WO2006025407A1 - 発光素子及びその製造方法 - Google Patents
発光素子及びその製造方法 Download PDFInfo
- Publication number
- WO2006025407A1 WO2006025407A1 PCT/JP2005/015799 JP2005015799W WO2006025407A1 WO 2006025407 A1 WO2006025407 A1 WO 2006025407A1 JP 2005015799 W JP2005015799 W JP 2005015799W WO 2006025407 A1 WO2006025407 A1 WO 2006025407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- columnar crystal
- crystal
- growth
- substrate
- columnar
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 44
- 239000013078 crystal Substances 0.000 claims abstract description 242
- 239000000758 substrate Substances 0.000 claims abstract description 111
- 239000004065 semiconductor Substances 0.000 claims abstract description 71
- 238000000034 method Methods 0.000 claims abstract description 44
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 40
- 125000004429 atom Chemical group 0.000 claims abstract description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 25
- 150000004767 nitrides Chemical class 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- 125000004430 oxygen atom Chemical group O* 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 32
- 239000010409 thin film Substances 0.000 claims description 17
- 239000011810 insulating material Substances 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 64
- 239000010408 film Substances 0.000 description 32
- 238000005253 cladding Methods 0.000 description 21
- 229910052594 sapphire Inorganic materials 0.000 description 21
- 239000010980 sapphire Substances 0.000 description 21
- 238000001451 molecular beam epitaxy Methods 0.000 description 15
- 125000004433 nitrogen atom Chemical group N* 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229910052710 silicon Inorganic materials 0.000 description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 229910002704 AlGaN Inorganic materials 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- 229910052733 gallium Inorganic materials 0.000 description 8
- 239000007772 electrode material Substances 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- -1 nitride compound Chemical class 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 238000005424 photoluminescence Methods 0.000 description 5
- 229910052774 Proactinium Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 229910052790 beryllium Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229910004541 SiN Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
- C30B23/002—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02381—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/0242—Crystalline insulating materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02455—Group 13/15 materials
- H01L21/02458—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02469—Group 12/16 materials
- H01L21/02472—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02483—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02505—Layer structure consisting of more than two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02551—Group 12/16 materials
- H01L21/02554—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02565—Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02603—Nanowires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H01L33/007—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/021—Silicon based substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34333—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on Ga(In)N or Ga(In)P, e.g. blue laser
-
- H01L33/0093—
-
- H01L33/08—
-
- H01L33/18—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
- H01S2304/04—MOCVD or MOVPE
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/041—Optical pumping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
- H01S5/320225—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth polar orientation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/341—Structures having reduced dimensionality, e.g. quantum wires
- H01S5/3412—Structures having reduced dimensionality, e.g. quantum wires quantum box or quantum dash
Definitions
- the present invention relates to a growth of a nitride-based or oxide-based compound semiconductor layer in which uniform columnar crystal growth is performed at a predetermined density, and a semiconductor device using the grown columnar crystal, for example, a diode
- the present invention relates to a semiconductor device such as a light emitting diode and a semiconductor laser and a manufacturing method thereof.
- Nitride-based compound semiconductors are all of the direct transition type in the composition region (for example, A1N, GaN, InN and mixed crystals thereof), have a wide band gap, and are blue or purple light-emitting diode materials That is, it is known as a short wavelength light emitting element material.
- nitride-based compound semiconductors have a hexagonal crystal structure, there are no substrate crystals that are lattice-matched like conventional III-V compound semiconductors.
- sapphire substrates have a hexagonal crystal structure. It is grown on the surface (or SiC and Si are also used).
- the lattice constant of the crystal of the (0001) plane of the sapphire substrate and the crystal lattice of the (0001) plane of the nitride compound semiconductor are different from each other, and there is a lattice irregularity.
- the crystallinity as a continuous thin film is insufficient, and an epitaxial film having a low threading transition density cannot be obtained.
- the continuous thin film of GaN grown epitaxially on the mask in the lateral direction can greatly reduce the threading dislocation density as compared with a normal manufacturing method.
- Non-Patent Document 2 A. Sakai, H. Sunakawa and A. Usui, "Defect structure in selectively g rown GaN films with low threading islocation density," Appl. Phys. Lett., 71 (16) 19 97
- the threading dislocation density is 10 9 Zcm 2.
- MOCVD metal organic vapor phase deposition
- Non-Patent Documents 1 and 2 have a problem that the manufacturing process is complicated and takes a lot of cost, and the cost is increased compared to a normal growth method.
- the electrode material is disposed on the side surface of the columnar crystal. Wrapping, short circuit between semiconductor layers arranged in the vertical direction of the columnar crystal, and poor connection as an electrode between adjacent columnar crystals occur, resulting in the formation of a large area light emitting device having a diameter of several meters or more including the columnar crystal. Have difficulty.
- the present invention has been made in view of such circumstances, and by a simple manufacturing process, is inexpensive and has low threading dislocation density!
- An object of the present invention is to provide a semiconductor device such as a high-intensity light-emitting device or functional device using the GaN columnar crystal fabricated in the above.
- a method for manufacturing a semiconductor device of the present invention includes a columnar crystal of a nitride-based or oxide-based compound semiconductor on a substrate (for example, a substrate having a predetermined crystal plane as an upper surface), for example, a molecular It is formed by using the line epitaxy (MBE) method or MOCVD (metal organic vapor phase epitaxy) method, HVPE (hydride vapor phase epitaxy) method, sputtering method, etc., although the growth conditions are different, and light is emitted using this columnar crystal.
- MBE line epitaxy
- MOCVD metal organic vapor phase epitaxy
- HVPE hydrogen vapor phase epitaxy
- sputtering method etc.
- a method of manufacturing an element wherein a group III atom and nitrogen or a group II atom and oxygen atom (that is, a group III material and a group V material or a group II material and a group VI material) are formed on the substrate surface.
- the supply ratio and crystal growth temperature are controlled, the crystal growth in the lateral direction on the substrate surface is suppressed, and the columnar crystal is grown with anisotropy in the c-axis direction, that is, in the region B shown in FIG.
- crystal growth temperature 750 ° C ⁇ 950 ° C range
- the supply ratio of the group III atom to the nitrogen atom Adjust the growth temperature and the supply ratio of the group III atom to the nitrogen atom so that it falls within the range of 1: 2 to 1: 100,
- the crystal growth temperature is in the range of 750 ° C to 950 ° C
- the supply ratio of group III atoms to nitrogen atoms is 1 to 2 or more
- crystal growth in the lateral direction is suppressed, and columnar crystals are formed.
- the growth is characterized by anisotropy in the c-axis direction.
- the crystal growth temperature is higher than the usual 700 ° C and the nitrogen is excessively supplied, and the crystal growth in the lateral direction (direction perpendicular to the c-axis, which is the side wall of the columnar crystal) is suppressed.
- the crystal growth in the lateral direction direction perpendicular to the c-axis, which is the side wall of the columnar crystal
- the method for manufacturing a semiconductor device of the present invention is a method for forming a columnar crystal of a nitride-based or oxide-based compound semiconductor on a substrate and manufacturing the semiconductor device using the columnar crystal, On the substrate surface, Group III materials and Group V materials or Group II materials and Group VI materials
- the columnar crystal is grown with anisotropy in the c-axis direction by controlling the feed ratio of the material and the crystal growth temperature, suppressing the crystal growth in the lateral direction on the substrate surface.
- the raw material for forming the crystal may be supplied in the form of molecules that are not necessarily atomic or organic Ga compound (Ga), ammonia (N) t, or gaseous.
- the method for manufacturing a semiconductor device of the present invention includes a group m material and a group V material for a mode in which a columnar crystal is grown with anisotropy when the columnar crystal grows to a predetermined height.
- the supply ratio of Group II and Group VI materials and the crystal growth temperature are adjusted, and isotropic growth is achieved by anisotropic growth only in the longitudinal direction of columnar crystals.
- the above manufacturing method sequentially adjusts the growth conditions for isotropic growth in which crystal growth is performed in the crystal direction perpendicular to the C-axis instead of anisotropic growth only in the longitudinal direction (C-axis direction) of the columnar crystal, The mode of growth is shifted from isotropic growth to isotropic growth.
- a mode in which a columnar crystal is grown with anisotropy is compared with a group III atom and nitrogen.
- the ratio of supply to atoms and the crystal growth temperature are adjusted, that is, the conditions of region C shown in Fig. 2, the crystal growth temperature: within the range of 500 ° C to 800 ° C, and between the group III atoms and nitrogen Supply ratio with atoms: Adjust the growth temperature and the supply ratio of group III atoms and nitrogen atoms so that they are within the range of 1: 2 to 1: 100.
- the crystal is grown also in the vertical crystal direction, and the upper part of the columnar crystal is formed into an inverted cone shape or an inverted pyramid shape, and a crystal is grown on these apexes as a continuous film of a nitrogen-based compound semiconductor.
- the method for manufacturing a semiconductor device of the present invention includes a nucleus for growing a columnar crystal on the substrate surface at the start of growth of the columnar crystal (a growth nucleus, which is formed on a Si substrate and a sapphire substrate by MBE method.
- the dots which are effective in growing columnar crystals) are formed with a predetermined size and density.
- the method for manufacturing a semiconductor device of the present invention is characterized in that the columnar crystal is separated from a substrate and bonded to another substrate.
- the space between the columnar crystals is filled with an insulating material. It is characterized by that.
- the insulating material is an inorganic material or an organic material, includes a dielectric, and is a material that forms a capacitor together with the upper and lower semiconductor layers.
- the semiconductor element of the present invention has a substrate and a device structure having a light or electronic function (functionality such as control of light emission or current flow direction) disposed on the substrate at a predetermined density.
- the columnar crystal is located at a predetermined position in the height direction as a device structure having a functionality comprising a semiconductor layer made of a material different from that of the columnar crystal (emission of light or current).
- a region formed as an active region that expresses functionality such as control of the flow direction For example, a light emitting region or a region having a rectifying function is provided.
- a semiconductor layer that gradually spreads from the diameter of the columnar crystal is formed between the upper portion of the columnar crystal and the thin film layer by the same material as the columnar crystal in the c-axis direction. It is characterized by being formed.
- the semiconductor element of the present invention is characterized in that a filling material made of a dielectric is filled between the columnar crystals.
- the present invention relates to the growth mode of columnar crystals (region B: substrate temperature 750 ° C to 950 ° C, VZlII group supply ratio 1: 2 to 1: 100) and reverse frustum growth mode (region C: substrate temperature).
- region B substrate temperature 750 ° C to 950 ° C, VZlII group supply ratio 1: 2 to 1: 100
- region C substrate temperature
- the growth temperature of the growth mode of the reverse frustum is The growth mode of the columnar crystal is set to a low state, and the growth mode of the inverted frustum is set to be lower than that of the columnar crystal growth mode by reducing the substrate temperature and increasing the nitrogen supply ratio.
- the inverted cone is continuously formed from the columnar crystal so that it can be seen in the scanning electron micrograph of FIG.
- the base layer is grown to a continuous thin film finally at the top of the inverted frustum.
- the V group (nitrogen) supply ratio in the ⁇ group is increased in order to make it difficult to deposit metal Ga between the columnar crystals. This is to prevent excessive Ga from being supplied to the plane perpendicular to the c-axis of the columnar crystal.
- a columnar crystal of a nitride-based compound semiconductor for example, GaN
- a light emitting portion is provided in each of the columnar crystals, thereby almost including threading dislocation density.
- the crystal condition of the columnar crystal is changed after a predetermined height, the growth of the columnar crystal is changed from anisotropic growth to isotropic growth, and the upper part is an inverted cone shape or an inverted pyramid shape.
- Electrode material by making the top of the inverted frustum or inverted frustum (both including both inverted frustums) contact, and finally making the upper part of the columnar crystal a continuous thin film. Can be prevented from wrapping around the side of the columnar crystal, facilitating electrode formation in the manufacturing process of the light-emitting element.
- nuclei for growing columnar crystals on the substrate surface are first formed at predetermined intervals, and this nuclear force columnar crystal is grown under predetermined conditions.
- the columnar crystals forming the light emitting portion can be easily formed on the substrate surface at a predetermined interval, and a semiconductor device such as a light emitting element having high luminance characteristics can be formed at low cost.
- FIG. 1 is a conceptual diagram showing a structure of a light emitting diode according to an embodiment of the present invention.
- FIG. 2 Draft explaining growth conditions determined by substrate temperature (growth temperature) and vZm family supply ratio.
- FIG. 3 is a conceptual diagram of an MBE device.
- FIG. 4 is a conceptual diagram illustrating a method for manufacturing a light emitting element.
- FIG. 5 is a conceptual diagram illustrating a method for manufacturing a light emitting element.
- FIG. 6 is a conceptual diagram illustrating a method for manufacturing a light emitting element.
- FIG. 7 is a conceptual diagram illustrating a method for manufacturing a light emitting element.
- FIG. 8 is a graph showing room temperature PL (photoluminescence) spectra of GaN columnar crystals, GaN continuous films grown by MOCVD, and GaN continuous films grown by MBE.
- FIG. 9 is a graph showing the excitation light intensity dependence of the PL peak intensity.
- FIG. 10 is a conceptual diagram showing a cross-sectional structure of a configuration of a semiconductor laser using a columnar crystal of the present invention.
- FIG. 11 is an operational electron micrograph showing a cross section of a columnar crystal formed in steps S1 to S6 in the embodiment of the present invention.
- FIG. 12 is a graph showing light emission characteristics (correspondence between current and light output) of a light-emitting diode using columnar crystals formed according to the present invention.
- FIG. 1 is a block diagram showing the structure of the light emitting device according to the embodiment.
- a columnar crystal 2 is formed on the upper surface of a substrate 1, and the upper part of the columnar crystal 2 is electrically joined by an electrode layer 3.
- the columnar crystal 2 has a device structure of an inverted cone (inverted cone shape or inverted pyramid shape) 2a (p-type cladding layer), i-type block layer 2 b , A light emitting layer 2c, an i-type block layer 2d, and an n-type cladding layer 2e.
- the columnar crystal 2 has a device structure as described above, and has a light emitting layer 2c as a region (part) of a device structure having a light emitting function.
- the inverted conical portion 2a is made of p-GaN: Mg (GaN made of p-type with Mg as an impurity) or p-AlGaN: Mg, and the i-type block layer 2b and 2d is intrinsic
- the n-type cladding layer 2e is made of n-GaN: Si (GaN made n-type with Si as an impurity) or n-AlGaN: Si
- the light-emitting layer 2c is InGaNZGaN (Yes) Is formed with MQW (multiple quantum well) structure (or SQW: single quantum well) composed of InGa_N / InGa_N) ⁇ or GaNZAlGaN, AlG_N / AlG_N!
- Each of the type block layer 2b and the i type block layer 2d has a force provided to prevent diffusion of impurities into the light emitting layer 2c of the inverted conical portion 2a and the n type cladding layer 2e.
- a structure in which each cladding layer is directly coupled to the light emitting layer 2c may be employed.
- the substrate 1 is conductive silicon (or a silicon carbide substrate, a metal substrate, or a conductively treated sapphire substrate), and the (111) plane of the silicon substrate or (0001) of a silicon carnoid or sapphire substrate.
- the hexagonal nitride semiconductor is formed as the columnar crystal 2 in the c-axis direction (in the direction perpendicular to the substrate plane, that is, the axial direction of the growing columnar crystal) as shown in FIG.
- each columnar crystal grows with a single growth nucleus (nuclear) force, and therefore contains almost no threading dislocations. Therefore, the threading dislocation density in the entire crystal can be drastically reduced.
- the strain stress at the interface can be kept low, the occurrence of threading dislocations in the columnar crystal unit can be kept low, and the threading dislocation density in the crystal can be reduced.
- Silicon is electrically conductive and inexpensive, but the lattice constants differ greatly from those of nitride compound semiconductors.
- nitride compound semiconductors When growing nitride compound semiconductors on this substrate, there are problems such as cracks and high penetration density. Because there is usually a non-conductive sapphire substrate Is used.
- the nitride compound semiconductor can be formed on the silicon substrate, the manufacturing efficiency as a device can be improved.
- the surface of the continuous GaN film without lattice mismatch as the substrate other semiconductors, glass, metals (Al, Ti, Fe, Ni, Cu, Mo, Pd, Ag, Ta, W, Pt, Au Alternatively, an alloy containing a part of these elements) may be used.
- growth nuclei are generated in the initial stage, and columnar crystals grow at a predetermined density (the number of columnar crystals per unit area).
- the columnar crystal 2 in the present invention is formed as a structural feature at a predetermined distance, that is, not a fixed distance, but at least a predetermined density without coming into contact with other columnar crystals. Bonding with other deposited columnar crystals during growth prevents the film from becoming a continuous thin film.
- the columnar crystal 2 in the present invention is grown with controlled anisotropy in the c-axis direction up to a predetermined position by controlling the growth conditions (detailed in a later manufacturing method) as a structural feature.
- the p-type cladding layer is formed as an inverted cone 2a.
- the electrode layer 3 is grown as a continuous thin film.
- the shape of the inverted cone portion is such that the side surface continuously spreads like an inverted cone shape or an inverted pyramid shape. It includes a structure in which the diameter changes in a stepwise manner, that is, stepwise from a columnar crystal that is only in shape, and expands as it grows in the c-axis direction.
- the structure is not limited to the inverted cone shape, and the structure may be such that the surface area of the upper growth surface increases as it grows in the c-axis direction, and finally grows as a continuous thin film.
- the columnar crystal of the present invention has an upper portion of each of the inverted cone portions 2a of the columnar crystal 2 formed on the substrate 1 and is electrically connected by the electrode layer 3.
- a light-emitting diode having the structure shown in FIG. 1 is formed using an Sb-doped low-resistance ⁇ -type silicon substrate (on the Si (111) surface) having a thickness of 350 ⁇ m as the substrate 1, the manufacturing apparatus is used here.
- the MBE (molecular beam epitaxy) apparatus shown in Fig. 4 is used.
- Ti for heat absorption is deposited on the back surface (the surface on which the columnar crystal is not grown) by electron beam evaporation before columnar crystal growth.
- the degree of vacuum in the chamber is determined by emitting a molecular beam of each material (for example, a metal such as In, Ga, Mg, Si, and an activated nitrogen atom) from each molecular beam irradiation cell. 10 ” 6 to 10 _9 Pa (Pascal) in the state, and 10 to 2 to 10 _6 Pa in the state where the molecular beam and nitrogen are emitted from each molecular beam emitting cell for crystal growth. It becomes.
- a molecular beam of each material for example, a metal such as In, Ga, Mg, Si, and an activated nitrogen atom
- the surface of the Si substrate by RCA cleaning, hydrofluoric acid, etc. A cleaning process is performed to remove the natural oxide film on the surface of the Si substrate and activate the surface.
- the following substrate temperature was measured by using an infrared radiation thermometer (based on a radiation coefficient of 0.37) on the Ti film deposited on the back surface of the silicon substrate.
- the molecular beam intensity was sequentially measured with a nude ion gauge by moving the molecular beam to the measurement position of the substrate.
- the doping concentration (electron and hole concentration) was estimated from the CV method or the doping conditions of the single layer film.
- Step SI Each electrode film thickness was measured with a quartz oscillator film thickness meter during vapor deposition.
- Step S1 may be omitted in any of the following conditions in the region B.
- Fig. 2 shows the range of growth conditions in terms of substrate temperature (vertical axis: growth temperature) and vZm family supply ratio (horizontal axis).
- the range of region A is a region where GaN does not decompose and crystal growth occurs
- the range of region B is the mode in which columnar crystals grow.
- the region C is a region that grows in the shape of an inverted frustum at the top of the columnar crystal, resulting in a mode condition in which a continuous film crystal grows
- the region D is also a region. Similar to region C, the inverted frustum force is a growth mode that forms a continuous film, but metal Ga is filled between columnar crystals.
- the condition of region B is used for the growth of the columnar crystals in subsequent steps S2 to S5, and the condition of region C is used for the growth of the inverted frustum in step S6.
- Step S 2
- the substrate temperature is set to 860 ° C to 880 ° C (region B: 750 ° C to 950 ° C), and the supply ratio of Ga and N atoms is 1 to 2 at a vacuum degree of 10 _3 Pa to 10 _6 Pa.
- the molecular beam intensity of Ga is 6 ⁇ 10_4 Pa
- N is excessively supplied
- the above GaN dots are used as growth nuclei, 100 nm
- An n-type cladding layer 2e having a height (thickness) of ⁇ 2000 nm, for example, 750 nm is grown as a columnar crystal of GaN: Si.
- the surface of the sapphire substrate is grown at a temperature higher than the substrate temperature (700 ° C) used for normal GaN growth and a supply ratio of group III atoms to nitrogen atoms of 2 or more. As a result, columnar crystals are formed.
- the growth of the columnar crystal having anisotropy in the c-axis direction occurs in a substrate temperature range from a low temperature of 600 ° C to 950 ° C. It is possible to maintain the mode.
- the excitation light intensity threshold for stimulated emission is 1.6 MWZ cm 2 for MOCVD-Ga N, and 2. OMWZ cm 2 for MBE-GaN.
- the nano column is 0.2 MWZ cm 2, which is about an order of magnitude lower, and has high stimulated emission characteristics.
- the substrate temperature 860 ° C ⁇ 880 ° C region B: 750 ° C ⁇ 950 ° C
- the atoms of Ga and N 1: 2 area B:
- the i-type block layer 2d which is an i-GaN layer, is formed into a columnar crystal in succession to the GaN: Si cladding layer 2e to a thickness of lOnm. Grow.
- a substrate temperature of 500 ° C ⁇ 800 ° C, in vacuum 10 _3 Pa ⁇ 10 _6 Pa, In, yarn ⁇ ratio of Ga and N, In xGa _ N (x 0 ⁇ 0. 5)
- This InGaN layer is formed with a thickness of lnm to 10 nm, and Ga and N atoms are supplied at a ratio of (region B: 1 to 2 to 1 to 100) to make the GaN layer with a thickness of lnm to By forming this at a thickness of 10 nm and repeating this process a predetermined number of times, an InGaN layer and a GaN layer are alternately formed to form a light emitting portion 2c having an MQW structure.
- InGaN / lnGaN, Ga NZAlGaN, InAlGaNZAlGaN, and AlGaNZAlGaN, which are not limited to InGaNZGaN, may be used! / ⁇ .
- Step S 5 the light emitting portion 2c is grown as a columnar crystal continuous with the i-type block layer 2d.
- the substrate temperature 680 ° C ⁇ 700 ° C region B: 500 ° C ⁇ 800 ° C
- a vacuum of 10 _3 Pa ⁇ 10 _6 Pa Ga and N atoms and 1 to 2 (nitrogen: 1 , Ga: 0.5, region B: l to 2 to 1 to 100)
- the i-type GaN layer 2b which is an i-GaN layer, is connected to the GaN: Si light emitting portion 2c.
- a columnar crystal it is grown to a thickness of lOnm.
- the substrate temperature 680 ° C ⁇ 700 ° C area C: 500 ° C ⁇ 800 ° C
- a vacuum of 10 _3 Pa ⁇ 10 _6 Pa, Ga and N atoms and 1: 8 nitrogen: 1 , Ga: 0.125, region C: l to 2 to 1 to 100
- the crystal growth is close to isotropic from the growth mode having anisotropy in the c-axis direction. It is converted to the growth mode, and the crystal grows in the crystal axis direction perpendicular to the c axis, which is the side surface of the columnar crystal 2 not only in the c axis direction of the (0001) plane (see FIG. 6).
- the inverted conical portion 2a which is a p-type cladding layer having a height (thickness) of 100 nm to 1000 nm is grown as a columnar crystal 2 of GaN: Mg (see FIG. 7).
- the electrode layer 3 is formed as a continuous thin film.
- AlGaN may be used for the inverted conical portion 2a which is the p-type cladding layer.
- the light-emitting diode is formed by removing the MBE device and forming a transparent electrode (for example, a translucent Ti / Al p-type electrode) on the substrate surface, that is, the upper surface of the electrode layer 3.
- a transparent electrode for example, a translucent Ti / Al p-type electrode
- the Rukoto is formed as a stack of two metal films by depositing 2 nm of Ti by electron beam evaporation and then depositing 3 nm of A1.
- Fig. 12 The characteristics of the light-emitting diode formed as described above are shown in Fig. 12 (measurement is at room temperature: RT) 0
- the horizontal axis is the forward current
- the vertical axis is the emission intensity of light emitted by the forward current. It is.
- the columnar crystal growth mode remains as shown in FIG. A conical portion 2a is formed (the growth conditions are the same as those of the n-type cladding layer 2e) and filled with the dielectric insulating material up to the height of the columnar crystal to form a transparent electrode as shown in FIG. Also good. Even in this case, it is possible to prevent the electrode material from wrapping around.
- a desired oxide for example, SiO.sub.2, TiO.sub.2, Al.sub.2O, etc.
- a nitride such as SiN is deposited and filled between the columnar crystals by using a vapor deposition method such as a plasma CVD method.
- the group III atoms (Ga, In, Al) on the crystal growth surface (ie, c-plane) are increased by increasing the nitrogen supply ratio compared to the group III atom supply ratio. Etc.), the growth rate in the c-axis direction is made larger than the growth rate of the crystal in the lateral direction, and as an anisotropic growth mode up to a predetermined height, the coupling between columnar crystals, that is, a continuous film Can be suppressed.
- Ga atoms attached to this side surface are said to have high temperature and low plane orientation force atomic adsorption sites. Under the conditions, it re-leaves from the space or migrates rapidly to the (0001) plane which is the top surface of the columnar crystal.
- the columnar crystal of GaN grows with anisotropy in the c-axis direction, that is, the growth rate in the direction perpendicular to the c-plane (0001) of this hexagonal structure (c-axis direction) is c It is considered that the growth rate becomes significantly larger than the growth rate parallel to the surface, and the growing crystal is formed as a columnar crystal.
- step S6 the p-type cladding layer, that is, the inverted cone portion 2e (inverted pyramidal GaN) Crystal).
- the substrate temperature is set to 680 ° C (500 ° C to
- the GaN crystal is grown under extremely nitrogen-excess conditions by reducing the supply amount of Ga atoms and N atoms to about 1: 400 to 1: 100.
- the migration of Ga atoms is slowed down, and the growth of the GaN crystal is parallel to the c-axis direction (with respect to the c-plane).
- the difference between the growth rate (perpendicular) and the growth rate perpendicular to the c-axis direction (parallel to the c-plane) is reduced, and the GaN crystal changes into a growth mode that grows in the direction of the side wall of the columnar crystal.
- the diameter of the columnar crystal gradually increases with growth, and it is thought that an inverted spindle (inverted cone) structure is formed.
- Another cause is that the crystal is made p-type, so the power of doping Mg.
- This Mg doping causes the Ga-polarized GaN columnar crystal surface to be reversed to the nitrogen polarity, and the lateral direction of the columnar crystal It is possible that the growth rate has increased.
- the substrate 1 using a sapphire substrate (on the (0001) surface, conducting a conductive treatment), a case where a light emitting diode is formed is used, as in the case of generation on a Si substrate having the structure shown in FIG. I will explain.
- a manufacturing apparatus for example, an MBE (molecular beam epitaxy) apparatus shown in FIG. 3 is used.
- the MBE apparatus includes a chamber 21, a substrate heating heater 22, and molecular beam irradiating senors 23a, 23b, 23c, 23d, and 23e.
- a sapphire substrate with a thickness of about 350 nm is used, with Ti deposited on the back surface (opposite to the columnar crystal growth).
- the surface treatment with activated N is performed on the surface of the sapphire substrate by RF plasma of about 100W to 450W, with the flow rate of 0.1 ⁇ : N gas of LOcc / s converted into plasma.
- the A1 and N atoms migrate on the sapphire substrate, and the surrounding A1Ns at a predetermined distance are bonded to each other to gradually form a lump, with a diameter of about 50 to about LOOnm.
- A1N dot 4 force density 10 1C) Zcm 2 is formed, that is, with a predetermined interval (see FIG. 4).
- GaN columnar crystals can be grown with good reproducibility by growing GaN using the A1N dots 4 as nuclei.
- the density of this A1N dot 4 can be changed in a timely manner by changing the above conditions.
- step S2 columnar crystals are grown in the same manner as the silicon substrate.
- a CW He-Cd laser with a wavelength of 325 nm and an intensity of 10 mW is used as an excitation light source for PL spectrum measurement.
- the diameter of the columnar crystals is 50 nm to 100 nm.
- dots A1N dots or GaN dots serving as nuclei on the substrate surface in the sapphire substrate and the silicon substrate periodically (with a predetermined density) at predetermined intervals.
- the SiO film or Ti film as a mask, that is, for the part to be grown,
- an electron beam is irradiated with a predetermined energy to a portion where the columnar crystal is to be grown.
- carbon is deposited on the portion irradiated with the electron beam, and the deposited marking can be used as a nucleus for growing dots.
- the atomic step structure of the substrate is designed on a wafer scale, this step structure is used as a template to align the fine structure, and the nucleation selectivity between the terrace and the step band is used to select the nucleus.
- a columnar crystal may be formed as a growth nucleus.
- the growth surface (that is, the top) of the columnar crystal becomes a nano-texture (surface microstructure, that is, a fine uneven shape on the surface) by itself, and this structure allows light extraction and Efficiency improvement is expected when used as a light-emitting diode (LED) or photo-excitation device with high light capture efficiency.
- LED light-emitting diode
- SiC (0001) surface, metal (Al, Ti, Fe, Ni, Cu, Mo, Pd, Ag, Ta, W, Pt, Au, or these elements are combined.
- a flat substrate obtained by coating these metals on a predetermined substrate for example, (111) plane of Si substrate
- Be may be used instead of the force Mg using Mg as the p-type dopant (impurity) in forming the p-type cladding layer.
- Mg Be and Si or Be and O may be simultaneously doped to form a p-type cladding layer.
- the columnar crystals and the light-emitting layer may be made of InGa N, GaN in nitride semiconductors. AlGaInN, AlGaN, A1N, and their heterostructures can be used.
- ZnO, CdZnO, MgZnO, MgZnCdO, and their heterostructures can be used in an oxide semiconductor.
- the substrate 1 is insulative, the substrate 1 is removed by laser lift-off or etching, and an electrode is formed on the bottom of the n-type cladding layer 2e of each columnar crystal 2 or another conductive substrate is formed. Transcription (transfer).
- an insulator may be embedded between the columnar crystals as a supporting material.
- SiO, AlO, TiO, ZrO, GdO, polyimide SiO, AlO, TiO, ZrO, GdO, polyimide
- the substrate 1 is insulative, the substrate 1 is removed by laser lift-off or etching, filled with the support material (insulating filling material), and then the ⁇ -type cladding layer 2e of each columnar crystal 2 is formed.
- An electrode may be formed on the bottom or transferred (transferred) to another conductive substrate.
- This semiconductor laser has a conductive material substrate 11 (Si (111) plane or SiC (0001) plane) ), N-AlGaN DBR12 (Distributed Bragg Reflector), AlGaN MQW13 (Multiple Quantum Well) active layer, ⁇ - AlGaN DBR14, etc.
- a plurality of columnar crystals having a powerful device structure (light emitting function and light and electron confinement function) are arranged and formed at a predetermined period, and an insulating material 15 (for example, SiO 2) having light transmissivity is formed between the columnar crystals. Filled
- step S6 the whole growth mode is formed in the columnar crystal growth mode (state shown in FIG. 5), and the entire surface is filled with the dielectric insulating material up to the height of the columnar crystal, and the surface is filled.
- An electrode material may be formed. Even in this case, it is possible to prevent the electrode material from wrapping around.
- the structure shown in FIG. 10 is formed by forming an electrode 17 made of a light-transmitting material on a continuous film 16 in which the tops of inverted cones in a columnar crystal are combined with an isotropic mode of crystal growth. Also good.
- the p-side reflecting mirror can be formed by removing p-AlGaN DBR14 and directly forming 16 p-type continuous film, and forming semiconductor DBR in the continuous film, or reflecting the dielectric multilayer film. A mirror may be formed.
- the crystal does not contain threading dislocations as in the case of the light-emitting diode described above. Therefore, the emission characteristics are improved as compared with the conventional one, and the upper part of the columnar crystal is the reverse of the inverted cone. Since the conical or inverted pyramid shape force becomes a continuous film 16 at the top, the upper electrode 17 can be easily formed.
- the substrate temperature and the supply of the vZm group can be achieved even if the MOCVD, HVPE, sputtering, or the like using the molecular beam epitaxy (MBE) apparatus is used for the columnar crystal growth.
- MBE molecular beam epitaxy
- the power of the present invention explained by light emitting diodes and semiconductor lasers etc. It can also be applied to semiconductor devices having other diode structures (device structures having a rectifying function) other than light emitting devices.
- a nitride-based compound semiconductor columnar crystal is formed, and a light-emitting portion is provided for each of the columnar crystals.
- a semiconductor device such as a light-emitting element with high brightness in the wavelength emission region can be obtained.
- the electrode material can be prevented from wrapping around the side of the columnar crystal, and the electrode can be easily formed in the manufacturing process of the light emitting element.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Led Devices (AREA)
- Semiconductor Lasers (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006532734A JP5280004B2 (ja) | 2004-08-31 | 2005-08-30 | 発光素子及びその製造方法 |
EP05777119.8A EP1796180B1 (en) | 2004-08-31 | 2005-08-30 | Light emitting element and its manufacturing method |
US11/574,386 US9362717B2 (en) | 2004-08-31 | 2005-08-30 | Columnar crystal containing light emitting element and method of manufacturing the same |
KR1020077005200A KR101227724B1 (ko) | 2004-08-31 | 2005-08-30 | 발광소자 및 그 제조방법 |
US15/154,026 US20160254138A1 (en) | 2004-08-31 | 2016-05-13 | Columnar crystal containing light emitting element and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004253267 | 2004-08-31 | ||
JP2004-253267 | 2004-08-31 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/574,386 A-371-Of-International US9362717B2 (en) | 2004-08-31 | 2005-08-30 | Columnar crystal containing light emitting element and method of manufacturing the same |
US15/154,026 Division US20160254138A1 (en) | 2004-08-31 | 2016-05-13 | Columnar crystal containing light emitting element and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006025407A1 true WO2006025407A1 (ja) | 2006-03-09 |
Family
ID=36000057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/015799 WO2006025407A1 (ja) | 2004-08-31 | 2005-08-30 | 発光素子及びその製造方法 |
Country Status (6)
Country | Link |
---|---|
US (2) | US9362717B2 (ja) |
EP (1) | EP1796180B1 (ja) |
JP (1) | JP5280004B2 (ja) |
KR (1) | KR101227724B1 (ja) |
TW (2) | TWI442456B (ja) |
WO (1) | WO2006025407A1 (ja) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007112066A2 (en) * | 2006-03-24 | 2007-10-04 | Amberwave Systems Corporation | Lattice-mismatched semiconductor structures and related methods for device fabrication |
JP2008034482A (ja) * | 2006-07-26 | 2008-02-14 | Matsushita Electric Works Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 |
JP2008066591A (ja) * | 2006-09-08 | 2008-03-21 | Matsushita Electric Works Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 |
JP2008066590A (ja) * | 2006-09-08 | 2008-03-21 | Matsushita Electric Works Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 |
WO2008048704A2 (en) | 2006-03-10 | 2008-04-24 | Stc.Unm | Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices |
JP2008108924A (ja) * | 2006-10-26 | 2008-05-08 | Matsushita Electric Works Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法 |
JP2008218523A (ja) * | 2007-02-28 | 2008-09-18 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子及びその製造方法 |
JP2008218477A (ja) * | 2007-02-28 | 2008-09-18 | Sophia School Corp | Iii族窒化物半導体微細柱状結晶の製造方法およびiii族窒化物構造体 |
WO2009069286A1 (ja) * | 2007-11-27 | 2009-06-04 | Sophia School Corporation | Iii族窒化物構造体およびiii族窒化物構造体の製造方法 |
JP2009522822A (ja) * | 2006-03-23 | 2009-06-11 | ナノガン リミテッド | 高品質化合物半導体材料を製造するためのナノ構造適応層及びhvpeを使用する成長法、単結晶化合物半導体材料、並びに、基板材料 |
JP2009140975A (ja) * | 2007-12-04 | 2009-06-25 | Panasonic Electric Works Co Ltd | 半導体発光装置およびそれを用いる照明装置ならびに半導体発光装置の製造方法 |
WO2009113651A1 (ja) * | 2008-03-14 | 2009-09-17 | パナソニック電工株式会社 | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法 |
JP2009283876A (ja) * | 2008-05-26 | 2009-12-03 | Panasonic Electric Works Co Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法 |
WO2010023921A1 (ja) * | 2008-09-01 | 2010-03-04 | 学校法人上智学院 | 半導体光素子アレイおよびその製造方法 |
US20100105197A1 (en) * | 2007-02-19 | 2010-04-29 | Alcatel-Lucent | Wide-bandgap semiconductor devices |
JP2010514206A (ja) * | 2006-12-22 | 2010-04-30 | クナノ アーベー | 直立したナノワイヤ構造を有するled及びその製造方法 |
JP2010153450A (ja) * | 2008-12-24 | 2010-07-08 | Stanley Electric Co Ltd | 半導体素子の製造方法、積層構造体の製造方法、半導体ウエハおよび積層構造体。 |
US20100193910A1 (en) * | 2007-09-03 | 2010-08-05 | Sophia School Corporation | Iii nitride structure and method for manufacturing iii nitride semiconductor fine columnar crystal |
JP2011168481A (ja) * | 2010-02-19 | 2011-09-01 | Samsung Electronics Co Ltd | 窒化物半導体層の成長方法、及びそれにより形成される窒化物半導体基板 |
JP2011238913A (ja) * | 2010-04-22 | 2011-11-24 | Imec | 発光ダイオードの製造方法 |
US8216951B2 (en) | 2006-09-27 | 2012-07-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures |
US8237151B2 (en) | 2009-01-09 | 2012-08-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode-based devices and methods for making the same |
US8253211B2 (en) | 2008-09-24 | 2012-08-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor sensor structures with reduced dislocation defect densities |
US8274097B2 (en) | 2008-07-01 | 2012-09-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of edge effects from aspect ratio trapping |
US8344242B2 (en) | 2007-09-07 | 2013-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-junction solar cells |
US8384196B2 (en) | 2008-09-19 | 2013-02-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Formation of devices by epitaxial layer overgrowth |
US8519436B2 (en) | 2005-05-17 | 2013-08-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US8624103B2 (en) | 2007-04-09 | 2014-01-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride-based multi-junction solar cell modules and methods for making the same |
US8629446B2 (en) | 2009-04-02 | 2014-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Devices formed from a non-polar plane of a crystalline material and method of making the same |
JP2014057076A (ja) * | 2006-12-22 | 2014-03-27 | Philips Lumileds Lightng Co Llc | 歪みが低減された発光層を備えるiii−窒化物発光デバイス |
US8822248B2 (en) | 2008-06-03 | 2014-09-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Epitaxial growth of crystalline material |
US8847279B2 (en) | 2006-09-07 | 2014-09-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect reduction using aspect ratio trapping |
US8981427B2 (en) | 2008-07-15 | 2015-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Polishing of small composite semiconductor materials |
JP2016504752A (ja) * | 2012-10-26 | 2016-02-12 | コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス | 遷移金属バッファ層を備えるナノワイヤを含む電子デバイス、少なくとも1つのナノワイヤを成長させる方法、及びデバイスの製造方法 |
US9508890B2 (en) | 2007-04-09 | 2016-11-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photovoltaics on silicon |
JP2017152665A (ja) * | 2016-02-25 | 2017-08-31 | 日本碍子株式会社 | 面発光素子、外部共振器型垂直面発光レーザー、および面発光素子の製造方法 |
US9780190B2 (en) | 2007-06-15 | 2017-10-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | InP-based transistor fabrication |
US9859381B2 (en) | 2005-05-17 | 2018-01-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US9984872B2 (en) | 2008-09-19 | 2018-05-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fabrication and structures of crystalline material |
JP2018142660A (ja) * | 2017-02-28 | 2018-09-13 | 学校法人上智学院 | 光デバイスおよび光デバイスの製造方法 |
CN108713258A (zh) * | 2015-11-30 | 2018-10-26 | 原子能和替代能源委员会 | 包括轴向构造的三维半导体结构的光电子器件 |
US10468551B2 (en) | 2006-10-19 | 2019-11-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Light-emitter-based devices with lattice-mismatched semiconductor structures |
US10541514B2 (en) | 2016-02-25 | 2020-01-21 | Ngk Insulators, Ltd. | Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device |
JP2020057640A (ja) * | 2018-09-28 | 2020-04-09 | セイコーエプソン株式会社 | 発光装置およびプロジェクター |
JP2020515078A (ja) * | 2017-03-20 | 2020-05-21 | コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス | ナノワイヤ構造及びそのような構造の製造方法 |
JP2022118051A (ja) * | 2017-02-28 | 2022-08-12 | 学校法人上智学院 | 光デバイスおよび光デバイスの製造方法 |
US11552216B2 (en) | 2020-03-09 | 2023-01-10 | Seiko Epson Corporation | Light emitting apparatus and projector |
US11955582B2 (en) | 2020-02-27 | 2024-04-09 | Seiko Epson Corporation | Light emitting apparatus and projector |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100720101B1 (ko) * | 2005-08-09 | 2007-05-18 | 삼성전자주식회사 | 나노구조의 다기능성 오믹층을 사용한 탑에미트형 질화물계발광소자 및 그 제조방법 |
US7799592B2 (en) | 2006-09-27 | 2010-09-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Tri-gate field-effect transistors formed by aspect ratio trapping |
US8304805B2 (en) | 2009-01-09 | 2012-11-06 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor diodes fabricated by aspect ratio trapping with coalesced films |
TWI351717B (en) * | 2007-10-15 | 2011-11-01 | Univ Nat Chiao Tung | Method for forming group-iii nitride semiconductor |
FR2930839A1 (fr) * | 2008-05-05 | 2009-11-06 | Commissariat Energie Atomique | Procede de realisation d'un composant flexible a base de nanofils |
KR20100028412A (ko) * | 2008-09-04 | 2010-03-12 | 삼성전자주식회사 | 나노 막대를 이용한 발광 다이오드 및 그 제조 방법 |
DE102008056175A1 (de) * | 2008-11-06 | 2010-05-12 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines Strahlung emittierenden Dünnschichtbauelements und Strahlung emittierendes Dünnschichtbauelement |
KR101608923B1 (ko) * | 2009-09-24 | 2016-04-04 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 산화물 반도체막 및 반도체 장치 |
FR2951875B1 (fr) * | 2009-10-23 | 2012-05-18 | Commissariat Energie Atomique | Procede de fabrication d?un ecran a tres haute resolution utilisant une couche conductrice anisotropique et emissive |
CN102117771B (zh) * | 2009-12-31 | 2013-05-08 | 比亚迪股份有限公司 | 一种发光二极管外延片和管芯及其制作方法 |
DE102010012711A1 (de) * | 2010-03-25 | 2011-09-29 | Osram Opto Semiconductors Gmbh | Strahlungsemittierendes Halbleiterbauelement und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterbauelements |
US8242523B2 (en) * | 2010-07-29 | 2012-08-14 | National Tsing Hua University | III-Nitride light-emitting diode and method of producing the same |
DE102011077614B4 (de) * | 2011-06-16 | 2023-08-17 | Osram Gmbh | Verfahren zur Herstellung einer Leuchtvorrichtung und Leuchtvorrichtung |
KR20130040498A (ko) * | 2011-10-14 | 2013-04-24 | 삼성코닝정밀소재 주식회사 | 질화갈륨 막 제조방법 |
FR2997420B1 (fr) * | 2012-10-26 | 2017-02-24 | Commissariat Energie Atomique | Procede de croissance d'au moins un nanofil a partir d'une couche d'un metal de transition nitrure obtenue en deux etapes |
US9537044B2 (en) | 2012-10-26 | 2017-01-03 | Aledia | Optoelectric device and method for manufacturing the same |
FR3019188B1 (fr) * | 2014-03-27 | 2017-11-24 | Commissariat Energie Atomique | Procede de croissance d'un element allonge a partir d'un germe forme dans un creux d'une couche ou d'un plot de nucleation |
JP7097567B2 (ja) * | 2018-02-28 | 2022-07-08 | セイコーエプソン株式会社 | 発光装置およびその製造方法、ならびにプロジェクター |
JP7188689B2 (ja) * | 2018-08-06 | 2022-12-13 | セイコーエプソン株式会社 | 発光装置およびプロジェクター |
JP7188690B2 (ja) * | 2018-08-22 | 2022-12-13 | セイコーエプソン株式会社 | プロジェクター |
TWI682053B (zh) * | 2018-12-21 | 2020-01-11 | 國立中山大學 | 氮化銦鎵/氮化鎵量子井倒角錐的製造方法 |
JP6935657B2 (ja) * | 2019-03-26 | 2021-09-15 | セイコーエプソン株式会社 | 発光装置およびプロジェクター |
FR3098013B1 (fr) * | 2019-06-25 | 2021-07-02 | Commissariat Energie Atomique | Procédé de fabrication d'un dispositif optoélectronique à diodes électroluminescentes de type axial |
FR3098019B1 (fr) * | 2019-06-25 | 2022-05-20 | Aledia | Dispositif optoélectronique comprenant des éléments semi-conducteurs tridimensionnels et procédé pour sa fabrication |
FR3098012B1 (fr) * | 2019-06-25 | 2023-01-13 | Aledia | Procédé d'homogénéisation de la section de nanofils pour diodes électroluminescentes |
JP7056628B2 (ja) * | 2019-06-28 | 2022-04-19 | セイコーエプソン株式会社 | 発光装置およびプロジェクター |
JP7392426B2 (ja) * | 2019-11-28 | 2023-12-06 | セイコーエプソン株式会社 | 発光装置およびプロジェクター |
US20210168338A1 (en) * | 2019-11-29 | 2021-06-03 | Seiko Epson Corporation | Light emitting apparatus and projector |
RU2758776C2 (ru) * | 2019-12-05 | 2021-11-01 | Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук | Способ изготовления наноколончатой гетероструктуры на основе соединений iii-n |
RU2731498C1 (ru) * | 2019-12-06 | 2020-09-03 | Федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук" (СПБАУ РАН им. Ж.И. Алферова) | Способ получения функционального трехмерного компонента оптоэлектронного прибора и функциональный трехмерный компонент оптоэлектронного прибора |
RU197477U1 (ru) * | 2019-12-09 | 2020-04-30 | Федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук" (СПБАУ РАН им. Ж.И. Алферова) | Функциональный трехмерный компонент оптоэлектронного прибора |
JP7424038B2 (ja) * | 2019-12-23 | 2024-01-30 | セイコーエプソン株式会社 | 発光装置、および、プロジェクター |
FR3109469B1 (fr) * | 2020-04-15 | 2022-04-29 | Centre Nat Rech Scient | Procédé de fabrication d’un dispositif émetteur de rayonnement |
JP7176700B2 (ja) * | 2020-07-31 | 2022-11-22 | セイコーエプソン株式会社 | 発光装置およびプロジェクター |
KR20220078016A (ko) * | 2020-12-02 | 2022-06-10 | 삼성디스플레이 주식회사 | 표시 장치 및 발광 소자의 제조 방법 |
JP2022152161A (ja) * | 2021-03-29 | 2022-10-12 | セイコーエプソン株式会社 | 発光装置、プロジェクター、およびディスプレイ |
KR20230033195A (ko) * | 2021-08-30 | 2023-03-08 | 삼성디스플레이 주식회사 | 발광 소자 및 이를 포함하는 표시 장치 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003152220A (ja) * | 2001-11-15 | 2003-05-23 | Sharp Corp | 半導体発光素子の製造方法および半導体発光素子 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5231049A (en) * | 1990-11-05 | 1993-07-27 | California Institute Of Technology | Method of manufacturing a distributed light emitting diode flat-screen display for use in televisions |
US5895932A (en) * | 1997-01-24 | 1999-04-20 | International Business Machines Corporation | Hybrid organic-inorganic semiconductor light emitting diodes |
US6404125B1 (en) * | 1998-10-21 | 2002-06-11 | Sarnoff Corporation | Method and apparatus for performing wavelength-conversion using phosphors with light emitting diodes |
US6410940B1 (en) * | 2000-06-15 | 2002-06-25 | Kansas State University Research Foundation | Micro-size LED and detector arrays for minidisplay, hyper-bright light emitting diodes, lighting, and UV detector and imaging sensor applications |
US20020017652A1 (en) * | 2000-08-08 | 2002-02-14 | Stefan Illek | Semiconductor chip for optoelectronics |
CN1306619C (zh) * | 2001-03-30 | 2007-03-21 | 加利福尼亚大学董事会 | 纳米线以及由其制造的器件 |
WO2003015143A1 (fr) * | 2001-08-01 | 2003-02-20 | Nagoya Industrial Science Research Institute | Film semi-conducteur en nitrure du groupe iii et son procede de production |
JP2003142728A (ja) * | 2001-11-02 | 2003-05-16 | Sharp Corp | 半導体発光素子の製造方法 |
FR2842832B1 (fr) | 2002-07-24 | 2006-01-20 | Lumilog | Procede de realisation par epitaxie en phase vapeur d'un film de nitrure de gallium a faible densite de defaut |
US7355216B2 (en) * | 2002-12-09 | 2008-04-08 | The Regents Of The University Of California | Fluidic nanotubes and devices |
US7211143B2 (en) * | 2002-12-09 | 2007-05-01 | The Regents Of The University Of California | Sacrificial template method of fabricating a nanotube |
US7261775B2 (en) * | 2003-01-29 | 2007-08-28 | Ricoh Company, Ltd. | Methods of growing a group III nitride crystal |
US7265037B2 (en) * | 2003-06-20 | 2007-09-04 | The Regents Of The University Of California | Nanowire array and nanowire solar cells and methods for forming the same |
ES2356606T3 (es) * | 2003-08-08 | 2011-04-11 | Kang, Sang-Kyu | Microdiodo emisor de luz de nitruro con alto brillo y procedimiento de fabricación del mismo. |
US7132677B2 (en) * | 2004-02-13 | 2006-11-07 | Dongguk University | Super bright light emitting diode of nanorod array structure having InGaN quantum well and method for manufacturing the same |
US8163575B2 (en) * | 2005-06-17 | 2012-04-24 | Philips Lumileds Lighting Company Llc | Grown photonic crystals in semiconductor light emitting devices |
-
2005
- 2005-08-29 TW TW094129526A patent/TWI442456B/zh not_active IP Right Cessation
- 2005-08-29 TW TW102110251A patent/TWI500072B/zh active
- 2005-08-30 JP JP2006532734A patent/JP5280004B2/ja not_active Expired - Fee Related
- 2005-08-30 US US11/574,386 patent/US9362717B2/en active Active
- 2005-08-30 KR KR1020077005200A patent/KR101227724B1/ko active IP Right Grant
- 2005-08-30 WO PCT/JP2005/015799 patent/WO2006025407A1/ja active Application Filing
- 2005-08-30 EP EP05777119.8A patent/EP1796180B1/en active Active
-
2016
- 2016-05-13 US US15/154,026 patent/US20160254138A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003152220A (ja) * | 2001-11-15 | 2003-05-23 | Sharp Corp | 半導体発光素子の製造方法および半導体発光素子 |
Non-Patent Citations (5)
Title |
---|
KAWAI M. ET AL.: "Epitaxial growth of InNfilms and InN Nano-Colums", TECHNICAL REPORT OF JEJCE, vol. 13, no. 343, 2003, pages 33 - 37, XP002993605 * |
KUSAKABE K. KIKUCHI A. AND KISHINO K. ET AL.: "Characterization of Overgrown GaN Layers on Nano-Colums Grown by RF-Molecular Beam Epitaxy.", JPN. APPL. PHYS., vol. 40, no. 3A, 1 March 2001 (2001-03-01), pages L192 - L194, XP001077931 * |
LUO Z. ET AL.: "Enhancement of (In,Ga)N Light-Emitting Diode Performance by Laser Liftoff and Transfer From Sapphire to Silicon.", IEEE PHOTONICS TEHNOLOGY LETTERS, vol. 14, no. 10, October 2002 (2002-10-01), pages 1400 - 1402, XP001175396 * |
See also references of EP1796180A4 * |
YOSHIZAWA M. ET AL.: "GROWTH OF SELF-ORGANIZED GAN NANOSTRUCTURES ON A12O3 (0001) BY RF-RADIAL SURCE MOLECULAR BEAM EPITAXY", JPN. J. APPL. PHYS., vol. 36, no. 4B, 15 April 1997 (1997-04-15), pages L459 - L462, XP002993606 * |
Cited By (107)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8629477B2 (en) | 2005-05-17 | 2014-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US9431243B2 (en) | 2005-05-17 | 2016-08-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US9219112B2 (en) | 2005-05-17 | 2015-12-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US8987028B2 (en) | 2005-05-17 | 2015-03-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US8796734B2 (en) | 2005-05-17 | 2014-08-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US9859381B2 (en) | 2005-05-17 | 2018-01-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US8519436B2 (en) | 2005-05-17 | 2013-08-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US10522629B2 (en) | 2005-05-17 | 2019-12-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
US11251272B2 (en) | 2005-05-17 | 2022-02-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures with reduced dislocation defect densities and related methods for device fabrication |
WO2008048704A2 (en) | 2006-03-10 | 2008-04-24 | Stc.Unm | Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices |
EP1994552B1 (en) * | 2006-03-10 | 2020-12-30 | UNM Rainforest Innovations | Two-phase growth of group iii-v nanowires |
JP2010030896A (ja) * | 2006-03-23 | 2010-02-12 | Nanogan Ltd | 高品質化合物半導体材料を製造するためのナノ構造適応層及びhvpeを使用する成長法 |
JP2009522822A (ja) * | 2006-03-23 | 2009-06-11 | ナノガン リミテッド | 高品質化合物半導体材料を製造するためのナノ構造適応層及びhvpeを使用する成長法、単結晶化合物半導体材料、並びに、基板材料 |
US10074536B2 (en) | 2006-03-24 | 2018-09-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures and related methods for device fabrication |
WO2007112066A3 (en) * | 2006-03-24 | 2007-11-29 | Amberwave Systems Corp | Lattice-mismatched semiconductor structures and related methods for device fabrication |
WO2007112066A2 (en) * | 2006-03-24 | 2007-10-04 | Amberwave Systems Corporation | Lattice-mismatched semiconductor structures and related methods for device fabrication |
US8878243B2 (en) | 2006-03-24 | 2014-11-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Lattice-mismatched semiconductor structures and related methods for device fabrication |
JP2008034482A (ja) * | 2006-07-26 | 2008-02-14 | Matsushita Electric Works Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 |
US9318325B2 (en) | 2006-09-07 | 2016-04-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect reduction using aspect ratio trapping |
US9818819B2 (en) | 2006-09-07 | 2017-11-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect reduction using aspect ratio trapping |
US8847279B2 (en) | 2006-09-07 | 2014-09-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Defect reduction using aspect ratio trapping |
JP2008066590A (ja) * | 2006-09-08 | 2008-03-21 | Matsushita Electric Works Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 |
JP2008066591A (ja) * | 2006-09-08 | 2008-03-21 | Matsushita Electric Works Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 |
US8216951B2 (en) | 2006-09-27 | 2012-07-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures |
US8860160B2 (en) | 2006-09-27 | 2014-10-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures |
US9105522B2 (en) | 2006-09-27 | 2015-08-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures |
US9559712B2 (en) | 2006-09-27 | 2017-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures |
US8629047B2 (en) | 2006-09-27 | 2014-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Quantum tunneling devices and circuits with lattice-mismatched semiconductor structures |
US10468551B2 (en) | 2006-10-19 | 2019-11-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Light-emitter-based devices with lattice-mismatched semiconductor structures |
JP2008108924A (ja) * | 2006-10-26 | 2008-05-08 | Matsushita Electric Works Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法 |
JP2010514206A (ja) * | 2006-12-22 | 2010-04-30 | クナノ アーベー | 直立したナノワイヤ構造を有するled及びその製造方法 |
JP2014057076A (ja) * | 2006-12-22 | 2014-03-27 | Philips Lumileds Lightng Co Llc | 歪みが低減された発光層を備えるiii−窒化物発光デバイス |
US20100105197A1 (en) * | 2007-02-19 | 2010-04-29 | Alcatel-Lucent | Wide-bandgap semiconductor devices |
KR101293333B1 (ko) * | 2007-02-19 | 2013-08-06 | 알카텔-루센트 유에스에이 인코포레이티드 | 장치 및 장치 제조 방법 |
JP2008218477A (ja) * | 2007-02-28 | 2008-09-18 | Sophia School Corp | Iii族窒化物半導体微細柱状結晶の製造方法およびiii族窒化物構造体 |
JP2008218523A (ja) * | 2007-02-28 | 2008-09-18 | Nichia Chem Ind Ltd | 窒化物半導体レーザ素子及びその製造方法 |
US9508890B2 (en) | 2007-04-09 | 2016-11-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photovoltaics on silicon |
US9853118B2 (en) | 2007-04-09 | 2017-12-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode-based devices and methods for making the same |
US8624103B2 (en) | 2007-04-09 | 2014-01-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride-based multi-junction solar cell modules and methods for making the same |
US9543472B2 (en) | 2007-04-09 | 2017-01-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode-based devices and methods for making the same |
US9040331B2 (en) | 2007-04-09 | 2015-05-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode-based devices and methods for making the same |
US10680126B2 (en) | 2007-04-09 | 2020-06-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Photovoltaics on silicon |
US9853176B2 (en) | 2007-04-09 | 2017-12-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Nitride-based multi-junction solar cell modules and methods for making the same |
US9231073B2 (en) | 2007-04-09 | 2016-01-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode-based devices and methods for making the same |
US9780190B2 (en) | 2007-06-15 | 2017-10-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | InP-based transistor fabrication |
JP5464518B2 (ja) * | 2007-09-03 | 2014-04-09 | 学校法人上智学院 | Iii族窒化物構造体およびiii族窒化物半導体微細柱状結晶の製造方法 |
US20100193910A1 (en) * | 2007-09-03 | 2010-08-05 | Sophia School Corporation | Iii nitride structure and method for manufacturing iii nitride semiconductor fine columnar crystal |
US8896100B2 (en) * | 2007-09-03 | 2014-11-25 | Sophia School Corporation | III nitride structure and method for manufacturing III nitride semiconductor fine columnar crystal |
US8344242B2 (en) | 2007-09-07 | 2013-01-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-junction solar cells |
US10002981B2 (en) | 2007-09-07 | 2018-06-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-junction solar cells |
WO2009069286A1 (ja) * | 2007-11-27 | 2009-06-04 | Sophia School Corporation | Iii族窒化物構造体およびiii族窒化物構造体の製造方法 |
US9680058B2 (en) | 2007-11-27 | 2017-06-13 | Sophia School Corporation | Group-III nitride structure including a fine wall-shaped structure containing a group-III nitridesemiconductor crystal and method for producing a group-III nitride structure including a fine wall-shaped structure containing a group-III nitride semiconductor crystal |
JPWO2009069286A1 (ja) * | 2007-11-27 | 2011-04-07 | 学校法人上智学院 | Iii族窒化物構造体およびiii族窒化物構造体の製造方法 |
JP5515079B2 (ja) * | 2007-11-27 | 2014-06-11 | 学校法人上智学院 | Iii族窒化物構造体およびiii族窒化物構造体の製造方法 |
JP2009140975A (ja) * | 2007-12-04 | 2009-06-25 | Panasonic Electric Works Co Ltd | 半導体発光装置およびそれを用いる照明装置ならびに半導体発光装置の製造方法 |
US8263990B2 (en) | 2008-03-14 | 2012-09-11 | Panasonic Corporation | Compound semiconductor light-emitting element and illumination device using the same, and method for manufacturing compound semiconductor light-emitting element |
KR101396679B1 (ko) | 2008-03-14 | 2014-05-16 | 파나소닉 주식회사 | 화합물 반도체 발광 소자 및 이를 이용하는 조명 장치 및 화합물 반도체 발광 소자의 제조 방법 |
WO2009113651A1 (ja) * | 2008-03-14 | 2009-09-17 | パナソニック電工株式会社 | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法 |
JP2009283876A (ja) * | 2008-05-26 | 2009-12-03 | Panasonic Electric Works Co Ltd | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体発光素子の製造方法 |
US8822248B2 (en) | 2008-06-03 | 2014-09-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Epitaxial growth of crystalline material |
US10961639B2 (en) | 2008-06-03 | 2021-03-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Epitaxial growth of crystalline material |
US9365949B2 (en) | 2008-06-03 | 2016-06-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Epitaxial growth of crystalline material |
US8274097B2 (en) | 2008-07-01 | 2012-09-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of edge effects from aspect ratio trapping |
US8994070B2 (en) | 2008-07-01 | 2015-03-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of edge effects from aspect ratio trapping |
US8629045B2 (en) | 2008-07-01 | 2014-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of edge effects from aspect ratio trapping |
US9356103B2 (en) | 2008-07-01 | 2016-05-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of edge effects from aspect ratio trapping |
US9640395B2 (en) | 2008-07-01 | 2017-05-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reduction of edge effects from aspect ratio trapping |
US9287128B2 (en) | 2008-07-15 | 2016-03-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Polishing of small composite semiconductor materials |
US9607846B2 (en) | 2008-07-15 | 2017-03-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Polishing of small composite semiconductor materials |
US8981427B2 (en) | 2008-07-15 | 2015-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Polishing of small composite semiconductor materials |
JP2013239718A (ja) * | 2008-09-01 | 2013-11-28 | Sophia School Corp | 半導体光素子アレイおよびその製造方法 |
WO2010023921A1 (ja) * | 2008-09-01 | 2010-03-04 | 学校法人上智学院 | 半導体光素子アレイおよびその製造方法 |
JP5547076B2 (ja) * | 2008-09-01 | 2014-07-09 | 学校法人上智学院 | 半導体光素子アレイおよびその製造方法 |
TWI470828B (zh) * | 2008-09-01 | 2015-01-21 | Sophia School Corp | 半導體光元件陣列及其製造方法 |
US9224595B2 (en) | 2008-09-01 | 2015-12-29 | Sophia School Corporation | Semiconductor optical element array and method of manufacturing the same |
US9984872B2 (en) | 2008-09-19 | 2018-05-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fabrication and structures of crystalline material |
US8384196B2 (en) | 2008-09-19 | 2013-02-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Formation of devices by epitaxial layer overgrowth |
US9934967B2 (en) | 2008-09-19 | 2018-04-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Formation of devices by epitaxial layer overgrowth |
US8253211B2 (en) | 2008-09-24 | 2012-08-28 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor sensor structures with reduced dislocation defect densities |
US9105549B2 (en) | 2008-09-24 | 2015-08-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor sensor structures with reduced dislocation defect densities |
US8809106B2 (en) | 2008-09-24 | 2014-08-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for semiconductor sensor structures with reduced dislocation defect densities |
US9455299B2 (en) | 2008-09-24 | 2016-09-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods for semiconductor sensor structures with reduced dislocation defect densities |
JP2010153450A (ja) * | 2008-12-24 | 2010-07-08 | Stanley Electric Co Ltd | 半導体素子の製造方法、積層構造体の製造方法、半導体ウエハおよび積層構造体。 |
US8237151B2 (en) | 2009-01-09 | 2012-08-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Diode-based devices and methods for making the same |
US8629446B2 (en) | 2009-04-02 | 2014-01-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Devices formed from a non-polar plane of a crystalline material and method of making the same |
US9299562B2 (en) | 2009-04-02 | 2016-03-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Devices formed from a non-polar plane of a crystalline material and method of making the same |
US9576951B2 (en) | 2009-04-02 | 2017-02-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Devices formed from a non-polar plane of a crystalline material and method of making the same |
US9318660B2 (en) | 2010-02-19 | 2016-04-19 | Samsung Electronics Co., Ltd. | Methods of growing nitride semiconductors and methods of manufacturing nitride semiconductor substrates |
JP2011168481A (ja) * | 2010-02-19 | 2011-09-01 | Samsung Electronics Co Ltd | 窒化物半導体層の成長方法、及びそれにより形成される窒化物半導体基板 |
US8962458B2 (en) | 2010-02-19 | 2015-02-24 | Samsung Electronics Co., Ltd. | Methods of growing nitride semiconductors and methods of manufacturing nitride semiconductor substrates |
JP2011238913A (ja) * | 2010-04-22 | 2011-11-24 | Imec | 発光ダイオードの製造方法 |
JP2016504752A (ja) * | 2012-10-26 | 2016-02-12 | コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス | 遷移金属バッファ層を備えるナノワイヤを含む電子デバイス、少なくとも1つのナノワイヤを成長させる方法、及びデバイスの製造方法 |
JP2019502257A (ja) * | 2015-11-30 | 2019-01-24 | コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ | 軸方向配置の3次元半導体構造を有する光電子素子 |
CN108713258A (zh) * | 2015-11-30 | 2018-10-26 | 原子能和替代能源委员会 | 包括轴向构造的三维半导体结构的光电子器件 |
JP7010820B2 (ja) | 2015-11-30 | 2022-01-26 | コミサリア ア レネルジ アトミク エ オウ エネルジ アルタナティヴ | 軸方向配置の3次元半導体構造を有する光電子素子 |
JP2017152665A (ja) * | 2016-02-25 | 2017-08-31 | 日本碍子株式会社 | 面発光素子、外部共振器型垂直面発光レーザー、および面発光素子の製造方法 |
US10541514B2 (en) | 2016-02-25 | 2020-01-21 | Ngk Insulators, Ltd. | Surface-emitting device, vertical external-cavity surface-emitting laser, and method for manufacturing surface-emitting device |
JP2018142660A (ja) * | 2017-02-28 | 2018-09-13 | 学校法人上智学院 | 光デバイスおよび光デバイスの製造方法 |
JP7090861B2 (ja) | 2017-02-28 | 2022-06-27 | 学校法人上智学院 | 光デバイスおよび光デバイスの製造方法 |
JP2022118051A (ja) * | 2017-02-28 | 2022-08-12 | 学校法人上智学院 | 光デバイスおよび光デバイスの製造方法 |
JP7333666B2 (ja) | 2017-02-28 | 2023-08-25 | 学校法人上智学院 | 光デバイスおよび光デバイスの製造方法 |
JP2020515078A (ja) * | 2017-03-20 | 2020-05-21 | コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス | ナノワイヤ構造及びそのような構造の製造方法 |
JP7370863B2 (ja) | 2017-03-20 | 2023-10-30 | コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス | ナノワイヤ構造及びそのような構造の製造方法 |
JP2020057640A (ja) * | 2018-09-28 | 2020-04-09 | セイコーエプソン株式会社 | 発光装置およびプロジェクター |
JP7320770B2 (ja) | 2018-09-28 | 2023-08-04 | セイコーエプソン株式会社 | 発光装置およびプロジェクター |
US11955582B2 (en) | 2020-02-27 | 2024-04-09 | Seiko Epson Corporation | Light emitting apparatus and projector |
US11552216B2 (en) | 2020-03-09 | 2023-01-10 | Seiko Epson Corporation | Light emitting apparatus and projector |
Also Published As
Publication number | Publication date |
---|---|
US9362717B2 (en) | 2016-06-07 |
US20160254138A1 (en) | 2016-09-01 |
US20070248132A1 (en) | 2007-10-25 |
EP1796180B1 (en) | 2017-06-07 |
TWI500072B (zh) | 2015-09-11 |
JPWO2006025407A1 (ja) | 2008-05-08 |
KR20070046161A (ko) | 2007-05-02 |
JP5280004B2 (ja) | 2013-09-04 |
TW201330061A (zh) | 2013-07-16 |
TWI442456B (zh) | 2014-06-21 |
TW200614351A (en) | 2006-05-01 |
EP1796180A1 (en) | 2007-06-13 |
KR101227724B1 (ko) | 2013-01-29 |
EP1796180A4 (en) | 2011-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5280004B2 (ja) | 発光素子及びその製造方法 | |
Kishino et al. | InGaN/GaN nanocolumn LEDs emitting from blue to red | |
US8329489B2 (en) | Method for manufacturing semiconductor light emitting device | |
JP5807044B2 (ja) | 複数の窒化物ナノワイヤの製造方法 | |
US8304756B2 (en) | Deep ultraviolet light emitting device and method for fabricating same | |
US8563995B2 (en) | Ultraviolet light emitting diode/laser diode with nested superlattice | |
KR101038923B1 (ko) | 개선된 발광 효율을 갖는 발광 다이오드 및 이의 제조방법 | |
KR101646064B1 (ko) | 질화물 반도체 발광 소자의 제조 방법, 웨이퍼, 질화물 반도체 발광 소자 | |
TWI445052B (zh) | 藉由金屬有機化學氣相沈積(MOCVD)於多孔性氮化鎵(GaN)模板上氮化銦鎵(InGaN)之生長 | |
US8415654B2 (en) | Low resistance ultraviolet light emitting device and method of fabricating the same | |
JP6910341B2 (ja) | 縦型紫外発光ダイオード | |
US8445938B2 (en) | Nitride semi-conductive light emitting device | |
TW200838000A (en) | Group-III nitride compound semiconductor device and production method thereof, group-III nitride compound semiconductor light-emitting device and production method thereof, and lamp | |
JP4982176B2 (ja) | 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 | |
JP2008034482A (ja) | 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 | |
JP2008034483A (ja) | 化合物半導体素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法 | |
JP2009238803A (ja) | GaN系半導体基板、その製造方法および半導体素子 | |
JP2009032985A (ja) | 半導体発光素子及びその製造方法 | |
JP2000277440A (ja) | 窒化物系iii−v族化合物半導体結晶膜、窒化物系iii−v族化合物半導体結晶膜をもちいた半導体装置及び窒化物系iii−v族化合物半導体結晶膜をもちいた半導体レーザ | |
JP2005197346A (ja) | GaNAs結晶の成長方法及びGaNAs結晶並びにGaNAs結晶を備えた半導体装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006532734 Country of ref document: JP |
|
REEP | Request for entry into the european phase |
Ref document number: 2005777119 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005777119 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11574386 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020077005200 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2005777119 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 11574386 Country of ref document: US |