
[0199] 最大出力は 200mWZcm2、限界電流密度は 700mAZcm2であり、実施例 4に比 ベて悪い性能であった。
[0200] [実施例 6]
イオン性基を有した高分子材料の合成例の 4, 4'一(9H—フルオレン 9 イリデ ン)ビスフエノール、および 4, 4'ージフルォロベンゾフエノンを、ジソジゥム 3, 3,一 ジスルホネート 4, 4'ージフルォロベンゾフエノンを用いて、これらの仕込み比率を 変化させ、様々な、引っ張り弾性率となるように電解質膜を作製した。厚みは 75± 3 μ mとなるように製膜し、実施例 2と同様の方法で界面抵抗低減性組成物 Bを介して 電極 A、 Bと複合化し、膜電極複合体を作製した。合わせて、界面抵抗低減性組成 物 Bを使用しな ヽ膜電極複合体も作製し、燃料電池として実施例 1と同様に評価し、 それぞれの最大出力の比(界面抵抗低減性組成物を使用した燃料電池の出力 Z界 面抵抗低減性組成物を使用しなカゝつた燃料電池の出力の比)と引っ張り弾性率の関 係を第 3図にまとめた。
[0201] 第 3図からも明らかなように、全ての引っ張り弾性率の範囲で界面抵抗低減性組成 物を介して製造した膜電極複合体の方が最大出力は大きぐ特に引っ張り弾性率が lOOMPa以上となるとその効果が顕著となる。
[0202] [実施例 7]
実施例 3の電解質膜 Aを電解質膜 Bに変更した以外は実施例 3と同様に膜電極複 合体を作製した。
[0203] この膜電極複合体の断面の貯蔵弾性率、損失弾性率および位相差を測定したとこ ろ、電解質膜部分と位相差の異なる層 (A)が確認でき、位相差の比 MZIは 1. 31で あり、電解質膜部分の貯蔵弾性率 Cは 9. 5GPa、損失弾性率 Eは 1. 8GPa、層 (A) 部分の貯蔵弾性率 Dは 8. 8GPa、損失弾性率 Fは 1. 7GPaであり、 CZD= 1. 08、 E/F= l. 06であった。
[0204] 膜電極複合体の電圧保持率は、初回の電圧が 0. 26V、 100時間定電流発電後の 電圧は 0. 25Vであり、 96%の優れた耐久性を示した。
また、この膜電極複合体のメタノール透過量は 5. 4 /ζ πιοΐΖ«η2Ζ分であった。また 、 ノッシブ評価での出力は 42mWZcm2を示した。また、この膜電極複合体のメタノ ール透過量は 3. 8 molZcm2Z分であった。また、パッシブ評価での出力は 35m WZcm2を示した。
[0205] [実施例 8]
ァニオン性基を有した芳香族炭化水素を有する高分子材料としてポリマー Bを 10g 、可塑剤として N—メチル 2 ピロリドン 50g、グリセリン 40gを容器にとり、均一にな るまで撹拌して界面抵抗低減性組成物とした。この組成物を前記電極 A、電極 B上 に 4mgZcm2となるように塗工し、 100°Cで 1分間熱処理した。これらの電極を電極 面積 5cm2となるようにカットした。
[0206] 次に、これらの界面抵抗低減性組成物付きの電極を界面抵抗低減性組成物が電 解質膜 B側となるように積層し、 100°Cで 1分間、 5MPaの圧力で加熱プレスを行い、 プレス後、膜電極複合体を 50mlの純水に 30分間浸し、界面抵抗低減性組成物中 に残存して!/ヽる可塑剤を抽出洗浄し、膜電極複合体を作製した。
[0207] この膜電極複合体の断面の貯蔵弾性率、損失弾性率および位相差を測定したとこ ろ、電解質膜部分と位相差の異なる層 (A)が確認でき、位相差の比 MZIは 0. 95で あり、電解質膜部分の貯蔵弾性率 Cは 9. 5GPa、損失弾性率 Eは 1. 9GPa、層 (A) 部分の貯蔵弾性率 Dは 8. 8GPa、損失弾性率 Fは 1. 7GPaであり、 CZD= 1. 07、 E/F= l. 12であった。
[0208] 膜電極複合体の電圧保持率は、初回の電圧が 0. 23V、 100時間定電流発電後の 電圧は 0. 22Vであり、 96%の優れた耐久性を示した。
また、この膜電極複合体のメタノール透過量は 5. 9/ζ πιοΐΖ«η2Ζ分であった。また 、パッシブ評価での出力は 37mWZcm2を示した。
[0209] [実施例 9]
ァニオン性基を有した芳香族炭化水素を有する高分子材料としてポリマー Aを 10g 、可塑剤として N—メチル 2 ピロリドン 50g、グリセリン 40gを容器にとり、均一にな るまで撹拌して界面抵抗低減性組成物とした。この組成物を前記電極 A、電極 B上 に 3mgZcm2となるように塗工し、 100°Cで 1分間熱処理した。これらの電極を電極 面積 5cm2となるようにカットした。
[0210] 次に、これらの界面抵抗低減性組成物付きの電極を界面抵抗低減性組成物が電 解質膜 A側となるように積層し、 100°Cで 1分間、 5MPaの圧力で加熱プレスを行い、 膜電極複合体を得た。プレス後、膜電極複合体を 50mlの純水に 30分間浸し、界面 抵抗低減性組成物中に残存して!/ヽる可塑剤を抽出洗浄し、膜電極複合体を作製し た。
[0211] この膜電極複合体の断面の貯蔵弾性率、損失弾性率および位相差を測定したとこ ろ、電解質膜部分と位相差の異なる層 (A)が確認でき、位相差の比 MZIは 0. 95で あり、電解質膜部分の貯蔵弾性率 Cは 9. 5GPa、損失弾性率 Eは 1. 9GPa、層 (A) 部分の貯蔵弾性率 Dは 8. 8GPa、損失弾性率 Fは 1. 7GPaであり、 CZD= 1. 07、 E/F= l. 12であった。
[0212] 膜電極複合体の電圧保持率は、初回の電圧が 0. 25V、 100時間定電流発電後の 電圧は 0. 24Vであり、 96%の優れた耐久性を示した。
[0213] また、この膜電極複合体のメタノール透過量は 5. 0 μ molZcm2Z分であった。ま た、パッシブ評価での出力は 42mWZcm2を示した。
産業上の利用可能性
[0214] 本発明の膜電極複合体の製造方法は、種々の電気化学装置 (例えば、燃料電池、 水電解装置、クロ口アルカリ電解装置等)の膜電極複合体の製造に適用可能である 。これら装置の中でも、燃料電池用に好適であり、特に水素またはメタノール水溶液 を燃料とする燃料電池に好適である。
[0215] また、本発明の膜電極複合体は、種々の電気化学装置 (例えば、燃料電池、水電 解装置、クロ口アルカリ電解装置等)の膜電極複合体に適用可能である。これら装置 の中でも、燃料電池用に好適であり、特に水素またはメタノール水溶液を燃料とする 燃料電池に好適である。
[0216] 本発明の燃料電池の用途としては、特に限定されないが、携帯電話、ノ ソコン、 PD A、ビデオカメラ、デジタルカメラ、携帯テレビ、デジタルオーディオプレーヤー、ハー ドディスクプレイヤーなどの携帯機器、コードレス掃除機等の家電、玩具類、電動自 転車、電動車椅子、自動二輪、自動車、バス、トラックなどの車両や船舶、鉄道など の移動体、ロボットやサイボーグの電力供給源、据え置き型の発電機など、従来の一 次電池、二次電池の代替、もしくはこれらや太陽電池とのハイブリッド電源、もしくは 充電用として好ましく用いられる。

Claims

請求の範囲 [1] 一対の電極間に電解質膜を介してなる膜電極複合体を製造する方法において、少 なくとも一方の電極を、イオン性基を有する高分子材料と可塑剤とを含有する界面抵 抗低減性組成物を介して電解質膜と貼り合わせる工程、ならびに、溶媒による抽出 により前記界面抵抗低減性組成物カゝら可塑剤の一部または全部を除去する工程とを 有する、膜電極複合体の製造方法。 [2] 前記界面抵抗低減性組成物を電解質膜上に設ける工程および Zまたは該界面抵 抗低減性組成物を電極上に設ける工程を有し、その後、下記(1)〜(3)のいずれか の工程を有する、請求項 1に記載の膜電極複合体の製造方法。
(1)界面抵抗低減性組成物を設けた電解質膜と電極を貼り合わせる工程、
(2)界面抵抗低減性組成物を設けた電極と電解質膜を貼り合わせる工程、
(3)界面抵抗低減性組成物を設けた電解質膜と界面抵抗低減性組成物を設けた電 極を貼り合わせる工程。
[3] 電極と電解質膜を貼り合わせる工程の後に、前記界面抵抗低減性組成物から可塑 剤の一部または全部を除去する工程を有する、請求項 1に記載の膜電極複合体の 製造方法。
[4] 界面抵抗低減性組成物を電極上に設け、該電極と電解質膜を貼り合わせる工程の 前に、前記界面抵抗低減性組成物から可塑剤の一部を除去する工程を有する、請 求項 1に記載の膜電極複合体の製造方法。
[5] 前記可塑剤が水溶性である、請求項 1に記載の膜電極複合体の製造方法。
[6] 前記界面抵抗低減性組成物が主鎖に芳香環を有する高分子電解質を含有してなる 、請求項 1に記載の膜電極複合体の製造方法。
[7] 一対の電極間に電解質膜を介してなる膜電極複合体において、少なくとも一方の電 極と電解質膜間に層 (A)を有し、超微小硬度計で測定した電解質膜の貯蔵弾性率 を Cとしたとき、貯蔵弾性率 Cの値が lGPa以上である、膜電極複合体。
[8] 電解質膜の損失弾性率を E、層 (A)の損失弾性率を Fとしたとき、損失弾性率 Eおよ び Fのいずれかの値が 0. lGPa以上である、請求項 7に記載の膜電極複合体。
[9] 層(A)の貯蔵弾性率を Dとしたとき、少なくとも CZDまたは EZFの 、ずれかが 0. 5 〜1. 5である、請求項 7に記載の膜電極複合体。
[10] 前記電解質膜または層 (A)を構成する材料がポリエーテルエーテルケトン、またはポ リエーテルケトンを含む、請求項 7に記載の膜電極複合体。
[11] 電解質膜および層 (A)を構成する材料が実質的に同じである、請求項 7に記載の膜 電極複合体。
[12] 下記(1)〜 (4)力 選ばれる少なくとも一の要件を具備する、請求項 7に記載の膜電 極複合体。
(1) 3重量%のメタノール水溶液を使用し、セル温度 60°Cでの抵抗値 Rrが 1. 5 Q -c m2以下。
(2) 3重量%のメタノール水溶液を使用し、セル温度 60°Cとした場合のメタノール透 過量が 10 μ molZcm2Z分以下。
(3) 20重量%のメタノール水溶液を使用し、 50°Cで 250mAZcm2の定電流評価を 100時間行った後の電圧保持率が 50%以上。
(4)パッシブ評価での出力密度が 15mWZcm2以上。
[13] 一対の電極間に電解質膜を介してなる膜電極複合体において、少なくとも一方の電 極と電解質膜間に、走査プローブ顕微鏡のタッピングモード走査で測定した位相差 が電解質膜と実質的に異なる層 (A)を有し、かつ電解質膜および層 (A)が、主鎖に ァニオン性基を有する芳香族炭化水素を含有することを特徴とする膜電極複合体。
[14] 電解質膜の位相差 (M)と層 (A)の位相差 (I)の比 (MZI)が 0. 1〜10 (ただし MZI
= 1は除く)である、請求項 13に記載の膜電極複合体。
[15] 請求項 1に記載の方法で製造された膜電極複合体を使用する燃料電池。
[16] 請求項 7または 13に記載の膜電極複合体を使用する燃料電池。
[17] イオン性基を有する高分子材料と可塑剤を含有してなる界面抵抗低減性組成物で あって、回転型粘度計を用いて剪断速度 35 (s_1)で測定した 30°Cでの粘度を X(Pa )、 80°Cの粘度を Y(Pa)としたとき、 YZXが 0. 3以下である、界面抵抗低減性組成 物。
[18] イオン性基を有する高分子材料が、イオン性基を有する芳香環を主鎖に有する高分 子材料であり、可塑剤中に多価アルコールを含有する、請求項 17記載の界面抵抗 低減性組成物。
イオン性基を有する高分子材料がポリエーテルエーテルケトン、またはポリエーテル ケトンを含み、可塑剤中にグリセリンを含有する、請求項 17記載の界面抵抗低減性 組成物。
PCT/JP2005/021507 2004-12-07 2005-11-24 膜電極複合体およびその製造方法、ならびに燃料電池 WO2006061993A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006547802A JP5176321B2 (ja) 2004-12-07 2005-11-24 膜電極複合体およびその製造方法、ならびに燃料電池
EP05809174A EP1858096B1 (en) 2004-12-07 2005-11-24 Film electrode composite element and production method therefor, and fuel cell
AT05809174T ATE533200T1 (de) 2004-12-07 2005-11-24 Zusammengesetztes filmelektrodenelement und herstellungsverfahren dafür und brennstoffzelle
KR1020077012689A KR101244565B1 (ko) 2004-12-07 2005-11-24 막 전극 복합체의 제조 방법, 및 연료 전지
CA2590317A CA2590317C (en) 2004-12-07 2005-11-24 Membrane electrode assembly and method of producing the same and fuel cell
US11/721,143 US7838164B2 (en) 2004-12-07 2005-11-24 Film electrode composite element and production method therefor, and fuel cell
US12/833,760 US8278004B2 (en) 2004-12-07 2010-07-09 Membrane electrode assembly and method of producing the same and fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004353914 2004-12-07
JP2004-353914 2004-12-07
JP2005253178 2005-09-01
JP2005-253178 2005-09-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/721,143 A-371-Of-International US7838164B2 (en) 2004-12-07 2005-11-24 Film electrode composite element and production method therefor, and fuel cell
US12/833,760 Continuation US8278004B2 (en) 2004-12-07 2010-07-09 Membrane electrode assembly and method of producing the same and fuel cell

Publications (1)

Publication Number Publication Date
WO2006061993A1 true WO2006061993A1 (ja) 2006-06-15

Family

ID=36577824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021507 WO2006061993A1 (ja) 2004-12-07 2005-11-24 膜電極複合体およびその製造方法、ならびに燃料電池

Country Status (8)

Country Link
US (2) US7838164B2 (ja)
EP (2) EP1858096B1 (ja)
JP (1) JP5176321B2 (ja)
KR (1) KR101244565B1 (ja)
AT (1) ATE533200T1 (ja)
CA (1) CA2590317C (ja)
TW (1) TWI400832B (ja)
WO (1) WO2006061993A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533269A (ja) * 2005-03-16 2008-08-21 インスティトゥート ナスィオナル ポリテクニク ド グルノーブル 酸性イオン基を有する熱可塑性重合体の押出成形
JP2008537562A (ja) * 2005-03-16 2008-09-18 インスティトゥート ナスィオナル ポリテクニク ド グルノーブル アルカリ性イオン基を有する熱可塑性重合体を押出すことを含む膜の製造方法
WO2009110052A1 (ja) * 2008-03-03 2009-09-11 東洋紡績株式会社 高分子電解質膜とその用途及び高分子電解質膜の製造方法
JP2009245934A (ja) * 2008-03-10 2009-10-22 Toray Ind Inc 電解質膜の製造方法
JP2016050779A (ja) * 2014-08-28 2016-04-11 日産自動車株式会社 電極の評価方法
JP6432703B1 (ja) * 2018-01-31 2018-12-05 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池及び固体高分子形燃料電池用膜電極接合体の製造方法
WO2019151310A1 (ja) * 2018-01-31 2019-08-08 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2020091973A (ja) * 2018-12-04 2020-06-11 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池
WO2022065591A1 (ko) * 2020-09-23 2022-03-31 비나텍주식회사 전극 코팅층 형성을 위한 전극 슬러리 및 이를 이용한 연료전지용 막-전극접합체 제조 방법

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7950221B2 (en) * 2003-04-25 2011-05-31 Catelectric Corp. Methods and apparatus for controlling catalytic processes, including catalyst regeneration and soot elimination
US8414860B2 (en) * 2003-04-25 2013-04-09 Catelectric Corp. Methods for controlling catalytic processes, including the deposition of carbon based particles
US20090101516A1 (en) * 2007-09-20 2009-04-23 The University Of Connecticut Methods and apparatus for the synthesis of useful compounds
WO2009130325A1 (en) * 2008-04-24 2009-10-29 Ird Fuel Cells A/S Method and system for determining and controlling methanol concentration in dmfc based on impedance measurements
KR101041237B1 (ko) * 2008-12-31 2011-06-14 두산중공업 주식회사 용융탄산염 연료전지의 제조방법
CN101734940B (zh) * 2009-11-20 2012-07-25 中南大学 基于压差法快速cvi涂层的炭纸性能改善方法和装置
CA2815254A1 (en) * 2010-10-27 2012-05-03 Vanderbilt University Nanofiber electrode and method of forming same
US20130157167A1 (en) * 2011-12-20 2013-06-20 GM Global Technology Operations LLC Alternate material for electrode topcoat
US8906572B2 (en) 2012-11-30 2014-12-09 General Electric Company Polymer-electrolyte membrane, electrochemical fuel cell, and related method
US10358727B2 (en) 2013-12-31 2019-07-23 Rutgers, The State University Of New Jersey Nickel phosphides electrocatalysts for hydrogen evolution and oxidation reactions
JP6311319B2 (ja) * 2014-01-14 2018-04-18 大日本印刷株式会社 樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置
US10361456B2 (en) 2014-09-26 2019-07-23 Samsung Electronics Co., Ltd. Electrolyte, method of preparing the electrolyte, and secondary battery including the electrolyte
JP6599991B2 (ja) * 2015-04-08 2019-10-30 エルジー・ケム・リミテッド 高分子電解質膜、これを含む電気化学電池及びフロー電池、高分子電解質膜の製造方法、及びフロー電池用電解液
CN110383548B (zh) * 2017-02-23 2023-01-06 松下知识产权经营株式会社 膜电极接合体以及燃料电池
WO2021114317A1 (zh) * 2019-12-10 2021-06-17 中国科学院大连化学物理研究所 一种具有纤维结构的电极材料及制备和应用
CN113314748B (zh) * 2021-05-31 2022-09-02 安徽中能元隽氢能科技股份有限公司 一种基于表面改性聚合物骨架的增强型质子交换膜的制备方法
WO2024006758A2 (en) * 2022-06-27 2024-01-04 The Regents Of The University Of California Li-ion-conducting polymer and polymer-ceramic electrolytes for solid state batteries
DE102022212497A1 (de) 2022-11-23 2024-05-23 Robert Bosch Gesellschaft mit beschränkter Haftung Konditionierungsverfahren und Konditionierungsvorrichtung zum Konditionieren einer Membranelektrodeneinheit einer Brennstoffzelle

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305881A (ja) * 1989-05-20 1990-12-19 Nitta Gelatin Inc 反応性ホットメルト接着剤
JPH04255776A (ja) * 1991-02-07 1992-09-10 Hitachi Chem Co Ltd 紫外線硬化型接着剤シートその製造法その製造法に用いる装置その接着剤シートを用いて配線板用基板を製造する方法およびその接着剤シートを用いて配線板を製造する方法
JPH07220741A (ja) * 1994-01-28 1995-08-18 Asahi Glass Co Ltd 固体高分子型燃料電池用電極・膜接合体の製造方法
JPH08148152A (ja) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd 固体高分子型燃料電池用電極及びその製造方法
JPH09223503A (ja) * 1996-02-14 1997-08-26 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池用電極の製造方法
JPH09274924A (ja) * 1996-02-05 1997-10-21 Honda Motor Co Ltd 燃料電池用電極構造体の製造方法
JPH11339824A (ja) * 1998-05-22 1999-12-10 Asahi Glass Co Ltd 固体高分子電解質型の燃料電池用電極−膜接合体の製造方法
JP2000285932A (ja) * 1999-03-31 2000-10-13 Asahi Glass Co Ltd 固体高分子型燃料電池用電極・膜接合体の製造方法
JP2001110428A (ja) * 1999-10-08 2001-04-20 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
FR2810794A1 (fr) 2000-06-26 2001-12-28 Sorapec Association d'electrodes et de membrane comportant des conducteurs protoniques
JP2002216801A (ja) * 2001-01-19 2002-08-02 Honda Motor Co Ltd 高分子電解質型燃料電池及びその製造方法
JP2004006306A (ja) * 2002-04-17 2004-01-08 Nec Corp 燃料電池、燃料電池用電極およびそれらの製造方法
WO2004051776A1 (ja) 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. 固体高分子電解質膜、当該膜を用いた固体高分子型燃料電池、およびその製造方法
JP2004185930A (ja) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd 固体高分子型燃料電池の製造方法
JP2004224953A (ja) * 2003-01-24 2004-08-12 Toyobo Co Ltd イオン交換膜およびその製造方法
JP2004253267A (ja) * 2003-02-20 2004-09-09 Jsr Corp 電解膜−電極基板複合体の製造方法
WO2004091027A1 (ja) 2003-04-09 2004-10-21 Nec Corporation 燃料電池およびその製造方法
JP2005129295A (ja) * 2003-10-22 2005-05-19 Honda Motor Co Ltd 燃料電池用電極−膜接合体の製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2810794A (en) * 1954-05-19 1957-10-22 Gen Motors Corp Headlight control switch
JPS59209278A (ja) 1983-05-13 1984-11-27 Hitachi Ltd 燃料電池
JP3264920B2 (ja) 1990-09-21 2002-03-11 松下電器産業株式会社 液体燃料電池
US5403675A (en) * 1993-04-09 1995-04-04 Maxdem, Incorporated Sulfonated polymers for solid polymer electrolytes
JP4132168B2 (ja) 1998-01-13 2008-08-13 ポップリベット・ファスナー株式会社 パイプ等の長尺物の保持具
US7361729B2 (en) 2000-09-20 2008-04-22 Virginia Tech Intellectual Properties, Inc. Ion-conducting sulfonated polymeric materials
DE60141041D1 (de) * 2000-11-09 2010-02-25 Univ Pennsylvania Verwendung von schwefelhaltigen brennstoffen für direktoxidationsbrennstoffzellen
DE10201692A1 (de) * 2001-01-19 2002-09-05 Honda Motor Co Ltd Membranelektrodenanordnung und Verfahren zu deren Herstellung und eine Polymerelektrolytbrennstoffzelle, die eine derartige Membranelektrodenanordnung umfasst
US6689501B2 (en) * 2001-05-25 2004-02-10 Ballard Power Systems Inc. Composite ion exchange membrane for use in a fuel cell
DE10129458A1 (de) * 2001-06-19 2003-01-02 Celanese Ventures Gmbh Verbesserte Polymerfolien auf Basis von Polyazolen
AU2002345178A1 (en) * 2001-06-26 2003-01-08 Victrex Manufacturing Limited Membranes and their manufacture
US6544534B2 (en) * 2001-08-21 2003-04-08 Janice K. Malmgren Conditioner that provides skin like an angel
JP2003109606A (ja) * 2001-09-28 2003-04-11 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池とその製造方法
JP2003282075A (ja) * 2002-03-26 2003-10-03 Matsushita Electric Ind Co Ltd 燃料電池とその製造方法
JP2003297373A (ja) * 2002-04-08 2003-10-17 Matsushita Electric Ind Co Ltd 触媒層用塗料とこれを用いた電解質膜電極接合体の製造方法
JP3696171B2 (ja) * 2002-04-16 2005-09-14 株式会社東芝 直接型液体燃料電池発電装置の検査方法、検査装置、及び直接型液体燃料電池発電装置
US7700211B2 (en) * 2002-04-17 2010-04-20 Nec Corporation Fuel cell, fuel cell electrode and method for fabricating the same
JP3608564B2 (ja) * 2002-04-17 2005-01-12 日本電気株式会社 燃料電池およびその製造方法
US7638220B2 (en) * 2002-06-28 2009-12-29 Sumitomo Chemical Company, Limited Polymeric laminates, processes for producing the same, and use thereof
JP4649094B2 (ja) * 2003-03-07 2011-03-09 旭化成イーマテリアルズ株式会社 燃料電池用膜電極接合体の製造方法
JP2004296435A (ja) * 2003-03-13 2004-10-21 Toray Ind Inc 電極触媒層およびその製造方法ならびにそれを用いた固体高分子型燃料電池
JP2004296278A (ja) * 2003-03-27 2004-10-21 Ube Ind Ltd 小型燃料電池および電解質膜
EP1612232B1 (en) * 2003-04-07 2007-09-19 Mitsui Chemicals, Inc. Crosslinked ionically conducting resin, and ionically conducting polymer membranes, binders and fuel cells, made by using the resin
JP4255776B2 (ja) 2003-08-12 2009-04-15 株式会社小森コーポレーション 折機のドラグローラ装置
KR100684734B1 (ko) * 2005-06-28 2007-02-20 삼성에스디아이 주식회사 연료 전지용 고분자 전해질 막, 이의 제조 방법 및 이를 포함하는 연료 전지 장치

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02305881A (ja) * 1989-05-20 1990-12-19 Nitta Gelatin Inc 反応性ホットメルト接着剤
JPH04255776A (ja) * 1991-02-07 1992-09-10 Hitachi Chem Co Ltd 紫外線硬化型接着剤シートその製造法その製造法に用いる装置その接着剤シートを用いて配線板用基板を製造する方法およびその接着剤シートを用いて配線板を製造する方法
JPH07220741A (ja) * 1994-01-28 1995-08-18 Asahi Glass Co Ltd 固体高分子型燃料電池用電極・膜接合体の製造方法
JPH08148152A (ja) * 1994-11-17 1996-06-07 Tokyo Gas Co Ltd 固体高分子型燃料電池用電極及びその製造方法
JPH09274924A (ja) * 1996-02-05 1997-10-21 Honda Motor Co Ltd 燃料電池用電極構造体の製造方法
JPH09223503A (ja) * 1996-02-14 1997-08-26 Tanaka Kikinzoku Kogyo Kk 高分子固体電解質型燃料電池用電極の製造方法
JPH11339824A (ja) * 1998-05-22 1999-12-10 Asahi Glass Co Ltd 固体高分子電解質型の燃料電池用電極−膜接合体の製造方法
JP2000285932A (ja) * 1999-03-31 2000-10-13 Asahi Glass Co Ltd 固体高分子型燃料電池用電極・膜接合体の製造方法
JP2001110428A (ja) * 1999-10-08 2001-04-20 Matsushita Electric Ind Co Ltd 高分子電解質型燃料電池
FR2810794A1 (fr) 2000-06-26 2001-12-28 Sorapec Association d'electrodes et de membrane comportant des conducteurs protoniques
JP2002216801A (ja) * 2001-01-19 2002-08-02 Honda Motor Co Ltd 高分子電解質型燃料電池及びその製造方法
JP2004006306A (ja) * 2002-04-17 2004-01-08 Nec Corp 燃料電池、燃料電池用電極およびそれらの製造方法
WO2004051776A1 (ja) 2002-12-02 2004-06-17 Sanyo Electric Co.,Ltd. 固体高分子電解質膜、当該膜を用いた固体高分子型燃料電池、およびその製造方法
JP2004185930A (ja) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd 固体高分子型燃料電池の製造方法
JP2004224953A (ja) * 2003-01-24 2004-08-12 Toyobo Co Ltd イオン交換膜およびその製造方法
JP2004253267A (ja) * 2003-02-20 2004-09-09 Jsr Corp 電解膜−電極基板複合体の製造方法
WO2004091027A1 (ja) 2003-04-09 2004-10-21 Nec Corporation 燃料電池およびその製造方法
JP2005129295A (ja) * 2003-10-22 2005-05-19 Honda Motor Co Ltd 燃料電池用電極−膜接合体の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008533269A (ja) * 2005-03-16 2008-08-21 インスティトゥート ナスィオナル ポリテクニク ド グルノーブル 酸性イオン基を有する熱可塑性重合体の押出成形
JP2008537562A (ja) * 2005-03-16 2008-09-18 インスティトゥート ナスィオナル ポリテクニク ド グルノーブル アルカリ性イオン基を有する熱可塑性重合体を押出すことを含む膜の製造方法
WO2009110052A1 (ja) * 2008-03-03 2009-09-11 東洋紡績株式会社 高分子電解質膜とその用途及び高分子電解質膜の製造方法
JP2009245934A (ja) * 2008-03-10 2009-10-22 Toray Ind Inc 電解質膜の製造方法
JP2016050779A (ja) * 2014-08-28 2016-04-11 日産自動車株式会社 電極の評価方法
JP6432703B1 (ja) * 2018-01-31 2018-12-05 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池及び固体高分子形燃料電池用膜電極接合体の製造方法
WO2019151310A1 (ja) * 2018-01-31 2019-08-08 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2019133906A (ja) * 2018-01-31 2019-08-08 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2020091973A (ja) * 2018-12-04 2020-06-11 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池
JP7256359B2 (ja) 2018-12-04 2023-04-12 凸版印刷株式会社 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池
WO2022065591A1 (ko) * 2020-09-23 2022-03-31 비나텍주식회사 전극 코팅층 형성을 위한 전극 슬러리 및 이를 이용한 연료전지용 막-전극접합체 제조 방법

Also Published As

Publication number Publication date
JPWO2006061993A1 (ja) 2008-06-05
KR20070085786A (ko) 2007-08-27
JP5176321B2 (ja) 2013-04-03
EP2424019B1 (en) 2013-06-12
US7838164B2 (en) 2010-11-23
KR101244565B1 (ko) 2013-03-20
EP1858096B1 (en) 2011-11-09
US8278004B2 (en) 2012-10-02
EP2424019A1 (en) 2012-02-29
US20100291460A1 (en) 2010-11-18
TW200629632A (en) 2006-08-16
CA2590317C (en) 2013-05-21
US20100015493A1 (en) 2010-01-21
TWI400832B (zh) 2013-07-01
EP1858096A1 (en) 2007-11-21
CA2590317A1 (en) 2006-06-15
ATE533200T1 (de) 2011-11-15
EP1858096A4 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
JP5176321B2 (ja) 膜電極複合体およびその製造方法、ならびに燃料電池
US7824786B2 (en) Membrane electrode complex and solid type fuel cell using it
KR20110005774A (ko) 고체 고분자형 연료 전지용 막전극 접합체 및 고체 고분자형 연료 전지
JP5195286B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
CN100559641C (zh) 膜电极复合体及其制造方法、和燃料电池
JP2005353581A (ja) 電解質膜および膜電極複合体ならびに高分子電解質型燃料電池
JP2006253124A (ja) 電解質膜用支持体、それを用いた高分子電解質複合膜の処理方法、およびその処理が施された高分子電解質複合膜、ならびにそれを用いた燃料電池。
Gubler et al. A proton-conducting polymer membrane as solid electrolyte–function and required properties
JP5347251B2 (ja) 膜電極複合体の製造方法
JP2007214112A (ja) 膜電極複合体
JP2008234968A (ja) 膜電極複合体ならびにそれの製造方法および高分子電解質型燃料電池
KR101630212B1 (ko) Pai-ptm 부직포에 탄화수소계 고분자 전해질을 함침시켜 제조한 복합막 및 이의 용도
JP2006202598A (ja) 燃料電池用電極および燃料電池
JP2007073324A (ja) 膜電極複合体ならびにそれの製造方法および高分子電解質型燃料電池ならびにそれの製造方法
JP2009049004A (ja) 液体供給型燃料電池の製造方法
JP5309803B2 (ja) 水素燃料電池用膜電極複合体
JP2015228292A (ja) 固体高分子電解質膜、膜−電極接合体、燃料電池、水電解セルおよび水電解装置
JP5504552B2 (ja) 非対称型電解質膜ならびにそれを用いた膜電極複合体および高分子電解質型燃料電池
JP5017831B2 (ja) 非対称型電解質膜ならびにそれを用いた膜電極複合体および高分子電解質型燃料電池
JP2007141832A (ja) 膜電極複合体ならびにそれの製造方法および高分子電解質型燃料電池ならびにそれの製造方法
JP2006236986A (ja) 電極およびその製造方法およびその用途
JP2008258155A (ja) 膜電極複合体およびその製造方法ならびに高分子電解質型燃料電池
JP2011230387A (ja) 積層体
JP2009081133A (ja) 膜電極複合体およびその製造方法ならびにそれを用いた高分子電解質型燃料電池
KR20150074305A (ko) Pan 부직포 지지체에 탄화수소계 전해질을 함침시켜 제조한 복합막 및 이의 용도

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006547802

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2590317

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020077012689

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580042080.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005809174

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005809174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11721143

Country of ref document: US