CN111837278A - 固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池 - Google Patents

固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池 Download PDF

Info

Publication number
CN111837278A
CN111837278A CN201980010269.9A CN201980010269A CN111837278A CN 111837278 A CN111837278 A CN 111837278A CN 201980010269 A CN201980010269 A CN 201980010269A CN 111837278 A CN111837278 A CN 111837278A
Authority
CN
China
Prior art keywords
polymer electrolyte
membrane
interface
electrolyte membrane
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201980010269.9A
Other languages
English (en)
Inventor
浜田直纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018065720A external-priority patent/JP6432703B1/ja
Priority claimed from JP2018227448A external-priority patent/JP7256359B2/ja
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Publication of CN111837278A publication Critical patent/CN111837278A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8673Electrically conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/881Electrolytic membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供电极催化剂层与高分子电解质膜的界面的密合性良好的固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池。本实施方式的固体高分子型燃料电池用膜电极接合体中,在高分子电解质膜(9)的两面层叠有电极催化剂层(8),电极催化剂层(8)含有催化剂(10)、碳粒子(11)、以及高分子电解质(12)。在电极催化剂层(8)与高分子电解质膜(9)的界面处形成有至少1个空隙部(14)。在利用SEM观察以垂直于界面的平面切断固体高分子型燃料电池用膜电极接合体而形成的剖面的情况下,将空隙部(14)的在与界面垂直的方向上的长度即高度设为h,将空隙部(14)的在与界面平行的方向上的长度即宽度设为w,在高分子电解质膜(9)的两面的各个界面中,高度h为0.5μm以下,在与界面平行的方向上的长度为30μm的区域内所存在的空隙部(14)的宽度w合计为10μm以下。

Description

固体高分子型燃料电池用膜电极接合体及固体高分子型燃料 电池
技术领域
本发明涉及固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池。
背景技术
固体高分子型燃料电池具备将高分子电解质膜夹在阴极电极催化剂层与阳极电极催化剂层之间的构造,由于其在常温下工作、启动时间短,因而被期望用于汽车用电源、固定用电源等。
作为传统的膜电极接合体的制造方法,已知这样一种方法:其中,将由负载有催化剂的碳粒子、高分子电解质和溶剂构成的催化剂油墨涂布在转印基材或气体扩散层上,然后将其热压接至高分子电解质膜上,从而制作膜电极接合体。
然而,在通过传统的转印来制造膜电极接合体的方法中,电极催化剂层与高分子电解质膜的密合性降低,容易在电极催化剂层与高分子电解质膜之间产生空隙部。因此,容易产生因界面电阻而引起的发电性能的降低、或因空隙部堵塞水而溢流(flooding)导致发电性能的降低这样的问题。
为了解决这样的问题,提出了各种技术方案。例如,专利文献1中公开了一种技术:通过喷射陶瓷粒子以在高分子电解质膜的表面上形成凹凸,并在该凹凸上形成电极催化剂层,使得凹凸陷入到催化剂层的表面,从而提高密合性。另外,专利文献2中公开了一种技术:通过在电极催化剂层与高分子电解质膜的界面处照射激光并加热,使其热压接从而提高密合性。
然而,在专利文献1、2所公开的技术中,膜电极接合体的耐久性可能降低,同时由于制造工序变得复杂,可能导致成品率降低或成本增加。
现有技术文献
专利文献
专利文献1:日本特开2007-26836号公报
专利文献2:日本特开2009-176518号公报
发明内容
[本发明要解决的课题]
本发明的目的在于提供电极催化剂层与高分子电解质膜的界面的密合性良好的固体高分子型燃料电池用膜电极接合体以及固体高分子型燃料电池。
[用于解决课题的手段]
本发明的一个方式涉及的固体高分子型燃料电池用膜电极接合体的主要内容为:一种固体高分子型燃料电池用膜电极接合体,其中,在高分子电解质膜的两面层叠有电极催化剂层,高分子电解质膜含有烃系高分子电解质,并且在高分子电解质膜与电极催化剂层的界面处不存在空隙部。
本发明的其他方式涉及的固体高分子型燃料电池用膜电极接合体的主要内容为:一种固体高分子型燃料电池用膜电极接合体,其中在高分子电解质膜的两面层叠有电极催化剂层,电极催化剂层含有催化剂、碳粒子、以及高分子电解质,高分子电解质膜含有烃系高分子电解质,在电极催化剂层与高分子电解质膜的界面处形成有至少1个空隙部,在利用扫描电子显微镜观察以垂直于界面的平面切断固体高分子型燃料电池用膜电极接合体而形成的剖面的情况下,将空隙部的在与界面垂直的方向上的长度即高度设为h,将空隙部的在与界面平行的方向上的长度即宽度设为w时,在高分子电解质膜的两面侧的各界面中,空隙部的高度h为0.5μm以下,在与界面平行的方向上的长度为30μm的区域内所存在的空隙部的宽度w的合计为10μm以下。
本发明的进一步其他方式涉及的固体高分子型燃料电池用膜电极接合体的主要内容为:一种固体高分子型燃料电池用膜电极接合体,其中在高分子电解质膜的两面层叠有电极催化剂层,电极催化剂层含有催化剂、碳粒子、高分子电解质、以及纤维状物质,在电极催化剂层与高分子电解质膜的界面处不存在空隙部。
本发明的进一步其他方式涉及的固体高分子型燃料电池用膜电极接合体的主要内容为:一种固体高分子型燃料电池用膜电极接合体,其中,在高分子电解质膜的两面层叠有电极催化剂层,电极催化剂层含有催化剂、碳粒子、高分子电解质以及纤维状物质,在电极催化剂层与高分子电解质膜的界面处形成有至少1个空隙部,在利用扫描电子显微镜观察以垂直于界面的平面切断固体高分子型燃料电池用膜电极接合体而形成的剖面的情况下,将空隙部的在与界面垂直的方向上的长度即高度设为h,将空隙部的在与界面平行的方向上的长度即宽度设为w时,在高分子电解质膜的两面侧的各界面中,空隙部的高度h为0.5μm以下,在与界面平行的方向上的长度为30μm的区域内所存在的空隙部的宽度w的合计为10μm以下。
本发明的进一步其他方式涉及的固体高分子型燃料电池的主要内容为具备上述一个方式或其他方式涉及的固体高分子型燃料电池用膜电极接合体。
[发明的效果]
根据本发明,能够提供电极催化剂层与高分子电解质膜的界面的密合性良好的固体高分子型燃料电池用膜电极接合体以及固体高分子型燃料电池。
附图说明
[图1]是表示本发明的一个实施方式涉及的固体高分子型燃料电池的内部构造的分解立体图。
[图2]是说明本发明的一个实施方式涉及的固体高分子型燃料电池用膜电极接合体的构造的图。
[图3]是说明本发明的其他实施方式涉及的固体高分子型燃料电池用膜电极接合体的构造的图。
[图4]是说明电极催化剂层与高分子电解质膜的界面的构造的一个实例的示意性剖面图。
[图5]是说明电极催化剂层与高分子电解质膜的界面的构造的其他实例的示意性剖面图。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。需要说明的是,本实施方式不限于以下记载的实施方式,也可以基于本领域技术人员的知识而进行设计的变更等变形,并且进行了那样变形的实施方式也包含在本实施方式的范围内。
另外,在以下详细说明中,为了提供对本发明实施方式的完全理解,对特定的细节进行了记载。然而,需要明确的是,即使没有这些特定的细节,也可以实施一个以上的实施方式。另外,为了简化附图,已知的构造和装置有时用省略图表示。
(固体高分子型燃料电池的构造)
如图1所示,在构成固体高分子型燃料电池1的高分子电解质膜2的两面,配置夹着高分子电解质膜2而相互面对的一对电极催化剂层3A、3F。在电极催化剂层3A的与跟高分子电解质膜2面对的面相反一侧的面上配置有气体扩散层4A,另外,在电极催化剂层3F的与跟高分子电解质膜2面对的面相反一侧的面上配置有气体扩散层4F,并且气体扩散层4A、4F以夹着高分子电解质膜2和一对电极催化剂层3A、3F而相互面对的方式配置。
在气体扩散层4A的与跟电极催化剂层3A面对的面相反一侧的面上配置有隔板5A,其中隔板5A:在与该面相对的主面上具备反应气体流通用的气体流路6A、以及在与具备气体流路6A的主面相对的主面上具备冷却水流通用的冷却水通路7A。进一步,在气体扩散层4F的与跟电极催化剂层3F面对的面相反一侧的面上配置有隔板5F,其中隔板5F:在与该面相对的主面上具备反应气体流通用的气体流路6F、以及在与具备气体流路6F的主面相对的主面上具备冷却水流通用的冷却水通路7F。以下,在不需要区别的情况下,有时将电极催化剂层3A和3F简单地记载为“电极催化剂层3”。
图2为表示本实施方式涉及的电极催化剂层的构成例子的示意性剖面图。如图2所示,本实施方式涉及的电极催化剂层8与高分子电解质膜9的表面接合,并且由催化剂10、作为导电性载体的碳粒子11、以及高分子电解质12构成。然后,在电极催化剂层8中,不存在催化剂10、碳粒子11、以及高分子电解质12中的任意一个构成要素的部分成为空孔。
另外,本实施方式涉及的高分子电解质膜9可以为包含烃系高分子电解质而构成的烃系高分子电解质膜,也可以为只由烃系高分子电解质构成的烃系高分子电解质膜。在本实施方式中,所谓“烃系高分子电解质膜”是指这样的膜:相对于高分子电解质膜9的全体质量,例如,含有超过50质量%的后述的烃系高分子电解质。
(催化剂油墨的制造)
接下来,对用于形成本实施方式涉及的固体高分子型燃料电池1的电极催化剂层3、8(固体高分子型燃料电池用电极催化剂层)的催化剂油墨的制造方法进行说明。首先,将负载有催化剂10的碳粒子11在分散介质中混合并分散,从而得到催化剂粒子浆料。
作为催化剂10,例如可以使用铂族元素(铂、钯、钌、铱、铑、锇)、铁、铅、铜、铬、钴、镍、锰、钒、钼、镓、铝等金属以及这些金属的合金、氧化物、复合氧化物、碳化物等。
作为碳粒子11,只要其具有导电性、并且不受催化剂10的影响而能够负载催化剂10,则可以为任意物质,但是一般地使用碳粒子。作为碳粒子,例如可以使用碳黑、石墨、黑铅、活性炭、碳纳米管、碳纳米纤维以及富勒烯。当碳粒子的粒径过小时,难以形成电子传导通路,另外,当粒径过大时,电极催化剂层8的气体扩散性降低,或者催化剂的利用率降低,因此碳粒子的粒径优选在10nm以上1000nm以下的范围内。更优选在10nm以上100nm以下的范围内。
作为分散介质,例如可以选择使用水、或者甲醇、乙醇、1-丙醇、2-丙醇、1-丁醇、2-丁醇、异丁醇、叔丁醇、戊醇等醇类中的任意一种。另外,也可以使用将上述溶剂中的两种以上混合后的溶剂。混合分散例如可以使用珠磨机、行星式混合机、分散器等装置。
接下来,在由上述方法制造得到的催化剂粒子浆料中添加高分子电解质12。作为高分子电解质12,例如可以使用氟系高分子电解质、烃系高分子电解质。作为氟系高分子电解质,例如可以使用杜邦公司制造的Nafion(注册商标)、旭硝子(株)公司制造的Flemion(注册商标)、旭化成(株)公司制造的Aciplex(注册商标)、ゴア公司制造的Gore Select(注册商标)等。作为烃系高分子电解质,例如可以使用磺化聚醚酮、磺化聚醚砜、磺化聚醚醚砜、磺化聚硫化物、磺化聚苯撑等电解质。这些当中,优选使用杜邦公司制造的Nafion(注册商标)系材料作为高分子电解质。
(膜电极接合体的制造)
通过将电极催化剂层3接合在高分子电解质膜2的两面上,从而进行膜电极接合体的制造。此时,作为将电极催化剂层3接合在高分子电解质膜2上的方法,例如有下述方法:使用在转印基材上涂布有催化剂油墨的带有电极催化剂层的转印基材,通过将带有电极催化剂层的转印基材的电极催化剂层的表面与高分子电解质膜接触并加热加压,从而进行高分子电解质膜2与电极催化剂层3的接合。在使用带有电极催化剂层的转印基材将高分子电解质膜2与电极催化剂层3接触并加热加压从而接合的情况下,施加在电极催化剂层3上的压力和温度有时对膜电极接合体的发电性能产生影响。为了得到发电性能高的膜电极接合体,期望的是,施加在层叠体上的压力在0.1MPa以上20MPa以下的范围内。在施加在层叠体上的压力大于20MPa的情况下,电极催化剂层3会变得过度压缩,在小于0.1MPa的情况下,电极催化剂层3与高分子电解质膜2的接合性降低,从而发电性能降低。另外,考虑到提高高分子电解质膜2与电极催化剂层3的界面的接合性、以及抑制界面电阻,接合时的温度优选设为高分子电解质膜2或电极催化剂层3的高分子电解质12的玻璃化转变温度附近。
然而,根据上述方法,电极催化剂层3与高分子电解质膜2的密合性差,容易在电极催化剂层3与高分子电解质膜2的界面处形成空隙部。然后,因此,具有容易产生因界面电阻引起的发电性能降低、或因水流向空隙部受到堵塞而溢流导致的发电性能降低之类的问题的倾向。
另一方面,也可以通过将催化剂油墨直接涂布在高分子电解质膜2的表面上,然后采用从催化剂油墨的涂膜中除去溶剂成分(分散介质)的方法来制造膜电极接合体。作为将催化剂油墨直接涂布在高分子电解质膜2上的方法,例如可以使用模涂法、辊涂法、帘涂法、喷涂法、丝网印刷法等各种涂布方法。特别地,优选模涂法。模涂法可以使涂布中间部分的膜厚保持稳定,因此也可以用于间歇式涂布。进一步,作为将所涂布的催化剂油墨干燥的方法,例如可以使用热风烘箱、IR(远红外线)干燥、热板、减压干燥等。干燥温度在40℃以上200℃以下的范围内,优选在40℃以上120℃以下的范围内。干燥时间在0.5分钟以上1小时以内的范围内,优选在1分钟以上30分钟以下的范围内。
根据该方法,电极催化剂层3与高分子电解质膜2的密合性良好,难以产生上述问题。然而,在将催化剂油墨直接涂布在高分子电解质膜2上的方法中,由于高分子电解质膜2的溶胀,在所涂布的电极催化剂层3中容易产生褶皱或裂纹,由此存在容易产生发电性能降低和耐久性降低的问题。特别是在氟系高分子电解质膜中,由于玻璃化转变温度低,另外也容易产生溶胀,因而在将催化剂油墨直接涂布在高分子电解质膜2上并干燥的工序中,在电极催化剂层3中容易产生褶皱或裂纹。
与之相对,由于烃类高分子电解质的玻璃化转变温度高,另外,在将催化剂油墨直接涂布在高分子电解质膜2上并干燥的工序中难以产生溶胀,因此,如本实施方式那样,通过使用在高分子电解质膜2中包含烃系高分子电解质而成的膜即烃系高分子电解质膜,即使在将催化剂油墨直接涂布在高分子电解质膜2上的情况下,在电极催化剂层3中也难以产生皱褶或裂纹,从而能够得到电极催化剂层3与高分子电解质膜2的密合性良好的膜电极接合体。需要说明的是,作为包含在烃系高分子电解质膜中的烃系高分子电解质,例如可以使用磺化聚醚酮、磺化聚醚砜、磺化聚醚醚砜、磺化聚硫化物、磺化聚苯撑等电解质。
以下,对使用烃系高分子电解质膜作为高分子电解质膜2的情况下所发挥的上述效果进行详细的说明。
作为制造电极催化剂层时所使用的催化剂油墨,有时会使用含有催化剂和醇类的油墨,但是该催化剂油墨存在油墨自身着火(燃烧)的危险性。因此,在使用该催化剂油墨时,有时向该催化剂油墨中添加水,从而降低油墨自身的可燃性(燃烧性)。
通过在该催化剂油墨中添加水,可以降低油墨自身的可燃性(燃烧性),但是也存在该催化剂油墨的干燥速度降低的弊端。因此,在使用添加了水的该催化剂油墨来制造电极催化剂层时,要求将催化剂油墨的干燥温度从通常的温度即80℃左右上升至例如90℃左右。
这里,用作高分子电解质膜的氟系高分子电解质膜中,其玻璃化转变温度低的电解质膜较多。因此,在使用氟系高分子电解质膜作为高分子电解质膜的情况下,有时催化剂油墨的干燥温度会超过氟系高分子电解质膜的玻璃化转变温度。在该情况下,氟系高分子电解质膜溶胀,电极催化剂层与氟系高分子电解质膜的密合性有降低的倾向。
与之相对,与氟系高分子电解质膜相比,本实施方式中使用的烃系高分子电解质膜的玻璃化转变温度大多较高。例如,烃系高分子电解质膜的玻璃化转变温度为100度以上。因此,在使用烃系高分子电解质膜作为高分子电解质膜的情况下,即使将催化剂油墨的干燥温度上升至(例如)90℃左右,其干燥温度也很少会超过烃系高分子电解质膜的玻璃化转变温度。结果,烃系高分子电解质膜的溶胀变得极少,与电极催化剂层与氟系高分子电解质膜的密合性相比,电极催化剂层与烃系高分子电解质膜的密合性有提高的倾向。
另一方面,作为在氟系高分子电解质膜上以不产生褶皱和裂纹的方式将催化剂油墨直接涂布在高分子电解质膜2上的方法,有在催化剂油墨中添加纤维状物质13的方法。如果在催化剂油墨中添加纤维状物质13,则电极催化剂层3的强度提高,因此即使在将催化剂油墨直接涂布在高分子电解质膜2上的情况下,在电极催化剂层3中也难以产生褶皱或裂纹,从而可以得到电极催化剂层3与高分子电解质膜2的密合性良好的膜电极接合体。需要说明的是,作为氟系高分子电解质,可以使用具有四氟乙烯骨架的高分子电解质,例如杜邦公司制造的“Nafion(注册商标)”。
图3表示固体高分子型燃料电池用膜电极接合体的构成例子,其具备在催化剂油墨中添加纤维状物质13而形成的电极催化剂层3。
作为纤维状物质13,可以使用电子传导性纤维和质子传导性纤维。纤维状物质13可以仅单独地使用下述纤维中的一种,也可以并用两种以上,并且也可以将电子传导性纤维与质子传导性纤维组合使用。
作为本实施方式涉及的电子传导性纤维,例如可以列举出碳纤维、碳纳米管、碳纳米角、导电性高分子纳米纤维等。特别地,从导电性和分散性的方面来看,优选碳纳米纤维。另外,通过使用具有催化功能的电子传导性纤维,可以降低由贵金属构成的催化剂的使用量,因此更优选。在用作固体高分子型燃料电池的空气电极的情况下,例如可以列举出由碳纳米纤维制作的碳合金催化剂。另外,也可以将氧还原电极用的电极活性物质加工成纤维状的物质,例如,可以使用含有从Ta、Nb、Ti、Zr中选择的至少一种过渡金属元素的物质。可以列举出这些过渡金属元素的碳氮化合物的部分氧化物,或者,这些过渡金属元素的导电性氧化物或导电性氧氮化合物。
作为本实施方式涉及的质子传导性纤维,只要将具有质子传导性的高分子电解质加工成纤维状即可,例如可以使用氟系高分子电解质、烃系高分子电解质。作为氟系高分子电解质,例如可以使用杜邦公司制造的Nafion(注册商标)、旭硝子(株)公司制造的Flemion(注册商标)、旭化成(株)公司制造的Aciplex(注册商标)、ゴア公司制造的Gore Select(注册商标)等。作为烃系高分子电解质,例如可以使用磺化聚醚酮、磺化聚醚砜、磺化聚醚醚砜、磺化聚硫化物、磺化聚苯撑等电解质。这些当中,可以优选使用杜邦公司制造的Nafion(注册商标)系材料作为高分子电解质。
作为纤维状物质13的纤维直径,优选在0.5nm以上500nm以下的范围内,更优选在5nm以上200nm以下的范围内。通过将纤维直径设定在该范围内,能够增加电极催化剂层3内的空孔,从而可以实现高输出功率化。
另外,纤维状物质13的纤维长度优选在1μm以上40μm以下的范围内,更优选在1μm以上20μm以下的范围内。通过将纤维长度设定在该范围内,可以提高电极催化剂层3的强度,从而能够抑制在形成时产生褶皱或裂纹。另外,能够增加催化剂层内的空孔,从而可以实现高输出功率化。
需要说明的是,在上述实施方式中,对将添加有纤维状物质13的催化剂油墨涂布在氟系高分子电解质膜上而形成固体高分子型燃料电池用膜电极接合体的情况进行了说明,但本发明不限定于此。例如,也可以将添加有纤维状物质13的催化剂油墨涂布在烃系高分子电解质膜上而形成固体高分子型燃料电池用膜电极接合体。
这里,利用图4对本实施方式中的空隙部14进行详细的说明。虽然在电极催化剂层8与高分子电解质膜9的界面处优选不存在空隙部14,但是有时也会产生空隙部14。这里,上述“不存在空隙部14”是指:即使将扫描电子显微镜(SEM)的放大率设定为4000倍、并观察电极催化剂层8与高分子电解质膜9的界面时,在该界面处也不能确认存在空隙部14。
作为产生空隙部14的原因,可以列举出在转印基材(未图示)上形成电极催化剂层8时在电极催化剂层8的表面上产生微小凹凸。结果,在将电极催化剂层8转印至高分子电解质膜9上时,在高分子电解质膜9与电极催化剂层8的界面处因凹凸而产生空隙部14。
另外,即使是不经由转印基材而直接将催化剂油墨涂布在高分子电解质膜9上的方法中,当在由涂布形成的电极催化剂层8中产生褶皱或裂纹时,在高分子电解质膜9与电极催化剂层8的界面处产生与之对应的空隙部14。
特别地,在电极催化剂层8与高分子电解质膜9的界面处,存在与该界面垂直的方向上的长度即高度h超过0.5μm的空隙部14时、或者在一定区域中大量存在高度h为0.5μm以下的空隙部14时,容易产生发电性能降低和耐久性降低之类的问题。
然而,在燃料电池中,由于发电而生成水,在燃料电池使用时生成水会渗入到高分子电解质膜9中,从而高分子电解质膜9溶胀。因此,即使在电极催化剂层8与高分子电解质膜9之间存在空隙部14,但是如果该空隙部14的高度h为0.5μm以下、并且在与界面平行的方向上的长度l为30μm的区域内所存在的空隙部14的宽度w合计在10μm以下,则发现由于高分子电解质膜9的溶胀而使空隙部14被掩埋。
在图4所示例子的情况下,在与界面平行的方向上的长度l为30μm的区域内存在2个空隙部14、14,两个空隙部14、14的宽度w1、w2的合计为10μm以下。
需要说明的是,在本实施方式中,在利用SEM观察以垂直于界面的平面切断固体高分子型燃料电池用膜电极接合体而形成的剖面的情况下,将空隙部14的在与界面垂直的方向上的长度设为高度h,将空隙部14的在与界面平行的方向上的长度设为宽度w。
因此,通过使在高分子电解质膜9与电极催化剂层8的界面处产生的空隙部14满足上述2个数值条件,则难以发生因电极催化剂层8与高分子电解质膜9的界面电阻而引起的发电性能降低、或因流向空隙部14的水被堵塞而溢流导致的发电性能降低。空隙部14的高度h要求为0.5μm以下,更优选为0.3μm以下。如果空隙部14的高度h为0.3μm以下,则即使高分子电解质膜9的溶胀率降低,也容易掩埋空隙部14。
另外,当在与界面平行的方向上的长度l为30μm的区域内所存在的空隙部14的宽度w合计超过10μm时,由于空隙部14的宽度变宽,即使高分子电解质膜9溶胀,也难以掩埋空隙部14。
需要说明的是,空隙部14可以通过利用SEM观察以垂直于界面的平面切断固体高分子型燃料电池用膜电极接合体而形成的剖面来确认。对SEM的种类没有特别地限定,例如可以使用株式会社日立ハイテクノロジーズ制造的S-4800。另外,对SEM观察时的倍数也没有特别地限定,例如可以为4000倍。
如果在高分子电解质膜9的一个面与电极催化剂层8的界面处存在的空隙部14的高度h和宽度w在上述范围内,则可以发挥上述效果,但是优选的是:在高分子电解质膜9的两面与电极催化剂层8的界面处所存在的空隙部14的高度h和宽度w都在上述范围内。
进一步,如图5所示,进一步优选的是:在高分子电解质膜9的两侧的界面中,夹着高分子电解质膜9,在与界面平行方向上的同一位置处存在的空隙部14或者以一部分重叠的方式存在的空隙部14同时满足上述范围。即,在高分子电解质膜9的两侧的界面中,通过使与界面平行的方向上的长度为30μm的区域内所存在的空隙部14都满足上述两个数值条件,从而能够更加提高阳极侧和阴极侧的反应效率。
电极催化剂层8的厚度优选为5μm以上30μm以下,特别优选为20μm以下。在电极催化剂层8的厚度大于30μm的情况下,更准确地在大于20μm的情况下,电极催化剂层8中容易产生裂纹,而且在将电极催化剂层8用于燃料电池时,气体或生成水的扩散性以及导电性降低,从而输出功率可能会降低。在电极催化剂层8的厚度薄于5μm的情况下,层厚容易产生偏差,内部的催化剂和高分子电解质有时变得不均匀。
另外,例如,相对于碳粒子11的重量,电极催化剂层8中的高分子电解质12的配比优选为相同至一半左右。另外,相对于碳粒子11的重量,纤维状物质13的配比优选为相同至一半左右。催化剂油墨的固体成分比例只要在薄膜上可涂布的范围内,则优选越高越好。
(本实施方式的效果)
根据本实施方式,不需要使用复杂的工序,能够制造电极催化剂层8与高分子电解质膜9的密合性良好并且发电性能和耐久性优异的膜电极接合体。
以下,对本发明的实施例和比较例进行说明。
(实施例1)
将负载铂的碳催化剂(TEC10E50E,“田中貴金属”公司制造)、水、1-丙醇、高分子电解质(Nafion(注册商标)分散液,“和光純薬工業”公司制造)混合,使用珠磨分散机以不过度分散的程度分散各成分,从而制造催化剂油墨。这样制造得到的催化剂油墨的固体成分比例为10质量%。需要说明的是,水与1-丙醇的质量比设为1:1。另外,使用珠磨分散机分散各成分时的条件按照下述设定。另外,下述条件在以下的实施例和比较例中是共通的。
道次(pass)次数:5次
球(珠)径:直径0.3mm
搅拌器圆周速度:10m/秒钟
另外,烃系高分子电解质膜是利用公知的方法将特种工程塑料磺化后而制造得到的。
利用狭缝模涂布机将制得的催化剂油墨直接涂布在烃系高分子电解质膜的两个表面上并干燥以形成电极催化剂层,从而得到膜电极接合体。
首先,利用显微镜用薄片切片机(Leica制造,EM UC7自动显微镜薄片切片机)将这样得到的膜电极接合体切片。接着,利用放大倍数设为4000倍的SEM(株式会社日立ハイテクノロジーズ制造的S-4800)观察该切片后的膜电极接合体的电极催化剂层与高分子电解质膜之间的界面。
实施例1的膜电极接合体中,在电极催化剂层与高分子电解质膜之间的界面处不存在空隙部。由此,电极催化剂层与高分子电解质膜的密合性良好,并且显示出良好的发电性能和耐久性。
(实施例2)
除了将阴极侧的电极催化剂层(催化剂油墨)的涂布量设为2倍以外,与实施例1同样地得到了实施例2的膜电极接合体。
实施例2的膜电极接合体中,在电极催化剂层与高分子电解质膜之间的界面处不存在空隙部。由此,电极催化剂层与高分子电解质膜的密合性良好,并且显示出良好的发电性能和耐久性
(实施例3)
除了使用行星式球磨分散机来分散催化剂油墨以外,通过与实施例1同样的步骤得到了实施例3的膜电极接合体。需要说明的是,使用球磨分散机来分散各成分时的条件按照下述设定。另外,下述条件在以下的实施例和比较例中是共通的。
分散时间:3小时
球径:直径3mm
与利用珠磨分散机进行分散的实施例1的催化剂油墨相比,实施例3的催化剂油墨的分散度较低。由此,在实施例3的膜电极接合体的电极催化剂层与高分子电解质膜的界面处,存在多个高度h为0.3μm至0.4μm的空隙部,与界面平行的方向上的长度为30μm的区域内所存在的多个空隙部的宽度w合计为6μm。实施例3的膜电极接合体的发电性能和耐久性良好。
(实施例4)
除了使用铂和钴的合金系碳催化剂以代替负载铂的碳催化剂以外,通过与实施例1同样的步骤得到了实施例4的膜电极接合体。
与实施例1的油墨比较,实施例4的催化剂油墨在涂布至高分子电解质膜时,电极催化剂层的一部分中产生裂纹。由此,在实施例4的膜电极接合体的电极催化剂层与高分子电解质膜的界面处,存在多个高度h为0.1μm至0.2μm的空隙部,与界面平行的方向上的长度为30μm的区域内所存在的多个空隙部的宽度w合计为10μm。实施例4的膜电极接合体的发电性能和耐久性良好。
(实施例5)
除了在实施例1的催化剂油墨中混合了碳纳米纤维(VGCF-H(注册商标)“昭和電工”公司制造)以外,通过与实施例1同样的步骤得到了实施例5的膜电极接合体。
实施例5的膜电极接合体中,在电极催化剂层与高分子电解质膜之间的界面处不存在空隙部,由此电极催化剂层与高分子电解质膜的密合性良好,并且显示出良好的发电性能和耐久性。
(实施例6)
除了在实施例3的催化剂油墨中混合了碳纳米纤维(VGCF-H(注册商标)“昭和電工”公司制造)以外,通过与实施例3同样的步骤得到了实施例6的膜电极接合体。
与实施例3的催化剂油墨相比,实施例6的催化剂油墨的分散度较低。由此,在实施例6的膜电极接合体的电极催化剂层与高分子电解质膜的界面处,存在多个高度h为0.4μm至0.5μm的空隙部,与界面平行的方向上的长度为30μm的区域内所存在的多个空隙部的宽度w合计为9μm。实施例6的膜电极接合体的发电性能和耐久性良好。
(实施例7)
将负载铂的碳催化剂(TEC10E50E,“田中貴金属”公司制造)、水、1-丙醇、高分子电解质(Nafion(注册商标)分散液,“和光純薬工業”公司制造)、以及碳纳米纤维(VGCF-H(注册商标)“昭和電工”公司制造)混合,使用珠磨分散机,从而制造催化剂油墨。
利用狭缝模涂布机将制造得到的催化剂油墨直接涂布在高分子电解质膜(Nafion212(注册商标),杜邦公司制造)的两个表面上并干燥以形成电极催化剂层,从而得到膜电极接合体。
实施例7的膜电极接合体中,在电极催化剂层与高分子电解质膜之间的界面处不存在空隙部。由此,电极催化剂层与高分子电解质膜的密合性良好,并且显示出良好的发电性能和耐久性。
(实施例8)
除了将阴极侧的电极催化剂层(催化剂油墨)的涂布量设为2倍以外,与实施例7同样地得到了实施例8的膜电极接合体。
实施例8的膜电极接合体中,在电极催化剂层与高分子电解质膜之间的界面处不存在空隙部。由此,电极催化剂层与高分子电解质膜的密合性良好,并且显示出良好的发电性能和耐久性。
(实施例9)
除了使用球磨分散机来分散催化剂油墨以外,通过与实施例7同样的步骤得到了实施例9的膜电极接合体。
与利用珠磨分散机进行分散的实施例7的催化剂油墨相比,实施例9的催化剂油墨的分散度较低。由此,在实施例9的膜电极接合体的电极催化剂层与高分子电解质膜的界面处,存在多个高度h为0.3μm至0.4μm的空隙部,与界面平行的方向上的长度为30μm的区域内所存在的多个空隙部的宽度w合计为6μm。实施例9的膜电极接合体的发电性能和耐久性良好。
(实施例10)
除了使用铂与钴的合金系碳催化剂代替负载铂的碳催化剂以外,通过与实施例7同样的步骤得到了实施例10的膜电极接合体。
与实施例7的油墨相比,实施例10的催化剂油墨在涂布至高分子电解质膜时,电极催化剂层的一部分中产生裂纹。由此,在实施例10的膜电极接合体的电极催化剂层与高分子电解质膜的界面处,存在多个高度h为0.1μm至0.2μm的空隙部,与界面平行的方向上的长度为30μm的区域内所存在的多个空隙部的宽度w合计为10μm。实施例10的膜电极接合体的发电性能和耐久性良好。
(实施例11)
除了使用碳纳米管(NC7000(商标),“Nanocyl”公司制造)代替碳纳米纤维用作纤维状物质以外,通过与实施例7同样的步骤得到了实施例11的膜电极接合体。
实施例11的膜电极接合体中,在电极催化剂层与高分子电解质膜之间的界面处不存在空隙部,由此电极催化剂层与高分子电解质膜的密合性良好,并且显示出良好的发电性能和耐久性。
(比较例1)
除了使用Nafion212(注册商标),杜邦公司制造的高分子电解质膜作为高分子电解质膜以外,与实施例1同样地得到了比较例1的膜电极接合体。
比较例1的膜电极接合体中,产生了在电极催化剂层中产生褶皱和裂纹、且发电性能和耐久性降低的结果。此时,在电极催化剂层与高分子电解质膜的界面处,存在多个高度h为0.1μm至0.3μm的空隙部,与界面平行的方向上的长度为30μm的区域内所存在的多个空隙部的宽度w合计为16μm。
(比较例2)
除了采用将催化剂油墨涂布在转印基材后转印至高分子电解质膜的方法来制造膜电极接合体以外,与实施例1同样地得到了比较例2的膜电极接合体。
比较例2的膜电极接合体中,在电极催化剂层与高分子电解质膜的界面处产生了高度h超过0.5μm的空隙部,产生了发电性能和耐久性降低的结果。
(比较例3)
除了将阴极侧的电极催化剂层(催化剂油墨)的涂布量设为4倍以外,与实施例1同样地得到了比较例3的膜电极接合体。
比较例3的膜电极接合体中,产生了在电极催化剂层中产生褶皱和裂纹,且发电性能和耐久性降低的结果。此时,在电极催化剂层与高分子电解质膜的界面处,存在多个高度h为0.1μm至0.3μm的空隙部,与界面平行的方向上的长度为30μm的区域内所存在的多个空隙部的宽度w合计为13μm。
(比较例4)
除了采用将催化剂油墨涂布在转印基材后转印至高分子电解质膜上的方法来制造膜电极接合体以外,与实施例7同样地得到了比较例4的膜电极接合体。
比较例4的膜电极接合体中,在电极催化剂层与高分子电解质膜的界面处形成了高度h超过0.5μm的空隙部,产生了发电性能和耐久性降低的结果。
(比较例5)
除了将阴极侧的电极催化剂层(催化剂油墨)的涂布量设为4倍以外,与实施例7同样地得到了比较例5的膜电极接合体。
比较例5的膜电极接合体中,产生了在电极催化剂层中产生褶皱和裂纹,且发电性能和耐久性降低的结果。此时,在电极催化剂层与高分子电解质膜的界面处,存在多个高度h为0.1μm至0.3μm的空隙部,与界面平行的方向上的长度为30μm的区域内所存在的多个空隙部的宽度w合计为14μm。
符号的说明
1···固体高分子型燃料电池
2···高分子电解质膜
3A、3F···电极催化剂层
4A、4F···气体扩散层
5A、5F···隔板
6A、6F···气体流路
7A、7F···冷却水通路
8···电极催化剂层
9···高分子电解质膜
10···催化剂
11···碳粒子
12···高分子电解质
13···纤维状物质
14···空隙部

Claims (8)

1.一种固体高分子型燃料电池用膜电极接合体,其中,在高分子电解质膜的两面层叠有电极催化剂层,
所述高分子电解质膜含有烃系高分子电解质,
在所述高分子电解质膜与所述电极催化剂层的界面处不存在空隙部。
2.一种固体高分子型燃料电池用膜电极接合体,其中,在高分子电解质膜的两面层叠有电极催化剂层,
所述电极催化剂层含有催化剂、碳粒子、以及高分子电解质,
所述高分子电解质膜含有烃系高分子电解质,
在所述电极催化剂层与所述高分子电解质膜的界面处形成有至少1个空隙部,
在利用扫描电子显微镜观察以垂直于所述界面的平面切断所述固体高分子型燃料电池用膜电极接合体而形成的剖面的情况下,将所述空隙部的在与所述界面垂直的方向上的长度即高度设为h,将所述空隙部的在与所述界面平行的方向上的长度即宽度设为w,
在所述高分子电解质膜的两侧的各个所述界面中,所述空隙部的所述高度h为0.5μm以下,在与所述界面平行的方向上的长度为30μm的区域内所存在的所述空隙部的宽度w合计为10μm以下。
3.一种固体高分子型燃料电池用膜电极接合体,其中,在高分子电解质膜的两面层叠有电极催化剂层,
所述电极催化剂层含有催化剂、碳粒子、高分子电解质、以及纤维状物质,
在所述电极催化剂层与所述高分子电解质膜的界面处不存在空隙部。
4.一种固体高分子型燃料电池用膜电极接合体,其中,在高分子电解质膜的两面层叠有电极催化剂层,
所述电极催化剂层含有催化剂、碳粒子、高分子电解质、以及纤维状物质,
在所述电极催化剂层与所述高分子电解质膜的界面处形成有至少1个空隙部,
在利用扫描电子显微镜观察以垂直于所述界面的平面切断所述固体高分子型燃料电池用膜电极接合体而形成的剖面的情况下,将所述空隙部的在与所述界面垂直的方向上的长度即高度设为h,将所述空隙部的在与所述界面平行的方向上的长度即宽度设为w,
在所述高分子电解质膜的两侧的各个所述界面中,所述空隙部的所述高度h为0.5μm以下,在与所述界面平行的方向上的长度为30μm的区域内所存在的所述空隙部的宽度w合计为10μm以下。
5.根据权利要求3或权利要求4所述的固体高分子型燃料电池用膜电极接合体,其中所述纤维状物质含有选自碳纳米纤维、碳纳米管、电解质纤维、以及氮氧化物纤维中的一种或两种以上。
6.根据权利要求2或权利要求4所述的固体高分子型燃料电池用膜电极接合体,其中所述高度h为0.3μm以下。
7.根据权利要求1至权利要求6中任意一项所述的固体高分子型燃料电池用膜电极接合体,其中所述电极催化剂层的厚度为20μm以下。
8.一种固体高分子型燃料电池,具备权利要求1至权利要求7中任意一项所述的固体高分子型燃料电池用膜电极接合体。
CN201980010269.9A 2018-01-31 2019-01-30 固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池 Pending CN111837278A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2018014693 2018-01-31
JP2018-014693 2018-01-31
JP2018065720A JP6432703B1 (ja) 2018-01-31 2018-03-29 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2018-065720 2018-03-29
JP2018-227448 2018-12-04
JP2018227448A JP7256359B2 (ja) 2018-12-04 2018-12-04 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池
PCT/JP2019/003130 WO2019151310A1 (ja) 2018-01-31 2019-01-30 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池

Publications (1)

Publication Number Publication Date
CN111837278A true CN111837278A (zh) 2020-10-27

Family

ID=67479779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980010269.9A Pending CN111837278A (zh) 2018-01-31 2019-01-30 固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池

Country Status (4)

Country Link
US (2) US20200335808A1 (zh)
EP (1) EP3547430A4 (zh)
CN (1) CN111837278A (zh)
WO (1) WO2019151310A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230118074A (ko) * 2020-12-10 2023-08-10 도판 인사츠 가부시키가이샤 전극 촉매층, 막전극 접합체 및 고체 고분자형 연료 전지
EP4060776A4 (en) * 2021-01-20 2022-12-07 Jiangsu Huasifei New Energy Technology Co., Ltd. ELECTRODE ARRANGEMENT FOR PROTON EXCHANGE MEMBRANE-FREE FUEL CELL AND PROCESS FOR THEIR MANUFACTURE AND FUEL CELL
JP2022123668A (ja) * 2021-02-12 2022-08-24 凸版印刷株式会社 膜電極接合体、および、固体高分子形燃料電池
CN115064709B (zh) * 2022-06-24 2024-02-13 中国科学院长春应用化学研究所 一种高温固体氧化物燃料电池/电解池有序电极构筑的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303525A (zh) * 1997-10-10 2001-07-11 美国3M公司 膜电极组合件
JP2007250312A (ja) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd 固体高分子型燃料電池用膜・電極接合体、その製造方法および固体高分子型燃料電池
CN101496206A (zh) * 2006-07-24 2009-07-29 丰田自动车株式会社 燃料电池用接合体、燃料电池和燃料电池的制造方法
JP2009170271A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 膜電極接合体の製造方法
CN101626081A (zh) * 2008-07-10 2010-01-13 通用汽车环球科技运作公司 膜电极的结构增强
US20100015493A1 (en) * 2004-12-07 2010-01-21 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
CN101663784A (zh) * 2007-04-23 2010-03-03 丰田自动车株式会社 膜电极接合体的制造方法、膜电极接合体、膜电极接合体的制造装置和燃料电池
CN104115318A (zh) * 2012-02-23 2014-10-22 凸版印刷株式会社 固体高分子型燃料电池用膜电极接合体及其制造方法、固体高分子型燃料电池
CN109417180A (zh) * 2016-12-29 2019-03-01 可隆工业株式会社 膜电极组件及其制备方法和包括该膜电极组件的燃料电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005108604A (ja) * 2003-09-30 2005-04-21 Canon Inc 膜電極接合体、その製造方法および固体高分子型燃料電池
JP2006004916A (ja) * 2004-05-17 2006-01-05 Nissan Motor Co Ltd 燃料電池用mea、およびこれを用いた燃料電池
JP2007026836A (ja) 2005-07-14 2007-02-01 Nissan Motor Co Ltd 燃料電池の触媒層形成方法及び膜電極接合体
JP2009032438A (ja) * 2007-07-25 2009-02-12 Toyota Motor Corp 燃料電池用膜−電極接合体の製造方法および膜−電極接合体
JP5181695B2 (ja) 2008-01-23 2013-04-10 トヨタ自動車株式会社 燃料電池用膜電極接合体の製造方法
JP2010086674A (ja) * 2008-09-29 2010-04-15 Dainippon Printing Co Ltd 燃料電池用触媒層を形成するためのインクジェット用インキ、燃料電池用触媒層及びその製造方法並びに触媒層−電解質膜積層体
US8735017B2 (en) * 2010-03-10 2014-05-27 Samsung Sdi Co., Ltd Membrane-electrode assembly for fuel cell, method of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
JP2012243693A (ja) * 2011-05-24 2012-12-10 Honda Motor Co Ltd 電解質膜・電極接合体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303525A (zh) * 1997-10-10 2001-07-11 美国3M公司 膜电极组合件
US20100015493A1 (en) * 2004-12-07 2010-01-21 Toray Industries, Inc. Film electrode composite element and production method therefor, and fuel cell
JP2007250312A (ja) * 2006-03-15 2007-09-27 Toppan Printing Co Ltd 固体高分子型燃料電池用膜・電極接合体、その製造方法および固体高分子型燃料電池
CN101496206A (zh) * 2006-07-24 2009-07-29 丰田自动车株式会社 燃料电池用接合体、燃料电池和燃料电池的制造方法
CN101663784A (zh) * 2007-04-23 2010-03-03 丰田自动车株式会社 膜电极接合体的制造方法、膜电极接合体、膜电极接合体的制造装置和燃料电池
JP2009170271A (ja) * 2008-01-16 2009-07-30 Toyota Motor Corp 膜電極接合体の製造方法
CN101626081A (zh) * 2008-07-10 2010-01-13 通用汽车环球科技运作公司 膜电极的结构增强
US20100009240A1 (en) * 2008-07-10 2010-01-14 Fly Gerald W Structural reinforcement of membrane electrodes
CN104115318A (zh) * 2012-02-23 2014-10-22 凸版印刷株式会社 固体高分子型燃料电池用膜电极接合体及其制造方法、固体高分子型燃料电池
CN109417180A (zh) * 2016-12-29 2019-03-01 可隆工业株式会社 膜电极组件及其制备方法和包括该膜电极组件的燃料电池

Also Published As

Publication number Publication date
EP3547430A1 (en) 2019-10-02
WO2019151310A1 (ja) 2019-08-08
US20230268539A1 (en) 2023-08-24
US20200335808A1 (en) 2020-10-22
EP3547430A4 (en) 2020-02-12

Similar Documents

Publication Publication Date Title
CN111837278A (zh) 固体高分子型燃料电池用膜电极接合体及固体高分子型燃料电池
KR100874112B1 (ko) 연료전지용 촉매 잉크 및 이를 이용한 막-전극 복합체의제조방법
JP2006339124A (ja) 燃料電池用膜電極接合体およびこれを用いた固体高分子型燃料電池
JP7027704B2 (ja) 膜-電極接合体
JP5153130B2 (ja) 膜電極接合体
CN113228354A (zh) 燃料电池用膜电极接合体以及固体高分子型燃料电池
JP6332541B1 (ja) 電極触媒層
JP2009266774A (ja) 膜電極接合体の製造方法、膜電極接合体、固体高分子型燃料電池
JP2023073395A (ja) 固体高分子形燃料電池用膜電極接合体及び固体高分子形燃料電池、並びに固体高分子形燃料電池用膜電極接合体の製造方法
JP5181717B2 (ja) 固体高分子形燃料電池用膜電極接合体およびその製造方法
JP2001076742A (ja) 固体高分子型燃料電池
JP6432703B1 (ja) 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池及び固体高分子形燃料電池用膜電極接合体の製造方法
JP2011070984A (ja) 燃料電池用電極触媒層の製造方法、およびこの電極触媒層を有する膜電極接合体
JP7119402B2 (ja) 膜電極接合体およびこれを備えた固体高分子形燃料電池
CN114207886A (zh) 燃料电池用膜电极接合体及固体高分子型燃料电池
JP2008147031A (ja) 膜電極複合体の製造方法
US20230411640A1 (en) Membrane electrode assembly and polymer electrolyte fuel cell
US20220302465A1 (en) Catalyst ink for forming electrode catalyst layer and method of producing membrane electrode assembly
JP7140256B2 (ja) 電極触媒層
JP2012195232A (ja) 膜電極接合体およびその製造方法並びに固体高分子形燃料電池
JP5228339B2 (ja) 燃料電池用電極触媒層、それを用いて成るmea(電解質膜電極接合体)および固体高分子型燃料電池
JP7315079B2 (ja) 電極触媒層、膜電極接合体及び固体高分子形燃料電池
JP7131269B2 (ja) 固体高分子形燃料電池の電極触媒層形成用の触媒インク
JP6950617B2 (ja) 電極触媒層
JP2009245932A (ja) 燃料電池用電極触媒インク、電極触媒層、膜電極接合体および固体高分子型燃料電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination