DE10140147A1 - Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle - Google Patents
Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und BrennstoffzelleInfo
- Publication number
- DE10140147A1 DE10140147A1 DE10140147A DE10140147A DE10140147A1 DE 10140147 A1 DE10140147 A1 DE 10140147A1 DE 10140147 A DE10140147 A DE 10140147A DE 10140147 A DE10140147 A DE 10140147A DE 10140147 A1 DE10140147 A1 DE 10140147A1
- Authority
- DE
- Germany
- Prior art keywords
- membrane according
- polymer
- bridging
- membrane
- basic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 73
- 239000000446 fuel Substances 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 title claims abstract description 12
- 229920000642 polymer Polymers 0.000 title claims description 84
- 239000000203 mixture Substances 0.000 title description 9
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- 239000002253 acid Substances 0.000 claims description 36
- 239000003153 chemical reaction reagent Substances 0.000 claims description 34
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 31
- 229920002492 poly(sulfone) Polymers 0.000 claims description 31
- 125000004432 carbon atom Chemical group C* 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 18
- 229920002480 polybenzimidazole Polymers 0.000 claims description 17
- 239000003054 catalyst Substances 0.000 claims description 15
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 13
- 125000000542 sulfonic acid group Chemical group 0.000 claims description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- 125000003277 amino group Chemical group 0.000 claims description 11
- -1 polyimidazoles Polymers 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 125000003700 epoxy group Chemical group 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 6
- 125000002947 alkylene group Chemical group 0.000 claims description 5
- 238000005266 casting Methods 0.000 claims description 5
- 125000001072 heteroaryl group Chemical group 0.000 claims description 5
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 5
- 238000002360 preparation method Methods 0.000 claims description 5
- DGUJJOYLOCXENZ-UHFFFAOYSA-N 4-[2-[4-(oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenol Chemical compound C=1C=C(OCC2OC2)C=CC=1C(C)(C)C1=CC=C(O)C=C1 DGUJJOYLOCXENZ-UHFFFAOYSA-N 0.000 claims description 4
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims description 4
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 claims description 4
- HUCVOHYBFXVBRW-UHFFFAOYSA-M caesium hydroxide Chemical compound [OH-].[Cs+] HUCVOHYBFXVBRW-UHFFFAOYSA-M 0.000 claims description 4
- 229920001577 copolymer Polymers 0.000 claims description 4
- 230000000737 periodic effect Effects 0.000 claims description 4
- 229920005597 polymer membrane Polymers 0.000 claims description 4
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 claims description 4
- 229920002006 poly(N-vinylimidazole) polymer Polymers 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 2
- 150000004678 hydrides Chemical class 0.000 claims description 2
- 150000004679 hydroxides Chemical class 0.000 claims description 2
- 229910052744 lithium Inorganic materials 0.000 claims description 2
- DVSDBMFJEQPWNO-UHFFFAOYSA-N methyllithium Chemical compound C[Li] DVSDBMFJEQPWNO-UHFFFAOYSA-N 0.000 claims description 2
- 238000006552 photochemical reaction Methods 0.000 claims description 2
- 125000001424 substituent group Chemical group 0.000 claims description 2
- 125000001174 sulfone group Chemical group 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims 2
- 239000011260 aqueous acid Substances 0.000 claims 1
- 230000000712 assembly Effects 0.000 claims 1
- 238000000429 assembly Methods 0.000 claims 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 claims 1
- 125000001183 hydrocarbyl group Chemical group 0.000 claims 1
- 229920002959 polymer blend Polymers 0.000 abstract description 9
- 229920006037 cross link polymer Polymers 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 35
- 235000011007 phosphoric acid Nutrition 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 13
- 239000005518 polymer electrolyte Substances 0.000 description 12
- 125000004433 nitrogen atom Chemical group N* 0.000 description 10
- 125000000217 alkyl group Chemical group 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 239000004693 Polybenzimidazole Substances 0.000 description 7
- 125000005647 linker group Chemical group 0.000 description 7
- 238000005470 impregnation Methods 0.000 description 6
- 150000007513 acids Chemical class 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 125000001153 fluoro group Chemical group F* 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- 229920013683 Celanese Polymers 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- YNPNZTXNASCQKK-UHFFFAOYSA-N Phenanthrene Natural products C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 1
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920003291 Ultrason® E Polymers 0.000 description 1
- 229920004695 VICTREX™ PEEK Polymers 0.000 description 1
- 238000005147 X-ray Weissenberg Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002390 heteroarenes Chemical class 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 238000001566 impedance spectroscopy Methods 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000006551 perfluoro alkylene group Chemical group 0.000 description 1
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011877 solvent mixture Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920006301 statistical copolymer Polymers 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical group FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 229940048102 triphosphoric acid Drugs 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/14—Dynamic membranes
- B01D69/141—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
- B01D69/1411—Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/58—Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
- B01D71/62—Polycondensates having nitrogen-containing heterocyclic rings in the main chain
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/66—Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
- B01D71/68—Polysulfones; Polyethersulfones
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/20—Manufacture of shaped structures of ion-exchange resins
- C08J5/22—Films, membranes or diaphragms
- C08J5/2206—Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
- C08J5/2218—Synthetic macromolecular compounds
- C08J5/2256—Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1023—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1027—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/103—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1032—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1044—Mixtures of polymers, of which at least one is ionically conductive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1041—Polymer electrolyte composites, mixtures or blends
- H01M8/1046—Mixtures of at least one polymer and at least one additive
- H01M8/1048—Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1072—Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1081—Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/30—Cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/34—Use of radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/46—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/26—Electrical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/42—Ion-exchange membranes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2379/00—Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
- C08J2379/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08J2379/06—Polyhydrazides; Polytriazoles; Polyamino-triazoles; Polyoxadiazoles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Fuel Cell (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Conductive Materials (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
Abstract
Die vorliegende Erfindung betrifft eine Polymer-Blendmembran aus verbrücktem Polymer, die durch ein ausgewähltes Verfahren hergestellt wird. DOLLAR A Die erfindungsgemäße Membran zeigt eine deutlich verbesserte Bruchzähigkeit (Bruchdehnung/Spannung) bei nahezu unveränderten sonstigen Eigenschaften. DOLLAR A Die erfindungsgemäßen Membranen eignen sich zur Herstellung von Membran-Elektroden-Einheiten für Brennstoffzellen.
Description
- Die vorliegende Erfindung betrifft eine Blend-Membran aus verbrücktem Polymer, ein Verfahren zur deren Herstellung und eine Brennstoffzelle enthaltend eine solche Membran.
- Eine Brennstoffzelle enthält üblicherweise einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden. Im Fall einer Brennstoffzelle wird einer der beiden Elektroden ein Brennstoff, wie Wasserstoffgas, und der anderen Elektrode ein Oxidationsmittel, wie Sauerstoffgas, zugeführt und dadurch chemische Energie in elektrische Energie umwandelt.
- Der Elektrolyt ist für Wasserstoffionen, d. h. Protonen, aber nicht für reaktive Gase wie das Wasserstoffgas und das Sauerstoffgas durchlässig.
- Eine Brennstoffzelle weist in der Regel mehrere Einzelzellen sogenannte MEU's (Membrane-Electrode-Unit) auf, die jeweils einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden enthalten.
- Als Elektrolyt für die Brennstoffzelle kommen Feststoffe wie Polymerelektrolytmembranen oder Flüssigkeiten wie Phosphorsäure zur Anwendung. In jüngster Zeit haben Polymerelektrolytmembranen als Elektrolyte für Brennstoffzellen Aufmerksamkeit erregt. So verwendet man als Materialien für Polymerelektrolytmembranen beispielsweise Perfluorsulfonsäurepolymere oder Komplexe aus basischen Polymeren und starken Säuren.
- Das Perfluorsulfonsäurepolymer weist im allgemeinen ein Perfluorkohlenwasserstoffgerüst, wie ein Copolymer aus Tetrafluorethylen und Trifluorvinyl, und eine daran gebundene Seitenkette mit einer Sulfonsäuregruppe, wie eine Seitenkette mit einer an eine Perfluoralkylengruppe gebundenen Sulfonsäuregruppe. Die Sulfonsäuregruppe geht unter Abgabe eines Wasserstoffions in ein Anion über und leitet daher Protonen.
- Es sind bereits Polymerelektrolytmembranen mit Komplexen aus basischen Polymeren und starken Säuren entwickelt worden. So beschreibt WO 96/13872 und die korrespondierende US-PS 5,525,436 ein Verfahren zur Herstellung einer protonenleitenden Polymerelektrolytmembranen, bei dem ein basisches Polymer, wie Polybenzimidazole, in eine starke Säure, wie Phosphorsäure, Schwefelsäure usw., eingetaucht wird.
- Eine solche Brennstoffzelle, bei der eine derartige Polymerelektrolytmembran eingesetzt wird, hat den Vorteil, daß sie bei Temperaturen von 100°C oder darüber betrieben werden kann.
- In J. Electrochem. Soc., Band 142, Nr. 7, 1995, S. L121-L123 wird die Dotierung des eines Polybenzimidazols in Phosphorsäure beschrieben.
- In WO 97/37396 und der korrespondierenden US-PS 5,716,727 wird ein Verfahren zur Herstellung einer Polymerelektrolytmembran beschrieben, bei dem man ein Polybenzimidazol in Trifluoressigsäure löst, die Lösung dann mit Phosphorsäure versetzt und anschließend das Lösungsmittel entfernt.
- Selbst wenn ein basisches Polymer an sich eine ausreichende mechanische Festigkeit aufweist, kommt es vor, daß die mechanische Festigkeit des basischen Polymers durch Imprägnieren mit einer starken Säure zwecks Verleihung von Protonenleitfähigkeit bis zu einem unzureichenden Grad abnimmt. Daher ist eine weitere Verbesserung der mechanischen Festigkeit des basischen Polymers zwecks Anwendung des Komplexes aus dem basischen Polymer und der starken Säure auf die Elektrolytmembran für die Brennstoffzelle usw. erwünscht.
- In WO 00/44816 finden sich Ansätze zur Verbesserung der mechanischen Festigkeit und des Quellverhaltens einer Membran. Hierbei wird eine Lösung enthaltend ein basisches Polymer und ein Verbrückungsreagenz zum Gießen der Membran eingesetzt und anschließend die Verbrückung durchgeführt. Auch diese Membranen sind hinsichtlich ihrer mechanischen Festigkeit noch verbesserungswürdig.
- In der deutschen Patentanmeldung Nr. 101 10 752 finden sich weitere Ansätze die mechanische Festigkeit zu Verbessern. Hierbei wird eine Lösung enthaltend ein basisches Polymer und ein Verbrückungsreagenz zum Gießen der Membran eingesetzt und anschließend die Verbrückung in Gegenwart eines basischen Katalysators durchgeführt. Auch diese Membranen sind hinsichtlich ihrer Bruchzähigkeit noch verbesserungswürdig.
- In der deutschen Patentanmeldung Nr. 100 52 242.4 finden sich ebenfalls weitere Ansätze die mechanische Festigkeit zu Verbessern. Hierbei wird eine Lösung enthaltend ein basisches Polymer und ein Polysulfon zum Gießen der Membran eingesetzt. Auch diese Membranen sind hinsichtlich ihrer Bruchzähigkeit bzw. des Quellverhaltens noch verbesserungswürdig.
- Es wurde nunmehr gefunden, daß eine Verbrückung der basischen Polymeren und des Verbrückungsreagenz in Gegenwart eines basischen Katalysators Abhilfe schafft, wenn anstelle des basischen Polymeren ein Blend des basischen Polymeren mit einem Polysulfon eingesetzt wird.
- Gegenstand der vorliegenden Erfindung sind Membran aus verbrücktem Polymer erhältlich durch ein Verfahren umfassend die folgenden Schritte:
- A) Herstellung einer Lösung enthaltend ein basisches Polymer (Polymer I) mit mindestens einer Aminogruppe in einer Wiederholungseinheit und mindestens einem Verbrückungsreagenz und zusätzlich mindestens ein basischer Katalysator in mindestens einem geeigneten Lösemittel,
- B) Gießen einer Folie mit der aus Schritt A) erhaltenen Lösung
- C) Entfernen des Lösemittels aus Schritt A)
- D) Durchführung der Verbrückungsreaktion in der gemäß Schritt C) erhaltenen Folie
- E) Dotierung der gemäß Schritt D) erhaltenen Folie mit einer starken Säure
- In der Regel löst man das basische Polymer und das Polysulfon in dem Lösungsmittel oder dem Lösungsmittelgemisch, versetzt die erhaltene Lösung mit dem Verbrückungsreagenz und dem basischen Katalysator und vermischt anschließend innig. Es ist gleichermaßen möglich die Polymere in getrennten Lösungen desselben Lösemittels herzustellen und diese zu vereinigen.
- Hinsichtlich des Verbrückungsreagenzes bestehen keinerlei Beschränkungen, sofern es sich um eine Verbindung mit einer funktionellen Gruppe, die mit einer Aminosäure reagiert, handelt. Das Verbrückungsreagenz weist vorzugsweise mindestens zwei funktionelle Gruppen zur Umsetzung mit der Aminogruppe im Molekül auf und ist in der Regel eine organische Verbindung. Beispiele für derartige Gruppen sind Epoxidgruppen und Isocyanatgruppen. Wenn jedoch die Epoxidgruppe und die Isocyanatgruppe im Verbrückungsmittelmolekül vorliegen, so reagieren die beiden Gruppen miteinander, was daher nicht bevorzugt ist.
- Das Verbrückungsreagenz weist daher vorzugsweise mindestens zwei Epoxidgruppen oder Isocyanatgruppen pro Molekül auf.
- Beispiele für die organische Verbindung mit nicht weniger als zwei Epoxidgruppen und nicht weniger als zwei Isocyanatgruppen sind eine Epoxyverbindung der Formel (II) sowie eine organische Verbindung der Formel (III). Außerdem können die Wasserstoffatome in den Epoxidgruppen der Epoxyverbindung der Formel (II) durch ein Halogen oder eine Niederalkylgruppe substituiert sein.
- In der obigen Formel steht R1 für eine Kohlenwasserstoffgruppe mit 1 bis 30 Kohlenstoffatomen, beispielsweise eine geradkettige oder verzweigte Niederalkylengruppe mit 1 bis 15 Kohlenstoffatomen, die durch eine Nitrogruppe, eine Sauerstoffatom, eine Epoxidgruppe oder eine Arylgruppe substituiert sein kann, und eine geradkettige oder verzweigte Niederalkoxygruppe mit 1 bis 15 Kohlenstoffatomen, die durch eine Nitrogruppe, eine Epoxidgruppe oder eine Arylgruppe substituiert sein kann. Als Arylgruppe werden auch Heteroaryle verstanden die 4 bis 20 Kohlenstoffatome aufweisen, insbesondere bevorzugte Aryle sind im einzelnen Phenyl, Napthyl und Indenyl.
- Der Begriff Niederalkyl bedeutet bei Verbindungen der Formel (II) und (III) eine Alkylgruppe mit 1 bis 15 Kohlenstoffatomen.
- Der Begriff Aryl bzw. Heteroaryl bedeutet bei Verbindungen der Formel (II) und (III) ein Aryl bzw. Heteroaryl mit 4 bis 20 Kohlenstoffatomen.
- Beispiele für R1 sind die folgenden Gruppen.
- In den obigen Formeln sind m, k und l gleich oder verschieden und stehen jeweils für eine ganze Zahl von 1 bis 6. Der Index n steht für eine ganze Zahl von 1 bis 10, vorzugsweise ist n gleich 1.
- Ein Verbrückungsreagenz mit drei funktionellen Gruppen im Molekül, die mit einer Aminogruppe reagieren, ist beispielsweise die folgende Verbindung.
- Besonders bevorzugte Verbrückungsreagenzien sind Bis-phenol-A-glycidylether [BPAGDE] und 1,4 Butyl-diglycidylether.
- Die Lösung gemäß Schritt A) enthält vorzugsweise 0,1 bis 7 Mol-% des Verbrückungsreagenzes pro Einheit des basischen Polymers, weiter bevorzugt 0,5 bis 6 Mol-% des Verbrückungsreagenzes pro Einheit des basischen Polymers, und besonders bevorzugt 1 bis 6 Mol-% des Verbrückungsreagenzes pro Einheit des basischen Polymers. Ist der Anteil an Verbrückungsreagenz zu hoch, so wird die Imprägnierung des basischen Polymers mit einer starken Säure schwierig. Ist der Anteil an Verbrückungsreagenz dagegen zu gering, so wird die mechanische Festigkeit der Polymermembran nicht ausreichend verbessert.
- Die Lösung gemäß Schritt A) enthält vorzugsweise zwischen 1 und 99 Gewichtsprozent des basischen Polymers, wobei das Verbrückungsreagenz und der basische Katalysator enthalten ist, und zwischen 99 und 1 Gewichtsprozent des Polymeren auf Basis von Polysulfon.
- Besonders bevorzugt enthält die Lösung zwischen 5 und 95 Gewichtsprozent des basischen Polymers, wobei das Verbrückungsreagenz und der basische Katalysator enthalten ist, und zwischen 95 und 5 Gewichtsprozent des Polymeren auf Basis von Polysulfon.
- Insbesondere bevorzugt enthält die Lösung zwischen 10 und 90 Gewichtsprozent des basischen Polymers, wobei das Verbrückungsreagenz und der basische Katalysator enthalten ist, und zwischen 90 und 10 Gewichtsprozent des Polymeren auf Basis von Polysulfon.
- In einer weiteren Ausführungsform der Erfindung enthält die Lösung zwischen 50 und 90 Gewichtsprozent des basischen Polymers, wobei das Verbrückungsreagenz und der basische Katalysator enthalten ist, und zwischen 50 und 10 Gewichtsprozent des Polymeren auf Basis von Polysulfon.
- Als basisches Polymer wird ein basisches Polymer mit mindestens einer Aminogruppe in einer Wiederholungseinheit verwendet. Da die Aminogruppe in der Wiederholungseinheit vorliegt, ist das Polymer basisch, und die Aminogruppe kann mit dem Verbrückungsmittel reagieren. Im Hinblick auf die Reaktivität gegenüber dem Verbrückungsmittel handelt es sich bei der Aminogruppe in der Wiederholungseinheit vorzugsweise um ein primäre oder sekundäre Aminogruppe.
- Die Wiederholungseinheit im basischen Polymer enthält vorzugsweise einen aromatischen Ring mit mindestens einem Stickstoffatom. Bei dem aromatischen Ring handelt es sich vorzugsweise um einen fünf- oder sechsgliedrigen Ring mit eins bis drei Stickstoffatomen, der mit einem anderen Ring, insbesondere einem anderen aromatischen Ring, anelliert sein kann.
- Das basische Polymer ist vorzugsweise in dem gleichen Lösungsmittel wie das Polymere auf Basis von Polysulfon löslich. Im einzelnen sind in einer Lösung vorzugsweise mindestens 1 Gewichtsprozent des basischen Polymers und weiter bevorzugt nicht weniger als 2 Gewichtsprozent gelöst. Diese Merkmale erleichtern die Bildung einer einheitlichen Polymermembran, ohne daß sich darin Poren bilden.
- Als basisches Polymer kommen im Rahmen der vorliegenden Erfindung u. a. Polybenzimidazole, Polyimidazole, Polyvinylimidazole, Polybenzbisimidazole sowie deren Copolymere in Betracht. Darunter sind Polybenzimidazole bevorzugt.
- Bevorzugte Polybenzimidazole entsprechen der folgenden Formel:
worin R für Alkylen, Perfluoralkylen oder einen Substituenten einer der folgenden Formeln:
steht, wobei außerdem jede Alkylen- und Perfuoralkylengruppe, die R sein kann, vorzugsweise 1 bis 10 Kohlenstoffatome und besonders bevorzugt 1 bis 6 Kohlenstoffatome aufweist. - Als basische Polymere können auch Polybenzbisimidazole der folgenden Formel verwendet werden:
worin R die oben angegebene Bedeutung hat. - In die Aminogruppe der Polybenzimidazole oder Polybenzbisimidazole kann über einen Linker eine stark saure Gruppe, wie eine Sulfonsäuregruppe (-SO3H), eine Phosphorsäuremonoestergruppe (-O-P(= O)(OH)2) usw., eingeführt werden.
- Als Linker kommen die oben aufgeführten Gruppen R in Betracht. Alternativ dazu kann der Linker eine lineare oder verzweigte Kohlenwasserstoffgruppe mit 1 bis 20 Kohlenstoffatomen, die mit einem Fluoratome substituiert und durch ein Sauerstoffatom (-O-) oder eine Gruppe der Formel -N(R2)-, worin R2 für ein Wasserstoffatom oder eine Niederalkylgruppe mit 1 bis 6 Kohlenstoffatome steht, unterbrochen sein kann. Als Kohlenwasserstoffgruppe kommen in Betracht: eine Niederalkylgruppe mit 1 bis 20 Kohlenstoffatomen, die durch ein Sauerstoffatom oder eine Arylengruppe, wie eine Phenylengruppe, unterbrochen und verzweigt sein kann; und eine Arylengruppe, wie eine Phenylengruppe, die mit einer Niederalkylgruppe mit 1 bis 20 Kohlenstoffatomen, einer Niederalkoxygruppe mit 1 bis 20 Kohlenstoffatomen, einer Sulfonsäuregruppe, einer Aminogruppe, einem Fluoratom usw. substituiert sein kann. Alternativ dazu kommt eine Gruppe der Formel
-(CR3R4)p-O-(CR5R6)q-
worin p und q unabhängig voneinander jeweils für eine ganze Zahl von 1 bis 10 stehen und
R3, R4, R5, und R6 unabhängig voneinander jeweils gleich oder verschieden sind und für ein Wasserstoffatom; ein Fluoratom; eine Niederalkylgruppe mit 1 bis 6 Kohlenstoffatomen oder eine Niederalkoxygruppe mit 1 bis 6 Kohlenstoffatomen; eine Arylgruppe, wie eine Phenylgruppe, die mit einer Niederalkylgruppe mit 1 bis 6 Kohlenstoffatomen, einer Niederalkoxygruppe mit 1 bis 6 Kohlenstoffatomen, einer Sulfonsäuregruppe, einer Aminogruppe, einem Fluoratom usw. substituiert sein kann; oder eine stark saure Gruppe wie eine Sulfonsäuregruppe, eine Phosphorsäuremonoestergruppe und vorzugsweise ein Wasserstoffatom; ein Fluoratom oder eine Niederalkylgruppe mit 1 bis 6 Kohlenstoffatomen stehen, in Betracht. - So kann man beispielsweise in die Polybenzimidazole oder Polybenzbisimidazole eine Gruppe der Formel >N-(CR3R4)r-SO3H, worin N für ein Stickstoffatom im Imidazolring der Polybenzimidazole oder Polybenzbisimidazole steht; r für eine ganze Zahl von 1 bis 20 steht und R3 und R4 die oben aufgeführten Bedeutungen besitzen, einführen.
- Bei der Einführung einer stark sauren Gruppe am Stickstoffatom der Polybenzimidazole oder Polybenzbisimidazole über den Linker ist es nicht notwendig, daß der Linker und die starke Säure an allen Stickstoffatomen eingeführt werden. Man kann den Linker und die starke Säure auch nur an einigen der Stickstoffatome einführen, wobei an den anderen Stickstoffatomen gebundene Wasserstoffatome verbleiben. Da die verbleibenden Wasserstoffatome mit dem Verbrückungsmittel reagieren können, ist dies bevorzugt.
- Beispielsweise kann man den Linker und die starke Säure an 5 bis 85 Prozent der Stickstoffatome des basischen Polymers, wie die Stickstoffatome des Imidazolrings, insbesondere an 10 bis 75 Prozent der Stickstoffatome und ganz besonders an 15 bis 45 Prozent der Stickstoffatome einführen.
- Das basische Polymer kann durch Umsetzung mit einem Sulton in Lösung sulfoniert oder sulfoalkyliert werden. Hierbei verwendet man beispielsweise eine Lösung von 1 bis 30 Gewichtsprozent des basischen Polymers und insbesondere eine Lösung von 5 bis 20 Gewichtsprozent des basischen Polymers. Als Lösungsmittel für die Sulfonierung oder Sulfoalkylierung verwendet man vorzugsweise das Lösungsmittel für das flüssige Medium, das weiter unten beschrieben wird.
- Eine Beschreibung dieser Reaktion findet sich beispielsweise in US-PS 5,599,639, US-PS 4,814,399 und Ahmed Mstafa, Chemical Review, S. 195-223(1954). Auf alle diese Druckschriften wird hiermit ausdrücklich Bezug genommen.
- Das basische Polymer stammt vorzugsweise aus der Gruppe bestehend aus Polybenzimidazolen, Polyimidazolen, Polyvinylimidazolen und Polybenzbisimidazolen.
- Alternativ dazu kann das basische Polymer bereits in seiner Wiederholungseinheit eine stark saure Gruppe aufweisen. Die Gegenwart der starken Säure sorgt für Protonenleitfähigkeit.
- Gemäß der vorliegenden Erfindung enthält das Polymerblend ein weitere Polymer auf Basis von Polysulfon.
- Als Polymere auf Basis von Polysulfon werden Polymere verstanden welche wiederkehrende Einheiten mit verknüpfenden Sulfon-Gruppen entsprechend den allgemeinen Formeln 2A, 2B, 2C, 2D, 2E, 2F und/oder 2G aufweise:
worin die Reste R unabhängig voneinander gleich oder verschieden 1,2-Phenylen, 1,3-Phenylen, 1,4-Phenylen, 4,4'-Biphenyl, ein zweiwertiger Rest eines Heteroaromaten, ein zweiwertiger Rest eines C10-Aromaten und/oder ein zweiwertiger Rest eines C14-Aromaten sind. - Beispiele für Heteroaromaten sind Pyridin und Chinolin. Ein Beispiel für einen C10- Aromaten ist Naphthalin, für einen C14-Aromaten Phenanthren.
- Zu den im Rahmen der vorliegenden Erfindung bevorzugten Polysulfone gehören Homo- und Copolymere, beispielsweise statistische Copolymere, wie ®Victrex 720 P und ®Astrel an. Besonders bevorzugte Polysulfone sind:
- Ein ganz besonders bevorzugtes Polysulfon ist ®Radel R.
- Die erfindungsgemäß einsetzbaren Polysulfone können gegebenenfalls substituiert sein.
- Vorzugsweise weisen die erfindungsgemäß eingesetzten Polysulfone keine Sulfonsäuregruppen (-SO3H) oder protonierte Sulfonsäuregruppen (-SO3 -M+) auf. M+ steht hierbei für ein anorganisches oder organisches Kation. Derartige Kationen können die mechanischen Eigenschaften der dotierten Kunststoffmembran verschlechtern.
- In einer bevorzugten Ausführungsform der vorliegenden Erfindung sind die Polysulfone nicht substituiert.
- In noch einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Zahlenmittel des Molekulargewichts von den Polysulfonen größer als 30.000 g/mol.
- Als Lösungsmittel für das flüssige Medium ist ein Lösungsmittel bevorzugt, das nicht mit dem Verbrückungsmittel reagiert. Bevorzugt ist ein organisches Lösungsmittel, insbesondere ein polares organisches Lösungsmittel. Als organische Lösungsmittel seien im einzelnen niedere Amide wie N-Methyl-2-pyrrolidon, N,N- Dimethylacetamid, Dimethylformamid; Dimethylsulfoxid usw. genannt. Man kann auch ein Gemisch dieser Lösungsmittel verwenden.
- Bei dem flüssigen Medium kann es sich entweder um eine Lösung oder um eine Suspension handeln. Im Fall der Lösung sind die Polymere in dem Lösungsmittel gelöst. Im Fall der Suspension sind als dispergierte Phase dienende Teilchen aus den Polymeren in einem als kontinuierliche Phase dienenden Lösungsmittel dispergiert. Alternativ dazu kann es sich bei dem flüssigen Medium um eine Aufschlämmung oder eine Paste handeln.
- Anschließend wird aus der Lösung gemäß Schritt A) eine Folie erzeugt (Schritt B). Hierzu wird die Lösung beispielsweise auf einem planen Substrat ausgegossen und dann bei Normaldruck oder unter vermindertem Druck getrocknet. Alternativ dazu kann man den Polymerblend mit Hilfe eines Rakelverfahrens in die Folie überführen.
- Bei dem Substrat für das Vergießen oder das Rakelverfahren kann es sich um einen Halbleiter, wie eine Siliziumscheibe, ein synthetisches Polymer, wie Poly(ethylenterephthalat), oder ein Metall, wie rostfreien Stahl, handeln. Wird beispielsweise eine Rolle aus Poly(ethylenterephthalat) als Substrat verwendet, so kann man zur Herstellung einer Folie mit konstanter Breite und beliebiger Dicke eine kontinuierlich arbeitende Vergußanlage verwenden. In diesem Fall wird die Lösung auf das Substrat aufgegossen und läuft durch einen Spalt mit vorgegebenem Abstand und dann durch einen Trockenofen zum Trocknen mittels Warmwind.
- Alternativ dazu kann die Folienbildung gemäß dem in der japanischen Anmeldung Nr. Hei 10-125560 beschriebenen Verfahren erfolgen.
- Hierbei wird die Lösung in einen Zylinder mit zylinderförmiger Innenfläche gegossen, und anschließend der Zylinder in Drehung versetzt wird. Gleichzeitig läßt man das Lösungsmittel durch die durch die Drehung verursachte Zentrifugalkraft abdampfen; wobei sich auf der Innenfläche des Zylinders eine zylindrische Polymerfolie weitgehend einheitlicher Dicke bildet.
- Mit diesem Verfahren kann ein Polymerblend mit einer einheitlichen Matrix ausgebildet werden.
- Dieses in der japanischen Patentanmeldung Hei 10-125560 beschriebene Verfahren ist ebenfalls Bestandteil der vorliegenden Beschreibung.
- Das Entfernen des Lösungsmittel in Schritt C) kann durch Trocknung erfolgen. Zwecks leichterer Trocknung kann das Erhitzen unter vermindertem Druck von nicht mehr als 1 Atmosphäre, vorzugsweise nicht mehr als 0,1 Atmosphären und weiter bevorzugt nicht mehr als 0,05 Atmosphären erfolgen.
- Vorteilhafterweise erfolgt die Verbrückung in Schritt D) durch Erhitzen, so daß die Verbrückung (Schritt D) und die Trocknung (Schritt C) zugleich in einem Schritt erfolgen kann.
- Alternativ dazu kann man das Erhitzen zwecks Trocknung der Folie auf eine Temperatur begrenzen, die unterhalb der Reaktionstemperatur des Verbrückungsreagenzes liegt und anschließend die Folie zwecks Verbrückung stark erhitzen. Zum Erhitzen zwecks Trocknung oder zum Erhitzen zwecks Verbrückung kann man Warmluft verwenden.
- Die Verbrückung gemäß Schritt D) kann auch durch eine Bestrahlung mit elektromagnetischen Wellen (photochemische Reaktion) erfolgen.
- Die Verbrückung bewirkt, das die Epoxidverbindung der Formel (IIa) mit dem Polybenzimidazol der Formel (I) unter Verbrückung einer Polymerkette umgesetzt wird.
- In den obigen Formeln hat R1 die oben aufgeführte Bedeutung.
- Ganz analog wird die Isocyanatverbindung der Formel (III) mit dem Polybenzimidazol der Formel (I) unter Verbrückung einer Polymerkette umgesetzt.
- In den obigen Formeln hat R1 die oben aufgeführte Bedeutung.
- In den obigen Formeln werden der einfacheren Darstellung halber verschiedene Polymerketten verbrückt. Es ist jedoch auch möglich, daß eine Verbrückung der gleichen Polymerkette und eine Innenseite einer Wiederholungseinheit erfolgt.
- Im Rahmen der vorliegenden Erfindung kann man das basische Polymer zwecks Verleihung von Protonenleitfähigkeit mit einer starken Säure imprägnieren (Schritt E). Die Imprägnierung/Dotierung kann mit der starken Säure in Form des flüssigen Mediums erfolgen. Alternativ dazu kann man die Imprägnierung/Dotierung mit der starken Säure aber auch nach Folienbildung (Schritt C), aber vor dem Erhitzen bzw. der Verbrückung durchführen. Die Imprägnierung mit der starken Säure kann aber auch nach dem Erhitzen erfolgen.
- Die Ausführungsform, bei der mit der starken Säure in Form des flüssigen Mediums imprägniert wird, bezieht sich auf die Zugabe einer starken Säure zum flüssigen Medium. Vorzugsweise reagiert das Verbrückungsreagenz nicht mit der starken Säure.
- Die Imprägnierung mit der starken Säure erfolgt vorzugsweise nach dem Erhitzen der Folie gemäß Schritt C). Der verbrückte, basische Polymerblend besitzt eine verbesserte mechanische Festigkeit und läßt sich einfacher handhaben. Da das Verbrückungsreagenz schon abreagiert ist, ist die Reaktion der starken Säure mit nicht umgesetztem Verbrückungsreagenz sehr begrenzt.
- Die Folie aus verbrücktem, basischem Polymerblend kann in eine starke Säure eingetaucht werden, so daß die Folie mit der starken Säure imprägniert wird und zur Membran wird. Man kann den basische Polymerblend in eine hochkonzentrierte starke Säure mit einer Temperatur von mindestens 20°C, vorzugsweise mindestens 40°C und weiter bevorzugt mindestens 50° über einen Zeitraum von höchstens 5 Stunden und vorzugsweise höchstens 1 Stunde eintauchen.
- Die Durchführung des Eintauchschritts bei 20°C oder darüber ermöglicht eine Verkürzung der Eintauchzeit in der starken Säure. Im Hinblick auf die Stabilität der Polymere und der für die Handhabung von starken Säuren bei hohen Temperaturen erforderlichen Sicherheitsvorkehrungen erfolgt das Eintauchen bei höchstens 200°C oder darunter, vorzugsweise bei 100°C oder darunter und ganz besonders bevorzugt bei 80°C oder darunter.
- Als starke Säure kommen protische starke Säuren in Betracht. Beispielsweise verwendet man bevorzugt Phosphorsäure und/oder Schwefelsäure.
- Im Rahmen der vorliegenden Beschreibung versteht man unter "Phosphorsäure" Polyphosphorsäure, Phosphonsäure (H3PO3), Orthophosphorsäure (H3PO4), Pyrophosphorsäure (H4P2O7), Triphosphorsäure (H5P3O10) und Metaphosphorsäure. Die Phosphorsäure, insbesondere Orthophosphorsäure, hat vorzugsweise eine Konzentration von mindestens 80 Gewichtsprozent, besonders bevorzugt eine Konzentration von mindestens 85 Gewichtsprozent, noch weiter bevorzugt eine Konzentration von mindestens 89 Gewichtsprozent. Der Grund dafür ist darin zu sehen, daß das basische Polymer bei zunehmender Konzentration der starken Säure mit einer größeren Zahl von Molekülen starker Säure imprägniert werden kann.
- Insofern die Folie aus Schritt C) ein Polysulfon mit Sulfonsäuregruppen enthält, kann die Behandlung gemäß Schritt E) auch in Wasser oder einer wässrigen, verdünnten Säure erfolgen.
- Die erfindungsgemäß erhaltene Polymerelektrolyt-Blendmembran, nämlich der Komplex aus dem basischen Polymerblend und der starken Säure, ist protonenleitend und kann daher vorzugsweise als Elektrolyt für Zellen verwendet werden. Trotzdem ist der Polymerelektrolyt nicht auf die Verwendung für Zellen beschränkt, sondern kann auch als Elektrolyt für ein Anzeigeelement, ein elektrochromes Element oder verschiedene Sensoren verwendet werden.
- Als basische Katalysatoren kommen basische Oxide und Hydroxyde der I., II. und III. Hauptgruppe des Periodensystems, Hydride der I. Hauptgruppe des Periodensystems und Lithium-organyle in Frage, vorzugsweise KOH, LiOH, NaOH, RbOH, CsOH, Ca(OH)2, Mg(OH)2, Ba(OH)2, LiH, NaH, KH, Methyl-Lithium und Butyl-Lithium.
- Der basische Katalysator wird in Mengen von 0,01 bis 5 Mol-%, vorzugsweise 0,02 bis 3 Mol-%, insbesondere bevorzugt 0,5 bis 2,5 Mol-%, bezogen auf das eingesetzte Verbrückungsreagenz, in die Lösung gemäß Schritt A) zugesetzt.
- Gegenstand der Erfindung ist ferner die bevorzugte Verwendung der erfindungsgemäßen verbrückten Polymerelektrolyt-Blendmembran in einer Membran-Elektroden-Einheit (MEU) für Brennstoffzellen.
- Die Membran-Elektroden-Einheit für eine Brennstoffzelle enthält eine erfindungsgemäße Polymerelektrolytmembran und zwei Elektroden, zwischen denen die Polymerelektrolytmembran sandwichartig angeordnet ist. Weiterhin kann die Die Elektroden weisen jeweils eine katalytisch aktive Schicht und eine Gasdiffusionsschicht zur Zuführung eines Reaktionsgases zur katalytisch aktiven Schicht auf. Die Gasdiffusionsschicht ist porös, damit reaktives Gas hindurchtreten kann.
- Die erfindungsgemäße verbrückte Polymerelektrolyt-Blendmembran kann als Elektrolytmembran verwendet werden. Außerdem kann man die Elektrolytmembran sowie einen Vorläufer für eine MEU mit einer oder beiden katalytisch aktiven Schichten herstellen. Des weiteren kann man die MEU auch durch Fixieren der Gasdiffusionsschicht am Vorläufer herstellen.
- Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Brennstoffzelle mit mehreren MEU's, die jeweils eine nach dem obigen Verfahren hergestellte Membran aus verbrücktem Polymer und zwei Elektroden, zwischen denen die Membran aus verbrücktem Polymer sandwichartig angeordnet ist, enthalten.
- Die mittels des erfindungsgemäßen Verfahren hergestellten Blend-Membranen zeigen eine deutlich erhöhte Bruchzähigkeit.
- Die erfindungsgemäßen vernetzten Blend-Membranen zeigen nach einer Dotierung in 85 Gew.-%iger Phosphorsäure (72 Stunden bei 20°C) eine Bruchzähigkeit von mehr als 250 kJ/m2, vorzugsweise mehr als 300 kJ/m2, insbesondere mehr als 350 kJ/m2.
- Nachfolgend wird die Erfindung durch Beispiele und Vergleichsbeispiele eingehender erläutert, ohne daß die Erfindung auf diese Beispiele beschränkt werden soll.
- ®Celazole der Firma Celanese wird bei Temperaturen von 200°C über einen Zeitraum von 2-4 Stunden in N,N-Dimethylacetamid "DMAc" (15% Gewichtsprozent Celazole) gelöst.
- Polysulfon ®Radel-R 5700 der Firma Amoco (oder Polyethersulfon ®Ultrason E 6000 der Fa. BASF) wird in N,N-Dimethylacetamid oder N-Methylpyrrolidon gelöst (15 Gew.-%). Die Polysulfonlösung wird über eine Drucknutsche bei Raumtemperatur filtriert.
- Die PBI-DMAc-Lösung und die Polysulfon-Lösung werden bei einer Temperatur von 60-95°C mit einem langsam laufenden Ankerrührer gemischt. Niedrigere Temperaturen bzw. hohe Umlaufgeschwindigkeiten des Rührers führen durch den Weissenbergeffekt, den die Polybenzimidazol-Lösung zeigt, zu einer zumindest teilweisen Entmischung der Lösung. Die gemischte Lösung wird durch Anlegen eines Vakuums für einen Zeitraum von mindestens 15 Minuten bei einer Temperatur von 80°C entgast.
- Die Lösung wird auf einer Glasplatte in einer staubarmen Umgebung (Laminar-Flow- Box) in einer Stärke von ca. 250 µm gerakelt und in einem mit einem Staubfilter versehenen Umlufttrockenschrank bei Temperaturen von bis zu 120°C getrocknet. Die getrocknete Kunststoffmembran wird von der Glasplatte abgezogen.
- Die Membran wird 72 Stunden bei Raumtemperatur mit 85-95%iger Phosphorsäure benetzt. Hergestellte Membranen
- Die Messung der mechanischen Eigenschaften wird mittels uniaxialem Zugversuch an streifenförmigen Proben mit einer Breite von 15 mm und Länge von 120 mm gemäss ISO/R527 durchgeführt. Der Zugversuch erfolgt bei einer Temperatur von 100°C mit einer Dehngeschwindigkeit von 50 mm/min. Die Ergebnisse der Mittelwerte von mindestens 5 Messungen sind in folgender Tabelle zusammengefasst.
- Die spezifische Leitfähigkeit wird mittels Impedanzspektroskopie in einer 4-Pol- Anordnung im potentiostatischen Modus und unter Verwendung von Platinelektroden (Draht, 0,25 mm Durchmesser) gemessen. Der Abstand zwischen den stromabnehmenden Elektroden beträgt 2 cm. Das erhaltene Spektrum wird mit einem einfachen Modell bestehend aus einer parallelen Anordnung eines Ohmschen Widerstandes und eines Kapazitators ausgewertet. Der Probenquerschnitt der phosphorsäuredotierten Membran wird unmittelbar vor der Probenmontage gemessen. Zur Messung der Temperaturabhängigkeit wird die Messzelle in einem Ofen auf die gewünschte Temperatur gebracht und über eine in unmittelbarer Probennähe positioniertes Pt-100 Thermoelement geregelt. Nach Erreichen der Temperatur wird die Probe vor dem Start der Messung 10 Minuten auf dieser Temperatur gehalten. Als Vergleichswert wird die spezifische Leitfähigkeit bei 120°C verwendet.
- Die Dotierung aller Membrantypen erfolgt durch Lagerung Phosphorsäure während 72 h bei Raumtemperatur in einem geschlossenen Glasgefäss. Zur Bestimmung der Säureaufnahme wird nach der Dotierung eine kreisrunde Probe mit einem Durchmesser von 3 cm ausgestanzt. Dieses Stück wird in ein mit 100 ml Wasser gefülltes Becherglas gegeben und die freigesetzte Säure mit 0,1 M NaOH titriert über den Equivalentpunkt titriert. Anschliessend wird die Probe im Vakuumtrockenschrank bei 150°C während 15 h und p < 1 mbar getrocknet und das Trockengewicht bestimmt. Aus dem Trockengewicht und der Menge an bis zum Equivalentpunkt verbrauchter NaOH wird dann die Ionenaustauschkapazität (IEC) bzw der Säuregehalt ausgedrückt durch n(H3PO4)/n(PBI) bestimmt.
- Die Ergebnisse dieser Messungen sind in folgender Tabelle zusammengefasst.
Claims (26)
1. Membran aus verbrücktem Polymer erhältlich durch ein Verfahren umfassend
die folgenden Schritte:
dadurch gekennzeichnet, daß in Schritt A) neben dem basischen Polymer
(Polymer I) mindestens ein weiteres Polymer auf Basis von einem Polysulfon
(Polymer II) zugemischt wird.
A) Herstellung einer Lösung enthaltend ein basisches Polymer (Polymer I) mit
mindestens einer Aminogruppe in einer Wiederholungseinheit und
mindestens einem Verbrückungsreagenz und zusätzlich mindestens ein
basischer Katalysator in mindestens einem geeigneten Lösemittel,
B) Gießen einer Folie mit der aus Schritt A) erhaltenen Lösung
C) Entfernen des Lösemittels aus Schritt A)
D) Durchführung der Verbrückungsreaktion in der gemäß Schritt C) erhaltenen
Folie
E) Dotierung der gemäß Schritt D) erhaltenen Folie mit einer starken Säure
2. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß das
Verbrückungsreagenz mindestens zwei Epoxidgruppen oder Isocyanatgruppen
pro Molekül aufweist.
3. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß das
Verbrückungsreagenz mindestens eine Verbindung der Formel (II) und/oder (III)
worin R1 für eine Kohlenwasserstoffgruppe mit 1 bis 30 Kohlenstoffatomen steht, ist.
worin R1 für eine Kohlenwasserstoffgruppe mit 1 bis 30 Kohlenstoffatomen steht, ist.
4. Membran gemäß Anspruch 3, dadurch gekennzeichnet, daß das R1 gleich
worin m, k und l jeweils gleich oder verschieden sind und für eine ganze Zahl von 1 bis 6 stehen, n für eine ganze Zahl von 1 bis 10, vorzugsweise gleich 1, steht.
worin m, k und l jeweils gleich oder verschieden sind und für eine ganze Zahl von 1 bis 6 stehen, n für eine ganze Zahl von 1 bis 10, vorzugsweise gleich 1, steht.
5. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß das
Verbrückungsreagenz mindestens drei Epoxidgruppen pro Molekül enthält.
6. Membran gemäß Anspruch 5, dadurch gekennzeichnet, daß
Verbückungsreagenz die Verbindung
ist.
ist.
7. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß
Verbückungsreagenz Bis-phenol-A-glycidylether [BPAGDE] und/oder 1,4 Butyl-
diglycidylether ist.
8. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Lösung gemäß
Schritt A) 0,1 bis 7 Mol% des Verbrückungsreagenzes pro Einheit des
basischen Polymers enthält.
9. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als basisches
Polymer Polybenzimidazole, Polyimidazole, Polyvinylimidazole,
Polybenzbisimidazole sowie deren Copolymere eingesetzt werden.
10. Membran gemäß Anspruch 9, dadurch gekennzeichnet, daß als
Polybenzimidazole solche mit der Formel:
worin R für Alkylen, Perfluoralkylen oder einen Substituenten einer der folgenden Formeln:
steht, wobei außerdem jede Alkylen- und Perfuoralkylengruppe, die R sein kann, vorzugsweise 1 bis 10 Kohlenstoffatome und besonders bevorzugt 1 bis 6 Kohlenstoffatome aufweist, eingesetzt wird.
worin R für Alkylen, Perfluoralkylen oder einen Substituenten einer der folgenden Formeln:
steht, wobei außerdem jede Alkylen- und Perfuoralkylengruppe, die R sein kann, vorzugsweise 1 bis 10 Kohlenstoffatome und besonders bevorzugt 1 bis 6 Kohlenstoffatome aufweist, eingesetzt wird.
11. Membran gemäß Anspruch 9, dadurch gekennzeichnet, daß als
Polybenzbisimidazole solche mit der Formel
worin R die unter Anspruch 10 angegebene Bedeutung hat, verwendet werden.
worin R die unter Anspruch 10 angegebene Bedeutung hat, verwendet werden.
12. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als weiteres
Polymer auf Basis von einem Polysulfon (Polymer II) ein oder mehrere
Polysulfone welche wiederkehrende Einheiten mit verknüpfenden Sulfon-
Gruppen entsprechend den allgemeinen Formeln 2A, 2B, 2C, 2D, 2E, 2F
und/oder 2G aufweisen:
worin die Reste R unabhängig voneinander gleich oder verschieden 1,2- Phenylen, 1,3-Phenylen, 1,4-Phenylen, 4,4'-Biphenyl, ein zweiwertiger Rest eines Heteroaromaten, ein zweiwertiger Rest eines C10-Aromaten und/oder ein zweiwertiger Rest eines C14-Aromaten sind, wobei das Polysulfon vorzugsweise keine Sulfonsäuregruppen aufweist.
worin die Reste R unabhängig voneinander gleich oder verschieden 1,2- Phenylen, 1,3-Phenylen, 1,4-Phenylen, 4,4'-Biphenyl, ein zweiwertiger Rest eines Heteroaromaten, ein zweiwertiger Rest eines C10-Aromaten und/oder ein zweiwertiger Rest eines C14-Aromaten sind, wobei das Polysulfon vorzugsweise keine Sulfonsäuregruppen aufweist.
13. Membran gemäß Anspruch 12, dadurch gekennzeichnet, daß das Zahlenmittel
des Molekulargewichts des Polysulfons größer als 30.000 g/mol ist.
14. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Lösung gemäß
Schritt A) zwischen 1 und 99 Gewichtsprozent des basischen Polymers, wobei
das Verbrückungsreagenz und der basische Katalysator enthalten ist, und
zwischen 99 und 1 Gewichtsprozent des Polymeren auf Basis von Polysulfon,
enthält.
15. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Verbrückung in
Schritt D) durch Erhitzen erfolgt, so daß die Verbrückung (Schritt D) und die
Trocknung (Schritt C) zugleich in einem Schritt erfolgt.
16. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Trocknung der
Folie bei einer Temperatur durchgeführt wird, die unterhalb der
Reaktionstemperatur des Verbrückungsreagenzes liegt und anschließend die
Folie zwecks Verbrückung weiter erhitzt wird.
17. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Verbrückung in
Schritt D) durch eine Bestrahlung mit elektromagnetischen Wellen
(photochemische Reaktion) erfolgt.
18. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als starke Säure in
Schritt E) Phosphorsäure und/oder Schwefelsäure eingesetzt wird.
19. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß die Behandlung in
Schritt E) mit Wasser oder einer wässrigen Säure durchgeführt und das
Polysulfon Sulfonsäuregruppen und/oder protonierte Sulfonsäuregruppen
aufweist.
20. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß als basische
Katalysatoren basische Oxide und Hydroxyde der I., II. und III. Hauptgruppe
des Periodensystems, Hydride der I. Hauptgruppe des Periodensystems und
Lithium-organyle eingesetzt werden.
21. Membran gemäß Anspruch 20, dadurch gekennzeichnet, daß als basische
Katalysatoren KOH, LiOH, NaOH, RbOH, CsOH, Ca(OH)2, Mg(OH)2, Ba(OH)2,
LiH, NaH, KH, Methyl-Lithium und/oder Butyl-Lithium eingesetzt werden.
22. Membran gemäß Anspruch 1, dadurch gekennzeichnet, daß der basische
Katalysator in Mengen von 0,01 bis 5 Mol-%, bezogen auf das eingesetzte
Verbrückungsreagenz, in die Lösung gemäß Schritt A) zugesetzt wird.
23. Verwendung der Membran gemäß einem der Ansprüche 1 bis 22 zur
Herstellung von Membran-Elektroden-Einheiten.
24. Verwendung der Membran gemäß einem der Ansprüche 1 bis 22 zur
Herstellung von Brennstoffzellen.
25. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode und
mindestens eine Membran gemäß einem der Ansprüche 1 bis 22.
26. Brennstoffzelle enthaltend mindestens Membran-Elektroden-Einheit gemäß
Anspruch 25.
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10140147A DE10140147A1 (de) | 2001-08-16 | 2001-08-16 | Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle |
CNB02816024XA CN1269883C (zh) | 2001-08-16 | 2002-08-10 | 从交联聚合物掺混物制备膜及相应燃料电池的方法 |
PCT/EP2002/008992 WO2003016384A2 (de) | 2001-08-16 | 2002-08-10 | Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle |
AT02794771T ATE390454T1 (de) | 2001-08-16 | 2002-08-10 | Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle |
US10/486,754 US7462223B2 (en) | 2001-08-16 | 2002-08-10 | Method for producing a membrane from a crosslinked polymer blend, and corresponding fuel cell |
KR1020047002298A KR100883287B1 (ko) | 2001-08-16 | 2002-08-10 | 가교된 중합체 배합물로부터의 막의 제조 방법, 및 해당연료 전지 |
JP2003521705A JP4902938B2 (ja) | 2001-08-16 | 2002-08-10 | 架橋化ポリマーブレンドからの膜の製造方法及び対応する燃料電池 |
CA2457608A CA2457608C (en) | 2001-08-16 | 2002-08-10 | Method for producing a membrane from a crosslinked polymer blend, and corresponding fuel cell |
DK02794771T DK1425336T3 (da) | 2001-08-16 | 2002-08-10 | Fremgangsmåde til fremstilling af en membran af en tværbunden polymer og brændselscelle |
EP02794771A EP1425336B1 (de) | 2001-08-16 | 2002-08-10 | Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle |
DE50211981T DE50211981D1 (de) | 2001-08-16 | 2002-08-10 | Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10140147A DE10140147A1 (de) | 2001-08-16 | 2001-08-16 | Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle |
Publications (1)
Publication Number | Publication Date |
---|---|
DE10140147A1 true DE10140147A1 (de) | 2003-03-06 |
Family
ID=7695588
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE10140147A Withdrawn DE10140147A1 (de) | 2001-08-16 | 2001-08-16 | Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle |
DE50211981T Expired - Lifetime DE50211981D1 (de) | 2001-08-16 | 2002-08-10 | Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE50211981T Expired - Lifetime DE50211981D1 (de) | 2001-08-16 | 2002-08-10 | Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle |
Country Status (10)
Country | Link |
---|---|
US (1) | US7462223B2 (de) |
EP (1) | EP1425336B1 (de) |
JP (1) | JP4902938B2 (de) |
KR (1) | KR100883287B1 (de) |
CN (1) | CN1269883C (de) |
AT (1) | ATE390454T1 (de) |
CA (1) | CA2457608C (de) |
DE (2) | DE10140147A1 (de) |
DK (1) | DK1425336T3 (de) |
WO (1) | WO2003016384A2 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005076401A1 (de) | 2004-02-04 | 2005-08-18 | Sartorius Ag | Membranen für brennstoffzellen, verfahren zur herstellung der membranen und brennstoffzellen unter verwendung derartiger membranen |
WO2005111123A1 (de) | 2004-05-14 | 2005-11-24 | Pemeas Gmbh | Anisotroper formkörper, verfahren zur herstellung und verwendung von anisotropen formkörpern |
WO2010099948A1 (de) | 2009-03-06 | 2010-09-10 | Basf Se | Verbesserte membran-elektrodeneinheiten |
EP2237356A1 (de) | 2004-02-21 | 2010-10-06 | BASF Fuel Cell GmbH | Membran-elektroden-einheit mit hoher leistung und deren anwendung in brennstoffzellen |
US8012647B2 (en) | 2004-08-05 | 2011-09-06 | Basf Fuel Cell Gmbh | Membrane-electrode unit and fuel elements with increased service life |
US8066784B2 (en) | 2004-07-15 | 2011-11-29 | Basf Fuel Cell Gmbh | Method for the production of membrane/electrode units |
US8206870B2 (en) | 2004-08-05 | 2012-06-26 | Basf Fuel Cell Gmbh | Long-life membrane electrode assemblies with gasket and frame |
EP2869382A1 (de) | 2013-10-30 | 2015-05-06 | Basf Se | Verbesserte Membranelektrodenanordnungen |
US9559367B2 (en) | 2002-08-02 | 2017-01-31 | Basf Fuel Cell Gmbh | Long-life membrane electrode assemblies and its use in fuel cells |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10110752A1 (de) * | 2001-03-07 | 2002-09-19 | Celanese Ventures Gmbh | Verfahren zur Herstellung einer Membran aus verbrücktem Polymer und Brennstoffzelle |
DE10117686A1 (de) * | 2001-04-09 | 2002-10-24 | Celanese Ventures Gmbh | Protonenleitende Membran und deren Verwendung |
US20030113714A1 (en) * | 2001-09-28 | 2003-06-19 | Belcher Angela M. | Biological control of nanoparticles |
KR100407793B1 (ko) * | 2001-09-04 | 2003-12-01 | 한국과학기술연구원 | 분리능이 있는 수소 이온 교환 복합막, 복합 용액, 그제조방법 및 이를 포함하는 연료전지 |
DE10235358A1 (de) * | 2002-08-02 | 2004-02-12 | Celanese Ventures Gmbh | Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen |
DE10242708A1 (de) * | 2002-09-13 | 2004-05-19 | Celanese Ventures Gmbh | Protonenleitende Membranen und deren Verwendung |
DE10246461A1 (de) * | 2002-10-04 | 2004-04-15 | Celanese Ventures Gmbh | Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen |
DE10246372A1 (de) * | 2002-10-04 | 2004-04-15 | Celanese Ventures Gmbh | Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Polyazole und deren Anwendung in Brennstoffzellen |
JP4572512B2 (ja) * | 2003-06-24 | 2010-11-04 | 東レ株式会社 | 高分子電解質ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池 |
JP4388072B2 (ja) | 2004-09-09 | 2009-12-24 | 旭化成イーマテリアルズ株式会社 | 固体高分子電解質膜およびその製造方法 |
DE102005020604A1 (de) * | 2005-05-03 | 2006-11-16 | Pemeas Gmbh | Brennstoffzellen mit geringerem Gewicht und Volumen |
EP1902484B1 (de) * | 2005-07-01 | 2017-09-06 | BASF Fuel Cell Research GmbH | Herstellungsverfahren für gasdiffusionselektroden |
DE102005038195A1 (de) * | 2005-08-12 | 2007-02-15 | Pemeas Gmbh | Verbesserte Membran-Elektrodeneinheiten und Brennstoffzellen mit langer Lebensdauer |
US8945736B2 (en) | 2005-09-10 | 2015-02-03 | Basf Fuel Cell Gmbh | Method for conditioning membrane-electrode-units for fuel cells |
DE102005051887A1 (de) * | 2005-10-29 | 2007-05-03 | Pemeas Gmbh | Membran für Brennstoffzellen, enthaltend Polymere, die Phosphonsäure-und/oder Sulfonsäuregruppen umfassen, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen |
DE102005052378A1 (de) * | 2005-10-31 | 2007-05-03 | Pemeas Gmbh | Verbesserte Membran-Elektrodeneinheiten und Brennstoffzellen mit hoher Lebensdauer |
KR100723391B1 (ko) * | 2006-01-13 | 2007-05-30 | 삼성에스디아이 주식회사 | 고분자 전해질막 및 이를 구비한 연료전지 |
KR100813249B1 (ko) * | 2006-10-31 | 2008-03-13 | 삼성에스디아이 주식회사 | 폴리술폰, 이를 이용한 전해질막 및 이를 채용한 연료전지 |
US8039166B2 (en) | 2006-12-20 | 2011-10-18 | Samsung Sdi Co., Ltd. | Polymer electrolyte membrane for fuel cell, method of manufacturing the same, and fuel cell employing the same |
JP5231737B2 (ja) * | 2007-01-25 | 2013-07-10 | 学校法人中部大学 | 燃料電池固体電解質 |
JP2008195748A (ja) * | 2007-02-08 | 2008-08-28 | Japan Atomic Energy Agency | 架橋芳香族高分子電解質膜及びその製造方法 |
US7699911B2 (en) * | 2007-05-03 | 2010-04-20 | Honeywell International Inc. | Ozone resistant O2/N2 separation membranes |
CN101220164B (zh) * | 2007-12-06 | 2010-06-02 | 上海交通大学 | 马来酸酐改性聚苯并咪唑交联膜的制备方法 |
KR20100129750A (ko) * | 2008-02-29 | 2010-12-09 | 바스프 에스이 | 이온성 액체를 포함하는 촉매 잉크, 및 전극, ccm, gde 및 mea의 제조에서의 이의 용도 |
EP2277226A1 (de) * | 2008-04-11 | 2011-01-26 | Basf Se | Verfahren zum betrieb einer brennstoffzelle |
EP2131433A1 (de) * | 2008-06-05 | 2009-12-09 | Reinz-Dichtungs-Gmbh | Elektrochemische Zelle und Verfahren zur ihrer Herstellung |
US7985339B2 (en) * | 2008-08-25 | 2011-07-26 | General Electric Company | Polyarylether compositions bearing zwitterion functionalities |
US8623124B2 (en) * | 2008-10-07 | 2014-01-07 | National University Of Singapore | Polymer blends and carbonized polymer blends |
US8172928B2 (en) * | 2009-01-15 | 2012-05-08 | Honeywell International Inc. | Fuel source for electrochemical cell |
JP2010251745A (ja) | 2009-04-10 | 2010-11-04 | Asml Netherlands Bv | 液浸リソグラフィ装置及びデバイス製造方法 |
US20120189922A1 (en) | 2009-07-16 | 2012-07-26 | Thomas Justus Schmidt | Method for operating a fuel cell, and a corresponding fuel cell |
WO2011006624A2 (de) | 2009-07-16 | 2011-01-20 | Basf Se | Verfahren zum betrieb einer brennstoffzelle und zugehörige brennstoffzelle |
WO2011006623A1 (de) | 2009-07-16 | 2011-01-20 | Basf Se | Verfahren zum betrieb einer brennstoffzelle |
CN102668213A (zh) | 2009-11-06 | 2012-09-12 | 巴斯夫欧洲公司 | 具有增强性能的膜电极组件和燃料电池 |
JP2014500567A (ja) * | 2010-05-31 | 2014-01-09 | ビーエーエスエフ ソシエタス・ヨーロピア | 機械的に安定なポリアゾール |
WO2011151775A1 (en) * | 2010-05-31 | 2011-12-08 | Basf Se | Mechanically stabilized polyazoles |
WO2011154811A1 (en) | 2010-06-08 | 2011-12-15 | Rensselaer Polytechnic Institute | Method for the production of an electrochemical cell |
DE102010029990A1 (de) | 2010-06-11 | 2011-12-15 | Wacker Chemie Ag | Polymerfilme auf der Basis von Polyazolen |
US8541517B2 (en) | 2011-03-10 | 2013-09-24 | Battelle Energy Alliance, Llc | Polymer compositions, polymer films and methods and precursors for forming same |
JP5760283B2 (ja) * | 2011-03-24 | 2015-08-05 | 住友化学株式会社 | ポリスルホン組成物および成形体 |
US9825320B2 (en) | 2013-04-16 | 2017-11-21 | Basf Se | Process for the manufacture of membrane electrode units |
EP2843743B1 (de) | 2013-09-02 | 2018-03-28 | Basf Se | Membran-Elektroden-Einheiten für Hochtemperatur -Brennstoffzellen mit einer verbesserten Stabilität |
CN109289554B (zh) * | 2018-11-07 | 2021-09-21 | 山东理工大学 | 质子-电子混合导体透氢膜及其制备方法和氢渗透膜反应器 |
CN111019144B (zh) * | 2019-12-23 | 2022-03-01 | 珠海冠宇电池股份有限公司 | 一种聚烯烃-g-聚苯并咪唑接枝共聚物及其制备方法与应用 |
CN111048815A (zh) * | 2019-12-24 | 2020-04-21 | 中国科学院青岛生物能源与过程研究所 | 一种改性燃料电池质子交换膜及其制备方法 |
CN111036099A (zh) * | 2019-12-25 | 2020-04-21 | 山东天维膜技术有限公司 | 一种交联聚砜阴离子交换膜的制备方法 |
CN114699936B (zh) * | 2022-03-24 | 2022-12-13 | 深圳世纪盛源环境科技有限公司 | 一种端羟基超支化聚合物的中空纤维超滤膜的制备方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4814399A (en) * | 1987-07-24 | 1989-03-21 | Hoechst Celanese Corporation | Sulfoalkylation of polybenzimidazole |
FR2695131B1 (fr) * | 1992-09-01 | 1994-09-30 | Alsthom Cge Alcatel | Electrolyte solide polymère conducteur protonique. |
US5356459A (en) * | 1993-06-30 | 1994-10-18 | Praxair Technology, Inc. | Production and use of improved composite fluid separation membranes |
US5525436A (en) * | 1994-11-01 | 1996-06-11 | Case Western Reserve University | Proton conducting polymers used as membranes |
US5599639A (en) * | 1995-08-31 | 1997-02-04 | Hoechst Celanese Corporation | Acid-modified polybenzimidazole fuel cell elements |
US5716727A (en) * | 1996-04-01 | 1998-02-10 | Case Western Reserve University | Proton conducting polymers prepared by direct acid casting |
JPH10125560A (ja) | 1996-10-21 | 1998-05-15 | Honda Motor Co Ltd | 有機溶媒を電解液とするコンデンサ用セパレータおよびその製造方法 |
JP2000281819A (ja) * | 1999-01-27 | 2000-10-10 | Aventis Res & Technol Gmbh & Co Kg | 架橋高分子膜の製造方法及び燃料電池 |
JP3925764B2 (ja) | 1999-10-19 | 2007-06-06 | 株式会社豊田中央研究所 | 高耐久性固体高分子電解質 |
DE10010001A1 (de) * | 2000-03-02 | 2001-09-06 | Celanese Ventures Gmbh | Neue Blendpolymermembranen zum Einsatz in Brennstoffzellen |
DE10052242A1 (de) | 2000-10-21 | 2002-05-02 | Celanese Ventures Gmbh | Mit Säure dotierte, ein- oder mehrschichtige Kunststoffmembran mit Schichten aufweisend Polymerblends umfassend Polymere mit wiederkehrenden Azoleinheiten, Verfahren zur Herstellung solche Kunststoffmembranen sowie deren Verwendung |
DE10110752A1 (de) * | 2001-03-07 | 2002-09-19 | Celanese Ventures Gmbh | Verfahren zur Herstellung einer Membran aus verbrücktem Polymer und Brennstoffzelle |
US20030126990A1 (en) * | 2001-12-20 | 2003-07-10 | Koros William J. | Crosslinked and crosslinkable hollow fiber membrane and method of making same |
US6946015B2 (en) * | 2003-06-26 | 2005-09-20 | The Regents Of The University Of California | Cross-linked polybenzimidazole membrane for gas separation |
-
2001
- 2001-08-16 DE DE10140147A patent/DE10140147A1/de not_active Withdrawn
-
2002
- 2002-08-10 CA CA2457608A patent/CA2457608C/en not_active Expired - Fee Related
- 2002-08-10 WO PCT/EP2002/008992 patent/WO2003016384A2/de active IP Right Grant
- 2002-08-10 US US10/486,754 patent/US7462223B2/en not_active Expired - Fee Related
- 2002-08-10 JP JP2003521705A patent/JP4902938B2/ja not_active Expired - Fee Related
- 2002-08-10 KR KR1020047002298A patent/KR100883287B1/ko not_active IP Right Cessation
- 2002-08-10 AT AT02794771T patent/ATE390454T1/de not_active IP Right Cessation
- 2002-08-10 DK DK02794771T patent/DK1425336T3/da active
- 2002-08-10 EP EP02794771A patent/EP1425336B1/de not_active Expired - Lifetime
- 2002-08-10 DE DE50211981T patent/DE50211981D1/de not_active Expired - Lifetime
- 2002-08-10 CN CNB02816024XA patent/CN1269883C/zh not_active Expired - Fee Related
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9559367B2 (en) | 2002-08-02 | 2017-01-31 | Basf Fuel Cell Gmbh | Long-life membrane electrode assemblies and its use in fuel cells |
WO2005076401A1 (de) | 2004-02-04 | 2005-08-18 | Sartorius Ag | Membranen für brennstoffzellen, verfahren zur herstellung der membranen und brennstoffzellen unter verwendung derartiger membranen |
EP2237356A1 (de) | 2004-02-21 | 2010-10-06 | BASF Fuel Cell GmbH | Membran-elektroden-einheit mit hoher leistung und deren anwendung in brennstoffzellen |
WO2005111123A1 (de) | 2004-05-14 | 2005-11-24 | Pemeas Gmbh | Anisotroper formkörper, verfahren zur herstellung und verwendung von anisotropen formkörpern |
US8066784B2 (en) | 2004-07-15 | 2011-11-29 | Basf Fuel Cell Gmbh | Method for the production of membrane/electrode units |
US8177863B2 (en) | 2004-07-15 | 2012-05-15 | Basf Fuel Cell Gmbh | Method for the production of membrane/electrode units |
US8206870B2 (en) | 2004-08-05 | 2012-06-26 | Basf Fuel Cell Gmbh | Long-life membrane electrode assemblies with gasket and frame |
US8012647B2 (en) | 2004-08-05 | 2011-09-06 | Basf Fuel Cell Gmbh | Membrane-electrode unit and fuel elements with increased service life |
EP2228857A1 (de) | 2009-03-06 | 2010-09-15 | Basf Se | Verbesserte Membran-Elektrodeneinheiten |
WO2010099948A1 (de) | 2009-03-06 | 2010-09-10 | Basf Se | Verbesserte membran-elektrodeneinheiten |
EP2869382A1 (de) | 2013-10-30 | 2015-05-06 | Basf Se | Verbesserte Membranelektrodenanordnungen |
US9537168B2 (en) | 2013-10-30 | 2017-01-03 | Basf Se | Membrane electrode assemblies |
EP2869382B1 (de) * | 2013-10-30 | 2018-12-12 | Basf Se | Verbesserte Membranelektrodenanordnungen |
Also Published As
Publication number | Publication date |
---|---|
DK1425336T3 (da) | 2008-07-07 |
CA2457608A1 (en) | 2003-02-27 |
CN1269883C (zh) | 2006-08-16 |
WO2003016384A3 (de) | 2004-04-08 |
EP1425336B1 (de) | 2008-03-26 |
JP4902938B2 (ja) | 2012-03-21 |
CN1543481A (zh) | 2004-11-03 |
EP1425336A2 (de) | 2004-06-09 |
DE50211981D1 (de) | 2008-05-08 |
JP2005535734A (ja) | 2005-11-24 |
US7462223B2 (en) | 2008-12-09 |
CA2457608C (en) | 2010-10-26 |
KR20040047792A (ko) | 2004-06-05 |
WO2003016384A2 (de) | 2003-02-27 |
KR100883287B1 (ko) | 2009-02-11 |
US20050074654A1 (en) | 2005-04-07 |
ATE390454T1 (de) | 2008-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1425336B1 (de) | Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle | |
EP1373379B1 (de) | Verfahren zur herstellung einer membran aus verbrücktem polymer und brennstoffzelle | |
DE60017721T2 (de) | Verfahren zur herstellung von memranen und brennstoffzellen aus verbrückten polymeren | |
DE60020915T2 (de) | Polymere Kompositmembran und Verfahren zu ihrer Herstellung | |
EP1268045B1 (de) | Neue blendpolymermembranen zum einsatz in brennstoffzellen | |
EP1427517B1 (de) | Protonleitende membran und beschichtung | |
EP1337319B1 (de) | Neue membranen für den einsatz in brennstoffzellen mit einer verbesserten mechanik | |
DE69912989T2 (de) | Methode zur produktion von polyelektrolytmembranen und brennstoffzellen | |
DE60125042T2 (de) | Hybridmaterial, verwendung des hybridmaterials und verfahren zu seiner herstellung | |
DE60025101T2 (de) | Protonenleitendes Polymer, Herstellungsverfahren dafür, fester Polymerelektrolyt und Elektrode | |
EP2009728B1 (de) | Verfahren zur Herstellung eines sulfonierten Poly(1,3,4-oxadiazol)-Polymers | |
EP1519981B1 (de) | Protonenleitende membran und deren verwendung | |
EP1722435B1 (de) | Herstellungsverfahren für Polymermembran-Elektroden-Einheiten | |
DE19817376A1 (de) | Säure-Base-Polymerblends und ihre Verwendung in Membranprozessen | |
WO2008025465A1 (de) | Oxidationsstabilisierte polymer-elektrolyt-membranen für brennstoffzellen | |
DE102012212420A1 (de) | Membran mit laminierter Struktur und orientierungsgesteuerten Nanofaser-Verstärkungszusatzstoffen für Brennstoffzellen | |
DE10155543C2 (de) | Protonenleitende Elektrolytmembran, Verfahren zu ihrer Herstellung und deren Verwendung | |
DE20217178U1 (de) | Protonenleitende Elektrolytmembran | |
WO2003060012A1 (de) | Funktionalisierte hauptkettenpolymere | |
DE60212209T2 (de) | Brennstoffzelle und membran-elektrodenanordnung dafür | |
DE102015121787A1 (de) | Gepfropfte funktionelle Gruppen an Träger aus expandiertem Tetrafluorethylen (ePTFE) für Brennstoffzellen- und Wassertransportmembranen | |
EP1673832B1 (de) | Schichtstrukturen und verfahren zu deren herstellung | |
DE10218368A1 (de) | Mehrschichtige Elektrolytmembran | |
DE102009001137A1 (de) | Polymerelektrolytmembran für Brennstoffzellen und Verfahren zu ihrer Herstellung | |
DE102009028758A1 (de) | Langzeitstabile Polymerelektrolytmembran für HT-Brennstoffzellen und Verfahren zu ihrer Herstellung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
8139 | Disposal/non-payment of the annual fee |