WO2019151310A1 - 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池 - Google Patents

固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池 Download PDF

Info

Publication number
WO2019151310A1
WO2019151310A1 PCT/JP2019/003130 JP2019003130W WO2019151310A1 WO 2019151310 A1 WO2019151310 A1 WO 2019151310A1 JP 2019003130 W JP2019003130 W JP 2019003130W WO 2019151310 A1 WO2019151310 A1 WO 2019151310A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer electrolyte
membrane
interface
fuel cell
catalyst layer
Prior art date
Application number
PCT/JP2019/003130
Other languages
English (en)
French (fr)
Inventor
直紀 浜田
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018065720A external-priority patent/JP6432703B1/ja
Priority claimed from JP2018227448A external-priority patent/JP7256359B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to US16/465,118 priority Critical patent/US20200335808A1/en
Priority to CN201980010269.9A priority patent/CN111837278A/zh
Priority to EP19725833.8A priority patent/EP3547430A4/en
Publication of WO2019151310A1 publication Critical patent/WO2019151310A1/ja
Priority to US18/116,146 priority patent/US20230268539A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a membrane electrode assembly for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell.
  • a polymer electrolyte fuel cell having a structure in which a polymer electrolyte membrane is sandwiched between a cathode electrode catalyst layer and an anode electrode catalyst layer operates at room temperature and has a short start-up time.
  • a catalyst ink comprising carbon particles supporting a catalyst, a polymer electrolyte, and a solvent is applied to a transfer substrate or a gas diffusion layer, and then thermocompression bonded to the polymer electrolyte membrane.
  • thermocompression bonded to the polymer electrolyte membrane There are known methods for making them.
  • Patent Document 1 discloses that ceramic particles are jetted to form irregularities on the surface of the polymer electrolyte membrane, and an electrode catalyst layer is formed on the irregularities, thereby causing the irregularities to bite into the surface of the catalyst layer.
  • Patent Document 2 discloses a technique for improving the adhesion by thermocompression bonding by irradiating a laser beam to the interface between the electrode catalyst layer and the polymer electrolyte membrane and heating it.
  • Patent Documents 1 and 2 there is a risk that the durability of the membrane / electrode assembly may be lowered, and the manufacturing process may be complicated, resulting in a decrease in yield and an increase in cost.
  • An object of the present invention is to provide a membrane electrode assembly for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell having good adhesion at the interface between the electrode catalyst layer and the polymer electrolyte membrane.
  • a membrane electrode assembly for a polymer electrolyte fuel cell is a membrane electrode assembly for a polymer electrolyte fuel cell in which electrode catalyst layers are laminated on both sides of a polymer electrolyte membrane,
  • the gist of the molecular electrolyte membrane is that it contains a hydrocarbon-based polymer electrolyte and that there is no void at the interface between the polymer electrolyte membrane and the electrode catalyst layer.
  • a membrane electrode assembly for a polymer electrolyte fuel cell is a membrane electrode assembly for a polymer electrolyte fuel cell in which electrode catalyst layers are laminated on both surfaces of a polymer electrolyte membrane,
  • the electrode catalyst layer contains a catalyst, carbon particles, and a polymer electrolyte
  • the polymer electrolyte membrane contains a hydrocarbon polymer electrolyte, and at least one is present at the interface between the electrode catalyst layer and the polymer electrolyte membrane.
  • the gap is perpendicular to the interface of the void
  • the height of the gap is defined as h
  • the width parallel to the gap interface is defined as w.
  • the height of the gap at each interface on both sides of the polymer electrolyte membrane h is 0.5 ⁇ m or less, and the length in the direction parallel to the interface is 30 ⁇ m.
  • the gist is that the total width w of the voids existing in the region of m is 10 ⁇ m or less.
  • a membrane electrode assembly for a polymer electrolyte fuel cell is a membrane electrode assembly for a polymer electrolyte fuel cell in which electrode catalyst layers are laminated on both surfaces of a polymer electrolyte membrane.
  • the electrode catalyst layer contains a catalyst, carbon particles, a polymer electrolyte, and a fibrous substance, and the gist thereof is that there is no void at the interface between the electrode catalyst layer and the polymer electrolyte membrane.
  • a membrane electrode assembly for a polymer electrolyte fuel cell is a membrane electrode assembly for a polymer electrolyte fuel cell in which electrode catalyst layers are laminated on both surfaces of a polymer electrolyte membrane.
  • the electrode catalyst layer contains a catalyst, carbon particles, a polymer electrolyte, and a fibrous substance, and at least one void is formed at the interface between the electrode catalyst layer and the polymer electrolyte membrane.
  • the width in the direction parallel to the gap interface is w
  • the height h of the gap is 0.5 ⁇ m or less at each interface on both sides of the polymer electrolyte membrane.
  • the width w of the void existing in the region of 30 ⁇ m length in the parallel direction The sum is that it is 10 ⁇ m or less.
  • the gist of a polymer electrolyte fuel cell according to still another aspect of the present invention is that it includes the membrane electrode assembly for a polymer electrolyte fuel cell according to the above aspect or another aspect.
  • a membrane electrode assembly for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell having good adhesion at the interface between the electrode catalyst layer and the polymer electrolyte membrane it is possible to provide a membrane electrode assembly for a polymer electrolyte fuel cell and a polymer electrolyte fuel cell having good adhesion at the interface between the electrode catalyst layer and the polymer electrolyte membrane.
  • a polymer electrolyte membrane 2 constituting a solid polymer fuel cell 1 has a pair of electrode catalyst layers 3A, 3F facing each other with the polymer electrolyte membrane 2 interposed therebetween on both sides.
  • the gas diffusion layer 4A is provided on the surface of the electrode catalyst layer 3A opposite to the surface facing the polymer electrolyte membrane 2, and the surface opposite to the surface of the electrode catalyst layer 3F facing the polymer electrolyte membrane 2 is opposite.
  • the gas diffusion layer 4F is disposed so as to face each other with the polymer electrolyte membrane 2 and the pair of electrode catalyst layers 3A and 3F interposed therebetween.
  • Electrode catalyst layer 3 On the surface opposite to the surface facing the electrode catalyst layer 3A of the gas diffusion layer 4A, a main surface facing this surface is provided with a gas flow channel 6A for reaction gas flow, and a main surface with the gas flow channel 6A.
  • a separator 5A provided with a cooling water passage 7A for circulating cooling water is disposed on the main surface facing the surface.
  • a gas flow path 6F for reaction gas flow is provided on the main surface facing the surface, and the gas flow path 6F is provided.
  • a separator 5F provided with a cooling water passage 7F for circulating cooling water is disposed on the main surface opposite to the main surface.
  • the electrode catalyst layers 3A and 3F may be simply referred to as “electrode catalyst layer 3”.
  • FIG. 2 is a schematic cross-sectional view showing a configuration example of the electrode catalyst layer according to the present embodiment.
  • the electrode catalyst layer 8 according to the present embodiment is joined to the surface of the polymer electrolyte membrane 9, and includes a catalyst 10, carbon particles 11 as a conductive carrier, and a polymer electrolyte 12.
  • a portion where none of the constituent elements of the catalyst 10, the carbon particles 11, and the polymer electrolyte 12 is present is a void.
  • the polymer electrolyte membrane 9 according to the present embodiment may be a hydrocarbon polymer electrolyte membrane including a hydrocarbon polymer electrolyte, or only a hydrocarbon polymer electrolyte.
  • hydrocarbon polymer electrolyte membrane means a membrane containing, for example, more than 50 mass% of a hydrocarbon polymer electrolyte described later with respect to the total mass of the polymer electrolyte membrane 9.
  • the carbon particles 11 carrying the catalyst 10 are mixed and dispersed in a dispersion medium to obtain a catalyst particle slurry.
  • the catalyst 10 include metals such as platinum group elements (platinum, palladium, ruthenium, iridium, rhodium, osmium), iron, lead, copper, chromium, cobalt, nickel, manganese, vanadium, molybdenum, gallium, aluminum, and the like.
  • Metal alloys, oxides, double oxides, carbides, and the like can be used.
  • the carbon particles 11 may be any carbon particles as long as they have conductivity and can support the catalyst 10 without being attacked by the catalyst 10, but carbon particles are generally used.
  • carbon particles for example, carbon black, graphite, graphite, activated carbon, carbon nanotube, carbon nanofiber, and fullerene can be used. If the particle size of the carbon particles is too small, it is difficult to form an electron conduction path. If the particle size is too large, the gas diffusibility of the electrode catalyst layer 8 is lowered or the utilization factor of the catalyst is lowered. Within the range of 1000 nm or less is preferable. More preferably, it exists in the range of 10 nm or more and 100 nm or less.
  • dispersion medium examples include water and alcohols such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and pentanol. Can be selected and used. Moreover, it is possible to use the solvent with which 2 or more types was mixed among the solvents mentioned above. For mixing / dispersing, for example, an apparatus such as a bead mill, a planetary mixer, or a dissolver can be used.
  • the polymer electrolyte 12 is added to the catalyst particle slurry produced by the above method.
  • a fluorine polymer electrolyte or a hydrocarbon polymer electrolyte can be used as the polymer electrolyte 12.
  • the fluoropolymer electrolyte include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., and Gore Select (registered trademark) manufactured by Gore. Etc. can be used.
  • hydrocarbon polymer electrolyte for example, electrolytes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.
  • electrolytes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene
  • a Nafion (registered trademark) material manufactured by DuPont can be suitably used as the polymer electrolyte.
  • a membrane / electrode assembly is manufactured by bonding the electrode catalyst layer 3 to both surfaces of the polymer electrolyte membrane 2.
  • a transfer substrate with an electrode catalyst layer in which a catalyst ink is applied to a transfer substrate is used as a method for joining the polymer electrolyte membrane 2 and the electrode catalyst layer 3 by bringing the surface of the catalyst layer and the polymer electrolyte membrane into contact with each other and heating and pressurizing.
  • the pressure and temperature applied to the electrode catalyst layer 3 are membrane electrode bonded. It may affect the power generation performance of the body.
  • the pressure applied to the laminate is preferably in the range of 0.1 MPa to 20 MPa. When the pressure applied to the laminate is greater than 20 MPa, the electrode catalyst layer 3 is overcompressed, and when it is less than 0.1 MPa, the bondability between the electrode catalyst layer 3 and the polymer electrolyte membrane 2 is reduced, and the power generation performance. May decrease.
  • the temperature at the time of bonding is considered to be the polymer electrolyte 12 of the polymer electrolyte membrane 2 or the electrode catalyst layer 3 in consideration of improvement of the bondability at the interface between the polymer electrolyte membrane 2 and the electrode catalyst layer 3 and suppression of the interface resistance. It is preferable to be near the glass transition point.
  • the adhesion between the electrode catalyst layer 3 and the polymer electrolyte membrane 2 is poor, and a void is easily formed at the interface between the electrode catalyst layer 3 and the polymer electrolyte membrane 2. This tends to cause problems such as a decrease in power generation performance due to interface resistance and a decrease in power generation performance due to flooding due to water clogging in the gap.
  • the membrane / electrode assembly can also be produced by a method in which the catalyst ink is directly applied to the surface of the polymer electrolyte membrane 2 and then the solvent component (dispersion medium) is removed from the coating film of the catalyst ink.
  • a method for directly applying the catalyst ink to the polymer electrolyte membrane 2 various coating methods such as die coating, roll coating, curtain coating, spray coating, and squeegee can be used.
  • a die coat is preferable.
  • the film thickness at the coating intermediate portion is stable and can be applied to intermittent coating.
  • a warm air oven for example, IR (far infrared) drying, hot plate, reduced pressure drying, or the like can be used.
  • the drying temperature is in the range of 40 ° C. or higher and 200 ° C. or lower, preferably in the range of 40 ° C. or higher and 120 ° C. or lower.
  • the drying time is 0.5 minutes or more and 1 hour or less, preferably 1 minute or more and 30 minutes or less.
  • the adhesion between the electrode catalyst layer 3 and the polymer electrolyte membrane 2 is good, and the above-described problems are unlikely to occur.
  • the applied electrode catalyst layer 3 is likely to be wrinkled or cracked due to swelling of the polymer electrolyte membrane 2, thereby reducing the power generation performance and durability.
  • the deterioration was likely to occur.
  • the electrode catalyst layer 3 is wrinkled in the step of directly applying and drying the catalyst ink to the polymer electrolyte membrane 2. Cracks are likely to occur.
  • the hydrocarbon polymer electrolyte has a high glass transition point and does not easily swell in the step of applying and drying the catalyst ink directly on the polymer electrolyte membrane 2, as in this embodiment.
  • the electrode catalyst layer 3 can be used even when the catalyst ink is directly applied to the polymer electrolyte membrane 2. It is possible to obtain a membrane / electrode assembly in which wrinkles and cracks are unlikely to occur and adhesion between the electrode catalyst layer 3 and the polymer electrolyte membrane 2 is good.
  • hydrocarbon polymer electrolyte contained in the hydrocarbon polymer electrolyte membrane examples include sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene.
  • the electrolyte can be used.
  • an ink containing a catalyst and alcohol is used as a catalyst ink used in manufacturing the electrode catalyst layer.
  • the ink itself may ignite (combust). Therefore, when using the catalyst ink, water may be added to the catalyst ink to reduce the ignitability (combustibility) of the ink itself. Adding water to the catalyst ink reduces the ignitability (combustibility) of the ink itself, but has the disadvantage of reducing the drying speed of the catalyst ink. Therefore, when producing an electrode catalyst layer using the catalyst ink to which water is added, there is a need to increase the drying temperature of the catalyst ink from the normal temperature of about 80 ° C. to, for example, about 90 ° C. there were.
  • the fluorine-based polymer electrolyte membranes used as the polymer electrolyte membrane have a low glass transition point. Therefore, when a fluorine-based polymer electrolyte membrane is used as the polymer electrolyte membrane, the drying temperature of the catalyst ink may exceed the glass transition point of the fluorine-based polymer electrolyte membrane. In this case, the fluorinated polymer electrolyte membrane swells, and the adhesion between the electrode catalyst layer and the fluorinated polymer electrolyte membrane tends to decrease. In contrast, many of the hydrocarbon polymer electrolyte membranes used in the present embodiment have a higher glass transition point than the fluorine polymer electrolyte membrane.
  • the glass transition point of the hydrocarbon-based polymer electrolyte membrane is 100 degrees or more. Therefore, when a hydrocarbon polymer electrolyte membrane is used as the polymer electrolyte membrane, even if the drying temperature of the catalyst ink is increased to, for example, about 90 ° C., the drying temperature of the hydrocarbon polymer electrolyte membrane It is rare that the glass transition point is exceeded. As a result, the swelling of the hydrocarbon-based polymer electrolyte membrane is extremely small, and the adhesion between the electrode catalyst layer and the hydrocarbon-based polymer electrolyte membrane is compared with the adhesion between the electrode catalyst layer and the fluorine-based polymer electrolyte membrane. Tend to improve.
  • FIG. 3 shows a configuration example of a membrane electrode assembly for a polymer electrolyte fuel cell including the electrode catalyst layer 3 formed by adding the fibrous substance 13 to the catalyst ink.
  • the fibrous material 13 an electron conductive fiber and a proton conductive fiber can be used.
  • the fibrous substance 13 only one of the following fibers may be used alone, but two or more may be used in combination, and an electron conductive fiber and a proton conductive fiber may be used in combination. .
  • Examples of the electron conductive fiber according to the present embodiment include carbon fiber, carbon nanotube, carbon nanohorn, and conductive polymer nanofiber.
  • carbon nanofibers are preferable in terms of conductivity and dispersibility.
  • a carbon alloy catalyst prepared from carbon nanofibers can be exemplified.
  • the electrode active material for the oxygen reduction electrode may be processed into a fiber shape.
  • a material containing at least one transition metal element selected from Ta, Nb, Ti, and Zr is used. Also good. Examples thereof include partial oxides of carbonitrides of these transition metal elements, or conductive oxides and conductive oxynitrides of these transition metal elements.
  • the proton conductive fiber according to the present embodiment may be any one obtained by processing a polymer electrolyte having proton conductivity into a fiber shape.
  • a fluorine polymer electrolyte or a hydrocarbon polymer electrolyte may be used. it can.
  • the fluoropolymer electrolyte include Nafion (registered trademark) manufactured by DuPont, Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd., Aciplex (registered trademark) manufactured by Asahi Kasei Co., Ltd., and Gore Select (registered trademark) manufactured by Gore. Etc. can be used.
  • hydrocarbon polymer electrolyte for example, electrolytes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene can be used.
  • electrolytes such as sulfonated polyether ketone, sulfonated polyethersulfone, sulfonated polyetherethersulfone, sulfonated polysulfide, and sulfonated polyphenylene
  • a Nafion (registered trademark) material manufactured by DuPont can be suitably used as the polymer electrolyte.
  • the fiber diameter of the fibrous substance 13 is preferably in the range of 0.5 nm to 500 nm, and more preferably in the range of 5 nm to 200 nm. By setting the fiber diameter within this range, the number of pores in the electrode catalyst layer 3 can be increased, and high output can be achieved.
  • the fiber length of the fibrous substance 13 is preferably in the range of 1 ⁇ m to 40 ⁇ m, and more preferably in the range of 1 ⁇ m to 20 ⁇ m. By setting the fiber length within this range, the strength of the electrode catalyst layer 3 can be increased, and wrinkles and cracks can be prevented from occurring during formation. Moreover, the void
  • a membrane polymer electrode assembly for a polymer electrolyte fuel cell by applying a catalyst ink in which a fibrous substance 13 is added to a fluorine-based polymer electrolyte membrane has been described. Is not limited to this.
  • a membrane polymer electrode assembly for a polymer electrolyte fuel cell may be formed by applying a catalyst ink to which a fibrous substance 13 is added to a hydrocarbon polymer electrolyte membrane.
  • gap part 14 in this embodiment is demonstrated in detail using FIG. Although it is more preferable that the void portion 14 does not exist at the interface between the electrode catalyst layer 8 and the polymer electrolyte membrane 9, the void portion 14 may be generated.
  • “the void 14 does not exist” means that the enlargement ratio of the scanning electron microscope (SEM) is set to 4000 times and the interface between the electrode catalyst layer 8 and the polymer electrolyte membrane 9 is observed. Even so, it means that the presence of the void 14 at the interface cannot be confirmed.
  • SEM scanning electron microscope
  • the fuel cell water is generated by power generation.
  • the generated water soaks into the polymer electrolyte membrane 9 and the polymer electrolyte membrane 9 swells. Therefore, even if there is a gap 14 between the electrode catalyst layer 8 and the polymer electrolyte membrane 9, the height h of the gap 14 is 0.5 ⁇ m or less and the length in the direction parallel to the interface It was found that if the total width w of the voids 14 existing in the region where l is 30 ⁇ m is 10 ⁇ m or less, the voids 14 are filled by swelling of the polymer electrolyte membrane 9.
  • the void 14 generated at the interface between the polymer electrolyte membrane 9 and the electrode catalyst layer 8 satisfies the above two numerical conditions, the power generation performance is reduced due to the interface resistance between the electrode catalyst layer 8 and the polymer electrolyte membrane 9. In addition, a decrease in power generation performance due to flooding due to water clogging in the gap 14 is less likely to occur.
  • the height h of the gap portion 14 needs to be 0.5 ⁇ m or less, and more preferably 0.3 ⁇ m or less. This is because if the height h of the void 14 is 0.3 ⁇ m or less, the void 14 is easily filled even if the swelling rate of the polymer electrolyte membrane 9 is low.
  • the width of the voids 14 existing in the region having a length l in the direction parallel to the interface of 30 ⁇ m exceeds 10 ⁇ m, so that the polymer electrolyte membrane 9 Even if it swells, the void 14 is difficult to fill.
  • gap part 14 can be confirmed by observing the cross section at the time of cut
  • the type of SEM is not particularly limited.
  • S-4800 manufactured by Hitachi High-Technologies Corporation can be used.
  • the magnification at the time of SEM observation is not particularly limited, but can be set to, for example, 4000 times. If the height h and width w of the void 14 existing at the interface between the one surface of the polymer electrolyte membrane 9 and the electrode catalyst layer 8 are within the above ranges, the above-described effect can be obtained. It is more preferable that the height h and the width w of the void portion 14 existing at the interface with the electrode catalyst layer 8 on both surfaces 9 are within the above range.
  • a gap exists so as to overlap the polymer electrolyte membrane 9 at the same position in the direction parallel to the interface or a part thereof. More preferably, the portion 14 satisfies the above range at the same time. That is, at the interface on the both sides of the polymer electrolyte membrane 9, the voids 14 existing in the region having a length of 30 ⁇ m in the direction parallel to the interface both satisfy the above two numerical conditions, so that the anode side and the cathode side The reaction efficiency can be further increased.
  • the thickness of the electrode catalyst layer 8 is preferably 5 ⁇ m or more and 30 ⁇ m or less, and particularly preferably 20 ⁇ m or less.
  • the thickness of the electrode catalyst layer 8 is larger than 30 ⁇ m, more precisely when it is larger than 20 ⁇ m, the electrode catalyst layer 8 is liable to crack, and further, when the electrode catalyst layer 8 is used for a fuel cell. In addition, the diffusibility and conductivity of the gas and generated water may be reduced, and the output may be reduced.
  • the thickness of the electrode catalyst layer 8 is less than 5 ⁇ m, the layer thickness tends to vary, and the internal catalyst and polymer electrolyte may become uneven.
  • the blending ratio of the polymer electrolyte 12 in the electrode catalyst layer 8 is preferably about the same to about half with respect to the weight of the carbon particles 11.
  • the blending ratio of the fibrous substance 13 is preferably about the same to about half with respect to the weight of the carbon particles 11.
  • the solid content ratio of the catalyst ink is preferably as high as possible so long as it can be applied to the thin film.
  • Example 1 A platinum-supported carbon catalyst (TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), water, 1-propanol, and a polymer electrolyte (Nafion (registered trademark) dispersion, manufactured by Wako Pure Chemical Industries, Ltd.) are mixed and a bead mill disperser is used. Then, each component was dispersed to such an extent that it was not excessively dispersed to produce a catalyst ink. The catalyst ink thus produced had a solid content ratio of 10% by mass. The mass ratio of water to 1-propanol was 1: 1.
  • the hydrocarbon-based polymer electrolyte membrane was produced by sulfonating super engineering plastic by a known method.
  • the produced catalyst ink was directly applied to both surfaces of the hydrocarbon-based polymer electrolyte membrane using a slit die coater and dried to form an electrode catalyst layer to obtain a membrane electrode assembly.
  • the membrane electrode assembly thus obtained was first sectioned using a microtome (EM UC UC7 ultra microtome manufactured by Leica). Next, this sectioned membrane electrode assembly was subjected to an interface between the electrode catalyst layer and the polymer electrolyte membrane using an SEM (S-4800 manufactured by Hitachi High-Technologies Corporation) with an enlargement ratio set to 4000 times. Was observed.
  • Example 2 A membrane / electrode assembly of Example 2 was obtained in the same manner as in Example 1 except that the coating amount of the electrode catalyst layer (catalyst ink) on the cathode side was doubled. In the membrane / electrode assembly of Example 2, there was no void at the interface between the electrode catalyst layer and the polymer electrolyte membrane. Therefore, the adhesion between the electrode catalyst layer and the polymer electrolyte membrane was good, and good power generation performance and durability were exhibited.
  • the coating amount of the electrode catalyst layer (catalyst ink) on the cathode side was doubled.
  • the adhesion between the electrode catalyst layer and the polymer electrolyte membrane was good, and good power generation performance and durability were exhibited.
  • Example 3 A membrane / electrode assembly of Example 3 was obtained in the same procedure as in Example 1 except that a planetary ball mill disperser was used for dispersing the catalyst ink.
  • the conditions for dispersing each component using a ball mill disperser were set as follows. The following conditions were common to the following examples and comparative examples. ⁇ Dispersion time: 3 hours ⁇ Ball diameter: 3 mm in diameter The degree of dispersion of the catalyst ink of Example 3 was lower than that of the catalyst ink of Example 1 which was dispersed using a bead mill disperser.
  • a plurality of voids having a height h of 0.3 ⁇ m to 0.4 ⁇ m exist at the interface between the electrode catalyst layer and the polymer electrolyte membrane of the membrane electrode assembly of Example 3, and the direction parallel to the interface
  • the total of the widths w of the plurality of voids existing in the region having a length of 30 ⁇ m was 6 ⁇ m.
  • the power generation performance and durability of the membrane / electrode assembly of Example 3 were good.
  • Example 4 A membrane / electrode assembly of Example 4 was obtained in the same procedure as in Example 1 except that an alloy-based carbon catalyst of platinum and cobalt was used instead of the platinum-supported carbon catalyst. As compared with the ink of Example 1, the catalyst ink of Example 4 was cracked in a part of the electrode catalyst layer when applied to the polymer electrolyte membrane. Due to this, there are a plurality of voids having a height h of 0.1 ⁇ m to 0.2 ⁇ m at the interface between the electrode catalyst layer and the polymer electrolyte membrane of the membrane electrode assembly of Example 4, and the interface The total of the widths w of the plurality of voids existing in the region having a length of 30 ⁇ m in the direction parallel to the width was 10 ⁇ m. The power generation performance and durability of the membrane / electrode assembly of Example 4 were good.
  • Example 5 A membrane electrode assembly of Example 5 was obtained in the same procedure as in Example 1 except that carbon nanofibers (VGCF-H (registered trademark), manufactured by Showa Denko KK) were mixed with the catalyst ink of Example 1. .
  • the membrane / electrode assembly of Example 5 has good adhesion between the electrode catalyst layer and the polymer electrolyte membrane because there is no void at the interface between the electrode catalyst layer and the polymer electrolyte membrane. Power generation performance and durability were shown.
  • Example 6 A membrane electrode assembly of Example 6 was obtained in the same procedure as in Example 3 except that carbon nanofiber (VGCF-H (registered trademark), manufactured by Showa Denko KK) was mixed with the catalyst ink of Example 3. . Compared with the catalyst ink of Example 3, the degree of dispersion of the catalyst ink of Example 6 was low. Therefore, a plurality of voids having a height h of 0.4 ⁇ m to 0.5 ⁇ m exist at the interface between the electrode catalyst layer and the polymer electrolyte membrane of the membrane electrode assembly of Example 6, and the direction parallel to the interface The total of the widths w of the plurality of voids existing in the 30 ⁇ m long region was 9 ⁇ m. The power generation performance and durability of the membrane / electrode assembly of Example 6 were good.
  • Example 7 Platinum-supported carbon catalyst (TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), water, 1-propanol, polymer electrolyte (Nafion (registered trademark) dispersion, manufactured by Wako Pure Chemical Industries, Ltd.), and carbon nanofiber (VGCF-H (registered trademark) ), Manufactured by Showa Denko KK), and a catalyst ink was produced using a bead mill disperser. The produced catalyst ink is directly applied to both surfaces of a polymer electrolyte membrane (Nafion 211 (registered trademark), manufactured by DuPont) using a slit die coater, and dried to form an electrode catalyst layer.
  • TEC10E50E manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.
  • water 1-propanol
  • polymer electrolyte Nafion (registered trademark) dispersion, manufactured by Wako Pure Chemical Industries, Ltd.
  • carbon nanofiber
  • Example 8 A membrane / electrode assembly of Example 8 was obtained in the same manner as in Example 7 except that the coating amount of the electrode catalyst layer (catalyst ink) on the cathode side was doubled. In the membrane / electrode assembly of Example 8, there was no void at the interface between the electrode catalyst layer and the polymer electrolyte membrane. Therefore, the adhesion between the electrode catalyst layer and the polymer electrolyte membrane was good, and good power generation performance and durability were exhibited.
  • Example 9 A membrane / electrode assembly of Example 9 was obtained in the same procedure as in Example 7 except that a ball mill disperser was used for dispersing the catalyst ink.
  • the catalyst ink of Example 9 had a low degree of dispersion compared to the catalyst ink of Example 7 that was dispersed using a bead mill disperser. Therefore, a plurality of voids having a height h of 0.3 ⁇ m to 0.4 ⁇ m are present at the interface between the electrode catalyst layer and the polymer electrolyte membrane of the membrane electrode assembly of Example 9, and the direction parallel to the interface
  • the total of the widths w of the plurality of voids existing in the region having a length of 30 ⁇ m was 6 ⁇ m.
  • the power generation performance and durability of the membrane / electrode assembly of Example 9 were good.
  • Example 10 A membrane / electrode assembly of Example 10 was obtained in the same procedure as in Example 7 except that an alloy-based carbon catalyst of platinum and cobalt was used instead of the platinum-supported carbon catalyst. As compared with the ink of Example 7, the catalyst ink of Example 10 was cracked in a part of the electrode catalyst layer when applied to the polymer electrolyte membrane. As a result, there are a plurality of voids having a height h of 0.1 ⁇ m to 0.2 ⁇ m at the interface between the electrode catalyst layer and the polymer electrolyte membrane of the membrane electrode assembly of Example 10. The total of the widths w of the plurality of voids existing in the region having a length of 30 ⁇ m in the direction parallel to the width was 10 ⁇ m. The power generation performance and durability of the membrane / electrode assembly of Example 10 were good.
  • Example 11 A membrane electrode assembly of Example 11 was obtained in the same procedure as Example 7 except that carbon nanotubes (NC7000 (trademark), manufactured by Nanocyl) were used instead of carbon nanofibers as the fibrous material.
  • NC7000 trademark
  • the adhesion between the electrode catalyst layer and the polymer electrolyte membrane is good and good. Power generation performance and durability were shown.
  • Comparative Example 1 A membrane / electrode assembly of Comparative Example 1 was obtained in the same manner as in Example 1 except that a polymer electrolyte membrane manufactured by Nafion 211 (registered trademark) and DuPont was used as the polymer electrolyte membrane.
  • a polymer electrolyte membrane manufactured by Nafion 211 (registered trademark) and DuPont was used as the polymer electrolyte membrane.
  • the membrane electrode assembly of Comparative Example 1 wrinkles and cracks occurred in the electrode catalyst layer, resulting in a decrease in power generation performance and durability.
  • a plurality of voids having a height h of 0.1 ⁇ m to 0.3 ⁇ m are present at the interface between the electrode catalyst layer and the polymer electrolyte membrane, and within a region having a length of 30 ⁇ m in a direction parallel to the interface.
  • the total width w of the plurality of voids present was 16 ⁇ m.
  • Comparative Example 2 A membrane / electrode assembly of Comparative Example 2 was obtained in the same manner as in Example 1 except that the membrane / electrode assembly was manufactured by applying the catalyst ink to the transfer substrate and then transferring it to the polymer electrolyte membrane. In the membrane / electrode assembly of Comparative Example 2, a gap having a height h exceeding 0.5 ⁇ m was generated at the interface between the electrode catalyst layer and the polymer electrolyte membrane, resulting in a decrease in power generation performance and durability.
  • Comparative Example 3 A membrane / electrode assembly of Comparative Example 3 was obtained in the same manner as in Example 1 except that the coating amount of the electrode catalyst layer (catalyst ink) on the cathode side was quadrupled. In the membrane electrode assembly of Comparative Example 3, wrinkles and cracks were generated in the electrode catalyst layer, resulting in a decrease in power generation performance and durability. At this time, a plurality of voids having a height h of 0.1 ⁇ m to 0.3 ⁇ m are present at the interface between the electrode catalyst layer and the polymer electrolyte membrane, and within a region having a length of 30 ⁇ m in a direction parallel to the interface. The total width w of the plurality of existing voids was 13 ⁇ m.
  • Comparative Example 4 A membrane / electrode assembly of Comparative Example 4 was obtained in the same manner as in Example 7 except that the membrane / electrode assembly was produced by applying the catalyst ink to the transfer substrate and then transferring it to the polymer electrolyte membrane. In the membrane / electrode assembly of Comparative Example 4, a void having a height h exceeding 0.5 ⁇ m was generated at the interface between the electrode catalyst layer and the polymer electrolyte membrane, resulting in a decrease in power generation performance and durability.
  • Comparative Example 5 A membrane / electrode assembly of Comparative Example 5 was obtained in the same manner as in Example 7 except that the coating amount of the cathode-side electrode catalyst layer (catalyst ink) was quadrupled. In the membrane / electrode assembly of Comparative Example 5, wrinkles and cracks were generated in the electrode catalyst layer, resulting in a decrease in power generation performance and durability. At this time, a plurality of voids having a height h of 0.1 ⁇ m to 0.3 ⁇ m are present at the interface between the electrode catalyst layer and the polymer electrolyte membrane, and within a region having a length of 30 ⁇ m in a direction parallel to the interface. The total width w of the plurality of existing voids was 14 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

電極触媒層と高分子電解質膜の界面の密着性が良好な固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池を提供する。本実施形態の固体高分子形燃料電池用膜電極接合体は、高分子電解質膜(9)の両面に電極触媒層(8)が積層され、電極触媒層(8)は、触媒(10)、炭素粒子(11)及び高分子電解質(12)を含有する。電極触媒層(8)と高分子電解質膜(9)の界面には少なくとも1個の空隙部(14)が形成されている。界面に直交する平面で固体高分子形燃料電池用膜電極接合体を切断した場合の断面をSEMで観察した場合に、空隙部(14)の界面に直交する方向の長さである高さをhとし、空隙部(14)の界面に平行な方向の長さである幅をwとすると、高分子電解質膜(9)の両面側の各界面において、高さhが0.5μm以下であり、界面に平行な方向の長さ30μmの領域内に存在する空隙部(14)の幅wの合計が10μm以下である。

Description

固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池
 本発明は、固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池に関する。
 高分子電解質膜をカソード電極触媒層及びアノード電極触媒層で挟持する構造を持つ固体高分子形燃料電池は、常温で作動し、起動時間が短いことから、自動車用電源、定置用電源などとして期待されている。
 従来の膜電極接合体の製造方法としては、触媒を担持した炭素粒子、高分子電解質及び溶媒からなる触媒インクを、転写基材又はガス拡散層に塗布した後、高分子電解質膜に熱圧着して作製する方法が知られている。
 しかしながら、従来の転写による膜電極接合体の製造方法では、電極触媒層と高分子電解質膜の密着性が低く、電極触媒層と高分子電解質膜との間に空隙部が生じやすかった。そのため、界面抵抗による発電性能の低下や、空隙部への水詰まりによるフラッディングによって発電性能の低下が発生しやすいという問題点があった。
 このような問題点を解決するため、種々の技術が提案されている。例えば特許文献1には、セラミック粒子を噴射して高分子電解質膜の表面に凹凸を形成し、この凹凸上に電極触媒層を形成することによって、凹凸を触媒層の表面に食い込ませて密着性を向上させる技術が開示されている。また、特許文献2には、電極触媒層と高分子電解質膜の界面にレーザー光を照射し加熱することによって、熱圧着させ密着性を向上させる技術が開示されている。
 しかしながら、特許文献1、2に開示の技術では、膜電極接合体の耐久性が低下するおそれがあるとともに、製造工程が複雑になることにより歩留まりの低下やコストの増加が生じるおそれがあった。
特開2007-26836号公報 特開2009-176518号公報
 本発明は、電極触媒層と高分子電解質膜の界面の密着性が良好な固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池を提供することを目的とする。
 本発明の一態様に係る固体高分子形燃料電池用膜電極接合体は、高分子電解質膜の両面に電極触媒層が積層された固体高分子形燃料電池用膜電極接合体であって、高分子電解質膜は、炭化水素系高分子電解質を含有し、高分子電解質膜と電極触媒層の界面に空隙部が存在しないことを要旨とする。
 本発明の別の態様に係る固体高分子形燃料電池用膜電極接合体は、高分子電解質膜の両面に電極触媒層が積層された固体高分子形燃料電池用膜電極接合体であって、電極触媒層は、触媒、炭素粒子、及び高分子電解質を含有し、高分子電解質膜は、炭化水素系高分子電解質を含有し、電極触媒層と高分子電解質膜の界面には、少なくとも1個の空隙部が形成されており、界面に直交する平面で固体高分子形燃料電池用膜電極接合体を切断した場合の断面を、走査型電子顕微鏡により観察した場合に、空隙部の界面に直交する方向の長さである高さをhとし、空隙部の界面に平行な方向の長さである幅をwとすると、高分子電解質膜の両面側のそれぞれの界面において、空隙部の高さhが0.5μm以下であり、界面に平行な方向の長さ30μmの領域内に存在する空隙部の幅wの合計が10μm以下であることを要旨とする。
 本発明のさらに別の態様に係る固体高分子形燃料電池用膜電極接合体は、高分子電解質膜の両面に電極触媒層が積層された固体高分子形燃料電池用膜電極接合体であって、電極触媒層は、触媒、炭素粒子、高分子電解質、及び繊維状物質を含有し、電極触媒層と高分子電解質膜の界面に空隙部が存在しないことを要旨とする。
 本発明のさらに別の態様に係る固体高分子形燃料電池用膜電極接合体は、高分子電解質膜の両面に電極触媒層が積層された固体高分子形燃料電池用膜電極接合体であって、電極触媒層は、触媒、炭素粒子、高分子電解質、及び繊維状物質を含有し、電極触媒層と高分子電解質膜の界面には、少なくとも1個の空隙部が形成されており、界面に直交する平面で固体高分子形燃料電池用膜電極接合体を切断した場合の断面を、走査型電子顕微鏡により観察した場合に、空隙部の界面に直交する方向の長さである高さをhとし、空隙部の界面に平行な方向の長さである幅をwとすると、高分子電解質膜の両面側のそれぞれの界面において、空隙部の高さhが0.5μm以下であり、界面に平行な方向の長さ30μmの領域内に存在する空隙部の幅wの合計が10μm以下であることを要旨とする。
 本発明のさらに別の態様に係る固体高分子形燃料電池は、上記一態様又は別の態様に係る固体高分子形燃料電池用膜電極接合体を備えることを要旨とする。
 本発明によれば、電極触媒層と高分子電解質膜の界面の密着性が良好な固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池を提供することができる。
本発明の一実施形態に係る固体高分子形燃料電池の内部構造を示す分解斜視図である。 本発明の一実施形態に係る固体高分子形燃料電池用膜電極接合体の構造を説明する図である。 本発明の別の実施形態に係る固体高分子形燃料電池用膜電極接合体の構造を説明する図である。 電極触媒層と高分子電解質膜の界面の構造の一例を説明する模式的断面図である。 電極触媒層と高分子電解質膜の界面の構造の別の例を説明する模式的断面図である。
 以下、本発明の実施形態について、図面を参照しつつ説明する。なお、本実施形態は、以下に記載する実施の形態に限定されるものではなく、当業者の知識に基づく設計の変更等の変形を加えることも可能であり、そのような変形が加えられた実施形態も本実施形態の範囲に含まれるものである。
 また、以下の詳細な説明では、本発明の実施形態について、完全な理解を提供するように、特定の細部について記載する。しかしながら、かかる特定の細部が無くとも、一つ以上の実施形態が実施可能であることは明確である。また、図面を簡潔なものとするために、周知の構造及び装置を、略図で示す場合がある。
(固体高分子形燃料電池の構造)
 図1に示すように、固体高分子形燃料電池1を構成する高分子電解質膜2には、その両面に、高分子電解質膜2を挟んで互いに向い合う一対の電極触媒層3A、3Fが配置されている。電極触媒層3Aの高分子電解質膜2に対向する面とは反対側の面には、ガス拡散層4Aが、また、電極触媒層3Fの高分子電解質膜2に対向する面とは反対側の面には、ガス拡散層4Fが、高分子電解質膜2及び一対の電極触媒層3A、3Fを挟んで互いに向い合うように配置されている。
 ガス拡散層4Aの電極触媒層3Aに対向する面とは反対側の面には、この面に対向する主面に反応ガス流通用のガス流路6Aを備え、ガス流路6Aを備える主面に相対する主面に冷却水流通用の冷却水通路7Aを備えたセパレーター5Aが配置されている。さらに、ガス拡散層4Fの電極触媒層3Fに対向する面とは反対側の面には、この面に対向する主面に反応ガス流通用のガス流路6Fを備え、ガス流路6Fを備える主面に相対する主面に冷却水流通用の冷却水通路7Fを備えたセパレーター5Fが配置されている。以下、区別する必要がない場合には、電極触媒層3A及び3Fを単に「電極触媒層3」と記載する場合がある。
 図2は、本実施形態に係る電極触媒層の構成例を示す模式的断面図である。図2に示すように、本実施形態に係る電極触媒層8は、高分子電解質膜9の表面に接合されており、触媒10、導電性担体としての炭素粒子11、及び高分子電解質12から構成されている。そして、電極触媒層8中において、触媒10、炭素粒子11、及び高分子電解質12のいずれの構成要素も存在しない部分が空孔となっている。
 また、本実施形態に係る高分子電解質膜9は、炭化水素系高分子電解質を含んで構成される炭化水素系高分子電解質膜であってもよく、炭化水素系高分子電解質のみで構成される炭化水素系高分子電解質膜であってもよい。本実施形態において、「炭化水素系高分子電解質膜」とは、高分子電解質膜9全体の質量に対し、例えば、後述する炭化水素系高分子電解質を50質量%超含んだ膜を意味する。
(触媒インクの製造)
 次に、本実施形態に係る固体高分子形燃料電池1の電極触媒層3、8(固体高分子形燃料電池用電極触媒層)を形成するための触媒インクの製造方法について説明する。まず、触媒10を担持した炭素粒子11を分散媒中に混合・分散させ、触媒粒子スラリーを得る。
 触媒10としては、例えば、白金族元素(白金、パラジウム、ルテニウム、イリジウム、ロジウム、オスミウム)、鉄、鉛、銅、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属及びこれらの金属の合金、酸化物、複酸化物、炭化物等を用いることができる。
 炭素粒子11としては、導電性を有し、触媒10に侵されずに触媒10を担持可能なものであれば、どのようなものでも構わないが、一般的にカーボン粒子が使用される。カーボン粒子としては、例えば、カーボンブラック、グラファイト、黒鉛、活性炭、カーボンナノチューブ、カーボンナノファイバー、フラーレンを用いることができる。カーボン粒子の粒径は、小さすぎると電子伝導パスが形成され難くなり、また、大きすぎると電極触媒層8のガス拡散性が低下したり、触媒の利用率が低下したりするので、10nm以上1000nm以下の範囲内が好ましい。更に好ましくは、10nm以上100nm以下の範囲内である。
 分散媒としては、例えば、水や、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、ペンタノール等のアルコール類の中からいずれか一種を選択して用いることが可能である。また、上述した溶媒のうち二種以上が混合された溶媒を用いることが可能である。混合・分散には、例えば、ビーズミル、プラネタリーミキサー、ディゾルバー等の装置を使用することができる。
 次に、上記方法で製造した触媒粒子スラリーに高分子電解質12を加える。高分子電解質12としては、例えば、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などを用いることができる。炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質を用いることができる。それらの中でも、高分子電解質としてデュポン社製Nafion(登録商標)系材料を好適に用いることができる。
(膜電極接合体の製造)
 高分子電解質膜2の両面に電極触媒層3を接合することで、膜電極接合体の製造を行う。この時、高分子電解質膜2に電極触媒層3を接合する方法としては、例えば、転写基材に触媒インクを塗布した電極触媒層付き転写基材を用い、電極触媒層付き転写基材の電極触媒層の表面と高分子電解質膜とを接触させて加熱・加圧することで、高分子電解質膜2と電極触媒層3の接合を行う方法がある。電極触媒層付き転写基材を用いて高分子電解質膜2と電極触媒層3を接触させて加熱・加圧することで接合を行う場合には、電極触媒層3に掛かる圧力や温度が膜電極接合体の発電性能に影響することがある。発電性能の高い膜電極接合体を得るには、積層体に掛かる圧力は、0.1MPa以上20MPa以下の範囲内であることが望ましい。積層体に掛かる圧力が20MPaより大きい場合には電極触媒層3が過圧縮となり、0.1MPaより小さい場合には電極触媒層3と高分子電解質膜2との接合性が低下して、発電性能が低下することがある。また、接合時の温度は、高分子電解質膜2と電極触媒層3の界面の接合性の向上や、界面抵抗の抑制を考慮すると、高分子電解質膜2又は電極触媒層3の高分子電解質12のガラス転移点付近とするのが好ましい。
 しかしながら、上記の方法によると、電極触媒層3と高分子電解質膜2の密着性が悪く、電極触媒層3と高分子電解質膜2の界面に空隙部が形成されやすい。そして、これにより、界面抵抗による発電性能の低下や、空隙部への水詰まりによるフラッディングによる発電性能の低下といった問題が発生しやすい傾向がある。
 一方、高分子電解質膜2の表面に触媒インクを直接塗布した後に、触媒インクの塗膜から溶媒成分(分散媒)を除去する方法によっても膜電極接合体を製造することができる。触媒インクを高分子電解質膜2に直接塗布する方法としては、例えば、ダイコート、ロールコート、カーテンコート、スプレーコート、スキージー等、様々な塗工方法を用いることができる。特に、ダイコートが好ましい。ダイコートは、塗布中間部分の膜厚が安定しており間欠塗工にも対応可能である。更に、塗布した触媒インクを乾燥させる方法としては、例えば、温風オーブン、IR(遠赤外線)乾燥、ホットプレート、減圧乾燥等を用いることができる。乾燥温度は、40℃以上200℃以下の範囲内、好ましくは40℃以上120℃以下の範囲内である。乾燥時間は、0.5分間以上1時間以内、好ましくは1分間以上30分間以下の範囲内である。
 この方法によると、電極触媒層3と高分子電解質膜2の密着性が良好で、上記の問題は生じにくい。しかしながら、触媒インクを高分子電解質膜2に直接塗布する方法では、高分子電解質膜2の膨潤により、塗布した電極触媒層3にしわやひび割れが生じやすく、これにより発電性能の低下や耐久性の低下が発生しやすいという問題があった。特にフッ素系高分子電解質膜においては、ガラス転移点が低く、また、膨潤も生じやすいことから、触媒インクを高分子電解質膜2に直接、塗布・乾燥させる工程において、電極触媒層3にしわやひび割れが生じやすい。
 これに対して、炭化水素系高分子電解質は、ガラス転移点が高く、また、触媒インクを高分子電解質膜2に直接、塗布・乾燥させる工程において膨潤が生じにくいため、本実施形態のように、高分子電解質膜2に炭化水素系高分子電解質を含んだ膜である炭化水素系高分子電解質膜を用いることで、触媒インクを高分子電解質膜2に直接塗布した場合においても電極触媒層3にしわやひび割れが生じにくく、電極触媒層3と高分子電解質膜2の密着性が良好な膜電極接合体を得ることが可能となる。なお、炭化水素系高分子電解質膜に含まれる炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質を用いることができる。
 以下、高分子電解質膜2として炭化水素系高分子電解質膜を用いた場合に奏する上記効果について詳しく説明する。
 電極触媒層を製造する際に用いる触媒インクとして、触媒とアルコールとを含んだインクを用いることがあるが、当該触媒インクにはインク自体が発火(燃焼)する危険性がある。そこで、当該触媒インクを用いる際には、当該触媒インクに水を添加し、インク自体の発火性(燃焼性)を低減することがある。
 当該触媒インクに水を添加することで、インク自体の発火性(燃焼性)は低減するが、当該触媒インクの乾燥速度が低下するという弊害がある。そのため、水を添加した当該触媒インクを用いて電極触媒層を製造する際には、触媒インクの乾燥温度を、通常の温度である80℃程度から、例えば90℃程度まで上昇させたいというニーズがあった。
 ここで、高分子電解質膜として用いられるフッ素系高分子電解質膜には、そのガラス転移点が低いものが多い。そのため、高分子電解質膜としてフッ素系高分子電解質膜を用いた場合には、触媒インクの乾燥温度がフッ素系高分子電解質膜のガラス転移点を上回ることがある。この場合には、フッ素系高分子電解質膜が膨潤し、電極触媒層とフッ素系高分子電解質膜との密着性が低下する傾向がある。
 これに対し、本実施形態で用いる炭化水素系高分子電解質膜は、フッ素系高分子電解質膜と比べて、そのガラス転移点が高いものが多い。例えば、炭化水素系高分子電解質膜のガラス転移点は100度以上である。そのため、高分子電解質膜として炭化水素系高分子電解質膜を用いた場合には、触媒インクの乾燥温度を例えば90℃程度まで上昇させたとしても、その乾燥温度が炭化水素系高分子電解質膜のガラス転移点を上回ることは少ない。その結果、炭化水素系高分子電解質膜の膨潤は極めて少なくなり、電極触媒層と炭化水素系高分子電解質膜との密着性は、電極触媒層とフッ素系高分子電解質膜との密着性と比べて向上する傾向がある。
 一方、フッ素系高分子電解質膜に、しわやひび割れを生じずに触媒インクを高分子電解質膜2に直接塗布する方法としては、触媒インク中に繊維状物質13を添加する方法がある。触媒インク中に繊維状物質13が添加してあれば、電極触媒層3の強度が高まるため、触媒インクを高分子電解質膜2に直接塗布した場合においても電極触媒層3にしわやひび割れが生じにくく、電極触媒層3と高分子電解質膜2の密着性が良好な膜電極接合体を得ることが可能となる。なお、フッ素系高分子電解質としては、テトラフルオロエチレン骨格を有する高分子電解質、例えば、デュポン社製の「Nafion(登録商標)」を用いることができる。
 触媒インク中に繊維状物質13を添加して形成した電極触媒層3を備える固体高分子形燃料電池用膜電極接合体の構成例を図3に示す。
 繊維状物質13としては、電子伝導性繊維およびプロトン伝導性繊維が使用できる。繊維状物質13は、以下に示す繊維のうち一種のみを単独で使用してもよいが、二種以上を併用してもよく、電子伝導性繊維とプロトン伝導性繊維を併せて用いてもよい。
 本実施形態に係る電子伝導性繊維としては、例えば、カーボンファイバー、カーボンナノチューブ、カーボンナノホーン、導電性高分子ナノファイバー等が例示できる。特に、導電性や分散性の点でカーボンナノファイバーが好ましい。また、触媒能のある電子伝導性繊維を用いることで、貴金属からなる触媒の使用量を低減できるのでより好ましい。固体高分子形燃料電池の空気極として用いられる場合には、例えば、カーボンナノファイバーから作製したカーボンアロイ触媒が例示できる。また、酸素還元電極用の電極活物質を繊維状に加工したものであってもよく、例えば、Ta、Nb、Ti、Zrから選択される、少なくとも一つの遷移金属元素を含む物質を使用してもよい。これらの遷移金属元素の炭窒化物の部分酸化物、または、これらの遷移金属元素の導電性酸化物や導電性酸窒化物が例示できる。
 本実施形態に係るプロトン伝導性繊維としては、プロトン伝導性を有する高分子電解質を繊維状に加工したものであればよく、例えば、フッ素系高分子電解質、炭化水素系高分子電解質を用いることができる。フッ素系高分子電解質としては、例えば、デュポン社製Nafion(登録商標)、旭硝子(株)製Flemion(登録商標)、旭化成(株)製Aciplex(登録商標)、ゴア社製Gore Select(登録商標)などを用いることができる。炭化水素系高分子電解質としては、例えば、スルホン化ポリエーテルケトン、スルホン化ポリエーテルスルホン、スルホン化ポリエーテルエーテルスルホン、スルホン化ポリスルフィド、スルホン化ポリフェニレンなどの電解質を用いることができる。それらの中でも、高分子電解質としてデュポン社製Nafion(登録商標)系材料を好適に用いることができる。
 繊維状物質13の繊維径としては、0.5nm以上500nm以下の範囲内が好ましく、5nm以上200nm以下の範囲内がより好ましい。繊維径をこの範囲にすることにより、電極触媒層3内の空孔を増加させることができ、高出力化が可能になる。
 また、繊維状物質13の繊維長は1μm以上40μm以下の範囲内が好ましく、1μm以上20μm以下の範囲内がより好ましい。繊維長をこの範囲にすることにより、電極触媒層3の強度を高めることができ、形成時にしわやひび割れが生じることを抑制できる。また、電極触媒層3内の空孔を増加させることができ、高出力化が可能になる。
 なお、上記実施形態では、フッ素系高分子電解質膜に繊維状物質13を添加した触媒インクを塗布して固体高分子形燃料電池用膜電極接合体を形成する場合については説明したが、本発明はこれに限定されるものではない。例えば、炭化水素系高分子電解質膜に繊維状物質13を添加した触媒インクを塗布して固体高分子形燃料電池用膜電極接合体を形成してもよい。
 ここで、本実施形態における空隙部14について、図4を用いて詳細に説明する。電極触媒層8と高分子電解質膜9との界面には、空隙部14が存在しないことがより好ましいが、空隙部14が発生することがある。ここで、上述した「空隙部14が存在しない」とは、走査型電子顕微鏡(SEM)の拡大率を4000倍に設定し、電極触媒層8と高分子電解質膜9との界面を観察した場合であっても、その界面に空隙部14の存在を確認できないことをいう。
 空隙部14の発生原因としては、転写基材(図示せず)に電極触媒層8を形成する際に電極触媒層8の表面に微小凹凸が発生することが挙げられる。その結果、高分子電解質膜9へ電極触媒層8を転写する際に、高分子電解質膜9と電極触媒層8の界面に凹凸による空隙部14が生じる。
 また、転写基材を経由せず直接高分子電解質膜9に触媒インクを塗布する方法であっても、塗布により形成した電極触媒層8にしわやひび割れが発生すると、これに応じた空隙部14が高分子電解質膜9と電極触媒層8の界面に発生する。
 特に、電極触媒層8と高分子電解質膜9の界面に、該界面に直交する方向の長さである高さhが0.5μm超過の空隙部14がある場合や、高さhが0.5μm以下の空隙部14が一定領域に多数ある場合に、発電性能の低下や耐久性が低下するといった問題が発生しやすい。
 しかしながら、燃料電池においては発電によって水が生成し、燃料電池の使用時には生成水が高分子電解質膜9に染み込むことによって、高分子電解質膜9が膨潤する。そのため、電極触媒層8と高分子電解質膜9の間に空隙部14があったとしても、その空隙部14の高さhが0.5μm以下であり、且つ、界面に平行な方向の長さlが30μmである領域内に存在する空隙部14の幅wの合計が10μm以下であれば、高分子電解質膜9の膨潤によって空隙部14が埋まることを見出した。
 図4に示す例の場合では、界面に平行な方向の長さlが30μmである領域内に2つの空隙部14、14が存在し、両空隙部14、14の幅w1、w2の合計が10μm以下である。
 なお、本実施形態においては、界面に直交する平面で固体高分子形燃料電池用膜電極接合体を切断した場合の断面を、SEMにより観察した場合に、空隙部14の界面に直交する方向の長さを高さhとし、空隙部14の界面に平行な方向の長さを幅wとする。
 したがって、高分子電解質膜9と電極触媒層8の界面に発生する空隙部14が上記の2つの数値条件を満たすことで、電極触媒層8と高分子電解質膜9の界面抵抗による発電性能の低下や、空隙部14への水詰まりによるフラッディングによる発電性能の低下が生じにくくなる。空隙部14の高さhは0.5μm以下である必要があり、0.3μm以下であることがより好ましい。空隙部14の高さhが0.3μm以下であれば、高分子電解質膜9の膨潤率が低くても空隙部14が埋まりやすいためである。
 また、界面に平行な方向の長さlが30μmである領域内に存在する空隙部14の幅wの合計が10μmを超えると、空隙部14の幅が広くなるため、高分子電解質膜9が膨潤しても空隙部14が埋まりにくい。
 なお、空隙部14は、界面に直交する平面で固体高分子形燃料電池用膜電極接合体を切断した場合の断面を、SEMを用いて観察することにより確認することができる。SEMの種類は特に限定されるものではないが、例えば株式会社日立ハイテクノロジーズ製のS-4800を用いることができる。また、SEM観察時の倍率は特に限定されるものではないが、例えば4000倍とすることができる。
 高分子電解質膜9の一方の面と電極触媒層8との界面に存在する空隙部14の高さh及び幅wが上記範囲内であれば上述の効果が奏されるが、高分子電解質膜9の両面において電極触媒層8との界面に存在する空隙部14の高さh及び幅wが上記範囲内であることがより好ましい。
 さらに、図5に示すように、高分子電解質膜9の両面側の界面において、高分子電解質膜9を挟んで、界面に平行な方向における同一位置に、または一部が重なるように存在する空隙部14が、上記範囲を同時に満たすことがさらに好ましい。すなわち、高分子電解質膜9の両面側の界面において、界面に平行な方向の長さ30μmの領域内に存在する空隙部14が共に上記2つの数値条件を満たすことにより、アノード側とカソード側の反応効率をより高めることができる。
 電極触媒層8の厚さは、5μm以上30μm以下であることが好ましく、特に20μm以下であることが好ましい。電極触媒層8の厚さが30μmよりも大きい場合、より正確には20μmよりも大きい場合には、電極触媒層8にひび割れが生じやすくなり、さらに、電極触媒層8を燃料電池に用いた際に、ガスや生成水の拡散性及び導電性が低下して、出力が低下するおそれがある。電極触媒層8の厚さが5μmよりも薄い場合には、層厚にばらつきが生じ易くなり、内部の触媒や高分子電解質が不均一となることがある。
 また、例えば、電極触媒層8中の高分子電解質12の配合率は、炭素粒子11の重量に対して同程度から半分程度が好ましい。また、繊維状物質13の配合率は、炭素粒子11の重量に対して同程度から半分程度が好ましい。触媒インクの固形分比率は、薄膜に塗工できる範囲で、高いほうが好ましい。
(本実施形態の効果)
 本実施形態によれば、複雑な工程を用いることなく、電極触媒層8と高分子電解質膜9の密着性が良好で且つ発電性能及び耐久性に優れた膜電極接合体を製造することが可能である。
 以下、本発明の実施例及び比較例を説明する。
(実施例1)
 白金担持カーボン触媒(TEC10E50E,田中貴金属工業社製)と水と1-プロパノールと高分子電解質(Nafion(登録商標)分散液,和光純薬工業社製)とを混合し、ビーズミル分散機を使用して過分散しない程度に各成分を分散させて、触媒インクを製造した。こうして製造した触媒インクの固形分比率は、10質量%であった。なお、水と1-プロパノールとの質量比は、1:1とした。また、ビーズミル分散機を用いて各成分を分散させる際の条件を以下のように設定した。また、下記条件は、以下の実施例及び比較例において共通とした。
 ・パス(pass)回数:5回
 ・ボール(ビーズ)径:直径0.3mm
 ・アジテータ周速:10m/sec.
 また、炭化水素系高分子電解質膜は、スーパーエンジニアリングプラスチックを公知の手法でスルホン化することで製造した。
 製造した触媒インクを、炭化水素系高分子電解質膜の両表面にスリットダイコーターを用いて直接塗布し、乾燥させて電極触媒層を形成して、膜電極接合体を得た。
 こうして得た膜電極接合体を、まず、ミクロトーム(Leica製 EM UC7ウルトラミクロトーム)を用いて切片化した。次に、この切片化した膜電極接合体を、拡大率を4000倍に設定したSEM(株式会社日立ハイテクノロジーズ製のS-4800)を用いて、電極触媒層と高分子電解質膜の間の界面を観察した。
 実施例1の膜電極接合体は、電極触媒層と高分子電解質膜の間の界面に空隙部が存在しなかった。そのため、電極触媒層と高分子電解質膜の密着性が良好であり、且つ、良好な発電性能及び耐久性を示した。
(実施例2)
 カソード側の電極触媒層(触媒インク)の塗布量を2倍とした点以外は、実施例1と同様にして実施例2の膜電極接合体を得た。
 実施例2の膜電極接合体は、電極触媒層と高分子電解質膜の間の界面に空隙部が存在しなかった。そのため、電極触媒層と高分子電解質膜の密着性が良好であり、且つ、良好な発電性能及び耐久性を示した。
(実施例3)
 触媒インクの分散に遊星ボールミル分散機を使用した点以外は、実施例1と同様の手順で実施例3の膜電極接合体を得た。なお、ボールミル分散機を用いて各成分を分散させる際の条件を以下のように設定した。また、下記条件は、以下の実施例及び比較例において共通とした。
 ・分散時間:3時間
 ・ボール径:直径3mm
 実施例3の触媒インクは、ビーズミル分散機により分散を行った実施例1の触媒インクと比較すると、分散度合いが低かった。そのため、実施例3の膜電極接合体の電極触媒層と高分子電解質膜の界面には、高さhが0.3μmから0.4μmの空隙部が複数存在しており、界面に平行な方向の長さ30μmの領域内に存在する複数の空隙部の幅wの合計は6μmであった。実施例3の膜電極接合体の発電性能及び耐久性は良好であった。
(実施例4)
 白金担持カーボン触媒の代わりに白金とコバルトの合金系カーボン触媒を使用した点以外は、実施例1と同様の手順で実施例4の膜電極接合体を得た。
 実施例4の触媒インクは、実施例1のインクと比較して、高分子電解質膜への塗布の際に電極触媒層の一部にひび割れが生じた。これに起因して、実施例4の膜電極接合体の電極触媒層と高分子電解質膜の界面には、高さhが0.1μmから0.2μmの空隙部が複数存在しており、界面に平行な方向の長さ30μmの領域内に存在する複数の空隙部の幅wの合計は10μmであった。実施例4の膜電極接合体の発電性能及び耐久性は良好であった。
(実施例5)
 実施例1の触媒インクにカーボンナノファイバー(VGCF-H(登録商標),昭和電工社製)を混合した点以外は、実施例1と同様の手順で実施例5の膜電極接合体を得た。
 実施例5の膜電極接合体は、電極触媒層と高分子電解質膜の間の界面に空隙部が存在しないため、電極触媒層と高分子電解質膜の密着性が良好であり、且つ、良好な発電性能及び耐久性を示した。
(実施例6)
 実施例3の触媒インクにカーボンナノファイバー(VGCF-H(登録商標),昭和電工社製)を混合した点以外は、実施例3と同様の手順で実施例6の膜電極接合体を得た。
 実施例6の触媒インクは、実施例3の触媒インクと比較すると、分散度合いが低かった。そのため、実施例6の膜電極接合体の電極触媒層と高分子電解質膜の界面には、高さhが0.4μmから0.5μmの空隙部が複数存在しており、界面に平行な方向の長さ30μmの領域内に存在する複数の空隙部の幅wの合計は9μmであった。実施例6の膜電極接合体の発電性能及び耐久性は良好であった。
(実施例7)
 白金担持カーボン触媒(TEC10E50E,田中貴金属工業社製)と水と1-プロパノールと高分子電解質(Nafion(登録商標)分散液,和光純薬工業社製)とカーボンナノファイバー(VGCF-H(登録商標),昭和電工社製)とを混合し、ビーズミル分散機を使用して、触媒インクを製造した。
 製造した触媒インクを、高分子電解質膜(Nafion211(登録商標),デュポン社製)の両表面にスリットダイコーターを用いて直接塗布し、乾燥させて電極触媒層を形成して、膜電極接合体を得た。
 実施例7の膜電極接合体は、電極触媒層と高分子電解質膜の間の界面に空隙部が存在しなかった。そのため、電極触媒層と高分子電解質膜の密着性が良好であり、且つ、良好な発電性能及び耐久性を示した。
(実施例8)
 カソード側の電極触媒層(触媒インク)の塗布量を2倍とした点以外は、実施例7と同様にして実施例8の膜電極接合体を得た。
 実施例8の膜電極接合体は、電極触媒層と高分子電解質膜の間の界面に空隙部が存在しなかった。そのため、電極触媒層と高分子電解質膜の密着性が良好であり、且つ、良好な発電性能及び耐久性を示した。
(実施例9)
 触媒インクの分散にボールミル分散機を使用した点以外は、実施例7と同様の手順で実施例9の膜電極接合体を得た。
 実施例9の触媒インクは、ビーズミル分散機により分散を行った実施例7の触媒インクと比較すると、分散度合いが低かった。そのため、実施例9の膜電極接合体の電極触媒層と高分子電解質膜の界面には、高さhが0.3μmから0.4μmの空隙部が複数存在しており、界面に平行な方向の長さ30μmの領域内に存在する複数の空隙部の幅wの合計は6μmであった。実施例9の膜電極接合体の発電性能及び耐久性は良好であった。
(実施例10)
 白金担持カーボン触媒の代わりに白金とコバルトの合金系カーボン触媒を使用した点以外は、実施例7と同様の手順で実施例10の膜電極接合体を得た。
 実施例10の触媒インクは、実施例7のインクと比較して、高分子電解質膜への塗布の際に電極触媒層の一部にひび割れが生じた。これに起因して、実施例10の膜電極接合体の電極触媒層と高分子電解質膜の界面には、高さhが0.1μmから0.2μmの空隙部が複数存在しており、界面に平行な方向の長さ30μmの領域内に存在する複数の空隙部の幅wの合計は10μmであった。実施例10の膜電極接合体の発電性能及び耐久性は良好であった。
(実施例11)
 繊維状物質としてカーボンナノファイバーの代わりにカーボンナノチューブ(NC7000(商標),Nanocyl社製)を用いた点以外は、実施例7と同様の手順で実施例11の膜電極接合体を得た。
 実施例11の膜電極接合体は、電極触媒層と高分子電解質膜の間の界面に空隙部が存在しないため、電極触媒層と高分子電解質膜の密着性が良好であり、且つ、良好な発電性能及び耐久性を示した。
(比較例1)
 高分子電解質膜として、Nafion211(登録商標),デュポン社製の高分子電解質膜を用いた点以外は、実施例1と同様にして比較例1の膜電極接合体を得た。
 比較例1の膜電極接合体では、電極触媒層にしわやひび割れが生じ、発電性能及び耐久性の低下が生じる結果となった。このとき、電極触媒層と高分子電解質膜の界面には、高さhが0.1μmから0.3μmの空隙部が複数存在しており、界面に平行な方向の長さ30μmの領域内に存在する複数の空隙部の幅wの合計は16μmであった。
(比較例2)
 触媒インクを転写基材に塗布した後に高分子電解質膜に転写する方法により、膜電極接合体を製造した点以外は、実施例1と同様にして比較例2の膜電極接合体を得た。
 比較例2の膜電極接合体では、電極触媒層と高分子電解質膜の界面に高さhが0.5μm超過の空隙部が生じ、発電性能及び耐久性の低下が生じる結果となった。
(比較例3)
 カソード側の電極触媒層(触媒インク)の塗布量を4倍とした点以外は、実施例1と同様にして比較例3の膜電極接合体を得た。
 比較例3の膜電極接合体では、電極触媒層にしわやひび割れが生じ、発電性能及び耐久性の低下が生じる結果となった。このとき、電極触媒層と高分子電解質膜の界面には、高さhが0.1μmから0.3μmの空隙部が複数存在しており、界面に平行な方向の長さ30μmの領域内に存在する複数の空隙部の幅wの合計は13μmであった。
(比較例4)
 触媒インクを転写基材に塗布した後に高分子電解質膜に転写する方法により、膜電極接合体を製造した点以外は、実施例7と同様にして比較例4の膜電極接合体を得た。
 比較例4の膜電極接合体では、電極触媒層と高分子電解質膜の界面に高さhが0.5μm超過の空隙部が生じ、発電性能及び耐久性の低下が生じる結果となった。
(比較例5)
 カソード側の電極触媒層(触媒インク)の塗布量を4倍とした点以外は、実施例7と同様にして比較例5の膜電極接合体を得た。
 比較例5の膜電極接合体では、電極触媒層にしわやひび割れが生じ、発電性能及び耐久性の低下が生じる結果となった。このとき、電極触媒層と高分子電解質膜の界面には、高さhが0.1μmから0.3μmの空隙部が複数存在しており、界面に平行な方向の長さ30μmの領域内に存在する複数の空隙部の幅wの合計は14μmであった。
 1・・・固体高分子形燃料電池
 2・・・高分子電解質膜
 3A、3F・・・電極触媒層
 4A、4F・・・ガス拡散層
 5A、5F・・・セパレーター
 6A、6F・・・ガス流路
 7A、7F・・・冷却水通路
 8・・・電極触媒層
 9・・・高分子電解質膜
10・・・触媒
11・・・炭素粒子
12・・・高分子電解質
13・・・繊維状物質
14・・・空隙部

Claims (8)

  1.  高分子電解質膜の両面に電極触媒層が積層された固体高分子形燃料電池用膜電極接合体であって、
     前記高分子電解質膜は、炭化水素系高分子電解質を含有し、
     前記高分子電解質膜と前記電極触媒層の界面に空隙部が存在しない固体高分子形燃料電池用膜電極接合体。
  2.  高分子電解質膜の両面に電極触媒層が積層された固体高分子形燃料電池用膜電極接合体であって、
     前記電極触媒層は、触媒、炭素粒子、及び高分子電解質を含有し、
     前記高分子電解質膜は、炭化水素系高分子電解質を含有し、
     前記電極触媒層と前記高分子電解質膜の界面には、少なくとも1個の空隙部が形成されており、
     前記界面に直交する平面で前記固体高分子形燃料電池用膜電極接合体を切断した場合の断面を、走査型電子顕微鏡により観察した場合に、前記空隙部の前記界面に直交する方向の長さである高さをhとし、前記空隙部の前記界面に平行な方向の長さである幅をwとすると、
     前記高分子電解質膜の両面側のそれぞれの前記界面において、前記空隙部の前記高さhが0.5μm以下であり、前記界面に平行な方向の長さ30μmの領域内に存在する前記空隙部の幅wの合計が10μm以下である固体高分子形燃料電池用膜電極接合体。
  3.  高分子電解質膜の両面に電極触媒層が積層された固体高分子形燃料電池用膜電極接合体であって、
     前記電極触媒層は、触媒、炭素粒子、高分子電解質、及び繊維状物質を含有し、
     前記電極触媒層と前記高分子電解質膜の界面に空隙部が存在しない固体高分子形燃料電池用膜電極接合体。
  4.  高分子電解質膜の両面に電極触媒層が積層された固体高分子形燃料電池用膜電極接合体であって、
     前記電極触媒層は、触媒、炭素粒子、高分子電解質、及び繊維状物質を含有し、
     前記電極触媒層と前記高分子電解質膜の界面には、少なくとも1個の空隙部が形成されており、
     前記界面に直交する平面で前記固体高分子形燃料電池用膜電極接合体を切断した場合の断面を、走査型電子顕微鏡により観察した場合に、前記空隙部の前記界面に直交する方向の長さである高さをhとし、前記空隙部の前記界面に平行な方向の長さである幅をwとすると、
     前記高分子電解質膜の両面側のそれぞれの前記界面において、前記空隙部の前記高さhが0.5μm以下であり、前記界面に平行な方向の長さ30μmの領域内に存在する前記空隙部の幅wの合計が10μm以下である固体高分子形燃料電池用膜電極接合体。
  5.  前記繊維状物質がカーボンナノファイバー、カーボンナノチューブ、電解質繊維及び酸窒化物繊維から選択した一種又は二種以上を含有する請求項3または請求項4に記載の固体高分子形燃料電池用膜電極接合体。
  6.  前記高さhが0.3μm以下である請求項2または請求項4に記載の固体高分子形燃料電池用膜電極接合体。
  7.  前記電極触媒層の厚さが20μm以下である請求項1から請求項6のいずれか1項に記載の固体高分子形燃料電池用膜電極接合体。
  8.  請求項1から請求項7のいずれか1項に記載の固体高分子形燃料電池用膜電極接合体を備える固体高分子形燃料電池。
PCT/JP2019/003130 2018-01-31 2019-01-30 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池 WO2019151310A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/465,118 US20200335808A1 (en) 2018-01-31 2019-01-30 Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
CN201980010269.9A CN111837278A (zh) 2018-01-31 2019-01-30 固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池
EP19725833.8A EP3547430A4 (en) 2018-01-31 2019-01-30 MEMBRANE ELECTRODE ARRANGEMENT FOR A SOLID POLYMER ELECTROLYT FUEL CELL AND SOLID POLYMER ELECTROLYT FUEL CELL
US18/116,146 US20230268539A1 (en) 2018-01-31 2023-03-01 Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018014693 2018-01-31
JP2018-014693 2018-01-31
JP2018-065720 2018-03-29
JP2018065720A JP6432703B1 (ja) 2018-01-31 2018-03-29 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2018-227448 2018-12-04
JP2018227448A JP7256359B2 (ja) 2018-12-04 2018-12-04 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/465,118 A-371-Of-International US20200335808A1 (en) 2018-01-31 2019-01-30 Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell
US18/116,146 Division US20230268539A1 (en) 2018-01-31 2023-03-01 Membrane electrode assembly for solid polymer fuel cell and solid polymer fuel cell

Publications (1)

Publication Number Publication Date
WO2019151310A1 true WO2019151310A1 (ja) 2019-08-08

Family

ID=67479779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003130 WO2019151310A1 (ja) 2018-01-31 2019-01-30 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池

Country Status (4)

Country Link
US (2) US20200335808A1 (ja)
EP (1) EP3547430A4 (ja)
CN (1) CN111837278A (ja)
WO (1) WO2019151310A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124407A1 (ja) * 2020-12-10 2022-06-16 凸版印刷株式会社 電極触媒層、膜電極接合体及び固体高分子形燃料電池
WO2022172958A1 (ja) * 2021-02-12 2022-08-18 凸版印刷株式会社 膜電極接合体、および、固体高分子形燃料電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4060776A4 (en) * 2021-01-20 2022-12-07 Jiangsu Huasifei New Energy Technology Co., Ltd. ELECTRODE ARRANGEMENT FOR PROTON EXCHANGE MEMBRANE-FREE FUEL CELL AND PROCESS FOR THEIR MANUFACTURE AND FUEL CELL
CN115064709B (zh) * 2022-06-24 2024-02-13 中国科学院长春应用化学研究所 一种高温固体氧化物燃料电池/电解池有序电极构筑的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004916A (ja) * 2004-05-17 2006-01-05 Nissan Motor Co Ltd 燃料電池用mea、およびこれを用いた燃料電池
WO2006061993A1 (ja) * 2004-12-07 2006-06-15 Toray Industries, Inc. 膜電極複合体およびその製造方法、ならびに燃料電池
JP2007026836A (ja) 2005-07-14 2007-02-01 Nissan Motor Co Ltd 燃料電池の触媒層形成方法及び膜電極接合体
JP2009032438A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 燃料電池用膜−電極接合体の製造方法および膜−電極接合体
JP2009170271A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 膜電極接合体の製造方法
JP2009176518A (ja) 2008-01-23 2009-08-06 Toyota Motor Corp 燃料電池用膜電極接合体の製造方法
JP2010086674A (ja) * 2008-09-29 2010-04-15 Dainippon Printing Co Ltd 燃料電池用触媒層を形成するためのインクジェット用インキ、燃料電池用触媒層及びその製造方法並びに触媒層−電解質膜積層体
JP2012243693A (ja) * 2011-05-24 2012-12-10 Honda Motor Co Ltd 電解質膜・電極接合体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5910378A (en) * 1997-10-10 1999-06-08 Minnesota Mining And Manufacturing Company Membrane electrode assemblies
JP2005108604A (ja) * 2003-09-30 2005-04-21 Canon Inc 膜電極接合体、その製造方法および固体高分子型燃料電池
JP2007250312A (ja) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd 固体高分子型燃料電池用膜・電極接合体、その製造方法および固体高分子型燃料電池
JP2008027799A (ja) * 2006-07-24 2008-02-07 Toyota Motor Corp 燃料電池用接合体、燃料電池、及び燃料電池の製造方法
JP4793317B2 (ja) * 2007-04-23 2011-10-12 トヨタ自動車株式会社 膜電極接合体の製造方法、膜電極接合体、膜電極接合体の製造装置、及び燃料電池
US7858266B2 (en) * 2008-07-10 2010-12-28 Gm Global Technology Operations, Inc. Structural reinforcement of membrane electrodes
US8735017B2 (en) * 2010-03-10 2014-05-27 Samsung Sdi Co., Ltd Membrane-electrode assembly for fuel cell, method of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
EP2819227A4 (en) * 2012-02-23 2015-11-25 Toppan Printing Co Ltd FILM-ELECTRODE JUNCTION FOR SOLID STATE POLYMER FUEL CELL AND METHOD FOR MANUFACTURING SAME, AND SOLID STATE POLYMER FUEL CELL
US10923752B2 (en) * 2016-12-29 2021-02-16 Kolon Industries, Inc. Membrane-electrode assembly, method for manufacturing same, and fuel cell comprising same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006004916A (ja) * 2004-05-17 2006-01-05 Nissan Motor Co Ltd 燃料電池用mea、およびこれを用いた燃料電池
WO2006061993A1 (ja) * 2004-12-07 2006-06-15 Toray Industries, Inc. 膜電極複合体およびその製造方法、ならびに燃料電池
JP2007026836A (ja) 2005-07-14 2007-02-01 Nissan Motor Co Ltd 燃料電池の触媒層形成方法及び膜電極接合体
JP2009032438A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 燃料電池用膜−電極接合体の製造方法および膜−電極接合体
JP2009170271A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 膜電極接合体の製造方法
JP2009176518A (ja) 2008-01-23 2009-08-06 Toyota Motor Corp 燃料電池用膜電極接合体の製造方法
JP2010086674A (ja) * 2008-09-29 2010-04-15 Dainippon Printing Co Ltd 燃料電池用触媒層を形成するためのインクジェット用インキ、燃料電池用触媒層及びその製造方法並びに触媒層−電解質膜積層体
JP2012243693A (ja) * 2011-05-24 2012-12-10 Honda Motor Co Ltd 電解質膜・電極接合体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124407A1 (ja) * 2020-12-10 2022-06-16 凸版印刷株式会社 電極触媒層、膜電極接合体及び固体高分子形燃料電池
WO2022172958A1 (ja) * 2021-02-12 2022-08-18 凸版印刷株式会社 膜電極接合体、および、固体高分子形燃料電池

Also Published As

Publication number Publication date
US20200335808A1 (en) 2020-10-22
US20230268539A1 (en) 2023-08-24
EP3547430A1 (en) 2019-10-02
EP3547430A4 (en) 2020-02-12
CN111837278A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
JP4185064B2 (ja) 液体燃料型固体高分子燃料電池用カソード電極及び液体燃料型固体高分子燃料電池
WO2019151310A1 (ja) 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池
JP2006339124A (ja) 燃料電池用膜電極接合体およびこれを用いた固体高分子型燃料電池
JP7385014B2 (ja) 膜電極接合体
JP7363976B2 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP5153130B2 (ja) 膜電極接合体
JP6432703B1 (ja) 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池及び固体高分子形燃料電池用膜電極接合体の製造方法
JP6332541B1 (ja) 電極触媒層
CN113228354A (zh) 燃料电池用膜电极接合体以及固体高分子型燃料电池
JP2023073395A (ja) 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池、並びに固体高分子形燃料電池用膜電極接合体の製造方法
CN111247676B (zh) 电极催化剂层、膜电极接合体以及固体高分子型燃料电池
JP7067136B2 (ja) 触媒層、膜電極接合体、固体高分子形燃料電池
JP7119402B2 (ja) 膜電極接合体およびこれを備えた固体高分子形燃料電池
WO2019088096A1 (ja) 電極触媒層及び固体高分子形燃料電池
JP7131269B2 (ja) 固体高分子形燃料電池の電極触媒層形成用の触媒インク
JP7484888B2 (ja) 固体高分子形燃料電池用触媒層、膜電極接合体、及び固体高分子形燃料電池
JP7140256B2 (ja) 電極触媒層
US20220302465A1 (en) Catalyst ink for forming electrode catalyst layer and method of producing membrane electrode assembly
JP7363266B2 (ja) カソード側電極触媒層、膜電極接合体、および、固体高分子形燃料電池
JP7315079B2 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP7310855B2 (ja) 触媒層
EP4220781A1 (en) Electrode catalyst layer and membrane electrode assembly
JP2012195232A (ja) 膜電極接合体およびその製造方法並びに固体高分子形燃料電池
JP2009245932A (ja) 燃料電池用電極触媒インク、電極触媒層、膜電極接合体および固体高分子型燃料電池
JP2024040839A (ja) 電極触媒層、及び、膜電極接合体

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019725833

Country of ref document: EP

Effective date: 20190531

NENP Non-entry into the national phase

Ref country code: DE