DE102006036019A1 - Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung - Google Patents

Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung Download PDF

Info

Publication number
DE102006036019A1
DE102006036019A1 DE102006036019A DE102006036019A DE102006036019A1 DE 102006036019 A1 DE102006036019 A1 DE 102006036019A1 DE 102006036019 A DE102006036019 A DE 102006036019A DE 102006036019 A DE102006036019 A DE 102006036019A DE 102006036019 A1 DE102006036019 A1 DE 102006036019A1
Authority
DE
Germany
Prior art keywords
membrane
reinforcing elements
acid
polymer
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102006036019A
Other languages
English (en)
Inventor
Oemer Dr. Uensal
Thomas Dr. Schmidt
Mathias Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Fuel Cell GmbH
Original Assignee
Pemeas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pemeas GmbH filed Critical Pemeas GmbH
Priority to DE102006036019A priority Critical patent/DE102006036019A1/de
Priority to CN2007800288407A priority patent/CN101523642B/zh
Priority to PCT/EP2007/006741 priority patent/WO2008014964A2/de
Priority to JP2009522159A priority patent/JP5698907B2/ja
Priority to CA002659475A priority patent/CA2659475A1/en
Priority to US12/375,550 priority patent/US20090258274A1/en
Priority to KR1020097000527A priority patent/KR101479354B1/ko
Priority to KR1020147027038A priority patent/KR20140133884A/ko
Priority to EP07786440A priority patent/EP2059964A2/de
Priority to RU2009106949/07A priority patent/RU2411616C2/ru
Publication of DE102006036019A1 publication Critical patent/DE102006036019A1/de
Priority to JP2013042592A priority patent/JP5793524B2/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1051Non-ion-conducting additives, e.g. stabilisers, SiO2 or ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1067Polymeric electrolyte materials characterised by their physical properties, e.g. porosity, ionic conductivity or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/40Fibre reinforced membranes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Abstract

Membran-Elektroden-Einheit, umfassend mindestens zwei elektrochemisch aktive Elektroden, die durch mindestens eine Polymer-Elektrolyt-Membran getrennt werden, wobei die Polymer-Elektrolyt-Membran Verstärkungselemente aufweist, die die Polymer-Elektrolyt-Membran zumindest teilweise durchdringen. Die Membran-Elektroden-Einheit wird vorzugsweise durch ein Verfahren erhalten, bei welchem man (i) in Gegenwart der Verstärkungselemente eine Polymer-Elektrolyt-Membran formt, (ii) die Membran und die Elektroden in der gewünschten Reihenfolge zusammensetzt. Die Membran-Elektroden-Einheit eignet sich insbesondere für Anwendungen in Brennstoffzellen.

Description

  • Die vorliegende Erfindung betrifft Membran-Elektroden-Einheiten und Brennstoffzellen mit erhöhter Leistung, die mindestens zwei elektrochemisch aktive Elektroden, die durch eine Polymer-Elektrolyt-Membran getrennt werden, umfassen.
  • Polymer-Elektrolyt-Membran(PEM)-Brennstoffzellen sind bereits bekannt. In ihnen werden zur Zeit fast ausschließlich Sulfonsäure-modifizierte Polymere als protonenleitende Membranen eingesetzt. Dabei finden überwiegend perfluorierte Polymere Anwendung. Prominentes Beispiel hierfür ist NafionTM von DuPont de Nemours, Willmington USA. Für die Protonenleitung ist ein relativ hoher Wassergehalt in der Membran erforderlich, der typischerweise bei 4-20 Molekülen Wasser pro Sulfonsäuregruppe liegt. Der notwendige Wassergehalt, aber auch die Stabilität des Polymers in Verbindung mit saurem Wasser und den Reaktionsgasen Wasserstoff und Sauerstoff, limitiert die Betriebstemperatur der PEM-Brennstoffzellenstacks üblicherweise auf 80-100 °C. Unter Druck kann die Betriebstemperaturen auf >120 °C erhöht werden. Ansonsten können höhere Betriebstemperaturen ohne einen Leistungsverlust der Brennstoffzelle nicht realisiert werden.
  • Aus systemtechnischen Gründen sind aber höhere Betriebstemperaturen als 100°C in der Brennstoffzelle wünschenswert. Die Aktivität der in der Membran-Elektroden-Einheit (MEE) enthaltenen Katalysatoren auf Edelmetallbasis ist bei hohen Betriebstemperaturen wesentlich besser. Insbesondere sind bei der Verwendung von sogenannten Reformaten aus Kohlenwasserstoffen deutliche Mengen an Kohlenmonoxid im Reformergas enthalten, die üblicherweise durch eine aufwendige Gasaufbereitung bzw. Gasreinigung entfernt werden müssen. Bei hohen Betriebstemperaturen steigt die Toleranz der Katalysatoren gegenüber den CO-Verunreinigungen.
  • Des Weiteren entsteht Wärme beim Betrieb von Brennstoffzellen. Eine Kühlung dieser Systeme auf unter 80°C kann jedoch sehr aufwendig sein. Je nach Leistungsabgabe können die Kühlvorrichtungen wesentlich einfacher gestaltet werden. Das bedeutet, dass in Brennstoffzellensystemen, die bei Temperaturen über 100°C betrieben werden, die Abwärme deutlich besser nutzbar gemacht und somit die Brennstoffzellensystem-Effizienz durch Strom-Wärmekopplung gesteigert werden kann.
  • Um diese Temperaturen zu erreichen, werden im Allgemeinen Membranen mit neuen Leitfähigkeitsmechanismen verwendet. Ein Ansatz hierfür ist der Einsatz von Membranen, die ohne den Einsatz von Wasser eine elektrische Leitfähigkeit zeigen. Die erste erfolgversprechende Entwicklung in diese Richtung ist in der Schrift WO 96/13872 dargelegt.
  • Da die abgreifbare Spannung einer Brennstoff-Einzelzelle relativ gering ist, werden im Allgemeinen mehrere Membran-Elektroden-Einheiten in Reihe geschaltet und über planare Separatorplatten (Bipolarplatten) miteinander verbunden. Dabei müssen die Membran-Elektroden-Einheiten und die Separatorplatten bei vergleichsweise hohen Drücken miteinander verpresst werden, um eine möglichst eine möglichst hohe Dichtigkeit des Systems, eine möglichst hohe Leistung und ein möglichst geringes Volumen zu erreichen.
  • In der Praxis führt das Verpressen der Membran-Elektroden-Einheiten mit den Separatorplatten jedoch häufig zu Problemen, da die verwendeten Polymer-Elektrolyt-Membranen eine vergleichsweise geringe mechanische Festigkeit und Stabilität aufweisen und daher beim Verpressen leicht beschädigt werden können.
  • Weiterhin ist es aufgrund der erforderlichen hohen Verdichtung der Polymer-Elektrolyt-Membran einerseits und ihrer geringen mechanischen Stabilität andererseits nur schwer möglich, reproduzierbare Ergebnisse zu erreichen. Meist weisen die resultierenden Brennstoffzellen-Stacks stark schwankende Leistungen auf, die durch mehr oder weniger stark ausgebildete Risse in den einzelnen Membranen und/oder durch unterschiedlich starke Verdichtung der Membranen bedingt sind.
  • Aufgabe der vorliegenden Erfindung war daher, Membran-Elektroden-Einheiten und Brennstoffzellen mit möglichst hoher Leistung bereitzustellen, die auf möglichst einfache Art und Weise, großtechnisch, möglichst kostengünstig und möglichst reproduzierbar hergestellt werden können.
  • Die Brennstoffzellen sollte dabei vorzugsweise die folgenden Eigenschaften aufweisen:
    • • Die Brennstoffzellen sollten eine möglichst lange Lebensdauer zeigen.
    • • Die Brennstoffzellen sollten bei möglichst hohen Betriebstemperaturen, insbesondere oberhalb von 100°C, eingesetzt werden können.
    • • Die Einzelzellen sollten beim Betrieb eine gleichbleibende oder verbesserte Leistung über einen möglichst langen Zeitraum zeigen.
    • • Die Brennstoffzellen sollten nach langer Betriebszeit eine möglichst hohe Ruhespannung sowie einen möglichst geringen Gasdurchtritt aufweisen (gas-cross-over). Weiterhin sollten sie bei möglichst niedriger Stöchiometrie betrieben werden können.
    • • Die Brennstoffzellen sollten möglichst ohne zusätzliche Brenngasbefeuchtung auskommen.
    • • Die Brennstoffzellen sollten permanenten oder wechselnden Druckdifferenzen zwischen Anode und Kathode bestmöglich widerstehen können.
    • • Insbesondere sollten die Brennstoffzellen robust gegen unterschiedliche Betriebsbedingungen (T, p, Geometrie etc.) sein, um die allgemeine Zuverlässigkeit bestmöglich zu erhöhen.
    • • Weiterhin sollten die Brennstoffzellen eine verbesserte Temperatur- und Korrosionsbeständigkeit und eine vergleichsweise niedrige Gasdurchlässigkeit, insbesondere bei hohen Temperaturen, aufweisen. Eine Abnahme der mechanischen Stabilität und der strukturellen Integrität, insbesondere bei hohen Temperaturen, sollte bestmöglich vermieden werden.
  • Gelöst werden diese Aufgaben durch eine Brennstoff-Einzelzelle mit allen Merkmalen des Anspruchs 1.
  • Gegenstand der vorliegenden Erfindung ist dementsprechend eine Membran-Elektroden-Einheit, die mindestens zwei elektrochemisch aktive Elektroden, welche durch mindestens eine Polymer-Elektrolyt-Membran getrennt werden und wobei die vorstehend genannte Polymer-Elektrolyt-Membran Verstärkungselemente aufweist, die die Polymer-Elektrolyt-Membran zumindest teilweise durchdringen.
  • Für die Zwecke der vorliegenden Erfindung geeignete Polymer-Elektrolyt-Membranen sind an sich bekannt und unterliegen grundsätzlich keiner Einschränkung. Vielmehr sind alle protonenleitenden Materialien geeignet. Vorzugsweise werden jedoch Membranen eingesetzt, die Säuren umfassen, wobei die Säuren kovalent an Polymere gebunden sein können. Des Weiteren kann ein flächiges Material mit einer Säure dotiert werden, um eine geeignete Membran zu bilden. Ferner können auch Gele, insbesondere Polymergele, als Membran verwendet werden, wobei für die vorliegenden Zwecke besonders geeignete Polymermembranen beispielsweise in der DE 102 464 61 beschrieben werden.
  • Diese Membranen können unter anderem durch Quellen von flächigen Materialen, beispielsweise einer Polymerfolie, mit einer Flüssigkeit, die säurehaltige Verbindungen umfasst, oder durch Herstellung einer Mischung von Polymeren und säurehaltige Verbindungen und anschließendes Bilden einer Membran durch Formen eines flächigen Gegenstandes und anschließender Verfestigung, um eine Membran zu bilden, erzeugt werden.
  • Zu den hierfür geeigneten Polymeren gehören unter anderem Polyolefine, wie Poly(chloropren), Polyacetylen, Polyphenylen, Poly(p-xylylen), Polyarylmethylen, Polystyrol, Polymethylstyrol, Polyvinylalkohol, Polyvinylacetat, Polyvinylether, Polyvinylamin, Poly(N-vinylacetamid), Polyvinylimidazol, Polyvinylcarbazol, Polyvinylpyrrolidon, Polyvinylpyridin, Polyvinylchlorid, Polyvinylidenchlorid, Polytetrafluorethylen (PTFE), Polyhexafluorpropylen, Copolymere von PTFE mit Hexafluoropropylen, mit Perfluorpropylvinylether, mit Trifluoronitrosomethan, mit Carbalkoxy-perfluoralkoxyvinylether, Polychlortrifluorethylen, Polyvinylfluorid, Polyvinylidenfluorid, Polyacrolein, Polyacrylamid, Polyacrylnitril, Polycyanacrylate, Polymethacrylimid, cycloolefinische Copolymere, insbesondere aus Norbornen;
    Polymere mit C-O-Bindungen in der Hauptkette, beispielsweise Polyacetal, Polyoxymethylen, Polyether, Polypropylenoxid, Polyepichlorhydrin, Polytetrahydrofuran, Polyphenylenoxid, Polyetherketon, Polyester, insbesondere Polyhydroxyessigsäure, Polyethylenterephthalat, Polybutylenterephthalat, Polyhydroxybenzoat, Polyhydroxypropionsäure, Polypivalolacton, Polycaprolacton, Polymalonsäure, Polycarbonat;
    Polymere mit C-S-Bindungen in der Hauptkette, beispielsweise Polysulfidether, Polyphenylensulfid, Polysulfone, Polyethersulfon;
    Polymere mit C-N-Bindungen in der Hauptkette, beispielsweise Polyimine, Polyisocyanide, Polyetherimin, Polyetherimide, Polyanilin, Polyaramide, Polyamide, Polyhydrazide, Polyurethane, Polyimide, Polyazole, Polyazoletherketon, Polyazine;
    flüssigkristalline Polymere, insbesondere VectraTM sowie
    anorganische Polymere, beispielsweise Polysilane, Polycarbosilane, Polysiloxane, Polykieselsäure, Polysilikate, Silicone, Polyphosphazene und Polythiazyl.
  • Hierbei sind basische Polymere bevorzugt, wobei dies insbesondere für Membranen gilt, die Säuren aufweisen bzw. mit Säuren dotiert sind. Als solche basischen Polymermembranen kommen nahezu alle bekannten Polymermembranen in Betracht, bei denen die Protonen transportiert werden können. Hierbei sind Säuren bevorzugt, die Protonen ohne zusätzliches Wasser, z.B. mittels des sogenannten Grotthus Mechanismus, befördern können.
  • Als basisches Polymer im Sinne der vorliegenden Erfindung wird vorzugsweise ein basisches Polymer mit mindestens einem Stickstoff-, Sauerstoff- oder Schwefelatom, vorzugsweise mindestens einem Stickstoffatom, in einer Wiederholungseinheit verwendet. Weiterhin werden basische Polymere, die mindestens eine Heteroarylgruppe umfassen, bevorzugt.
  • Die Wiederholungseinheit im basischen Polymer enthält gemäß einer bevorzugten Ausführungsform einen aromatischen Ring mit mindestens einem Stickstoffatom. Bei dem aromatischen Ring handelt es sich vorzugsweise um einen fünf- oder sechsgliedrigen Ring mit eins bis drei Stickstoffatomen, der mit einem anderen Ring, insbesondere einem anderen aromatischen Ring, anelliert sein kann.
  • Gemäß einem besonderen Aspekt der vorliegenden Erfindung werden hochtemperaturstabile Polymere eingesetzt, die mindestens ein Stickstoff-, Sauerstoff- und/oder Schwefelatom in einer oder in unterschiedlichen Wiederholungseinheiten enthalten.
  • Hochtemperaturstabil im Sinne der vorliegenden Erfindung ist ein Polymer, welches als polymerer Elektrolyt in einer Brennstoffzelle bei Temperaturen oberhalb 120°C dauerhaft betrieben werden kann. Dauerhaft bedeutet, dass eine erfindungsgemäße Membran mindestens 100 Stunden, vorzugsweise mindestens 500 Stunden, bei mindestens 80°C, vorzugsweise mindestens 120°C, besonders bevorzugt mindestens 160°C, betrieben werden kann, ohne dass die Leistung, die gemäß der in WO 01/1 8894 A2 beschriebenen Methode gemessen werden kann, um mehr als 50%, bezogen auf die Anfangsleistung, abnimmt.
  • Im Rahmen der vorliegenden Erfindung können alle vorstehend genannten Polymere einzeln oder als Mischung (Elend) eingesetzt werden. Hierbei sind insbesondere Elends bevorzugt, die Polyazole und/oder Polysulfone enthalten. Die bevorzugten Blendkomponenten sind dabei Polyethersulfon, Polyetherketon und mit Sulfonsäuregruppen modifizierte Polymere, wie in der deutschen Patentanmeldung DE 100 522 42 und DE 102 464 61 beschrieben.
  • Weiterhin haben sich für die Zwecke der vorliegenden Erfindung auch Polymerblends besonders bewährt, welche mindestens ein basisches Polymer und mindestens ein saures Polymer, vorzugsweise in einem Gewichtsverhältnis von 1:99 bis 99:1, umfassen (sog. Säure-Base-Polymerblends). In diesem Zusammenhang besonders geeignete saure Polymere umfassen Polymere, welche Sulfonsäure- und/oder Phosphonsäuregruppen aufweisen. Erfindungsgemäß ganz besonders geeignete Säure-Base-Polymerblends werden beispielsweise in der Druckschrift EP1073690 A1 ausführlich beschrieben.
  • Eine besonders bevorzugte Gruppe von basischen Polymeren stellen Polyazole dar. Ein basisches Polymer auf Basis von Polyazol enthält wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II) und/oder (III) und/oder (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX) und/oder (X) und/oder (XI) und/oder (XII) und/oder (XIII) und/oder (XIV) und/oder (XV) und/oder (XVI) und/oder (XVII) und/oder (XVIII) und/oder (XIX) und/oder (XX) und/oder (XXI) und/oder (XXII)
    Figure 00060001
    Figure 00070001
    Figure 00080001
    Figure 00090001
    worin
    Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe stehen, die ein- oder mehrkernig sein kann,
    X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe steht, die ein Wasserstoffatom, eine 1-20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
    R gleich oder verschieden für Wasserstoff, eine Alkylgruppe oder eine aromatische Gruppe und in Formel (XX) für eine Alkylengruppe oder eine aromatische Gruppe steht, mit der Maßgabe, dass R in Formel (XX) ungleich Wasserstoff ist, und
    n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist.
  • Bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Chinolin, Pyridin, Bipyridin, Pyridazin, Pyrimidin, Pyrazin, Triazin, Tetrazin, Pyrol, Pyrazol, Anthracen, Benzopyrrol, Benzotriazol, Benzooxathiadiazol, Benzooxadiazol, Benzopyrdin, Benzopyrazin, Benzopyrazidin, Benzopyrimidin, Benzopyrazin, Benzotriazin, Indolizin, Chinolizin, Pyridopyridin, Imidazopyrimidin, Pyrazinopyrimidin, Carbazol, Aciridin, Phenazin, Benzochinolin, Phenoxazin, Phenothiazin, Acridizin, Benzopteridin, Phenanthrolin und Phenanthren, die gegebenenfalls auch substituiert sein können, ab.
  • Dabei ist das Substitionsmuster von Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 beliebig, im Falle vom Phenylen beispielsweise kann Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.
  • Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.
  • Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.
  • Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen, Hydroxygruppen oder kurzkettige Alkylgruppen, wie z. B. Methyl- oder Ethylgruppen.
  • Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I) bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.
  • Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.
  • Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole Poly(pyridine), Poly(pyrimidine) und Poly(tetrazapyrene).
  • In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer oder ein Blend, das mindestens zwei Einheiten der Formel (I) bis (XXII) enthält, die sich voneinander unterscheiden. Die Polymere können als Blockcopolymere (Diblock, Triblock), statistische Copolymere, periodische Copolymere und/oder alternierende Polymere vorliegen.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Polyazol, das nur Einheiten der Formel (I) und/oder (II) enthält.
  • Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten.
  • Im Rahmen der vorliegenden Erfindung sind Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt. Einige Beispiele der äußerst zweckmäßigen Polymere enthaltend wiederkehrende Benzimidazoleinheiten werden durch die nachfolgende Formeln wiedergegeben:
    Figure 00120001
    Figure 00130001
    Figure 00140001
    wobei n und m ganze Zahlen größer gleich 10, vorzugsweise größer gleich 100, sind.
  • Die eingesetzten Polyazole, insbesondere jedoch die Polybenzimidazole zeichnen sich durch ein hohes Molekulargewicht aus. Gemessen als intrinsische Viskosität beträgt diese mindestens 0,2 dl/g, vorzugsweise 0,8 bis 10 dl/g, insbesondere 1 bis 10 dl/g.
  • Bevorzugte Polybenzimidazole sind unter dem Handelsnamen Celazole® kommerziell erhältlich.
  • Zu den bevorzugten Polymeren gehören Polysulfone, insbesondere Polysulfon mit aromatischen und/oder heteroaromatischen Gruppen in der Hauptkette. Gemäß einem besonderen Aspekt der vorliegenden Erfindung weisen bevorzugte Polysulfone und Polyethersulfone eine Schmelzvolumenrate MVR 300/21,6 kleiner oder gleich 40 cm3/ 10 min, insbesondere kleiner oder gleich 30 cm3/10 min und besonders bevorzugt kleiner oder gleich 20 cm3/10 min gemessen nach ISO 1133 auf. Hierbei sind Polysulfone mit einer Vicat-Erweichungstemperatur VST/A/50 von 180°C bis 230°C bevorzugt. In noch einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Zahlenmittel des Molekulargewichts von den Polysulfonen größer als 30.000 g/mol.
  • Zu den Polymeren auf Basis von Polysulfon gehören insbesondere Polymere, welche wiederkehrende Einheiten mit verknüpfenden Sulfon-Gruppen entsprechend den allgemeinen Formeln A, B, C, D, E, F und/oder G aufweisen: -O-R-SO2-R- (A) -O-R-SO2-R-O-R- (B) -O-R-SO2-R-O-R-R- (C)
    Figure 00150001
    -O-R-SO2-R-R-SO2-R- (E) -O-R-SO2-R-R-SO2-R-O-R-SO2-] (F) [O-R-SO2-R][SO2-R-R] (G),worin die Reste R unabhängig voneinander gleich oder verschieden eine aromatische oder heteroaromatische Gruppen darstellen, wobei diese Reste zuvor näher erläutert wurden. Hierzu gehören insbesondere 1,2-Phenylen, 1,3-Phenylen, 1,4-Phenylen, 4,4'-Biphenyl, Pyridin, Chinolin, Naphthalin, Phenanthren.
  • Zu den im Rahmen der vorliegenden Erfindung bevorzugten Polysulfone gehören Homo- und Copolymere, beispielsweise statistische Copolymere. Besonders bevorzugte Polysulfone umfassen wiederkehrende Einheiten der Formeln H bis N:
  • Figure 00150002
  • Figure 00160001
  • Die zuvor beschriebenen Polysulfone können unter den Handelsnamen ®Victrex 200 P, ®Victrex 720 P, ®Ultrason E, ®Ultrason S, ®Mindel, ®Radel A, ®Radel R, ®Victrex HTA, ®Astrel und ®Udel kommerziell erhalten werden.
  • Darüber hinaus sind Polyetherketone, Polyetherketonketone, Polyetheretherketone, Polyetheretherketonketone und Polyarylketone besonders bevorzugt. Diese Hochleistungspolymere sind an sich bekannt und können unter den Handelsnamen Victrex® PEEKTM, ®Hostatec, ®Kadel kommerziell erhalten werden.
  • Zur Herstellung von Polymerfolien kann ein Polymer, vorzugsweise ein Polyazol in einem weiteren Schritt in polaren, aprotischen Lösemitteln, wie beispielsweise Dimethylacetamid (DMAc), gelöst und eine Folie mittels klassischer Verfahren erzeugt werden. In diesem Fall werden die Verstärkungselemente vorzugsweise während der Filmherstellung in den Film eingebracht. Zur Entfernung von Lösemittelresten kann die so erhaltene Folie mit einer Waschflüssigkeit wie in der deutschen Patentanmeldung DE 101 098 29 behandelt werden. Durch die in der deutschen Patentanmeldung beschriebene Reinigung der Polyazolfolie von Lösungsmittelresten verbessern sich überraschend die mechanischen Eigenschaften der Folie. Diese Eigenschaften umfassen insbesondere den E-Modul, die Reißfestigkeit und die Bruchzähigkeit der Folie.
  • Zusätzlich kann der Polymerfilm weitere Modifizierungen, beispielsweise durch Vernetzung, wie in der deutschen Patentanmeldung DE 101 107 52 oder in WO 00/44816 beschrieben, aufweisen. In einer bevorzugten Ausführungsform enthält die eingesetzte Polymerfolie aus einem basischen Polymer und mindestens einer Blendkomponente zusätzlich einem Vernetzer, wie in der deutschen Patentanmeldung DE 101 401 47 beschrieben.
  • Die Dicke der Polyazolfolien kann in weiten Bereichen liegen. Vorzugsweise liegt die Dicke der Polyazolfolie vor einer Dotierung mit Säure im Bereich von 5 μm bis 2000 μm, besonders bevorzugt im Bereich von 10 μm bis 1000 μm, insbesondere bevorzugt im Bereich von 20 μm bis 1000 μm, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Um eine Protonen-Leitfähigkeit zu erzielen, werden diese Folien mit einer Säure dotiert. Säuren umfassen in diesem Zusammenhang alle bekannten Lewis- und Brønsted-Säuren, vorzugsweise anorganische Lewis- und Brønsted-Säuren.
  • Weiterhin ist auch der Einsatz von Polysäuren möglich, insbesondere Isopolysäuren und Heteropolysäuren sowie von Mischungen verschiedener Säuren. Dabei bezeichnen im Sinne der vorliegenden Erfindung Heteropolysäuren anorganische Polysäuren mit mindestens zwei verschiedenen Zentralatomen, die aus jeweils schwachen, mehrbasischen Sauerstoff-Säuren eines Metalls (vorzugsweise Cr, Mo, V, W) und eines Nichtmetalls (vorzugsweise As, I, P, Se, Si, Te) als partielle gemischte Anhydride entstehen. Zu ihnen gehören unter anderen die 12-Molybdatophosphorsäure und die 12-Wolframatophosphorsäure.
  • Über den Dotierungsgrad kann die Leitfähigkeit der Polyazolfolie beeinflußt werden. Dabei nimmt die Leitfähigkeit mit steigender Konzentration an Dotierungsmittel solange zu, bis ein maximaler Wert erreicht ist.
  • Erfindungsgemäß wird der Dotierungsgrad angegeben als Mol Säure pro Mol Wiederholungseinheit des Polymers. Im Rahmen der vorliegenden Erfindung ist ein Dotierungsgrad zwischen 3 und 80, zweckmäßigerweise zwischen 5 und 60, insbesondere zwischen 12 und 60, bevorzugt.
  • Besonders bevorzugte Dotierungsmittel sind Schwefelsäure und Phosphorsäure, bzw. Verbindungen, die diese Säuren, beispielsweise bei Hydrolyse freisetzen. Ein ganz besonders bevorzugtes Dotierungsmittel ist Phosphorsäure (H3PO4). Hierbei werden im Allgemeinen hochkonzentrierte Säuren eingesetzt. Gemäß einem besonderen Aspekt der vorliegenden Erfindung beträgt die Konzentration der Phosphorsäure mindestens 50 Gew.-%, insbesondere mindestens 80 Gew.-%, bezogen auf das Gewicht des Dotierungsmittels.
  • Gemäß der vorliegenden Erfindung weist die Polymer-Elektrolyt-Membran Verstärkungselemente auf, die die Polymer-Elektrolyt-Membran zumindest teilweise durchdringen, d. h. in die Polymer-Elektrolyt-Membran zumindest teilweise eindringen. Besonders bevorzugt sind die Verstärkungselemente überwiegend in der Membran eingebettet und ragen, falls überhaupt, nur vereinzelt aus ihr heraus.
  • Hiervon zu unterscheiden sind laminare Strukturen, bei welchen die Polymer-Elektrolyt-Membran und die Verstärkungselemente jeweils separate Schichten ausbilden, die zwar miteinander verbunden sind, jedoch nicht ineinander eindringen. Derartige laminare Strukturen werden im Rahmen der vorliegenden Erfindung nicht mitumfasst, die vorliegende Erfindung umfasst nur solche verstärkte Polymer-Elektrolyt-Membranen, bei denen die Verstärkungselemente zumindest teilweise mit der Membran verbunden sind. Als teilweiser Verbund wird ein Verbund aus Verstärkungselement und Membran angesehen, bei dem die Verstärkungselemente zweckmäßigerweise eine derartige Kraft aufnehmen, dass sich im Kraft-Dehnungs-Diagramm bei 20°C die Bezugskraft der Polymer-Elektrolyt-Membran mit Verstärkungselementen, verglichen mit der Polymer-Elektrolyt-Membran ohne Verstärkungselemente, im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 10 %, bevorzugt um mindestens 20 % und ganz besonders bevorzugt um mindestens 30 %, unterscheidet.
  • Erfindungsgemäß ist die Polymer-Elektrolyt-Membran vorzugsweise faserverstärkt und die Verstärkungselemente umfassen bevorzugt Monofilamente, Multifilamente, Lang- und/oder /Kurzfasern, Hybridgarne und/oder Bi-Komponentenfasern. Neben einem Verstärkungselement aus konkreten Fasern, kann das Verstärkungselement auch eine textile Fläche bilden. Geeignete textile Flächen sind Vliesstoffe, Gewebe, Gestricke, Gewirke, Filze, Gelege und/oder Gitter, besonders bevorzugt Gelege, Gewebe und/oder Vliesstoffe. Nicht limitierende Beispiele für die oben genannten Gewebe sind solche aus Poly(acryl), Poly(ethylenterephtalat), Poly(propylen), Poly(tetrafluoroethylen), Poly(ethylen-co-tetrafluorethylen) (ETFE), 1:1 alternierendem Copolymer von Ethylen und Chlortrifluorethylen (E-CTFE), Polyvinylidenfluorid (PVDF), Poly(acrylnitril) sowie Polyphenylensulfid (PPS).
  • Gewebe bezeichnen Erzeugnisse aus überwiegend rechtwinklig gekreuzten Fäden aus Monofilen und/oder Multifilamentfäden. Die Maschenweite der textilen Fläche kann üblicherweise bei 20 bis 2000 μm liegen, für die Zwecke der vorliegenden Erfindung haben sich textile Flächen, insbesondere Gewebe, Gelege und Gitter, mit einer Maschenweite im Bereich von 30 bis 300 μm besonders bewährt. Dabei kann die Maschenweite beispielsweise durch elektronische Bildanalyse einer optischen oder TEM-Aufnahme ermittelt werden.
  • Die offene Siebfläche a0 der textilen Fläche, insbesondere des Gewebes, Geleges und Gitters, kann üblicherweise im Bereich 0,1 bis 98 % liegen, vorzugsweise im Bereich von 20 bis 80 %. Sie kann über die Beziehung
    Figure 00190001
    bestimmt werden, wobei d den Garndurchmesser und w die Maschenweite bezeichnen.
  • Die Siebfeinheit n des Gewebes kann üblicherweise im Bereich von 8 bis 140 n/cm liegen, vorzugsweise jedoch im Bereich von 50 bis 90 n/cm. Sie kann über die Beziehung
    Figure 00190002
    ermittelt werden.
  • Die Gelege/Gitter weisen üblicherweise 7 bis 140 counts/cm Fäden auf.
  • Die Garndurchmesser der die textile Fläche bildenden Garne bzw. Fasern, insbesondere des Gewebes, können im Bereich von 30-950 μm liegen, vorzugsweise jedoch im Bereich von 30 bis 500 μm. Er kann durch elektronische Bildanalyse einer optischen oder TEM-Aufnahme bestimmt werden. Die Mindestdicke der Verstärkungselemente entspricht vorzugsweise der Gesamtdicke der Polymermembran.
  • Für die Zwecke der vorliegenden Erfindung ganz besonders geeignete Gewebe sind beispielsweise von der Firma SEFAR unter der Bezeichnung SEFAR NITEX®, SEFAR PETEX®, SEFAR PROPYLTEX®, SEFAR FLUORTEX® und SEFAR PEAKTEX® erhältlich.
  • Vliesstoffe bezeichnen flexible, poröse Flächengebilde, die nicht durch klassische Methoden der Gewebebindung von Kette und Schluß oder durch Maschenbildung, sondern durch Verschlingung und/oder kohäsive und/oder adhäsive Verbindung von Fasern hergestellt werden (z.B. Spunbond oder Melt Blown Vliese). Vliesstoffe sind lockere Materialien aus Spinnfasern oder Filamenten, deren Zusammenhalt im Allgemeinen durch die den Fasern eigene Haftung oder durch eine mechanische Nachverfestigung gegeben ist.
  • Erfindungsgemäß können die Einzelfasern eine Vorzugsrichtung aufweisen (orientierte oder Kreuz-Vliesstoffe) oder ungerichtet sein (Wirr-Vliesstoffe). Die Vliesstoffe können durch Vernadeln, Vermaschen oder durch Verwirbeln mittels scharfer Wasserstrahlen (sogenannte spunlaced Vliesstoffe), mechanisch verfestigt werden.
  • Adhäsiv verfestigte Vliesstoffe werden bevorzugt durch Verkleben der Fasern mit flüssigen Bindemitteln, insbesondere mit Acrylat-Polymeren, SBR/NBR, Polyvinylester- oder Polyurethan-Dispersionen, oder durch Schmelzen oder Auflösen von sogenannten Bindefasern, die dem Vlies bei der Herstellung beigemischt wurden, erhalten.
  • Bei der kohäsiven Verfestigung werden die Faseroberflächen durch geeignete Chemikalien günstigerweise angelöst und durch Druck verbunden oder bei erhöhter Temperatur verschweißt.
  • Im Rahmen einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung sind die Vliesstoffe durch zusätzliche Fäden, Gewebe oder Gewirke weiter verstärkt.
  • Das Flächengewicht der Vliesstoffe beträgt günstigerweise 30 g/m2 bis 500 g/m2, insbesondere 30 g/m2 bis 150 g/m2.
  • Nicht limitierende Beispiele für besonders bevorzugte Vliesstoffe sind SEFAR PETEX©, SEFAR FLUORTEX©, SEFRA PEEKTEX©.
  • Die Zusammensetzung der Verstärkungselemente kann prinzipiell frei gewählt und auf die konkrete Anwendung hin abgestimmt werden. Jedoch enthalten die Verstärkungselemente zweckmäßigerweise Glasfasern, Mineralfasern, Naturfasern, Carbonfasern, Borfasern, Synthesefasern, Polymerfasern und/oder Keramikfasern, insbesondere SEFAR CARBOTEX©, SEFAR PETEX©, SEFAR FLUORTEX©, SEFRA PEEKTEX©, SEFAR TETEX MONO©, SEFAR TETEX DLW, SEFAR TETEX Multi der Firma SEFAR, aber auch DUOFIL©, EMMITEX Garn©. Ebenfalls möglich sind, wenn diese aus gegen Säuren, korrosionsbeständigen Materialien, wie z.B. Hastelloy o. ä., hergestellt sind, sowie quadratmaschen-, Tressen-, Körpertressen oder Multiplexgewebe der Firma GDK.
  • Grundsätzlich sind alle Arten und Materialien geeignet, insofern diese unter den herrschenden Bedingungen beim Betrieb in einer Brennstoffzelle weitestgehend innert sind und die mechanischen Anforderungen an die Verstärkung erfüllen.
  • Die Verstärkungselemente, die ggf. Bestandteil eines Gewebes, Gestricke, Gewirkes oder Vlieses sind, können einen praktisch runden Querschnitt besitzen oder auch andere Formen aufweisen, wie hantel-, nierenförmige, dreieckige oder multilobale Querschnitte. Auch Bikomponentenfasern sind möglich.
  • Die Verstärkungselemente haben vorzugsweise einen maximalen Durchmesser im Bereich von 10 μm bis 500 μm, bevorzugt im Bereich von 20 μm bis 300 μm, besonders bevorzugt im Bereich von 20 μm bis 200 μm und insbesondere im Bereich von 25 μm bis 100 μm. Dabei bezieht sich der maximale Durchmesser auf die längste Ausdehnung im Querschnitt.
  • Weiterhin weisen die Verstärkungselemente günstigerweise ein Young-Modul von mindestens 5 GPa, bevorzugt mindestens 10 GPa, besonders bevorzugt mindestens 20 GPa, auf. Die Bruchdehnung der Verstärkungselemente liegt vorzugsweise im Bereich von 0,5 % bis 100 %, bevorzugt im Bereich von 1 % bis 60 %.
  • Der Volumenanteil der Verstärkungselemente, bezogen auf das Gesamtvolumen der Polymer-Elektrolyt-Membran, ist zweckmäßigerweise im Bereich von 5 Vol.-% bis 95 Vol.-%, bevorzugt im Bereich von 10 Vol.-% bis 80 Vol.-%, besonders bevorzugt im Bereich von 10 Vol.-% bis 50 Vol.-% und insbesondere im Bereich von 10 Vol.-% bis 30 Vol.-%. Er wird vorzugsweise bei 20°C gemessen.
  • Im Rahmen der vorliegenden Erfindung nehmen die Verstärkungselemente zweckmäßigerweise eine derartige Kraft auf, dass sich im Kraft-Dehnungs-Diagramm bei 20°C die Bezugskraft der Polymer-Elektrolyt-Membran mit Verstärkungselementen, verglichen mit der Polymer-Elektrolyt-Membran ohne Verstärkungselemente, im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 10 %, bevorzugt um mindestens 20 % und ganz besonders bevorzugt um mindestens 30 %, unterscheidet.
  • Darüber hinaus ist die Verstärkung günstigerweise derart, dass die Bezugskraft der Polymer-Elektrolyt-Membran bei Raumtemperatur (20°C), dividiert durch die Bezugskraft der Trägereinlage bei 180°C, gemessen an mindestens einem Punkt im Bereich zwischen 0 und 1 % Dehnung, einen Quotienten von höchsten 3, vorzugsweise höchstens 2,5, insbesondere bevorzugt kleiner 2, ergibt.
  • Die Messung der Bezugskraft erfolgt nach EN 29073, Teil 3 an 5 cm breiten Proben bei 100 mm Messlänge. Der Zahlenwert der Vorspannkraft, angegeben in Centinewton [cN] entspricht dabei dem Zahlenwert der Flächenmasse der Probe, angegeben in Gramm pro Quadratmeter.
  • Die Polymer-Elektrolyt-Membranen können auf an sich bekannte Weise hergestellt werden, wobei sie zweckmäßigerweise direkt während ihrer Herstellung mit den Verstärkungselementen versehen werden, vorzugsweise indem man die Polymer-Elektrolyt-Membran in Gegenwart der Verstärkungselemente bildet und diese dabei derart anordnet, dass sie die Polymer-Elektrolyt-Membran zumindest teilweise durchdringen.
  • Dabei werden die protonenleitfähige Membranen bevorzugt durch ein Verfahren erhalten werden, umfassend die Schritte
    • I) Lösen von Polymeren, insbesondere Polyazolen in Polyphosphorsäure,
    • II) Erwärmen der Lösung erhältlich gemäß Schritt I) unter Inertgas auf Temperaturen von bis zu 400°C,
    • III) Anordnen von Verstärkungselementen auf einem Träger,
    • IV) Bilden einer Membran unter Verwendung der Lösung des Polymeren gemäß Schritt II), ggf. nach zwischenzeitlichem Abkühlen, auf dem Träger aus Schritt III) in einer Weise, dass die Verstärkungselemente die Lösung zumindest teilweise durchdringen und
    • V) Behandlung der in Schritt III) gebildeten Membran bis diese selbsttragend ist.
  • Eine derartige Vorgehensweise, jedoch ohne den Einbau von Verstärkungselementen, wird beispielsweise in der DE 102 464 61 beschrieben, aus welcher der Fachmann weitere wertvolle Hinweise bezüglich der Schritte I), III), IV) und V) entnehmen kann. Die entsprechenden Membranen ohne Verstärkungselemente sind beispielsweise unter dem Handelsnamen Celtec® erhältlich.
  • Im Rahmen einer weiteren besonders bevorzugten Variante der vorliegenden Erfindung werden dotierte Polyazolfolien durch ein Verfahren erhalten, umfassend die Schritte
    • A) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion,
    • B) Anordnen von Verstärkungselementen auf einem Träger,
    • C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf dem Träger aus Schritt B) in einer Weise, dass die Verstärkungselemente die Mischung zumindest teilweise durchdringen,
    • D) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt C) unter Inertgas auf Temperaturen von bis zu 350°C, vorzugsweise bis zu 280°C unter Ausbildung des Polyazol-Polymeren.
    • E) Behandlung der in Schritt D) gebildeten Membran (bis diese selbsttragend ist).
  • Diese Variante erfordert den Einsatz von Verstärkungselementen deren Schmelzpunkt oberhalb der in Schritt D) genannten Temperaturen liegt.
  • Insofern der Einsatz von Verstärkungselementen erfolgen soll, deren Schmelzpunkt unterhalb der in Schritt D) genannten Temperaturen liegt, kann Schritt D) (Erwärmen der Mischung aus Schritt A) auch direkt nach Schritt A) erfolgen. Nach anschließender Abkühlung kann Schritt C) erfolgen.
  • Des Weiteren ist es auch möglich, Schritt B) auszulassen und die Zuführung der Verstärkungselemente vor oder während Schritt D) durchzuführen. Je nach Beschaffenheit der Materialien können die Verstärkungselemente auch über einen Kalander, der ggf. Beheizt ist, erfolgen. Hierbei wird die Verstärkung in das noch duktile Basismaterial eingepresst.
  • Eine derartige Vorgehensweise, jedoch ohne den Einbau von Verstärkungselementen, wird beispielsweise in der DE 102 464 59 beschrieben, aus welcher der Fachmann weitere wertvolle Hinweise bezüglich der Schritte A), C), D) und E) entnehmen kann. Die entsprechenden Membranen ohne Verstärkungselemente sind beispielsweise unter dem Handelsnamen Ceitec® erhältlich.
  • Die in Schritt A) einzusetzenden aromatischen bzw. heteroaromatischen Carbonsäure-Verbindungen umfassen bevorzugt Di-Carbonsäuren und Tri-Carbonsäuren und Tetra-Carbonsäuren bzw. deren Estern oder deren Anhydride oder deren Säurechloride. Der Begriff aromatische Carbonsäuren umfasst gleichermaßen auch heteroaromatische Carbonsäuren.
  • Vorzugsweise handelt es sich bei den aromatischen Dicarbonsäuren um Isophthalsäure, Terephthalsäure, Phthalsäure, 5-Hydroxyisophthalsäure, 4-Hydroxyisophthalsäure, 2-Hydroxyterephthalsäure, 5-Aminoisophthalsäure, 5-N,N-Dimethylaminoisophthalsäure, 5-N,N-Diethylaminoisophthalsäure, 2,5-Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure, 4,6-Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure, 3,4-Dihydroxyphthalsäure, 3-Fluorophthalsäure, 5-Fluoroisophthalsäure, 2-Fluoroterephthalsäure, Tetrafluorophthalsäure, Tetrafluoroisophthalsäure, Tetrafluoroterephthalsäure,1,4-Naphthalindicarbonsäure, 1,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7-Naphthalindicarbonsäure, Diphensäure, 1,8-Dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, 2,2-Bis-(4-carboxyphenyl)-hexafluoropropan, 4,4'-Stilbendicarbonsäure, 4-Carboxyzimtsäure, bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
  • Bei den aromatischen Tri-, Tetra-carbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 1,3,5-Benzol-tricarbonsäure (Trimesic acid), 1,2,4-Benzol tricarbonsäure (Trimellitic acid), (2-Carboxyphenyl)-iminodiessigsäure, 3,5,3'-Biphenyltricarbonsäure oder 3,5,4'-Biphenyltricarbonsäure.
  • Bei den aromatischen Tetracarbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 3,5,3',5'-Biphenyltetracarboxylsäure, 1,2,4,5-Benzoltetracarbonsäure, Benzophenontetracarbonsäure, 3,3',4,4'-Biphenyltetracarbonsäure, 2,2',3,3'-Biphenyltetracarbonsäure, 1,2,5,6-Naphthalintetracarbonsäure oder 1,4,5,8-Naphthalintetracarbonsäure.
  • Bevorzugt handelt es sich bei den eingesetzten heteroaromatischen Carbonsäuren um heteroaromatischen Di-carbonsäuren oder Tri-carbonsäuren oder Tetra-Carbonsäuren bzw. deren Estern oder deren Anhydride. Als heteroaromatische Carbonsäuren werden aromatische Systeme verstanden, welche mindestens ein Stickstoff, Sauerstoff, Schwefel oder Phosphoratom im Aromaten enthalten. Vorzugsweise handelt es sich um Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6-Pyrimidindicarbonsäure, 2,5-Pyrazindicarbonsäure, 2,4,6-Pyridintricarbonsäure oder Benzimidazol-5,6-dicarbonsäure oder deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
  • Der Gehalt an Tri-carbonsäure bzw. Tetracarbonsäuren (bezogen auf eingesetzte Dicarbonsäure) beträgt zwischen 0 und 30 Mol-%, vorzugsweise 0,1 und 20 Mol %, insbesondere 0,5 und 10 Mol-%.
  • Bevorzugt handelt es sich bei den eingesetzten aromatischen und heteroaromatischen Diaminocarbonsäuren um Diaminobenzoesäure oder deren Mono- und Dihydrochloridderivate.
  • Bevorzugt werden Mischungen von mindestens 2 verschiedenen aromatischen Carbonsäuren eingesetzt. Besonders bevorzugt werden Mischungen eingesetzt, die neben aromatischen Carbonsäuren auch heteroaromatische Carbonsäuren enthalten. Das Mischungsverhältnis von aromatischen Carbonsäuren zu heteroaromatischen Carbonsäuren beträgt zwischen 1:99 und 99:1, vorzugsweise 1:50 bis 50:1.
  • Bei diesen Mischungen handelt es sich insbesondere um Mischungen von N-heteroaromatischen Di-carbonsäuren und aromatischen Dicarbonsäuren. Nicht limitierende Beispiele dafür sind Isophthalsäure, Terephthalsäure, Phthalsäure, 2,5-Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure, 4,6-Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure. 3,4- Dihydroxyphthalsäure, 1,4-Naphthalindicarbonsäure, 1,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7-Naphthalindicarbonsäure, Diphensäure, 1,8-Dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6-Pyrimidindicarbonsäure, 2,5-Pyrazindicarbonsäure.
  • Die in Schritt A) einzusetzenden Tetra-Amino-Verbindungen umfassen bevorzugt 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6-Tetraaminopyridin, 1,2,4,5-Tetraaminobenzol, 3,3',4,4'-Tetraaminodiphenylsulfon, 3,3',4,4'-Tetraaminodiphenylether, 3,3',4,4'-Tetraaminobenzophenon, 3,3',4,4'-Tetraaminodiphenylmethan und 3,3',4,4'-Tetraaminodiphenyldimethylmethan sowie deren Salze, insbesondere deren Mono-, Di-, Tri- und Tetrahydrochloridderivate.
  • Bei der in Schritt A) verwendeten Polyphosphorsäure handelt es sich um handelsübliche Polyphosphorsäuren, wie diese beispielsweise von Riedel-de Haen erhältlich sind. Die Polyphosphorsäuren Hn+2PnO3n+1 (n > 1) besitzen üblicherweise einen Gehalt berechnet als P2O5 (acidimetrisch) von mindestens 83%. Anstelle einer Lösung der Monomeren kann auch eine Dispersion/Suspension erzeugt werden.
  • Die in Schritt A) erzeugte Mischung weist ein Gewichtsverhältnis Polyphosphorsäure zu Summe aller Monomeren von 1:10000 bis 10000:1, vorzugsweise 1:1000 bis 1000:1, insbesondere 1:100 bis 100:1, auf.
  • Die Schichtbildung gemäß Schritt C) erfolgt mittels an sich bekannter Maßnahmen (Gießen, Sprühen, Rakeln) die aus dem Stand der Technik zur Polymerfilm-Herstellung bekannt sind. Als Träger sind alle unter den Bedingungen als innert zu bezeichnenden Träger geeignet. Zur Einstellung der Viskosität kann die Lösung gegebenenfalls mit Phosphorsäure (konz. Phosphorsäure, 85%) versetzt werden. Hierdurch kann die Viskosität auf den gewünschten Wert eingestellt und die Bildung der Membran erleichtert werden.
  • Die gemäß Schritt C) erzeugte Schicht hat eine Dicke zwischen 20 und 4000 μm, vorzugsweise zwischen 30 und 3500 μm, insbesondere zwischen 50 und 3000 μm.
  • Insofern die Mischung gemäß Schritt A) auch Tricarbonsäuren bzw. Tetracarbonsäure enthält, wird hierdurch eine Verzweigung/Vernetzung des gebildeten Polymeren erzielt. Diese trägt zur Verbesserung der mechanischen Eigenschaft bei.
  • Behandlung der gemäß Schritt D) erzeugten Polymerschicht in Gegenwart von Feuchtigkeit bei Temperaturen und für eine Dauer ausreichend bis die Schicht eine ausreichende Festigkeit für den Einsatz in Brennstoffzellen besitzt. Die Behandlung kann soweit erfolgen, dass die Membran selbsttragend ist, so dass sie ohne Beschädigung vom Träger abgelöst werden kann.
  • Gemäß Schritt D) wird das in Schritt C) erhaltene flächige Gebilde auf eine Temperatur von bis zu 350°C, vorzugsweise bis zu 280°C und besonders bevorzugt im Bereich von 200°C bis 250°C erhitzt. Die in Schritt D) einzusetzenden Inertgase sind in der Fachwelt bekannt. Zu diesen gehören insbesondere Stickstoff sowie Edelgase, wie Neon, Argon, Helium.
  • In einer Variante des Verfahrens kann durch Erwärmen der Mischung aus Schritt A) auf Temperaturen von bis zu 350°C, vorzugsweise bis zu 280°C, bereits die Bildung von Oligomeren und/oder Polymeren bewirkt werden. In Abhängigkeit von der gewählten Temperatur und Dauer, kann anschließend auf die Erwärmung in Schritt D) teilweise oder gänzlich verzichtet werden. Auch diese Variante ist Gegenstand der vorliegenden Erfindung.
  • Die Behandlung der Membran in Schritt E) erfolgt bei Temperaturen oberhalb 0°C und kleiner 150°C, vorzugsweise bei Temperaturen zwischen 10°C und 120°C, insbesondere zwischen Raumtemperatur (20°C) und 90°C, in Gegenwart von Feuchtigkeit bzw. Wasser und/oder Wasserdampf bzw. und/oder wasserenthaltende Phosphorsäure von bis zu 85%. Die Behandlung erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Wesentlich ist, dass die Behandlung in Gegenwart von ausreichender Feuchtigkeit geschieht, wodurch die anwesende Polyphosphorsäure durch partielle Hydrolyse unter Ausbildung niedermolekularer Polyphosphorsäure und/oder Phosphorsäure zur Verfestigung der Membran beiträgt.
  • Die partielle Hydrolyse der Polyphosphorsäure in Schritt E) führt zu einer Verfestigung der Membran und zu einer Abnahme der Schichtdicke und Ausbildung einer Membran mit einer Dicke zwischen 15 und 3000 μm, vorzugsweise zwischen 20 und 2000 μm, insbesondere zwischen 20 und 1500 μm, die selbsttragend ist.
  • Die in der Polyphosphorsäureschicht gemäß Schritt C) vorliegenden intra- und intermolekularen Strukturen (Interpenetrierende Netzwerke IPN) führen in Schritt C) zu einer geordneten Membranbildung, welche für die besonderen Eigenschaften der gebildeten Membran verantwortlich zeichnet.
  • Die obere Temperaturgrenze der Behandlung gemäß Schritt E) beträgt in der Regel 150°C. Bei extrem kurzer Einwirkung von Feuchtigkeit, beispielsweise von überhitztem Dampf kann dieser Dampf auch heißer als 150°C sein. Wesentlich für die Temperaturobergrenze ist die Dauer der Behandlung.
  • Die partielle Hydrolyse (Schritt E) kann auch in Klimakammern erfolgen, bei der unter definierter Feuchtigkeitseinwirkung die Hydrolyse gezielt gesteuert werden kann. Hierbei kann die Feuchtigkeit durch die Temperatur bzw. Sättigung der kontaktierenden Umgebung beispielsweise Gase, wie Luft, Stickstoff, Kohlendioxid oder andere geeignete Gase, oder Wasserdampf gezielt eingestellt werden. Die Behandlungsdauer ist abhängig von den vorstehend gewählten Parametern.
  • Weiterhin ist die Behandlungsdauer von der Dicke der Membran abhängig.
  • In der Regel beträgt die Behandlungsdauer zwischen wenigen Sekunden bis Minuten, beispielsweise unter Einwirkung von überhitztem Wasserdampf, oder bis hin zu ganzen Tagen, beispielsweise an der Luft bei Raumtemperatur und geringer relativer Luftfeuchtigkeit. Bevorzugt beträgt die Behandlungsdauer zwischen 10 Sekunden und 300 Stunden, insbesondere 1 Minute bis 200 Stunden.
  • Wird die partielle Hydrolyse bei Raumtemperatur (20°C) mit Umgebungsluft einer relativen Luftfeuchtigkeit von 40-80% durchgeführt beträgt die Behandlungsdauer zwischen 1 und 200 Stunden.
  • Die gemäß Schritt E) erhaltene Membran kann selbsttragend ausgebildet werden, d.h. sie kann vom Träger ohne Beschädigung gelöst und anschließend gegebenenfalls direkt weiterverarbeitet werden.
  • Über den Grad der Hydrolyse, d.h. die Dauer, Temperatur und Umgebungsfeuchtigkeit, ist die Konzentration an Phosphorsäure und damit die Leitfähigkeit der Polymermembran einstellbar. Die Konzentration der Phosphorsäure wird als Mol Säure pro Mol Wiederholungseinheit des Polymers angegeben. Durch das Verfahren, umfassend die Schritte A) bis E), können Membranen mit einer besonders hohen Phosphorsäurekonzentration erhalten werden. Bevorzugt ist eine Konzentration (Mol Phosphorsäure bezogen auf eine Wiederholeinheit der Formel (I), beispielsweise Polybenzimidazol) zwischen 10 und 50, insbesondere zwischen 12 und 40. Derartig hohe Dotierungsgrade (Konzentrationen) sind durch Dotieren von Polyazolen mit kommerziell erhältlicher ortho-Phosphorsäure nur sehr schwierig bzw. gar nicht zugänglich.
  • Eine vorteilhafte Abwandlung des zuvor beschriebenen Verfahrens, bei dem dotierte Polyazolfolien durch die Verwendung von Polyphosphorsäure hergestellt werden, umfasst die Schritte
    • 1) Umsetzung von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, oder von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren in der Schmelze bei Temperaturen von bis zu 350°C, vorzugsweise bis zu 300°C,
    • 2) Lösen des gemäß Schritt 1) erhaltenen festen Prä-Polymeren in Polyphosphorsäure,
    • 3) Erwärmen der Lösung erhältlich gemäß Schritt 2) unter Inertgas auf Temperaturen von bis zu 300°C, vorzugsweise bis zu 280°C, unter Ausbildung des gelösten Polyazol-Polymeren,
    • 4) Anordnen von Verstärkungselementen auf einem Träger,
    • 5) Bilden einer Membran unter Verwendung der Lösung des Polyazol-Polymeren gemäß Schritt 3) auf dem Träger aus Schritt 4) in einer Weise, dass die Verstärkungselemente die Lösung zumindest teilweise durchdringen, und
    • 6) Behandlung der in Schritt 5) gebildeten Membran bis diese selbsttragend ist.
  • Die unter den Punkten 1) bis 6) dargestellten Verfahrensschritten wurden zuvor für die Schritte A) bis E) näher erläutert, wobei hierauf, insbesondere im Hinblick auf bevorzugte Ausführungsformen Bezug genommen wird.
  • Weiterhin wird eine derartige Vorgehensweise, jedoch ohne den Einbau von Verstärkungselementen, beispielsweise in der DE 102 464 59 beschrieben, aus welcher der Fachmann weitere wertvolle Hinweise bezüglich der Schritte 1)-3) sowie 5) und 6) entnehmen kann. Die entsprechenden Membranen ohne Verstärkungselemente sind beispielsweise unter dem Handelsnamen Celtec® erhältlich.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung, werden zur Herstellung der Polymer-Elektrolyt-Membranen Phosphonsäuregruppen umfassende Monomere und/oder Sulfonsäuregruppen umfassende Monomeren eingesetzt. Besonders zweckmäßige Ausgestaltungen dieser Variante umfassen die Schritte
    • A) Herstellung einer Mischung umfassend Phosphonsäuregruppen-umfassende Monomere und mindestens ein Polymer,
    • B) Anordnen von Verstärkungselementen auf einem Träger,
    • C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf dem Träger aus Schritt B) in einer Weise, dass die Verstärkungselemente die Mischung zumindest teilweise durchdringen,
    • D) Polymerisation der in dem flächigen Gebilde erhältlich gemäß Schritt C) vorhandenen Phosphonsäuregruppen umfassende Monomere.
  • Im Rahmen noch einer weiteren besonders bevorzugten Variante der vorliegenden Erfindung werden dotierte Polyazolfolien durch ein Verfahren erhalten, umfassend die Schritte
    • A) Lösen des Polyazol-Polymeren in organischen Phosphonsäureanhydriden unter Ausbildung einer Lösung und/oder Dispersion,
    • B) Erwärmen der Lösung aus Schritt A) unter Inertgas auf Temperaturen von bis zu 400°C, vorzugsweise bis zu 350°C, insbesondere von bis zu 300°C,
    • C) Anordnen von Verstärkungselementen auf einem Träger,
    • D) Bilden einer Membran unter Verwendung der Lösung des Polyazol-Polymeren aus Schritt B) auf dem Träger aus Schritt C) und
    • E) Behandlung der in Schritt D) gebildeten Membran bis diese selbsttragend ist.
  • Eine derartige Vorgehensweise, jedoch ohne den Einbau von Verstärkungselementen, wird beispielsweise in der WO 2005/063851 beschrieben, aus welcher der Fachmann weitere wertvolle Hinweise bezüglich der Schritte A), B), D) und E) entnehmen kann. Die entsprechenden Membranen ohne Verstärkungselemente sind beispielsweise unter dem Handelsnamen Celtec® erhältlich.
  • Bei den in Schritt A) verwendeten organischen Phosphonsäureanhydriden handelt es sich um cyclischen Verbindungen der Formel
    Figure 00290001
    oder um linearen Verbindungen der Formel
    Figure 00290002
    oder um Anhydride der mehrfachen organsichen Phosphonsäuren wie z.B. der Formel von Anhydride der Diphosphonsäure
    Figure 00300001
    worin der Rest R und R' gleich oder verschieden ist und für eine C1-C20-kohlenstoffhaltigen Gruppe steht.
  • Im Rahmen der vorliegenden Erfindung werden unter einer C1-C20-kohlenstoff-haltigen Gruppe bevorzugt die Reste C1-C20-Alkyl, besonders bevorzugt Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, s-Butyl, t-Butyl, n-Pentyl, s-Pentyl, Cyclopentyl, n-Hexyl, Cyclohexyl, n-Octyl oder Cyclooctyl, C1-C20-Alkenyl, besonders bevorzugt Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Octenyl oder Cyclooctenyl, C1-C20-Alkinyl, besonders bevorzugt Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl oder Octinyl, C6-C20-Aryl, besonders bevorzugt Phenyl, Biphenyl, Naphthyl oder Anthracenyl, C1-C20-Fluoralkyl, besonders bevorzugt Trifluormethyl, Pentafluorethyl oder 2,2,2-Trifluorethyl, C6-C20-Aryl, besonders bevorzugt Phenyl, Biphenyl, Naphthyl, Anthracenyl, Triphenylenyl, [1,1';3',1'']Terphenyl-2'-yl, Binaphthyl oder Phenanthrenyl, C6-C20-Fluoraryl, besonders bevorzugt Tetrafluorophenyl oder Heptafluoronaphthyl, C1-C20-Alkoxy, besonders bevorzugt Methoxy, Ethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy oder t-Butoxy, C6-C20-Aryloxy, besonders bevorzugt Phenoxy, Naphthoxy, Biphenyloxy, Anthracenyloxy, Phenanthrenyloxy, C7-C20-Arylalkyl, besonders bevorzugt o-Tolyl, m-Tolyl, p-Tolyl, 2,6-Dimethylphenyl, 2,6-Diethylphenyl, 2,6-Di-i-propylphenyl, 2,6-Di-t-butylphenyl, o-t-Butylphenyl, m-t-Butylphenyl, p-t-Butylphenyl, C7-C20-Alkylaryl, besonders bevorzugt Benzyl, Ethylphenyl, Propylphenyl, Diphenylmethyl, Triphenylmethyl oder Naphthalinylmethyl, C7-C20-Aryloxyalkyl, besonders bevorzugt o-Methoxyphenyl, m-Phenoxymethyl, p-Phenoxymethyl, C12-C20-Aryloxyaryl, besonders bevorzugt p-Phenoxyphenyl, C5-C20-Heteroaryl, besonders bevorzugt 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, Chinolinyl, Isochinolinyl, Acridinyl, Benzochinolinyl oder Benzoisochinolinyl, C4-C20-Heterocycloalkyl, besonders bevorzugt Furyl, Benzofuryl, 2-Pyrolidinyl, 2-Indolyl, 3-Indolyl, 2,3-Dihydroindolyl, C8-C20-Arylalkenyl, besonders bevorzugt o-Vinylphenyl, m-Vinylphenyl, p-Vinylphenyl, C8-C20-Arylalkinyl, besonders bevorzugt o-Ethinylphenyl, m-Ethinylphenyl oder p-Ethinylphenyl, C2-C20-heteroatomhaltige Gruppe, besonders bevorzugt Carbonyl, Benzoyl, Oxybenzoyl, Benzoyloxy, Acetyl, Acetoxy oder Nitril verstanden, wobei eine oder mehrere C1-C20-kohlenstoffhaltige Gruppen ein cyclisches System bilden können.
  • Bei den vorstehend genannten C1-C20-kohlenstoff-haltigen Gruppen können ein oder mehrere nicht benachbarte CH2-Gruppen durch -O-, -S-, -NR1- oder -CONR2- ersetzt sein und ein oder mehrere H-Atome können durch F ersetzt sein.
  • Bei den vorstehend genannten C1-C20-kohlenstoff-haltigen Gruppen die aromatische Systeme aufweisen können ein oder mehrere nicht benachbarte CH-Gruppen durch -O-, -S-, -NR1- oder -CONR2 ersetzt sein und ein oder mehrere H-Atome können durch F ersetzt sein.
  • Die Reste R1 und R2 sind gleich oder verschieden bei jedem Auftreten H oder ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen.
  • Besonders bevorzugt sind organische Phosphonsäureanhydride die teil- oder perfluoriert sind.
  • Die in Schritt A) verwendeten organischen Phosphonsäureanhydride können auch in Kombination mit Polyphosphorsäure und/oder mit P2O5 eingesetzt werden. Bei der Polyphosphorsäure handelt es sich um handelsübliche Polyphosphorsäuren wie diese beispielsweise von Riedel-de Haen erhältlich sind. Die Polyphosphorsäuren Hn+2PnO3n+1 (n > 1) besitzen üblicherweise einen Gehalt berechnet als P2O5 (acidimetrisch) von mindestens 83%. Anstelle einer Lösung der Monomeren kann auch eine Dispersion/Suspension erzeugt werden.
  • Die in Schritt A) verwendeten organischen Phosphonsäureanhydride können auch in Kombination mit einfachen und oder mehrfachen organischen Phosphonsäuren eingesetzt werden.
  • Bei den einfachen und oder mehrfachen organischen Phosphonsäuren handelt es sich um Verbindungen der Formel R-PO3H2 H2O3P-R-PO3H2 R[PO3H2]n worin der Rest R gleich oder verschieden ist und für eine C1-C20-kohlenstoffhaltigen Gruppe steht und n > 2 ist. Besonders bevorzugte Reste R wurden zuvor bereits beschrieben.
  • Die in Schritt A) verwendeten organischen Phosphonsäuren sind kommerziell erhältlich, beispielsweise die Produkte der Firma Clariant oder Aldrich.
  • Die in Schritt A) verwendeten organischen Phosphonsäuren umfassen keine vinylhaltigen Phosphonsäuren wie diese in der deutschen Patentanmeldung Nr. 10213540.1 beschrieben werden.
  • Die in Schritt A) erzeugte Mischung weist ein Gewichtsverhältnis organische Phosphonsäureanhydride zu Summe aller Polymeren von 1:10000 bis 10000:1, vorzugsweise 1:1000 bis 1000:1, insbesondere 1:100 bis 100:1, auf. Insofern diese Phosphonsäureanhydride im Gemisch mit Polyphosphorsäure oder einfachen und oder mehrfachen organischen Phosphonsäuren eingesetzt werden sind diese bei den Phosphonsäureanhydriden zu berücksichtigen.
  • Des weiteren können der in Schritt A) erzeugten Mischung weitere organo-Phosphonsäuren, vorzugsweise perfluorierte organische Phosphonsäuren zugesetzt werden. Diese Zugabe kann vor und/oder während Schritt B) bzw. vor Schritt C) erfolgen. Hierdurch kann die Viskosität gesteuert werden.
  • Die unter den Punkten B) bis E) dargestellten Verfahrensschritten wurden zuvor bereits näher erläutert, wobei hierauf, insbesondere im Hinblick auf bevorzugte Ausführungsformen Bezug genommen wird.
  • Die Membran, insbesondere die Membran auf Basis von Polyazolen, kann durch Einwirken von Hitze in Gegenwart von Luftsauerstoff an der Oberfläche noch vernetzt werden. Diese Härtung der Membranoberfläche verbessert die Eigenschaften der Membran zusätzlich. Hierzu kann die Membran auf eine Temperatur von mindestens 150°C, vorzugsweise mindestens 200°C und besonders bevorzugt mindestens 250°C erwärmt werden. Die Sauerstoffkonzentration liegt bei diesem Verfahrensschritt üblicherweise im Bereich von 5 bis 50 Vol.-%, vorzugsweise 10 bis 40 Vol.-%, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Die Vernetzung kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) erfolgen. Eine weitere Methode ist die Bestrahlung mit β-Strahlen. Die Strahlungsdosis beträgt hierbei zwischen 5 und 200 kGy.
  • Je nach gewünschtem Vernetzungsgrad kann die Dauer der Vernetzungsreaktion in einem weiten Bereich liegen. Im Allgemeinen liegt diese Reaktionszeit im Bereich von 1 Sekunde bis 10 Stunden, vorzugsweise 1 Minute bis 1 Stunde, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Die Herstellung der verstärkten Polymer-Elektrolyt-Membranen kann auf an sich bekannte Weise erfolgen. Besonders bevorzugt ist das Einbringen der Verstärkungselemente in eine fließfähige oder zumindest noch duktile Polymermasse und/oder Monomer- bzw. Oligomer-Zusammensetzung, vorzugsweise eine Polymerschmelze, -lösung, -dispersion oder -suspension, und die anschließende Verfestigung der Polymerzusammensetzung, beispielsweise durch Abkühlen oder Entfernen von flüchtigen Bestandteilen (Lösungsmitteln) und/oder chemische Reaktion (z.B. Vernetzung oder Polymerisation).
  • Erfindungsgemäß umfasst die Membran-Elektroden-Einheit mindestens zwei elektrochemisch aktive Elektroden (Anode und Kathode), die durch die Polymer-Elektrolyt-Membran getrennt sind. Der Begriff „elektrochemisch aktiv" weist darauf hin, dass die Elektroden in der Lage sind, die Oxidation von Wasserstoff und/oder zumindest einem Reformat und die Reduktion von Sauerstoff zu katalysieren. Diese Eigenschaft kann durch Beschichtung der Elektroden mit Platin und/oder Ruthenium erhalten werden. Der Begriff „Elektrode" bedeutet, dass das Material elektrisch leitfähig ist. Die Elektrode kann ggf. eine Edelmetallschicht aufweisen. Derartige Elektroden sind bekannt und werden beispielsweise in US 4,191,618 , US 4,212,714 und US 4,333,805 beschrieben.
  • Die Elektroden umfassen vorzugsweise Gasdiffusionsschichten, die mit einer Katalysatorschicht in Kontakt stehen.
  • Als Gasdiffusionsschichten werden üblicherweise flächige, elektrisch leitende und säureresistente Gebilde eingesetzt. Zu diesen gehören beispielsweise Graphitfaser-Papiere, Kohlefaser-Papiere, Graphitgewebe und/oder Papiere, die durch Zugabe von Ruß leitfähig gemacht wurden. Durch diese Schichten wird eine feine Verteilung der Gas- und/oder Flüssigkeitsströme erzielt.
  • Ferner können auch Gasdiffusionsschichten eingesetzt werden, welche ein mechanisch stabiles Stützmaterial enthalten, das mit mindestens einem elektrisch leitfähigen Material, z. B. Kohlenstoff (beispielsweise Ruß), imprägniert ist. Für diese Zwecke besonders geeignete Stützmaterialien umfassen Fasern, beispielsweise in Form von Vliesen, Papieren oder Geweben, insbesondere Kohlefasern, Glasfasern oder Fasern enthaltend organische Polymere, beispielsweise Polypropylen, Polyester (Polyethylenterephthalat), Polyphenylensulfid oder Polyetherketone. Weitere Details zu derartigen Diffusionsschichten können beispielsweise der WO 9720358 entnommen werden.
  • Die Gasdiffusionsschichten weisen vorzugsweise eine Dicke im Bereich von 80 μm bis 2000 μm, insbesondere im Bereich von 100 μm bis 1000 μm und besonders bevorzugt im Bereich von 150 μm bis 500 μm, auf.
  • Weiterhin besitzen die Gasdiffusionsschichten günstigerweise eine hohe Porosität. Diese liegt vorzugsweise im Bereich von 20 % bis 80%.
  • Die Gasdiffusionsschichten können übliche Additive enthalten. Hierzu gehören unter anderem Fluorpolymere, wie z.B. Polytetrafluorethylen (PTFE) und oberflächenaktive Substanzen.
  • Gemäß einer besonderen Ausführungsform kann mindestens eine der Gasdiffusionsschichten aus einem kompressiblen Material bestehen. Im Rahmen der vorliegenden Erfindung ist ein kompressibles Material durch die Eigenschaft gekennzeichnet, dass die Gasdiffusionsschicht ohne Verlust ihrer Integrität durch Druck auf die Hälfte, insbesondere auf ein Drittel ihrer ursprünglichen Dicke gepresst werden kann.
  • Diese Eigenschaft weisen im Allgemeinen Gasdiffusionsschichten aus Graphitgewebe und/oder Papier, das durch Zugabe von Ruß leitfähig gemacht wurde, auf.
  • Die katalytisch aktive Schicht enthält eine katalytisch aktive Substanz. Zu diesen gehören unter anderem Edelmetalle, insbesondere Platin, Palladium, Rhodium, Iridium und/oder Ruthenium. Diese Substanzen können auch in Form von Legierungen untereinander eingesetzt werden. Des Weiteren können diese Substanzen auch in Legierung mit unedlen Metallen, wie beispielsweise Cr, Zr, Ni, Co und/oder Ti verwendet werden. Darüber hinaus können auch die Oxide der zuvor genannten Edelmetalle und/oder unedlen Metalle eingesetzt werden. Üblicherweise werden die oben genannten Metalle nach bekannten Methoden auf einem Trägermaterial, meist Kohlenstoff mit hoher spezifischer Oberfläche, in Form von Nanopartikeln eingesetzt.
  • Gemäß einem besonderen Aspekt der vorliegenden Erfindung werden die katalytisch aktiven Verbindungen, d. h. die Katalysatoren, in Form von Partikeln eingesetzt, die vorzugsweise eine Größe im Bereich von 1 bis 1000 nm, insbesondere 5 bis 200 nm und bevorzugt 10 bis 100 nm, aufweisen.
  • Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung ist das Gewichtsverhältnis von Fluorpolymer zu Katalysatormaterial, umfassend mindestens ein Edelmetall und gegebenenfalls ein oder mehrere Trägermaterialien, größer als 0,05, wobei dieses Verhältnis vorzugsweise im Bereich von 0,1 bis 0,6 liegt.
  • Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung weist die Katalysatorschicht eine Dicke im Bereich von 1 bis 1000 μm, insbesondere von 5 bis 500 μm, vorzugsweise von 10 bis 300 μm, auf. Dieser Wert stellt einen Mittelwert dar, der durch Messung der Schichtdicke im Querschnitt von Aufnahmen bestimmt werden kann, die mit einem Rasterelektronenmikroskop (REM) erhalten werden können.
  • Nach einer besonderen Ausführungsform der vorliegenden Erfindung beträgt der Edelmetallgehalt der Katalysatorschicht 0,1 bis 10,0 mg/cm2, vorzugsweise 0,2 bis 6,0 mg/cm2 und besonders bevorzugt 0,2 bis 3,0 mg/cm2. Diese Werte können durch Elementaranalyse einer flächigen Probe bestimmt werden.
  • Die Katalysatorschicht ist im Allgemeinen nicht selbsttragend, sondern wird üblicherweise auf die Gasdiffusionsschicht und/oder die Membran aufgebracht. Hierbei kann ein Teil der Katalysatorschicht beispielsweise in die Gasdiffusionsschicht und/oder die Membran diffundieren, wodurch sich Übergangsschichten bilden. Dies kann auch dazuführen, dass die Katalysatorschicht als Teil der Gasdiffusionsschicht aufgefasst werden kann.
  • Erfindungsgemäß stehen die Oberflächen der Polymer-Elektrolyt-Membran derart mit den Elektroden in Kontakt, dass die erste Elektrode die Vorderseite der Polymer-Elektrolyt-Membran und die zweite Elektrode die Rückseite der Polymer-Elektrolyt-Membran jeweils teilweise oder vollständig, vorzugsweise nur teilweise, bedeckt. Hierbei bezeichnen die Vorder- und die Rückseite der Polymer-Elektrolyt-Membran die dem Betrachter zugewandte bzw. abgewandte Seite der Polymer-Elektrolyt-Membran, wobei eine Betrachtung ausgehend von der ersten Elektrode (vorne), vorzugsweise der Kathode, in Richtung der zweiten Elektrode (hinten), vorzugsweise der Anode, erfolgt.
  • Für weitere Informationen über erfindungsgemäß geeignete Polymer-Elektrolyt-Membranen und Elektroden wird auf die Fachliteratur, insbesondere auf die Patentanmeldungen WO 01/1 8894 A2 , DE 195 09 748 , DE 195 09 749 , WO 00/26982 , WO 92/15121 und DE 197 57 492 verwiesen. Die in den vorstehend genannten Literaturstellen enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten, sowie der zu wählenden Elektroden, Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.
  • Die Herstellung der erfindungsgemäßen Membran-Elektroden-Einheit ist dem Fachmann offensichtlich. Im Allgemeinen werden die verschiedenen Bestandteile der Membran-Elektroden-Einheit übereinandergelegt und durch Druck und Temperatur miteinander verbunden, wobei üblicherweise bei einer Temperatur im Bereich von 10 bis 300°C, insbesondere 20°C bis 200° und mit einem Druck im Bereich von 1 bis 1000 bar, insbesondere von 3 bis 300 bar, laminiert wird.
  • Da die Leistung einer Brennstoff-Einzelzelle für viele Anwendungen oftmals zu gering ist, werden im Rahmen der vorliegenden Erfindung vorzugsweise mehrere Brennstoff-Einzelzellen über Separatorplatten zu einer Brennstoffzelle (Brennstoffzellenstack) kombiniert. Dabei sollen die Separatorplatten ggf. im Zusammenspiel mit weiteren Dichtungsmaterialen die Gasräume der Kathode und der Anode nach außen und zwischen den Gasräumen der Kathode und der Anode abdichten. Zu diesem Zweck werden die Separatorplatten vorzugsweise abdichtend an die Membran-Elektroden-Einheit angelegt. Die abdichtende Wirkung kann dabei durch Verpressen des Verbundes aus Separatorplatten und Membran-Elektroden-Einheit weiter gesteigert werden.
  • Die Separatorplatten weisen vorzugsweise jeweils mindestens einen Gaskanal für Reaktionsgase auf, die günstigerweise auf den den Elektroden zugewandten Seiten angeordnet sind. Die Gaskanäle sollen die Verteilung der Reaktandenfluiden ermöglichen.
  • Besonders überraschend wurde festgestellt, dass die erfindungsgemäßen Membran-Elektroden-Einheiten sich durch eine deutlich verbesserte mechanische Stabilität und Festigkeit auszeichnen und daher zur Herstellung von Brennstoffzellenstacks mit besonders hoher Leistung verwendet werden können. Dabei werden die bisher üblichen Leistungsschwankungen der resultierenden Brennstoffzellenstacks nicht mehr beobachtet und es wird eine bisher nicht bekannte Qualität, Zuverlässigkeit und Reproduzierbarkeit erreicht.
  • Die erfindungsgemäßen Membran-Elektroden-Einheiten können aufgrund ihrer Dimensionstabilität bei schwankenden Umgebungstemperaturen und Luftfeuchtigkeit problemlos gelagert oder versendet werden. Auch nach längerer Lagerung oder nach Versand an Orte mit deutlich unterschiedlichen klimatischen Bedingungen stimmen die Dimensionen der Membran-Elektroden-Einheiten problemlos für den Einbau in Brennstoffzellenstacks. Die Membran-Elektroden-Einheit muss für einen externen Einbau dann vor Ort nicht mehr konditioniert werden, was die Herstellung der Brennstoffzelle vereinfacht und Zeit und Kosten spart.
  • Ein Vorteil bevorzugter Membran-Elektroden-Einheiten ist, dass sie den Betrieb der Brennstoffzelle bei Temperaturen oberhalb 120 °C ermöglichen. Dies gilt für gasförmige und flüssige Brennstoffe, wie z.B. Wasserstoff enthaltende Gase, die z.B. in einem vorgeschalteten Reformierungsschritt aus Kohlenwasserstoffen hergestellt werden. Als Oxidanz kann dabei z.B. Sauerstoff oder Luft verwendet werden.
  • Ein weiterer Vorteil bevorzugter Membran-Elektroden-Einheiten ist, dass sie beim Betrieb oberhalb 120 °C auch mit reinen Platinkatalysatoren, d.h. ohne einen weiteren Legierungsbestandteil, eine hohe Toleranz gegen Kohlenmonoxid aufweisen. Bei Temperaturen von 160 °C kann z.B. mehr als 1 % CO im Brenngas enthalten sein, ohne dass dies zu einer merklichen Reduktion der Leistung der Brennstoffzelle führt.
  • Bevorzugte Membran-Elektroden-Einheiten können in Brennstoffzellen betrieben werden, ohne dass die Brenngase und die Oxidanzien trotz der möglichen hohen Betriebstemperaturen nicht befeuchtet werden müssen. Die Brennstoffzelle arbeitet dennoch stabil und die Membran verliert ihre Leitfähigkeit nicht. Dies vereinfacht das gesamte Brennstoffzellensystem und bringt zusätzliche Kostenersparnisse, da die Führung des Wasserkreislaufs vereinfacht wird. Weiter wird hierdurch auch das Verhalten bei Temperaturen unterhalb 0 °C des Brennstoffzellensystems verbessert.
  • Bevorzugte Membran-Elektroden-Einheiten erlauben überraschend, dass die Brennstoffzelle problemlos auf Raumtemperatur und darunter abgekühlt werden kann und danach wieder in Betrieb genommen werden kann, ohne an Leistung zu verlieren. Herkömmliche auf Phosphorsäure basierende Brennstoffzellen müssen dagegen auch beim Abschalten des Brennstoffzellensystems manchmal bei einer Temperatur oberhalb von 40 °C gehalten werden, um eine irreversible Schädigung zu vermeiden.
  • Des Weiteren zeigen die bevorzugten Membran-Elektroden-Einheiten der vorliegenden Erfindung eine sehr hohe Langzeitstabilität. Es wurde festgestellt, dass eine erfindungsgemäße Brennstoffzelle über lange Zeiten, z.B. mehr als 5000 Stunden, bei Temperaturen von mehr als 120 °C mit trockenen Reaktionsgasen kontinuierlich betrieben werden kann, ohne dass eine merkliche Leistungsdegradation feststellbar ist. Die dabei erzielbaren Leistungsdichten sind auch nach einer derartig langen Zeit sehr hoch.
  • Hierbei zeigen die erfindungsgemäßen Brennstoffzellen auch nach langer Zeit, beispielweise mehr als 5000 Stunden, eine hohe Ruhespannung, die nach dieser Zeit vorzugsweise mindestens 900 mV beträgt. Zur Messung der Ruhespannung wird eine Brennstoffzelle mit einem Wasserstoff-Fluss auf der Anode und einem Luft- Fluss auf der Kathode stromlos betrieben. Die Messung erfolgt, indem die Brennstoffzelle von einem Strom von 0.2 A/cm2 auf den stromlosen Zustand geschaltet wird und dann dort 5 Minuten die Ruhespannung aufgezeichnet wird. Der Wert nach 5 Minuten ist das entsprechende Ruhepotential. Die gemessenen Werte der Ruhespannung gelten für eine Temperatur von 160°C. Darüber hinaus zeigt die Brennstoffzelle nach dieser Zeit vorzugsweise einen geringen Gasdurchtritt (gas-cross-over). Zur Messung des Cross-overs wird die Anodenseite der Brennstoffzelle mit Wasserstoff (5 L/h) betrieben, die Kathode mit Stickstoff (5L/h). Die Anode dient als Referenz- und Gegenelektrode. Die Kathode als Arbeitselektrode. Die Kathode wird auf ein Potential von 0.5 V gesetzt und der durch die Membran diffundierende Wasserstoff an der Kathode massentransport-limitiert oxidiert. Der resultierende Strom ist ein Maß für die Wasserstoff-Permeationsrate. Der Strom ist <3 mA/cm2, bevorzugt <2 mA/cm2, besonders bevorzugt <1 mA/cm2 in einer 50 cm2 Zelle. Die gemessenen Werte der H2-cross-over gelten für eine Temperatur von 160°C.
  • Weiterhin zeichnen sich die erfindungsgemäßen Membran-Elektroden-Einheiten durch eine verbesserte Temperatur- und Korrosionsbeständigkeit und eine vergleichsweise niedrige Gasdurchlässigkeit, insbesondere bei hohen Temperaturen, aus. Eine Abnahme der mechanischen Stabilität und der strukturellen Integrität, insbesondere bei hohen Temperaturen, wird erfindungsgemäß bestmöglich vermieden.
  • Darüber hinaus können die erfindungsgemäßen Membran-Elektroden-Einheiten kostengünstig und einfach hergestellt werden.
  • Für weitere Informationen über Membran-Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patente US-A-4,191,618 , US-A-4,212,714 und US-A-4,333,805 verwiesen. Die in den vorstehend genannten Literaturstellen [ US-A-4,191,618 , US-A-4,212,714 und US-A-4,333,8051 enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten, sowie der zu wählenden Elektroden, Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.

Claims (18)

  1. Membran-Elektroden-Einheit, umfassend mindestens zwei elektrochemisch aktive Elektroden, die durch mindestens eine Polymer-Elektrolyt-Membran getrennt werden, dadurch gekennzeichnet, dass die Polymer-Elektrolyt-Membran Verstärkungselemente aufweist, die die Polymer-Elektrolyt-Membran zumindest teilweise durchdringen.
  2. Membran-Elektroden-Einheit nach Anspruch 1, dadurch gekennzeichnet, dass die Polymer-Elektrolyt-Membran faserverstärkt ist.
  3. Membran-Elektroden-Einheit nach Anspruch 2, dadurch gekennzeichnet, dass die Verstärkungselemente Monofilamente, Multifilamente, Kurz- und/oder Langfasern, Vliesstoffe, Gewebe, Gestricke und/oder Gewirke umfassen.
  4. Membran-Elektroden-Einheit nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Verstärkungselemente Glasfasern, Mineralfasern, Naturfasern, Carbonfasern, Borfasern, Synthesefasern, Polymerfasern und/oder Keramikfasern umfassen.
  5. Membran-Elektroden-Einheit nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Verstärkungselemente einen maximalen Durchmesser im Bereich von 10 μm bis 500 μm haben.
  6. Membran-Elektroden-Einheit nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Verstärkungselemente ein Young-Modul von mindestens 5 GPa aufweisen.
  7. Membran-Elektroden-Einheit nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Verstärkungselemente eine Bruchdehnung von 0,5 bis 100 % haben.
  8. Membran-Elektroden-Einheit nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Volumenanteil der Verstärkungselemente, bezogen auf das Gesamtvolumen der Polymer-Elektrolyt-Membran, im Bereich von 5 Vol.-% bis 95 Vol.-% liegt.
  9. Membran-Elektroden-Einheit nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Verstärkungselemente eine derartige Kraft aufnehmen, dass sich im Kraft-Dehnungs-Diagramm bei 20°C die Bezugskraft der Polymer-Elektrolyt-Membran mit Verstärkungselementen, verglichen mit der Polymer-Elektrolyt-Membran ohne Verstärkungselemente, im Bereich zwischen 0 und 1 % Dehnung an mindestens einer Stelle um mindestens 10 % unterscheidet.
  10. Membran-Elektroden-Einheit nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Polymer-Elektrolyt-Membran Polyazole umfasst.
  11. Membran-Elektroden-Einheit nach Anspruch 10, dadurch gekennzeichnet, dass die Polymer-Elektrolyt-Membran mit Phosphorsäure bzw. von Phosphorsäure abgeleitete Derivate aufweist.
  12. Membran-Elektroden-Einheit nach Anspruch 11, dadurch gekennzeichnet, dass der Gehalt an Säure zwischen 3 und 50 Mol pro Wiederholeinheit des Polymeren beträgt.
  13. Verfahren zur Herstellung einer Membran-Elektroden-Einheit nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass man (i) in Gegenwart der Verstärkungselemente eine Polymer-Elektrolyt-Membran formt, (ii) die Membran und Elektroden in der gewünschten Reihenfolge zusammensetzt.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man die Polymer-Elektrolyt-Membran durch ein Verfahren formt, umfassend die Schritte I) Lösen von Polymeren, insbesondere Polyazolen in Polyphosphorsäure, II) Erwärmen der Lösung erhältlich gemäß Schritt I) unter Inertgas auf Temperaturen von bis zu 400°C, III) Anordnen von Verstärkungselementen auf einem Träger, IV) Bilden einer Membran unter Verwendung der Lösung des Polymeren gemäß Schritt II) auf dem Träger aus Schritt III) in einer Weise, dass die Verstärkungselemente die Lösung zumindest teilweise durchdringen und V) Behandlung der in Schritt III) gebildeten Membran bis diese selbsttragend ist.
  15. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man die Polymer-Elektrolyt-Membran durch ein Verfahren formt, umfassend die Schritte A) Mischen von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, in Polyphosphorsäure unter Ausbildung einer Lösung und/oder Dispersion, B) Anordnen von Verstärkungselementen auf einem Träger, C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf dem Träger aus Schritt B) in einer Weise, dass die Verstärkungselemente die Mischung zumindest teilweise durchdringen, D) Erwärmen des flächigen Gebildes/Schicht erhältlich gemäß Schritt C) unter Inertgas auf Temperaturen von bis zu 350°C, vorzugsweise bis zu 280°C unter Ausbildung des Polyazol-Polymeren. E) Behandlung der in Schritt D) gebildeten Membran (bis diese selbsttragend ist).
  16. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man die Polymer-Elektrolyt-Membran durch ein Verfahren formt, umfassend die Schritte 1) Umsetzung von einem oder mehreren aromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, oder von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren in der Schmelze bei Temperaturen von bis zu 350°C, vorzugsweise bis zu 300°C, 2) Lösen des gemäß Schritt 1) erhaltenen festen Prä-Polymeren in Polyphosphorsäure, 3) Erwärmen der Lösung erhältlich gemäß Schritt 2) unter Inertgas auf Temperaturen von bis zu 300°C, vorzugsweise bis zu 280°C, unter Ausbildung des gelösten Polyazol-Polymeren, 4) Anordnen von Verstärkungselementen auf einem Träger, 5) Bilden einer Membran unter Verwendung der Lösung des Polyazol-Polymeren gemäß Schritt 3) auf dem Träger aus Schritt 4) in einer Weise, dass die Verstärkungselemente die Lösung zumindest teilweise durchdringen, und 6) Behandlung der in Schritt 5) gebildeten Membran bis diese selbsttragend ist.
  17. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass man die Polymer-Elektrolyt-Membran durch ein Verfahren formt, umfassend die Schritte A) Herstellung einer Mischung umfassend Phosphonsäuregruppen-umfassende Monomere und mindestens ein Polymer, B) Anordnen von Verstärkungselementen auf einem Träger, C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) auf dem Träger aus Schritt B) in einer Weise, dass die Verstärkungselemente die Mischung zumindest teilweise durchdringen, D) Polymerisation der in dem flächigen Gebilde erhältlich gemäß Schritt C) vorhandenen Phosphonsäuregruppen umfassende Monomere.
  18. Brennstoffzelle, aufweisend mindestens eine Membran-Elektroden-Einheit gemäß einem oder mehreren der Ansprüche 1 bis 12.
DE102006036019A 2006-08-02 2006-08-02 Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung Withdrawn DE102006036019A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DE102006036019A DE102006036019A1 (de) 2006-08-02 2006-08-02 Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung
US12/375,550 US20090258274A1 (en) 2006-08-02 2007-07-31 Membrane electrode assembly and fuel cells of increased power
PCT/EP2007/006741 WO2008014964A2 (de) 2006-08-02 2007-07-31 Membran-elektroden-einheit und brennstoffzellen mit erhöhter leistung
JP2009522159A JP5698907B2 (ja) 2006-08-02 2007-07-31 性能の改善された膜電極接合体および燃料電池
CA002659475A CA2659475A1 (en) 2006-08-02 2007-07-31 Membrane electrode assembly and fuel cells with increased power
CN2007800288407A CN101523642B (zh) 2006-08-02 2007-07-31 具有增强性能的膜电极组件和燃料电池
KR1020097000527A KR101479354B1 (ko) 2006-08-02 2007-07-31 향상된 성능을 가지는 막 전극 접합체 및 연료전지
KR1020147027038A KR20140133884A (ko) 2006-08-02 2007-07-31 향상된 성능을 가지는 막 전극 접합체 및 연료전지
EP07786440A EP2059964A2 (de) 2006-08-02 2007-07-31 Membran-elektroden-einheit und brennstoffzellen mit erhöhter leistung
RU2009106949/07A RU2411616C2 (ru) 2006-08-02 2007-07-31 Мембранно-электродный модуль и топливные элементы с повышенной мощностью
JP2013042592A JP5793524B2 (ja) 2006-08-02 2013-03-05 性能の改善された膜電極接合体および燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006036019A DE102006036019A1 (de) 2006-08-02 2006-08-02 Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung

Publications (1)

Publication Number Publication Date
DE102006036019A1 true DE102006036019A1 (de) 2008-02-07

Family

ID=38884848

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006036019A Withdrawn DE102006036019A1 (de) 2006-08-02 2006-08-02 Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung

Country Status (9)

Country Link
US (1) US20090258274A1 (de)
EP (1) EP2059964A2 (de)
JP (2) JP5698907B2 (de)
KR (2) KR20140133884A (de)
CN (1) CN101523642B (de)
CA (1) CA2659475A1 (de)
DE (1) DE102006036019A1 (de)
RU (1) RU2411616C2 (de)
WO (1) WO2008014964A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048478B2 (en) 2010-04-22 2015-06-02 Basf Se Polymer electrolyte membrane based on polyazole
CN104681764A (zh) * 2015-02-10 2015-06-03 龙岩紫荆创新研究院 一种复合型锂离子电池陶瓷隔膜及其制备方法
DE102020105406A1 (de) 2020-02-28 2021-09-02 Airbus Operations Gmbh Strukturbauteil mit einer darin integrierten Brennstoffzelleneinheit

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094010A (ja) * 2007-10-11 2009-04-30 Samsung Sdi Co Ltd 燃料電池用電解質膜積層体、膜電極接合体、及び燃料電池用電解質膜積層体の製造方法
GB0724556D0 (en) 2007-12-17 2008-01-30 Queen Mary & Westfield College LAtency associated protein construct with aggrecanase sensitive cleavage site
JP5481880B2 (ja) * 2008-03-10 2014-04-23 東レ株式会社 電解質膜の製造方法
DE102009001141A1 (de) * 2008-10-29 2010-05-06 Volkswagen Ag Verfahren zur Herstellung einer Polymerelektrolytmembran
DE102008062765A1 (de) 2008-12-18 2010-07-01 Vb Autobatterie Gmbh & Co. Kgaa Textiles flächiges Material für eine Batterieelektrode
KR101827528B1 (ko) 2009-02-26 2018-02-09 존슨 컨트롤스 테크놀러지 컴퍼니 배터리 전극 및 배터리 전극을 제조하는 방법
JP2013534687A (ja) * 2010-02-19 2013-09-05 トレナージ コーポレーション 燃料電池スタックの製造用の一体化されたシール
JP2013521628A (ja) 2010-03-05 2013-06-10 ビーエーエスエフ ソシエタス・ヨーロピア 改善されたポリマー膜、その製造方法及びその使用
US9168567B2 (en) 2010-03-05 2015-10-27 Basf Se Polymer membranes, processes for production thereof and use thereof
JP5490217B2 (ja) 2010-03-08 2014-05-14 日本板硝子株式会社 固体電解質膜用の補強シート
EP2561572A4 (de) * 2010-04-22 2014-03-05 Basf Se Verbesserte polymerelektrolytmembran auf polyazolbasis
CN104080842A (zh) * 2010-05-31 2014-10-01 巴斯夫欧洲公司 机械稳定的聚唑
US20120156588A1 (en) * 2010-12-02 2012-06-21 Basf Se Membrane electrode assembly and fuel cells with improved lifetime
DE112011104015A5 (de) * 2010-12-02 2013-08-29 Basf Se Membran-Elektroden-Einheit und Brennstoffzellen mit verbesserter Lebensdauer
US8815467B2 (en) * 2010-12-02 2014-08-26 Basf Se Membrane electrode assembly and fuel cells with improved lifetime
WO2012073085A1 (de) * 2010-12-02 2012-06-07 Basf Se Membran-elektroden-einheit und brennstoffzellen mit verbesserter lebensdauer
EP2525430A1 (de) * 2011-05-19 2012-11-21 Siemens Aktiengesellschaft Befeuchtungszelle mit Stützgewebe aus Fluorkunststoff
EP2701226B1 (de) 2011-08-09 2015-04-08 Panasonic Corporation Elektrolytmembran für eine festpolymerbrennstoffzelle, herstellungsverfahren dafür und festpolymerbrennstoffzelle
US9368822B2 (en) 2011-10-07 2016-06-14 Panasonic Intellectual Property Management Co., Ltd. Electrolyte membrane for solid polymer-type fuel cell, method for producing same, and solid polymer-type fuel cell
RU2487442C1 (ru) * 2012-02-28 2013-07-10 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ активации мембранно-электродного блока
CN104681833B (zh) * 2015-02-05 2017-02-22 成都新柯力化工科技有限公司 一种纳米陶瓷纤维管燃料电池质子交换膜及制备方法
KR101994367B1 (ko) * 2016-10-27 2019-06-28 삼성에스디아이 주식회사 중합체, 하드마스크 조성물 및 패턴형성방법
JP2022501463A (ja) * 2018-09-14 2022-01-06 ユニバーシティー オブ サウス カロライナ 有機溶媒なしでpbiフィルムを製造するための新規な方法
CN117895038A (zh) * 2019-11-18 2024-04-16 坤艾新材料科技(上海)有限公司 纤维增强高温质子交换膜及其制备方法、电化学设备

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US746223A (en) * 1901-10-04 1903-12-08 Charles E Windom Cooling-board.
US4191618A (en) * 1977-12-23 1980-03-04 General Electric Company Production of halogens in an electrolysis cell with catalytic electrodes bonded to an ion transporting membrane and an oxygen depolarized cathode
US4212714A (en) * 1979-05-14 1980-07-15 General Electric Company Electrolysis of alkali metal halides in a three compartment cell with self-pressurized buffer compartment
US4333805A (en) * 1980-05-02 1982-06-08 General Electric Company Halogen evolution with improved anode catalyst
US5525436A (en) 1994-11-01 1996-06-11 Case Western Reserve University Proton conducting polymers used as membranes
DE19509748C2 (de) * 1995-03-17 1997-01-23 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung eines Verbundes aus Elektrodenmaterial, Katalysatormaterial und einer Festelektrolytmembran
DE19509749C2 (de) * 1995-03-17 1997-01-23 Deutsche Forsch Luft Raumfahrt Verfahren zur Herstellung eines Verbundes aus Elektrodenmaterial, Katalysatormaterial und einer Festelektrolytmembran
DE19544323A1 (de) * 1995-11-28 1997-06-05 Magnet Motor Gmbh Gasdiffusionselektrode für Polymerelektrolytmembran-Brennstoffzellen
DE19817376A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Säure-Base-Polymerblends und ihre Verwendung in Membranprozessen
DE19821978C2 (de) * 1998-05-18 2002-06-06 Freudenberg Carl Kg Membran-Elektroden-Einheit für eine Brennstoffzelle
RU2179161C1 (ru) * 2000-09-14 2002-02-10 Богачев Евгений Акимович Способ получения композиционного материала
DE10052242A1 (de) * 2000-10-21 2002-05-02 Celanese Ventures Gmbh Mit Säure dotierte, ein- oder mehrschichtige Kunststoffmembran mit Schichten aufweisend Polymerblends umfassend Polymere mit wiederkehrenden Azoleinheiten, Verfahren zur Herstellung solche Kunststoffmembranen sowie deren Verwendung
DE10201691A1 (de) * 2001-01-19 2002-09-05 Honda Motor Co Ltd Polymerelektrolytmembran, Verfahren zu deren Herstellung und Membranelektrodenanordnung und Polymerelektrolytbrennstoffzelle, die diese umfasst
DE10109829A1 (de) * 2001-03-01 2002-09-05 Celanese Ventures Gmbh Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
DE10110752A1 (de) * 2001-03-07 2002-09-19 Celanese Ventures Gmbh Verfahren zur Herstellung einer Membran aus verbrücktem Polymer und Brennstoffzelle
RU2208000C1 (ru) * 2002-02-13 2003-07-10 Российский научный центр "Курчатовский институт" Способ получения композиционного материала
DE10213540A1 (de) * 2002-03-06 2004-02-19 Celanese Ventures Gmbh Lösung aus Vinylphosphonsäure, Verfahren zur Herstellung einer Polymerelektrolytmembran aus Polyvinylphosphaonsäure und deren Anwendung in Brennstoffzellen
US7670612B2 (en) * 2002-04-10 2010-03-02 Innercap Technologies, Inc. Multi-phase, multi-compartment capsular delivery apparatus and methods for using same
DE10235358A1 (de) * 2002-08-02 2004-02-12 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10246461A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen
JP2004185973A (ja) * 2002-12-03 2004-07-02 Unitika Ltd 電解質膜
JP2005108662A (ja) 2003-09-30 2005-04-21 Toray Ind Inc 高分子電解質膜およびそれを用いてなる高分子型燃料電池
EP1727225A4 (de) * 2004-03-04 2007-10-31 Nippon Sheet Glass Co Ltd Verstärkungsmaterial für protonen leitende membran, dieses verwendende protonen leitende membran und brennstoffzelle
DE102004035309A1 (de) * 2004-07-21 2006-02-16 Pemeas Gmbh Membran-Elektrodeneinheiten und Brennstoffzellen mit erhöhter Lebensdauer
JP4388072B2 (ja) * 2004-09-09 2009-12-24 旭化成イーマテリアルズ株式会社 固体高分子電解質膜およびその製造方法
US20060105215A1 (en) * 2004-11-16 2006-05-18 Gangadhar Panambur Novel membrane and membrane electrode assemblies

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9048478B2 (en) 2010-04-22 2015-06-02 Basf Se Polymer electrolyte membrane based on polyazole
CN104681764A (zh) * 2015-02-10 2015-06-03 龙岩紫荆创新研究院 一种复合型锂离子电池陶瓷隔膜及其制备方法
DE102020105406A1 (de) 2020-02-28 2021-09-02 Airbus Operations Gmbh Strukturbauteil mit einer darin integrierten Brennstoffzelleneinheit

Also Published As

Publication number Publication date
JP2013152938A (ja) 2013-08-08
JP5698907B2 (ja) 2015-04-08
CA2659475A1 (en) 2008-02-07
KR101479354B1 (ko) 2015-01-05
KR20140133884A (ko) 2014-11-20
RU2411616C2 (ru) 2011-02-10
CN101523642B (zh) 2012-09-26
JP2009545841A (ja) 2009-12-24
WO2008014964A2 (de) 2008-02-07
US20090258274A1 (en) 2009-10-15
CN101523642A (zh) 2009-09-02
KR20090045192A (ko) 2009-05-07
EP2059964A2 (de) 2009-05-20
JP5793524B2 (ja) 2015-10-14
RU2009106949A (ru) 2010-09-10
WO2008014964A3 (de) 2008-05-08

Similar Documents

Publication Publication Date Title
DE102006036019A1 (de) Membran-Elektroden-Einheit und Brennstoffzellen mit erhöhter Leistung
EP1527490B1 (de) Membran-elektrodeneinheit mit polyimidschicht
EP1771906A2 (de) Membran-elektrodeneinheiten und brennstoffzellen mit erhöhter lebensdauer
EP1706442B1 (de) Protonenleitende membran und deren verwendung
DE102005020604A1 (de) Brennstoffzellen mit geringerem Gewicht und Volumen
EP1790026A2 (de) Membran-elektroden-einheiten und brennstoffzellen mit erhöhter lebensdauer
EP1915795B1 (de) Verbesserte membran-elektrodeneinheiten und brennstoffzellen mit langer lebensdauer
DE102006042760A1 (de) Verfahren zur Herstellung einer protonenleitenden, Polyazol-enthaltenden Membran
DE102004034139A1 (de) Verfahren zur Herstellung von Membran-Elektroden-Einheiten
WO2004034498A2 (de) Mit einer katalysatorschicht beschichtete protonenleitende polymermembran enthaltend polyazole und deren anwendung in brennstoffzellen
WO2006015806A2 (de) Membran-elektroden-einheiten und brennstoffzellen mit erhöhter lebensdauer
EP1701995B1 (de) Protonenleitende membran und deren verwendung
DE102004008628A1 (de) Membran-Elektroden-Einheit mit hoher Leistung und deren Anwendung in Brennstoffzellen
WO2011006625A1 (de) Verfahren zum betrieb einer brennstoffzelle und zugehörige brennstoffzelle
WO2012073084A1 (de) Membran-elektroden-einheit und brennstoffzellen mit verbesserter lebensdauer
EP2277226A1 (de) Verfahren zum betrieb einer brennstoffzelle
US8815467B2 (en) Membrane electrode assembly and fuel cells with improved lifetime
WO2011006623A1 (de) Verfahren zum betrieb einer brennstoffzelle
WO2012073085A1 (de) Membran-elektroden-einheit und brennstoffzellen mit verbesserter lebensdauer
WO2011006624A2 (de) Verfahren zum betrieb einer brennstoffzelle und zugehörige brennstoffzelle
WO2011003539A1 (de) Verfahren zur stabilisierung von stickstoffhaltigen polymeren
WO2012153172A1 (de) Mechanisch stabilisierte polyazole enthaltend mindestens einen polyvinylalkohol

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee