WO2021114317A1 - 一种具有纤维结构的电极材料及制备和应用 - Google Patents
一种具有纤维结构的电极材料及制备和应用 Download PDFInfo
- Publication number
- WO2021114317A1 WO2021114317A1 PCT/CN2019/125655 CN2019125655W WO2021114317A1 WO 2021114317 A1 WO2021114317 A1 WO 2021114317A1 CN 2019125655 W CN2019125655 W CN 2019125655W WO 2021114317 A1 WO2021114317 A1 WO 2021114317A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- materials
- oxide
- spinning
- phosphoric acid
- electrode
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
- H01M4/8626—Porous electrodes characterised by the form
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
- D01D5/0038—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D1/00—Treatment of filament-forming or like material
- D01D1/02—Preparation of spinning solutions
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/44—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
- D01F6/52—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated carboxylic acids or unsaturated esters
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8825—Methods for deposition of the catalytic active composition
- H01M4/8853—Electrodeposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/921—Alloys or mixtures with metallic elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a novel composite fiber structure electrode and a preparation method thereof.
- the fiber structure electrode is composed of a noble metal catalyst, a spinning polymer, and an oxide carrier material and/or an organic phosphoric acid-based material.
- the fiber diameter, fiber composition ratio and porosity can be adjusted, and it can be used in high-temperature proton exchange membrane fuel cell electrodes.
- the invention also relates to a method for preparing the above-mentioned composite material.
- the high temperature (150-200°C) polymer electrolyte membrane fuel cell based on phosphoric acid electrolyte due to its higher working temperature, faster electrode reaction process kinetics and stronger tolerance to toxic species such as anode CO, is one A new type of fuel cell technology with great potential, which can directly utilize hydrogen-rich fuel after reforming liquid fuels such as methanol, and has broad application prospects in alternative fields of traditional diesel engines such as transportation and mobile backup power.
- phosphoric acid electrolyte due to the introduction of phosphoric acid electrolyte, it has a strong corrosive effect on the precious metal and carbon material carrier in the electrode under high temperature conditions. Especially under the action of electric field, the corrosion of the carbon carrier can easily lead to the corrosion of precious metal nanoparticles. Agglomeration and shedding will cause the loss of electrochemical active sites, reduce the performance of the electrode, and affect the life of the membrane electrode.
- Electrode materials with an ordered fiber structure have huge application potential in the fields of electronics, energy, biomedicine and so on.
- the conductive materials suitable for the electrochemical environment in the electrodes are usually various carbon-based nanomaterials, such as carbon nanotubes, graphene, activated carbon, and so on.
- a significant feature of this type of material is that it usually presents a flexible feature, and in the process of forming a porous electrode, its pore structure is mostly a secondary pore structure formed by the accumulation of particles.
- the controllability of the structure of the pore structure and the controllability of the charge and material conduction are the basic requirements for studying the basic process of electrodes, explaining the electrochemical behavior of the electrodes, and improving the performance of the electrodes.
- the electrode material slurry is cross-linked and stacked on the substrate through various coating techniques to construct the electrode layer, which often has uncontrollable porosity, pore size and pore shape, and it is difficult to achieve the structure and effect of electrode performance.
- the development of an electrode preparation method with controllable pore size and porosity, simple and easy preparation process, suitable for most electrode materials is one of the keys to the development of porous electrodes.
- the method for preparing nanofiber materials based on electrospinning technology can effectively use oxide materials that are difficult to introduce in traditional methods as catalyst carriers for the synthesis of electrode materials. Its high corrosion resistance is expected to solve the shortcomings of stability of high-temperature phosphoric acid system fuel cells.
- the present invention will prepare a fibrous structure electrode material.
- This composite fibrous structure electrode has platinum-based electrocatalytic materials, spinning polymers, and oxide carrier materials and/or organic phosphoric acid-based materials. It has a nanofiber structure and porous morphology.
- the electrode material of this structure is prepared by electrostatic spinning technology and can be used as a porous electrode of a high-temperature polymer electrolyte membrane fuel cell.
- An electrode material with a fiber structure which is a nanofiber structure with a diameter of micrometer or submicron structure, with a diameter ranging from 20nm to 500nm.
- the fiber structure also includes a porous structure with a nanometer pore size, and the pore size ranges from 1nm to 1nm. 50nm; the porosity of the electrode material is 20 to 80%.
- the diameter of the nanofiber structure is preferably in the range of 100nm to 200nm, the pore size is preferably in the range of 5nm-20nm; the porosity of the electrode material is preferably in the range of 50-80%.
- the constituent components of the nanofiber structure material include electrocatalytically active materials, oxide materials, and spun polymer materials.
- the spun polymer materials constitute the main body of the nanofibers and form electrode materials after being interwoven; the oxide materials
- the porous structure of nanofibers is constituted, the electrocatalytic active material is supported on the oxygen-inlaid compound material of the porous structure, and the pore size of the oxide porous structure ranges from 1nm to 50nm, and the porosity is 40 to 60%; the electrocatalyst active material is nano particles, the diameter of which is 2-10 nm.
- the electrocatalytic active material includes platinum and/or an alloy of platinum and any one or more of iron, nickel, cobalt, copper, gold, silver, and palladium;
- the oxide material includes silicon oxide, titanium oxide , Any one or more of tungsten oxide and indium tin oxide;
- the spinning polymer material includes any one or more of polyacrylic acid, polyethylene oxide, and polyvinylpyrrolidone.
- the mass ratio of the electrocatalytically active material and the oxide material is 3:1 to 1:10, preferably in the range of 1:1 to 1:2; platinum and iron, nickel, cobalt, copper, gold, silver, and platinum in the platinum alloy
- the mass ratio of platinum to other metals in any one or two or more alloys of palladium is 5:1 to 1:5, preferably in the range of 5:1 to 2:1; the spinning polymer material and the oxide
- the mass ratio of materials is 5:1 to 1:5.
- the preparation method of the fiber structure electrode material includes the following preparation steps:
- the ratio of platinum precursors, or platinum precursors to iron, nickel, cobalt, copper, gold, silver, and palladium precursors, is 5:1 to 1 : 5 is dissolved in the solvent so that the mass concentration of platinum is 0.1% to 5%, and it is fully dissolved before use;
- Electrospinning is used to prepare a fiber structure electrode material.
- the electrospinning preparation process is that the spinning colloidal solution prepared in step 1) is placed at the inlet of the spinning injection device, the feed rate is 0.1 to 2 mL/min, the distance between the needle and the receiver is 5 to 20 cm, and the receiver
- the material is one of carbon fiber, carbon paper, and carbon cloth, the spinning potential is 10 to 30 kV, and the spinning time is 10 to 600 min; thus, the fiber structure electrode material is prepared.
- the precursor of the platinum is one or more of chloroplatinic acid, platinum acetate, and dinitrosodiamine platinum; the precursors of iron, nickel, cobalt, copper, gold, silver, and palladium are respectively Ferric nitrate, nickel nitrate, cobalt nitrate, copper nitrate, chloroauric acid, silver nitrate, chloropalladic acid; the solvent is one or more of water, dimethylformamide, methanol, ethylene glycol or ethanol
- the oxide material includes one or more of silicon oxide, titanium oxide, tungsten oxide, indium tin oxide and any of the four derivative materials; the spinning polymer is polyacrylic acid, polycyclic One or two or more of oxyethylene and polyvinylpyrrolidone.
- the metal ions of the electrocatalytic active material in the spinning colloidal solution are completely reduced to nanoparticles with a particle size of 2-20 nm.
- the present invention has the following advantages:
- the structure is orderly and controllable: the fiber diameter and pore density of the fiber structure electrode material prepared by the method of the present invention can be controlled by the preparation process parameters. Through the ratio and solid content of different spinning polymer materials, the different viscosities of the slurry can be adjusted, and further control of the electric potential and the distance between the spinning needles can realize the adjustment of fiber diameter and porosity;
- the fiber structure electrode material prepared by the method of the present invention has better mass transfer performance due to its increased porosity, orderly pores;
- the fiber structure electrode material prepared by the method of the present invention can expose most of the precious metal surface to the mass transfer channel, as shown in Figure 2, thereby having a high utilization rate;
- the oxide material has higher valence metal (or non-metal) elements, it is difficult to further oxidize, so the used oxide carrier has higher resistance to phosphoric acid corrosion, which can be used in long-term operation. It can resist the destruction of the catalyst caused by the corrosion and aging of the carrier, and the electrode has high long-term stability;
- the ion transmission channel is anchored on the surface of the catalytic material, which can greatly strengthen the ion transmission process.
- the electrode material prepared by the method of the present invention (Example 4) has a greatly increased phosphoric acid content and ion conductivity, as shown in Figure 6. Shown
- the fiber structure electrode prepared by the method of the present invention contains phosphoric acid functional groups that are anchored in the fiber porous structure, and the noble metal active material is not directly coated, and its poisoning effect is significantly reduced.
- the electrode materials prepared by the method of the present invention (Example 4 and Example 5) have significantly improved performance in the activated polarization zone, indicating that the catalytic More active surface area is exposed to the interface;
- the anchored phosphoric acid functional group can adsorb free phosphoric acid, so that the phosphoric acid in the electrode is not easily lost, and the electrode stability is enhanced.
- Fig. 1 Schematic diagram of the structure of the fiber structure electrode material (oxide-containing material) of the present invention.
- FIG. 2 TEM photograph of a commercial Pt/C catalyst and a fiber structure electrode material prepared by the method of the present invention (Example 1). It can be seen that this fiber structure electrode material presents a very regular and orderly fiber structure, the fiber diameter is about 50 nm, and the precious metal nanoparticles are uniformly supported on the surface of the carrier, and the average particle size is 4 nm.
- Fig. 3 is a curve of stability test results of a fiber structure electrode material prepared by the method of the present invention applied to a high-temperature electrolyte membrane fuel cell (Example 1 and Comparative Example 1). It can be seen from the figure that the long-term stability of the fiber structure electrode material battery prepared by the method of the present invention is significantly improved.
- Fig. 4 is a schematic diagram of the structure of the fiber structure electrode material (containing organic phosphoric acid material) and the traditional structure electrode of the present invention.
- Figure 5 is a scanning electron micrograph of a fiber structure electrode material prepared by the method of the present invention (Example 4). It can be seen that this fiber structure electrode material presents a very regular and orderly fiber structure, and the fiber diameter is about 100 nm.
- Fig. 6 is a comparison of phosphorus element content and ion conductivity between a fiber structure electrode material prepared by the method of the present invention (Example 4) and an electrode material that does not contain organic phosphoric acid material (Comparative Example 3).
- Fig. 7 is a curve of performance test results of a fiber structure electrode material prepared by the method of the present invention applied to a high-temperature electrolyte membrane fuel cell (Examples 4 and 5 and Comparative Example 1). It can be seen from the figure that the performance of the fiber structure electrode material battery prepared by the method of the present invention is significantly improved.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Transmission electron microscopy photos show that the diameter size ranges from 80 to 100 nm, and the pore size is about 10 nm; the porosity of the material is 50%, and the particle size of Pt nanoparticles is about 4 nm.
- the precious metal loading of the electrode is about 1.5mg cm-2, and it is laminated with the commercial anode gas diffusion electrode and the phosphoric acid electrolyte membrane (the acid content is about 450-500% of the original electrolyte membrane mass) at 140 degrees Celsius to prepare the membrane. Electrode, perform characterization test, as shown in Figure 3.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- the diameter size ranges from 80 to 100nm
- the pore size is about 10nm
- the porosity is 50%
- the Pt nanoparticle size is about 4nm.
- the electrode noble metal loading is about 1.5mg cm-2, and it is combined with the commercial anode gas diffusion electrode and the phosphoric acid electrolyte membrane (acid content about 450-500%) after the commercial product is pressed at 140 degrees Celsius to prepare a membrane electrode for characterization testing ,As shown in Figure 3.
- Example 1 and Comparative Examples 1-2 show that the electrode structure without oxide as the carrier has lower electrode performance than the examples, the voltage attenuation is relatively strong during the stability test, and the stability is greatly reduced.
- a certain mass of chloroplatinic acid and cobalt nitrate are added to the dimethylformamide solvent so that the mass concentration of the noble metal is 1%, and the molar ratio of the noble metal to cobalt is 5:1, which is fully dissolved before use.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Transmission electron microscopy photos show that the diameter size ranges from 150 to 200 nm, the porous structure pore size ranges from 10 to 20 nm; the porosity of the material is 70%, and the average particle size of Pt nanoparticles is about 3 nm.
- a certain mass of chloroplatinic acid and nickel nitrate are added to the dimethylformamide solvent so that the mass concentration of noble metal is 3%, and the molar ratio of noble metal to cobalt is 3:1, which is fully dissolved before use.
- a certain quality of polyethylene oxide is added to the above solution to make its mass concentration 5%, and stirred for 2 hours at room temperature, and it is fully dissolved before use.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Transmission electron microscopy photos show that the diameter range is 100 to 150 nm, and the pore size of the porous structure ranges from 20 to 30 nm; the porosity of the material is 60%, and the average particle size of Pt nanoparticles is about 5 nm.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Transmission electron microscopy photos show that the diameter size ranges from 100 to 150 nm, and the porous structure pore size ranges from 10 to 15 nm; the porosity of the material is 80%, and the average particle size of Pt nanoparticles is about 5 nm.
- a certain mass of chloroplatinic acid is added to the dimethylformamide solvent to make the mass concentration of noble metal 5%, and it is fully dissolved before use.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Scanning electron micrographs show that the diameter range is 100 to 200 nm, the pore size of the porous structure ranges from 10 to 20 nm, and the porosity of the material is 50%.
- the precious metal loading of the electrode is about 1.5mg cm-2, and it is laminated with the commercial anode gas diffusion electrode and the phosphoric acid electrolyte membrane (the acid content is about 450-500% of the original electrolyte membrane mass) at 140 degrees Celsius to prepare the membrane.
- the electrode was characterized and tested, and the result is shown in Figure 4.
- a certain mass of chloroplatinic acid is added to the dimethylformamide solvent to make the mass concentration of noble metal 5%, and it is fully dissolved before use.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Scanning electron micrographs show that the diameter range is 100 to 200 nm, the pore size of the porous structure ranges from 10 to 20 nm, and the porosity of the material is 50%.
- a certain mass of chloroplatinic acid and cobalt nitrate are added to the dimethylformamide solvent so that the mass concentration of noble metal is 5%, and the molar ratio of noble metal to cobalt is 5:1, which is fully dissolved before use.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Scanning electron micrographs show that the diameter range is 50 to 80 nm, the pore size of the porous structure ranges from 5 to 7 nm, and the porosity of the material is 70%.
- the precious metal loading of the electrode is about 1.5mg cm-2, and it is laminated with the commercial anode gas diffusion electrode and the phosphoric acid electrolyte membrane (the acid content is about 450-500% of the original electrolyte membrane mass) at 140 degrees Celsius to prepare the membrane.
- the electrode was characterized and tested, and the result is shown in Figure 4.
- a certain mass of chloroplatinic acid and nickel nitrate are added to the dimethylformamide solvent so that the mass concentration of noble metal is 5%, and the molar ratio of noble metal to cobalt is 3:1, which is fully dissolved before use.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Scanning electron micrographs show that the diameter range is 150 to 200 nm, the pore size of the porous structure ranges from 5 to 10 nm, and the porosity of the material is 80%.
- a certain mass of chloroplatinic acid and ferric nitrate are added to the dimethylformamide solvent so that the mass concentration of the noble metal is 7%, and the molar ratio of the noble metal to cobalt is 3:1, which is fully dissolved before use.
- a certain mass of organophosphotungstic acid is added to the above solution to make its mass concentration 0.5%, and stirred for 2 hours.
- Add a certain quality of polyacrylic acid to the above solution to make its mass concentration 5%, and stir at room temperature for 2 hours, fully dissolve it uniformly, and then set it aside.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Scanning electron micrographs show that the diameter range is 50 to 80 nm, the pore size of the porous structure ranges from 5 to 7 nm, and the porosity of the material is 80%.
- the above composite solution was heated to 120° C., reacted for 4 hours, cooled to room temperature, and stirred for 1 hour until use.
- the feeding speed is 0.6mL/min
- the distance between the needle and the receiver is 10cm
- the receiver material is aluminum foil
- the spinning potential is 20kV
- the spinning time For 30min.
- a fiber structure electrode material was prepared. Transmission electron microscopy photos show that the diameter size ranges from 80 to 100 nm, and the pore size is about 10 nm; the porosity of the material is 50%, and the particle size of Pt nanoparticles is about 4 nm.
- the precious metal loading of the electrode is about 1.5mg cm-2, and it is laminated with the commercial anode gas diffusion electrode and the phosphoric acid electrolyte membrane (the acid content is about 450-500% of the original electrolyte membrane mass) at 140 degrees Celsius to prepare the membrane. Electrode, perform characterization test.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Textile Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Dispersion Chemistry (AREA)
- Inert Electrodes (AREA)
- Inorganic Fibers (AREA)
- Catalysts (AREA)
Abstract
本发明将制备一种纤维结构的电极材料,这种复合纤维结构电极具有基于铂基的电催化材料、纺丝高分子材料,以及氧化物材料和/或具有离子传导功能的有机磷酸材料中的一种或二种以上,在微观形貌上具有纳米纤维的结构,同时还具有多孔的形貌特征,此结构的电极材料由静电纺丝技术制备而成,可作为高温聚合物电解质膜燃料电池的多孔电极。与现有技术相比,本发明所述电极材料具有结构有序可控、传质性能好、贵金属利用率高、电极稳定性高:相比于其他制备方法,本方法的静电纺丝法制备过程,可控性强,减少了其他方法带来的不可控因素,实用性强。
Description
本发明涉及一种新型复合纤维结构电极及其制备方法,具体地说这种纤维结构电极由贵金属催化剂、纺丝高分子,以及氧化物载体材料和/或有机磷酸基材料组成,其具有可调控的纤维直径,纤维成分比例、孔隙率均可调节,其可用于高温质子交换膜燃料电池电极中。
本发明还涉及上述复合材料的制备方法。
基于磷酸电解质的高温(150-200℃)聚合物电解质膜燃料电池,由于其较高的工作温度具有较快的电极反应过程动力学以及对阳极CO等毒化物种较强的耐受性,是一种极有潜力的新型燃料电池技术,可对甲醇等液体燃料经过重整之后的富氢燃料直接利用,在交通工具、移动备用电源等传统油机替代领域具有广阔的应用前景。但与此同时,由于磷酸电解质的引入,在高温条件下其对电极中的贵金属及碳材料载体具有极强的腐蚀作用,特别是在电场作用下,碳载体的腐蚀极易导致贵金属纳米粒子的团聚、脱落,造成电化学活性位点的流失,降低电极性能,影响膜电极的寿命。
具有有序纤维结构的电极材料在电子、能源、生物医药等领域具有巨大的应用潜力。电极中适用于电化学环境的导电材料通常为基于碳的各类纳米材料,例如碳纳米管、石墨烯、活性炭等。这类材料具有的一个显著特点为其通常呈现出柔性特征,且在构成多孔电极的过程中,其孔结构多为由粒子堆积而成二级孔结构。在燃料电池电极等的应用领域,结构上的孔结构控制构造以及电荷、物质传导的可控性是研究电极基本过程、阐释电极电化学行为、提升电极性能的基本要求。传统电极制备方法中,将电极材料浆液通过各类涂布技术在基底上构筑交联堆积而成的电极层,往往具有不可控的孔隙率、孔尺寸以及孔道形状,难以实现电极性能构效的深入研究,也难以实现电极性能的提升。鉴于此,开发一种孔尺寸、孔隙率均可控,且制备过程简单易行、适用于绝大多数电极材料的电极制备方法,是目前多孔电极发展的关键之一。
基于静电纺丝技术的纳米纤维材料制备方法,可有效地将传统方法难以引入的氧化物材料,作为催化剂载体进行电极材料的合成。其较高的抗腐蚀能力有望解决高温磷酸体系燃料电池的稳定性短板。
发明内容
本发明将制备一种纤维结构的电极材料,这种复合纤维结构电极具有基于铂基的电催化材料、纺丝高分子,以及氧化物载体材料和/或有机磷酸基材料,在微观形貌上具有纳米纤维的结构,同时还具有多孔的形貌特征,此结构的电极材料由静电纺丝技术制备而成,可作为高温聚合物电解质膜燃料电池的多孔电极。
为实现上述目的,本发明采用以下具体方案来实现:
一种具有纤维结构的电极材料,其为直径是微米或亚微米结构的纳米纤维结构,直径尺寸范围为20nm至500nm,纤维结构中还包括孔径为纳米级的多孔结构,孔径尺寸范围为1nm至50nm;电极材料的孔隙率为20至80%。
所述纳米纤维结构的直径优选范围为100nm至200nm,孔径尺寸优选范围为5nm-20nm;电极材料的孔隙率优选范围为50-80%。
所述纳米纤维结构材料的构成组分包括电催化活性材料、氧化物材料以及纺丝高分子材料,所述纺丝高分子材料构成纳米纤维的主体,交织后构成电极材料;所述氧化物材料构成纳米纤维的多孔结构,所述电催化活性材料担载于所述多孔结构的氧镶嵌于主体上的化物材料上,负载后氧化物多孔结构孔径尺寸范围为1nm至50nm,孔隙率为40至60%;所述电催化剂活性材料为纳米粒子,其直径为2-10nm。
所述电催化活性材料包括铂和/或铂与铁、镍、钴、铜、金、银、钯中的任一一种或二种以上的合金;所述氧化物材料包括氧化硅、氧化钛、氧化钨、氧化铟锡中的任一一种或二种以上;所述纺丝高分子材料包括聚丙烯酸、聚环氧乙烯、聚乙烯吡咯烷酮中的任一一种或二种以上。
所述电催化活性材料和氧化物材料的质量比为3:1至1:10,优选范围为1:1至1:2;铂合金中铂与铁、镍、钴、铜、金、银、钯中任一一种或二种以上的合金中铂与其他金属的质量比为5:1至1:5,优选范围为5:1至2:1;所述纺丝高分子材料与氧化物材料的质量比为5:1至1:5。
所述纤维结构电极材料的制备方法,包括以下制备步骤,
1)复合纺丝溶液制备:
将铂的前躯体,或铂的前躯体与铁、镍、钴、铜、金、银、钯的前躯体中的任一一种或两种以上按照物质的量之比为5:1至1:5溶于溶剂中,使得铂的质量浓度为0.1%至5%,充分溶解后备用;
将氧化物材料加入到上述溶液中,使氧化物材料质量浓度为1%至10%,搅拌2至48h,充分溶解均匀后待用;
将纺丝高分子加入到上述溶液中,使上述纺丝高分子质量浓度为1%至20%,在室温至60-80℃条件下充分溶解均匀后待用;将上述复合溶液在持续搅拌的条件下,80至140℃持续反应2h至8h,冷却至室温并持续搅拌1至4h待用,得纺丝胶体溶液;
2)采用静电纺丝制备得纤维结构电极材料。
所述静电纺丝制备过程为,将上述步骤1)制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.1至2mL/min,针头距离接收器为5至20cm,接收器材料为碳纤维、碳纸、碳布中的一种,纺丝电位为10至30kV,纺丝时间为10至600min;由此制得纤维结构电极材料。
由于氧化物材料与铂基贵金属盐的静电相互作用,可以使得贵金属大部分负载于氧化物的表面,从而使得其在纺丝过程中,贵金属活性位点大部分暴露于纳米纤维结构的表面。
所述铂的前躯体氯铂酸、醋酸铂、二亚硝基二氨合铂中的一种或二种以上;所述铁、镍、钴、铜、金、银、钯的前躯体分别为硝酸铁、硝酸镍、硝酸钴、硝酸铜、氯金酸、硝酸银、氯钯酸;所述溶剂为水、二甲基甲酰胺、甲醇、乙二醇或乙醇中的一种或二种以上;所述氧化物材料包括氧化硅、氧化钛、氧化钨、氧化铟锡及它们四者中任一衍生物材料中的一种或二种以上;所述纺丝高分子为聚丙烯酸、聚环氧乙烯、聚乙烯吡咯烷酮中的一种或二种以上。
复合溶液反应后得到纺丝胶体溶液中电催化活性材料的金属离子完全还原为粒径2-20nm的纳米粒子。
所述纤维结构电极材料的在高温聚合物电解质膜燃料电池中的应用。
与现有技术相比,本发明具有以下优点:
1.结构有序可控:采用本发明所述方法制备的纤维结构电极材料的纤维直径、孔密度均可通过制备过程参数进行控制。通过不同的纺丝高分子材料的比例与固含量,可调节浆液的不同粘度,进一步与电位及纺丝针头间距的控制,可实现纤维直径与孔隙率的调节;
2.传质性能好:采用本发明所述方法制备的纤维结构电极材料,由于其孔隙率提高,孔隙有序,传质性能更优;
3.贵金属利用率高:采用本发明所述方法制备的纤维结构电极材料,贵金属表面可大部分暴露于传质通道中,如图2所示,从而具有较高的利用率;
4.电极稳定性高:由于氧化物材料具有较高价位的金属(或非金属)元素,其难以进一步氧化,因此所采用的氧化物载体具有较高的抗磷酸腐蚀性能,在长期运行过程中能够抵抗由于载体腐蚀老化所导致的催化剂破坏,电极具有较高的长期稳定性;
5.实用性强:相比于其他制备方法,本方法的静电纺丝法制备过程,可控性强,减少了其他方法带来的不可控因素,实用性强。
6.离子传输效率高:采用本发明所述方法制备的纤维结构电极材料,离子传输通道锚定于催化材料表面,可大幅强化离子传输过程。采用本发明所述方法制备的电极材料(实施例4)与不采用有机磷酸材料锚定的电极材料(对比例3)相比,电极磷酸含量大幅提高,离子电导率也大幅提高,如图6所示;
7.磷酸毒化作用降低:采用本发明所述方法制备的纤维结构电极含磷酸官能团被锚定于纤维多孔结构中,不直接包覆贵金属活性材料,其毒化作用显著降低。如图7所示,采用本发明所述方法制备的电极材料(实施例4与实施例5)与传统电极材料(对比例1)相比,活化极化区性能明显提升,表明电极材料中催化活性表面积更多的暴露于界面;
8.磷酸稳定性高:锚定的磷酸官能团可吸附游离的磷酸,使电极中的磷酸不易流失,电极稳定性增强.
图1本发明所述纤维结构电极材料(含氧化物材料)结构示意图。
图2一种商品Pt/C催化剂与采用本发明所述方法制备的纤维结构电极材料(实施例1)的透射电镜照片。可以看出此纤维结构电极材料呈现出十分规则有序的纤维结构,纤维直径大小约为50nm,贵金属纳米粒子均匀负载于载体表面,平均粒径4nm。
图3一种采用本发明所述方法制备的纤维结构电极材料应用于高温电解质膜燃料电池稳定测试结果曲线(实施例1与对比例1)。由图可以看出,采用本发明方法制备的纤维结构电极材料电池长期稳定性明显提升。
图4本发明所述纤维结构电极材料(含有机磷酸材料)与传统结构电极结构示意图。
图5一种采用本发明所述方法制备的纤维结构电极材料的扫描电镜照片(实施例4)。可以看出此纤维结构电极材料呈现出十分规则有序的纤维结构,纤维直径大小约 为100nm。
图6一种采用本发明所述方法制备的纤维结构电极材料(实施例4)与未含有有机磷酸材料的电极材料(对比例3)磷元素含量与离子电导率对比。
图7一种采用本发明所述方法制备的纤维结构电极材料应用于高温电解质膜燃料电池性能测试结果曲线(实施例4、5与对比例1)。由图可以看出,采用本发明方法制备的纤维结构电极材料电池性能明显提升。
以下通过实例对本发明作详细描述,但本发明不仅限于以下实施例。
实施例1
a.复合纺丝溶液制备
将一定质量的氯铂酸,加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为2%,充分溶解后备用。将一定质量的二氧化硅,加入到上述溶液中,使其质量浓度为5%,搅拌2h。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。透射电镜照片显示,其直径尺寸范围为80至100nm,孔径约为10nm;材料孔隙率为50%,Pt纳米粒子粒径约为4nm。
电极贵金属载量约为1.5mg cm-2,并与商品阳极气体扩散电极以及商品后浸渍磷酸电解质膜(酸含量约为原电解质膜质量的450-500%)在140摄氏度条件下压合制备膜电极,进行表征测试,如图3所示。
对比例1
a.催化剂浆液的制备
将一定量的60%贵金属载量的商品Pt/C催化剂,加入其10倍质量的水与10倍质量的乙醇,以及占催化剂质量10%的聚四氟乙烯混合均匀,超声分散10分钟备用;
b.喷涂法催化层制备
将上述步骤a制备的催化剂浆液喷涂于气体扩散层上,使得贵金属载量约为1.5mg cm-2,并与商品阳极气体扩散电极以及商品后浸渍磷酸电解质膜(酸含量约为450-500%)在140摄氏度条件下压合制备膜电极,进行表征测试,如图3所示。
对比例2
a.复合纺丝溶液制备
将一定质量的氯铂酸,加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为2%,充分溶解后备用。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。其直径尺寸范围为80至100nm,孔径约为10nm,孔隙率为50%,Pt纳米粒子粒径约为4nm。
电极贵金属载量约为1.5mg cm-2,并与商品阳极气体扩散电极以及商品后浸渍磷酸电解质膜(酸含量约为450-500%)在140摄氏度条件下压合制备膜电极,进行表征测试,如图3所示。
实施例1及对比例1-2的测试结果表明,未采用氧化物作为载体的电极结构,电极性能相较实施例降低,其稳定性测试过程中电压衰减较为强烈,稳定性大幅下降。
实施例2
a.复合纺丝溶液制备
将一定质量的氯铂酸与硝酸钴加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为1%,贵金属与钴的摩尔比为5:1,充分溶解后备用。将一定质量的氧化铟锡,加入到上述溶液中,使其质量浓度为5%,搅拌2h。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。透射电镜照片显示,其直径尺寸范围为150至200nm,多孔结构孔径尺寸范围为10至20nm;材料孔隙率为70%,Pt纳米粒子平均粒径约为3nm。
实施例3
a.复合纺丝溶液制备
将一定质量的氯铂酸与硝酸镍加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为3%,贵金属与钴的摩尔比为3:1,充分溶解后备用。将一定质量的氧化钛,加入到上述溶液中,使其质量浓度为8%,搅拌2h。将一定质量的聚环氧乙烯,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。透射电镜照片显示,其直径尺寸范围为100至150nm,多孔结构孔径尺寸范围为20至30nm;材料孔隙率为60%,Pt纳米粒子平均粒径约为5nm。
实施例4
a.复合纺丝溶液制备
将一定质量的氯铂酸与硝酸铁加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为 2%,贵金属与钴的摩尔比为3:1,充分溶解后备用。将一定质量的氧化钨,加入到上述溶液中,使其质量浓度为10%,搅拌2h。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。透射电镜照片显示,其直径尺寸范围为100至150nm,多孔结构孔径尺寸范围为10至15nm;材料孔隙率为80%,Pt纳米粒子平均粒径约为5nm。
实施例5
a.复合纺丝溶液制备
将一定质量的氯铂酸,加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为5%,充分溶解后备用。将一定质量的全氟磷酸聚离子,加入到上述溶液中,使其质量浓度为0.5%,搅拌2h。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。扫描电镜照片显示,其直径尺寸范围为100至200nm,多孔结构孔径尺寸范围为10至20nm;材料孔隙率为50%。
电极贵金属载量约为1.5mg cm-2,并与商品阳极气体扩散电极以及商品后浸渍磷酸电解质膜(酸含量约为原电解质膜质量的450-500%)在140摄氏度条件下压合制备膜电极,进行表征测试,结果如图4所示。
对比例3
a.复合纺丝溶液制备
将一定质量的氯铂酸,加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为5%,充分溶解后备用。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。扫描电镜照片显示,其直径尺寸范围为100至200nm,多孔结构孔径尺寸范围为10至20nm;材料孔隙率为50%。
实施例6
a.复合纺丝溶液制备
将一定质量的氯铂酸与硝酸钴加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为5%,贵金属与钴的摩尔比为5:1,充分溶解后备用。将一定质量的全氟磷酸聚离子,加入到上述溶液中,使其质量浓度为0.5%,搅拌2h。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。扫描电镜照片显示,其直径尺寸范围为50至80nm,多孔结构孔径尺寸范围为5至7nm;材料孔隙率为70%。
电极贵金属载量约为1.5mg cm-2,并与商品阳极气体扩散电极以及商品后浸渍磷酸电解质膜(酸含量约为原电解质膜质量的450-500%)在140摄氏度条件下压合制备膜电极,进行表征测试,结果如图4所示。
实施例7
a.复合纺丝溶液制备
将一定质量的氯铂酸与硝酸镍加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为5%,贵金属与钴的摩尔比为3:1,充分溶解后备用。将一定质量的膦酸亚基聚羧酸,加入到上述溶液中,使其质量浓度为0.5%,搅拌2h。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。扫描电镜照片显示,其直径尺寸范围为150至200nm,多孔结构孔径尺寸范围为5至10nm;材料孔隙率为80%。
实施例8
a.复合纺丝溶液制备
将一定质量的氯铂酸与硝酸铁加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为7%,贵金属与钴的摩尔比为3:1,充分溶解后备用。将一定质量的有机磷钨酸,加入到上述溶液中,使其质量浓度为0.5%,搅拌2h。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。扫描电镜照片显示,其直径尺寸范围为 50至80nm,多孔结构孔径尺寸范围为5至7nm;材料孔隙率为80%。
实施例9
a.复合纺丝溶液制备
将一定质量的氯铂酸,加入二甲基甲酰胺溶剂中,使得贵金属质量浓度为2%,充分溶解后备用。将一定质量的二氧化硅,加入到上述溶液中,使其质量浓度为5%,搅拌2h,再将一定质量的有机磷钨酸,加入到上述溶液中,使其质量浓度为0.5%,搅拌2h。将一定质量的聚丙烯酸,加入到上述溶液中,使其质量浓度为5%,在室温条件下,搅拌2h,充分溶解均匀后待用。
将上述复合溶液在持续搅拌的条件下,油浴加热至120℃,持续反应4h,冷却至室温,持续搅拌1h待用。
b.纤维结构电极材料的静电纺丝制备
将上述步骤a制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.6mL/min,针头距离接收器为10cm,接收器材料为铝箔,纺丝电位为20kV,纺丝时间为30min。由此制得纤维结构电极材料。透射电镜照片显示,其直径尺寸范围为80至100nm,孔径约为10nm;材料孔隙率为50%,Pt纳米粒子粒径约为4nm。
电极贵金属载量约为1.5mg cm-2,并与商品阳极气体扩散电极以及商品后浸渍磷酸电解质膜(酸含量约为原电解质膜质量的450-500%)在140摄氏度条件下压合制备膜电极,进行表征测试。
Claims (10)
- 一种具有纤维结构的电极材料,其特征在于:其为直径是微米或亚微米结构的纳米纤维结构,直径尺寸范围为20nm至500nm,纤维结构中还包括孔径为纳米级的多孔结构,孔径尺寸范围为1nm至50nm;电极材料的孔隙率为20至80%。
- 按照权利要求1所述的电极材料,其特征在于:所述纳米纤维结构的直径优选范围为50nm至200nm,更优选100nm至200nm,孔径尺寸优选范围为5nm-20nm,更优选5nm-10nm;电极材料的孔隙率优选范围为50-80%,更优选50-75%。
- 按照权利要求1所述的电极材料,其特征在于:所述纳米纤维结构材料的构成组分包括电催化活性材料、纺丝高分子材料,以及氧化物材料和/或具有离子传导功能的有机磷酸材料中的一种或二种以上;所述纳米纤维结构材料的构成组分包括电催化活性材料、纺丝高分子材料、以及氧化物材料,所述纺丝高分子材料构成纳米纤维的主体,交织后构成电极材料;电催化活性材料担载于所述多孔结构的氧化物上;所述担载有电催化活性材料的氧化物材料镶嵌于主体的纤维材料上;负载后氧化物材料的多孔结构孔径尺寸范围为1nm至50nm,孔隙率为40至60%;所述电催化剂活性材料为纳米粒子,其直径为2-10nm;或,所述纳米纤维结构材料的构成组分包括电催化活性材料、具有离子传导功能的有机磷酸材料以及纺丝高分子材料,所述纺丝高分子材料和电催化活性材料构成纳米纤维的主体,交织后构成电极材料;镶嵌于主体上的有机磷酸材料构成纳米纤维的多孔结构,有机磷酸材料多孔结构孔径尺寸范围为1nm至50nm,孔隙率为40至60%;或,所述纳米纤维结构材料的构成组分包括电催化活性材料、纺丝高分子材料,以及氧化物材料和具有离子传导功能的有机磷酸材料;电催化活性材料与纺丝高分子材料共同构成纳米纤维的主体或担载于所述多孔结构的氧化物上;所述氧化物材料和/或具有离子传导功能的有机磷酸材料构成纳米纤维的多孔结构,所述担载有电催化活性材料的氧化物材料、氧化物材料、或有机磷酸材料中的一种或二种以上镶嵌于主体的纤维材料上;负载后氧化物材料、氧化物材料或有机磷酸材料中的一种或二种以上的多孔结构孔径尺寸范围为1nm至50nm,孔隙率为40至60%;所述电催化剂活性材料 为纳米粒子,其直径为2-10nm。
- 按照权利要求3所述的电极材料,其特征在于:所述电催化活性材料包括铂和/或铂与铁、镍、钴、铜、金、银、钯中的任一一种或二种以上的合金;所述氧化物材料包括氧化硅、氧化钛、氧化钨、氧化铟锡中的任一一种或二种以上;所述有机磷酸材料包括全氟磷酸聚合物、膦基聚羧酸、膦酸亚基聚羧酸、磷基杂多酸及它们三者中任一衍生物材料中的一种或二种以上;所述纺丝高分子材料包括聚丙烯酸、聚环氧乙烯、聚乙烯吡咯烷酮中的任一一种或二种以上。
- 按照权利要求1、2、3或4所述的电极材料,其特征在于:铂合金中铂与铁、镍、钴、铜、金、银、钯中任一一种或二种以上的合金中铂与其他金属的质量比为5:1至1:5,优选范围为5:1至2:1;所述纳米纤维结构材料的构成组分包括电催化活性材料、纺丝高分子材料、以及氧化物材料,所述电催化活性材料和氧化物材料的质量比为3:1至1:10,优选范围为1:1至1:2;所述纺丝高分子材料与氧化物材料的质量比为5:1至1:5;或,所述纳米纤维结构材料的构成组分包括电催化活性材料、具有离子传导功能的有机磷酸材料以及纺丝高分子材料,所述电催化活性材料和有机磷酸材料的质量比为10:1至1:1之间,优选范围为5:1至2:1之间;所述纺丝高分子材料与电催化活性材料的质量比为5:1至1:5之间;或,所述纳米纤维结构材料的构成组分包括电催化活性材料、纺丝高分子材料,以及氧化物材料和具有离子传导功能的有机磷酸材料;所述电催化活性材料和氧化物材料的质量比为3:1至1:10,优选范围为1:1至1:5;所述电催化活性材料和有机磷酸材料的质量比为10:1至1:1之间,优选范围为5:1至2:1;所述纺丝高分子材料与电催化活性材料的质量比为5:1至1:5之间。
- 一种权利要求1-5任一所述纤维结构电极材料的制备方法,其特征在于:包括以下制备步骤,1)复合纺丝溶液制备:将铂的前躯体,或铂的前躯体与铁、镍、钴、铜、金、银、钯的前躯体中的任一一种 或两种以上按照物质的量之比为5:1至1:5溶于溶剂中,使得铂的质量浓度为0.1%至5%,充分溶解后备用;将氧化物材料和/或有机磷酸材料加入到上述溶液中,使氧化物材料质量浓度为0%至10%(优选1%至10%),使有机磷酸材料质量浓度为0%至5%(优选0.1%至5%),且氧化物材料和/或有机磷酸材料总质量浓度大于等于0.1%,搅拌2至48h,充分溶解均匀后待用;将纺丝高分子加入到上述溶液中,使上述纺丝高分子质量浓度为1%至20%,在室温至60-80℃条件下充分溶解均匀后待用;将上述复合溶液在持续搅拌的条件下,80至140℃持续反应2h至8h,冷却至室温并持续搅拌1至4h待用,得纺丝胶体溶液;2)采用静电纺丝制备得纤维结构电极材料。
- 按照权利要求6所述的制备方法,其特征在于:所述静电纺丝制备过程为,将上述步骤1)制备的纺丝胶体溶液置于纺丝注射装置的入口,进料速度为0.1至2mL/min,针头距离接收器为5至20cm,接收器材料为碳纤维、碳纸、碳布中的一种,纺丝电位为10至30kV,纺丝时间为10至600min;由此制得纤维结构电极材料。
- 按照权利要求6所述的制备方法,其特征在于:所述铂的前躯体氯铂酸、醋酸铂、二亚硝基二氨合铂中的一种或二种以上;所述铁、镍、钴、铜、金、银、钯的前躯体分别为硝酸铁、硝酸镍、硝酸钴、硝酸铜、氯金酸、硝酸银、氯钯酸;所述溶剂为水、二甲基甲酰胺、甲醇、乙二醇或乙醇中的一种或二种以上;所述氧化物材料包括氧化硅、氧化钛、氧化钨、氧化铟锡及它们四者中任一衍生物材料中的一种或二种以上;所述有机磷酸材料包括全氟磷酸聚合物、膦基聚羧酸、膦酸亚基聚羧酸、磷基杂多酸及它们三者中任一衍生物材料中的一种或二种以上;所述纺丝高分子为聚丙烯酸、聚环氧乙烯、聚乙烯吡咯烷酮中的一种或二种以上。
- 按照权利要求6所述的制备方法,其特征在于:复合溶液反应后得到纺丝胶体溶液中电催化活性材料的金属离子完全还原为粒径2-20nm的纳米粒子。
- 一种权利要求1-5任一所述纤维结构电极材料的在高温聚合物电解质膜燃料电池中的应用。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19955697.8A EP4075551A1 (en) | 2019-12-10 | 2019-12-16 | Electrode material having fiber structure, and preparation and application thereof |
US17/595,033 US20220246945A1 (en) | 2019-12-10 | 2019-12-16 | Fibrous Electrode Material, Preparation and Application Thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911259321.2 | 2019-12-10 | ||
CN201911259321.2A CN112952107A (zh) | 2019-12-10 | 2019-12-10 | 一种具有纤维结构的电极材料与制备和应用 |
CN201911258188.9A CN112952121A (zh) | 2019-12-10 | 2019-12-10 | 一种具有纤维结构的电极材料及制备和应用 |
CN201911258188.9 | 2019-12-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021114317A1 true WO2021114317A1 (zh) | 2021-06-17 |
Family
ID=76329410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/125655 WO2021114317A1 (zh) | 2019-12-10 | 2019-12-16 | 一种具有纤维结构的电极材料及制备和应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220246945A1 (zh) |
EP (1) | EP4075551A1 (zh) |
WO (1) | WO2021114317A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114279601A (zh) * | 2021-12-24 | 2022-04-05 | 南京大学 | 一种柔性纳米膜压力传感器及其制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101740225A (zh) * | 2008-11-11 | 2010-06-16 | 财团法人纺织产业综合研究所 | 超级电容的电极及其制作方法 |
CN102185126A (zh) * | 2011-03-23 | 2011-09-14 | 中信国安盟固利动力科技有限公司 | 微米纳米级电极材料的分散方法 |
US20140162110A1 (en) * | 2012-12-12 | 2014-06-12 | Industrial Technology Research Institute | Single fiber layer structure of micron or nano fibers and multi-layer structure of micron and nano fibers applied in separator for battery |
CN104716348A (zh) * | 2013-12-15 | 2015-06-17 | 中国科学院大连化学物理研究所 | 一种纳米纤维网络结构电极及其制备方法和应用 |
CN104752734A (zh) * | 2015-02-25 | 2015-07-01 | 大连理工大学 | 一种核-壳纳米纤维结构中低温固态氧化物燃料电池阴极及其静电纺丝制备方法 |
CN108166091A (zh) * | 2016-12-07 | 2018-06-15 | 中国科学院大连化学物理研究所 | 一种多孔复合纳米纤维及其制备及电极 |
CN109913970A (zh) * | 2017-12-12 | 2019-06-21 | 中国科学院大连化学物理研究所 | 一种多孔纳米纤维及其制备及电极 |
CN109913971A (zh) * | 2017-12-12 | 2019-06-21 | 中国科学院大连化学物理研究所 | 一种多孔复合纳米纤维及其制备方法和应用 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2424019B1 (en) * | 2004-12-07 | 2013-06-12 | Toray Industries, Inc. | Fuel cell membrane electrode assembly |
JP4949655B2 (ja) * | 2005-08-09 | 2012-06-13 | 株式会社日立製作所 | 燃料電池、燃料電池電源システム及びそれを用いた電子機器 |
DE102006036019A1 (de) * | 2006-08-02 | 2008-02-07 | Pemeas Gmbh | Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung |
KR101282155B1 (ko) * | 2008-03-20 | 2013-07-04 | 더 유니버시티 오브 아크론 | 나노크기 금속 촉매 입자를 함유하는 세라믹 나노섬유 및 이의 매체 |
US9905870B2 (en) * | 2010-10-27 | 2018-02-27 | Vanderbilt University | Nanofiber electrode and method of forming same |
-
2019
- 2019-12-16 US US17/595,033 patent/US20220246945A1/en active Pending
- 2019-12-16 WO PCT/CN2019/125655 patent/WO2021114317A1/zh unknown
- 2019-12-16 EP EP19955697.8A patent/EP4075551A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101740225A (zh) * | 2008-11-11 | 2010-06-16 | 财团法人纺织产业综合研究所 | 超级电容的电极及其制作方法 |
CN102185126A (zh) * | 2011-03-23 | 2011-09-14 | 中信国安盟固利动力科技有限公司 | 微米纳米级电极材料的分散方法 |
US20140162110A1 (en) * | 2012-12-12 | 2014-06-12 | Industrial Technology Research Institute | Single fiber layer structure of micron or nano fibers and multi-layer structure of micron and nano fibers applied in separator for battery |
CN104716348A (zh) * | 2013-12-15 | 2015-06-17 | 中国科学院大连化学物理研究所 | 一种纳米纤维网络结构电极及其制备方法和应用 |
CN104752734A (zh) * | 2015-02-25 | 2015-07-01 | 大连理工大学 | 一种核-壳纳米纤维结构中低温固态氧化物燃料电池阴极及其静电纺丝制备方法 |
CN108166091A (zh) * | 2016-12-07 | 2018-06-15 | 中国科学院大连化学物理研究所 | 一种多孔复合纳米纤维及其制备及电极 |
CN109913970A (zh) * | 2017-12-12 | 2019-06-21 | 中国科学院大连化学物理研究所 | 一种多孔纳米纤维及其制备及电极 |
CN109913971A (zh) * | 2017-12-12 | 2019-06-21 | 中国科学院大连化学物理研究所 | 一种多孔复合纳米纤维及其制备方法和应用 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114279601A (zh) * | 2021-12-24 | 2022-04-05 | 南京大学 | 一种柔性纳米膜压力传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220246945A1 (en) | 2022-08-04 |
EP4075551A1 (en) | 2022-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3765999B2 (ja) | 燃料電池 | |
Sharma et al. | Support materials for PEMFC and DMFC electrocatalysts—A review | |
US8409659B2 (en) | Nanowire supported catalysts for fuel cell electrodes | |
CN111527633B (zh) | 催化剂、其制备方法、包含所述催化剂的电极、膜-电极组件和燃料电池 | |
JP5580990B2 (ja) | 燃料電池用電極触媒として使用されるプラチナおよびプラチナベース合金ナノチューブ | |
US8236724B2 (en) | Catalyst-supporting particle, composite electrolyte, catalyst electrode for fuel cell, and fuel cell using the same, and methods for fabricating these | |
JP2007526616A (ja) | 白金が少ない燃料電池、触媒およびその製造方法 | |
CN105261767A (zh) | 纳米碳掺杂多孔纤维单电极、膜电极及制备方法 | |
KR20070055119A (ko) | 연료전지용 전극 촉매 및 그의 제조 방법 | |
CN108539206B (zh) | 一种催化层全有序燃料电池电极和膜电极 | |
CN107248581A (zh) | 一种氮掺杂三维石墨烯负载纳米银的复合材料及制备方法 | |
CN108448138B (zh) | 一种催化层全有序结构燃料电池电极和膜电极的制备方法 | |
JP2002298861A (ja) | 燃料電池、燃料電池用電極およびその製造方法 | |
Naeimi et al. | Enhanced electrocatalytic performance of Pt nanoparticles immobilized on novel electrospun PVA@ Ni/NiO/Cu complex bio-nanofiber/chitosan based on Calotropis procera plant for methanol electro-oxidation | |
Hezarjaribi et al. | Gas diffusion electrode based on electrospun Pani/CNF nanofibers hybrid for proton exchange membrane fuel cells (PEMFC) applications | |
Zeng et al. | PtFe alloy nanoparticles confined on carbon nanotube networks as air cathodes for flexible and wearable energy devices | |
Geng et al. | Pd x Fe y alloy nanoparticles decorated on carbon nanofibers with improved electrocatalytic activity for ethanol electrooxidation in alkaline media | |
US20100183945A1 (en) | Electrode catalyst for fuel cell, process for producing the same and solid polymer fuel cell comprising the same | |
KR20190032199A (ko) | 연료전지용 촉매의 제조 방법 및 이에 의하여 제조된 연료전지용 촉매 | |
Wang et al. | CoFe alloy nanoparticles embedded in vertically grown nanosheets on N-doped carbon nanofibers as a trifunctional electrocatalyst for high-performance microbial fuel cells | |
Litkohi et al. | Pt/Fe/Ni decorated CVD grown CNTs on carbon paper as electrocatalytic electrodes in polymer fuel cells: An investigation on H2 gas on the growth of CNTs and reduction of electrocatalysts | |
Yu et al. | Three-dimensional carbon nanofiber networks encapsulated in cobalt–molybdenum metal clusters on nitrogen-doped carbon as ultra-efficient electrocatalysts for hydrogen evolution reactions | |
CN106972178A (zh) | 燃料电池催化剂层及其形成方法和包括其的燃料电池 | |
Wang et al. | Pd doped Co3O4 loaded on carbon nanofibers as highly efficient free-standing electrocatalyst for oxygen reduction and oxygen evolution reactions | |
WO2021114317A1 (zh) | 一种具有纤维结构的电极材料及制备和应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19955697 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019955697 Country of ref document: EP Effective date: 20220711 |